ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/SynchronousQueue.java
Revision: 1.5
Committed: Tue Feb 5 19:54:07 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.4: +3 -3 lines
Log Message:
javadoc style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5     * http://creativecommons.org/publicdomain/zero/1.0/
6     */
7    
8     package java.util.concurrent;
9     import java.util.concurrent.locks.LockSupport;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.*;
12    
13     /**
14     * A {@linkplain BlockingQueue blocking queue} in which each insert
15     * operation must wait for a corresponding remove operation by another
16     * thread, and vice versa. A synchronous queue does not have any
17     * internal capacity, not even a capacity of one. You cannot
18 jsr166 1.3 * {@code peek} at a synchronous queue because an element is only
19 dl 1.1 * present when you try to remove it; you cannot insert an element
20     * (using any method) unless another thread is trying to remove it;
21     * you cannot iterate as there is nothing to iterate. The
22     * <em>head</em> of the queue is the element that the first queued
23     * inserting thread is trying to add to the queue; if there is no such
24     * queued thread then no element is available for removal and
25 jsr166 1.3 * {@code poll()} will return {@code null}. For purposes of other
26     * {@code Collection} methods (for example {@code contains}), a
27     * {@code SynchronousQueue} acts as an empty collection. This queue
28     * does not permit {@code null} elements.
29 dl 1.1 *
30     * <p>Synchronous queues are similar to rendezvous channels used in
31     * CSP and Ada. They are well suited for handoff designs, in which an
32     * object running in one thread must sync up with an object running
33     * in another thread in order to hand it some information, event, or
34     * task.
35     *
36     * <p>This class supports an optional fairness policy for ordering
37     * waiting producer and consumer threads. By default, this ordering
38     * is not guaranteed. However, a queue constructed with fairness set
39 jsr166 1.3 * to {@code true} grants threads access in FIFO order.
40 dl 1.1 *
41     * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43     * Iterator} interfaces.
44     *
45     * <p>This class is a member of the
46     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47     * Java Collections Framework</a>.
48     *
49     * @since 1.5
50     * @author Doug Lea and Bill Scherer and Michael Scott
51     * @param <E> the type of elements held in this collection
52     */
53     public class SynchronousQueue<E> extends AbstractQueue<E>
54     implements BlockingQueue<E>, java.io.Serializable {
55     private static final long serialVersionUID = -3223113410248163686L;
56    
57     /*
58     * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node. The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96     * 1. The original algorithms used bit-marked pointers, but
97     * the ones here use mode bits in nodes, leading to a number
98     * of further adaptations.
99     * 2. SynchronousQueues must block threads waiting to become
100     * fulfilled.
101     * 3. Support for cancellation via timeout and interrupts,
102     * including cleaning out cancelled nodes/threads
103     * from lists to avoid garbage retention and memory depletion.
104     *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks. For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123     * is taken to "forget" references to data, other nodes, and
124     * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130     * aggressively forgotten to avoid reachability of everything any
131     * node has ever referred to since arrival.
132     */
133    
134     /**
135     * Shared internal API for dual stacks and queues.
136     */
137     abstract static class Transferer<E> {
138     /**
139     * Performs a put or take.
140     *
141     * @param e if non-null, the item to be handed to a consumer;
142     * if null, requests that transfer return an item
143     * offered by producer.
144     * @param timed if this operation should timeout
145     * @param nanos the timeout, in nanoseconds
146     * @return if non-null, the item provided or received; if null,
147     * the operation failed due to timeout or interrupt --
148     * the caller can distinguish which of these occurred
149     * by checking Thread.interrupted.
150     */
151     abstract E transfer(E e, boolean timed, long nanos);
152     }
153    
154     /** The number of CPUs, for spin control */
155     static final int NCPUS = Runtime.getRuntime().availableProcessors();
156    
157     /**
158     * The number of times to spin before blocking in timed waits.
159     * The value is empirically derived -- it works well across a
160     * variety of processors and OSes. Empirically, the best value
161     * seems not to vary with number of CPUs (beyond 2) so is just
162     * a constant.
163     */
164     static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
165    
166     /**
167     * The number of times to spin before blocking in untimed waits.
168     * This is greater than timed value because untimed waits spin
169     * faster since they don't need to check times on each spin.
170     */
171     static final int maxUntimedSpins = maxTimedSpins * 16;
172    
173     /**
174     * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176     */
177     static final long spinForTimeoutThreshold = 1000L;
178    
179     /** Dual stack */
180     static final class TransferStack<E> extends Transferer<E> {
181     /*
182     * This extends Scherer-Scott dual stack algorithm, differing,
183     * among other ways, by using "covering" nodes rather than
184     * bit-marked pointers: Fulfilling operations push on marker
185     * nodes (with FULFILLING bit set in mode) to reserve a spot
186     * to match a waiting node.
