
Modeling and Mapping for Customizable
Domain-Specific Computing

Zoran Budimlić† Alex Bui‡ Jason Cong‡ Glenn Reinman‡ Vivek Sarkar†
†Rice University ‡University of California, Los Angeles

Abstract
In this article, we introduce the ongoing research in model-
ing and mapping for heterogeneous, customizable, parallel
systems, as part of the effort in the newly established Cen-
ter for Domain-Specific Computing (CDSC). This research
combines the diverse backgrounds from multiple disciplines,
including computer science and engineering, electrical en-
gineering, medicine, and applied mathematics. The goal of
this project is to look beyond parallelization and to focus on
domain-specific customization as the next disruptive tech-
nology to bring orders-of-magnitude power-performance ef-
ficiency improvement to important application domains.

The project initially focuses on medical imaging applica-
tions, which provide an important tool in diagnosis and treat-
ment of most medical problems, but many advances in this
field have been constrained to the research environment due
to a lack of computational power. Orders of magnitude in
power-performance efficiency improvement that this project
is expected to deliver will have a tremendeous impact on the
applicability of the current applications and on the develop-
ment of new ones.

Keywords programming models, parallel programming,
domain specific languages, declarative programming, data
flow langauges, single assignment languages

1. Introduction
To meet ever-increasing computing needs and overcome
power density limitations, the computing community has
halted simple processor frequency scaling and entered the
era of parallelization, with tens to hundreds of computing
cores integrated in a single processor, and hundreds to thou-
sands of computing servers in a warehouse-scale data center.
Such highly parallel, general-purpose computing systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH ’10 October, Reno, NV.
Copyright c© 2010 ACM [to be supplied]. . . $10.00

however, still face serious challenges in terms of perfor-
mance, power, heat dissipation, space, and cost. We believe
the customizable domain-specific computing is a promising
approach based on the following three observations:

1. Each user or enterprise typically has a high computing
demand in one or a few selected application domains
(e.g., graphics for game developers, circuit simulation for
integrated circuit design houses, financial analytics for
investment banks), while its other computing needs (e.g.,
email, word processing, web browsing) can be easily sat-
isfied using existing computing technologies. Therefore,
it is possible to develop a customizable computing plat-
form where computing engines and interconnects can
be specialized to a particular application domain, gain-
ing significant improvements in power-performance effi-
ciency as compared to a general-purpose architecture.

2. The performance gap between a totally customized so-
lution (using an application-specific integrated circuit
(ASIC)) and a general-purpose solution can be very large
– can be several order of magnitude (e.g. see the case
study in [21]).

3. However, it is extremely costly and impractical to im-
plement each application in ASIC — the non-recurring
engineering cost of an ASIC design at the current 45nm
CMOS technology is over $50M [2] and the design cy-
cle can easily exceed a year. There is a strong need for
a novel architecture platform that can be efficiently cus-
tomized to a wide range of applications in a domain or
a set of domains to bridge the huge performance/power
gap between ASICs and general-purpose processors.

Given these observations, the objectives of the CDSC are
to develop a general (and reusable) methodology for cre-
ating novel and highly efficient customizable architecture
platforms, and the associated compilation tools and runtime
management environment to support domain-specific com-
puting.

The basic concept of customizable architecture was in-
troduced in the 1960s by Gerald Estrin [12]. Early suc-
cesses in customizable computing were demonstrated in
the 1990s, where certain compute-intensive kernels were

