
The Process of Object-Oriented Design

Dennis de Champeaux(1)

Doug Lea(2)

Penelope Faure(3)

(1) HP-Labs, MS 1U-14, 1501 Page Mill Rd, Palo Alto, CA 94304-1181
(2) NY Case Center & SUNY Oswego, Oswego, NY 13126

(3) Faure Inc, 1952 Camden Ave, Suite 101, San Jose, CA 95124

Abstract

The object-oriented design process is investigated

within the classic software development classi�-

cation of Analysis, Design, and Implementation.

When all development is performed using object

oriented methods, OOD is best characterized as a

transformational process, mapping declarative de-

scriptions of objects and classes to implementation

plans. Subphases of class design, system design,

and program design accommodate and rationalize

OO practices including abstraction, prototyping,

re�nement, bottom-up composition, delegation, in-

teroperablity, clustering objects into processes, re-

source management design, tuning and optimiza-

tion.

1 Introduction

As object-oriented concepts increasingly permeate

through software engineering methods and prac-

tices, some of the clashes between old distinctions

and new concepts become a bit uncomfortable.

The most notable stress point introduced within

attempted integrations of object-oriented notions

and software engineering process models lies in the

nature of design.

Process models describe and/or prescribe soft-

ware engineering practices by classifying activities

into various phases and components (see, e.g., [15]).

Nearly all models make at least the coarse distinc-

tion betweenAnalysis,Design, and Implementation

phases of development.

Object-oriented approaches to analysis and im-

plementation �t neatly within these categories.

Even the massive di�erences between object-based

modeling and classic \structured" analysis meth-

ods are readily accommodated within a number of

general process models. So is the fact that object-

oriented programming languages, tools, and envi-

ronments o�er a greater diversity of useful con-

structs and idioms compared to standard proce-

dural languages. These di�erences have led to new

prescriptive models of good software engineering

practices. They include spiral, fountain, prototype-

based, and other models that reect the iterative

nature of object-oriented classi�cation and decom-

position [9].

However, the very notion of \design" is a ca-

sualty of this integration. In classic scenarios,

the documents and speci�cations produced by the

analysis phase are assumed to be so far removed

from implementable constructs that a great deal of

e�ort must be expended in order to re-address the

project from a computational perspective.

This isn't true of object-oriented methods.

Among the main attractions of OO approaches

to software development is structural continuity.



Many classes, objects, properties, relations, and

behaviors described by OOA models show up in

obvious ways in the corresponding implementa-

tions when programmed in languages like smalltalk,

C++, CLOS, etc.

Given this observation, one might naively argue

that if developers are provided with good OO anal-

ysis and modeling strategies, along with good OO

programming languages and techniques, then there

is little that needs to be \designed" when software

is constructed using an object-oriented approach.

In this paper, we will argue otherwise. By exam-

ining the nature of object-oriented methods within

a tripartite structure, we arrive at a novel charac-

terization of OOD. This view of OOD reveals a se-

quence of activities that appears necessary for suc-

cessful object-oriented software engineering, espe-

cially when applied to large software development

e�orts. We also provide rationales for methods and

activities that are commonly, but anecdotally, held

to be good practices.

2 Separation of Concerns

For small enough e�orts, choices of software pro-

cess models, development philosophy, or orienta-

tion don't matter very much. As things scale

up, these choices start making a di�erence. De-

velopment roles (\domain analyst", \tester", etc.)

need to be assigned, e�orts coordinated, schedules

managed, and outcomes predicted. This requires

a sometimes-arti�cial separation of roles and con-

cerns across di�erent aspects of development.

As already mentioned, this separation almost

universally results in the identi�cation of at least

three major software engineering phases, Analy-

sis, Design, and Implementation. Unfortunately,

none of these terms really capture the nature of

the constituent activities. This makes it too easy

to fall into meaningless debates, like \Is Design re-

ally Analysis?". But the terms aren't completely

devoid of meaning. The main conceptual distinc-

tions may be characterized as follows:

� Analysis activities provide a declarative de-

scription of what the proposed software is sup-

posed to do.

� Design activities provide a computational de-

scription of software that meets analysis re-

quirements.

� Implementation activities are environmental,

providing an expression of the design suitable

for the target environment(s); i.e., programs

written in particular languages, using partic-

ular tools and systems, for particular con�gu-

rations.

There are, of course, many other subsidiary obli-

gations and activities within each phase. For ex-

ample, analysts are generally required to produce

customer-oriented documents and speci�cations,

implementors are bound to perform testing, etc.

Also, there are other sets of activities that don't fall

within these headings, like scheduling and mainte-

nance, that we will not have much to say about in

this paper.

Within large, managed engineering e�orts, these

phases are staged sequentially, because of their in-

trinsic logical dependencies. It is necessary to know

what the proposed software should do before think-

ing about how it will do it. And to know both what

it will do and how it will do it before committing

to its expression on a particular platform. These

observations remain true across di�erent levels of

granularity, precision, and interleavings of e�orts.

They also admit feedback and post hoc re�nement,

as when experimentation with a prototype demon-

strates that models, design speci�cations, and/or

implementation strategies need reworking.

The Role of Design

The design phase serves as a bridge between anal-

ysis activities describing properties that a system

should possess, and implementation activities de-

scribing the language and environment dependent

manner in which they are programmed.

The inputs to the design process are, of course,

heavily dependent on the nature of the analysis

strategy. Until recently, object-oriented designers



almost always received as input a set of descriptions

and speci�cations produced through some kind of

\structured analysis" method ([20]), or through no

systematic method at all. In such cases, a great

deal of \design" turns out to be \re-analysis".

However, the nature of design activities change

dramatically when preceded by an object-oriented

analysis phase, and followed by an object-oriented

implementation phase. When analysis models and

programs have the same overall structure, the

essence of design is transformation. The goal

of the design process is \merely" to transform a

declarative description into an implementable one.

