
A Unified Resource Model for Engineering
Multi-Core Software Systems

András Vajda
Ericsson Software Research

Hirsalantie 11
FI-02420 Jorvas
+358 9 299 3046

andras.vajda@ericsson.com

ABSTRACT
Multi-core architectures and chip multi-processor systems
(CMPs) have become the mainstream approach for building
processors delivering improved theoretical performance according
to Moore’s law. From a software engineering perspective,
however, this represented a major shift from HW-driven
performance improvement to software-based methods. In this
context, the efficient usage (in terms of development and run-time
resources) of processing cores and memory is of paramount
importance, as these two types of resources are at the root of most
challenges related to developing parallel software for CMPs.

In this paper we present a unified resource model (URM)
environment and a method for efficiently and transparently
managing computing resources, building on a number of related
technologies, such as model-based design and automatic code
generation. This model enables the programmer to focus on the
problem domain without the need to deal with shared memory
access, scheduling or processor core management issues.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming; D.1.7
[Visual Programming]; D.2.2 [Design Tools and Techniques]:
Software libraries; D.3.4 [Processors]: Code generation,
Compilers; D.4.1 [Process Management]: Concurrency,
Multiprocessing/multiprogramming/multitasking, Threads

General Terms
Algorithms, Management, Design, Languages.

Keywords
Multi-core, Resource Management, Software Engineering, Shared
Memory, Scheduling, Modeling, Code Generation

1. INTRODUCTION
Multi-core architectures and chip multi-processor systems
(CMPs) have become the mainstream approach for building
processors delivering improved theoretical performance according
to Moore’s law. From software engineering perspective however,
multi-core HW technology triggered a major shift from HW-
driven performance improvement to software-based methods.
This paradigm shift – and its consequences for the industry – led
to a substantial amount of research effort dedicated to appropriate
computer architectures, operating systems and programming
models.

One of the fundamental issues that need to be tackled in CMPs is
the management of shared resources, such as processing cores,
memory and I/O capabilities. From a multi-core software
engineering perspective, the efficient usage (in terms of
development and run-time resources) of the first two of these –
processing cores and memory – is of paramount importance, as
these two types of resources are at the root of most challenges
related to developing parallel software for CMPs. Consequently,
one of the key challenges is to provide a framework that hides the
details of managing cores and memory and enables programmers
to focus on the actual problem domain.

We will present a method for efficiently and transparently
managing these resources, building on a number of related
technologies, such as model-based design and automatic code
generation, in the context of a unified framework for describing
resources and resource application requirements.

2. RESOURCE CHARACTERIZATION
2.1 Programming Models
Fundamentally, there are four main groups of parallel
programming models proposed so far, defined along two axes:
parallelism model (thread or task based) and communication
model (shared memory or message passing). Essentially, all
models proposed so far deploy a variant of these four basic
models, combined with various scheduling approaches. Table 1
shows a summary of these models.

Table 1 Programming model paradigms

 Parallelism:

Thread based,

shared memory

Task based,

shared memory

Communication Thread based,

message passing

Task based,

message passing

We will consider all four of these models in the present paper.

2.2 Management of Processing Cores
There are two fundamental types of multi-core processors:
homogeneous ones, characterized by having processing cores of
equal capabilities (in terms of ISA, speed, pipeline architecture
and cache structure) and heterogeneous processors, comprising
processor cores with different capabilities (in terms of ISA, speed,
pipeline architecture or cache architecture).

mailto:andras.vajda@ericsson.com

From a resource management point of view, homogeneous
systems are usually managed through symmetric multi-processing
(SMP) scheduling. The more challenging class of processors is of
those with heterogeneous capabilities. Heterogeneity can manifest
itself in terms of varying, perhaps partly overlapping ISAs (e.g.
RISC architecture core combined with a VLIW DSP core),
varying execution speed (frequency), varying cache sizes, varying
capabilities (such as pipe-line depth). A significant body of
research deals with scheduling and programming issues related to
these chips, both on OS and programming model level. Due to
this complexity, in this paper we will primarily focus on
heterogeneous systems.