manually mapped to FPGAs for acceleration, achieving sig-
nificant speedup. Examples include the DECPeRLe-1 sys-
tem [24], the GARP project [14], and commercial efforts
by Cray and SRC Computers [1] (more examples of related
work can be found in various FCCM Proceedings and a
recent survey [13]). But these efforts faced several limita-
tions, such as: the communication bottleneck between the
host CPU and FPGAs; the fact that the customization was
limited to FPGAs with little or no integration of the latest
multicore architectures; the lack of high-performance re-
configurable interconnect structures; scalability limitations;
and a restricted programming environment that often re-
quired manual coding in hardware design languages (HDL)
or extensive rewriting of existing software for the FPGA
implementation. Our research on domain-specific comput-
ing differs from the previous efforts in multiple ways. Our
platform includes: 1) a wide range of customizable com-
puting elements, from coarse-grain customizable cores to
fine-grain field-programmable circuit fabrics; 2) customiz-
able and scalable high-performance interconnects based on
the RF-interconnect technologies; 3) highly automated com-
pilation tools and runtime management systems to enable
rapid development and deployment of domain-specific com-
puting systems, and 4) a general, reusable methodology for
replicating such success to different application domains.
A significant challenge in this project is the modeling and
mapping for heterogeneous, customizable, and parallel sys-
tems. In this paper, we shall present our inital progress in
this area.

2. A Case Study: Medical Imaging
Processing Domain

To demonstrate the customizable domain-specific comput-
ing technologies that will be developed in this project, we
chose healthcare as our application domain, given its sig-
nificant impact on the national economy and quality of life
(e.g., 16% of the U.S. gross domestic product was spent on
healthcare in 2005 [6]). In particular, we focus on the do-
main of medical imaging processing. Medical imaging is
now a routine clinical tool in the diagnosis and treatment
of most medical problems, but many advances in this field
have been constrained to the research environment due to a
lack of computational power. Several medical imaging al-
gorithms are infeasible for real-time clinical use; and objec-
tive, automated quantitative methods that can enhance de-
tection and evaluation are not widely used. Power and cost-
efficient high-performance computation in this domain can
have a significant impact on healthcare in terms of preven-
tive medicine (e.g., virtual colonoscopy for colorectal cancer
screening), diagnostic procedures (e.g., automatic quantifi-
cation of tumor volume), and therapeutic procedures (e.g.,
pre-surgical decision-making and monitoring/analysis dur-
ing surgery). Figure 1 shows a typical processing pipeline
for medical imaging, with the following steps:

Figure 1. Medical Imaging Pipeline

• Raw data acquisition: Collecting the physical sensor data
from the medical aparatus (e.g., x-rays, magnetic pulse
sequences).
• Image reconstruction: Computes a series of images from

physical sensor data.
• Image restoration: Removes noise and image artifacts

(e.g., from environmental conditions, patient movement).
• Registration: Orients a given image to a reference image

(e.g., of a healthy person, or an earlier image of the same
individual).
• Segmentation: Identifies and extracts regions of interest

in the image (e.g., a tumor).
• Analysis: Many kinds of feature analysis can be carried

out in this step, such as measuring the size of a tumor,
computing its growth rate (based on past segmentation
results), etc.

Table 1 lists some typical algorithms used in these steps
and their computation and communication patterns. Algo-
rithms may vary considerably from one step to another,
requiring different architecture support for the best effi-
ciency. In our preliminary studies, we looked at the pos-
sibility of using GPUs and FPGAs for acceleration. For a
bi-harmonic registration algorithm, GPU (Tesla C1060) pro-
vided 93x speedup while FPGA (Virtex-4 LX100) provided

Computation kernel Communication scheme Representative algorithm
Reconstruction Dense and sparse linear algebra,

optimization methods
Iterative; local or global communi-
cation

Compressive sensing

Restoration Sparse linear algebra, structured
grid, optimization methods

Non-iterative; highly parallel; local
and global communication

Total variational algorithms

Registration Dense linear algebra, optimization
methods

Parallel, global communication Optical flow/fluid registration

Segmentation Dense linear algebra, spectral
methods, MapReduce

Local communication Level set methods

Analysis Sparse linear algebra, n-body
methods, graphical models

Local communication Navier-Stokes equations

Table 1. Algorithms in medical imaging pipeline

11x speedup (both measured against a Xenon 2GHz proces-
sor). However, for a 3D median denoising filter algorithm,
GPU provided 70x speedup, while FPGA achieved close to
1000x speedup (due to bit-level parallel operations). It is
clear that even in this rather narrow domain, no single ho-
mogeneous architecture can perform well on all these appli-
cations. This example underscores a need of customization
an ability to adapt architectures to match the computation
and communication requirements of an application.

