ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.5
Committed: Tue Dec 20 22:10:13 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +0 -2 lines
Log Message:
remove confusing comments

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.*;
12    
13     /**
14     * An unbounded {@linkplain BlockingQueue blocking queue} that uses
15     * the same ordering rules as class {@link PriorityQueue} and supplies
16     * blocking retrieval operations. While this queue is logically
17     * unbounded, attempted additions may fail due to resource exhaustion
18     * (causing {@code OutOfMemoryError}). This class does not permit
19     * {@code null} elements. A priority queue relying on {@linkplain
20     * Comparable natural ordering} also does not permit insertion of
21     * non-comparable objects (doing so results in
22     * {@code ClassCastException}).
23     *
24     * <p>This class and its iterator implement all of the
25     * <em>optional</em> methods of the {@link Collection} and {@link
26     * Iterator} interfaces. The Iterator provided in method {@link
27     * #iterator()} is <em>not</em> guaranteed to traverse the elements of
28     * the PriorityBlockingQueue in any particular order. If you need
29     * ordered traversal, consider using
30     * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
31     * can be used to <em>remove</em> some or all elements in priority
32     * order and place them in another collection.
33     *
34     * <p>Operations on this class make no guarantees about the ordering
35     * of elements with equal priority. If you need to enforce an
36     * ordering, you can define custom classes or comparators that use a
37     * secondary key to break ties in primary priority values. For
38     * example, here is a class that applies first-in-first-out
39     * tie-breaking to comparable elements. To use it, you would insert a
40     * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
41     *
42     * <pre> {@code
43     * class FIFOEntry<E extends Comparable<? super E>>
44     * implements Comparable<FIFOEntry<E>> {
45     * static final AtomicLong seq = new AtomicLong(0);
46     * final long seqNum;
47     * final E entry;
48     * public FIFOEntry(E entry) {
49     * seqNum = seq.getAndIncrement();
50     * this.entry = entry;
51     * }
52     * public E getEntry() { return entry; }
53     * public int compareTo(FIFOEntry<E> other) {
54     * int res = entry.compareTo(other.entry);
55     * if (res == 0 && other.entry != this.entry)
56     * res = (seqNum < other.seqNum ? -1 : 1);
57     * return res;
58     * }
59     * }}</pre>
60     *
61     * <p>This class is a member of the
62     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
63     * Java Collections Framework</a>.
64     *
65     * @since 1.5
66     * @author Doug Lea
67     * @param <E> the type of elements held in this collection
68     */
69     @SuppressWarnings("unchecked")
70     public class PriorityBlockingQueue<E> extends AbstractQueue<E>
71     implements BlockingQueue<E>, java.io.Serializable {
72     private static final long serialVersionUID = 5595510919245408276L;
73    
74     /*
75     * The implementation uses an array-based binary heap, with public
76     * operations protected with a single lock. However, allocation
77     * during resizing uses a simple spinlock (used only while not
78     * holding main lock) in order to allow takes to operate
79     * concurrently with allocation. This avoids repeated
80     * postponement of waiting consumers and consequent element
81     * build-up. The need to back away from lock during allocation
82     * makes it impossible to simply wrap delegated
83     * java.util.PriorityQueue operations within a lock, as was done
84     * in a previous version of this class. To maintain
85     * interoperability, a plain PriorityQueue is still used during
86     * serialization, which maintains compatibility at the expense of
87     * transiently doubling overhead.
88     */
89    
90     /**
91     * Default array capacity.
92     */
93     private static final int DEFAULT_INITIAL_CAPACITY = 11;
94    
95     /**
96     * The maximum size of array to allocate.
97     * Some VMs reserve some header words in an array.
98     * Attempts to allocate larger arrays may result in
99     * OutOfMemoryError: Requested array size exceeds VM limit
100     */
101     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102    
103     /**
104     * Priority queue represented as a balanced binary heap: the two
105     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
106     * priority queue is ordered by comparator, or by the elements'
107     * natural ordering, if comparator is null: For each node n in the
108     * heap and each descendant d of n, n <= d. The element with the
109     * lowest value is in queue[0], assuming the queue is nonempty.
