ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Log Message:
Create src/jdk7 package

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11     import java.util.Iterator;
12     import java.util.NoSuchElementException;
13     import java.util.Queue;
14     import java.util.concurrent.TimeUnit;
15     import java.util.concurrent.locks.LockSupport;
16    
17     /**
18     * An unbounded {@link TransferQueue} based on linked nodes.
19     * This queue orders elements FIFO (first-in-first-out) with respect
20     * to any given producer. The <em>head</em> of the queue is that
21     * element that has been on the queue the longest time for some
22     * producer. The <em>tail</em> of the queue is that element that has
23     * been on the queue the shortest time for some producer.
24     *
25     * <p>Beware that, unlike in most collections, the {@code size} method
26     * is <em>NOT</em> a constant-time operation. Because of the
27     * asynchronous nature of these queues, determining the current number
28     * of elements requires a traversal of the elements, and so may report
29     * inaccurate results if this collection is modified during traversal.
30     * Additionally, the bulk operations {@code addAll},
31     * {@code removeAll}, {@code retainAll}, {@code containsAll},
32     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
33     * to be performed atomically. For example, an iterator operating
34     * concurrently with an {@code addAll} operation might view only some
35     * of the added elements.
36     *
37     * <p>This class and its iterator implement all of the
38     * <em>optional</em> methods of the {@link Collection} and {@link
39     * Iterator} interfaces.
40     *
41     * <p>Memory consistency effects: As with other concurrent
42     * collections, actions in a thread prior to placing an object into a
43     * {@code LinkedTransferQueue}
44     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
45     * actions subsequent to the access or removal of that element from
46     * the {@code LinkedTransferQueue} in another thread.
47     *
48     * <p>This class is a member of the
49     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
50     * Java Collections Framework</a>.
51     *
52     * @since 1.7
53     * @author Doug Lea
54     * @param <E> the type of elements held in this collection
55     */
56     public class LinkedTransferQueue<E> extends AbstractQueue<E>
57     implements TransferQueue<E>, java.io.Serializable {
58     private static final long serialVersionUID = -3223113410248163686L;
59    
60     /*
61     * *** Overview of Dual Queues with Slack ***
62     *
63     * Dual Queues, introduced by Scherer and Scott
64     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
65     * (linked) queues in which nodes may represent either data or
66     * requests. When a thread tries to enqueue a data node, but
67     * encounters a request node, it instead "matches" and removes it;
68     * and vice versa for enqueuing requests. Blocking Dual Queues
69     * arrange that threads enqueuing unmatched requests block until
70     * other threads provide the match. Dual Synchronous Queues (see
71     * Scherer, Lea, & Scott
72     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
73     * additionally arrange that threads enqueuing unmatched data also
74     * block. Dual Transfer Queues support all of these modes, as
75     * dictated by callers.
76     *
77     * A FIFO dual queue may be implemented using a variation of the
78     * Michael & Scott (M&S) lock-free queue algorithm
79     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
80     * It maintains two pointer fields, "head", pointing to a
81     * (matched) node that in turn points to the first actual
82     * (unmatched) queue node (or null if empty); and "tail" that
83     * points to the last node on the queue (or again null if
84     * empty). For example, here is a possible queue with four data
85     * elements:
86     *
87     * head tail
88     * | |
89     * v v
90     * M -> U -> U -> U -> U
91     *
92     * The M&S queue algorithm is known to be prone to scalability and
93     * overhead limitations when maintaining (via CAS) these head and
94     * tail pointers. This has led to the development of
95     * contention-reducing variants such as elimination arrays (see
96     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
97     * optimistic back pointers (see Ladan-Mozes & Shavit
98     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
99     * However, the nature of dual queues enables a simpler tactic for
100     * improving M&S-style implementations when dual-ness is needed.
101     *
102     * In a dual queue, each node must atomically maintain its match
103     * status. While there are other possible variants, we implement
104     * this here as: for a data-mode node, matching entails CASing an
105     * "item" field from a non-null data value to null upon match, and
106     * vice-versa for request nodes, CASing from null to a data
107     * value. (Note that the linearization properties of this style of
108     * queue are easy to verify -- elements are made available by
109     * linking, and unavailable by matching.) Compared to plain M&S
110     * queues, this property of dual queues requires one additional
111     * successful atomic operation per enq/deq pair. But it also
112     * enables lower cost variants of queue maintenance mechanics. (A
113     * variation of this idea applies even for non-dual queues that
114     * support deletion of interior elements, such as
115     * j.u.c.ConcurrentLinkedQueue.)
116     *
117     * Once a node is matched, its match status can never again
118     * change. We may thus arrange that the linked list of them
119     * contain a prefix of zero or more matched nodes, followed by a
120     * suffix of zero or more unmatched nodes. (Note that we allow
121     * both the prefix and suffix to be zero length, which in turn
122     * means that we do not use a dummy header.) If we were not
123     * concerned with either time or space efficiency, we could
124     * correctly perform enqueue and dequeue operations by traversing
125     * from a pointer to the initial node; CASing the item of the
126     * first unmatched node on match and CASing the next field of the
127     * trailing node on appends. (Plus some special-casing when
128     * initially empty). While this would be a terrible idea in
129     * itself, it does have the benefit of not requiring ANY atomic
130     * updates on head/tail fields.
131     *
132     * We introduce here an approach that lies between the extremes of
133     * never versus always updating queue (head and tail) pointers.
134     * This offers a tradeoff between sometimes requiring extra
135     * traversal steps to locate the first and/or last unmatched
136     * nodes, versus the reduced overhead and contention of fewer
137     * updates to queue pointers. For example, a possible snapshot of
138     * a queue is:
139     *
140     * head tail
141     * | |
142     * v v
143     * M -> M -> U -> U -> U -> U
144     *
145     * The best value for this "slack" (the targeted maximum distance
146     * between the value of "head" and the first unmatched node, and
147     * similarly for "tail") is an empirical matter. We have found
148     * that using very small constants in the range of 1-3 work best
149     * over a range of platforms. Larger values introduce increasing
150     * costs of cache misses and risks of long traversal chains, while
151     * smaller values increase CAS contention and overhead.
