ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Log Message:
Create src/jdk7 package

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.concurrent.atomic.AtomicInteger;
12     import java.util.*;
13    
14     /**
15     * An {@link ExecutorService} that executes each submitted task using
16     * one of possibly several pooled threads, normally configured
17     * using {@link Executors} factory methods.
18     *
19     * <p>Thread pools address two different problems: they usually
20     * provide improved performance when executing large numbers of
21     * asynchronous tasks, due to reduced per-task invocation overhead,
22     * and they provide a means of bounding and managing the resources,
23     * including threads, consumed when executing a collection of tasks.
24     * Each {@code ThreadPoolExecutor} also maintains some basic
25     * statistics, such as the number of completed tasks.
26     *
27     * <p>To be useful across a wide range of contexts, this class
28     * provides many adjustable parameters and extensibility
29     * hooks. However, programmers are urged to use the more convenient
30     * {@link Executors} factory methods {@link
31     * Executors#newCachedThreadPool} (unbounded thread pool, with
32     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
33     * (fixed size thread pool) and {@link
34     * Executors#newSingleThreadExecutor} (single background thread), that
35     * preconfigure settings for the most common usage
36     * scenarios. Otherwise, use the following guide when manually
37     * configuring and tuning this class:
38     *
39     * <dl>
40     *
41     * <dt>Core and maximum pool sizes</dt>
42     *
43     * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
44     * pool size (see {@link #getPoolSize})
45     * according to the bounds set by
46     * corePoolSize (see {@link #getCorePoolSize}) and
47     * maximumPoolSize (see {@link #getMaximumPoolSize}).
48     *
49     * When a new task is submitted in method {@link #execute}, and fewer
50     * than corePoolSize threads are running, a new thread is created to
51     * handle the request, even if other worker threads are idle. If
52     * there are more than corePoolSize but less than maximumPoolSize
53     * threads running, a new thread will be created only if the queue is
54     * full. By setting corePoolSize and maximumPoolSize the same, you
55     * create a fixed-size thread pool. By setting maximumPoolSize to an
56     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
57     * allow the pool to accommodate an arbitrary number of concurrent
58     * tasks. Most typically, core and maximum pool sizes are set only
59     * upon construction, but they may also be changed dynamically using
60     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
61     *
62     * <dt>On-demand construction</dt>
63     *
64     * <dd> By default, even core threads are initially created and
65     * started only when new tasks arrive, but this can be overridden
66     * dynamically using method {@link #prestartCoreThread} or {@link
67     * #prestartAllCoreThreads}. You probably want to prestart threads if
68     * you construct the pool with a non-empty queue. </dd>
69     *
70     * <dt>Creating new threads</dt>
71     *
72     * <dd>New threads are created using a {@link ThreadFactory}. If not
73     * otherwise specified, a {@link Executors#defaultThreadFactory} is
74     * used, that creates threads to all be in the same {@link
75     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
76     * non-daemon status. By supplying a different ThreadFactory, you can
77     * alter the thread's name, thread group, priority, daemon status,
78     * etc. If a {@code ThreadFactory} fails to create a thread when asked
79     * by returning null from {@code newThread}, the executor will
80     * continue, but might not be able to execute any tasks. Threads
81     * should possess the "modifyThread" {@code RuntimePermission}. If
82     * worker threads or other threads using the pool do not possess this
83     * permission, service may be degraded: configuration changes may not
84     * take effect in a timely manner, and a shutdown pool may remain in a
85     * state in which termination is possible but not completed.</dd>
86     *
87     * <dt>Keep-alive times</dt>
88     *
89     * <dd>If the pool currently has more than corePoolSize threads,
90     * excess threads will be terminated if they have been idle for more
91     * than the keepAliveTime (see {@link #getKeepAliveTime}). This
92     * provides a means of reducing resource consumption when the pool is
93     * not being actively used. If the pool becomes more active later, new
94     * threads will be constructed. This parameter can also be changed
95     * dynamically using method {@link #setKeepAliveTime}. Using a value
96     * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
97     * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100     * #allowCoreThreadTimeOut(boolean)} can be used to apply this
101     * time-out policy to core threads as well, so long as the
102     * keepAliveTime value is non-zero. </dd>
103     *
104     * <dt>Queuing</dt>
105     *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108     *
109     * <ul>
110     *
111     * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113     * rather than queuing.</li>
114     *
115     * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118     *
119     * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135     * avoid rejection of new submitted tasks. This in turn admits the
136     * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141     * capacity) will cause new tasks to wait in the queue when all
142     * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151     *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158     * lead to artificially low throughput. If tasks frequently block (for