3. Overall Approach
To realize the order-of-magnitude performance/power ef-
ficiency improvement via customization, yet still leverage
economy of scale, we are developing a Customizable Het-
erogeneous Platform (CHP), consisting of a heterogeneous
set of adaptive computational resources connected with
high-bandwidth, low-power non-traditional reconfigurable
interconnects.

Figure 2 illustrates our proposed CHP configuration with
a set of fixed cores, customizable cores, programmable fab-
ric, and a set of distributed cache banks ($). The design
also includes the use of a high-performance reconfigurable
on-chip and off-chip buses for high-bandwidth, low-latency
communication between components.

Customizable computing engines. Three component types
that exhibit different levels of customization and parallelism
are considered in CHP designs:

1. Fixed cores can vary dramatically in their energy effi-
ciency, computational power, and area, but have limited
reconfigurability: they can only make use of techniques
like voltage or frequency scaling to adapt power/performance
characteristics. An example of this kind of architecture is
the IBM Cell, with a general-purpose PPE core and the
more numerous, but simpler, SPE cores.

2. Customizable cores provide coarse-grain adaptation to
application demand, offering a number of discrete, tun-
able options that can be set, with flexibility somewhere
between FPGAs and fixed cores. It is possible to design
cores with a rich set of tunable characteristics, such as

register file sizes, cache sizes, datapath bit width, operat-
ing frequency, supply voltages, etc.

3. Programmable fabrics provide maximal flexibility, as
they can be used to implement custom instructions and
specialized co-processing engines to offload computation
or accelerate core performance. They can implement cus-
tomized circuits for complex operations in terms of the
number of computing units, the types of computing units,
the level of pipeline stages, etc. The preceding section
illustrates the use of FPGAs for medical imaging accel-
eration, which was achieved with automatic C-to-FPGA
compilation [11].

Customizable interconnects. In addition to customizable
computing engines, our CHP architecture will provide low-
latency, high-bandwidth, and reconfigurable interconnects
for data sharing between cores, co-processors, cache banks,
and memory banks with the ability to accommodate the
communication requirements of a particular application (or
even different phases of the same application). We will con-
sider adapting conventional interconnects to the demands
of an application domain (e.g., using express-virtual chan-
nels [17]), or the use of novel interconnect technologies,
such as RF interconnect (RF-I) [9]. Reconfiguration using
RF-interconnects can be achieved by selectively allocating
RF-I bandwidth between different components on-chip.

Application modeling and software design. There is a nat-
ural tension between hardware-first and software-first ap-
proaches to building domain-specific systems. In the former,
one can start with a representative workload of existing do-
main applications, and use their characteristics to create a
customized CHP that, in turn, drives the design of a domain-
specific language and compiler extensions. The hardware-
first approach represents the usual practice of ”software
playing second fiddle to hardware”, exemplified by recent
multicore processors like the Cell where investigation of
general-purpose programming models and compiler innova-
tions only started after the hardware design was completed.
In the software-first approach, one can use the workload
characteristics to drive the definition of a domain-specific
programming language and compiler extensions that, in turn,

	

Figure 2. Platform for domain-specific computing

drive the creation of the CHP. The software-first approach
has been pursued less often and has the danger of leading
to special-purpose hardware with applicability to narrow ap-
plication domains. As there are well-known limitations in
both approaches, we instead use the following three-stage
approach to carefully balance software and hardware con-
siderations in the spirit of software-hardware co-design:

1. Domain-specific modeling. In the first stage, we create a
representative set of executable application models us-
ing domain-specific language extensions (DSLEs) and
a domain-specific coordination graph (DSCG) notation,
both of which are designed to be accessible to domain
(programming) experts. These models can be used to re-
veal inherent high-level properties of the application do-
main, such as intrinsic parallelism and communication
topologies. This domain-specific modeling is used as an
input to later CHP creation and CHP mapping stages.

