/* * @test * @synopsis multiple producers and single consumer using blocking queues */ /* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain. Use, modify, and * redistribute this code in any way without acknowledgement. */ import java.util.concurrent.*; public class MultipleProducersSingleConsumerLoops { static final int CAPACITY = 100; static final ExecutorService pool = Executors.newCachedThreadPool(); static boolean print = false; static int producerSum; static int consumerSum; static synchronized void addProducerSum(int x) { producerSum += x; } static synchronized void addConsumerSum(int x) { consumerSum += x; } static synchronized void checkSum() { if (producerSum != consumerSum) throw new Error("CheckSum mismatch"); } public static void main(String[] args) throws Exception { int maxProducers = 100; int iters = 100000; if (args.length > 0) maxProducers = Integer.parseInt(args[0]); print = false; System.out.println("Warmup..."); oneTest(1, 10000); Thread.sleep(100); oneTest(2, 10000); Thread.sleep(100); print = true; for (int i = 1; i <= maxProducers; i += (i+1) >>> 1) { System.out.println("Producers:" + i); oneTest(i, iters); Thread.sleep(100); } pool.shutdown(); } static void oneTest(int producers, int iters) throws Exception { if (print) System.out.print("ArrayBlockingQueue "); oneRun(new ArrayBlockingQueue(CAPACITY), producers, iters); if (print) System.out.print("LinkedBlockingQueue "); oneRun(new LinkedBlockingQueue(CAPACITY), producers, iters); // Don't run PBQ since can legitimately run out of memory // if (print) // System.out.print("PriorityBlockingQueue "); // oneRun(new PriorityBlockingQueue(), producers, iters); if (print) System.out.print("SynchronousQueue "); oneRun(new SynchronousQueue(), producers, iters); if (print) System.out.print("SynchronousQueue(fair) "); oneRun(new SynchronousQueue(true), producers, iters); if (print) System.out.print("ArrayBlockingQueue(fair)"); oneRun(new ArrayBlockingQueue(CAPACITY, true), producers, iters/10); } static abstract class Stage implements Runnable { final int iters; final BlockingQueue queue; final CyclicBarrier barrier; Stage (BlockingQueue q, CyclicBarrier b, int iters) { queue = q; barrier = b; this.iters = iters; } } static class Producer extends Stage { Producer(BlockingQueue q, CyclicBarrier b, int iters) { super(q, b, iters); } public void run() { try { barrier.await(); int s = 0; int l = hashCode(); for (int i = 0; i < iters; ++i) { l = LoopHelpers.compute1(l); l = LoopHelpers.compute2(l); queue.put(new Integer(l)); s += l; } addProducerSum(s); barrier.await(); } catch (Exception ie) { ie.printStackTrace(); return; } } } static class Consumer extends Stage { Consumer(BlockingQueue q, CyclicBarrier b, int iters) { super(q, b, iters); } public void run() { try { barrier.await(); int s = 0; for (int i = 0; i < iters; ++i) { s += queue.take().intValue(); } addConsumerSum(s); barrier.await(); } catch (Exception ie) { ie.printStackTrace(); return; } } } static void oneRun(BlockingQueue q, int nproducers, int iters) throws Exception { LoopHelpers.BarrierTimer timer = new LoopHelpers.BarrierTimer(); CyclicBarrier barrier = new CyclicBarrier(nproducers + 2, timer); for (int i = 0; i < nproducers; ++i) { pool.execute(new Producer(q, barrier, iters)); } pool.execute(new Consumer(q, barrier, iters * nproducers)); barrier.await(); barrier.await(); long time = timer.getTime(); checkSum(); if (print) System.out.println("\t: " + LoopHelpers.rightJustify(time / (iters * nproducers)) + " ns per transfer"); } }