But these transformations are by no means trivial.

There are an in�nite number of possible mappings

between any set of declarative speci�cations and

corresponding programs. A good design process

model raises the chances of producing at least one.

In order to gain a foothold on this transforma-

tional process, we need to better characterize the

nature and results of object-oriented analysis. In

the next section we sketch out the general methods

and goals of OOA, and then return to consider the

implications for the design process.

2.1 The Nature of Object-Oriented
Analysis

The purpose of analysis is to capture in a semifor-

mal way, the requirements and constraints of a tar-

get system. The analysis activity accepts as input

a fuzzy, minimal, possibly inconsistent target spec-

i�cation, user policy, and project charter. There

are three main outputs:

Functional The purpose of the system, as de-

scribed by (multiple) declarative models of ob-

jects, classes, relations, states, transitions, in-

teractions, etc.

Resource The computational substrate(s) that

the system will be built upon.

Performance The expected response times of the

system.

OOA di�ers from other analysis methods in the

way it approaches functionality descriptions. The

other information is a necessary result of any anal-

ysis orientation, and is often obtained within a

preceding or concurrent requirements analysis sub-

phase that also attends to auxiliary issues like cost

estimation.

Object-oriented analysis methods describe sys-

tems as sets of objects. Essentially all OOA tech-

niques are modeling-based. They implicitly as-

sume some kind of abstract computational struc-

ture. But to remain declarative, object dynamics

are described in terms of constraints, conditions,

and e�ects.

For purposes of analysis, the abstract object

model, notational system, and associated methods

are chosen in order to maximize descriptive power.

They need not conform to models and constructs

most easily supported using standard computers

and programming languages. But they cannot al-

low commitment to details that will depend on

the ways in which objects will ultimately be repre-

sented in software. A prototypical OOA framework

includes the following:

� Objects are described as members of classes.

� Relationships between classes are described

using inheritance and parameterization con-

structs.

� Object attributes and logical states are de-

scribed as abstract properties, along with con-

straints on these properties.

� Relationships between objects are de�ned in

terms of the nature of their participants, con-

ditions for entering and leaving the relations,

and constraints on the objects while engaged.

� Objects are active, process-like entities that

may communicate asynchronously with one

another.

� State transitions are described in terms of

their triggering conditions and their e�ects on

the target object.

� Interactions between objects are similarly de-

scribed as conditions and e�ects on participat-

ing objects.



� Complex objects (e.g., subsystems, or, more

broadly, ensembles in the sense of [5]) are de-

scribed as constrained object collections, along

with additional aggregate properties. One of

these complex objects is the main system it-

self.

There is a lot of room for variation here. For

example, communication may be represented in

terms of asynchronous point-to-point messages,

blocking procedures, and/or undirected \events";

multiple inheritance may or may not be used to

relate classes, and so on. Any particular OOA

framework represents some balance among expres-

siveness, power, economy, tractability, ease of use,

and related factors.

Models, notations, and methods must also ac-

commodate the analysis process; i.e. the steps in-

volved in identifying, analyzing, and constraining

objects, properties, states, transitions, and inter-

actions. Such considerations typically lead to the

following:

� Multiple notations. A combination of graphi-

cal, semi-graphical, structured-text (e.g., [19]),

and natural language descriptions.

� Multiple models. Information may be spread

across class property diagrams, class hierar-

chies, Entity-Relation diagrams, state charts

([8]), transition diagrams, use-case ow graphs

([11]), and other views.

� Multiple outputs. Functionality, resource, per-

formance, quality, platform, and environmen-

tal requirements may be isolated into separate

documents.

� Multiple audiences. At least some parts of

analysis models are intended to be readily

understandable by non-specialists, especially

customers.

� Variable precision. Notations and methods al-

low for as much or as little precision in speci�-

cation as people are willing or able to provide.

Analysis frameworks neither require nor pre-

clude the consistent use of formal methods.

� Variable depth. Analysis models may omit

mention of classes, constraints, operations,

etc., that do not appear to a�ect the overall

functionality of the system, with the expecta-

tion that these issues will be further examined

downstream.

While the details of the analysis process are be-

yond the scope of this paper, we note a few high-

lights:

� Top-down decomposition, often involving sepa-

rate, staged treatment of object statics (prop-

erties, relations) and dynamics (transitions,

interaction).

� Domain analysis, including the examination of

related systems in order to determine poten-

tially reusable concepts, components, architec-

tures, etc.

� Feedback, especially side-channel experimen-

tation with prototypes and existing systems,

most notably for specifying properties of user

interfaces.

OOA usurps many of activities often ascribed

to OOD and OOP (by, e.g., [2]). When analysis

is approached in an object-oriented manner, the

constituent activities focus on the identi�cation,

classi�cation, decomposition, and speci�cation of

objects and classes. They do so within a frame-

work intended to maximize the power, sensitivity

and generality of the resulting models, without re-

stricting themselves to immediately implementable

constructs. While these models may be revisited,

transformed, and re�ned during design and imple-

mentation, the vast bulk of important structural

information is produced during OOA.

3 Designing Design

We have characterized design as a transforma-

tional process that starts with a declarative,

non-computational speci�cation, and then applies

methods and strategies that result in an imple-

mentable software design. By analyzing intrinsic



constraints and features of these transformations,

it is possible to specify a prototypical design pro-

cess, prescribing activities and orderings among

them.

Transformational Criteria

The structure of OOD relies on criteria common to

the design of any transformational process. These

include:

� Separation of Concerns. Group transforma-

tions into meaningful, tractable phases with

well-de�ned inputs and outputs.

� Sequentiality. Obey logical dependencies. Do

not schedule a step until its prerequisites are

complete.