2. CHP creation. In this second stage, we use the applica-
tion models to design and implement an optimized set of
hardware resources (CHP) for a particular application do-
main (or a set of related domains). The CHP creation de-
termines how many cores, how much cache, which cus-
tom instructions, what amount of customization and re-
configuration, and what sorts of mapping transformations
are useful for customization.

3. CHP mapping. Given a set of application models and an
optimized CHP for a given domain, the third problem is
CHP mapping, which develops domain-specific compila-
tion and runtime systems that enable optimized mappings
of the applications in the domain to the heterogeneous re-
sources of a given CHP. This stage also determines what
configuration and transformation settings should be se-

lected for configurable CHP resources in different phases
of a program.

This three stage approach is illustrated in Figure 3. We
think that it is inefficient to apply the current general-
purpose programming models for heterogeneous hardware,
such as CUDA [15] and the Cell SDK, to CHP modeling
and mapping. These existing models force the programmer
to exploit customizable hardware at the lowest possible lev-
els of hand-partitioned code and explicit data transfers that
are tied to specific hardware structures. Such frameworks
result in significant rewrites when the application needs to
be re-partitioned for execution on different hardware con-
figurations or platforms. These approaches also miss out on
opportunities for hardware customization for different ap-
plication phases. In the remainder of this paper, we shall
discuss our ongoing effort for modeling and mapping for
customizable, domain-specific platforms.

4. Domain-specific Modelling: the CnC
Programming Model

In the modeling stage of the software deployment pro-
cess on a CHP, we use the Concurrent Collections (CnC)
programming model [7], which is built on past work on
TStreams [16]. CnC belongs to the same family as dataflow
and stream-processing languages—a program is a graph of
serial kernels, communicating with one another. In CnC,
those computations are called steps, and are related by con-
trol and data dependences. CnC is provably deterministic.
This limits CnC’s scope, but compared to its more narrow
counterparts (StreamIT, NP-Click, etc), CnC is suited for
many applications—incorporating static and dynamic forms
of task, data, loop, pipeline, and tree parallelism.

The three main constructs in CnC are step collections,
data collections, and control collections. These collections

Domain	 speci,ic	 modeling	
(Healthcare	 applications)

CHP	 creation	
-Customizable	

computing	 engines	
-	 Customizable	
interconnects	

Domain	 characterization Application	 modeling

Architecture	 	
modeling

Customization	
settings	

Figure 3. Illustration of the overall approach

and their relationships are defined statically. But for each
static collection, a set of dynamic instances is generated at
runtime.

A step collection corresponds to a specific computation
(a procedure), and its instances correspond to invocations of
that procedure with different inputs. A control collection is
said to prescribe a step collection—adding an instance to the
control collection will cause a corresponding step instance
to eventually execute with that control instance as input. The
invoked step may continue execution by adding instances to
other control collections, and so on.

Steps also dynamically read and write data instances. If a
step might touch data within a collection, then a (static) de-
pendence exists between the step and data collections. The
execution order of step instances is constrained only by their
data and control dependencies. A complete CnC specifica-
tion is a graph where the nodes can be either step, data, or
control collections, and the edges represent producer, con-
sumer and prescription dependencies. The following is an
example snippet of a CnC specification (where bracket types
distinguish the three types of collections):

// control relationship:

// myCtrl prescribes instances of step

<myCtrl> :: (myStep);

// consume from myData, produce to myCtrl, myData

[myData] → (myStep) → <myCtrl>, [myData];

For each step, like myStep above, the domain expert pro-
vides an implementation in a separate programming lan-
guage and assembles the steps using a CnC specification.
In the modeling stage of the CHP software deployment, the
step implementation code can be Java, Python or Matlab.
In the mapping stage, the step implementation code is in
Habanero-C, which is described in Section 5. (In this sense
CnC is a coordination language.) The domain expert says
nothing about how operations are scheduled which depends
on the target architecture. The tuning expert then maps the
CnC specification to a specific target architecture, creating
an efficient schedule. Thus the specification serves as an in-

terface between the domain and tuning experts. This differs
from the more common approach of embedding parallelism
constructs within serial code.