152     *
153     * Dual queues with slack differ from plain M&S dual queues by
154     * virtue of only sometimes updating head or tail pointers when
155     * matching, appending, or even traversing nodes; in order to
156     * maintain a targeted slack. The idea of "sometimes" may be
157     * operationalized in several ways. The simplest is to use a
158     * per-operation counter incremented on each traversal step, and
159     * to try (via CAS) to update the associated queue pointer
160     * whenever the count exceeds a threshold. Another, that requires
161     * more overhead, is to use random number generators to update
162     * with a given probability per traversal step.
163     *
164     * In any strategy along these lines, because CASes updating
165     * fields may fail, the actual slack may exceed targeted
166     * slack. However, they may be retried at any time to maintain
167     * targets. Even when using very small slack values, this
168     * approach works well for dual queues because it allows all
169     * operations up to the point of matching or appending an item
170     * (hence potentially allowing progress by another thread) to be
171     * read-only, thus not introducing any further contention. As
172     * described below, we implement this by performing slack
173     * maintenance retries only after these points.
174     *
175     * As an accompaniment to such techniques, traversal overhead can
176     * be further reduced without increasing contention of head
177     * pointer updates: Threads may sometimes shortcut the "next" link
178     * path from the current "head" node to be closer to the currently
179     * known first unmatched node, and similarly for tail. Again, this
180     * may be triggered with using thresholds or randomization.
181     *
182     * These ideas must be further extended to avoid unbounded amounts
183     * of costly-to-reclaim garbage caused by the sequential "next"
184     * links of nodes starting at old forgotten head nodes: As first
185     * described in detail by Boehm
186     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
187     * delays noticing that any arbitrarily old node has become
188     * garbage, all newer dead nodes will also be unreclaimed.
189     * (Similar issues arise in non-GC environments.) To cope with
190     * this in our implementation, upon CASing to advance the head
191     * pointer, we set the "next" link of the previous head to point
192     * only to itself; thus limiting the length of connected dead lists.
193     * (We also take similar care to wipe out possibly garbage
194     * retaining values held in other Node fields.) However, doing so
195     * adds some further complexity to traversal: If any "next"
196     * pointer links to itself, it indicates that the current thread
197     * has lagged behind a head-update, and so the traversal must
198     * continue from the "head". Traversals trying to find the
199     * current tail starting from "tail" may also encounter
200     * self-links, in which case they also continue at "head".
201     *
202     * It is tempting in slack-based scheme to not even use CAS for
203     * updates (similarly to Ladan-Mozes & Shavit). However, this
204     * cannot be done for head updates under the above link-forgetting
205     * mechanics because an update may leave head at a detached node.
206     * And while direct writes are possible for tail updates, they
207     * increase the risk of long retraversals, and hence long garbage
208     * chains, which can be much more costly than is worthwhile
209     * considering that the cost difference of performing a CAS vs
210     * write is smaller when they are not triggered on each operation
211     * (especially considering that writes and CASes equally require
212     * additional GC bookkeeping ("write barriers") that are sometimes
213     * more costly than the writes themselves because of contention).
214     *
215     * *** Overview of implementation ***
216     *
217     * We use a threshold-based approach to updates, with a slack
218     * threshold of two -- that is, we update head/tail when the
219     * current pointer appears to be two or more steps away from the
220     * first/last node. The slack value is hard-wired: a path greater
221     * than one is naturally implemented by checking equality of
222     * traversal pointers except when the list has only one element,
223     * in which case we keep slack threshold at one. Avoiding tracking
224     * explicit counts across method calls slightly simplifies an
225     * already-messy implementation. Using randomization would
226     * probably work better if there were a low-quality dirt-cheap
227     * per-thread one available, but even ThreadLocalRandom is too
228     * heavy for these purposes.
229     *
230     * With such a small slack threshold value, it is not worthwhile
231     * to augment this with path short-circuiting (i.e., unsplicing
232     * interior nodes) except in the case of cancellation/removal (see
233     * below).
234     *
235     * We allow both the head and tail fields to be null before any
236     * nodes are enqueued; initializing upon first append. This
237     * simplifies some other logic, as well as providing more
238     * efficient explicit control paths instead of letting JVMs insert
239     * implicit NullPointerExceptions when they are null. While not
240     * currently fully implemented, we also leave open the possibility
241     * of re-nulling these fields when empty (which is complicated to
242     * arrange, for little benefit.)
243     *
244     * All enqueue/dequeue operations are handled by the single method
245     * "xfer" with parameters indicating whether to act as some form
246     * of offer, put, poll, take, or transfer (each possibly with
247     * timeout). The relative complexity of using one monolithic
248     * method outweighs the code bulk and maintenance problems of
249     * using separate methods for each case.
250     *
251     * Operation consists of up to three phases. The first is
252     * implemented within method xfer, the second in tryAppend, and
253     * the third in method awaitMatch.
254     *
255     * 1. Try to match an existing node
256     *
257     * Starting at head, skip already-matched nodes until finding
258     * an unmatched node of opposite mode, if one exists, in which
259     * case matching it and returning, also if necessary updating
260     * head to one past the matched node (or the node itself if the
261     * list has no other unmatched nodes). If the CAS misses, then
262     * a loop retries advancing head by two steps until either
263     * success or the slack is at most two. By requiring that each
264     * attempt advances head by two (if applicable), we ensure that
265     * the slack does not grow without bound. Traversals also check
266     * if the initial head is now off-list, in which case they
267     * start at the new head.
268     *
269     * If no candidates are found and the call was untimed
270     * poll/offer, (argument "how" is NOW) return.
