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ABSTRACT 
Multi-core architectures and chip multi-processor systems 
(CMPs) have become the mainstream approach for building 
processors delivering improved theoretical performance according 
to Moore’s law. From a software engineering perspective, 
however, this represented a major shift from HW-driven 
performance improvement to software-based methods. In this 
context, the efficient usage (in terms of development and run-time 
resources) of processing cores and memory is of paramount 
importance, as these two types of resources are at the root of most 
challenges related to developing parallel software for CMPs.  

In this paper we present a unified resource model (URM) 
environment and a method for efficiently and transparently 
managing computing resources, building on a number of related 
technologies, such as model-based design and automatic code 
generation. This model enables the programmer to focus on the 
problem domain without the need to deal with shared memory 
access, scheduling or processor core management issues.  

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel programming; D.1.7 
[Visual Programming]; D.2.2 [Design Tools and Techniques]: 
Software libraries; D.3.4 [Processors]: Code generation, 
Compilers; D.4.1 [Process Management]: Concurrency, 
Multiprocessing/multiprogramming/multitasking, Threads 

General Terms 
Algorithms, Management, Design, Languages. 

Keywords 
Multi-core, Resource Management, Software Engineering, Shared 
Memory, Scheduling, Modeling, Code Generation 

1. INTRODUCTION 
Multi-core architectures and chip multi-processor systems 
(CMPs) have become the mainstream approach for building 
processors delivering improved theoretical performance according 
to Moore’s law. From software engineering perspective however, 
multi-core HW technology triggered a major shift from HW-
driven performance improvement to software-based methods. 
This paradigm shift – and its consequences for the industry – led 
to a substantial amount of research effort dedicated to appropriate 
computer architectures, operating systems and programming 
models. 

One of the fundamental issues that need to be tackled in CMPs is 
the management of shared resources, such as processing cores, 
memory and I/O capabilities. From a multi-core software 
engineering perspective, the efficient usage (in terms of 
development and run-time resources) of the first two of these – 
processing cores and memory – is of paramount importance, as 
these two types of resources are at the root of most challenges 
related to developing parallel software for CMPs. Consequently, 
one of the key challenges is to provide a framework that hides the 
details of managing cores and memory and enables programmers 
to focus on the actual problem domain.  

We will present a method for efficiently and transparently 
managing these resources, building on a number of related 
technologies, such as model-based design and automatic code 
generation, in the context of a unified framework for describing 
resources and resource application requirements.  

2. RESOURCE CHARACTERIZATION 
2.1 Programming Models 
Fundamentally, there are four main groups of parallel 
programming models proposed so far, defined along two axes: 
parallelism model (thread or task based) and communication 
model (shared memory or message passing). Essentially, all 
models proposed so far deploy a variant of these four basic 
models, combined with various scheduling approaches. Table 1 
shows a summary of these models.  

Table 1 Programming model paradigms 

 Parallelism: 

Thread based,  

shared memory 

Task based,  

shared memory 

 

 

Communication Thread based,  

message passing 

Task based,  

message passing 

We will consider all four of these models in the present paper.  

2.2 Management of Processing Cores 
There are two fundamental types of multi-core processors: 
homogeneous ones, characterized by having processing cores of 
equal capabilities (in terms of ISA, speed, pipeline architecture 
and cache structure) and heterogeneous processors, comprising 
processor cores with different capabilities (in terms of ISA, speed, 
pipeline architecture or cache architecture).  
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From a resource management point of view, homogeneous 
systems are usually managed through symmetric multi-processing 
(SMP) scheduling. The more challenging class of processors is of 
those with heterogeneous capabilities. Heterogeneity can manifest 
itself in terms of varying, perhaps partly overlapping ISAs (e.g. 
RISC architecture core combined with a VLIW DSP core), 
varying execution speed (frequency), varying cache sizes, varying 
capabilities (such as pipe-line depth). A significant body of 
research deals with scheduling and programming issues related to 
these chips, both on OS and programming model level. Due to 
this complexity, in this paper we will primarily focus on 
heterogeneous systems.  