A whole CnC program includes the specification, the step
code, and the environment. Step code implements the com-
putations within individual graph nodes, whereas the envi-
ronment is the external user code that invokes and interacts
with the CnC graph while it executes. The environment can
produce data and control instances, and consume data in-
stances.

Inside each collection, control, data, and step instances
are all identified by a unique tag. These tags generally have
meaning within the application. For example, they may be
tuples of integers modeling an iteration space. They can also
be points in non-grid spaces—nodes in a tree, in an irregular
mesh, elements of a set, etc. In CnC, tags are arbitrary values
that support an equality test and hash function. Each type of
collection uses tags as follows:

• Putting a tag into a control collection will cause the
corresponding steps (in prescribed step collections) to
eventually execute. A control collection C with tag i is
denoted < C : i >.
• Each step instance is a computation that takes a single

tag (originating from the prescribing control collection)
as an argument. The step instance of collection (foo) at
tag i is denoted (foo : i).
• A data collection is an associative container indexed by

tags. The entry for a tag i, once written, cannot be over-
written (dynamic single assignment). The immutability
of entries within a data collection is necessary for deter-
minism. An instance in data collection x with tag “i, j”
is denoted [x : i, j].

The colon notation above can also be used to specify tag
functions in CnC. These are declarative contracts that con-
strain the data access patterns of steps. For example, a step
indexed by an integer i which promises to read data at i and

produce i+1 would be written as “[x: i] → (f: i) →
[x: i+1]”.

Because tags are effectively synonymous with control in-
stances we will use the terms interchangeably in the remain-
der of this paper. (We will also refer to data instances simply
as items, and operations on collections as puts and gets.)

4.1 Simple Example
The following simple example illustrates the task and data
parallel capabilities of CnC. This application takes a set (or
stream) of strings as input. Each string is split into words
(separated by spaces). Each word then passes through a sec-
ond phase of processing that, in this case, puts it in uppercase
form.

<stringTags> :: (splitString); // step 1
<wordTags> :: (uppercase); // step 2
// The environment produces initial inputs
// and retrieves results:
env → <stringTags>, [inputs];

env ← [results];

// Here are the producer/consumer relations
// for both steps:
[inputs] → (splitString) → <wordTags>, [words];

[words] → (uppercase) → [results];

The above text corresponds directly to the graph in Fig-
ure 4. Note that separate strings in [inputs] can be pro-
cessed independently (data parallelism), and, further, the
(splitString) and (uppercase) steps may operate si-
multaneously (task parallelism).

The only keyword in the CnC specification language is
env, which refers to the environment—the world outside
CnC, for example, other threads or processes written in a se-
rial language. The strings passed into CnC from the environ-
ment are placed into [inputs] using any unique identifier
as a tag. The elements of [inputs] may be provided in any
order or in parallel. Each string, when split, produces an arbi-
trary number of words. These per-string outputs can be num-
bered 1 through N—a pair containing this number and the
original string ID serves as a globally unique tag for all out-
put words. Thus, in the specification we could annotate the
collections with tag components indicating the pair structure
of word tags: e.g. (uppercase: stringID, wordNum).

The step implementations (user-written code for splitString
and uppercase steps, ommitted here due to space con-
straints), specification file, and code for the environment
together make up a complete CnC application. Current im-
plementations of CnC vary as to whether the specification
file is required, can be constructed graphically, or can be
conveyed in the host language code itself through an API.