187     */
188    
189     /* Modes for SNodes, ORed together in node fields */
190     /** Node represents an unfulfilled consumer */
191     static final int REQUEST = 0;
192     /** Node represents an unfulfilled producer */
193     static final int DATA = 1;
194     /** Node is fulfilling another unfulfilled DATA or REQUEST */
195     static final int FULFILLING = 2;
196    
197     /** Returns true if m has fulfilling bit set. */
198     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199    
200     /** Node class for TransferStacks. */
201     static final class SNode {
202     volatile SNode next; // next node in stack
203     volatile SNode match; // the node matched to this
204     volatile Thread waiter; // to control park/unpark
205     Object item; // data; or null for REQUESTs
206     int mode;
207     // Note: item and mode fields don't need to be volatile
208     // since they are always written before, and read after,
209     // other volatile/atomic operations.
210    
211     SNode(Object item) {
212     this.item = item;
213     }
214    
215     boolean casNext(SNode cmp, SNode val) {
216     return cmp == next &&
217     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
218     }
219    
220     /**
221     * Tries to match node s to this node, if so, waking up thread.
222     * Fulfillers call tryMatch to identify their waiters.
223     * Waiters block until they have been matched.
224     *
225     * @param s the node to match
226     * @return true if successfully matched to s
227     */
228     boolean tryMatch(SNode s) {
229     if (match == null &&
230     UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
231     Thread w = waiter;
232     if (w != null) { // waiters need at most one unpark
233     waiter = null;
234     LockSupport.unpark(w);
235     }
236     return true;
237     }
238     return match == s;
239     }
240    
241     /**
242     * Tries to cancel a wait by matching node to itself.
243     */
244     void tryCancel() {
245     UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
246     }
247    
248     boolean isCancelled() {
249     return match == this;
250     }
251    
252     // Unsafe mechanics
253     private static final sun.misc.Unsafe UNSAFE;
254     private static final long matchOffset;
255     private static final long nextOffset;
256    
257     static {
258     try {
259     UNSAFE = sun.misc.Unsafe.getUnsafe();
260     Class<?> k = SNode.class;
261     matchOffset = UNSAFE.objectFieldOffset
262     (k.getDeclaredField("match"));
263     nextOffset = UNSAFE.objectFieldOffset
264     (k.getDeclaredField("next"));
265     } catch (Exception e) {
266     throw new Error(e);
267     }
268     }
269     }
270    
271     /** The head (top) of the stack */
272     volatile SNode head;
273    
274     boolean casHead(SNode h, SNode nh) {
275     return h == head &&
276     UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
277     }
278    
279     /**
280     * Creates or resets fields of a node. Called only from transfer
281     * where the node to push on stack is lazily created and
282     * reused when possible to help reduce intervals between reads
283     * and CASes of head and to avoid surges of garbage when CASes
284     * to push nodes fail due to contention.
285     */
286     static SNode snode(SNode s, Object e, SNode next, int mode) {
287     if (s == null) s = new SNode(e);
288     s.mode = mode;
289     s.next = next;
290     return s;
291     }
292    
293     /**
294     * Puts or takes an item.
295     */
296     @SuppressWarnings("unchecked")
297     E transfer(E e, boolean timed, long nanos) {
298     /*
299     * Basic algorithm is to loop trying one of three actions:
300     *
301     * 1. If apparently empty or already containing nodes of same
302     * mode, try to push node on stack and wait for a match,
303     * returning it, or null if cancelled.
304     *
305     * 2. If apparently containing node of complementary mode,
306     * try to push a fulfilling node on to stack, match
307     * with corresponding waiting node, pop both from
308     * stack, and return matched item. The matching or
309     * unlinking might not actually be necessary because of
310     * other threads performing action 3:
311     *
312     * 3. If top of stack already holds another fulfilling node,
313     * help it out by doing its match and/or pop
314     * operations, and then continue. The code for helping
315     * is essentially the same as for fulfilling, except
316     * that it doesn't return the item.