2.3 Shared Memory 
One of the easiest to grasp approaches to program data is that of 
shared memory. Unfortunately, usage of shared memory in a 
CMP poses a number of daunting challenges in terms of 
synchronization, resource contention and memory bandwidth 
management that increases dramatically the cost of efficiency for 
using shared memory. All of the traditional approaches to shared 
memory – locks, transactional memory, and lock-free data 
structures – have a number of drawbacks:  

• Locks are non-composable, i.e., two pieces of correct 
program code, when combined, may not perform 
correctly, leading to hard-to-detect deadlock or live-
lock situations 

• Transactional memory solutions, while composable, 
have a significant processing overhead, usually require 
HW support and software realizations do not scale well: 
the system will perform increasingly inefficiently in 
case the number of processing elements trying to access 
the same data is increased; it has been shown previously 
that Haskell’s STM solution does not scale beyond 8 
cores in a CMP ([1]) 

• Neither locks nor STM solutions are predictable and 
deterministic, i.e., it’s very difficult – and in some cases 
impossible – to calculate a reliable upper-bound for 
execution time; this behavior is not suitable for real-
time applications 

• Lock-free data structures and algorithms require case-
by-case development and there as no universally 
applicable solution available.  

Recently, a new approach called LTF-SHM (Lock and 
Transaction Free Shared Memory) has been proposed ([3], [2], 
[8]), relying on the simple principle of locking shared data 
structures to specific cores and moving computations – whenever 
needed – to the core that ‘owns’ the data structure that needs to be 
addressed. As shown in [3], this approach offers a dead-lock free, 
deterministic, self-adaptive and simple approach to shared 
memory in CMPs, one that does not require any elaborate design 
effort by the programmer.  

3. PROPOSED MODEL 
3.1 Unified Resource Model 
We propose a unified resource model (URM) that captures the 
potential heterogeneity of the hardware as well as the shared data 
structures into one unified framework that can be used as a basis 
for automatic generation of parallel software for various targets. It 
offers a framework for reasoning about shared data structures, or 
need for specialized computing architecture features (instruction 

sets, speed or memory size). It does not require the programmer to 
know in detail how the hardware looks like, rather it offers the 
setting and tools to express what the program will require.   

We start from the observation that applications will expose their 
computing requirements as requests for certain type of resources. 
For example, a piece of code (function or critical section) that 
needs access to a shared memory area exposes a property 
indicating that it requires a certain type of resource, in this case, 
access to a certain location in the memory. Another such example 
is the need for a certain type of processor core – e.g. DSP or SPE 
in a Cell processor – for executing a certain part of the code, 
expressed, again, as a property indicating that access to a specific 
core type is needed.  

Based on this observation, we propose a computing resource 
model where all resources are a subtype of a basic type we’ll call 
NeedToAccess. In this context, a shared memory location for 
example can be represented as a subclass of NeedToAccess with 
the properties id and type. The requirement to execute a sequential 
portion of an application becomes a resource request for an object 
of another subclass of NeedToAccess, characterized by e.g. 
frequency (if frequency is the measure that defines the speed of a 
core). Figure 1 gives an overview of the main subclasses of 
NeedToAccess, explained in more detail below.  

<<class>> NeedToAccess
threadId
csId

<<class>> NeedToAccessShMemory
sharedDataId
type

<<class>> NeedToAccessISA
ISAType

<<class>> NeedToAccessSpeed
requiredSpeedLevel

<<class>> NeedToAccessCache
cacheSize

 
Figure 1: Class diagram of the NeedToAccess-based sub-classes 

NeedToAccessShMemory: this type of resource encompasses the 
access to a certain shared memory location and it’s characterized 
by sharedDataId, and type. It’s important to stress that the focus 
is on access to a specific memory area as a resource and not on 
the amount of memory. This is a novel approach that makes 
shared memory areas analogous to processor cores; this can be 
achieved in the context of LTF-SHM, where access to a certain 
shared memory area means access to a specific processor core, 
that has the capability of accessing that specific shared memory 
area.  

NeedToAcccesISA: this resource type covers cores of different 
types (defined by the attribute ISAType, which could be DSP 
(Digital Signal Processor), GPU (Graphics Processing Unit), GPP 
(General Purpose Processor) etc). Through expressing a need for 
this type of resource, the programmer can provide information 
regarding where a certain piece of code shall be executed in order 



to improve the performance of the program (e.g. video 
transcoding is best suited for DSP type of processors). 

NeedToAccessSpeed: this type of resource represents access to 
high performance cores, typically needed for executing sequential 
portions of applications. Through expressing a need for this type 
of resource, the programmer can provide information regarding 
where a certain piece of code shall be executed – but in the 
context of execution speed rather than specific type of 
functionality.  

NeedToAccessCache: this type of resource represents access to 
cores with a defined minimal amount of local cache. This type of 
resource can be used in cases where a large amount of data is 
manipulated that is best fitted in the internal memory. The 
resource object may also define which memory locations will be 
accessed in order to facilitate pre-fetching.  

