ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/Phaser.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Log Message:
Create src/jdk7 package

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11     import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15     * A reusable synchronization barrier, similar in functionality to
16     * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20     * <p><b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33     * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a phaser and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45     * <ul>
46     *
47     * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the phaser advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68     * state of the phaser. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75     * </ul>
76     *
77     * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78     * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80     * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91     *
92     * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95     * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100     * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110     * <p><b>Monitoring.</b> While synchronization methods may be invoked
111     * only by registered parties, the current state of a phaser may be
112     * monitored by any caller. At any given moment there are {@link
113     * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116     * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121     *
122     * <p><b>Sample usages:</b>
123     *
124     * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125     * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128     *
129     * <pre> {@code
130     * void runTasks(List<Runnable> tasks) {
131     * final Phaser phaser = new Phaser(1); // "1" to register self
132     * // create and start threads
133     * for (final Runnable task : tasks) {
134     * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138     * task.run();
139     * }
140     * }.start();
141     * }
142     *
143     * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145     * }}</pre>
146     *
147     * <p>One way to cause a set of threads to repeatedly perform actions
148     * for a given number of iterations is to override {@code onAdvance}:
149     *
150     * <pre> {@code
151     * void startTasks(List<Runnable> tasks, final int iterations) {
152     * final Phaser phaser = new Phaser() {
153     * protected boolean onAdvance(int phase, int registeredParties) {
154     * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158     * for (final Runnable task : tasks) {
159     * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163     * task.run();
164     * phaser.arriveAndAwaitAdvance();
165     * } while (!phaser.isTerminated());
166     * }
167     * }.start();
168     * }
169     * phaser.arriveAndDeregister(); // deregister self, don't wait
170     * }}</pre>
171     *
172     * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174     * <pre> {@code
175     * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178     * phaser.arriveAndAwaitAdvance();}</pre>
179     *
180     * <p>Related constructions may be used to await particular phase numbers
181     * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184     * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192     * }
193     * phaser.arriveAndDeregister();
194     * }}</pre>
195     *
196     *
197     * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203     *
204     * <pre> {@code
205     * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206     * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209     * build(tasks, i, j, new Phaser(ph));
210     * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213     * tasks[i] = new Task(ph);
214     * // assumes new Task(ph) performs ph.register()
215     * }
216     * }}</pre>
217     *
218     * The best value of {@code TASKS_PER_PHASER} depends mainly on
219     * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221     * high rates), or up to hundreds for extremely large ones.
222     *
223     * <p><b>Implementation notes</b>: This implementation restricts the
224     * maximum number of parties to 65535. Attempts to register additional
225     * parties result in {@code IllegalStateException}. However, you can and
226     * should create tiered phasers to accommodate arbitrarily large sets
227     * of participants.
228     *
229     * @since 1.7
230     * @author Doug Lea
231     */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235     * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237     */
238    
239     /**
240     * Primary state representation, holding four bit-fields:
241     *
242     * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246     *
247     * Except that a phaser with no registered parties is
248     * distinguished by the otherwise illegal state of having zero
249     * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263     * ancestors until it is actually accessed -- see method
264     * reconcileState.
265     */
266     private volatile long state;
267    
268     private static final int MAX_PARTIES = 0xffff;
269     private static final int MAX_PHASE = Integer.MAX_VALUE;
270     private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274     private static final long COUNTS_MASK = 0xffffffffL;
275     private static final long TERMINATION_BIT = 1L << 63;
276    
277     // some special values
278     private static final int ONE_ARRIVAL = 1;
279     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280     private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
281     private static final int EMPTY = 1;
282    
283     // The following unpacking methods are usually manually inlined
284    
285     private static int unarrivedOf(long s) {
286     int counts = (int)s;
287     return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288     }
289    
290     private static int partiesOf(long s) {
291     return (int)s >>> PARTIES_SHIFT;
292     }
293    
294     private static int phaseOf(long s) {
295     return (int)(s >>> PHASE_SHIFT);
296     }
297    
298     private static int arrivedOf(long s) {
299     int counts = (int)s;
300     return (counts == EMPTY) ? 0 :
301     (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302     }
303    
304     /**
305     * The parent of this phaser, or null if none
306     */
307     private final Phaser parent;
308    
309     /**
310     * The root of phaser tree. Equals this if not in a tree.