2.3 Shared Memory
One of the easiest to grasp approaches to program data is that of
shared memory. Unfortunately, usage of shared memory in a
CMP poses a number of daunting challenges in terms of
synchronization, resource contention and memory bandwidth
management that increases dramatically the cost of efficiency for
using shared memory. All of the traditional approaches to shared
memory – locks, transactional memory, and lock-free data
structures – have a number of drawbacks:

• Locks are non-composable, i.e., two pieces of correct
program code, when combined, may not perform
correctly, leading to hard-to-detect deadlock or live-
lock situations

• Transactional memory solutions, while composable,
have a significant processing overhead, usually require
HW support and software realizations do not scale well:
the system will perform increasingly inefficiently in
case the number of processing elements trying to access
the same data is increased; it has been shown previously
that Haskell’s STM solution does not scale beyond 8
cores in a CMP ([1])

• Neither locks nor STM solutions are predictable and
deterministic, i.e., it’s very difficult – and in some cases
impossible – to calculate a reliable upper-bound for
execution time; this behavior is not suitable for real-
time applications

• Lock-free data structures and algorithms require case-
by-case development and there as no universally
applicable solution available.

Recently, a new approach called LTF-SHM (Lock and
Transaction Free Shared Memory) has been proposed ([3], [2],
[8]), relying on the simple principle of locking shared data
structures to specific cores and moving computations – whenever
needed – to the core that ‘owns’ the data structure that needs to be
addressed. As shown in [3], this approach offers a dead-lock free,
deterministic, self-adaptive and simple approach to shared
memory in CMPs, one that does not require any elaborate design
effort by the programmer.

3. PROPOSED MODEL
3.1 Unified Resource Model
We propose a unified resource model (URM) that captures the
potential heterogeneity of the hardware as well as the shared data
structures into one unified framework that can be used as a basis
for automatic generation of parallel software for various targets. It
offers a framework for reasoning about shared data structures, or
need for specialized computing architecture features (instruction

sets, speed or memory size). It does not require the programmer to
know in detail how the hardware looks like, rather it offers the
setting and tools to express what the program will require.

We start from the observation that applications will expose their
computing requirements as requests for certain type of resources.
For example, a piece of code (function or critical section) that
needs access to a shared memory area exposes a property
indicating that it requires a certain type of resource, in this case,
access to a certain location in the memory. Another such example
is the need for a certain type of processor core – e.g. DSP or SPE
in a Cell processor – for executing a certain part of the code,
expressed, again, as a property indicating that access to a specific
core type is needed.

Based on this observation, we propose a computing resource
model where all resources are a subtype of a basic type we’ll call
NeedToAccess. In this context, a shared memory location for
example can be represented as a subclass of NeedToAccess with
the properties id and type. The requirement to execute a sequential
portion of an application becomes a resource request for an object
of another subclass of NeedToAccess, characterized by e.g.
frequency (if frequency is the measure that defines the speed of a
core). Figure 1 gives an overview of the main subclasses of
NeedToAccess, explained in more detail below.

<<class>> NeedToAccess
threadId
csId

<<class>> NeedToAccessShMemory
sharedDataId
type

<<class>> NeedToAccessISA
ISAType

<<class>> NeedToAccessSpeed
requiredSpeedLevel

<<class>> NeedToAccessCache
cacheSize

Figure 1: Class diagram of the NeedToAccess-based sub-classes

NeedToAccessShMemory: this type of resource encompasses the
access to a certain shared memory location and it’s characterized
by sharedDataId, and type. It’s important to stress that the focus
is on access to a specific memory area as a resource and not on
the amount of memory. This is a novel approach that makes
shared memory areas analogous to processor cores; this can be
achieved in the context of LTF-SHM, where access to a certain
shared memory area means access to a specific processor core,
that has the capability of accessing that specific shared memory
area.

NeedToAcccesISA: this resource type covers cores of different
types (defined by the attribute ISAType, which could be DSP
(Digital Signal Processor), GPU (Graphics Processing Unit), GPP
(General Purpose Processor) etc). Through expressing a need for
this type of resource, the programmer can provide information
regarding where a certain piece of code shall be executed in order

to improve the performance of the program (e.g. video
transcoding is best suited for DSP type of processors).

