
ODL: Preliminary Language Report

Doug Lea

SUNY at Oswego / NY CASE Center

dl@g.oswego.edu

Draft 4: 17 September 1993

1 Overview

ODL (Our Design Language) was devised for use in presenting object-oriented
system design concepts in a programming language- and system-independent
manner. However, the language may be useful in its own right. ODL is in most
respects a typical object-oriented programming language, containing constructs
corresponding to the notions of classes, attributes, methods, objects, and links,
but geared towards distributed programs. Programs are written by de�ning
classes, operations, and supporting type and execution information.

2 Names and Scopes

ODL declarations consist of named classes, parameterized classes, records, �elds,
slots, and constraints. The constructs class, op, fn and record introduce
named scopes.

Class declarations may be nested within others. Class names introduced at
the same scope level must be unique. Name resolution for embedded classes,
�elds and slots follows most-closely-nested rules but may be redirected via the
name:: operator, where name is a named scope introducer. Any name may be
quali�ed as local, which disables reference outside of the current scope except
within constructor expressions.

The top-level declarations of an entire ODL program are considered to be
encased within class System : : :end. Class System must contain single user-
de�ned operation main. An ODL implementation must support a command
equivalent to (new System(: : :)).main(: : :) that constructs object system and
initiates execution.

Normally, names must be declared before they are otherwise referenced.
However, multiple declarations may be listed in mutually referential fashion by
enclosing them within letrec : : :end. Also generator statements may mention
as-yet undeclared classes.

1

3 Types

There are four kinds of value types: scalars, links, arrays, and records. Values
of these types are not themselves objects. A �fth kind, that of code bodies
de�ning slots is a \second-class" type, discussed separately below.

The scalar types are bool, int, real, char, time, and blob. Literals for each
type are self-describing. The �rst four have the usual meanings. Restrictions
on the bounds and precision of implementations of these types are permitted
but not otherwise de�ned. The time type denotes times. It is left unspeci�ed
whether time is a discrete or continuous quantity. The type blob describes
completely opaque values that may have implementation-dependent meaning.

A link is a value denoting the identity of an instance. Link types are intro-
duced via the declaration of classes of the same name. Their subtype structure
mirrors the declared inheritance relations among classes. Other scalar types do
not obey any subtype structure. They are distinct, incommensurate types in
ODL.

Fixed-bound vector values are designated via post�x [capacity]. Elements
are referenced using subscripts.

Records are named tuples of values. Records de�ne �elds of any of the four
kinds of value type. Nested �elds are referenced via dot notation. Any �eld
declaration may be quali�ed as:

common The value must be the same across all instances of this record.

unique The value must di�er across all instances of this record.

opt The value need not be present. A record declaration with an opt �eld
is considered equivalent to two declarations, one with the �eld, and one
without it. A declaration with two opt �elds is equivalent to four, and so
on. However, syntactically these versions may be described and used as an
aggregate. Absence of a value may be indicated via null and discerned via
null(�eld). Access to a nonpresent opt value may be trapped as a static
program error, dynamic execution error, or left undetected by translators.

All combinations of these quali�ers are semantically meaningful and allowed; for
example, even the odd combination of common and unique, which is an awkward
way of saying that only one value is possible.

Record values are expressed by naming the record type followed by a paren-
thesized list of values for each �eld. Both positional and named syntax is al-
lowed, but all positional values must precede named ones, �elds indicated po-
sitionally may not be listed also as named, and names may not be listed more
than once. Lack of value for an opt �eld need not be listed at all in the named
syntax. For example, all three expressions denote the same value in:

class A ... end;

2

record r(a: int, b: char, c: real, d: opt A);

r(1, '2', 3.0, null)

r(b := '2', a := 1, c := 3.0, d := null)

r(1, '2', c := 3.0)

4 Classes

Classes describe families of objects, all of which possess the same structural
features. Each object is viewed as a map from a unique identity to a set of
names. The map is the same for all direct instances of a given class. These
names in turn map to slots, which may be di�erent for each object. Unlike
record �elds, slots are computationally de�ned. There are three kinds of slots:

� One-way operations, expressed as op m(args). One-way operations are
those that accept a message and perform some computation independently
of the message sender.

