ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Log Message:
Create src/jdk7 package

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.*;
12    
13     /**
14     * An unbounded {@linkplain BlockingQueue blocking queue} that uses
15     * the same ordering rules as class {@link PriorityQueue} and supplies
16     * blocking retrieval operations. While this queue is logically
17     * unbounded, attempted additions may fail due to resource exhaustion
18     * (causing {@code OutOfMemoryError}). This class does not permit
19     * {@code null} elements. A priority queue relying on {@linkplain
20     * Comparable natural ordering} also does not permit insertion of
21     * non-comparable objects (doing so results in
22     * {@code ClassCastException}).
23     *
24     * <p>This class and its iterator implement all of the
25     * <em>optional</em> methods of the {@link Collection} and {@link
26     * Iterator} interfaces. The Iterator provided in method {@link
27     * #iterator()} is <em>not</em> guaranteed to traverse the elements of
28     * the PriorityBlockingQueue in any particular order. If you need
29     * ordered traversal, consider using
30     * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
31     * can be used to <em>remove</em> some or all elements in priority
32     * order and place them in another collection.
33     *
34     * <p>Operations on this class make no guarantees about the ordering
35     * of elements with equal priority. If you need to enforce an
36     * ordering, you can define custom classes or comparators that use a
37     * secondary key to break ties in primary priority values. For
38     * example, here is a class that applies first-in-first-out
39     * tie-breaking to comparable elements. To use it, you would insert a
40     * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
41     *
42     * <pre> {@code
43     * class FIFOEntry<E extends Comparable<? super E>>
44     * implements Comparable<FIFOEntry<E>> {
45     * static final AtomicLong seq = new AtomicLong(0);
46     * final long seqNum;
47     * final E entry;
48     * public FIFOEntry(E entry) {
49     * seqNum = seq.getAndIncrement();
50     * this.entry = entry;
51     * }
52     * public E getEntry() { return entry; }
53     * public int compareTo(FIFOEntry<E> other) {
54     * int res = entry.compareTo(other.entry);
55     * if (res == 0 && other.entry != this.entry)
56     * res = (seqNum < other.seqNum ? -1 : 1);
57     * return res;
58     * }
59     * }}</pre>
60     *
61     * <p>This class is a member of the
62     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
63     * Java Collections Framework</a>.
64     *
65     * @since 1.5
66     * @author Doug Lea
67     * @param <E> the type of elements held in this collection
68     */
69     @SuppressWarnings("unchecked")
70     public class PriorityBlockingQueue<E> extends AbstractQueue<E>
71     implements BlockingQueue<E>, java.io.Serializable {
72     private static final long serialVersionUID = 5595510919245408276L;
73    
74     /*
75     * The implementation uses an array-based binary heap, with public
76     * operations protected with a single lock. However, allocation
77     * during resizing uses a simple spinlock (used only while not
78     * holding main lock) in order to allow takes to operate
79     * concurrently with allocation. This avoids repeated
80     * postponement of waiting consumers and consequent element
81     * build-up. The need to back away from lock during allocation
82     * makes it impossible to simply wrap delegated
83     * java.util.PriorityQueue operations within a lock, as was done
84     * in a previous version of this class. To maintain
85     * interoperability, a plain PriorityQueue is still used during
86     * serialization, which maintains compatibility at the expense of
87     * transiently doubling overhead.
88     */
89    
90     /**
91     * Default array capacity.
92     */
93     private static final int DEFAULT_INITIAL_CAPACITY = 11;
94    
95     /**
96     * The maximum size of array to allocate.
97     * Some VMs reserve some header words in an array.
98     * Attempts to allocate larger arrays may result in
99     * OutOfMemoryError: Requested array size exceeds VM limit
100     */
101     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102    
103     /**
104     * Priority queue represented as a balanced binary heap: the two
105     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
106     * priority queue is ordered by comparator, or by the elements'
107     * natural ordering, if comparator is null: For each node n in the
108     * heap and each descendant d of n, n <= d. The element with the
109     * lowest value is in queue[0], assuming the queue is nonempty.
110     */
111     private transient Object[] queue;
112    
113     /**
114     * The number of elements in the priority queue.