These resource types are just examples we have identified as 
essential ones; more resource types can be defined as needed.  

3.2 Programming Model 
The resource model presented in the previous section provides the 
foundation for a high level programming framework that shields 
the programmer from the complexity of managing resources 
typical to a multi-core application. 

The proposed programming framework builds on the concepts of 
critical sections and the design by contract paradigm. Essentially, 
the model requires the programmer to annotate each section of the 
code that have specific requirements – e.g. the need to access a 
shared memory location, run at higher speed or using a specific 
type of core – by marking it as critical section, with associated 
resource contracts in terms of objects of type subclasses of 
NeedToAccess, hence defining the type of resource the critical 
section requires.  

For the implementation of the proposed method we will use a 
model-based design approach. In the context of a UML-based 
modeling environment, the critical section annotations can be 
implemented as model markings and the resource contracts as the 
values associated with the markings. To facilitate markings, each 
section of code defined as critical section is best delimited as a 
function, object method or transition (if the UML real-time profile 
is used). We propose the following notation:  

<<CS, resourceType={objectType, attributes}, resourceType= 
{objectType, attributes}, … >> 

Figure 2 gives a few examples of using this type of marking. 
Please note that there may be several resource objects associated 
with a critical section (e.g. for expressing the need to access 
several shared memory areas simultaneously). 

One extension of the proposed marking model is to allow non-
binding resource contracts, through which the programmer can 
express the recommendation to use a specific type of resource 
(such as ISA or speed), without making it mandatory. This 
approach gives the model transformation / compilation phase 
more flexibility in managing contracts and generating code.  

 

<<method>> void CSForSharedMemory (unsigned a, 
unsigned b)
<<CS: 

resourcType = {NeedToAccessShMemory, DATA_1,
addressPointer}>>

{ 
// method code

}

<<method>> void FFT (void *params)
<<CS: 

resourcType = {NeedToAccessISA, DSP} >>
{ 

// method code that shall execute on DSPs
}

<<method>> void CSSequentialCode ()
<<CS: 

resourcType = {NeedToAccessSpeed, ”2GHz”} >>
{ 

// method code that shall execute at high speed
}

 
Figure 2: Examples of markings 

4. IMPLEMENTATION 
The fundamental reason for choosing a modeling based approach 
(and particularly, a UML based one) is the framework it offers for 
platform independent design in the form of Computation 
Independent Models (CIM – implementation independent 
representation of the required functionality) and Platform 
Independent Models (PIM), derived from CIMs and coupled with 
one or several model compilers that can automatically generate, 
based on the model, annotations and specific deployment models 
platform specific models (PSM), suitable for a specific target 
hardware and software systems. These concepts are illustrated in 
Figure 3. For more information, please see [9].  

Intreraction 
between 
objects

Systems 
processes

conceptual 
models

Information 
model

CIM

PIM

PSM

Computation 
Independent 
Model

PSM

<<model compilers>>

Platform 
Independent 
Model

Platform    
Specific        
Models

From concept to 
platform independent 
implementation

From platform 
independent to platfrom 
specific, optimized 
implementation through 
automatic code 
transformation

 
Figure 3 The concepts of CIM, PIM and PSM 

The essence of model-based development is that software shall be 
developed in a platform independent fashion, in the problem 
domain (such as telecommunication, scientific computing etc) and 
then mapped through model transformations (or compilation) to 
specific, potentially multiple targets. The target-specific 
information is captured in the model compiler and the associated 
run-time system (RTS), with potentially different compilers and 
run-time systems developed for each target. In our case, the PIM 
is built by the programmer relying on the universal resource 
model, that is itself target-independent: it only offers a framework 



for reasoning about shared data structures, need for specialized 
computing architecture features (instruction sets, speed, memory 
size) etc. The key to an efficient deployment is how the model 
compilers and run-time systems are built. We will detail our 
proposed model and model compiler functionality in the 
following sub-sections.  

4.1 Run-time System 
The model at the foundation of the run-time system is based on 
the task-based programming paradigm. At a very high level, 
critical sections are mapped to tasks that will either be dispatched 
to specific processor cores with special roles or will be used to 
trigger a specific action in the operating system.  