� Conservatism. Keep downstream options

open. Avoid premature commitments to

inessential details.

� Generality. Operate on the most general rep-

resentation possible for any transformation

in order to minimize redundancies when per-

formed on special cases.

� Continuity. Output re�nements and restruc-

turings using the same representational frame-

work as their inputs.

Several of these considerations were noted in our

discussion of overall software process models. But

they also govern the architecture of just about any

transformational system. Examples include com-

piler design, simulation system design, and vision

processing system design. We will apply them to

the human activity of object-oriented design itself.

The di�erences between the OOD process and,

e.g., compilation techniques are mainly matters of

degree. The transformational structure of modern

compilers is well understood, and contains many al-

gorithmic and semi-automatable components. But

the prospects for mechanizing the \compilation"

of an OOA speci�cation into an implementable de-

sign appear remote. Many OOD transformations

are underdetermined, heuristic, and involve sub-

stantial creative e�ort.

Structural Improvement Criteria

The heuristic nature of the enterprise mandates

that any OO process model allow for incremental

improvement throughout development.

Any design process that relies on the omniscience

and perfection of analysts is doomed to failure.

Methods must allow for analysis models to have oc-

casional gaps and imperfections. Constraints and

opportunities that stem from computational con-

cerns can strengthen, complete, or override those

seen from a declarative perspective. Similarly an-

alysts (even domain analysts) will not always rec-

ognize and exploit common design idioms, reusable

components, and applications frameworks. And re-

gardless of these considerations, the diversity of OO

constructs allows many concepts to be described in

any of several nearly equivalent ways (e.g., multiple

inheritance versus composition). The best choice

from a design perspective need not mesh with that

from analysis.

Thus, designers must be able to introduce

new classes, refactor class hierarchies, and inter-

transform constructs in the process of meeting

other goals. This requirement extends the breadth

and impact of continuity criteria. By maintaining

continuity, the process may more gracefully accom-

modate this kind of iterative structural improve-

ment. So long as analysts, designers, and pro-

grammers maintain the same general views of ob-

jects, classes, etc., these steps may be undertaken

throughout the development cycle in a fully trace-

able manner.

Among the best tools for assessing the need for

such improvements is prototyping. The design pro-

cess should accommodate the creation of proto-

types that reect only those transformations and

details already committed to. These steps may

then be revisited after experimenting with the ten-

tative system.

Major Design Phases

The simplest way to reconcile the results of OOA

with the process constraints listed above is to iden-

tify distinct design phases associated with each



of the three principle analysis outputs describing

functionality, resources, and performance require-

ments.

These three categories subdivide focal issues in a

natural way. We can rename and expand on these

groupings in order to clarify their relation to com-

monly held design phases:

Class Design De�nition of representational and

algorithmic properties of classes obeying the

declarative constraints speci�ed within OOA.

System Design Mapping of objects to proces-

sors, processes, storage, and communication

channels; along with design of facilities to

manage these resources.

Program Design Reconciliation of functionality

and resource mappings in order to meet perfor-

mance requirements when expressed using the

target implementation languages, tools, con-

�gurations, etc.

The three subdivisions form a set of logical

dependencies, indicating that they are best per-

formed in the stated order. It is impossible to as-

sign resources to objects and manage their use until

resource demands are at least approximately deter-

mined by establishing representational and compu-

tational properties. It is similarly impossible to ad-

dress performance issues until these mappings are

known.

This sequencing also meets our other criteria.

By dealing with class design issues before systems

issues, designers may avoid premature commit-

ments. They may perform transformations that

will hold whether instantiated objects reside on in-

dividual processors, are passive components within

managed processes, share resources with others,

and/or hard-wire their communications channels

with other objects.

3.1 Class Design

The principle goal of class design is rei�cation.

Class design methods arrive at internal represen-

tational and algorithmic speci�cations that meet

the declarative constraints of analysis models.

Other class architecture requirements are implic-

itly or explicitly introduced during the class design

phase. Analysis models do not address the nature

of classes as software artifacts. Additional criteria

may include:

� Software quality requirements, including relia-

bility, modularity, safety, cohesion, testability,

understandability, reusability, and extensibil-

ity.

� Lifecycle requirements, especially for system

evolution, demanding design allowances for re-

implementation, repair, extension, and related

adaptations necessary for coping with future

requirements.

� Compatibility requirements, governing in-

teractions with other systems, subsystems,

and components (most typically non-object-

oriented ones) through constrained interfaces.

Object models and prototyping

Class designs specify internal workings of objects

that hold across a range of commitments about ac-

tive/passive object status, message-passing styles,

and implementation details.

In order to guarantee this independence from re-

source and performance issues, class design activ-

ities need to be performed with reference to the

most general abstract computational model com-

patible with that of the OOA framework. However,

the design process requires a more concrete refer-

ence model for describing computational structure

than does OOA.

This computational model is captured in the no-

tion of an object-oriented supervisory kernel. This

kernel may take a very general and powerful form

for purposes of guiding class design. Moreover,

the kernel may actually be implemented. An op-

erational high-level kernel serves as an interpretive

prototype simulator, useful for experimenting with

preliminary class designs.

Prototype interpreters may be implemented us-

ing techniques common to simulation, production

systems, and logic programming kernels. The basic



idea is to create a single active computational agent

that receives all events (object construction re-

quests and other messages) in some kind of queue.

When conditions allow, it pulls an event o� the

queue and performs the indicated actions on behalf

of the associated objects. In this way, all conceptu-

ally active objects may be simulated passively, at

the expense of creating an all-powerful super-object

forever repeating the following steps:

� Take from the queue any event that has all of

its triggering constraints satis�ed, and process

it:

{ If the event is an object construction, cre-

ate a new (passive) object with the re-

quired initial states and attributes.

{ Else if it is an \elementary" state-change

operation on a primitive object, then di-

rectly compute it.