115     */
116     private transient int size;
117    
118     /**
119     * The comparator, or null if priority queue uses elements'
120     * natural ordering.
121     */
122     private transient Comparator<? super E> comparator;
123    
124     /**
125     * Lock used for all public operations
126     */
127     private final ReentrantLock lock;
128    
129     /**
130     * Condition for blocking when empty
131     */
132     private final Condition notEmpty;
133    
134     /**
135     * Spinlock for allocation, acquired via CAS.
136     */
137     private transient volatile int allocationSpinLock;
138    
139     /**
140     * A plain PriorityQueue used only for serialization,
141     * to maintain compatibility with previous versions
142     * of this class. Non-null only during serialization/deserialization.
143     */
144     private PriorityQueue<E> q;
145    
146     /**
147     * Creates a {@code PriorityBlockingQueue} with the default
148     * initial capacity (11) that orders its elements according to
149     * their {@linkplain Comparable natural ordering}.
150     */
151     public PriorityBlockingQueue() {
152     this(DEFAULT_INITIAL_CAPACITY, null);
153     }
154    
155     /**
156     * Creates a {@code PriorityBlockingQueue} with the specified
157     * initial capacity that orders its elements according to their
158     * {@linkplain Comparable natural ordering}.
159     *
160     * @param initialCapacity the initial capacity for this priority queue
161     * @throws IllegalArgumentException if {@code initialCapacity} is less
162     * than 1
163     */
164     public PriorityBlockingQueue(int initialCapacity) {
165     this(initialCapacity, null);
166     }
167    
168     /**
169     * Creates a {@code PriorityBlockingQueue} with the specified initial
170     * capacity that orders its elements according to the specified
171     * comparator.
172     *
173     * @param initialCapacity the initial capacity for this priority queue
174     * @param comparator the comparator that will be used to order this
175     * priority queue. If {@code null}, the {@linkplain Comparable
176     * natural ordering} of the elements will be used.
177     * @throws IllegalArgumentException if {@code initialCapacity} is less
178     * than 1
179     */
180     public PriorityBlockingQueue(int initialCapacity,
181     Comparator<? super E> comparator) {
182     if (initialCapacity < 1)
183     throw new IllegalArgumentException();
184     this.lock = new ReentrantLock();
185     this.notEmpty = lock.newCondition();
186     this.comparator = comparator;
187     this.queue = new Object[initialCapacity];
188     }
189    
190     /**
191     * Creates a {@code PriorityBlockingQueue} containing the elements
192     * in the specified collection. If the specified collection is a
193     * {@link SortedSet} or a {@link PriorityQueue}, this
194     * priority queue will be ordered according to the same ordering.
195     * Otherwise, this priority queue will be ordered according to the
196     * {@linkplain Comparable natural ordering} of its elements.
197     *
198     * @param c the collection whose elements are to be placed
199     * into this priority queue
200     * @throws ClassCastException if elements of the specified collection
201     * cannot be compared to one another according to the priority
202     * queue's ordering
203     * @throws NullPointerException if the specified collection or any
204     * of its elements are null
205     */
206     public PriorityBlockingQueue(Collection<? extends E> c) {
207     this.lock = new ReentrantLock();
208     this.notEmpty = lock.newCondition();
209     boolean heapify = true; // true if not known to be in heap order
210     boolean screen = true; // true if must screen for nulls
211     if (c instanceof SortedSet<?>) {
212     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
213     this.comparator = (Comparator<? super E>) ss.comparator();
214     heapify = false;
215     }
216     else if (c instanceof PriorityBlockingQueue<?>) {
217     PriorityBlockingQueue<? extends E> pq =
218     (PriorityBlockingQueue<? extends E>) c;
219     this.comparator = (Comparator<? super E>) pq.comparator();
220     screen = false;
221     if (pq.getClass() == PriorityBlockingQueue.class) // exact match
222     heapify = false;
223     }
224     Object[] a = c.toArray();
225     int n = a.length;
226     // If c.toArray incorrectly doesn't return Object[], copy it.