NeedToAccessSpeed: this type of resource represents access to
high performance cores, typically needed for executing sequential
portions of applications. Through expressing a need for this type
of resource, the programmer can provide information regarding
where a certain piece of code shall be executed – but in the
context of execution speed rather than specific type of
functionality.

NeedToAccessCache: this type of resource represents access to
cores with a defined minimal amount of local cache. This type of
resource can be used in cases where a large amount of data is
manipulated that is best fitted in the internal memory. The
resource object may also define which memory locations will be
accessed in order to facilitate pre-fetching.

These resource types are just examples we have identified as
essential ones; more resource types can be defined as needed.

3.2 Programming Model
The resource model presented in the previous section provides the
foundation for a high level programming framework that shields
the programmer from the complexity of managing resources
typical to a multi-core application.

The proposed programming framework builds on the concepts of
critical sections and the design by contract paradigm. Essentially,
the model requires the programmer to annotate each section of the
code that have specific requirements – e.g. the need to access a
shared memory location, run at higher speed or using a specific
type of core – by marking it as critical section, with associated
resource contracts in terms of objects of type subclasses of
NeedToAccess, hence defining the type of resource the critical
section requires.

For the implementation of the proposed method we will use a
model-based design approach. In the context of a UML-based
modeling environment, the critical section annotations can be
implemented as model markings and the resource contracts as the
values associated with the markings. To facilitate markings, each
section of code defined as critical section is best delimited as a
function, object method or transition (if the UML real-time profile
is used). We propose the following notation:

<<CS, resourceType={objectType, attributes}, resourceType=
{objectType, attributes}, … >>

Figure 2 gives a few examples of using this type of marking.
Please note that there may be several resource objects associated
with a critical section (e.g. for expressing the need to access
several shared memory areas simultaneously).

One extension of the proposed marking model is to allow non-
binding resource contracts, through which the programmer can
express the recommendation to use a specific type of resource
(such as ISA or speed), without making it mandatory. This
approach gives the model transformation / compilation phase
more flexibility in managing contracts and generating code.

<<method>> void CSForSharedMemory (unsigned a,
unsigned b)
<<CS:

resourcType = {NeedToAccessShMemory, DATA_1,
addressPointer}>>

{
// method code

}

<<method>> void FFT (void *params)
<<CS:

resourcType = {NeedToAccessISA, DSP} >>
{

// method code that shall execute on DSPs
}

<<method>> void CSSequentialCode ()
<<CS:

resourcType = {NeedToAccessSpeed, ”2GHz”} >>
{

// method code that shall execute at high speed
}

Figure 2: Examples of markings

4. IMPLEMENTATION
The fundamental reason for choosing a modeling based approach
(and particularly, a UML based one) is the framework it offers for
platform independent design in the form of Computation
Independent Models (CIM – implementation independent
representation of the required functionality) and Platform
Independent Models (PIM), derived from CIMs and coupled with
one or several model compilers that can automatically generate,
based on the model, annotations and specific deployment models
platform specific models (PSM), suitable for a specific target
hardware and software systems. These concepts are illustrated in
Figure 3. For more information, please see [9].

Intreraction
between
objects

Systems
processes

conceptual
models

Information
model

CIM

PIM

PSM

Computation
Independent
Model

PSM

<<model compilers>>

Platform
Independent
Model

Platform
Specific
Models

From concept to
platform independent
implementation

From platform
independent to platfrom
specific, optimized
implementation through
automatic code
transformation

Figure 3 The concepts of CIM, PIM and PSM

The essence of model-based development is that software shall be
developed in a platform independent fashion, in the problem
domain (such as telecommunication, scientific computing etc) and
then mapped through model transformations (or compilation) to
specific, potentially multiple targets. The target-specific
information is captured in the model compiler and the associated
run-time system (RTS), with potentially different compilers and
run-time systems developed for each target. In our case, the PIM
is built by the programmer relying on the universal resource
model, that is itself target-independent: it only offers a framework

for reasoning about shared data structures, need for specialized
computing architecture features (instruction sets, speed, memory
size) etc. The key to an efficient deployment is how the model
compilers and run-time systems are built. We will detail our
proposed model and model compiler functionality in the
following sub-sections.