317     */
318    
319     SNode s = null; // constructed/reused as needed
320     int mode = (e == null) ? REQUEST : DATA;
321    
322     for (;;) {
323     SNode h = head;
324     if (h == null || h.mode == mode) { // empty or same-mode
325     if (timed && nanos <= 0) { // can't wait
326     if (h != null && h.isCancelled())
327     casHead(h, h.next); // pop cancelled node
328     else
329     return null;
330     } else if (casHead(h, s = snode(s, e, h, mode))) {
331     SNode m = awaitFulfill(s, timed, nanos);
332     if (m == s) { // wait was cancelled
333     clean(s);
334     return null;
335     }
336     if ((h = head) != null && h.next == s)
337     casHead(h, s.next); // help s's fulfiller
338     return (E) ((mode == REQUEST) ? m.item : s.item);
339     }
340     } else if (!isFulfilling(h.mode)) { // try to fulfill
341     if (h.isCancelled()) // already cancelled
342     casHead(h, h.next); // pop and retry
343     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
344     for (;;) { // loop until matched or waiters disappear
345     SNode m = s.next; // m is s's match
346     if (m == null) { // all waiters are gone
347     casHead(s, null); // pop fulfill node
348     s = null; // use new node next time
349     break; // restart main loop
350     }
351     SNode mn = m.next;
352     if (m.tryMatch(s)) {
353     casHead(s, mn); // pop both s and m
354     return (E) ((mode == REQUEST) ? m.item : s.item);
355     } else // lost match
356     s.casNext(m, mn); // help unlink
357     }
358     }
359     } else { // help a fulfiller
360     SNode m = h.next; // m is h's match
361     if (m == null) // waiter is gone
362     casHead(h, null); // pop fulfilling node
363     else {
364     SNode mn = m.next;
365     if (m.tryMatch(h)) // help match
366     casHead(h, mn); // pop both h and m
367     else // lost match
368     h.casNext(m, mn); // help unlink
369     }
370     }
371     }
372     }
373    
374     /**
375     * Spins/blocks until node s is matched by a fulfill operation.
376     *
377     * @param s the waiting node
378     * @param timed true if timed wait
379     * @param nanos timeout value
380     * @return matched node, or s if cancelled
381     */
382     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
383     /*
384     * When a node/thread is about to block, it sets its waiter
385     * field and then rechecks state at least one more time
386     * before actually parking, thus covering race vs
387     * fulfiller noticing that waiter is non-null so should be
388     * woken.
389     *
390     * When invoked by nodes that appear at the point of call
391     * to be at the head of the stack, calls to park are
392     * preceded by spins to avoid blocking when producers and
393     * consumers are arriving very close in time. This can
394     * happen enough to bother only on multiprocessors.
395     *
396     * The order of checks for returning out of main loop
397     * reflects fact that interrupts have precedence over
398     * normal returns, which have precedence over
399     * timeouts. (So, on timeout, one last check for match is
400     * done before giving up.) Except that calls from untimed
401     * SynchronousQueue.{poll/offer} don't check interrupts
402     * and don't wait at all, so are trapped in transfer
403     * method rather than calling awaitFulfill.
404     */
405     final long deadline = timed ? System.nanoTime() + nanos : 0L;
406     Thread w = Thread.currentThread();
407     int spins = (shouldSpin(s) ?
408     (timed ? maxTimedSpins : maxUntimedSpins) : 0);
409     for (;;) {
410     if (w.isInterrupted())
411     s.tryCancel();
412     SNode m = s.match;
413     if (m != null)
414     return m;
415     if (timed) {
416     nanos = deadline - System.nanoTime();
417     if (nanos <= 0L) {
418     s.tryCancel();
419     continue;
420     }
421     }
422     if (spins > 0)
423     spins = shouldSpin(s) ? (spins-1) : 0;
424     else if (s.waiter == null)
425     s.waiter = w; // establish waiter so can park next iter
426     else if (!timed)
427     LockSupport.park(this);
428     else if (nanos > spinForTimeoutThreshold)
429     LockSupport.parkNanos(this, nanos);
430     }
431     }
432    
433     /**
434     * Returns true if node s is at head or there is an active
435     * fulfiller.
436     */
437     boolean shouldSpin(SNode s) {
438     SNode h = head;
439     return (h == s || h == null || isFulfilling(h.mode));
440     }
441    
442     /**
443     * Unlinks s from the stack.
444     */
445     void clean(SNode s) {
446     s.item = null; // forget item
447     s.waiter = null; // forget thread
448    
449     /*
450     * At worst we may need to traverse entire stack to unlink
451     * s. If there are multiple concurrent calls to clean, we
452     * might not see s if another thread has already removed
453     * it. But we can stop when we see any node known to
454     * follow s. We use s.next unless it too is cancelled, in
455     * which case we try the node one past. We don't check any
456     * further because we don't want to doubly traverse just to
457     * find sentinel.