227     if (a.getClass() != Object[].class)
228     a = Arrays.copyOf(a, n, Object[].class);
229     if (screen && (n == 1 || this.comparator != null)) {
230     for (int i = 0; i < n; ++i)
231     if (a[i] == null)
232     throw new NullPointerException();
233     }
234     this.queue = a;
235     this.size = n;
236     if (heapify)
237     heapify();
238     }
239    
240     /**
241     * Tries to grow array to accommodate at least one more element
242     * (but normally expand by about 50%), giving up (allowing retry)
243     * on contention (which we expect to be rare). Call only while
244     * holding lock.
245     *
246     * @param array the heap array
247     * @param oldCap the length of the array
248     */
249     private void tryGrow(Object[] array, int oldCap) {
250     lock.unlock(); // must release and then re-acquire main lock
251     Object[] newArray = null;
252     if (allocationSpinLock == 0 &&
253     UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
254     0, 1)) {
255     try {
256     int newCap = oldCap + ((oldCap < 64) ?
257     (oldCap + 2) : // grow faster if small
258     (oldCap >> 1));
259     if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
260     int minCap = oldCap + 1;
261     if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
262     throw new OutOfMemoryError();
263     newCap = MAX_ARRAY_SIZE;
264     }
265     if (newCap > oldCap && queue == array)
266     newArray = new Object[newCap];
267     } finally {
268     allocationSpinLock = 0;
269     }
270     }
271     if (newArray == null) // back off if another thread is allocating
272     Thread.yield();
273     lock.lock();
274     if (newArray != null && queue == array) {
275     queue = newArray;
276     System.arraycopy(array, 0, newArray, 0, oldCap);
277     }
278     }
279    
280     /**
281     * Mechanics for poll(). Call only while holding lock.
282     */
283     private E dequeue() {
284     int n = size - 1;
285     if (n < 0)
286     return null;
287     else {
288     Object[] array = queue;
289     E result = (E) array[0];
290     E x = (E) array[n];
291     array[n] = null;
292     Comparator<? super E> cmp = comparator;
293     if (cmp == null)
294     siftDownComparable(0, x, array, n);
295     else
296     siftDownUsingComparator(0, x, array, n, cmp);
297     size = n;
298     return result;
299     }
300     }
301    
302     /**
303     * Inserts item x at position k, maintaining heap invariant by
304     * promoting x up the tree until it is greater than or equal to
305     * its parent, or is the root.
306     *
307     * To simplify and speed up coercions and comparisons. the
308     * Comparable and Comparator versions are separated into different
309     * methods that are otherwise identical. (Similarly for siftDown.)
310     * These methods are static, with heap state as arguments, to
311     * simplify use in light of possible comparator exceptions.
312     *
313     * @param k the position to fill
314     * @param x the item to insert
315     * @param array the heap array
316     * @param n heap size
317     */
318     private static <T> void siftUpComparable(int k, T x, Object[] array) {
319     Comparable<? super T> key = (Comparable<? super T>) x;
320     while (k > 0) {
321     int parent = (k - 1) >>> 1;
322     Object e = array[parent];
323     if (key.compareTo((T) e) >= 0)
324     break;
325     array[k] = e;
326     k = parent;
327     }
328     array[k] = key;
329     }
330    
331     private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
332     Comparator<? super T> cmp) {
333     while (k > 0) {
334     int parent = (k - 1) >>> 1;
335     Object e = array[parent];
336     if (cmp.compare(x, (T) e) >= 0)
337     break;
338     array[k] = e;
339     k = parent;
340     }
341     array[k] = x;
342     }
343    
344     /**
345     * Inserts item x at position k, maintaining heap invariant by
346     * demoting x down the tree repeatedly until it is less than or
347     * equal to its children or is a leaf.