4.1.1 Run-time System for Shared Memory 
Our run-time system for shared memory is based on the method 
described in [3], built on the concept of moving computation 
instead of data. Essentially, it requires the programmer to mark 
explicitly each memory area that is shared between multiple 
threads, associate a unique id (called shared data id – SDI) to 
each area and include this information – as instances of the 
NeedToAccessShMemory class – in the resource contract of the 
critical section that will access one or several of the shared data 
areas. In the run-time system, the critical sections will be 
dispatched as tasks that will be executed on specific cores (called 
resource guardians) that own the shared data areas accessed by 
the critical section. The method is depicted in Figure 4, 
reproduced from [3] (UPE means User Processing Entity, the 
original core where the program was executing before entering 
the critical section).  

Critical sections 
executed sequentially

Resource Guardian (RG) -
(core in a CMP)

Task: 
• CS Id
• calling thread id 
• list of SDI
• CS location

Task queues, 
1 for each prio 

level

On-chip 
communication network

User Processing Element 
(UPE) - (core in a CMP)

User Processing Element 
(UPE) - (core in a CMP)

Task(s) to RGs
(critical sections)

Task(s) to RGs
(critical sections)

<<CS1: resourceType={NeedToAccessShMemory, DATA_1, 
ap1}¨>>
{ 
// code written normally

};
// other code

<<CS2:resoureType={NeedToAccessShMemory, DATA_1, 
ap1}, resourceType={NeedToAccessShMemory, DATA_2, 
ap2}>>
{ 
// code written normally

};
// other code

<<CS1>>

<<CS2>>

 
Figure 4 Execution model for shared memory access 

4.1.2 Run-time System for ISA handling 
The run-time system for this type of resource will depend to a 
large extent on the underlying HW and operating system 
structure. For example, a possible solution for the Cell BE 
processor has been presented in [4], relying on much the same 
mechanisms as our proposed critical section model.  

We promote – if the underlying HW allows it – a model-based on 
Remote Procedure Call (RPC) mechanisms. In this model, the 
run-time system will manage a shadow thread for each thread that 
has associated critical sections that require a specific ISA 

(Instruction Set Architecture). The shadow thread will execute on 
a core having the type of ISA that the critical section requires and 
will get triggered through the RPC mechanism whenever the 
critical section needs to execute.  

The model compiler shall generate separate source code files for 
both architectures (main and required) as well as supporting build 
and link files.  

4.1.3 Run-time System for Executing Sequential code 
The implementation of the run-time system for this kind of 
resource (NeedToAccessSpeed) depends largely on the underlying 
hardware.  

If the hardware is homogeneous with no support for frequency or 
voltage scaling, the only possible implementation is to boost the 
priority of the thread expressing the need for this resource.  

In case of asymmetric, homogeneous ISA HW (equipped with 
cores having the same ISA, but different performance 
characteristics, such as execution speed), this resource shall 
trigger migration of the thread to the more powerful core, where 
the critical section can execute in shorter time. An interesting 
approach based on voltage and frequency scaling can be 
implemented based on the methods described in [6] or [5]. In 
these solutions, some cores will be shut down and the frequency 
at which the core executing the critical section is run is 
temporarily boosted to the maximum supported level, thus 
supporting the faster execution of the critical section. 

An interesting alternative for the future could be to deploy 
speculative, run-ahead, multi-path execution on a massive scale, 
based on the design by contract paradigm ([10]). At present 
however, no such system has yet been proposed.  

4.1.4 Run-time System for Cache Sizing 
The run-time system for this resource type is very similar to the 
NeedToAccessSpeed type of resource. The thread will be 
migrated, if possible, to a core with larger L1 or L2 cache size, 
but, in addition, the run-time system may perform a pre-fetching 
of the memory locations indicated in the resource object. Paper 
[8] describes a method how such a pre-fetcher could be 
implemented in HW, but essentially the same result can be 
obtained through software triggered DMA (or equivalent 
technology).  

4.2 Model Compiler 
The model compiler is the entity responsible for transforming the 
(annotated) UML model to a program (usually in C/C++ or Java, 
rarely in assembler) that fulfills two conditions:  

• It is functionally equivalent to the original model 

• It is specific to the HW and SW target (RTS) the model 
compiler is designed for 

In this section we will outline the required functionality in order 
to successfully and efficiently map the high level URM-based 
annotated model to the underlying run-time system described in 
the previous section.  

4.2.1 Shared Memory 
The model compiler is responsible for defining the critical section 
groups (the group of critical sections that are accessing related 



memory areas, see [3] for details) and generating the code for the 
associated resource guardian functionality, as well as mapping the 
resource guardian roles to available processor cores. The model 
compiler shall also generate the glue code for linking in the 
automatic dead-lock resolution and elastic resource guardian 
scoping functionality as well as for the dispatch of tasks on user-
processing cores (the cores that execute regular, non-critical 
section code).  