311     */
312     private final Phaser root;
313    
314     /**
315     * Heads of Treiber stacks for waiting threads. To eliminate
316     * contention when releasing some threads while adding others, we
317     * use two of them, alternating across even and odd phases.
318     * Subphasers share queues with root to speed up releases.
319     */
320     private final AtomicReference<QNode> evenQ;
321     private final AtomicReference<QNode> oddQ;
322    
323     private AtomicReference<QNode> queueFor(int phase) {
324     return ((phase & 1) == 0) ? evenQ : oddQ;
325     }
326    
327     /**
328     * Returns message string for bounds exceptions on arrival.
329     */
330     private String badArrive(long s) {
331     return "Attempted arrival of unregistered party for " +
332     stateToString(s);
333     }
334    
335     /**
336     * Returns message string for bounds exceptions on registration.
337     */
338     private String badRegister(long s) {
339     return "Attempt to register more than " +
340     MAX_PARTIES + " parties for " + stateToString(s);
341     }
342    
343     /**
344     * Main implementation for methods arrive and arriveAndDeregister.
345     * Manually tuned to speed up and minimize race windows for the
346     * common case of just decrementing unarrived field.
347     *
348     * @param adjust value to subtract from state;
349     * ONE_ARRIVAL for arrive,
350     * ONE_DEREGISTER for arriveAndDeregister
351     */
352     private int doArrive(int adjust) {
353     final Phaser root = this.root;
354     for (;;) {
355     long s = (root == this) ? state : reconcileState();
356     int phase = (int)(s >>> PHASE_SHIFT);
357     if (phase < 0)
358     return phase;
359     int counts = (int)s;
360     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361     if (unarrived <= 0)
362     throw new IllegalStateException(badArrive(s));
363     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364     if (unarrived == 1) {
365     long n = s & PARTIES_MASK; // base of next state
366     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367     if (root == this) {
368     if (onAdvance(phase, nextUnarrived))
369     n |= TERMINATION_BIT;
370     else if (nextUnarrived == 0)
371     n |= EMPTY;
372     else
373     n |= nextUnarrived;
374     int nextPhase = (phase + 1) & MAX_PHASE;
375     n |= (long)nextPhase << PHASE_SHIFT;
376     UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377     releaseWaiters(phase);
378     }
379     else if (nextUnarrived == 0) { // propagate deregistration
380     phase = parent.doArrive(ONE_DEREGISTER);
381     UNSAFE.compareAndSwapLong(this, stateOffset,
382     s, s | EMPTY);
383     }
384     else
385     phase = parent.doArrive(ONE_ARRIVAL);
386     }
387     return phase;
388     }
389     }
390     }
391    
392     /**
393     * Implementation of register, bulkRegister
394     *
395     * @param registrations number to add to both parties and
396     * unarrived fields. Must be greater than zero.
397     */
398     private int doRegister(int registrations) {
399     // adjustment to state
400     long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401     final Phaser parent = this.parent;
402     int phase;
403     for (;;) {
404     long s = (parent == null) ? state : reconcileState();
405     int counts = (int)s;
406     int parties = counts >>> PARTIES_SHIFT;
407     int unarrived = counts & UNARRIVED_MASK;
408     if (registrations > MAX_PARTIES - parties)
409     throw new IllegalStateException(badRegister(s));
410     phase = (int)(s >>> PHASE_SHIFT);
411     if (phase < 0)
412     break;
413     if (counts != EMPTY) { // not 1st registration
414     if (parent == null || reconcileState() == s) {
415     if (unarrived == 0) // wait out advance
416     root.internalAwaitAdvance(phase, null);
417     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418     s, s + adjust))
419     break;
420     }
421     }
422     else if (parent == null) { // 1st root registration
423     long next = ((long)phase << PHASE_SHIFT) | adjust;
424     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425     break;
426     }
427     else {
428     synchronized (this) { // 1st sub registration
429     if (state == s) { // recheck under lock
430     phase = parent.doRegister(1);
431     if (phase < 0)
432     break;
433     // finish registration whenever parent registration
434     // succeeded, even when racing with termination,
435     // since these are part of the same "transaction".