110     */
111     private transient Object[] queue;
112    
113     /**
114     * The number of elements in the priority queue.
115     */
116     private transient int size;
117    
118     /**
119     * The comparator, or null if priority queue uses elements'
120     * natural ordering.
121     */
122     private transient Comparator<? super E> comparator;
123    
124     /**
125     * Lock used for all public operations
126     */
127     private final ReentrantLock lock;
128    
129     /**
130     * Condition for blocking when empty
131     */
132     private final Condition notEmpty;
133    
134     /**
135     * Spinlock for allocation, acquired via CAS.
136     */
137     private transient volatile int allocationSpinLock;
138    
139     /**
140     * A plain PriorityQueue used only for serialization,
141     * to maintain compatibility with previous versions
142     * of this class. Non-null only during serialization/deserialization.
143     */
144     private PriorityQueue<E> q;
145    
146     /**
147     * Creates a {@code PriorityBlockingQueue} with the default
148     * initial capacity (11) that orders its elements according to
149     * their {@linkplain Comparable natural ordering}.
150     */
151     public PriorityBlockingQueue() {
152     this(DEFAULT_INITIAL_CAPACITY, null);
153     }
154    
155     /**
156     * Creates a {@code PriorityBlockingQueue} with the specified
157     * initial capacity that orders its elements according to their
158     * {@linkplain Comparable natural ordering}.
159     *
160     * @param initialCapacity the initial capacity for this priority queue
161     * @throws IllegalArgumentException if {@code initialCapacity} is less
162     * than 1
163     */
164     public PriorityBlockingQueue(int initialCapacity) {
165     this(initialCapacity, null);
166     }
167    
168     /**
169     * Creates a {@code PriorityBlockingQueue} with the specified initial
170     * capacity that orders its elements according to the specified
171     * comparator.
172     *
173     * @param initialCapacity the initial capacity for this priority queue
174     * @param comparator the comparator that will be used to order this
175     * priority queue. If {@code null}, the {@linkplain Comparable
176     * natural ordering} of the elements will be used.
177     * @throws IllegalArgumentException if {@code initialCapacity} is less
178     * than 1
179     */
180     public PriorityBlockingQueue(int initialCapacity,
181     Comparator<? super E> comparator) {
182     if (initialCapacity < 1)
183     throw new IllegalArgumentException();
184     this.lock = new ReentrantLock();
185     this.notEmpty = lock.newCondition();
186     this.comparator = comparator;
187     this.queue = new Object[initialCapacity];
188     }
189    
190     /**
191     * Creates a {@code PriorityBlockingQueue} containing the elements
192     * in the specified collection. If the specified collection is a
193 jsr166 1.3 * {@link SortedSet} or a {@link PriorityQueue}, this
194 dl 1.1 * priority queue will be ordered according to the same ordering.
195     * Otherwise, this priority queue will be ordered according to the
196     * {@linkplain Comparable natural ordering} of its elements.
197     *
198     * @param c the collection whose elements are to be placed
199     * into this priority queue
200     * @throws ClassCastException if elements of the specified collection
201     * cannot be compared to one another according to the priority
202     * queue's ordering
203     * @throws NullPointerException if the specified collection or any
204     * of its elements are null
205     */
206     public PriorityBlockingQueue(Collection<? extends E> c) {
207     this.lock = new ReentrantLock();
208     this.notEmpty = lock.newCondition();
209     boolean heapify = true; // true if not known to be in heap order
210     boolean screen = true; // true if must screen for nulls
211     if (c instanceof SortedSet<?>) {
212     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
213     this.comparator = (Comparator<? super E>) ss.comparator();
214     heapify = false;
215     }
216     else if (c instanceof PriorityBlockingQueue<?>) {
217     PriorityBlockingQueue<? extends E> pq =
218     (PriorityBlockingQueue<? extends E>) c;
219     this.comparator = (Comparator<? super E>) pq.comparator();
220     screen = false;
221     if (pq.getClass() == PriorityBlockingQueue.class) // exact match
222     heapify = false;
223     }
224     Object[] a = c.toArray();
225     int n = a.length;
226     // If c.toArray incorrectly doesn't return Object[], copy it.