271     *
272     * 2. Try to append a new node (method tryAppend)
273     *
274     * Starting at current tail pointer, find the actual last node
275     * and try to append a new node (or if head was null, establish
276     * the first node). Nodes can be appended only if their
277     * predecessors are either already matched or are of the same
278     * mode. If we detect otherwise, then a new node with opposite
279     * mode must have been appended during traversal, so we must
280     * restart at phase 1. The traversal and update steps are
281     * otherwise similar to phase 1: Retrying upon CAS misses and
282     * checking for staleness. In particular, if a self-link is
283     * encountered, then we can safely jump to a node on the list
284     * by continuing the traversal at current head.
285     *
286     * On successful append, if the call was ASYNC, return.
287     *
288     * 3. Await match or cancellation (method awaitMatch)
289     *
290     * Wait for another thread to match node; instead cancelling if
291     * the current thread was interrupted or the wait timed out. On
292     * multiprocessors, we use front-of-queue spinning: If a node
293     * appears to be the first unmatched node in the queue, it
294     * spins a bit before blocking. In either case, before blocking
295     * it tries to unsplice any nodes between the current "head"
296     * and the first unmatched node.
297     *
298     * Front-of-queue spinning vastly improves performance of
299     * heavily contended queues. And so long as it is relatively
300     * brief and "quiet", spinning does not much impact performance
301     * of less-contended queues. During spins threads check their
302     * interrupt status and generate a thread-local random number
303     * to decide to occasionally perform a Thread.yield. While
304     * yield has underdefined specs, we assume that it might help,
305     * and will not hurt, in limiting impact of spinning on busy
306     * systems. We also use smaller (1/2) spins for nodes that are
307     * not known to be front but whose predecessors have not
308     * blocked -- these "chained" spins avoid artifacts of
309     * front-of-queue rules which otherwise lead to alternating
310     * nodes spinning vs blocking. Further, front threads that
311     * represent phase changes (from data to request node or vice
312     * versa) compared to their predecessors receive additional
313     * chained spins, reflecting longer paths typically required to
314     * unblock threads during phase changes.
315     *
316     *
317     * ** Unlinking removed interior nodes **
318     *
319     * In addition to minimizing garbage retention via self-linking
320     * described above, we also unlink removed interior nodes. These
321     * may arise due to timed out or interrupted waits, or calls to
322     * remove(x) or Iterator.remove. Normally, given a node that was
323     * at one time known to be the predecessor of some node s that is
324     * to be removed, we can unsplice s by CASing the next field of
325     * its predecessor if it still points to s (otherwise s must
326     * already have been removed or is now offlist). But there are two
327     * situations in which we cannot guarantee to make node s
328     * unreachable in this way: (1) If s is the trailing node of list
329     * (i.e., with null next), then it is pinned as the target node
330     * for appends, so can only be removed later after other nodes are
331     * appended. (2) We cannot necessarily unlink s given a
332     * predecessor node that is matched (including the case of being
333     * cancelled): the predecessor may already be unspliced, in which
334     * case some previous reachable node may still point to s.
335     * (For further explanation see Herlihy & Shavit "The Art of
336     * Multiprocessor Programming" chapter 9). Although, in both
337     * cases, we can rule out the need for further action if either s
338     * or its predecessor are (or can be made to be) at, or fall off
339     * from, the head of list.
340     *
341     * Without taking these into account, it would be possible for an
342     * unbounded number of supposedly removed nodes to remain
343     * reachable. Situations leading to such buildup are uncommon but
344     * can occur in practice; for example when a series of short timed
345     * calls to poll repeatedly time out but never otherwise fall off
346     * the list because of an untimed call to take at the front of the
347     * queue.
348     *
349     * When these cases arise, rather than always retraversing the
350     * entire list to find an actual predecessor to unlink (which
351     * won't help for case (1) anyway), we record a conservative
352     * estimate of possible unsplice failures (in "sweepVotes").
353     * We trigger a full sweep when the estimate exceeds a threshold
354     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
355     * removal failures to tolerate before sweeping through, unlinking
356     * cancelled nodes that were not unlinked upon initial removal.
357     * We perform sweeps by the thread hitting threshold (rather than
358     * background threads or by spreading work to other threads)
359     * because in the main contexts in which removal occurs, the
360     * caller is already timed-out, cancelled, or performing a
361     * potentially O(n) operation (e.g. remove(x)), none of which are
362     * time-critical enough to warrant the overhead that alternatives
363     * would impose on other threads.
364     *
365     * Because the sweepVotes estimate is conservative, and because
366     * nodes become unlinked "naturally" as they fall off the head of
367     * the queue, and because we allow votes to accumulate even while
368     * sweeps are in progress, there are typically significantly fewer
369     * such nodes than estimated. Choice of a threshold value
370     * balances the likelihood of wasted effort and contention, versus
371     * providing a worst-case bound on retention of interior nodes in
372     * quiescent queues. The value defined below was chosen
373     * empirically to balance these under various timeout scenarios.
374     *
375     * Note that we cannot self-link unlinked interior nodes during
376     * sweeps. However, the associated garbage chains terminate when
377     * some successor ultimately falls off the head of the list and is
378     * self-linked.
379     */
380    
381     /** True if on multiprocessor */
382     private static final boolean MP =
383     Runtime.getRuntime().availableProcessors() > 1;
384    
385     /**
386     * The number of times to spin (with randomly interspersed calls
387     * to Thread.yield) on multiprocessor before blocking when a node
388     * is apparently the first waiter in the queue. See above for
389     * explanation. Must be a power of two. The value is empirically
390     * derived -- it works pretty well across a variety of processors,
391     * numbers of CPUs, and OSes.