436     while (!UNSAFE.compareAndSwapLong
437     (this, stateOffset, s,
438     ((long)phase << PHASE_SHIFT) | adjust)) {
439     s = state;
440     phase = (int)(root.state >>> PHASE_SHIFT);
441     // assert (int)s == EMPTY;
442     }
443     break;
444     }
445     }
446     }
447     }
448     return phase;
449     }
450    
451     /**
452     * Resolves lagged phase propagation from root if necessary.
453     * Reconciliation normally occurs when root has advanced but
454     * subphasers have not yet done so, in which case they must finish
455     * their own advance by setting unarrived to parties (or if
456     * parties is zero, resetting to unregistered EMPTY state).
457     *
458     * @return reconciled state
459     */
460     private long reconcileState() {
461     final Phaser root = this.root;
462     long s = state;
463     if (root != this) {
464     int phase, p;
465     // CAS to root phase with current parties, tripping unarrived
466     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467     (int)(s >>> PHASE_SHIFT) &&
468     !UNSAFE.compareAndSwapLong
469     (this, stateOffset, s,
470     s = (((long)phase << PHASE_SHIFT) |
471     ((phase < 0) ? (s & COUNTS_MASK) :
472     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473     ((s & PARTIES_MASK) | p))))))
474     s = state;
475     }
476     return s;
477     }
478    
479     /**
480     * Creates a new phaser with no initially registered parties, no
481     * parent, and initial phase number 0. Any thread using this
482     * phaser will need to first register for it.
483     */
484     public Phaser() {
485     this(null, 0);
486     }
487    
488     /**
489     * Creates a new phaser with the given number of registered
490     * unarrived parties, no parent, and initial phase number 0.
491     *
492     * @param parties the number of parties required to advance to the
493     * next phase
494     * @throws IllegalArgumentException if parties less than zero
495     * or greater than the maximum number of parties supported
496     */
497     public Phaser(int parties) {
498     this(null, parties);
499     }
500    
501     /**
502     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
503     *
504     * @param parent the parent phaser
505     */
506     public Phaser(Phaser parent) {
507     this(parent, 0);
508     }
509    
510     /**
511     * Creates a new phaser with the given parent and number of
512     * registered unarrived parties. When the given parent is non-null
513     * and the given number of parties is greater than zero, this
514     * child phaser is registered with its parent.
515     *
516     * @param parent the parent phaser
517     * @param parties the number of parties required to advance to the
518     * next phase
519     * @throws IllegalArgumentException if parties less than zero
520     * or greater than the maximum number of parties supported
521     */
522     public Phaser(Phaser parent, int parties) {
523     if (parties >>> PARTIES_SHIFT != 0)
524     throw new IllegalArgumentException("Illegal number of parties");
525     int phase = 0;
526     this.parent = parent;
527     if (parent != null) {
528     final Phaser root = parent.root;
529     this.root = root;
530     this.evenQ = root.evenQ;
531     this.oddQ = root.oddQ;
532     if (parties != 0)
533     phase = parent.doRegister(1);
534     }
535     else {
536     this.root = this;
537     this.evenQ = new AtomicReference<QNode>();
538     this.oddQ = new AtomicReference<QNode>();
539     }
540     this.state = (parties == 0) ? (long)EMPTY :
541     ((long)phase << PHASE_SHIFT) |
542     ((long)parties << PARTIES_SHIFT) |
543     ((long)parties);
544     }
545    
546     /**
547     * Adds a new unarrived party to this phaser. If an ongoing
548     * invocation of {@link #onAdvance} is in progress, this method
549     * may await its completion before returning. If this phaser has
550     * a parent, and this phaser previously had no registered parties,
551     * this child phaser is also registered with its parent. If
552     * this phaser is terminated, the attempt to register has
553     * no effect, and a negative value is returned.