227     if (a.getClass() != Object[].class)
228     a = Arrays.copyOf(a, n, Object[].class);
229     if (screen && (n == 1 || this.comparator != null)) {
230     for (int i = 0; i < n; ++i)
231     if (a[i] == null)
232     throw new NullPointerException();
233     }
234     this.queue = a;
235     this.size = n;
236     if (heapify)
237     heapify();
238     }
239    
240     /**
241     * Tries to grow array to accommodate at least one more element
242     * (but normally expand by about 50%), giving up (allowing retry)
243     * on contention (which we expect to be rare). Call only while
244     * holding lock.
245     *
246     * @param array the heap array
247     * @param oldCap the length of the array
248     */
249     private void tryGrow(Object[] array, int oldCap) {
250     lock.unlock(); // must release and then re-acquire main lock
251     Object[] newArray = null;
252     if (allocationSpinLock == 0 &&
253     UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
254     0, 1)) {
255     try {
256     int newCap = oldCap + ((oldCap < 64) ?
257     (oldCap + 2) : // grow faster if small
258     (oldCap >> 1));
259     if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
260     int minCap = oldCap + 1;
261     if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
262     throw new OutOfMemoryError();
263     newCap = MAX_ARRAY_SIZE;
264     }
265     if (newCap > oldCap && queue == array)
266     newArray = new Object[newCap];
267     } finally {
268     allocationSpinLock = 0;
269     }
270     }
271     if (newArray == null) // back off if another thread is allocating
272     Thread.yield();
273     lock.lock();
274     if (newArray != null && queue == array) {
275     queue = newArray;
276     System.arraycopy(array, 0, newArray, 0, oldCap);
277     }
278     }
279    
280     /**
281     * Mechanics for poll(). Call only while holding lock.
282     */
283     private E dequeue() {
284     int n = size - 1;
285     if (n < 0)
286     return null;
287     else {
288     Object[] array = queue;
289     E result = (E) array[0];
290     E x = (E) array[n];
291     array[n] = null;
292     Comparator<? super E> cmp = comparator;
293     if (cmp == null)
294     siftDownComparable(0, x, array, n);
295     else
296     siftDownUsingComparator(0, x, array, n, cmp);
297     size = n;
298     return result;
299     }
300     }
301    
302     /**
303     * Inserts item x at position k, maintaining heap invariant by
304     * promoting x up the tree until it is greater than or equal to
305     * its parent, or is the root.
306     *
307 jsr166 1.4 * To simplify and speed up coercions and comparisons, the
308 dl 1.1 * Comparable and Comparator versions are separated into different
309     * methods that are otherwise identical. (Similarly for siftDown.)
310     *
311     * @param k the position to fill
312     * @param x the item to insert
313     * @param array the heap array
314     */
315     private static <T> void siftUpComparable(int k, T x, Object[] array) {
316     Comparable<? super T> key = (Comparable<? super T>) x;
317     while (k > 0) {
318     int parent = (k - 1) >>> 1;
319     Object e = array[parent];
320     if (key.compareTo((T) e) >= 0)
321     break;
322     array[k] = e;
323     k = parent;
324     }
325     array[k] = key;
326     }
327    
328     private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
329     Comparator<? super T> cmp) {
330     while (k > 0) {
331     int parent = (k - 1) >>> 1;
332     Object e = array[parent];
333     if (cmp.compare(x, (T) e) >= 0)
334     break;
335     array[k] = e;
336     k = parent;
337     }
338     array[k] = x;
339     }
340    
341     /**
342     * Inserts item x at position k, maintaining heap invariant by
343     * demoting x down the tree repeatedly until it is less than or
344     * equal to its children or is a leaf.