392     */
393     private static final int FRONT_SPINS = 1 << 7;
394    
395     /**
396     * The number of times to spin before blocking when a node is
397     * preceded by another node that is apparently spinning. Also
398     * serves as an increment to FRONT_SPINS on phase changes, and as
399     * base average frequency for yielding during spins. Must be a
400     * power of two.
401     */
402     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403    
404     /**
405     * The maximum number of estimated removal failures (sweepVotes)
406     * to tolerate before sweeping through the queue unlinking
407     * cancelled nodes that were not unlinked upon initial
408     * removal. See above for explanation. The value must be at least
409     * two to avoid useless sweeps when removing trailing nodes.
410     */
411     static final int SWEEP_THRESHOLD = 32;
412    
413     /**
414     * Queue nodes. Uses Object, not E, for items to allow forgetting
415     * them after use. Relies heavily on Unsafe mechanics to minimize
416     * unnecessary ordering constraints: Writes that are intrinsically
417     * ordered wrt other accesses or CASes use simple relaxed forms.
418     */
419     static final class Node {
420     final boolean isData; // false if this is a request node
421     volatile Object item; // initially non-null if isData; CASed to match
422     volatile Node next;
423     volatile Thread waiter; // null until waiting
424    
425     // CAS methods for fields
426     final boolean casNext(Node cmp, Node val) {
427     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
428     }
429    
430     final boolean casItem(Object cmp, Object val) {
431     // assert cmp == null || cmp.getClass() != Node.class;
432     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
433     }
434    
435     /**
436     * Constructs a new node. Uses relaxed write because item can
437     * only be seen after publication via casNext.
438     */
439     Node(Object item, boolean isData) {
440     UNSAFE.putObject(this, itemOffset, item); // relaxed write
441     this.isData = isData;
442     }
443    
444     /**
445     * Links node to itself to avoid garbage retention. Called
446     * only after CASing head field, so uses relaxed write.
447     */
448     final void forgetNext() {
449     UNSAFE.putObject(this, nextOffset, this);
450     }
451    
452     /**
453     * Sets item to self and waiter to null, to avoid garbage
454     * retention after matching or cancelling. Uses relaxed writes
455     * because order is already constrained in the only calling
456     * contexts: item is forgotten only after volatile/atomic
457     * mechanics that extract items. Similarly, clearing waiter
458     * follows either CAS or return from park (if ever parked;
459     * else we don't care).
460     */
461     final void forgetContents() {
462     UNSAFE.putObject(this, itemOffset, this);
463     UNSAFE.putObject(this, waiterOffset, null);
464     }
465    
466     /**
467     * Returns true if this node has been matched, including the
468     * case of artificial matches due to cancellation.
469     */
470     final boolean isMatched() {
471     Object x = item;
472     return (x == this) || ((x == null) == isData);
473     }
474    
475     /**
476     * Returns true if this is an unmatched request node.
477     */
478     final boolean isUnmatchedRequest() {
479     return !isData && item == null;
480     }
481    
482     /**
483     * Returns true if a node with the given mode cannot be
484     * appended to this node because this node is unmatched and
485     * has opposite data mode.
486     */
487     final boolean cannotPrecede(boolean haveData) {
488     boolean d = isData;
489     Object x;
490     return d != haveData && (x = item) != this && (x != null) == d;
491     }
492    
493     /**
494     * Tries to artificially match a data node -- used by remove.
495     */
496     final boolean tryMatchData() {
497     // assert isData;
498     Object x = item;
499     if (x != null && x != this && casItem(x, null)) {
500     LockSupport.unpark(waiter);
501     return true;
502     }
503     return false;
504     }
505    
506     private static final long serialVersionUID = -3375979862319811754L;
507    
508     // Unsafe mechanics
509     private static final sun.misc.Unsafe UNSAFE;
510     private static final long itemOffset;
511     private static final long nextOffset;
512     private static final long waiterOffset;
513     static {
514     try {
515     UNSAFE = sun.misc.Unsafe.getUnsafe();
516     Class<?> k = Node.class;
517     itemOffset = UNSAFE.objectFieldOffset
518     (k.getDeclaredField("item"));
519     nextOffset = UNSAFE.objectFieldOffset
520     (k.getDeclaredField("next"));
521     waiterOffset = UNSAFE.objectFieldOffset
522     (k.getDeclaredField("waiter"));
523     } catch (Exception e) {
524     throw new Error(e);
525     }
526     }
527     }
528    
529     /** head of the queue; null until first enqueue */
530     transient volatile Node head;
531    
532     /** tail of the queue; null until first append */
533     private transient volatile Node tail;
534    
535     /** The number of apparent failures to unsplice removed nodes */
536     private transient volatile int sweepVotes;
537    
538     // CAS methods for fields
539     private boolean casTail(Node cmp, Node val) {
540     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
541     }
542    
543     private boolean casHead(Node cmp, Node val) {
544     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
545     }
546    
547     private boolean casSweepVotes(int cmp, int val) {
548     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
549     }
550    
551     /*
552     * Possible values for "how" argument in xfer method.
553     */
554     private static final int NOW = 0; // for untimed poll, tryTransfer
555     private static final int ASYNC = 1; // for offer, put, add
556     private static final int SYNC = 2; // for transfer, take
557     private static final int TIMED = 3; // for timed poll, tryTransfer
558    
559     @SuppressWarnings("unchecked")
560     static <E> E cast(Object item) {
561     // assert item == null || item.getClass() != Node.class;
562     return (E) item;
563     }
564    
565     /**
566     * Implements all queuing methods. See above for explanation.