Figure 5 shows a CnC model for the Rician Denoising
algorithm, which is a key component in the medical imag-
ing pipeline on Table 1. The main components of the algo-
rithm are modeled as CnC steps, and the data that is commu-
nicated between steps is modeled as CnC item collections.
Depending on the platform, the steps can execute in parallel,

and even on different hardware: some steps can execute on a
GPU, some on a CPU, and some on an FPGA.

Figures 6 and 7 show how CnC can be used for modeling
a part of the Fluid Registration algorithm, another key com-
ponent in the medical imaging pipeline. Figure 6 shows an
excerpt from a sequential task graph of the Fluid Registra-
tion algorithm. Figure 7 shows the CnC model for the same
algorithm. The transformation only involved identification
of some additional steps (convolution3D and process), cap-
turing the data passed as arguments into item collections, and
discovering the control dependencies and capturing those in
control collections. The CnC model of the same algorithm
now reveals a 6-way parallelism available in this code snip-
pet alone (three instances of the convolution3D step can be
run in parallel, and within each one of those, two fftw steps
can be done in parallel.

5. CHP Mapping: the Habanero-C
Language, Compiler and Runtime

The CHP mapping stage requires a flexible and portable
solution to software deployment on a heterogeneous and
customizeable CHP platform. In the mapping stage, we use
the same CnC coordination graph from the modeling stage,
with the step code implemented in Habanero-C, which is
described below.

The Habanero Multicore Software Research project [3]
adresses the multicore software challenge by developing
new programming technologies — languages, compilers,runtimes,
concurrency libraries, and tools — that support portable par-
allel abstractions for future multicore hardware with high
productivity and high performance. Habanero-C is a lan-
guage, compiler and runtime that integrates four orthogo-
nal constructs with C language to support task parallelism:
lightweight dynamic task creation and termination using
async and finish constructs, locality control with task and
data distributions using the place construct [8], mutual ex-
clusion and isolation among tasks using the isolated con-
struct [4], and collective and point-to-point synchronization
and reduction using the “phasers” construct [22, 23].

1. Lightweight dynamic task creation and termination us-
ing async and finish constructs. The statement “async
[(place)] [phased(c...)] stmt ” creates a new child activity
that executes statement stmt, registered on all phasers in
the phased(...) list. An async statement can optionally in-
clude a place clause that serves as an affinity hint to con-
strain the execution of the async to a designated subset
of workers. The statement ‘finish stmt’ executes stmt and
waits until all (transitively) spawned async tasks have ter-
minated. The two constructs are similar to OpenMP task
and taskwait, but more flexible.

2. Locality control with task and data distributions using
the place construct [8]. A place in Habanero enables
co-location of asynchronous tasks and shared mutable

(splitString) (uppercase)[words]

<stringTags>

[inputs]

<wordTags>

[results]

env

env

env

Figure 4. A CnC graph as described by a CnC specification. By convention, in the graphical notation specific shapes
correspond to control, data, and step collections. Dotted edges represent prescription (control/step relations), and arrows
represent production and consumption of data. Squiggly edges represent communication with the environment (the program
outside of CnC)

[image]	

(Gradient	 Step)	

[gradient]	

(Weighted	 Factor	 Step)	

[weightedFactor]	

(Current	 Times	 Gradient	 Step)	

(Next	 Image	 Itera?on	 Step)	

[currentTimesGradient]	

(Convergence	 Step)	

itera?on	

Figure 5. CnC Model for the Rician Denoising algorithm

locations. Habanero places are used to support both data
distributions and computation distributions.

3. Mutual exclusion and isolation among tasks using the
isolated construct [4]. The statement ‘isolated [(place
list)] stmt’ executes stmt in isolation with respect to the
list of places. As advocated in [18], we use the isolated
keyword instead of atomic (as it is named in X10) to
make explicit the fact that the construct supports weak
isolation rather than strong atomicity.