554     *
555     * @return the arrival phase number to which this registration
556     * applied. If this value is negative, then this phaser has
557     * terminated, in which case registration has no effect.
558     * @throws IllegalStateException if attempting to register more
559     * than the maximum supported number of parties
560     */
561     public int register() {
562     return doRegister(1);
563     }
564    
565     /**
566     * Adds the given number of new unarrived parties to this phaser.
567     * If an ongoing invocation of {@link #onAdvance} is in progress,
568     * this method may await its completion before returning. If this
569     * phaser has a parent, and the given number of parties is greater
570     * than zero, and this phaser previously had no registered
571     * parties, this child phaser is also registered with its parent.
572     * If this phaser is terminated, the attempt to register has no
573     * effect, and a negative value is returned.
574     *
575     * @param parties the number of additional parties required to
576     * advance to the next phase
577     * @return the arrival phase number to which this registration
578     * applied. If this value is negative, then this phaser has
579     * terminated, in which case registration has no effect.
580     * @throws IllegalStateException if attempting to register more
581     * than the maximum supported number of parties
582     * @throws IllegalArgumentException if {@code parties < 0}
583     */
584     public int bulkRegister(int parties) {
585     if (parties < 0)
586     throw new IllegalArgumentException();
587     if (parties == 0)
588     return getPhase();
589     return doRegister(parties);
590     }
591    
592     /**
593     * Arrives at this phaser, without waiting for others to arrive.
594     *
595     * <p>It is a usage error for an unregistered party to invoke this
596     * method. However, this error may result in an {@code
597     * IllegalStateException} only upon some subsequent operation on
598     * this phaser, if ever.
599     *
600     * @return the arrival phase number, or a negative value if terminated
601     * @throws IllegalStateException if not terminated and the number
602     * of unarrived parties would become negative
603     */
604     public int arrive() {
605     return doArrive(ONE_ARRIVAL);
606     }
607    
608     /**
609     * Arrives at this phaser and deregisters from it without waiting
610     * for others to arrive. Deregistration reduces the number of
611     * parties required to advance in future phases. If this phaser
612     * has a parent, and deregistration causes this phaser to have
613     * zero parties, this phaser is also deregistered from its parent.
614     *
615     * <p>It is a usage error for an unregistered party to invoke this
616     * method. However, this error may result in an {@code
617     * IllegalStateException} only upon some subsequent operation on
618     * this phaser, if ever.
619     *
620     * @return the arrival phase number, or a negative value if terminated
621     * @throws IllegalStateException if not terminated and the number
622     * of registered or unarrived parties would become negative
623     */
624     public int arriveAndDeregister() {
625     return doArrive(ONE_DEREGISTER);
626     }
627    
628     /**
629     * Arrives at this phaser and awaits others. Equivalent in effect
630     * to {@code awaitAdvance(arrive())}. If you need to await with
631     * interruption or timeout, you can arrange this with an analogous
632     * construction using one of the other forms of the {@code
633     * awaitAdvance} method. If instead you need to deregister upon
634     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
635     *
636     * <p>It is a usage error for an unregistered party to invoke this
637     * method. However, this error may result in an {@code
638     * IllegalStateException} only upon some subsequent operation on
639     * this phaser, if ever.