567     *
568     * @param e the item or null for take
569     * @param haveData true if this is a put, else a take
570     * @param how NOW, ASYNC, SYNC, or TIMED
571     * @param nanos timeout in nanosecs, used only if mode is TIMED
572     * @return an item if matched, else e
573     * @throws NullPointerException if haveData mode but e is null
574     */
575     private E xfer(E e, boolean haveData, int how, long nanos) {
576     if (haveData && (e == null))
577     throw new NullPointerException();
578     Node s = null; // the node to append, if needed
579    
580     retry:
581     for (;;) { // restart on append race
582    
583     for (Node h = head, p = h; p != null;) { // find & match first node
584     boolean isData = p.isData;
585     Object item = p.item;
586     if (item != p && (item != null) == isData) { // unmatched
587     if (isData == haveData) // can't match
588     break;
589     if (p.casItem(item, e)) { // match
590     for (Node q = p; q != h;) {
591     Node n = q.next; // update by 2 unless singleton
592     if (head == h && casHead(h, n == null ? q : n)) {
593     h.forgetNext();
594     break;
595     } // advance and retry
596     if ((h = head) == null ||
597     (q = h.next) == null || !q.isMatched())
598     break; // unless slack < 2
599     }
600     LockSupport.unpark(p.waiter);
601     return LinkedTransferQueue.<E>cast(item);
602     }
603     }
604     Node n = p.next;
605     p = (p != n) ? n : (h = head); // Use head if p offlist
606     }
607    
608     if (how != NOW) { // No matches available
609     if (s == null)
610     s = new Node(e, haveData);
611     Node pred = tryAppend(s, haveData);
612     if (pred == null)
613     continue retry; // lost race vs opposite mode
614     if (how != ASYNC)
615     return awaitMatch(s, pred, e, (how == TIMED), nanos);
616     }
617     return e; // not waiting
618     }
619     }
620    
621     /**
622     * Tries to append node s as tail.
623     *
624     * @param s the node to append
625     * @param haveData true if appending in data mode
626     * @return null on failure due to losing race with append in
627     * different mode, else s's predecessor, or s itself if no
628     * predecessor
629     */
630     private Node tryAppend(Node s, boolean haveData) {
631     for (Node t = tail, p = t;;) { // move p to last node and append
632     Node n, u; // temps for reads of next & tail
633     if (p == null && (p = head) == null) {
634     if (casHead(null, s))
635     return s; // initialize
636     }
637     else if (p.cannotPrecede(haveData))
638     return null; // lost race vs opposite mode
639     else if ((n = p.next) != null) // not last; keep traversing
640     p = p != t && t != (u = tail) ? (t = u) : // stale tail
641     (p != n) ? n : null; // restart if off list
642     else if (!p.casNext(null, s))
643     p = p.next; // re-read on CAS failure
644     else {
645     if (p != t) { // update if slack now >= 2
646     while ((tail != t || !casTail(t, s)) &&
647     (t = tail) != null &&
648     (s = t.next) != null && // advance and retry
649     (s = s.next) != null && s != t);
650     }
651     return p;
652     }
653     }
654     }
655    
656     /**
657     * Spins/yields/blocks until node s is matched or caller gives up.
658     *
659     * @param s the waiting node
660     * @param pred the predecessor of s, or s itself if it has no
661     * predecessor, or null if unknown (the null case does not occur
662     * in any current calls but may in possible future extensions)
663     * @param e the comparison value for checking match
664     * @param timed if true, wait only until timeout elapses
665     * @param nanos timeout in nanosecs, used only if timed is true
666     * @return matched item, or e if unmatched on interrupt or timeout
667     */
668     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669     final long deadline = timed ? System.nanoTime() + nanos : 0L;
670     Thread w = Thread.currentThread();
671     int spins = -1; // initialized after first item and cancel checks
672     ThreadLocalRandom randomYields = null; // bound if needed
673    
674     for (;;) {
675     Object item = s.item;
676     if (item != e) { // matched
677     // assert item != s;
678     s.forgetContents(); // avoid garbage
679     return LinkedTransferQueue.<E>cast(item);
680     }
681     if ((w.isInterrupted() || (timed && nanos <= 0)) &&
682     s.casItem(e, s)) { // cancel
683     unsplice(pred, s);
684     return e;
685     }
686    
687     if (spins < 0) { // establish spins at/near front
688     if ((spins = spinsFor(pred, s.isData)) > 0)
689     randomYields = ThreadLocalRandom.current();
690     }
691     else if (spins > 0) { // spin
692     --spins;
693     if (randomYields.nextInt(CHAINED_SPINS) == 0)
694     Thread.yield(); // occasionally yield
695     }
696     else if (s.waiter == null) {
697     s.waiter = w; // request unpark then recheck
698     }
699     else if (timed) {
700     nanos = deadline - System.nanoTime();
701     if (nanos > 0L)
702     LockSupport.parkNanos(this, nanos);
703     }
704     else {
705     LockSupport.park(this);
706     }
707     }
708     }
709    
710     /**
711     * Returns spin/yield value for a node with given predecessor and
712     * data mode. See above for explanation.
713     */
714     private static int spinsFor(Node pred, boolean haveData) {
715     if (MP && pred != null) {
716     if (pred.isData != haveData) // phase change
717     return FRONT_SPINS + CHAINED_SPINS;
718     if (pred.isMatched()) // probably at front
719     return FRONT_SPINS;
720     if (pred.waiter == null) // pred apparently spinning
721     return CHAINED_SPINS;
722     }
723     return 0;
724     }
725    
726     /* -------------- Traversal methods -------------- */
727    
728     /**
729     * Returns the successor of p, or the head node if p.next has been
730     * linked to self, which will only be true if traversing with a
731     * stale pointer that is now off the list.
732     */
733     final Node succ(Node p) {
734     Node next = p.next;
735     return (p == next) ? head : next;
736     }
737    
738     /**
739     * Returns the first unmatched node of the given mode, or null if
740     * none. Used by methods isEmpty, hasWaitingConsumer.
741     */
742     private Node firstOfMode(boolean isData) {
743     for (Node p = head; p != null; p = succ(p)) {
744     if (!p.isMatched())
745     return (p.isData == isData) ? p : null;
746     }
747     return null;
748     }
749    
750     /**
751     * Returns the item in the first unmatched node with isData; or
752     * null if none. Used by peek.