458     */
459    
460     SNode past = s.next;
461     if (past != null && past.isCancelled())
462     past = past.next;
463    
464     // Absorb cancelled nodes at head
465     SNode p;
466     while ((p = head) != null && p != past && p.isCancelled())
467     casHead(p, p.next);
468    
469     // Unsplice embedded nodes
470     while (p != null && p != past) {
471     SNode n = p.next;
472     if (n != null && n.isCancelled())
473     p.casNext(n, n.next);
474     else
475     p = n;
476     }
477     }
478    
479     // Unsafe mechanics
480     private static final sun.misc.Unsafe UNSAFE;
481     private static final long headOffset;
482     static {
483     try {
484     UNSAFE = sun.misc.Unsafe.getUnsafe();
485     Class<?> k = TransferStack.class;
486     headOffset = UNSAFE.objectFieldOffset
487     (k.getDeclaredField("head"));
488     } catch (Exception e) {
489     throw new Error(e);
490     }
491     }
492     }
493    
494     /** Dual Queue */
495     static final class TransferQueue<E> extends Transferer<E> {
496     /*
497     * This extends Scherer-Scott dual queue algorithm, differing,
498     * among other ways, by using modes within nodes rather than
499     * marked pointers. The algorithm is a little simpler than
500     * that for stacks because fulfillers do not need explicit
501     * nodes, and matching is done by CAS'ing QNode.item field
502     * from non-null to null (for put) or vice versa (for take).
503     */
504    
505     /** Node class for TransferQueue. */
506     static final class QNode {
507     volatile QNode next; // next node in queue
508     volatile Object item; // CAS'ed to or from null
509     volatile Thread waiter; // to control park/unpark
510     final boolean isData;
511    
512     QNode(Object item, boolean isData) {
513     this.item = item;
514     this.isData = isData;
515     }
516    
517     boolean casNext(QNode cmp, QNode val) {
518     return next == cmp &&
519     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
520     }
521    
522     boolean casItem(Object cmp, Object val) {
523     return item == cmp &&
524     UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
525     }
526    
527     /**
528     * Tries to cancel by CAS'ing ref to this as item.
529     */
530     void tryCancel(Object cmp) {
531     UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
532     }
533    
534     boolean isCancelled() {
535     return item == this;
536     }
537    
538     /**
539     * Returns true if this node is known to be off the queue
540     * because its next pointer has been forgotten due to
541     * an advanceHead operation.
542     */
543     boolean isOffList() {
544     return next == this;
545     }
546    
547     // Unsafe mechanics
548     private static final sun.misc.Unsafe UNSAFE;
549     private static final long itemOffset;
550     private static final long nextOffset;
551    
552     static {
553     try {
554     UNSAFE = sun.misc.Unsafe.getUnsafe();
555     Class<?> k = QNode.class;
556     itemOffset = UNSAFE.objectFieldOffset
557     (k.getDeclaredField("item"));
558     nextOffset = UNSAFE.objectFieldOffset
559     (k.getDeclaredField("next"));
560     } catch (Exception e) {
561     throw new Error(e);
562     }
563     }
564     }
565    
566     /** Head of queue */
567     transient volatile QNode head;
568     /** Tail of queue */
569     transient volatile QNode tail;
570     /**
571     * Reference to a cancelled node that might not yet have been
572     * unlinked from queue because it was the last inserted node
573 jsr166 1.4 * when it was cancelled.
574 dl 1.1 */
575     transient volatile QNode cleanMe;
576    
577     TransferQueue() {
578     QNode h = new QNode(null, false); // initialize to dummy node.
579     head = h;
580     tail = h;
581     }
582    
583     /**
584     * Tries to cas nh as new head; if successful, unlink
585     * old head's next node to avoid garbage retention.
586     */
587     void advanceHead(QNode h, QNode nh) {
588     if (h == head &&
589     UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
590     h.next = h; // forget old next
591     }
592    
593     /**
594     * Tries to cas nt as new tail.
595     */
596     void advanceTail(QNode t, QNode nt) {
597     if (tail == t)
598     UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
599     }
600    
601     /**
602     * Tries to CAS cleanMe slot.
603     */
604     boolean casCleanMe(QNode cmp, QNode val) {
605     return cleanMe == cmp &&
606     UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
607     }
608    
609     /**
610     * Puts or takes an item.
611     */
612     @SuppressWarnings("unchecked")
613     E transfer(E e, boolean timed, long nanos) {
614     /* Basic algorithm is to loop trying to take either of
615     * two actions:
616     *
617     * 1. If queue apparently empty or holding same-mode nodes,
618     * try to add node to queue of waiters, wait to be
619     * fulfilled (or cancelled) and return matching item.