4.2.2 ISA handling 
The model compiler is to a large extent dependent on the 
underlying HW architecture and the run-time system. In our 
favored model, based on RPC and shadow threads, the model 
compiler shall 

• Identify threads (potentially based on separate 
programmer annotations) that have critical sections 
requiring different ISA resources  

• Perform a static schedule analysis for required 
configuration; if static schedule analysis is inconclusive, 
code for run-time decision whether a non-mandatory 
resource ISA requirement can be fulfilled will be 
generated 

• Generate shadow thread code and code for dispatching 
RPC tasks  

We would like to emphasize that this is just our preferred 
approach, verified in a number of telecom applications; however, 
several other methods have been proposed, e.g. [4].  

4.2.3 Sequential code execution 
Managing the resource need for fast execution of sequential code 
will, again depend on the actual HW infrastructure. For 
asymmetric, homogeneous HW architecture, the model compiler 
shall generate code for migrating threads between cores (to and 
from the complex core); solutions for how to perform this have 
been proposed in e.g. [7]. In contrast to prior work, our proposal 
is deterministic, in the sense that it’s precisely delimited (through 
the use of the critical section concept) the part of the code that 
shall execute on the higher performance core.  

Our preferred solution is the one based on aggressive DVFS, as 
outlined in [5]. In this model, the model compiler shall generate 
code for 

• Requiring shut-off of unused cores 

• Move of the execution to a core with frequency 
scalability 

• Requesting boost of frequency on that core  

• Requesting return to normal frequency after the critical 
section completes 

4.2.4 Cache-size resource 
The model compiler shall, in this case, generate code for  

• Thread migration to large sized cache cores for the 
period of execution of the critical section 

• If the CS has a property indicating the required memory 
areas, code for pre-fetching the data on the target core 
(again, HW and OS dependent) 

5. DISCUSSION 
Managing resources such as memory and processing cores in the 
presence of massive parallelism is one of the fundamental issues 
of multi-core software engineering. Another aspect, critical in any 
industrial environment, is to increase the portability of software 
and re-use across a broad range of hardware platforms – this 
requirement is even more critical due to the cost of porting across 
heterogeneous architectures.  

Our proposed resource management framework and programming 
model aim to address exactly these issues. The resource model we 
propose provides a simple, HW-independent, unified framework 
for reasoning about the major types of resources in a multi-core 
chip. It’s important to note that indicating the requirement for a 
specific type of resource does not imply a need to know the 
underlying HW capabilities – the model compiler has the freedom 
to provide the semantic in a different way: shared memory using 
messaging in the run-time system (if there’s no cache coherency 
support), execution of specific ISA-typed code segments on other 
than indicated types of HW etc. De-coupling the reasoning on 
resources and the actual implementation in a constrained HW/OS 
infrastructure is one of the strengths of our proposal.  

Another benefit of the programming model that we propose is that 
it does not dictate neither a threading based nor a task based 
parallelism model, this being left to the programmer. It only 
provides a method for managing essential resources – the 
implementation of parallelism on high level is still up to the 
programmer. As future work, this could be brought into the same 
framework; however, in our experience this yielded limited 
benefits. 
A modeling based approach also proved to be a good choice, as it 
allowed us to easily decouple application logic from underlying 
HW and OS infrastructure and from the transformation logic, 
while keeping all these in one unified model. By modifying small 
parts of the model compiler – while keeping the application 
model untouched – it’s possible to easily experiment with various 
deployment strategies (auto-generated locks, transactional 
memory, DVFS etc).  
Regarding performance, we found that the major trade-off is at 
finding the right run-time system (and coupled model compiler) 
for each HW target. The Unified Resource Model’s impact on 
performance – versus hand-crafted code – is essentially under 
measurable threshold. The run-time system choices we outline in 
this paper are the most promising approaches, in our opinion, for 
main-stream massively multi-core processors, at least for telecom 
domain software.  

6. SUMMARY AND FUTURE WORK 
In this paper we presented a unified resource management 
framework for dealing with critical resources – such as shared 
memory, processor cores and cache – in a platform independent 
way. We couple this model with a model-based design approach 
to provide a simple to use, generic yet efficient method for 
engineering multi-core software.  



As next steps, we aim to validate our model for more problem 
domains and various HW infrastructures. Also, extensions with 
more resource types will be investigated, such as parallelism 
model and communication resources.  
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