640     *
641     * @return the arrival phase number, or the (negative)
642     * {@linkplain #getPhase() current phase} if terminated
643     * @throws IllegalStateException if not terminated and the number
644     * of unarrived parties would become negative
645     */
646     public int arriveAndAwaitAdvance() {
647     // Specialization of doArrive+awaitAdvance eliminating some reads/paths
648     final Phaser root = this.root;
649     for (;;) {
650     long s = (root == this) ? state : reconcileState();
651     int phase = (int)(s >>> PHASE_SHIFT);
652     if (phase < 0)
653     return phase;
654     int counts = (int)s;
655     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656     if (unarrived <= 0)
657     throw new IllegalStateException(badArrive(s));
658     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659     s -= ONE_ARRIVAL)) {
660     if (unarrived > 1)
661     return root.internalAwaitAdvance(phase, null);
662     if (root != this)
663     return parent.arriveAndAwaitAdvance();
664     long n = s & PARTIES_MASK; // base of next state
665     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666     if (onAdvance(phase, nextUnarrived))
667     n |= TERMINATION_BIT;
668     else if (nextUnarrived == 0)
669     n |= EMPTY;
670     else
671     n |= nextUnarrived;
672     int nextPhase = (phase + 1) & MAX_PHASE;
673     n |= (long)nextPhase << PHASE_SHIFT;
674     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
675     return (int)(state >>> PHASE_SHIFT); // terminated
676     releaseWaiters(phase);
677     return nextPhase;
678     }
679     }
680     }
681    
682     /**
683     * Awaits the phase of this phaser to advance from the given phase
684     * value, returning immediately if the current phase is not equal
685     * to the given phase value or this phaser is terminated.
686     *
687     * @param phase an arrival phase number, or negative value if
688     * terminated; this argument is normally the value returned by a
689     * previous call to {@code arrive} or {@code arriveAndDeregister}.
690     * @return the next arrival phase number, or the argument if it is
691     * negative, or the (negative) {@linkplain #getPhase() current phase}
692     * if terminated
693     */
694     public int awaitAdvance(int phase) {
695     final Phaser root = this.root;
696     long s = (root == this) ? state : reconcileState();
697     int p = (int)(s >>> PHASE_SHIFT);
698     if (phase < 0)
699     return phase;
700     if (p == phase)
701     return root.internalAwaitAdvance(phase, null);
702     return p;
703     }
704    
705     /**
706     * Awaits the phase of this phaser to advance from the given phase
707     * value, throwing {@code InterruptedException} if interrupted
708     * while waiting, or returning immediately if the current phase is
709     * not equal to the given phase value or this phaser is
710     * terminated.
711     *
712     * @param phase an arrival phase number, or negative value if
713     * terminated; this argument is normally the value returned by a
714     * previous call to {@code arrive} or {@code arriveAndDeregister}.
715     * @return the next arrival phase number, or the argument if it is
716     * negative, or the (negative) {@linkplain #getPhase() current phase}
717     * if terminated
718     * @throws InterruptedException if thread interrupted while waiting
719     */
720     public int awaitAdvanceInterruptibly(int phase)
721     throws InterruptedException {
722     final Phaser root = this.root;
723     long s = (root == this) ? state : reconcileState();
724     int p = (int)(s >>> PHASE_SHIFT);
725     if (phase < 0)
726     return phase;
727     if (p == phase) {
728     QNode node = new QNode(this, phase, true, false, 0L);
729     p = root.internalAwaitAdvance(phase, node);
730     if (node.wasInterrupted)
731     throw new InterruptedException();
732     }
733     return p;
734     }
735    
736     /**
737     * Awaits the phase of this phaser to advance from the given phase
738     * value or the given timeout to elapse, throwing {@code
739     * InterruptedException} if interrupted while waiting, or
740     * returning immediately if the current phase is not equal to the
741     * given phase value or this phaser is terminated.
742     *
743     * @param phase an arrival phase number, or negative value if
744     * terminated; this argument is normally the value returned by a
745     * previous call to {@code arrive} or {@code arriveAndDeregister}.
746     * @param timeout how long to wait before giving up, in units of
747     * {@code unit}
748     * @param unit a {@code TimeUnit} determining how to interpret the
749     * {@code timeout} parameter
750     * @return the next arrival phase number, or the argument if it is
751     * negative, or the (negative) {@linkplain #getPhase() current phase}
752     * if terminated
753     * @throws InterruptedException if thread interrupted while waiting
754     * @throws TimeoutException if timed out while waiting
755     */
756     public int awaitAdvanceInterruptibly(int phase,
757     long timeout, TimeUnit unit)
758     throws InterruptedException, TimeoutException {
759     long nanos = unit.toNanos(timeout);
760     final Phaser root = this.root;
761     long s = (root == this) ? state : reconcileState();
762     int p = (int)(s >>> PHASE_SHIFT);
763     if (phase < 0)
764     return phase;
765     if (p == phase) {
766     QNode node = new QNode(this, phase, true, true, nanos);
767     p = root.internalAwaitAdvance(phase, node);
768     if (node.wasInterrupted)
769     throw new InterruptedException();
770     else if (p == phase)
771     throw new TimeoutException();
772     }
773     return p;
774     }
775    
776     /**
777     * Forces this phaser to enter termination state. Counts of
778     * registered parties are unaffected. If this phaser is a member
779     * of a tiered set of phasers, then all of the phasers in the set
780     * are terminated. If this phaser is already terminated, this
781     * method has no effect. This method may be useful for
782     * coordinating recovery after one or more tasks encounter
783     * unexpected exceptions.