620     *
621     * 2. If queue apparently contains waiting items, and this
622     * call is of complementary mode, try to fulfill by CAS'ing
623     * item field of waiting node and dequeuing it, and then
624     * returning matching item.
625     *
626     * In each case, along the way, check for and try to help
627     * advance head and tail on behalf of other stalled/slow
628     * threads.
629     *
630     * The loop starts off with a null check guarding against
631     * seeing uninitialized head or tail values. This never
632     * happens in current SynchronousQueue, but could if
633     * callers held non-volatile/final ref to the
634     * transferer. The check is here anyway because it places
635     * null checks at top of loop, which is usually faster
636     * than having them implicitly interspersed.
637     */
638    
639     QNode s = null; // constructed/reused as needed
640     boolean isData = (e != null);
641    
642     for (;;) {
643     QNode t = tail;
644     QNode h = head;
645     if (t == null || h == null) // saw uninitialized value
646     continue; // spin
647    
648     if (h == t || t.isData == isData) { // empty or same-mode
649     QNode tn = t.next;
650     if (t != tail) // inconsistent read
651     continue;
652     if (tn != null) { // lagging tail
653     advanceTail(t, tn);
654     continue;
655     }
656     if (timed && nanos <= 0) // can't wait
657     return null;
658     if (s == null)
659     s = new QNode(e, isData);
660     if (!t.casNext(null, s)) // failed to link in
661     continue;
662    
663     advanceTail(t, s); // swing tail and wait
664     Object x = awaitFulfill(s, e, timed, nanos);
665     if (x == s) { // wait was cancelled
666     clean(t, s);
667     return null;
668     }
669    
670     if (!s.isOffList()) { // not already unlinked
671     advanceHead(t, s); // unlink if head
672     if (x != null) // and forget fields
673     s.item = s;
674     s.waiter = null;
675     }
676     return (x != null) ? (E)x : e;
677    
678     } else { // complementary-mode
679     QNode m = h.next; // node to fulfill
680     if (t != tail || m == null || h != head)
681     continue; // inconsistent read
682    
683     Object x = m.item;
684     if (isData == (x != null) || // m already fulfilled
685     x == m || // m cancelled
686     !m.casItem(x, e)) { // lost CAS
687     advanceHead(h, m); // dequeue and retry
688     continue;
689     }
690    
691     advanceHead(h, m); // successfully fulfilled
692     LockSupport.unpark(m.waiter);
693     return (x != null) ? (E)x : e;
694     }
695     }
696     }
697    
698     /**
699     * Spins/blocks until node s is fulfilled.
700     *
701     * @param s the waiting node
702     * @param e the comparison value for checking match
703     * @param timed true if timed wait
704     * @param nanos timeout value
705     * @return matched item, or s if cancelled
706     */
707     Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
708     /* Same idea as TransferStack.awaitFulfill */
709     final long deadline = timed ? System.nanoTime() + nanos : 0L;
710     Thread w = Thread.currentThread();
711     int spins = ((head.next == s) ?
712     (timed ? maxTimedSpins : maxUntimedSpins) : 0);
713     for (;;) {
714     if (w.isInterrupted())
715     s.tryCancel(e);
716     Object x = s.item;
717     if (x != e)
718     return x;
719     if (timed) {
720     nanos = deadline - System.nanoTime();
721     if (nanos <= 0L) {
722     s.tryCancel(e);
723     continue;
724     }
725     }
726     if (spins > 0)
727     --spins;
728     else if (s.waiter == null)
729     s.waiter = w;
730     else if (!timed)
731     LockSupport.park(this);
732     else if (nanos > spinForTimeoutThreshold)
733     LockSupport.parkNanos(this, nanos);
734     }
735     }
736    
737     /**
738     * Gets rid of cancelled node s with original predecessor pred.
739     */
740     void clean(QNode pred, QNode s) {
741     s.waiter = null; // forget thread
742     /*
743     * At any given time, exactly one node on list cannot be
744     * deleted -- the last inserted node. To accommodate this,
745     * if we cannot delete s, we save its predecessor as
746     * "cleanMe", deleting the previously saved version
747     * first. At least one of node s or the node previously
748     * saved can always be deleted, so this always terminates.