4.1 Run-time System
The model at the foundation of the run-time system is based on
the task-based programming paradigm. At a very high level,
critical sections are mapped to tasks that will either be dispatched
to specific processor cores with special roles or will be used to
trigger a specific action in the operating system.

4.1.1 Run-time System for Shared Memory
Our run-time system for shared memory is based on the method
described in [3], built on the concept of moving computation
instead of data. Essentially, it requires the programmer to mark
explicitly each memory area that is shared between multiple
threads, associate a unique id (called shared data id – SDI) to
each area and include this information – as instances of the
NeedToAccessShMemory class – in the resource contract of the
critical section that will access one or several of the shared data
areas. In the run-time system, the critical sections will be
dispatched as tasks that will be executed on specific cores (called
resource guardians) that own the shared data areas accessed by
the critical section. The method is depicted in Figure 4,
reproduced from [3] (UPE means User Processing Entity, the
original core where the program was executing before entering
the critical section).

Critical sections
executed sequentially

Resource Guardian (RG) -
(core in a CMP)

Task:
• CS Id
• calling thread id
• list of SDI
• CS location

Task queues,
1 for each prio

level

On-chip
communication network

User Processing Element
(UPE) - (core in a CMP)

User Processing Element
(UPE) - (core in a CMP)

Task(s) to RGs
(critical sections)

Task(s) to RGs
(critical sections)

<<CS1: resourceType={NeedToAccessShMemory, DATA_1,
ap1}¨>>
{
// code written normally

};
// other code

<<CS2:resoureType={NeedToAccessShMemory, DATA_1,
ap1}, resourceType={NeedToAccessShMemory, DATA_2,
ap2}>>
{
// code written normally

};
// other code

<<CS1>>

<<CS2>>

Figure 4 Execution model for shared memory access

4.1.2 Run-time System for ISA handling
The run-time system for this type of resource will depend to a
large extent on the underlying HW and operating system
structure. For example, a possible solution for the Cell BE
processor has been presented in [4], relying on much the same
mechanisms as our proposed critical section model.

We promote – if the underlying HW allows it – a model-based on
Remote Procedure Call (RPC) mechanisms. In this model, the
run-time system will manage a shadow thread for each thread that
has associated critical sections that require a specific ISA

(Instruction Set Architecture). The shadow thread will execute on
a core having the type of ISA that the critical section requires and
will get triggered through the RPC mechanism whenever the
critical section needs to execute.

The model compiler shall generate separate source code files for
both architectures (main and required) as well as supporting build
and link files.

4.1.3 Run-time System for Executing Sequential code
The implementation of the run-time system for this kind of
resource (NeedToAccessSpeed) depends largely on the underlying
hardware.

If the hardware is homogeneous with no support for frequency or
voltage scaling, the only possible implementation is to boost the
priority of the thread expressing the need for this resource.

In case of asymmetric, homogeneous ISA HW (equipped with
cores having the same ISA, but different performance
characteristics, such as execution speed), this resource shall
trigger migration of the thread to the more powerful core, where
the critical section can execute in shorter time. An interesting
approach based on voltage and frequency scaling can be
implemented based on the methods described in [6] or [5]. In
these solutions, some cores will be shut down and the frequency
at which the core executing the critical section is run is
temporarily boosted to the maximum supported level, thus
supporting the faster execution of the critical section.

An interesting alternative for the future could be to deploy
speculative, run-ahead, multi-path execution on a massive scale,
based on the design by contract paradigm ([10]). At present
however, no such system has yet been proposed.

4.1.4 Run-time System for Cache Sizing
The run-time system for this resource type is very similar to the
NeedToAccessSpeed type of resource. The thread will be
migrated, if possible, to a core with larger L1 or L2 cache size,
but, in addition, the run-time system may perform a pre-fetching
of the memory locations indicated in the resource object. Paper
[8] describes a method how such a pre-fetcher could be
implemented in HW, but essentially the same result can be
obtained through software triggered DMA (or equivalent
technology).