753     */
754     private E firstDataItem() {
755     for (Node p = head; p != null; p = succ(p)) {
756     Object item = p.item;
757     if (p.isData) {
758     if (item != null && item != p)
759     return LinkedTransferQueue.<E>cast(item);
760     }
761     else if (item == null)
762     return null;
763     }
764     return null;
765     }
766    
767     /**
768     * Traverses and counts unmatched nodes of the given mode.
769     * Used by methods size and getWaitingConsumerCount.
770     */
771     private int countOfMode(boolean data) {
772     int count = 0;
773     for (Node p = head; p != null; ) {
774     if (!p.isMatched()) {
775     if (p.isData != data)
776     return 0;
777     if (++count == Integer.MAX_VALUE) // saturated
778     break;
779     }
780     Node n = p.next;
781     if (n != p)
782     p = n;
783     else {
784     count = 0;
785     p = head;
786     }
787     }
788     return count;
789     }
790    
791     final class Itr implements Iterator<E> {
792     private Node nextNode; // next node to return item for
793     private E nextItem; // the corresponding item
794     private Node lastRet; // last returned node, to support remove
795     private Node lastPred; // predecessor to unlink lastRet
796    
797     /**
798     * Moves to next node after prev, or first node if prev null.
799     */
800     private void advance(Node prev) {
801     /*
802     * To track and avoid buildup of deleted nodes in the face
803     * of calls to both Queue.remove and Itr.remove, we must
804     * include variants of unsplice and sweep upon each
805     * advance: Upon Itr.remove, we may need to catch up links
806     * from lastPred, and upon other removes, we might need to
807     * skip ahead from stale nodes and unsplice deleted ones
808     * found while advancing.
809     */
810    
811     Node r, b; // reset lastPred upon possible deletion of lastRet
812     if ((r = lastRet) != null && !r.isMatched())
813     lastPred = r; // next lastPred is old lastRet
814     else if ((b = lastPred) == null || b.isMatched())
815     lastPred = null; // at start of list
816     else {
817     Node s, n; // help with removal of lastPred.next
818     while ((s = b.next) != null &&
819     s != b && s.isMatched() &&
820     (n = s.next) != null && n != s)
821     b.casNext(s, n);
822     }
823    
824     this.lastRet = prev;
825    
826     for (Node p = prev, s, n;;) {
827     s = (p == null) ? head : p.next;
828     if (s == null)
829     break;
830     else if (s == p) {
831     p = null;
832     continue;
833     }
834     Object item = s.item;
835     if (s.isData) {
836     if (item != null && item != s) {
837     nextItem = LinkedTransferQueue.<E>cast(item);
838     nextNode = s;
839     return;
840     }
841     }
842     else if (item == null)
843     break;
844     // assert s.isMatched();
845     if (p == null)
846     p = s;
847     else if ((n = s.next) == null)
848     break;
849     else if (s == n)
850     p = null;
851     else
852     p.casNext(s, n);
853     }
854     nextNode = null;
855     nextItem = null;
856     }
857    
858     Itr() {
859     advance(null);
860     }
861    
862     public final boolean hasNext() {
863     return nextNode != null;
864     }
865    
866     public final E next() {
867     Node p = nextNode;
868     if (p == null) throw new NoSuchElementException();
869     E e = nextItem;
870     advance(p);
871     return e;
872     }
873    
874     public final void remove() {
875     final Node lastRet = this.lastRet;
876     if (lastRet == null)
877     throw new IllegalStateException();
878     this.lastRet = null;
879     if (lastRet.tryMatchData())
880     unsplice(lastPred, lastRet);
881     }
882     }
883    
884     /* -------------- Removal methods -------------- */
885    
886     /**
887     * Unsplices (now or later) the given deleted/cancelled node with
888     * the given predecessor.
889     *
890     * @param pred a node that was at one time known to be the
891     * predecessor of s, or null or s itself if s is/was at head
892     * @param s the node to be unspliced
893     */
894     final void unsplice(Node pred, Node s) {
895     s.forgetContents(); // forget unneeded fields
896     /*
897     * See above for rationale. Briefly: if pred still points to
898     * s, try to unlink s. If s cannot be unlinked, because it is
899     * trailing node or pred might be unlinked, and neither pred
900     * nor s are head or offlist, add to sweepVotes, and if enough
901     * votes have accumulated, sweep.
902     */
903     if (pred != null && pred != s && pred.next == s) {
904     Node n = s.next;
905     if (n == null ||
906     (n != s && pred.casNext(s, n) && pred.isMatched())) {
907     for (;;) { // check if at, or could be, head
908     Node h = head;
909     if (h == pred || h == s || h == null)
910     return; // at head or list empty
911     if (!h.isMatched())
912     break;
913     Node hn = h.next;
914     if (hn == null)
915     return; // now empty
916     if (hn != h && casHead(h, hn))
917     h.forgetNext(); // advance head
918     }
919     if (pred.next != pred && s.next != s) { // recheck if offlist
920     for (;;) { // sweep now if enough votes
921     int v = sweepVotes;
922     if (v < SWEEP_THRESHOLD) {
923     if (casSweepVotes(v, v + 1))
924     break;
925     }
926     else if (casSweepVotes(v, 0)) {
927     sweep();
928     break;
929     }
930     }
931     }
932     }
933     }
934     }
935    
936     /**
937     * Unlinks matched (typically cancelled) nodes encountered in a
938     * traversal from head.