749     */
750     while (pred.next == s) { // Return early if already unlinked
751     QNode h = head;
752     QNode hn = h.next; // Absorb cancelled first node as head
753     if (hn != null && hn.isCancelled()) {
754     advanceHead(h, hn);
755     continue;
756     }
757     QNode t = tail; // Ensure consistent read for tail
758     if (t == h)
759     return;
760     QNode tn = t.next;
761     if (t != tail)
762     continue;
763     if (tn != null) {
764     advanceTail(t, tn);
765     continue;
766     }
767     if (s != t) { // If not tail, try to unsplice
768     QNode sn = s.next;
769     if (sn == s || pred.casNext(s, sn))
770     return;
771     }
772     QNode dp = cleanMe;
773     if (dp != null) { // Try unlinking previous cancelled node
774     QNode d = dp.next;
775     QNode dn;
776     if (d == null || // d is gone or
777     d == dp || // d is off list or
778     !d.isCancelled() || // d not cancelled or
779     (d != t && // d not tail and
780     (dn = d.next) != null && // has successor
781     dn != d && // that is on list
782     dp.casNext(d, dn))) // d unspliced
783     casCleanMe(dp, null);
784     if (dp == pred)
785     return; // s is already saved node
786     } else if (casCleanMe(null, pred))
787     return; // Postpone cleaning s
788     }
789     }
790    
791     private static final sun.misc.Unsafe UNSAFE;
792     private static final long headOffset;
793     private static final long tailOffset;
794     private static final long cleanMeOffset;
795     static {
796     try {
797     UNSAFE = sun.misc.Unsafe.getUnsafe();
798     Class<?> k = TransferQueue.class;
799     headOffset = UNSAFE.objectFieldOffset
800     (k.getDeclaredField("head"));
801     tailOffset = UNSAFE.objectFieldOffset
802     (k.getDeclaredField("tail"));
803     cleanMeOffset = UNSAFE.objectFieldOffset
804     (k.getDeclaredField("cleanMe"));
805     } catch (Exception e) {
806     throw new Error(e);
807     }
808     }
809     }
810    
811     /**
812     * The transferer. Set only in constructor, but cannot be declared
813     * as final without further complicating serialization. Since
814     * this is accessed only at most once per public method, there
815     * isn't a noticeable performance penalty for using volatile
816     * instead of final here.
817     */
818     private transient volatile Transferer<E> transferer;
819    
820     /**
821 jsr166 1.3 * Creates a {@code SynchronousQueue} with nonfair access policy.
822 dl 1.1 */
823     public SynchronousQueue() {
824     this(false);
825     }
826    
827     /**
828 jsr166 1.3 * Creates a {@code SynchronousQueue} with the specified fairness policy.
829 dl 1.1 *
830     * @param fair if true, waiting threads contend in FIFO order for
831     * access; otherwise the order is unspecified.
832     */
833     public SynchronousQueue(boolean fair) {
834     transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
835     }
836    
837     /**
838     * Adds the specified element to this queue, waiting if necessary for
839     * another thread to receive it.
840     *
841     * @throws InterruptedException {@inheritDoc}
842     * @throws NullPointerException {@inheritDoc}
843     */
844     public void put(E e) throws InterruptedException {
845     if (e == null) throw new NullPointerException();
846     if (transferer.transfer(e, false, 0) == null) {
847     Thread.interrupted();
848     throw new InterruptedException();
849     }
850     }
851    
852     /**
853     * Inserts the specified element into this queue, waiting if necessary
854     * up to the specified wait time for another thread to receive it.
855     *
856 jsr166 1.3 * @return {@code true} if successful, or {@code false} if the
857 jsr166 1.5 * specified waiting time elapses before a consumer appears
858 dl 1.1 * @throws InterruptedException {@inheritDoc}
859     * @throws NullPointerException {@inheritDoc}
860     */
861     public boolean offer(E e, long timeout, TimeUnit unit)
862     throws InterruptedException {
863     if (e == null) throw new NullPointerException();
864     if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
865     return true;
866     if (!Thread.interrupted())
867     return false;
868     throw new InterruptedException();
869     }
870    
871     /**
872     * Inserts the specified element into this queue, if another thread is
873     * waiting to receive it.
874     *
875     * @param e the element to add
876 jsr166 1.3 * @return {@code true} if the element was added to this queue, else
877     * {@code false}
878 dl 1.1 * @throws NullPointerException if the specified element is null
879     */
880     public boolean offer(E e) {
881     if (e == null) throw new NullPointerException();
882     return transferer.transfer(e, true, 0) != null;
883     }
884    
885     /**
886     * Retrieves and removes the head of this queue, waiting if necessary
887     * for another thread to insert it.
888     *
889     * @return the head of this queue
890     * @throws InterruptedException {@inheritDoc}
891     */
892     public E take() throws InterruptedException {
893     E e = transferer.transfer(null, false, 0);
894     if (e != null)
895     return e;
896     Thread.interrupted();
897     throw new InterruptedException();
898     }
899    
900     /**
901     * Retrieves and removes the head of this queue, waiting
902     * if necessary up to the specified wait time, for another thread
903     * to insert it.