{ Else place on the queue all component

events listed in the body of the event.

This is actually just a variation on the compu-

tational structure implicit in common OOA object

models, which are in turn variations of actor mod-

els [10]. But instead of empowering all objects

to perform their own transitions and communicate

with others, the single super-object behaves as if

it were composed of all others, and communicates

only with itself via the queue. There are numerous

possible algorithmic improvements on this strategy.

For example, triggering conditions become easier to

deal with when each object's state is specially en-

coded ([17]), and/or multiple queues are employed,

one per condition.

Such simulation systems serve multiple roles in

design. Even if they are never built, they provide a

concrete reference model helpful in liberating class

design from system constraints. They also form

the conceptual basis for further design activities

described below.

Abstraction

Our structural continuity criteria require that ab-

stract declarative OOA speci�cations be repre-

sentable within the class design framework. This

implies the need for an initial design step that

translates these constructs into a form suitable for

further transformation.

This step is a slightly more extreme version of

the common OOD strategy of using abstract classes

(also known as types when these are distinguished

from classes) that specify attributes without men-

tioning internals. Concrete classes committing to

particular representation and computation strate-

gies may then be declared as subclasses (as is typ-

ical practice in C++ and smalltalk), or follow their

own separate inheritance structure (as in POOL

[1]), or even be designed within a classless proto-

type system (as in SELF [18]).

The continuity-based view is more extreme only

in demanding greater coverage of constructs like

triggering conditions, predicate-based invariants,

and other features typical of declarative models.

The notation must also ful�ll the pragmatic need

for variable precision of speci�cation. Designers

must be able to add information and constraints as

they become known. Explicit incorporation of con-

straints within a computational context also allows

partial automation of design for testability by facil-

itating de�nition of invariant checks, trace checks,

and other self-testing strategies.

In practice, these features may be obtained ei-

ther by extending programming languages with

various extralinguistic annotation constructs (as

in [7]), or by using a design language supporting

simple translation of analysis constructs into those

compatible with a broad range of OOPLs (as in

[6]).

The translation of OOA models into design no-

tations may be seen as the extraction of speci�ca-

tions, in the term's formal sense. Abstract class

frameworks may contain information that is equiv-

alently powerful to that found in classic speci�ca-

tion systems like VDM [13]. But they represent

constraints and assertions via constructs similar to

those used in object-oriented design and program-

ming proper. Such attributes greatly enhance the

human factors of speci�cation, and allow for rou-

tine adoption.



Compositional Design

Essentially all OO methods for establishing inter-

nal class properties are compositional. Objects ob-

tain their static and dynamic properties by com-

posing, delegating, inheriting, and coordinating

those of other objects. The basic idea of composi-

tional design is to build complex objects and oper-

ations out of simpler ones. For any given abstract

class and/or operation,

� Other candidate components supporting at

least some of the required properties are found.

� The declarative constraints of the complex en-

tity are restated in terms of combinations or

sequences of those of the identi�ed compo-

nents.

� A concrete version of the complex entity is

then de�ned to access or employ the compo-

nents.

OOA models already provide top-down decom-

position of a system into abstract classes. Design-

ers may de�ne associated concrete classes in a more

productive bottom-up fashion, in which nearly all

complex entities are dealt with only when sets of

plausible components are available.

Bottom-up composition reects another appli-

cation of transformational process criteria. De-

lays, mistakes, redundancies, and inessential de-

mands are avoided by designing, using, reusing,

and testing components before dealing with their

clients. This is, of course, standard practice when

the \component" is a concrete superclass of the one

being designed. It would be unproductive to design

a concrete subclass before its superclass.1 This ob-

servation holds for composition more generally.

Compositional design is the most time consum-

ing and creative aspect of the design process. De-

signers must choose among the multitude of avail-

able idioms to �nd those that best reect the ab-

stract speci�cations and other design goals. They

1Although the de�nition of a previously parentless class

may suggest the opportunity to retrospectively design a new

superclass.

must ensure that software quality criteria are met

by paying attention to well-known pitfalls like alias-

ing and faulty dispatching. These, and numerous

other issues and concerns fall beyond the process

focus of this paper.

Classes as Servers

In a compositional design framework, just about

every class should be designed so as to be amenable

for use as a component by others. This notion that

models are to be transformed into software compo-

nents places a di�erent perspective on some stan-

dard quality notions. In particular, it focuses on

the centrality of design for reuse. Component de-

sign involves:

� Design of (abstract) classes rather than one-

shot objects.

� Design of class interfaces (accessors, methods)

rather than of attributes and transitions.

� Standardization of interfaces, leading to the

speci�cation of families of interoperable sub-

classes and the creation of applications frame-

works [12].

� Design of reliable interaction protocols, often

supplanting pure event-driven models.

� Design of mechanisms and protocols for trans-

mitting state information between cooperating

objects.

� Design of service and \enslavement" protocols

(access control, locking, etc.) so that objects

may be used more predictably and reliably by

others.

� Minimization of representational and informa-

tional demands upon clients (low coupling).

Classes as Clients

In analysis, arbitrarily complex objects and func-

tionality may be considered as \primitive". In de-

sign, all but the most elementary objects are ex-

plicitly composite. Di�erent sets of design tactics



and quality criteria, in particular those revolving

around design with reuse, stem from transforma-

tions needed to explicitly link the attributes and

operations of one class with those of other, nor-

mally simpler ones it depends on. Many of these

concerns are mirror images of those above:

� Black-box reuse. Minimization of repre-

sentational and informational demands upon

servers, thus allowing a broader range of con-

crete object types to be employed as compo-

nents. This includes the use of capability-

based (abstract) rather than implementation-

based (concrete) speci�cation of internally ac-

cessed objects; along with consequent reliance

upon construction-time binding of servers.