784     */
785     public void forceTermination() {
786     // Only need to change root state
787     final Phaser root = this.root;
788     long s;
789     while ((s = root.state) >= 0) {
790     if (UNSAFE.compareAndSwapLong(root, stateOffset,
791     s, s | TERMINATION_BIT)) {
792     // signal all threads
793     releaseWaiters(0); // Waiters on evenQ
794     releaseWaiters(1); // Waiters on oddQ
795     return;
796     }
797     }
798     }
799    
800     /**
801     * Returns the current phase number. The maximum phase number is
802     * {@code Integer.MAX_VALUE}, after which it restarts at
803     * zero. Upon termination, the phase number is negative,
804     * in which case the prevailing phase prior to termination
805     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
806     *
807     * @return the phase number, or a negative value if terminated
808     */
809     public final int getPhase() {
810     return (int)(root.state >>> PHASE_SHIFT);
811     }
812    
813     /**
814     * Returns the number of parties registered at this phaser.
815     *
816     * @return the number of parties
817     */
818     public int getRegisteredParties() {
819     return partiesOf(state);
820     }
821    
822     /**
823     * Returns the number of registered parties that have arrived at
824     * the current phase of this phaser. If this phaser has terminated,
825     * the returned value is meaningless and arbitrary.
826     *
827     * @return the number of arrived parties
828     */
829     public int getArrivedParties() {
830     return arrivedOf(reconcileState());
831     }
832    
833     /**
834     * Returns the number of registered parties that have not yet
835     * arrived at the current phase of this phaser. If this phaser has
836     * terminated, the returned value is meaningless and arbitrary.
837     *
838     * @return the number of unarrived parties
839     */
840     public int getUnarrivedParties() {
841     return unarrivedOf(reconcileState());
842     }
843    
844     /**
845     * Returns the parent of this phaser, or {@code null} if none.
846     *
847     * @return the parent of this phaser, or {@code null} if none
848     */
849     public Phaser getParent() {
850     return parent;
851     }
852    
853     /**
854     * Returns the root ancestor of this phaser, which is the same as
855     * this phaser if it has no parent.
856     *
857     * @return the root ancestor of this phaser
858     */
859     public Phaser getRoot() {
860     return root;
861     }
862    
863     /**
864     * Returns {@code true} if this phaser has been terminated.
865     *
866     * @return {@code true} if this phaser has been terminated
867     */
868     public boolean isTerminated() {
869     return root.state < 0L;
870     }
871    
872     /**
873     * Overridable method to perform an action upon impending phase
874     * advance, and to control termination. This method is invoked
875     * upon arrival of the party advancing this phaser (when all other
876     * waiting parties are dormant). If this method returns {@code
877     * true}, this phaser will be set to a final termination state
878     * upon advance, and subsequent calls to {@link #isTerminated}
879     * will return true. Any (unchecked) Exception or Error thrown by
880     * an invocation of this method is propagated to the party
881     * attempting to advance this phaser, in which case no advance
882     * occurs.
883     *
884     * <p>The arguments to this method provide the state of the phaser
885     * prevailing for the current transition. The effects of invoking
886     * arrival, registration, and waiting methods on this phaser from
887     * within {@code onAdvance} are unspecified and should not be
888     * relied on.