� Procedural operations, expressed as op p(args) : replyName(args) or
op p(args) resultName : resultType. The client of a procedural op-
eration waits for the recipient to reply before proceeding.

� Functional operations, expressed as fn f(args) : fnType. Functional
operations are special side-e�ect-free forms of procedures. Functions may
be de�ned concretely either via code bodies or via a special form indicating
that a single value is \stored".

All slot declarations within a class are processed as if encased within letrec

: : :end. Slot names and arguments normally correspond to message names and
�elds that are accepted by instances of the class. However, internal local
versions of any of the above may also be declared. Groups of local slots may
be declared within locals : : :end.

4.1 Concrete De�nitions

Concrete de�nitions may be bound to slots via f: : :g. A special form, <> is
used instead to indicate that a slot is bound to a concrete de�nition only upon
construction. It is used only for \stored" functional slots that access a single
value that must be intialized upon construction.

Concrete slot de�nitions may contain the following constructs:

Message Sends: One-way sends of messages to speci�ed recipients.

Procedure Invocations: Blocking call/return style interaction.

Function Invocations: Side-e�ect-free procedural interaction.

3

Local Invocations: Internal sequential processing.

Rebindings: Assignment statements rebind non-fixed stored slots to di�erent
values via f := exp.

Locals: local declarations of new transient slots maintained only within an
operation.

Control
ow: if and while statements controlled by boolean value expres-
sions.

4.1.1 Message Sends

Computation is based on message passing. Objects are autonomous single-
threaded computational agents that send messages listed within operations cor-
responding to messages from other objects. A message is a record that corre-
sponds to a declared operation. ODL op declarations de�ne records with names
identical to operation names, and �elds corresponding to argument lists. There
are �ve phases in any act of message passing:

Invocation. An invocation listed in the concrete de�nition of a sender is issued.

Reception. ODL does not specify the mechanisms controlling how messages
are issued and received by objects except in the assumption that they
do not interfere with explicitly de�ned processing. Synchronicity between
sending and receiving a message is neither required nor precluded.

Binding. A message is linked with a corresponding operation or version of an
operation. Linkage may be determined either statically or dynamically.
(Run-time binding is necessary when there are argument-based guard con-
ditions.) Binding failures cannot occur in correct programs.

Acceptance. An accepted message is \consumed", and causes the triggering
of an operation when its guard has cleared.

Execution. Computation proceeds by noninterruptibly processing all actions
de�ned in the corresponding concrete operation.

The simplest form of a concrete operation is a sequence of one-way message
sends, for example, f a.m1(x); b.m2(y, z); : : :g. Invocations are de�ned by
by naming them and providing �eld values along with a recipient designation.
Instead of recipient pre�xing, ODL messages may be invoked with an indication
of a class of receivers, via className$message. Stylistically, this form is use-
ful for stateless services for which the identity of the recipient cannot matter.
The run-time system is free to select any instance of the indicated class (or
any subclass thereof) to receive the message. ODL does not prescribe a par-
ticular translation mechanism. Several are available. For example, because all

4

occurrences of $ are statically determinable before execution, the system may
construct a pool of such objects upon initialization and translate all invocations
to normal pre�xed form.

4.1.2 Procedures

In the base syntax of procedural interaction, result-bearing operations de�ne
message records for returned values, and clients de�ne corresponding operations
to accept them:

class A op m1(x: T) : result(b: B) ... end end;

class Auser ...

op calla(a: A) {

catch a.m1(x)

op result(b: B) { b.m2(y, z); ... }

end }

end

Here, the sender enters a state in which its only next action is to receive a
corresponding reply. A catch clause introduces one or more transiently available
operations that accept replies from servers. Multiple named result messages and
catches are also allowed. The names of the client operations must match those
listed for the server. Translators must arrange that result operations be caught
only when objects are in the required state.

A server object invokes these transient messages by name:

class A op m1(x: T) : result(b: B) { ...; result(new B); } end;

The recipient of the reply is left implicit. This logically requires that sender
identity be transmitted as an implicit argument in all procedural messages.
However, in ODL the sender identity is not otherwise accessible to the server.
(Unless, of course, a sender �eld is explicitly added to the operation signature
and used in the desired ways.) A server may perform additional actions after
issuing a reply.