348     *
349     * @param k the position to fill
350     * @param x the item to insert
351     * @param array the heap array
352     * @param n heap size
353     */
354     private static <T> void siftDownComparable(int k, T x, Object[] array,
355     int n) {
356     if (n > 0) {
357     Comparable<? super T> key = (Comparable<? super T>)x;
358     int half = n >>> 1; // loop while a non-leaf
359     while (k < half) {
360     int child = (k << 1) + 1; // assume left child is least
361     Object c = array[child];
362     int right = child + 1;
363     if (right < n &&
364     ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
365     c = array[child = right];
366     if (key.compareTo((T) c) <= 0)
367     break;
368     array[k] = c;
369     k = child;
370     }
371     array[k] = key;
372     }
373     }
374    
375     private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
376     int n,
377     Comparator<? super T> cmp) {
378     if (n > 0) {
379     int half = n >>> 1;
380     while (k < half) {
381     int child = (k << 1) + 1;
382     Object c = array[child];
383     int right = child + 1;
384     if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
385     c = array[child = right];
386     if (cmp.compare(x, (T) c) <= 0)
387     break;
388     array[k] = c;
389     k = child;
390     }
391     array[k] = x;
392     }
393     }
394    
395     /**
396     * Establishes the heap invariant (described above) in the entire tree,
397     * assuming nothing about the order of the elements prior to the call.
398     */
399     private void heapify() {
400     Object[] array = queue;
401     int n = size;
402     int half = (n >>> 1) - 1;
403     Comparator<? super E> cmp = comparator;
404     if (cmp == null) {
405     for (int i = half; i >= 0; i--)
406     siftDownComparable(i, (E) array[i], array, n);
407     }
408     else {
409     for (int i = half; i >= 0; i--)
410     siftDownUsingComparator(i, (E) array[i], array, n, cmp);
411     }
412     }
413    
414     /**
415     * Inserts the specified element into this priority queue.
416     *
417     * @param e the element to add
418     * @return {@code true} (as specified by {@link Collection#add})
419     * @throws ClassCastException if the specified element cannot be compared
420     * with elements currently in the priority queue according to the
421     * priority queue's ordering
422     * @throws NullPointerException if the specified element is null
423     */
424     public boolean add(E e) {
425     return offer(e);
426     }
427    
428     /**
429     * Inserts the specified element into this priority queue.
430     * As the queue is unbounded, this method will never return {@code false}.
431     *
432     * @param e the element to add
433     * @return {@code true} (as specified by {@link Queue#offer})
434     * @throws ClassCastException if the specified element cannot be compared
435     * with elements currently in the priority queue according to the
436     * priority queue's ordering
437     * @throws NullPointerException if the specified element is null
438     */
439     public boolean offer(E e) {
440     if (e == null)
441     throw new NullPointerException();
442     final ReentrantLock lock = this.lock;
443     lock.lock();
444     int n, cap;
445     Object[] array;
446     while ((n = size) >= (cap = (array = queue).length))
447     tryGrow(array, cap);
448     try {
449     Comparator<? super E> cmp = comparator;
450     if (cmp == null)
451     siftUpComparable(n, e, array);
452     else
453     siftUpUsingComparator(n, e, array, cmp);
454     size = n + 1;
455     notEmpty.signal();
456     } finally {
457     lock.unlock();
458     }
459     return true;
460     }
461    
462     /**
463     * Inserts the specified element into this priority queue.
464     * As the queue is unbounded, this method will never block.
465     *
466     * @param e the element to add
467     * @throws ClassCastException if the specified element cannot be compared
468     * with elements currently in the priority queue according to the
469     * priority queue's ordering
470     * @throws NullPointerException if the specified element is null
471     */
472     public void put(E e) {
473     offer(e); // never need to block
474     }
475    
476     /**
477     * Inserts the specified element into this priority queue.
478     * As the queue is unbounded, this method will never block or
479     * return {@code false}.