889     *
890     * <p>If this phaser is a member of a tiered set of phasers, then
891     * {@code onAdvance} is invoked only for its root phaser on each
892     * advance.
893     *
894     * <p>To support the most common use cases, the default
895     * implementation of this method returns {@code true} when the
896     * number of registered parties has become zero as the result of a
897     * party invoking {@code arriveAndDeregister}. You can disable
898     * this behavior, thus enabling continuation upon future
899     * registrations, by overriding this method to always return
900     * {@code false}:
901     *
902     * <pre> {@code
903     * Phaser phaser = new Phaser() {
904     * protected boolean onAdvance(int phase, int parties) { return false; }
905     * }}</pre>
906     *
907     * @param phase the current phase number on entry to this method,
908     * before this phaser is advanced
909     * @param registeredParties the current number of registered parties
910     * @return {@code true} if this phaser should terminate
911     */
912     protected boolean onAdvance(int phase, int registeredParties) {
913     return registeredParties == 0;
914     }
915    
916     /**
917     * Returns a string identifying this phaser, as well as its
918     * state. The state, in brackets, includes the String {@code
919     * "phase = "} followed by the phase number, {@code "parties = "}
920     * followed by the number of registered parties, and {@code
921     * "arrived = "} followed by the number of arrived parties.
922     *
923     * @return a string identifying this phaser, as well as its state
924     */
925     public String toString() {
926     return stateToString(reconcileState());
927     }
928    
929     /**
930     * Implementation of toString and string-based error messages
931     */
932     private String stateToString(long s) {
933     return super.toString() +
934     "[phase = " + phaseOf(s) +
935     " parties = " + partiesOf(s) +
936     " arrived = " + arrivedOf(s) + "]";
937     }
938    
939     // Waiting mechanics
940    
941     /**
942     * Removes and signals threads from queue for phase.
943     */
944     private void releaseWaiters(int phase) {
945     QNode q; // first element of queue
946     Thread t; // its thread
947     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
948     while ((q = head.get()) != null &&
949     q.phase != (int)(root.state >>> PHASE_SHIFT)) {
950     if (head.compareAndSet(q, q.next) &&
951     (t = q.thread) != null) {
952     q.thread = null;
953     LockSupport.unpark(t);
954     }
955     }
956     }
957    
958     /**
959     * Variant of releaseWaiters that additionally tries to remove any
960     * nodes no longer waiting for advance due to timeout or
961     * interrupt. Currently, nodes are removed only if they are at
962     * head of queue, which suffices to reduce memory footprint in
963     * most usages.
964     *
965     * @return current phase on exit
966     */
967     private int abortWait(int phase) {
968     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
969     for (;;) {
970     Thread t;
971     QNode q = head.get();
972     int p = (int)(root.state >>> PHASE_SHIFT);
973     if (q == null || ((t = q.thread) != null && q.phase == p))
974     return p;
975     if (head.compareAndSet(q, q.next) && t != null) {
976     q.thread = null;
977     LockSupport.unpark(t);
978     }
979     }
980     }
981    
982     /** The number of CPUs, for spin control */
983     private static final int NCPU = Runtime.getRuntime().availableProcessors();
984    
985     /**
986     * The number of times to spin before blocking while waiting for
987     * advance, per arrival while waiting. On multiprocessors, fully
988     * blocking and waking up a large number of threads all at once is
989     * usually a very slow process, so we use rechargeable spins to
990     * avoid it when threads regularly arrive: When a thread in
991     * internalAwaitAdvance notices another arrival before blocking,
992     * and there appear to be enough CPUs available, it spins
993     * SPINS_PER_ARRIVAL more times before blocking. The value trades
994     * off good-citizenship vs big unnecessary slowdowns.
995     */
996     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
997    
998     /**
999     * Possibly blocks and waits for phase to advance unless aborted.
1000     * Call only on root phaser.