More conventional looking procedural forms are also supported, via via
anonymous return messages. For example:

op a : i: int;

op b : ()

This declares the result of a as an anonymous record with single �eld i and
the result of b as an anonymous, �eldless record. Each anonymous record is
considered to have a di�erent name. Anonymous return messages are sent via
reply:

5

class A2 op m1(x: T) : B { ...; reply b; } end;

class Auser ...

op calla2(a: A2) { local b :B := a.m1(x); b.m2(y, z); }

end

Here, the anonymous catch may be elided, and the reply used directly in a
procedural fashion.

Simple blocking procedural interaction is the only two-way protocol natively
supported in ODL. Others may be de�ned through combinations of one-way
sends and object constructions. For example, a future may be de�ned via the
construction of a helper object to wait out a procedure.

4.1.3 Functions

Functional operations have a restricted form. They are de�ned as single ex-
pressions using the value expression sublanguage described in section 4.2.3.
Translators are required to transform functional expressions into procedural
computations (possibly involving new independent, unreachable objects) that
cannot interfere with other operations and objects.

Stored functions are yet further restricted. They may be de�ned only via <>,
indicating that a stored value be attached upon construction, retrieved upon
access, and possibly rebound in the course of other operations. Stored links
may also be quali�ed as packed. This is a hint to the translator that the object
referenced by the slot should be embedded within the representation of the host
object.

The base form of stored values is restricted to link values, not other types.
The re
ects an underlying object model in which state varies only as a function
of connections among objects. Other forms may be implemented with the help
of instances of elementary prede�ned classes. However, ODL programmers are
not required to do so themselves. Translators may mechanically reduce them
to base form. A stored value denoting a non-link type may be translated to
one holding a link to an instance of a prede�ned class, where value accesses are
forwarded to these objects. Value rebindings may be translated either to link
rebindings of new objects with the required initial values or to set operations on
the exisiting objects, or any other technique, at the discretion of the translator.
Bindings of the form l := null for opt slots are handled similarly.

4.1.4 Local Operations

ODL local operation invocations are not received as messages. They are se-
quentially executed in the course of performing other actions. To avoid the need
for redundant declaration, a local version of each functional non-local operation
is automatically constructed if not otherwise present. Local operations must be

6

invoked without a recipient pre�x. (In contrast non-local self-invocations must
be pre�xed with self.)

Local functions and procedures may in turn invoke others, and may be re-
cursive. Standard procedural invocation rules and semantics apply. One-way
local operations are also allowed. Invocations are interpreted as structured
\gotos" in which control does not return to the calling operation. For this
reason, procedural operations may not invoke local one-ways.

The execution state of objects is in general unbounded. The existence and
value of representational bounds for particular classes and objects may be con-
servatively assessed via static analysis of local operations. When bounds are
not discerned or discernable, ODL implementations may establish maximal per-
object run-time size limits and handle over
ow as a run-time error.

4.1.5 Construction

Every instantiable class declaration automatically results in the de�nition of a
corresponding new operation in class System. The new operation has arguments
corresponding to all slots declared as <>, and returns a unique link value ref-
erencing an object of the indicated class. Implementations of new (as well as
delete) are not de�nable within ODL, although provision of implementation-
speci�c blob-based classes and object layout rules may make them so.

Without quali�cation, the class's new operation may be invoked anywhere.
The visibility of new may be controlled via a generator clause in a class decla-
ration. A generator clause names the classes of entities that may invoke new
for the class.

4.1.6 Destruction

ODL message passing rules assume preservation of referential integrity. Objects
that may still receive messages may not be deleted. This is best implemented
using automatic storage management (garbage collection). However, a delete

operation is also associated with each concrete class. Visibility is also controlled
via generator.

4.2 Constraints

Constraints list properties of instances without otherwise de�ning concrete forms
of slots. Any class may include any combination of constraints and concrete def-
initions for any slot. A class describing constraints but leaving one or more slots
otherwise unde�ned is termed abstract. Abstract classes are not instantiable.