345     *
346     * @param k the position to fill
347     * @param x the item to insert
348     * @param array the heap array
349     * @param n heap size
350     */
351     private static <T> void siftDownComparable(int k, T x, Object[] array,
352     int n) {
353     if (n > 0) {
354     Comparable<? super T> key = (Comparable<? super T>)x;
355     int half = n >>> 1; // loop while a non-leaf
356     while (k < half) {
357     int child = (k << 1) + 1; // assume left child is least
358     Object c = array[child];
359     int right = child + 1;
360     if (right < n &&
361     ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
362     c = array[child = right];
363     if (key.compareTo((T) c) <= 0)
364     break;
365     array[k] = c;
366     k = child;
367     }
368     array[k] = key;
369     }
370     }
371    
372     private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
373     int n,
374     Comparator<? super T> cmp) {
375     if (n > 0) {
376     int half = n >>> 1;
377     while (k < half) {
378     int child = (k << 1) + 1;
379     Object c = array[child];
380     int right = child + 1;
381     if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
382     c = array[child = right];
383     if (cmp.compare(x, (T) c) <= 0)
384     break;
385     array[k] = c;
386     k = child;
387     }
388     array[k] = x;
389     }
390     }
391    
392     /**
393     * Establishes the heap invariant (described above) in the entire tree,
394     * assuming nothing about the order of the elements prior to the call.
395     */
396     private void heapify() {
397     Object[] array = queue;
398     int n = size;
399     int half = (n >>> 1) - 1;
400     Comparator<? super E> cmp = comparator;
401     if (cmp == null) {
402     for (int i = half; i >= 0; i--)
403     siftDownComparable(i, (E) array[i], array, n);
404     }
405     else {
406     for (int i = half; i >= 0; i--)
407     siftDownUsingComparator(i, (E) array[i], array, n, cmp);
408     }
409     }
410    
411     /**
412     * Inserts the specified element into this priority queue.
413     *
414     * @param e the element to add
415     * @return {@code true} (as specified by {@link Collection#add})
416     * @throws ClassCastException if the specified element cannot be compared
417     * with elements currently in the priority queue according to the
418     * priority queue's ordering
419     * @throws NullPointerException if the specified element is null
420     */
421     public boolean add(E e) {
422     return offer(e);
423     }
424    
425     /**
426     * Inserts the specified element into this priority queue.
427     * As the queue is unbounded, this method will never return {@code false}.
428     *
429     * @param e the element to add
430     * @return {@code true} (as specified by {@link Queue#offer})
431     * @throws ClassCastException if the specified element cannot be compared
432     * with elements currently in the priority queue according to the
433     * priority queue's ordering
434     * @throws NullPointerException if the specified element is null
435     */
436     public boolean offer(E e) {
437     if (e == null)
438     throw new NullPointerException();
439     final ReentrantLock lock = this.lock;
440     lock.lock();
441     int n, cap;
442     Object[] array;
443     while ((n = size) >= (cap = (array = queue).length))
444     tryGrow(array, cap);
445     try {
446     Comparator<? super E> cmp = comparator;
447     if (cmp == null)
448     siftUpComparable(n, e, array);
449     else
450     siftUpUsingComparator(n, e, array, cmp);
451     size = n + 1;
452     notEmpty.signal();
453     } finally {
454     lock.unlock();
455     }
456     return true;
457     }
458    
459     /**
460     * Inserts the specified element into this priority queue.
461     * As the queue is unbounded, this method will never block.
462     *
463     * @param e the element to add
464     * @throws ClassCastException if the specified element cannot be compared
465     * with elements currently in the priority queue according to the
466     * priority queue's ordering
467     * @throws NullPointerException if the specified element is null
468     */
469     public void put(E e) {
470     offer(e); // never need to block
471     }
472    
473     /**
474     * Inserts the specified element into this priority queue.
475     * As the queue is unbounded, this method will never block or
476     * return {@code false}.