� Reliance on implementation-independent dele-

gation rather than concrete subclassing as the

compositional technique of choice.

� Minimization of protocol demands upon

servers.

� Design of coordination schemes (transactions,

noti�cations, triggers) to maintain static and

dynamic invariants both among components

and between components and self.

Coordination

In design, nearly all classes are both clients and

servers in an extended sense of the terms:

{ During execution, instances of the described

classes serve and are served by others computation-

ally.

{ During design, the classes themselves serve and

are served by others structurally.

This correspondence between computational and

design roles has wider implications. For exam-

ple, in large systems the management of client-

server relations often requires introduction of me-

diation strategies including relays, registries, task

managers, master-slave con�gurations, and other

idioms that partially centralize coordination of

clients and servers. The net e�ect of these mea-

sures is to replace identity based communication

with role or capability based strategies. The same

principles hold true for the design process itself.

Large class libraries should be organized via coor-

dination schemes allowing designers to locate com-

ponents by capability, by role (usage), and by de-

pendency.

3.2 System Design

Previous steps de�ne a system as a set of inter-

acting objects requiring potentially unbounded re-

sources, possessing unbounded lifetimes, operating

under unbounded parallelism, and communicating

through media of unbounded channel capacity, all

as (conceptually) simulated by an interpretor. For

projects with extremely liberal performance con-

straints, designers might be lucky enough to stop

at this point. As noted in [17], a simple simulation-

based design may sometimes su�ce as a deliverable

system.

Designers are scarcely ever this lucky. The goal

of system design is to map objects on to managed

software constructs that may be implemented using

the resources at hand.

Clustering

Most system design activities revolve around the

mapping of objects to processes.

The kernel interpreter system described above

readily serves as a basis for systems-level decompo-

sition. As noted, variations in the basic model ap-

ply both to \one process per object" and \one pro-

cess per system" frameworks. Most systems fall in

between, as collections of relatively coarse-grained

processes, each housing a relatively large number

of (passive) objects.

The resulting architecture may be designed by

clustering objects within processes, each with the

same overall structure as the above model, but with

explicit interfaces allowing other objects to insert

messages into request queues, as well as mecha-

nisms (especially proxies) that ship remote requests

to other clusters rather than locally queuing them.

There are no algorithmic criteria for clustering.

On the one hand, performance considerations ar-



gue for a strategy that isolates resource intensive

objects within their own processes, and clusters

together other objects that heavily intercommuni-

cate, or could share resources, or exploit capabili-

ties found on the same physical machines. On the

other hand, just about all other considerations (im-

plementability, maintenance, etc.) argue for strate-

gies that identify clusters with \large" semantically

meaningful entities; i.e., subsystems and ensem-

bles.

These two perspectives need not coincide, but

they can be integrated under a uniform plan of

attack. One method is top-down decomposition,

in which the system is �rst conceptually viewed

as occupying a single process. This view corre-

sponds to the above simulation kernel. Sets of

objects may then be identi�ed and broken out as

clusters using either performance-based or seman-

tic criteria. This process may be repeated in order

to split o� additional clusters from the main \par-

ent" and/or to further partition \child" clusters.

The main attraction of top-down methods from a

design-process and software-lifecycle view is that it

becomes relatively easy to add partitions to accom-

modate new processors and to recombine children

into a parent if necessary (possibly even dynami-

cally during system execution).

Clustering criteria go hand-in-hand with the

design of interprocess communication topologies.

Centrally-arbitrated, broadcast-based, point-to-

point, tree-structured, and other frameworks are

all possible. Most are supported by contemporary

software services, utilities, and management facili-

ties.

Clustering may impact details of class designs.

In most systems, embedded object identities (usu-

ally represented as addresses at the implementa-

tion level) may not be passed among processes.

Thus, objects within di�erent clusters cannot di-

rectly communicate. This often requires the intro-

duction of additional layers of mediation and/or

encapsulation. These issues become more extreme

when the system heavily communicates with non-

object-oriented foreign software.

Because clustering remains something of a black

art, it is very useful to implement versions of pro-

totype interpretors that simulate expected delays

and loads resulting from tentative clusterings.

Resource Management

The class design level deals with \conceptual" ob-

jects. The system design phase deals with \real"

ones that occupy physical resources. Clusters form

a natural focal point for object management.

Each cluster houses and manages a set of objects.

The design of internal cluster management facili-

ties will necessarily rely on the availability and/or

construction of software services that help allocate

and deallocate storage, manage persistence, control

concurrency, and route messages. Especially if per-

sistence is supported using non-integrated and/or

non-OO database systems, database design is likely

to form a central role in this subphase.

Inter-cluster object management design involves

the introduction of process control and manage-

ment facilities, inter-cluster communication, fault-

tolerance, and communication with foreign soft-

ware.

3.3 Program Design

The above activities describe classes and their map-

pings to resources, but do not fully determine the

internal workings of the individual processes and

the programs that govern them.

Within-Cluster Transformations

Even though they are partially tied to implemen-

tation details, such programming matters remain

\design issues" because of the performance obliga-

tions of the design process. Designs must ensure

that stated and implicit2 performance goals are ar-

chitecturally feasible.

There is ample room for improvement. Even a

large set of interacting clusters can possess signi�-

cant performance problems. Previous design steps

2An ATMmachine that \goes away" for three minutes af-

ter taking in an ATM card is obviously unacceptable, while

the requirement writers may not have bothered detailing

their intentions in this matter.



assume that cluster agents are merely interpreters.

They receive all events emanating from their com-

ponent objects or other clusters, and then either

execute them or forward them to other clusters.