ODL constraints are partial descriptions. Objects obey declarative con-
straints, but any behavior that is not ruled out is possible. The forms of con-
straints are limited to those that may be evaluated via combinations of static
symbolic analysis, translator assisted instrumentation, and dynamic checks.

7

Moreover, translators are only required to perform a subset of these measures,
as described below. ODL does not specify whether or how conformance to oth-
ers is enforced. ODL rules represent a compromise between expressive power
and inferential and run-time requirements upon implementations. Rei�cation
of speci�cation constructs renders ODL at best incomplete as a declarative lan-
guage. However, common constraints remain simply expressible and checkable.

4.2.1 Bindings

In ODL, the bindings from names to all slots except stored functions are �xed
and common to all direct instances of a class. (This restriction may be lifted in a
future version.) Bindings for stored slots may be changed during execution (via
:=) unless they have been quali�ed as fixed. The binding for a slot quali�ed
as fixed remains constant across the lifetime of each instance. The quali�er
fixed may also be applied to a non-stored function to indicate that its value
does not vary over time. (Note in this case that fixed refers to the value, not
the binding.) The keyword own is an abbreviation for local fixed unique.

4.2.2 Types

All arguments and results (including function values) for all slots must be con-
strained by type, and optionally by quali�ers unique, common, and opt. Anno-
tations for link types are partial speci�cations { they list a type for the link,
not necessarily the maximal (most exact) type.

In ODL, a message may be sent only if the recipient will eventually accept
it. Determining conformance with this rule is in general undecidable. However,
ODL programs must obey the weaker rule that a message be listed in a concrete
de�nition only if it is provable that the recipient does not forever pend the
message; i.e., if the message triggers a corresponding operation in at least one
condition in a class declaration. The proof method is conservative, and based on
type checking. In ODL every link is quali�ed with a type annotation indicating
a class to which the referenced object must belong. The ODL type checker treats
any attempt to send a message not listed in the indicated class (or superclass) as
\not provable", thus as a programming error. However, the checker also admits
invocations nested within conditionals checking (via \in") that the recipient is
of a class supporting an operation. For example:

class A op m ... end end;

op calla(a: Any) { if a in A then a.m end; }

4.2.3 Function Value Constraints

Additional constraints may be declared via:

� Invariant (inv) expressions that hold whenever objects are not engaged in
operations (i.e., at all quiescent states).

8

� Short forms of equality invariants for functional slots: fn f : : := exp.

� Initial condition (init) expressions holding upon construction.

� Short forms of equality-based initial conditions: fn f : : :init= exp.

All constraints and conditions must be expressed within the (executable) value
expression sublanguage of ODL. Invariants and initial conditions are boolean-
valued expressions constructed from:

� Literals of value types.

� Equality operators (=, ~=) on values of all types.

� Relational ordering operators (<, <=, >, >=) on values of int, char,

real, time types. (ASCII compatible ordering is required of char.)

� Operators de�ned on boolean values: /\ (and), \/ (or), ~ (not), => (im-
plies), and comma (,) (low precedence and). And and or are \short cir-
cuiting": successive terms of expressions need not be well-de�ned if the
truth value is determined by previous terms.

� Operators de�ned on integer values (+, -, *, div, mod).

� Operators de�ned on real values (+, -, *, /).

� Real-valued mixed mode operators between integers and reals (+, -, *,

/).

� Operators de�ned on time values (+, -), plus mixed mode *, div oper-
ations with integers.

� if exp then exp : : :else exp end.

� Operator null(link), de�ned on link types.

� Operator link in class, that is true if the object referenced by link is an
instance of class or a subclass thereof.

� Field and subscript selection on records and arrays.

� Invocations of functional operations.

This sublanguage may be viewed as a very small pure functional language.
ODL restricts the forms of functional operations in order to enable their use
in declarative constraints. They thus play a dual role. From a computational
perspective, they are restricted forms of operations, but from a declarative per-
spective they serve as symbolically tractable functions. The requirement that
functional expressions be translatable into particular executable forms limits

9

power and restricts expression. For example, bounded universal quanti�cation
is expressed via type annotations for function arguments.