480     *
481     * @param e the element to add
482     * @param timeout This parameter is ignored as the method never blocks
483     * @param unit This parameter is ignored as the method never blocks
484     * @return {@code true} (as specified by
485     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
486     * @throws ClassCastException if the specified element cannot be compared
487     * with elements currently in the priority queue according to the
488     * priority queue's ordering
489     * @throws NullPointerException if the specified element is null
490     */
491     public boolean offer(E e, long timeout, TimeUnit unit) {
492     return offer(e); // never need to block
493     }
494    
495     public E poll() {
496     final ReentrantLock lock = this.lock;
497     lock.lock();
498     try {
499     return dequeue();
500     } finally {
501     lock.unlock();
502     }
503     }
504    
505     public E take() throws InterruptedException {
506     final ReentrantLock lock = this.lock;
507     lock.lockInterruptibly();
508     E result;
509     try {
510     while ( (result = dequeue()) == null)
511     notEmpty.await();
512     } finally {
513     lock.unlock();
514     }
515     return result;
516     }
517    
518     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
519     long nanos = unit.toNanos(timeout);
520     final ReentrantLock lock = this.lock;
521     lock.lockInterruptibly();
522     E result;
523     try {
524     while ( (result = dequeue()) == null && nanos > 0)
525     nanos = notEmpty.awaitNanos(nanos);
526     } finally {
527     lock.unlock();
528     }
529     return result;
530     }
531    
532     public E peek() {
533     final ReentrantLock lock = this.lock;
534     lock.lock();
535     try {
536     return (size == 0) ? null : (E) queue[0];
537     } finally {
538     lock.unlock();
539     }
540     }
541    
542     /**
543     * Returns the comparator used to order the elements in this queue,
544     * or {@code null} if this queue uses the {@linkplain Comparable
545     * natural ordering} of its elements.
546     *
547     * @return the comparator used to order the elements in this queue,
548     * or {@code null} if this queue uses the natural
549     * ordering of its elements
550     */
551     public Comparator<? super E> comparator() {
552     return comparator;
553     }
554    
555     public int size() {
556     final ReentrantLock lock = this.lock;
557     lock.lock();
558     try {
559     return size;
560     } finally {
561     lock.unlock();
562     }
563     }
564    
565     /**
566     * Always returns {@code Integer.MAX_VALUE} because
567     * a {@code PriorityBlockingQueue} is not capacity constrained.
568     * @return {@code Integer.MAX_VALUE} always
569     */
570     public int remainingCapacity() {
571     return Integer.MAX_VALUE;
572     }
573    
574     private int indexOf(Object o) {
575     if (o != null) {
576     Object[] array = queue;
577     int n = size;
578     for (int i = 0; i < n; i++)
579     if (o.equals(array[i]))
580     return i;
581     }
582     return -1;
583     }
584    
585     /**
586     * Removes the ith element from queue.
587     */
588     private void removeAt(int i) {
589     Object[] array = queue;
590     int n = size - 1;
591     if (n == i) // removed last element
592     array[i] = null;
593     else {
594     E moved = (E) array[n];
595     array[n] = null;
596     Comparator<? super E> cmp = comparator;
597     if (cmp == null)
598     siftDownComparable(i, moved, array, n);
599     else
600     siftDownUsingComparator(i, moved, array, n, cmp);
601     if (array[i] == moved) {
602     if (cmp == null)
603     siftUpComparable(i, moved, array);
604     else
605     siftUpUsingComparator(i, moved, array, cmp);
606     }
607     }
608     size = n;
609     }
610    
611     /**
612     * Removes a single instance of the specified element from this queue,
613     * if it is present. More formally, removes an element {@code e} such
614     * that {@code o.equals(e)}, if this queue contains one or more such
615     * elements. Returns {@code true} if and only if this queue contained
616     * the specified element (or equivalently, if this queue changed as a
617     * result of the call).
618     *
619     * @param o element to be removed from this queue, if present
620     * @return {@code true} if this queue changed as a result of the call
621     */
622     public boolean remove(Object o) {
623     final ReentrantLock lock = this.lock;
624     lock.lock();
625     try {
626     int i = indexOf(o);
627     if (i == -1)
628     return false;
629     removeAt(i);
630     return true;
631     } finally {
632     lock.unlock();
633     }
634     }
635    
636     /**
637     * Identity-based version for use in Itr.remove
638     */
639     void removeEQ(Object o) {
640     final ReentrantLock lock = this.lock;
641     lock.lock();
642     try {
643     Object[] array = queue;
644     for (int i = 0, n = size; i < n; i++) {
645     if (o == array[i]) {
646     removeAt(i);
647     break;
648     }
649     }
650     } finally {
651     lock.unlock();
652     }
653     }
654    
655     /**
656     * Returns {@code true} if this queue contains the specified element.
657     * More formally, returns {@code true} if and only if this queue contains
658     * at least one element {@code e} such that {@code o.equals(e)}.