4. Habanero integrates collective and point-to-point syn-
chronization, barriers, semaphores, and streaming com-
putations into a single construct called phasers designed
for dynamic asynchronous parallelism. Activities can use
phasers to achieve collective barrier or point-to-point
synchronization. The next statement suspends the ac-
tivity until all phasers that it is registered with can ad-
vance. Phasers are dynamic (number of activities us-
ing a phaser can change at runtime), deadlock-free in

absence of explicit wait operations, and lightweight.
These properties distinguish phasers from synchroniza-
tion constructs in the past including barriers [19], count-
ing semaphores [20], and X10’s clocks [10].

Habanero-C is translated by the compiler into C code
with library calls to the runtime functions, that can be com-
piled by a native C compiler to the target processing unit,
which can be a general-purpose CPU, a customized CPU, a
GPU or an FPGA.

The current Habanero-C compiler and runtime imple-
mentation includes the async, finish, phaser and place con-
structs, while the support for isolated is under way.

The Habanero-C runtime implements work-stealing for
lightweight tasks [5] for improved performance and scalabil-
ity. A unified runtime for heterogeneous platforms that will
support work-stealing across GPU threads is also under de-
velopment.

Figure 6. Sequential task graph for the Fluid Registration algorithm

6. Conclusions
This paper introduces the ongoing research in modeling
and mapping for heterogeneous, customizable, parallel sys-
tems, as part of the effort in the newly established Cen-
ter for Domain-Specific Computing (CDSC). This research
combines the diverse backgrounds from multiple disci-
plines, including computer science and engineering, elec-
trical engineering, medicine, and applied mathematics. The
project looks beyond parallelization and focuses on domain-
specific customization as the next disruptive technology
to bring orders-of-magnitude power-performance efficiency
improvement to important application domains.

We have presented a case study that focuses on medical
imaging processing domain, which provide many important
tools in diagnosis and treatment of most medical problems.
We introduce a novel approach for domain-specific model-
ing using the Concurrent Collections programming model,
which enables a high-level design approach that exposes the
application’s parallelism whle allowing the domain expert
to focus on application design and not on the platform de-
tails. For mapping of the applications to the heterogeneous
domain-specific hardware, we introduce Habanero-C lan-
guage, compiler and runtime which provides a high-level
parallel programming model designed for use by tuning ex-
perts on heterogeneous and highly parallel hardware.

Orders of magnitude in power-performance efficiency
improvement that this project is expected to deliver will

have a tremendeous impact on the applicability of the cur-
rent applications and on the development of new ones.

Acknowledgments
The Center for Domain-Specific Computing is funded by
the NSF Expedition in Computing Award CCF-0926127.
Other faculty members in CDSC are Denise Aberle, Richard
Baraniuk, Frank Chang, Tim Cheng, Jens Palsberg, Miodrag
Potkonjak, P. Sadayappan, and Luminita Vese. Their partic-
ipation in this project is greatly appreciated. The authors
would also like to thank William Hsu, Gene Auyeung and
Igor Yanovsky at UCLA, and Alina Sbirlea, Dragos Sbir-
lea and Sagnak Tasirlar for their help in modeling the Fluid
Registration algorithm using CnC.

References
[1] http://www.srccomp.com/techpubs/techoverview.asp.

[2] International technology roadmap for semiconductors.
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[3] Rajkishore Barik, Zoran Budimlic, Vincent Cavè, Sanjay
Chatterjee, Yi Guo, David Peixotto, Raghavan Raman, Jun
Shirako, Sağnak Taşirlar, Yonghong Yan, Yisheng Zhao, and
Vivek Sarkar. The habanero multicore software research
project. In OOPSLA ’09: Proceeding of the 24th ACM SIG-
PLAN conference companion on Object oriented program-
ming systems languages and applications, pages 735–736,
New York, NY, USA, 2009. ACM.