Most of this interpretation overhead can be by-

passed by sequentializing within-cluster communi-

cation. Interactions between objects residing in a

single cluster may be recast using standard pro-

cedure calls and related constructs that e�ciently

operate within a single address space and/or thread

of control. These e�orts may be accompanied by

transformations that introduce error protocols con-

trolling behavior when messages are received while

objects are in inappropriate states. This bypasses

the need for triggering queues that protect objects

from such invasions. Memory management, dis-

patching, and related resource overhead may be

similarly localized and streamlined.

Optimization

Other classic performance tuning strategies are eas-

ily accommodated. The original design of interop-

erable classes allows designers and/or implemen-

tors to incrementally improve performance with-

out disrupting overall structure or functionality by

swapping in better classes, algorithms, and commu-

nications protocols for existing ones. Prototypes

may be run to tentatively evaluate questionable

components before committing to other details of

the �nal implementation process.

Most �ne-grained e�ciency matters are bound to

the quality of the implementation. In these cases,

the best a designer can do is to ensure that clever

implementations are at least possible by maintain-

ing interoperability principles throughout the de-

sign phase. Also, by working with implementors

attempting to diagnose and repair performance

failures, designers help maintain design integrity

throughout the implementation phase.

4 A Prototypical Design Pro-

cess

By investigating the role of design within a tripar-

tite software development model, and by analyzing

the resulting activities and constraints, we are led

to a transformational view of the design process.

This model is amenable to a great deal of varia-

tion and re�nement. Assuming speci�cation of an

object model/kernel to be used as a framework for

specifying representation and computation, it in-

volves the following steps and activities as minimal

components:

1. Class Design

(a) Translation of OOA models into corre-

sponding abstract design constructs.

(b) Bottom-up compositional design of con-

crete components.

(c) (Optional) Prototyping, restructuring,

re�nement.

2. System Design

(a) Transformation of a master interpreter

into as many clusters as necessary or de-

sirable to match resource constraints.

(b) Design of resource management facilities

within and between clusters.

(c) (Optional) Prototyping, restructuring,

re�nement.

3. Program Design

(a) Transformation of event interpretation

into procedural message passing, along

with other conversions into OO program-

ming constructs.

(b) Identi�cation and replacement of poorly

performing components with better ones.

(c) (Optional) Prototyping, restructuring,

re�nement.

The basic framework admits several variations.

Some of the more obvious ones include:



� Class design, especially, may be interleaved

with parts of OOA by dealing with subsys-

tems or other coarse-grained components as

they become available.

� Program design and implementation activities

may be similarly pipelined.

� Class design activities may be subdivided

among designers working concurrently and

semi-independently.

� Design of the general form, policies, and in-

ternals of cluster agents may proceed concur-

rently with class design.

� The reference object model may be severely

constrained when the system is required to be

implemented as a single program written in a

single language. In this case, the language's

own dispatching kernel may be substituted for

the interpreter.

The constituent steps bear similarities to those

presented in other prescriptive accounts of design.

For example, Rumbaugh et al [16] distinguish class

from system design, and Coad & Yourdan [3] de-

scribe several subdivisions of design that may be

placed within this categorization. Booch's [2] ac-

count of design includes many steps that we would

consider to be parts of OOA, but otherwise de-

scribes similar activities.

The present account di�ers from these mainly

by virtue of its strong emphasis on structural con-

tinuity, and its ordering of steps to reect logical

dependencies. These lead to a model that both

accommodates and rationalizes methods that are

widely held to be good OOD practices. These in-

clude the routine use of abstract classes, prototyp-

ing, bottom-up compositional design, reliance on a

dispatching kernel to guide systems development,

and planning for optimization measures through in-

teroperable design techniques before committing to

the optimizations themselves.

Perhaps the most novel aspect of our framework

is its reliance on \active" object models mirror-

ing underlying OOA assumptions throughout much

of the design phase. Our transformational criteria

lead to the notion that premature sequentialization

is no more defensible within OOD than is prema-

ture optimization.

5 Example

Due to limited space, we will sketch the application

of the di�erent transformations on a toy example

that provides only a few glimpses of key points and

issues. We discuss some requirements, and then

provide little snippets of the analysis and design.

We dwell a bit more on the analysis side in order

to illustrate our claims that OOA methods can and

should provide the bulk of the high-level descriptive

information.

5.1 Requirements

This is a pseudo physics problem simulating a

chamber in which particles are injected at side A

and di�use out at side B (Figure 1).

The injection rate atA is constant. The di�usion

rate at B is a function of the local density. There

are two kind of particles: lightweight and heavy-

weight. The latter particles decay spontaneously

into the former at a certain rate. A simulation is

used to study the ow and densities of the particles

in the chamber.

Both the space in the chamber and the time are

discrete. The cells of the chamber form the follow-

ing disjoint collections: Walls at the top, at the

bottom and the two vertical pieces, Injection cells

at the A-side, Di�usion cells at the B-side, and

Interior cells.

For every non-wall cell, we maintain the densities

of the two types of particles, and the ux vectors

of the two types of particles. The simulation is

to be run iteratively until the ux doesn't change

signi�cantly in any cell.

The \behavior" of an interior cell at time step N

is split up in three phases:

Account for Decay

(1) Decrease the heavyweight density due to

decay;



A B

Figure 1: The Chamber

(2) Increase the lightweight density due to the

decay.

Determine Flux

Determine the ux vectors, for each type of

particle, in the north, east, south and west di-

rections as a function of density di�erences in

each, where a ux vector is zero in the direc-

tion of an adjacent cell when the density in the

adjacent cell is higher or it is a wall cell.

Adjust Density

(1) For heavyweight particles, increase the

density of adjacent cells in proportion to the

ux into them; i.e. if a ux into a cell is f then

increase the density there with c � f ;

(2) Decrease the local heavyweight density by

what has own out;

(3) Do the same for the lightweight particles;

(4) Increment N.

The injection cells behave like interior cells ex-

cept that �xed amounts of particles are added

through their west \wall". Di�usion cells behave

like interior cells except that particles disappear in

the east \wall" as a function of their densities.