477     *
478     * @param e the element to add
479     * @param timeout This parameter is ignored as the method never blocks
480     * @param unit This parameter is ignored as the method never blocks
481     * @return {@code true} (as specified by
482     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
483     * @throws ClassCastException if the specified element cannot be compared
484     * with elements currently in the priority queue according to the
485     * priority queue's ordering
486     * @throws NullPointerException if the specified element is null
487     */
488     public boolean offer(E e, long timeout, TimeUnit unit) {
489     return offer(e); // never need to block
490     }
491    
492     public E poll() {
493     final ReentrantLock lock = this.lock;
494     lock.lock();
495     try {
496     return dequeue();
497     } finally {
498     lock.unlock();
499     }
500     }
501    
502     public E take() throws InterruptedException {
503     final ReentrantLock lock = this.lock;
504     lock.lockInterruptibly();
505     E result;
506     try {
507     while ( (result = dequeue()) == null)
508     notEmpty.await();
509     } finally {
510     lock.unlock();
511     }
512     return result;
513     }
514    
515     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
516     long nanos = unit.toNanos(timeout);
517     final ReentrantLock lock = this.lock;
518     lock.lockInterruptibly();
519     E result;
520     try {
521     while ( (result = dequeue()) == null && nanos > 0)
522     nanos = notEmpty.awaitNanos(nanos);
523     } finally {
524     lock.unlock();
525     }
526     return result;
527     }
528    
529     public E peek() {
530     final ReentrantLock lock = this.lock;
531     lock.lock();
532     try {
533     return (size == 0) ? null : (E) queue[0];
534     } finally {
535     lock.unlock();
536     }
537     }
538    
539     /**
540     * Returns the comparator used to order the elements in this queue,
541     * or {@code null} if this queue uses the {@linkplain Comparable
542     * natural ordering} of its elements.
543     *
544     * @return the comparator used to order the elements in this queue,
545     * or {@code null} if this queue uses the natural
546     * ordering of its elements
547     */
548     public Comparator<? super E> comparator() {
549     return comparator;
550     }
551    
552     public int size() {
553     final ReentrantLock lock = this.lock;
554     lock.lock();
555     try {
556     return size;
557     } finally {
558     lock.unlock();
559     }
560     }
561    
562     /**
563     * Always returns {@code Integer.MAX_VALUE} because
564     * a {@code PriorityBlockingQueue} is not capacity constrained.
565     * @return {@code Integer.MAX_VALUE} always
566     */
567     public int remainingCapacity() {
568     return Integer.MAX_VALUE;
569     }
570    
571     private int indexOf(Object o) {
572     if (o != null) {
573     Object[] array = queue;
574     int n = size;
575     for (int i = 0; i < n; i++)
576     if (o.equals(array[i]))
577     return i;
578     }
579     return -1;
580     }
581    
582     /**
583     * Removes the ith element from queue.
584     */
585     private void removeAt(int i) {
586     Object[] array = queue;
587     int n = size - 1;
588     if (n == i) // removed last element
589     array[i] = null;
590     else {
591     E moved = (E) array[n];
592     array[n] = null;
593     Comparator<? super E> cmp = comparator;
594     if (cmp == null)
595     siftDownComparable(i, moved, array, n);
596     else
597     siftDownUsingComparator(i, moved, array, n, cmp);
598     if (array[i] == moved) {
599     if (cmp == null)
600     siftUpComparable(i, moved, array);
601     else
602     siftUpUsingComparator(i, moved, array, cmp);
603     }
604     }
605     size = n;
606     }
607    
608     /**
609     * Removes a single instance of the specified element from this queue,
610     * if it is present. More formally, removes an element {@code e} such
611     * that {@code o.equals(e)}, if this queue contains one or more such
612     * elements. Returns {@code true} if and only if this queue contained
613     * the specified element (or equivalently, if this queue changed as a
614     * result of the call).
615     *
616     * @param o element to be removed from this queue, if present
617     * @return {@code true} if this queue changed as a result of the call
618     */
619     public boolean remove(Object o) {
620     final ReentrantLock lock = this.lock;
621     lock.lock();
622     try {
623     int i = indexOf(o);
624     if (i == -1)
625     return false;
626     removeAt(i);
627     return true;
628     } finally {
629     lock.unlock();
630     }
631     }
632    
633     /**
634     * Identity-based version for use in Itr.remove
635     */
636     void removeEQ(Object o) {
637     final ReentrantLock lock = this.lock;
638     lock.lock();
639     try {
640     Object[] array = queue;
641     for (int i = 0, n = size; i < n; i++) {
642     if (o == array[i]) {
643     removeAt(i);
644     break;
645     }
646     }
647     } finally {
648     lock.unlock();
649     }
650     }
651    
652     /**
653     * Returns {@code true} if this queue contains the specified element.
654     * More formally, returns {@code true} if and only if this queue contains
655     * at least one element {@code e} such that {@code o.equals(e)}.