159     * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161     * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164     *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171     * <dd> New tasks submitted in method {@link #execute} will be
172     * <em>rejected</em> when the Executor has been shut down, and also
173     * when the Executor uses finite bounds for both maximum threads and
174     * work queue capacity, and is saturated. In either case, the {@code
175     * execute} method invokes the {@link
176     * RejectedExecutionHandler#rejectedExecution} method of its {@link
177     * RejectedExecutionHandler}. Four predefined handler policies are
178     * provided:
179     *
180     * <ol>
181     *
182     * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
183     * handler throws a runtime {@link RejectedExecutionException} upon
184     * rejection. </li>
185     *
186     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
187     * that invokes {@code execute} itself runs the task. This provides a
188     * simple feedback control mechanism that will slow down the rate that
189     * new tasks are submitted. </li>
190     *
191     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
192     * cannot be executed is simply dropped. </li>
193     *
194     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
195     * executor is not shut down, the task at the head of the work queue
196     * is dropped, and then execution is retried (which can fail again,
197     * causing this to be repeated.) </li>
198     *
199     * </ol>
200     *
201     * It is possible to define and use other kinds of {@link
202     * RejectedExecutionHandler} classes. Doing so requires some care
203     * especially when policies are designed to work only under particular
204     * capacity or queuing policies. </dd>
205     *
206     * <dt>Hook methods</dt>
207     *
208     * <dd>This class provides {@code protected} overridable {@link
209     * #beforeExecute} and {@link #afterExecute} methods that are called
210     * before and after execution of each task. These can be used to
211     * manipulate the execution environment; for example, reinitializing
212     * ThreadLocals, gathering statistics, or adding log
213     * entries. Additionally, method {@link #terminated} can be overridden
214     * to perform any special processing that needs to be done once the
215     * Executor has fully terminated.
216     *
217     * <p>If hook or callback methods throw exceptions, internal worker
218     * threads may in turn fail and abruptly terminate.</dd>
219     *
220     * <dt>Queue maintenance</dt>
221     *
222     * <dd> Method {@link #getQueue} allows access to the work queue for
223     * purposes of monitoring and debugging. Use of this method for any
224     * other purpose is strongly discouraged. Two supplied methods,
225     * {@link #remove} and {@link #purge} are available to assist in
226     * storage reclamation when large numbers of queued tasks become
227     * cancelled.</dd>
228     *
229     * <dt>Finalization</dt>
230     *
231     * <dd> A pool that is no longer referenced in a program <em>AND</em>
232     * has no remaining threads will be {@code shutdown} automatically. If
233     * you would like to ensure that unreferenced pools are reclaimed even
234     * if users forget to call {@link #shutdown}, then you must arrange
235     * that unused threads eventually die, by setting appropriate
236     * keep-alive times, using a lower bound of zero core threads and/or
237     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
238     *
239     * </dl>
240     *
241     * <p><b>Extension example</b>. Most extensions of this class
242     * override one or more of the protected hook methods. For example,
243     * here is a subclass that adds a simple pause/resume feature:
244     *
245     * <pre> {@code
246     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
247     * private boolean isPaused;
248     * private ReentrantLock pauseLock = new ReentrantLock();
249     * private Condition unpaused = pauseLock.newCondition();
250     *
251     * public PausableThreadPoolExecutor(...) { super(...); }
252     *
253     * protected void beforeExecute(Thread t, Runnable r) {
254     * super.beforeExecute(t, r);
255     * pauseLock.lock();
256     * try {
257     * while (isPaused) unpaused.await();
258     * } catch (InterruptedException ie) {
259     * t.interrupt();
260     * } finally {
261     * pauseLock.unlock();
262     * }
263     * }
264     *
265     * public void pause() {
266     * pauseLock.lock();
267     * try {
268     * isPaused = true;
269     * } finally {
270     * pauseLock.unlock();
271     * }
272     * }
273     *
274     * public void resume() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = false;
278     * unpaused.signalAll();
279     * } finally {
280     * pauseLock.unlock();
281     * }
282     * }
283     * }}</pre>
284     *
285     * @since 1.5
286     * @author Doug Lea
287     */
288     public class ThreadPoolExecutor extends AbstractExecutorService {
289     /**
290     * The main pool control state, ctl, is an atomic integer packing
291     * two conceptual fields
292     * workerCount, indicating the effective number of threads
293     * runState, indicating whether running, shutting down etc
294     *
295     * In order to pack them into one int, we limit workerCount to
296     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
297     * billion) otherwise representable. If this is ever an issue in
298     * the future, the variable can be changed to be an AtomicLong,
299     * and the shift/mask constants below adjusted. But until the need
300     * arises, this code is a bit faster and simpler using an int.