939     */
940     private void sweep() {
941     for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
942     if (!s.isMatched())
943     // Unmatched nodes are never self-linked
944     p = s;
945     else if ((n = s.next) == null) // trailing node is pinned
946     break;
947     else if (s == n) // stale
948     // No need to also check for p == s, since that implies s == n
949     p = head;
950     else
951     p.casNext(s, n);
952     }
953     }
954    
955     /**
956     * Main implementation of remove(Object)
957     */
958     private boolean findAndRemove(Object e) {
959     if (e != null) {
960     for (Node pred = null, p = head; p != null; ) {
961     Object item = p.item;
962     if (p.isData) {
963     if (item != null && item != p && e.equals(item) &&
964     p.tryMatchData()) {
965     unsplice(pred, p);
966     return true;
967     }
968     }
969     else if (item == null)
970     break;
971     pred = p;
972     if ((p = p.next) == pred) { // stale
973     pred = null;
974     p = head;
975     }
976     }
977     }
978     return false;
979     }
980    
981     /**
982     * Creates an initially empty {@code LinkedTransferQueue}.
983     */
984     public LinkedTransferQueue() {
985     }
986    
987     /**
988     * Creates a {@code LinkedTransferQueue}
989     * initially containing the elements of the given collection,
990     * added in traversal order of the collection's iterator.
991     *
992     * @param c the collection of elements to initially contain
993     * @throws NullPointerException if the specified collection or any
994     * of its elements are null
995     */
996     public LinkedTransferQueue(Collection<? extends E> c) {
997     this();
998     addAll(c);
999     }
1000    
1001     /**
1002     * Inserts the specified element at the tail of this queue.
1003     * As the queue is unbounded, this method will never block.
1004     *
1005     * @throws NullPointerException if the specified element is null
1006     */
1007     public void put(E e) {
1008     xfer(e, true, ASYNC, 0);
1009     }
1010    
1011     /**
1012     * Inserts the specified element at the tail of this queue.
1013     * As the queue is unbounded, this method will never block or
1014     * return {@code false}.
1015     *
1016     * @return {@code true} (as specified by
1017     * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1018     * BlockingQueue.offer})
1019     * @throws NullPointerException if the specified element is null
1020     */
1021     public boolean offer(E e, long timeout, TimeUnit unit) {
1022     xfer(e, true, ASYNC, 0);
1023     return true;
1024     }
1025    
1026     /**
1027     * Inserts the specified element at the tail of this queue.
1028     * As the queue is unbounded, this method will never return {@code false}.
1029     *
1030     * @return {@code true} (as specified by {@link Queue#offer})
1031     * @throws NullPointerException if the specified element is null
1032     */
1033     public boolean offer(E e) {
1034     xfer(e, true, ASYNC, 0);
1035     return true;
1036     }
1037    
1038     /**
1039     * Inserts the specified element at the tail of this queue.
1040     * As the queue is unbounded, this method will never throw
1041     * {@link IllegalStateException} or return {@code false}.
1042     *
1043     * @return {@code true} (as specified by {@link Collection#add})
1044     * @throws NullPointerException if the specified element is null
1045     */
1046     public boolean add(E e) {
1047     xfer(e, true, ASYNC, 0);
1048     return true;
1049     }
1050    
1051     /**
1052     * Transfers the element to a waiting consumer immediately, if possible.
1053     *
1054     * <p>More precisely, transfers the specified element immediately
1055     * if there exists a consumer already waiting to receive it (in
1056     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1057     * otherwise returning {@code false} without enqueuing the element.
1058     *
1059     * @throws NullPointerException if the specified element is null
1060     */
1061     public boolean tryTransfer(E e) {
1062     return xfer(e, true, NOW, 0) == null;
1063     }
1064    
1065     /**
1066     * Transfers the element to a consumer, waiting if necessary to do so.
1067     *
1068     * <p>More precisely, transfers the specified element immediately
1069     * if there exists a consumer already waiting to receive it (in
1070     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1071     * else inserts the specified element at the tail of this queue
1072     * and waits until the element is received by a consumer.
1073     *
1074     * @throws NullPointerException if the specified element is null
1075     */
1076     public void transfer(E e) throws InterruptedException {
1077     if (xfer(e, true, SYNC, 0) != null) {
1078     Thread.interrupted(); // failure possible only due to interrupt
1079     throw new InterruptedException();
1080     }
1081     }
1082    
1083     /**
1084     * Transfers the element to a consumer if it is possible to do so
1085     * before the timeout elapses.
1086     *
1087     * <p>More precisely, transfers the specified element immediately
1088     * if there exists a consumer already waiting to receive it (in
1089     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1090     * else inserts the specified element at the tail of this queue
1091     * and waits until the element is received by a consumer,
1092     * returning {@code false} if the specified wait time elapses
1093     * before the element can be transferred.
1094     *
1095     * @throws NullPointerException if the specified element is null
1096     */
1097     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1098     throws InterruptedException {
1099     if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1100     return true;
1101     if (!Thread.interrupted())
1102     return false;
1103     throw new InterruptedException();
1104     }
1105    
1106     public E take() throws InterruptedException {
1107     E e = xfer(null, false, SYNC, 0);
1108     if (e != null)
1109     return e;
1110     Thread.interrupted();
1111     throw new InterruptedException();
1112     }
1113    
1114     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1115     E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1116     if (e != null || !Thread.interrupted())
1117     return e;
1118     throw new InterruptedException();
1119     }
1120    
1121     public E poll() {
1122     return xfer(null, false, NOW, 0);
1123     }
1124    
1125     /**
1126     * @throws NullPointerException {@inheritDoc}
1127     * @throws IllegalArgumentException {@inheritDoc}
1128     */
1129     public int drainTo(Collection<? super E> c) {
1130     if (c == null)
1131     throw new NullPointerException();
1132     if (c == this)
1133     throw new IllegalArgumentException();
1134     int n = 0;
1135     for (E e; (e = poll()) != null;) {
1136     c.add(e);
1137     ++n;
1138     }
1139     return n;
1140     }
1141    
1142     /**
1143     * @throws NullPointerException {@inheritDoc}
1144     * @throws IllegalArgumentException {@inheritDoc}
1145     */
1146     public int drainTo(Collection<? super E> c, int maxElements) {
1147     if (c == null)
1148     throw new NullPointerException();
1149     if (c == this)
1150     throw new IllegalArgumentException();
1151     int n = 0;
1152     for (E e; n < maxElements && (e = poll()) != null;) {
1153     c.add(e);
1154     ++n;
1155     }
1156     return n;
1157     }
1158    
1159     /**
1160     * Returns an iterator over the elements in this queue in proper sequence.