In fact, inv and init are treated by translators as special declaration forms
of ordinary functional slots. All inv constraints for a class are collected (clausally
conjoined in listed order) in executable form as callable fn inv: bool that
may be invoked at run-time. Similarly for fn init: bool. ODL does not
otherwise require translators to perform symbolic analysis on constraints (e.g.,
to determine whether they are even satis�able). Design checkers that perform
such analyses may be constructed, but these capabilities are not demanded of
translators.

4.2.4 Operation Constraints

Guards. Guards are \active" preconditions listing the conditions under which
nonfunctional, nonlocal operations may be executed. (\Passive" preconditions
describing alternatives within accepted operations are listed instead as ifs
within e�ect expressions.) There are both \outer" and \inner" guards, of the
form:

class C ...

when c1 then

op m1

when m1c1 ==> ...

elsewhen m1c2 ==> ...

else ... end

op m2 ...

elsewhen c2 then

op m1 ...

else ... end

end

Any combination of \outer" clauses with embedded operations, and \inner"
guards nested within operations are permitted. Stylistically, outer guards refer
to object state, while inner forms refer to properties of message arguments of
ops. Nested sets of guards are also permitted. Di�erent versions of the same
op may be declared in di�erent arms of outer guards (as seen above for m1.
Consistency rules for multiple versions are described in section 5.

Boolean expressions within when clauses are constructed using the above
expression sublanguage. Translators must provide interference-free translation
of guard expressions into executable form.

Like elsifs in most languages, the condition in each elsewhen clause is
interpreted to include the negation of all preceeding conditions. This guarantees
mutual exclusion of conditions. For example, elsewhen c2 above is interpreted
as when ~c1 /\ c2.

10

Pending. Pend is a pseudo-e�ect indicating that a message does not trigger an
operation at all under the listed condition. If any other condition ever becomes
true, the corresponding operation will be triggered accordingly. All explicit
guards and non-local operations are considered to be encased within:

class ...

when ready

...

else

pend

end

end

Ready is true when an object is not otherwise engaged in an operation. (This
function does not actually exist and cannot be expressed in ODL.)

By default, if an op is listed in only one outer when then it it assumed
to pend in all others in which it is not listed. Completely unlisted messages
pend forever. Functional operations may pend only when an object is busy in
another operation. Local operations are not processed as messages and cannot
pend. Thus, no explict guards may be associated with functional and local

operations.
Translators may employ any non-interfering mechanism to implement pend.

The use of guards does not require that translators establish identi�able per-
object message queues. No ODL constructs refer to queues. No run-time support
is needed if a translator can determine that no pend conditions can ever be
encountered for an object. When any of several messages may be accepted (i.e.,
clear guard conditions), any one of them may be chosen. Implementations may
provide stronger ordering guarantees. Implementation limits in the number of
possible simultaneously pending messages are permitted.

Translators cannot always statically detect situations in which conditionally
accepted messages forever pend. They may provide run-time mechanisms to
assist users in dealing with resulting deadlocks and over
ows.

E�ects. E�ects (==>) list conditions that must hold as a result of particular
operations. Clauses within e�ect descriptions are de�ned using the constraint
sublanguage extended with constructs:

exp' The value of an expression as evaluated upon completion of the operation.
(Unprimed forms within e�ects refer to evaluation upon commencement
of operations.)

msg' Assertion that the e�ects of msg hold at completion of the operation.

msg'' Assertion that the e�ects of msg hold (perhaps only brie
y) at some point
after commencement of the operation.

11

@boolexp The time after which the operation commences at which the expres-
sion becomes true.

No translation into executable form is speci�ed for e�ect expressions. In partic-
ular, e�ect expressions with double-primes cannot be translated in any useful
manner since the time at which they should hold true is unbounded. How-
ever, static analysis tools may be constructed to determine satis�ablity of e�ect
expressions and partial conformance of concrete forms. Other tools may be de-
vised to help instrument checks for certain e�ects and/or to help generate test
code.

ODL e�ects are not subject to \frame assumptions" that claim that prop-
erties that are not mentioned do not change. Any behavior consistent with
constraints is allowed. All properties that must be preserved within ops should
be explicit unless they are also listed in invs (which serve as implicit pre- and
postconditions for all operations). In contrast, functional operations do obey
frame axioms since they are computed in a side-e�ect-free manner.