4.2 Model Compiler
The model compiler is the entity responsible for transforming the
(annotated) UML model to a program (usually in C/C++ or Java,
rarely in assembler) that fulfills two conditions:

• It is functionally equivalent to the original model

• It is specific to the HW and SW target (RTS) the model
compiler is designed for

In this section we will outline the required functionality in order
to successfully and efficiently map the high level URM-based
annotated model to the underlying run-time system described in
the previous section.

4.2.1 Shared Memory
The model compiler is responsible for defining the critical section
groups (the group of critical sections that are accessing related

memory areas, see [3] for details) and generating the code for the
associated resource guardian functionality, as well as mapping the
resource guardian roles to available processor cores. The model
compiler shall also generate the glue code for linking in the
automatic dead-lock resolution and elastic resource guardian
scoping functionality as well as for the dispatch of tasks on user-
processing cores (the cores that execute regular, non-critical
section code).

4.2.2 ISA handling
The model compiler is to a large extent dependent on the
underlying HW architecture and the run-time system. In our
favored model, based on RPC and shadow threads, the model
compiler shall

• Identify threads (potentially based on separate
programmer annotations) that have critical sections
requiring different ISA resources

• Perform a static schedule analysis for required
configuration; if static schedule analysis is inconclusive,
code for run-time decision whether a non-mandatory
resource ISA requirement can be fulfilled will be
generated

• Generate shadow thread code and code for dispatching
RPC tasks

We would like to emphasize that this is just our preferred
approach, verified in a number of telecom applications; however,
several other methods have been proposed, e.g. [4].

4.2.3 Sequential code execution
Managing the resource need for fast execution of sequential code
will, again depend on the actual HW infrastructure. For
asymmetric, homogeneous HW architecture, the model compiler
shall generate code for migrating threads between cores (to and
from the complex core); solutions for how to perform this have
been proposed in e.g. [7]. In contrast to prior work, our proposal
is deterministic, in the sense that it’s precisely delimited (through
the use of the critical section concept) the part of the code that
shall execute on the higher performance core.

Our preferred solution is the one based on aggressive DVFS, as
outlined in [5]. In this model, the model compiler shall generate
code for

• Requiring shut-off of unused cores

• Move of the execution to a core with frequency
scalability

• Requesting boost of frequency on that core

• Requesting return to normal frequency after the critical
section completes

4.2.4 Cache-size resource
The model compiler shall, in this case, generate code for

• Thread migration to large sized cache cores for the
period of execution of the critical section

• If the CS has a property indicating the required memory
areas, code for pre-fetching the data on the target core
(again, HW and OS dependent)

5. DISCUSSION
Managing resources such as memory and processing cores in the
presence of massive parallelism is one of the fundamental issues
of multi-core software engineering. Another aspect, critical in any
industrial environment, is to increase the portability of software
and re-use across a broad range of hardware platforms – this
requirement is even more critical due to the cost of porting across
heterogeneous architectures.

Our proposed resource management framework and programming
model aim to address exactly these issues. The resource model we
propose provides a simple, HW-independent, unified framework
for reasoning about the major types of resources in a multi-core
chip. It’s important to note that indicating the requirement for a
specific type of resource does not imply a need to know the
underlying HW capabilities – the model compiler has the freedom
to provide the semantic in a different way: shared memory using
messaging in the run-time system (if there’s no cache coherency
support), execution of specific ISA-typed code segments on other
than indicated types of HW etc. De-coupling the reasoning on
resources and the actual implementation in a constrained HW/OS
infrastructure is one of the strengths of our proposal.

Another benefit of the programming model that we propose is that
it does not dictate neither a threading based nor a task based
parallelism model, this being left to the programmer. It only
provides a method for managing essential resources – the
implementation of parallelism on high level is still up to the
programmer. As future work, this could be brought into the same
framework; however, in our experience this yielded limited
benefits.
A modeling based approach also proved to be a good choice, as it
allowed us to easily decouple application logic from underlying
HW and OS infrastructure and from the transformation logic,
while keeping all these in one unified model. By modifying small
parts of the model compiler – while keeping the application
model untouched – it’s possible to easily experiment with various
deployment strategies (auto-generated locks, transactional
memory, DVFS etc).
Regarding performance, we found that the major trade-off is at
finding the right run-time system (and coupled model compiler)
for each HW target. The Unified Resource Model’s impact on
performance – versus hand-crafted code – is essentially under
measurable threshold. The run-time system choices we outline in
this paper are the most promising approaches, in our opinion, for
main-stream massively multi-core processors, at least for telecom
domain software.