1001     *
1002     * @param phase current phase
1003     * @param node if non-null, the wait node to track interrupt and timeout;
1004     * if null, denotes noninterruptible wait
1005     * @return current phase
1006     */
1007     private int internalAwaitAdvance(int phase, QNode node) {
1008     // assert root == this;
1009     releaseWaiters(phase-1); // ensure old queue clean
1010     boolean queued = false; // true when node is enqueued
1011     int lastUnarrived = 0; // to increase spins upon change
1012     int spins = SPINS_PER_ARRIVAL;
1013     long s;
1014     int p;
1015     while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1016     if (node == null) { // spinning in noninterruptible mode
1017     int unarrived = (int)s & UNARRIVED_MASK;
1018     if (unarrived != lastUnarrived &&
1019     (lastUnarrived = unarrived) < NCPU)
1020     spins += SPINS_PER_ARRIVAL;
1021     boolean interrupted = Thread.interrupted();
1022     if (interrupted || --spins < 0) { // need node to record intr
1023     node = new QNode(this, phase, false, false, 0L);
1024     node.wasInterrupted = interrupted;
1025     }
1026     }
1027     else if (node.isReleasable()) // done or aborted
1028     break;
1029     else if (!queued) { // push onto queue
1030     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1031     QNode q = node.next = head.get();
1032     if ((q == null || q.phase == phase) &&
1033     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1034     queued = head.compareAndSet(q, node);
1035     }
1036     else {
1037     try {
1038     ForkJoinPool.managedBlock(node);
1039     } catch (InterruptedException ie) {
1040     node.wasInterrupted = true;
1041     }
1042     }
1043     }
1044    
1045     if (node != null) {
1046     if (node.thread != null)
1047     node.thread = null; // avoid need for unpark()
1048     if (node.wasInterrupted && !node.interruptible)
1049     Thread.currentThread().interrupt();
1050     if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1051     return abortWait(phase); // possibly clean up on abort
1052     }
1053     releaseWaiters(phase);
1054     return p;
1055     }
1056    
1057     /**
1058     * Wait nodes for Treiber stack representing wait queue
1059     */
1060     static final class QNode implements ForkJoinPool.ManagedBlocker {
1061     final Phaser phaser;
1062     final int phase;
1063     final boolean interruptible;
1064     final boolean timed;
1065     boolean wasInterrupted;
1066     long nanos;
1067     final long deadline;
1068     volatile Thread thread; // nulled to cancel wait
1069     QNode next;
1070    
1071     QNode(Phaser phaser, int phase, boolean interruptible,
1072     boolean timed, long nanos) {
1073     this.phaser = phaser;
1074     this.phase = phase;
1075     this.interruptible = interruptible;
1076     this.nanos = nanos;
1077     this.timed = timed;
1078     this.deadline = timed ? System.nanoTime() + nanos : 0L;
1079     thread = Thread.currentThread();
1080     }
1081    
1082     public boolean isReleasable() {
1083     if (thread == null)
1084     return true;
1085     if (phaser.getPhase() != phase) {
1086     thread = null;
1087     return true;
1088     }
1089     if (Thread.interrupted())
1090     wasInterrupted = true;
1091     if (wasInterrupted && interruptible) {
1092     thread = null;
1093     return true;
1094     }
1095     if (timed) {
1096     if (nanos > 0L) {
1097     nanos = deadline - System.nanoTime();
1098     }
1099     if (nanos <= 0L) {
1100     thread = null;
1101     return true;
1102     }
1103     }
1104     return false;
1105     }
1106    
1107     public boolean block() {
1108     if (isReleasable())
1109     return true;
1110     else if (!timed)
1111     LockSupport.park(this);
1112     else if (nanos > 0L)
1113     LockSupport.parkNanos(this, nanos);
1114     return isReleasable();
1115     }
1116     }
1117    
1118     // Unsafe mechanics
1119    
1120     private static final sun.misc.Unsafe UNSAFE;
1121     private static final long stateOffset;
1122     static {
1123     try {
1124     UNSAFE = sun.misc.Unsafe.getUnsafe();
1125     Class<?> k = Phaser.class;
1126     stateOffset = UNSAFE.objectFieldOffset
1127     (k.getDeclaredField("state"));
1128     } catch (Exception e) {
1129     throw new Error(e);
1130     }
1131     }
1132     }