5 Inheritance

A class may list any number of superclasses. If none are listed, the class is
taken to be a subclass of Any. Any is the root of the class system. It de�nes only
the �xed slot self, providing a reference to self. Subclass declarations extend
the scopes of their superclasses. The declared class structure determines the
type structure for links. The type of a link referencing instances of a class is a
subtype of superclass link types.

Subclass declarations extend those of their superclasses. All stated proper-
ties (slot de�nitions and constraints) in superclasses are preserved in subclasses.
Additions may not invalidate superclass properties. Detected con
icts may be
trapped as programming errors by a translator, but it is not speci�ed whether
or how conformance is enforced.

Subclass declarations add new slots and add (strengthen) features of those
listed in superclasses. Additions are conjoined to the corresponding superclass
declarations. Full redeclarations are unnecessary except in those cases where
features cannot otherwise be expressed (e.g., when adding quali�ers). When
a new slot has the same name as one in the superclass, or when two or more
superclasses have slots of the same name, the following rules apply:

Multiple Declaration. Two declarations with the same slot type (operation,
procedure, function, local), number of arguments, argument types and
quali�ers denote the same slot. All other aspects of the declarations are
coalesced as one.

Versioning. Two non-local, non-functional declarations di�ering in the de-
clared link type of one or more argument �elds, or di�ering in outer when
guards are considered to be variant versions of the same slot.

12

Overloading. Two declarations di�ering in number of arguments, or in the
types of one or more argument in the case where those types are incom-
mensurate (e.g., int versus real, any non-link type versus a link type), or
where only one is declared as local, are taken to be two unrelated slots
that may coexist (i.e., as a case of ad hoc overloading). Variants with and
without opt quali�ers on one or more arguments are similarly treated as
overloaded.

Unsupported. Two declarations di�ering in any other way (e.g., fn versus op,
quali�ers) are disallowed because invocation forms of the di�erent cases
cannot be distinquished in ODL.

The �rst two cases are instances of adding features to existing slots. The fol-
lowing additions are permitted. Analogous rules apply when merging the dec-
larations of two or more superclasses.

� Adding a concrete de�nition to an existing slot.

� Adding a new clause to an existing e�ect.

� Adding a noncon
icting inv constraint. All inv clauses in the class and
superclasses are interpreted as a single conjoined expression (with subclass
clauses prepended to superclass clauses) that must be satis�able.

� Adding a noncon
icting init constraint.

� Adding a constraint to a functional slot. The type of a function may be
strengthened by replacing the result type declared in the superclass with
a subtype thereof, adding common, unique and/or fixed, or removing
opt. However, these may not con
ict with other superclass constraints or
de�nitions. For example, it is illegal to add a fixed quali�er if a fn value
varies within a superclass operation.

� Adding a constraint to a procedure result. Result types and quali�ers of
anonymous replies may be added in the same manner as for functions.
Also, a constraint that one or more alternate named replies are not issued
may be indicated by omitting them in the redeclaration. (The converse
case of adding alternate named replies is not allowed.)

� Adding or subdividing an outer when clause into two or more subconditions
in order to add a new operation or another version of an operation under
one or more of them.

� Adding or subdividing an inner when clause into two or more subconditions
in order to add a new clause to an e�ect and/or add a concrete de�nition
under one or more of them. E�ects and result types of all versions must
meet all applicable superclass constraints.

13

These rules apply whenever a subclass adds a new version of a slot or two
superclass versions exist. All declarations of di�erent versions are interpreted
as if they were di�erent arms of a single operation with multiple when guards.
A translator may fabricate guards (and/or perform equivalent transformations)
in any way consistent with the declarations. For example, in:

class A ... end

class B is A ... end

class C ... end;

class D

op m(a: A) ==> ea end;

op m(b: B) ==> eb end;

op m(c: C) ==> ec end;

end

The declarations of m in D may be transformed into a single operation, with all
argument types recast in terms of their nearest common superclasses (here, just
Any):

op m(x: Any)