5.2 Analysis

We sketch �rst a few classes. In Figure 2, we

have introduced the class Cell with has four op-

tional attributes named north, east, south and

west. The optionality is indicated by the cardinal-

ity constraint [0; 1]. The �fth attribute indicates

whether the cell belongs to a wall or not. This at-

tribute allows us to introduce two subclasses Wall

and NonWall in which the wall? attribute value is

frozen into yes and no respectively. We can intro-

duce a subclass of Wall called TopWall in which

we know for sure that the north attribute is ab-

sent. NonWall cells have guaranteed north and

south attributes (Figure 3).

The upward pointing vector represents an inheri-

tance link. We have given NonWall the additional

attributes heavy density and light density to keep

track of the densities of the di�erent particles; and

flux of type Flux (possessing in turn attributes

flux x and flux y) as the resultant of combining

the uxes in the x and y directions.

We can introduce ACell, BCell and IntCell as

disjoint subclasses ofNonWall by making commit-

ments about the still variable occurrence of east

and west attributes. For instance, ACell's do not

have a west attribute while interior IntCell's have

all four attributes that refer to adjacent cells.

We proceed by giving a high level view of the

transition network of an IntCell (Figure 4). One

of the transitions is shown in Figure 5.

The Chamber itself forms a natural ensemble

class, representing the aggregation of cells and their

interconnections within a (single) subsystem.



Cell -
fnorth,east,south,westg[0,1]

Cell

- Boolean
wall?

Figure 2: Class Cell

Cell

6

NonWall -
fnorth,southg[1,1]

Cell

- no
wall?

- Real
fheavy density,light densityg[1:1]

- Flux
fuxg[1:1]

- Integer
fstepg[1:1]

Figure 3: Class NonWallCell

&%
'$

S1 -
Increment the time step

&%
'$

S2

?

Adjust density to
account for decay

&%
'$

S3�
Determine new ux

&%
'$

S4

6
Adjust density to
account for in ux

Figure 4: IntCell Transitions



&%
'$

S2

Adjust density to account for decay

guard action event

TRUE

NIL

Decrease
heavyweight
and
increase
lightweight
densities

Send local
densities
to neighbors

-&%
'$

S3

Figure 5: Detail of an IntCell transition

5.3 Class Design

The output of the analysis phase must be trans-

formed into a set of abstract class designs. For

example, class Cell might be translated as:

abstract class Cell

isWall: bool;

optional north: Cell;

...

end

The NonWallCell subclass adds both attributes

(densities) and behaviors (adjusting for decay):

abstract class NonWallCell is Cell

heavyDensity: real;

op adjustForDecay

==> ..., heavyDensity' =

heavyDensity * decayFactor;

...

end

This may be rei�ed into a corresponding concrete

class by �nding components that both represent

the value properties and support the necessary up-

date operations. In this case, simple number ob-

jects su�ce. The value attributes reect states of

component objects, and operations are performed

via delegation to them:

concrete NonWallCellImp is NonWallCell

component _heavyDens: RealNumber;

heavyDensity { _heavyDens.state }

op adjustForDecay { ...;

_heavyDens.multiplyBy(decayFactor); }

...

end

Of course, we do not claim that translation of prop-

erty and e�ect speci�cations always transform this

transparently into components and executable ac-

tions.

The overall design is just complex enough to con-

template introduction of coordination strategies to

replace the strictly local state and event driven

transitions described in the OOA models. At the

analysis level, the Chamber was a rather passive

class, merely \keeping track" of the cells. This may

be transformed into an active coordinator in order

to simplify and regularize communication. For il-

lustration, we'll choose an extreme measure, syn-

chronous control, in which the cells are treated as

\slaves", and are stepped through actions by the

chamber object, that now serves as a \master":

class Chamber

...

ints : SET<NonWallCell>

op interiorStep {

ints.applyToAll(incrementStep);



ints.applyToAll(adjustForDecay);

ints.applyToAll(getDensityFromNbrs);

... }

end

Among other re�nements, this scheme leads to the

(re)de�nition of Cell operation mechanics (e.g.,

adjustForDecay). Cell operations must \call

back" senders in order to notify them when tran-

sitions are complete. The applyToAll operation

may then use scatter/gather idioms to control syn-

chronization. Of course, any of several other co-

ordination schemes might have worked as well or

better.

5.4 System Design

The requirements did not mention compute re-

source constraints. Suppose however, that after

prodding our hypothetical customer we learn that

we should use two compute servers. Thus we can

have two clusters. Since the great majority of our

objects are instances of IntCell we will have to

distribute them over the two compute servers.

To minimize communication between the clus-

ters we can split the chamber into a left side

and a right side. We can de�ne a corresponding

Side class, and two such objects leftSide and

rightSide that will serve as the basis of the clus-

ters. They will construct and manage the cells, and

mediate communication among cells in each half.

The two Sides are (remote) components of a

master chamber object residing on either of the

machines, perhaps as a stand-alone process on one

of them. The sides do need to interact. Cells

along the borders need to propagate densities to

each other. This requires introduction of addi-

tional mediation capabilities in the interface of each

Side, along with all of the other modi�cations that

this in turn entails. One solution is (1) to as-

sign each cell row; column attributes that serve

as pseudo-object-IDs, (2) to re-express all neigh-

borhood relations using maps from row; column to

cells (i.e., a matrix representation), and (3) to send

intercluster updates one-by-one through the re-

mote message neighborDens(row, col, value)

applied to all relevant cells at the end of a suit-

ably modi�ed interiorStep operation (4) to cre-

ate a BorderCell class to facilitate identi�cation

and expression of cross-cluster processing.