659     *
660     * @param o object to be checked for containment in this queue
661     * @return {@code true} if this queue contains the specified element
662     */
663     public boolean contains(Object o) {
664     final ReentrantLock lock = this.lock;
665     lock.lock();
666     try {
667     return indexOf(o) != -1;
668     } finally {
669     lock.unlock();
670     }
671     }
672    
673     /**
674     * Returns an array containing all of the elements in this queue.
675     * The returned array elements are in no particular order.
676     *
677     * <p>The returned array will be "safe" in that no references to it are
678     * maintained by this queue. (In other words, this method must allocate
679     * a new array). The caller is thus free to modify the returned array.
680     *
681     * <p>This method acts as bridge between array-based and collection-based
682     * APIs.
683     *
684     * @return an array containing all of the elements in this queue
685     */
686     public Object[] toArray() {
687     final ReentrantLock lock = this.lock;
688     lock.lock();
689     try {
690     return Arrays.copyOf(queue, size);
691     } finally {
692     lock.unlock();
693     }
694     }
695    
696     public String toString() {
697     final ReentrantLock lock = this.lock;
698     lock.lock();
699     try {
700     int n = size;
701     if (n == 0)
702     return "[]";
703     StringBuilder sb = new StringBuilder();
704     sb.append('[');
705     for (int i = 0; i < n; ++i) {
706     Object e = queue[i];
707     sb.append(e == this ? "(this Collection)" : e);
708     if (i != n - 1)
709     sb.append(',').append(' ');
710     }
711     return sb.append(']').toString();
712     } finally {
713     lock.unlock();
714     }
715     }
716    
717     /**
718     * @throws UnsupportedOperationException {@inheritDoc}
719     * @throws ClassCastException {@inheritDoc}
720     * @throws NullPointerException {@inheritDoc}
721     * @throws IllegalArgumentException {@inheritDoc}
722     */
723     public int drainTo(Collection<? super E> c) {
724     return drainTo(c, Integer.MAX_VALUE);
725     }
726    
727     /**
728     * @throws UnsupportedOperationException {@inheritDoc}
729     * @throws ClassCastException {@inheritDoc}
730     * @throws NullPointerException {@inheritDoc}
731     * @throws IllegalArgumentException {@inheritDoc}
732     */
733     public int drainTo(Collection<? super E> c, int maxElements) {
734     if (c == null)
735     throw new NullPointerException();
736     if (c == this)
737     throw new IllegalArgumentException();
738     if (maxElements <= 0)
739     return 0;
740     final ReentrantLock lock = this.lock;
741     lock.lock();
742     try {
743     int n = Math.min(size, maxElements);
744     for (int i = 0; i < n; i++) {
745     c.add((E) queue[0]); // In this order, in case add() throws.
746     dequeue();
747     }
748     return n;
749     } finally {
750     lock.unlock();
751     }
752     }
753    
754     /**
755     * Atomically removes all of the elements from this queue.
756     * The queue will be empty after this call returns.
757     */
758     public void clear() {
759     final ReentrantLock lock = this.lock;
760     lock.lock();
761     try {
762     Object[] array = queue;
763     int n = size;
764     size = 0;
765     for (int i = 0; i < n; i++)
766     array[i] = null;
767     } finally {
768     lock.unlock();
769     }
770     }
771    
772     /**
773     * Returns an array containing all of the elements in this queue; the
774     * runtime type of the returned array is that of the specified array.
775     * The returned array elements are in no particular order.
776     * If the queue fits in the specified array, it is returned therein.
777     * Otherwise, a new array is allocated with the runtime type of the
778     * specified array and the size of this queue.
779     *
780     * <p>If this queue fits in the specified array with room to spare
781     * (i.e., the array has more elements than this queue), the element in
782     * the array immediately following the end of the queue is set to
783     * {@code null}.
784     *
785     * <p>Like the {@link #toArray()} method, this method acts as bridge between
786     * array-based and collection-based APIs. Further, this method allows
787     * precise control over the runtime type of the output array, and may,
788     * under certain circumstances, be used to save allocation costs.
789     *
790     * <p>Suppose {@code x} is a queue known to contain only strings.