1161     * The elements will be returned in order from first (head) to last (tail).
1162     *
1163     * <p>The returned iterator is a "weakly consistent" iterator that
1164     * will never throw {@link java.util.ConcurrentModificationException
1165     * ConcurrentModificationException}, and guarantees to traverse
1166     * elements as they existed upon construction of the iterator, and
1167     * may (but is not guaranteed to) reflect any modifications
1168     * subsequent to construction.
1169     *
1170     * @return an iterator over the elements in this queue in proper sequence
1171     */
1172     public Iterator<E> iterator() {
1173     return new Itr();
1174     }
1175    
1176     public E peek() {
1177     return firstDataItem();
1178     }
1179    
1180     /**
1181     * Returns {@code true} if this queue contains no elements.
1182     *
1183     * @return {@code true} if this queue contains no elements
1184     */
1185     public boolean isEmpty() {
1186     for (Node p = head; p != null; p = succ(p)) {
1187     if (!p.isMatched())
1188     return !p.isData;
1189     }
1190     return true;
1191     }
1192    
1193     public boolean hasWaitingConsumer() {
1194     return firstOfMode(false) != null;
1195     }
1196    
1197     /**
1198     * Returns the number of elements in this queue. If this queue
1199     * contains more than {@code Integer.MAX_VALUE} elements, returns
1200     * {@code Integer.MAX_VALUE}.
1201     *
1202     * <p>Beware that, unlike in most collections, this method is
1203     * <em>NOT</em> a constant-time operation. Because of the
1204     * asynchronous nature of these queues, determining the current
1205     * number of elements requires an O(n) traversal.
1206     *
1207     * @return the number of elements in this queue
1208     */
1209     public int size() {
1210     return countOfMode(true);
1211     }
1212    
1213     public int getWaitingConsumerCount() {
1214     return countOfMode(false);
1215     }
1216    
1217     /**
1218     * Removes a single instance of the specified element from this queue,
1219     * if it is present. More formally, removes an element {@code e} such
1220     * that {@code o.equals(e)}, if this queue contains one or more such
1221     * elements.
1222     * Returns {@code true} if this queue contained the specified element
1223     * (or equivalently, if this queue changed as a result of the call).
1224     *
1225     * @param o element to be removed from this queue, if present
1226     * @return {@code true} if this queue changed as a result of the call
1227     */
1228     public boolean remove(Object o) {
1229     return findAndRemove(o);
1230     }
1231    
1232     /**
1233     * Returns {@code true} if this queue contains the specified element.
1234     * More formally, returns {@code true} if and only if this queue contains
1235     * at least one element {@code e} such that {@code o.equals(e)}.
1236     *
1237     * @param o object to be checked for containment in this queue
1238     * @return {@code true} if this queue contains the specified element
1239     */
1240     public boolean contains(Object o) {
1241     if (o == null) return false;
1242     for (Node p = head; p != null; p = succ(p)) {
1243     Object item = p.item;
1244     if (p.isData) {
1245     if (item != null && item != p && o.equals(item))
1246     return true;
1247     }
1248     else if (item == null)
1249     break;
1250     }
1251     return false;
1252     }
1253    
1254     /**
1255     * Always returns {@code Integer.MAX_VALUE} because a
1256     * {@code LinkedTransferQueue} is not capacity constrained.
1257     *
1258     * @return {@code Integer.MAX_VALUE} (as specified by
1259     * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1260     * BlockingQueue.remainingCapacity})
1261     */
1262     public int remainingCapacity() {
1263     return Integer.MAX_VALUE;
1264     }
1265    
1266     /**
1267     * Saves this queue to a stream (that is, serializes it).
1268     *
1269     * @serialData All of the elements (each an {@code E}) in
1270     * the proper order, followed by a null
1271     */
1272     private void writeObject(java.io.ObjectOutputStream s)
1273     throws java.io.IOException {
1274     s.defaultWriteObject();
1275     for (E e : this)
1276     s.writeObject(e);
1277     // Use trailing null as sentinel
1278     s.writeObject(null);
1279     }
1280    
1281     /**
1282     * Reconstitutes this queue from a stream (that is, deserializes it).
1283     */
1284     private void readObject(java.io.ObjectInputStream s)
1285     throws java.io.IOException, ClassNotFoundException {
1286     s.defaultReadObject();
1287     for (;;) {
1288     @SuppressWarnings("unchecked")
1289     E item = (E) s.readObject();
1290     if (item == null)
1291     break;
1292     else
1293     offer(item);
1294     }
1295     }
1296    
1297     // Unsafe mechanics
1298    
1299     private static final sun.misc.Unsafe UNSAFE;
1300     private static final long headOffset;
1301     private static final long tailOffset;
1302     private static final long sweepVotesOffset;
1303     static {
1304     try {
1305     UNSAFE = sun.misc.Unsafe.getUnsafe();
1306     Class<?> k = LinkedTransferQueue.class;
1307     headOffset = UNSAFE.objectFieldOffset
1308     (k.getDeclaredField("head"));
1309     tailOffset = UNSAFE.objectFieldOffset
1310     (k.getDeclaredField("tail"));
1311     sweepVotesOffset = UNSAFE.objectFieldOffset
1312     (k.getDeclaredField("sweepVotes"));
1313     } catch (Exception e) {
1314     throw new Error(e);
1315     }
1316     }
1317     }