656     *
657     * @param o object to be checked for containment in this queue
658     * @return {@code true} if this queue contains the specified element
659     */
660     public boolean contains(Object o) {
661     final ReentrantLock lock = this.lock;
662     lock.lock();
663     try {
664     return indexOf(o) != -1;
665     } finally {
666     lock.unlock();
667     }
668     }
669    
670     /**
671     * Returns an array containing all of the elements in this queue.
672     * The returned array elements are in no particular order.
673     *
674     * <p>The returned array will be "safe" in that no references to it are
675     * maintained by this queue. (In other words, this method must allocate
676     * a new array). The caller is thus free to modify the returned array.
677     *
678     * <p>This method acts as bridge between array-based and collection-based
679     * APIs.
680     *
681     * @return an array containing all of the elements in this queue
682     */
683     public Object[] toArray() {
684     final ReentrantLock lock = this.lock;
685     lock.lock();
686     try {
687     return Arrays.copyOf(queue, size);
688     } finally {
689     lock.unlock();
690     }
691     }
692    
693     public String toString() {
694     final ReentrantLock lock = this.lock;
695     lock.lock();
696     try {
697     int n = size;
698     if (n == 0)
699     return "[]";
700     StringBuilder sb = new StringBuilder();
701     sb.append('[');
702     for (int i = 0; i < n; ++i) {
703     Object e = queue[i];
704     sb.append(e == this ? "(this Collection)" : e);
705     if (i != n - 1)
706     sb.append(',').append(' ');
707     }
708     return sb.append(']').toString();
709     } finally {
710     lock.unlock();
711     }
712     }
713    
714     /**
715     * @throws UnsupportedOperationException {@inheritDoc}
716     * @throws ClassCastException {@inheritDoc}
717     * @throws NullPointerException {@inheritDoc}
718     * @throws IllegalArgumentException {@inheritDoc}
719     */
720     public int drainTo(Collection<? super E> c) {
721     return drainTo(c, Integer.MAX_VALUE);
722     }
723    
724     /**
725     * @throws UnsupportedOperationException {@inheritDoc}
726     * @throws ClassCastException {@inheritDoc}
727     * @throws NullPointerException {@inheritDoc}
728     * @throws IllegalArgumentException {@inheritDoc}
729     */
730     public int drainTo(Collection<? super E> c, int maxElements) {
731     if (c == null)
732     throw new NullPointerException();
733     if (c == this)
734     throw new IllegalArgumentException();
735     if (maxElements <= 0)
736     return 0;
737     final ReentrantLock lock = this.lock;
738     lock.lock();
739     try {
740     int n = Math.min(size, maxElements);
741     for (int i = 0; i < n; i++) {
742     c.add((E) queue[0]); // In this order, in case add() throws.
743     dequeue();
744     }
745     return n;
746     } finally {
747     lock.unlock();
748     }
749     }
750    
751     /**
752     * Atomically removes all of the elements from this queue.
753     * The queue will be empty after this call returns.
754     */
755     public void clear() {
756     final ReentrantLock lock = this.lock;
757     lock.lock();
758     try {
759     Object[] array = queue;
760     int n = size;
761     size = 0;
762     for (int i = 0; i < n; i++)
763     array[i] = null;
764     } finally {
765     lock.unlock();
766     }
767     }
768    
769     /**
770     * Returns an array containing all of the elements in this queue; the
771     * runtime type of the returned array is that of the specified array.
772     * The returned array elements are in no particular order.
773     * If the queue fits in the specified array, it is returned therein.
774     * Otherwise, a new array is allocated with the runtime type of the
775     * specified array and the size of this queue.
776     *
777     * <p>If this queue fits in the specified array with room to spare
778     * (i.e., the array has more elements than this queue), the element in
779     * the array immediately following the end of the queue is set to
780     * {@code null}.
781     *
782     * <p>Like the {@link #toArray()} method, this method acts as bridge between
783     * array-based and collection-based APIs. Further, this method allows
784     * precise control over the runtime type of the output array, and may,
785     * under certain circumstances, be used to save allocation costs.
786     *
787     * <p>Suppose {@code x} is a queue known to contain only strings.