791     * The following code can be used to dump the queue into a newly
792     * allocated array of {@code String}:
793     *
794     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
795     *
796     * Note that {@code toArray(new Object[0])} is identical in function to
797     * {@code toArray()}.
798     *
799     * @param a the array into which the elements of the queue are to
800     * be stored, if it is big enough; otherwise, a new array of the
801     * same runtime type is allocated for this purpose
802     * @return an array containing all of the elements in this queue
803     * @throws ArrayStoreException if the runtime type of the specified array
804     * is not a supertype of the runtime type of every element in
805     * this queue
806     * @throws NullPointerException if the specified array is null
807     */
808     public <T> T[] toArray(T[] a) {
809     final ReentrantLock lock = this.lock;
810     lock.lock();
811     try {
812     int n = size;
813     if (a.length < n)
814     // Make a new array of a's runtime type, but my contents:
815     return (T[]) Arrays.copyOf(queue, size, a.getClass());
816     System.arraycopy(queue, 0, a, 0, n);
817     if (a.length > n)
818     a[n] = null;
819     return a;
820     } finally {
821     lock.unlock();
822     }
823     }
824    
825     /**
826     * Returns an iterator over the elements in this queue. The
827     * iterator does not return the elements in any particular order.
828     *
829     * <p>The returned iterator is a "weakly consistent" iterator that
830     * will never throw {@link java.util.ConcurrentModificationException
831     * ConcurrentModificationException}, and guarantees to traverse
832     * elements as they existed upon construction of the iterator, and
833     * may (but is not guaranteed to) reflect any modifications
834     * subsequent to construction.
835     *
836     * @return an iterator over the elements in this queue
837     */
838     public Iterator<E> iterator() {
839     return new Itr(toArray());
840     }
841    
842     /**
843     * Snapshot iterator that works off copy of underlying q array.
844     */
845     final class Itr implements Iterator<E> {
846     final Object[] array; // Array of all elements
847     int cursor; // index of next element to return
848     int lastRet; // index of last element, or -1 if no such
849    
850     Itr(Object[] array) {
851     lastRet = -1;
852     this.array = array;
853     }
854    
855     public boolean hasNext() {
856     return cursor < array.length;
857     }
858    
859     public E next() {
860     if (cursor >= array.length)
861     throw new NoSuchElementException();
862     lastRet = cursor;
863     return (E)array[cursor++];
864     }
865    
866     public void remove() {
867     if (lastRet < 0)
868     throw new IllegalStateException();
869     removeEQ(array[lastRet]);
870     lastRet = -1;
871     }
872     }
873    
874     /**
875     * Saves this queue to a stream (that is, serializes it).
876     *
877     * For compatibility with previous version of this class, elements
878     * are first copied to a java.util.PriorityQueue, which is then
879     * serialized.
880     */
881     private void writeObject(java.io.ObjectOutputStream s)
882     throws java.io.IOException {
883     lock.lock();
884     try {
885     // avoid zero capacity argument
886     q = new PriorityQueue<E>(Math.max(size, 1), comparator);
887     q.addAll(this);
888     s.defaultWriteObject();
889     } finally {
890     q = null;
891     lock.unlock();
892     }
893     }
894    
895     /**
896     * Reconstitutes this queue from a stream (that is, deserializes it).
897     */
898     private void readObject(java.io.ObjectInputStream s)
899     throws java.io.IOException, ClassNotFoundException {
900     try {
901     s.defaultReadObject();
902     this.queue = new Object[q.size()];
903     comparator = q.comparator();
904     addAll(q);
905     } finally {
906     q = null;
907     }
908     }
909    
910     // Unsafe mechanics
911     private static final sun.misc.Unsafe UNSAFE;
912     private static final long allocationSpinLockOffset;
913     static {
914     try {
915     UNSAFE = sun.misc.Unsafe.getUnsafe();
916     Class<?> k = PriorityBlockingQueue.class;
917     allocationSpinLockOffset = UNSAFE.objectFieldOffset
918     (k.getDeclaredField("allocationSpinLock"));
919     } catch (Exception e) {
920     throw new Error(e);
921     }
922     }
923     }