6. SUMMARY AND FUTURE WORK
In this paper we presented a unified resource management
framework for dealing with critical resources – such as shared
memory, processor cores and cache – in a platform independent
way. We couple this model with a model-based design approach
to provide a simple to use, generic yet efficient method for
engineering multi-core software.

As next steps, we aim to validate our model for more problem
domains and various HW infrastructures. Also, extensions with
more resource types will be investigated, such as parallelism
model and communication resources.

7. ACKNOWLEDGMENTS
We would like to acknowledge the help of those who provided
preliminary feedback on this paper.

8. REFERENCES
[1] Perfumo, C., Sönmez, N., Stipic, S., Unsal, O., Cristal, A.,

Harris, T. and Valero, M. The limits of software
transactional memory (STM): dissecting Haskell STM
applications on a many-core environment. Proceedings of
the 2008 conference on Computing frontiers (2008)

[2] Suleman, M.A., Mutlu, O., Qureshi, M.K., Patt, Y.N.
Accelerating Critical Section Execution with Assymetric
Multi-Core Architectures. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, (March 2009)

[3] Vajda, A. Handling of Shared Memory in Many-core
systems without Locks and Transactional Memory. 3rd
Workshop on Programmability Issues for Multi-core
Computers (MULTIPROG), with HiPEAC 2010

[4] Cooper P., Dolinsky U., Donaldson, A.F., Richards,
A., Riley, C., Russell, G. Offload – Automatic Code
Migration to Heterogeneous Multicore Systems.
Proceedings of the 5th International Conference on

High Performance Embedded Architectures and
Compilers, (January 2010)

[5] Vajda, A. Space-shared and Frequency-scaling Based
Task Scheduler for Many-core OS. Workshop on
Power Aware Computing and Systems 2009
(HotPower’09), with SOSP 2009

[6] Greskamp, B., Karpuzcu, R.U. and Torrellas, J. LeadOut:
Composing Low-Overhead Frequency-Enhancing
Techniques for Single Thread Performance in Configurable
Multicores. Proceedings of the 16th IEEE International
Symposium on High-Performance Computer Architecture,
(January 2010)

[7] Li, T., Brett, P., Knauerhause, R., Koufaty, D., Reddy, D.,
Hahn, S. Operating System Support for Overlapping-ISA
Heterogeneous Multi-Core Architectures. Proceedings of the
16th IEEE International Symposium on High-Performance
Computer Architecture, (January 2010)

[8] Vajda, A. The case for coherence-less distributed cache
architecture. Workshop on Chip Multi-Processor Memory
Systems and Interconnect (CMP-MSI), with HPCA 2010

[9] OMG Model Driven Architecture, http://www.omg.org/mda/
[10] Vajda, A., Stenström, P. Semantic Information Driven

Speculative Execution. Workshop on New Directions in
Computer Architecture, with MICRO 2009

http://www.omg.org/mda/

	1. INTRODUCTION
	2. RESOURCE CHARACTERIZATION
	2.1 Programming Models
	2.2 Management of Processing Cores
	2.3 Shared Memory

	3. PROPOSED MODEL
	3.1 Unified Resource Model
	3.2 Programming Model

	4. IMPLEMENTATION
	4.1 Run-time System
	4.1.1 Run-time System for Shared Memory
	4.1.2 Run-time System for ISA handling
	4.1.3 Run-time System for Executing Sequential code
	4.1.4 Run-time System for Cache Sizing

	4.2 Model Compiler
	4.2.1 Shared Memory
	4.2.2 ISA handling
	4.2.3 Sequential code execution
	4.2.4 Cache-size resource

	5. DISCUSSION
	6. SUMMARY AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