788     * The following code can be used to dump the queue into a newly
789     * allocated array of {@code String}:
790     *
791     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
792     *
793     * Note that {@code toArray(new Object[0])} is identical in function to
794     * {@code toArray()}.
795     *
796     * @param a the array into which the elements of the queue are to
797     * be stored, if it is big enough; otherwise, a new array of the
798     * same runtime type is allocated for this purpose
799     * @return an array containing all of the elements in this queue
800     * @throws ArrayStoreException if the runtime type of the specified array
801     * is not a supertype of the runtime type of every element in
802     * this queue
803     * @throws NullPointerException if the specified array is null
804     */
805     public <T> T[] toArray(T[] a) {
806     final ReentrantLock lock = this.lock;
807     lock.lock();
808     try {
809     int n = size;
810     if (a.length < n)
811     // Make a new array of a's runtime type, but my contents:
812     return (T[]) Arrays.copyOf(queue, size, a.getClass());
813     System.arraycopy(queue, 0, a, 0, n);
814     if (a.length > n)
815     a[n] = null;
816     return a;
817     } finally {
818     lock.unlock();
819     }
820     }
821    
822     /**
823     * Returns an iterator over the elements in this queue. The
824     * iterator does not return the elements in any particular order.
825     *
826     * <p>The returned iterator is a "weakly consistent" iterator that
827     * will never throw {@link java.util.ConcurrentModificationException
828     * ConcurrentModificationException}, and guarantees to traverse
829     * elements as they existed upon construction of the iterator, and
830     * may (but is not guaranteed to) reflect any modifications
831     * subsequent to construction.
832     *
833     * @return an iterator over the elements in this queue
834     */
835     public Iterator<E> iterator() {
836     return new Itr(toArray());
837     }
838    
839     /**
840     * Snapshot iterator that works off copy of underlying q array.
841     */
842     final class Itr implements Iterator<E> {
843     final Object[] array; // Array of all elements
844     int cursor; // index of next element to return
845     int lastRet; // index of last element, or -1 if no such
846    
847     Itr(Object[] array) {
848     lastRet = -1;
849     this.array = array;
850     }
851    
852     public boolean hasNext() {
853     return cursor < array.length;
854     }
855    
856     public E next() {
857     if (cursor >= array.length)
858     throw new NoSuchElementException();
859     lastRet = cursor;
860     return (E)array[cursor++];
861     }
862    
863     public void remove() {
864     if (lastRet < 0)
865     throw new IllegalStateException();
866     removeEQ(array[lastRet]);
867     lastRet = -1;
868     }
869     }
870    
871     /**
872     * Saves this queue to a stream (that is, serializes it).
873     *
874     * For compatibility with previous version of this class, elements
875     * are first copied to a java.util.PriorityQueue, which is then
876     * serialized.
877     */
878     private void writeObject(java.io.ObjectOutputStream s)
879     throws java.io.IOException {
880     lock.lock();
881     try {
882     // avoid zero capacity argument
883     q = new PriorityQueue<E>(Math.max(size, 1), comparator);
884     q.addAll(this);
885     s.defaultWriteObject();
886     } finally {
887     q = null;
888     lock.unlock();
889     }
890     }
891    
892     /**
893     * Reconstitutes this queue from a stream (that is, deserializes it).
894     */
895     private void readObject(java.io.ObjectInputStream s)
896     throws java.io.IOException, ClassNotFoundException {
897     try {
898     s.defaultReadObject();
899     this.queue = new Object[q.size()];
900     comparator = q.comparator();
901     addAll(q);
902     } finally {
903     q = null;
904     }
905     }
906    
907     // Unsafe mechanics
908     private static final sun.misc.Unsafe UNSAFE;
909     private static final long allocationSpinLockOffset;
910     static {
911     try {
912     UNSAFE = sun.misc.Unsafe.getUnsafe();
913     Class<?> k = PriorityBlockingQueue.class;
914     allocationSpinLockOffset = UNSAFE.objectFieldOffset
915     (k.getDeclaredField("allocationSpinLock"));
916     } catch (Exception e) {
917     throw new Error(e);
918     }
919     }
920     }