when x in B ==> eb

elsewhen x in A ==> ea

elsewhen x in C ==> ec

else pend end

The implicit negation of preceding guards in when clauses transforms consistency
issues to ordering issues in the equivalent ODL code. For example, this may also
be transformed as:

op m(x: Any)

when x in C ==> ec

elsewhen x in B ==> eb

elsewhen x in A ==> ea

else pend end

In both cases, the version for B specializes that for A. However, class C bears no
subclass or superclass relation to the others, so the clause may be considered in
either fashion, at the discretion of the translator. For example, if the operation
were invoked with an argument of type AC (a subclass of both A and C) then
either version might trigger. While not disallowed, such non-determinism should
be avoided.

The results of di�erent versions of procedural operations may also vary. The
combination rules are the same as would apply if each reply were considered as
an operation proper. The base version is constructed by conjoining all cases as
multiple replies, while merging (as the nearest common superclass) the types of

14

identically named (or nameless) replies in those cases where �elds di�er only in
link type. For example:

class E

op p(a: A) f: A ;

op p(b: B) g: B ;

op p(c: C) h: int;

op p(d: D) ok(), bad(i: int)

end

This may be represented in the form:

class E

op p(a: Any) fg: A, h: int, ok(), bad(i: int);

end

When a superclass version of the procedure exists, the resulting return expres-
sion must conform. In particular, added named reply forms resulting from such
combinations are not allowed.

5.1 Subclass Restrictions

A constraint of the form C = oneOf(S1, S2, ... Sn) limits the declarable
subclasses of C to those listed under OneOf. Stylistically, OneOf is used to
indicate that the listed subclasses are the only ones logically possible. For
example, a class with a fixed bool slot might be partitioned into two subclasses
with it set to true versus false. Also, subclasses de�ned via OneOf serve as
analogs of enumeration types found in other languages. A translator may enforce
and exploit the facts that partitioning constraints place �xed bounds on the
number of subclasses and/or that partitioned siblings may never have a common
subclass.

5.2 Defeasible Inheritance

A class may list another \base" class in an opens clause to indicate that it shares
all but speci�cally redeclared features with this base. The rules are the same as
those under normal inheritance except that any feature may be redeclared in any
way { declarative constraints in the base declaration are ignored. Additionally,
any unguarded base slot may be redeclared as local. The class listed in opens

is not a superclass; link types of the derived class are not subtypes of those for
the base.

6 Parameterization

needs revision

15

Classes, operations, and records may be paramaterized with one or more
class arguments in brackets appended to the declared name. They may may
then appear anywhere an ordinary type could appear inside the declaration. A
parameterized entity simultaneously de�nes all possible specializations of that
entity. The specializations are themselves ordinary classes, operations, and
records, subject to normal use. Parameterized classes may be de�ned as sub-
classes of other parameterized classes.

Translators must generate specializations for all versions that are actually
used in a program. They may generate others as well; for example, those used
in possible but untaken computation paths. Because they remain controversial,
ODL does not support kinds (types of types). There are no type constraints
on type arguments. However, translators must detect and report errors when
expansions result in specializations that contain (nonparameterized) type er-
rors. Since instantiation is static, �rst-order type rules are maintained for all
specializations used in a program.

7 Prede�ned Classes

Besides the special classes Any and System, the following abstract classes are
prede�ned.

class Bool

fn val: bool;

op t!: () ==> val' = true end

op f!: () ==> val' = false end

op set(b: bool): () ==> val' = b end

end

class Char

fn val: char;

op set(c: char): () ==> val' = c end

end

class Int

fn val: int;

op inc: () ==> val' = val + 1 end

op dec: () ==> val' = val - 1 end

op neg: () ==> val' = -val end

op set(i: int): () ==> val' = i end

op add(i: int): () ==> val' = val + i end

op sub(i: int): () ==> val' = val - i end

op mul(i: int): () ==> val' = val * i end

op dvd(i: int): () ==> val' = val div i end

16

op rem(i: int): () ==> val' = val mod i end

end

class Real

fn val: real;