Figure 7. CnC graph for the Fluid Registration algorithm

[4] Rajkishore Barik and Vivek Sarkar. Interprocedural load elim-
ination for dynamic optimization of parallel programs. In
PACT’09, Proceedings of the 18th International Conference
on Parallel Architectures and Compilation Techniques, pages
41–52, Washington, DC, USA, Sep 2009. IEEE Computer So-
ciety.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work-stealing. In Proceedins
of the 35th Annual IEEE Conference on Foundations of Com-
puter Science, 1994.

[6] Christine Borger, Sheila Smith, Christopher Truffer, Sean
Keehan, Andrea Sisko, John Poisal, and M. Kent Clemens.
Health Spending Projections Through 2015: Changes On The
Horizon. Health Aff, 25(2):w61–73, 2006.

[7] Zoran Budimlić, Michael Burke, Vincent Cavé, Kath-
leen Knobe, Geoff Lowney, Ryan Newton, Jens Pals-
berg, David Peixotto, Vivek Sarkar, Frank Schlimbach, and
Sağnak Taşırlar. CnC programming model. Journal of Scien-
tific Programming (to appear), 2010.

[8] Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav
Bodik. Type inference for locality analysis of distributed data
structures. In PPoPP ’08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel pro-
gramming, pages 11–22, New York, NY, USA, 2008. ACM.

[9] M.F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman,
E. Socher, and S.-W. Tam. Cmp network-on-chip overlaid
with multi-band rf-interconnect. pages 191 –202, feb. 2008.

[10] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. In OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
pages 519–538, New York, NY, USA, 2005. ACM.

[11] J. Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru
Zhang. Platform-based behavior-level and system-level syn-
thesis. pages 199 –202, sep. 2006.

[12] Gerald Estrin. Organization of computer systems: the fixed
plus variable structure computer. In IRE-AIEE-ACM ’60
(Western): Papers presented at the May 3-5, 1960, west-
ern joint IRE-AIEE-ACM computer conference, pages 33–40,
New York, NY, USA, 1960. ACM.

[13] Scott Hauck and André DeHon. Reconfigurable Computing:
The Theory and Practice of FPGA-Based Computation (Sys-
tems on Silicon). Morgan Kaufmann, November 2007.

[14] J.R. Hauser and J. Wawrzynek. Garp: a mips processor with a
reconfigurable coprocessor. pages 12 –21, apr. 1997.

[15] W. M. Hwu. Performance insights on executing non-graphics
applications on CUDA on the NVIDIA GeForce 8800 GTX,
2007. Invited talk at Hot Chips 19.

[16] Kathleen Knobe and Carl D. Offner. Tstreams: A model of
parallel computation (preliminary report). Technical Report
HPL-2004-78, HP Labs, 2004.

[17] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha.
Express virtual channels: towards the ideal interconnection

fabric. In Proceedings of the 34th annual international sym-
posium on Computer architecture, ISCA ’07, pages 150–161,
New York, NY, USA, 2007. ACM.

[18] James R. Larus and Ravi Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[19] OpenMP: Simple, portable, scalable SMP programming.
http://www.openmp.org, 2006.

[20] V. Sarkar. Synchronization using counting semaphores. In
ICS ’88: Proceedings of the 2nd international conference on
Supercomputing, pages 627–637, New York, NY, USA, 1988.
ACM.

[21] Patrick Schaumont and Ingrid Verbauwhede. Domain-specific
codesign for embedded security. Computer, 36:68–74, April
2003.

[22] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phasers: a unified deadlock-free construct for col-
lective and point-to-point synchronization. In ICS ’08: Pro-
ceedings of the 22nd annual international conference on Su-
percomputing, pages 277–288, New York, NY, USA, 2008.
ACM.

[23] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phaser accumulators: A new reduction construct
for dynamic parallelism. In IPDPS ’09: Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed
Processing, pages 1–12, Washington, DC, USA, 2009. IEEE
Computer Society.

[24] Jean E. Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand,
Hervé H. Touati, and Philippe Boucard. Readings in hard-
ware/software co-design. chapter Programmable active mem-
ories: reconfigurable systems come of age, pages 611–624.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