904     *
905 jsr166 1.3 * @return the head of this queue, or {@code null} if the
906 jsr166 1.5 * specified waiting time elapses before an element is present
907 dl 1.1 * @throws InterruptedException {@inheritDoc}
908     */
909     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
910     E e = transferer.transfer(null, true, unit.toNanos(timeout));
911     if (e != null || !Thread.interrupted())
912     return e;
913     throw new InterruptedException();
914     }
915    
916     /**
917     * Retrieves and removes the head of this queue, if another thread
918     * is currently making an element available.
919     *
920 jsr166 1.3 * @return the head of this queue, or {@code null} if no
921 jsr166 1.5 * element is available
922 dl 1.1 */
923     public E poll() {
924     return transferer.transfer(null, true, 0);
925     }
926    
927     /**
928 jsr166 1.3 * Always returns {@code true}.
929     * A {@code SynchronousQueue} has no internal capacity.
930 dl 1.1 *
931 jsr166 1.3 * @return {@code true}
932 dl 1.1 */
933     public boolean isEmpty() {
934     return true;
935     }
936    
937     /**
938     * Always returns zero.
939 jsr166 1.3 * A {@code SynchronousQueue} has no internal capacity.
940 dl 1.1 *
941 jsr166 1.2 * @return zero
942 dl 1.1 */
943     public int size() {
944     return 0;
945     }
946    
947     /**
948     * Always returns zero.
949 jsr166 1.3 * A {@code SynchronousQueue} has no internal capacity.
950 dl 1.1 *
951 jsr166 1.2 * @return zero
952 dl 1.1 */
953     public int remainingCapacity() {
954     return 0;
955     }
956    
957     /**
958     * Does nothing.
959 jsr166 1.3 * A {@code SynchronousQueue} has no internal capacity.
960 dl 1.1 */
961     public void clear() {
962     }
963    
964     /**
965 jsr166 1.3 * Always returns {@code false}.
966     * A {@code SynchronousQueue} has no internal capacity.
967 dl 1.1 *
968     * @param o the element
969 jsr166 1.3 * @return {@code false}
970 dl 1.1 */
971     public boolean contains(Object o) {
972     return false;
973     }
974    
975     /**
976 jsr166 1.3 * Always returns {@code false}.
977     * A {@code SynchronousQueue} has no internal capacity.
978 dl 1.1 *
979     * @param o the element to remove
980 jsr166 1.3 * @return {@code false}
981 dl 1.1 */
982     public boolean remove(Object o) {
983     return false;
984     }
985    
986     /**
987 jsr166 1.3 * Returns {@code false} unless the given collection is empty.
988     * A {@code SynchronousQueue} has no internal capacity.
989 dl 1.1 *
990     * @param c the collection
991 jsr166 1.3 * @return {@code false} unless given collection is empty
992 dl 1.1 */
993     public boolean containsAll(Collection<?> c) {
994     return c.isEmpty();
995     }
996    
997     /**
998 jsr166 1.3 * Always returns {@code false}.
999     * A {@code SynchronousQueue} has no internal capacity.
1000 dl 1.1 *
1001     * @param c the collection
1002 jsr166 1.3 * @return {@code false}
1003 dl 1.1 */
1004     public boolean removeAll(Collection<?> c) {
1005     return false;
1006     }
1007    
1008     /**
1009 jsr166 1.3 * Always returns {@code false}.
1010     * A {@code SynchronousQueue} has no internal capacity.
1011 dl 1.1 *
1012     * @param c the collection
1013 jsr166 1.3 * @return {@code false}
1014 dl 1.1 */
1015     public boolean retainAll(Collection<?> c) {
1016     return false;
1017     }
1018    
1019     /**
1020 jsr166 1.3 * Always returns {@code null}.
1021     * A {@code SynchronousQueue} does not return elements
1022 dl 1.1 * unless actively waited on.
1023     *
1024 jsr166 1.3 * @return {@code null}
1025 dl 1.1 */
1026     public E peek() {
1027     return null;
1028     }
1029    
1030     /**
1031 jsr166 1.3 * Returns an empty iterator in which {@code hasNext} always returns
1032     * {@code false}.