Further suppose that execution is expected to

be very long-lived, requiring persistence support

to deal with situations in which the cluster objects

\crash" during a simulation. Just about any kind

of persistence mechanism could be employed for

this design. The use of a relational database is a

simple and practical alternative since all cell state

attributes are simple numerical values (including

row; column indices serving as pseudo-IDs). Dif-

ferent kinds of cells might correspond to di�erent

relational database tables. A checkpoint/rollback

scheme could be added to the Side class. Snap-

shots of states may be stored persistently through

the relational database after every k iterations.

The chamber (or a clone thereof, if it crashes)

would then manage crash recovery.

5.5 Program Design

At this stage, we can still (barely) perceive the set

of objects in a cluster as independent processes.

However, all local communication is readily trans-

formable into unguarded blocking procedures that

need not be mediated by queues and other active-

object mechanics. With only minor re�nements, all

within-cluster messages may be converted into sim-

ple procedure (method) calls. Each program does

still need an active-object interface in order to ac-

cept update and synchronization messages from the

other side and the chamber, as well as to commu-

nicate with database services.

There's still a lot of room for incremental im-

provement. For example, there is no computational

reason for each Cell object to explicitly maintain

a step attribute. A single representation in each

side would su�ce.

5.6 Implementation

There are two major facets in the implementation

of this design, process-level and program-level.



If this were to implemented in C++, process-

level implementation matters might be addressed

using tools like CORBA [14] to generate cluster pro-

cess interfaces, proxies, and interprocess communi-

cation mechanisms. Additional foreign-system ve-

neers and mechanisms need to be employed and/or

constructed to implement communication with the

chosen database service.

The C++ code for classes needed within the Side

clusters could be produced through straightforward

translation of the re�ned versions of Cell, etc.,

resulting from the program design phase. These

might �rst be adapted so as to take advantage of

pre-existing Matrix, Set, and other components.

6 Summary

We have described how OO design can be split

up in distinct and ordered phases. Each phase fo-

cuses on one item in the list: class design on func-

tional requirements, system design on resource re-

quirements, and program design on performance

requirements. We have illustrated the three trans-

formation phases with an example.

By satisfying these requirements sequentially

and utilizing the supervisory kernel model, we can

obtain an executable high-level design (provided

that an interpreter exists for the class design lan-

guage). Given this proviso and to the extent that

OO analysis is a systematic endeavor, we have out-

lined a disciplined way to obtain early prototypes.

By splitting design into di�erent phases and out-

lining di�erent sub activities in these phases, we

hope to clarify the OO design process and provide

guidance to those developing OOD CASE tools.

Acknowledgments

We have bene�ted from discussions with Martin

Griss and Desmond D'Souza. We appreciate the

feedback that we obtained on an earlier version

from John Burnham and Rajendra Raj.

References

[1] America, P., A Parallel Object-Oriented Lan-

guage with Inheritance and Subtyping, Pro-

ceedings OOPSLA '90, 1990.

[2] Booch, G., Object-Oriented Design, Benjamin

Cummings, 1991.

[3] Coad, P. & E. Yourdon, Object-Oriented De-

sign, Yourdon Press Computing Series, 1991.

[4] de Champeaux, D. & P. Faure, A Comparative

Study of Object-Oriented Analysis Methods,

To appear in JOOP, 1992 March/ April.

[5] de Champeaux, D., Object-Oriented Analy-

sis and Top-Down Software Development, in

Pierre America (Ed), Proceedings of ECOOP

'91. Lecture Notes in Computer Science, no

512, Springer Verlag, pp 360-376, 1991.

[6] de Champeaux, D.,D. Lea, & P. Faure, Object-

Oriented System Development. (Manuscript in

preparation.)

[7] Cline, M. P. & D. Lea, The Behavior of C++

Classes, Proceedings, Symposium on Object-

Oriented Programming Emphasizing Practical

Applications, Marist NY, 1990.

[8] Harel, D., Statecharts: A Visual Formalism

for Complex Systems, in Science of Computer

Programming vol 8, pp 231-274, 1987.

[9] Henderson-Sellers, B, & J. Edwards, The

Object-Oriented Systems Lifecyle, Communi-

cations of the ACM, vol 33, pp 142-159, 1990.

[10] Hewitt, C., P. Bishop & R. Steiger, A Uni-

versal Modular ACTOR Formalism for AI, in

Third International Joint Conference on Ar-

ti�cial Intelligence, pp 235-245, Stanford Uni-

versity, 1973 August.

[11] Jacobson, I., Object-Oriented Development

in an Industrial Environment, in Proceedings

OOPSLA'87, pp 183-191, 1987.



[12] Johnson, R., & V. Russo, Reusing Object-

Oriented Designs, University of Illinois Tech-

nical Report UIUCDCS 91-1696, 1991.

[13] Jones, C., Systematic Software Development

Using VDM, Prentice Hall International, 1986.

[14] Object Management Group, Common Ob-

ject Request Broker Architecture and Speci�ca-

tion, Document 91.12.1, Object Management

Group, 1991.

[15] Reynolds, G.W., Informations Systems for

Managers West Publishing, 1988.

[16] Rumbaugh, J., M. Blaha, W. Premerlani, F.

Eddy & W. Lorensen, Object-Oriented Model-

ing and Design, Prentice Hall, 1991.

[17] Tidwell, B.K., Object-Oriented Analysis

State Controlled Implementation, Proceed-

ings Workshop on Object-Oriented (Domain)

Analysis, OOPSLA, 1991.

[18] Ungar, D., & R. Smith, SELF: The power

of simplicity, in Proceedings OOPSLA'87, pp

227-241, 1987.

[19] Wirfs-Brock, R., B. Wilkerson & L. Wiener,

Designing Object-Oriented Software, Prentice

Hall, 1990.

[20] Yourdon, E. & L. Constantine Structured De-

sign, Prentice Hall, 1979.