op neg: () ==> val' = -val end

op set(r: real): () ==> val' = r end

op add(r: real): () ==> val' = val + r end

op sub(r: real): () ==> val' = val - r end

op mul(r: real): () ==> val' = val * r end

op dvd(r: real): () ==> val' = val / r end

op set(i: int): () ==> val' = i end

op add(i: int): () ==> val' = val + i end

op sub(i: int): () ==> val' = val - i end

op mul(i: int): () ==> val' = val * i end

op dvd(i: int): () ==> val' = val / i end

end

class Time

fn val: time;

op set(t: time): () ==> val' = t end

op add(t: time): () ==> val' = val + t end

op sub(t: time): () ==> val' = val - t end

op mul(i: int): () ==> val' = val * i end

op dvd(i: int): () ==> val' = val div i end

end

As syntactic sugar, the val fn for an instance of any prede�ned class may be
accessed via post�x ?.

At least one primitively implemented concrete subclass must be available for
each of the above; minimally:

class BOOL is Bool ... end

class INT is Int ... end

class REAL is Real ... end

class CHAR is Char ... end

class TIME is Time ... end

There are no prede�ned classes supporting blob values. Implementations may
provide them.

The partially prede�ned class System and single instance system are handled
di�erently than all others. There need not be a single identi�able system object
during execution. Its functionality may be spread (perhaps redundantly) across
all processes or otherwise achieved in a constructed system.

17

8 Syntax

This still needs updating!

The following EBNF syntax uses \[...]" for \optional" and \[...]*" for \zero
or more".

System: [Decl]*
Decl: Class j Fn j Op j Inv j Init j Open j Gen j Locals j Accept j Rec j ;
Class: class GID [is GIDs] [Decl]* end

Fn: [local j own j packed] [fn] GID Params : QualType FnDef
Op: [local] op GID Params ReturnSpec OpDef
Inv: inv Exps
Init: init Exps
Open: opens GID
Gen: generator GID
Rec: record GID Params
Locals: locals [Decl]* end

Accept: when Exp then [Op]* ElseAccepts end
ElseAccepts: [elsewhen Exp then [Op]*]* else [Op]*
Params: [(ParamList)]
ParamList: GID : QualType [, GID : QualType]*
QualType: [fixed j unique j common j opt]* GID
ReturnSpec: [[ID] : QualType j : Synch [, Synch]*]
Synch: [ID] ([ParamList])
FnDef: [[init] = Exp] FnBind
FnBind: <> j Block j ;
OpDef: Block j E�ect j ;
E�ect: ==> OpSpec end j When
When: when Exp then OpSpec ElseWhens end
ElseWhens: [elsewhen Exp then OpSpec]* else OpSpec
OpSpec: [When j Exps [Block] j Block]
Block: f Statements g
Statements: Statement [; Statement]*
Statement: [Exp j Assign j Loc j Catch j While j If j Reply]
Reply: reply [Exp]
While: while Exp do Statements end
If: if Exp then Statements ElsIfs end
ElsIfs: [elsif Exp then Statements]* [else Statements]
Catch: catch Exp [Op]* end

Assigns: Assign [, Assign]*
Assign: GID := Exp
Loc: local GID : QualType [:= Exp]
Exps: Exp j Exp , Exps
Exp: [@] Exp2

18

Exp2: [Exp2 OrOp] Exp3
OrOp: \/ j =>
Exp3: [Exp3 /\] Exp4
Exp4: [Exp5 RelOp] Exp5
RelOp: = j < j > j ~= j >= j <=
Exp5: [Exp5 AddOp] Exp6
AddOp: + j -
Exp6: [Exp6 MulOp] Exp7
MulOp: * j / j div j mod
Exp7: [Unop]* Exp8
Unop: - j ~
Exp8: PredefFn j PredefExp j Msg j (Exp)

PredefFn: Msg in GID j null (Msg) j oneOf (GIDs)
PredefExp: true j false j null j pend j literal
Msg: Rcvr [. Send]* [' j '' j ?]
Rcvr: self j [GID $] Send j new GID [([AssignsjExp])]
Send: GID [([Exps])]
GID: ID j GID [Exps] j PredefType
PredefType: bool j int j char j real j time j blob j Any j System
GIDs: GID [, GID]*
ID: [ID ::]* name

19