1033 dl 1.1 *
1034     * @return an empty iterator
1035     */
1036     @SuppressWarnings("unchecked")
1037     public Iterator<E> iterator() {
1038     return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1039     }
1040    
1041     // Replicated from a previous version of Collections
1042     private static class EmptyIterator<E> implements Iterator<E> {
1043     static final EmptyIterator<Object> EMPTY_ITERATOR
1044     = new EmptyIterator<Object>();
1045    
1046     public boolean hasNext() { return false; }
1047     public E next() { throw new NoSuchElementException(); }
1048     public void remove() { throw new IllegalStateException(); }
1049     }
1050    
1051     /**
1052     * Returns a zero-length array.
1053     * @return a zero-length array
1054     */
1055     public Object[] toArray() {
1056     return new Object[0];
1057     }
1058    
1059     /**
1060 jsr166 1.3 * Sets the zeroeth element of the specified array to {@code null}
1061 dl 1.1 * (if the array has non-zero length) and returns it.
1062     *
1063     * @param a the array
1064     * @return the specified array
1065     * @throws NullPointerException if the specified array is null
1066     */
1067     public <T> T[] toArray(T[] a) {
1068     if (a.length > 0)
1069     a[0] = null;
1070     return a;
1071     }
1072    
1073     /**
1074     * @throws UnsupportedOperationException {@inheritDoc}
1075     * @throws ClassCastException {@inheritDoc}
1076     * @throws NullPointerException {@inheritDoc}
1077     * @throws IllegalArgumentException {@inheritDoc}
1078     */
1079     public int drainTo(Collection<? super E> c) {
1080     if (c == null)
1081     throw new NullPointerException();
1082     if (c == this)
1083     throw new IllegalArgumentException();
1084     int n = 0;
1085     for (E e; (e = poll()) != null;) {
1086     c.add(e);
1087     ++n;
1088     }
1089     return n;
1090     }
1091    
1092     /**
1093     * @throws UnsupportedOperationException {@inheritDoc}
1094     * @throws ClassCastException {@inheritDoc}
1095     * @throws NullPointerException {@inheritDoc}
1096     * @throws IllegalArgumentException {@inheritDoc}
1097     */
1098     public int drainTo(Collection<? super E> c, int maxElements) {
1099     if (c == null)
1100     throw new NullPointerException();
1101     if (c == this)
1102     throw new IllegalArgumentException();
1103     int n = 0;
1104     for (E e; n < maxElements && (e = poll()) != null;) {
1105     c.add(e);
1106     ++n;
1107     }
1108     return n;
1109     }
1110    
1111     /*
1112     * To cope with serialization strategy in the 1.5 version of
1113     * SynchronousQueue, we declare some unused classes and fields
1114     * that exist solely to enable serializability across versions.
1115     * These fields are never used, so are initialized only if this
1116     * object is ever serialized or deserialized.
1117     */
1118    
1119     @SuppressWarnings("serial")
1120     static class WaitQueue implements java.io.Serializable { }
1121     static class LifoWaitQueue extends WaitQueue {
1122     private static final long serialVersionUID = -3633113410248163686L;
1123     }
1124     static class FifoWaitQueue extends WaitQueue {
1125     private static final long serialVersionUID = -3623113410248163686L;
1126     }
1127     private ReentrantLock qlock;
1128     private WaitQueue waitingProducers;
1129     private WaitQueue waitingConsumers;
1130    
1131     /**
1132     * Saves this queue to a stream (that is, serializes it).
1133     */
1134     private void writeObject(java.io.ObjectOutputStream s)
1135     throws java.io.IOException {
1136     boolean fair = transferer instanceof TransferQueue;
1137     if (fair) {
1138     qlock = new ReentrantLock(true);
1139     waitingProducers = new FifoWaitQueue();
1140     waitingConsumers = new FifoWaitQueue();
1141     }
1142     else {
1143     qlock = new ReentrantLock();
1144     waitingProducers = new LifoWaitQueue();
1145     waitingConsumers = new LifoWaitQueue();
1146     }
1147     s.defaultWriteObject();
1148     }
1149    
1150     /**
1151     * Reconstitutes this queue from a stream (that is, deserializes it).
1152     */
1153     private void readObject(final java.io.ObjectInputStream s)
1154     throws java.io.IOException, ClassNotFoundException {
1155     s.defaultReadObject();
1156     if (waitingProducers instanceof FifoWaitQueue)
1157     transferer = new TransferQueue<E>();
1158     else
1159     transferer = new TransferStack<E>();
1160     }
1161    
1162     // Unsafe mechanics
1163     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1164     String field, Class<?> klazz) {
1165     try {
1166     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1167     } catch (NoSuchFieldException e) {
1168     // Convert Exception to corresponding Error
1169     NoSuchFieldError error = new NoSuchFieldError(field);
1170     error.initCause(e);
1171     throw error;
1172     }
1173     }
1174    
1175     }