301     *
302     * The workerCount is the number of workers that have been
303     * permitted to start and not permitted to stop. The value may be
304     * transiently different from the actual number of live threads,
305     * for example when a ThreadFactory fails to create a thread when
306     * asked, and when exiting threads are still performing
307     * bookkeeping before terminating. The user-visible pool size is
308     * reported as the current size of the workers set.
309     *
310     * The runState provides the main lifecycle control, taking on values:
311     *
312     * RUNNING: Accept new tasks and process queued tasks
313     * SHUTDOWN: Don't accept new tasks, but process queued tasks
314     * STOP: Don't accept new tasks, don't process queued tasks,
315     * and interrupt in-progress tasks
316     * TIDYING: All tasks have terminated, workerCount is zero,
317     * the thread transitioning to state TIDYING
318     * will run the terminated() hook method
319     * TERMINATED: terminated() has completed
320     *
321     * The numerical order among these values matters, to allow
322     * ordered comparisons. The runState monotonically increases over
323     * time, but need not hit each state. The transitions are:
324     *
325     * RUNNING -> SHUTDOWN
326     * On invocation of shutdown(), perhaps implicitly in finalize()
327     * (RUNNING or SHUTDOWN) -> STOP
328     * On invocation of shutdownNow()
329     * SHUTDOWN -> TIDYING
330     * When both queue and pool are empty
331     * STOP -> TIDYING
332     * When pool is empty
333     * TIDYING -> TERMINATED
334     * When the terminated() hook method has completed
335     *
336     * Threads waiting in awaitTermination() will return when the
337     * state reaches TERMINATED.
338     *
339     * Detecting the transition from SHUTDOWN to TIDYING is less
340     * straightforward than you'd like because the queue may become
341     * empty after non-empty and vice versa during SHUTDOWN state, but
342     * we can only terminate if, after seeing that it is empty, we see
343     * that workerCount is 0 (which sometimes entails a recheck -- see
344     * below).
345     */
346     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
347     private static final int COUNT_BITS = Integer.SIZE - 3;
348     private static final int CAPACITY = (1 << COUNT_BITS) - 1;
349    
350     // runState is stored in the high-order bits
351     private static final int RUNNING = -1 << COUNT_BITS;
352     private static final int SHUTDOWN = 0 << COUNT_BITS;
353     private static final int STOP = 1 << COUNT_BITS;
354     private static final int TIDYING = 2 << COUNT_BITS;
355     private static final int TERMINATED = 3 << COUNT_BITS;
356    
357     // Packing and unpacking ctl
358     private static int runStateOf(int c) { return c & ~CAPACITY; }
359     private static int workerCountOf(int c) { return c & CAPACITY; }
360     private static int ctlOf(int rs, int wc) { return rs | wc; }
361    
362     /*
363     * Bit field accessors that don't require unpacking ctl.
364     * These depend on the bit layout and on workerCount being never negative.
365     */
366    
367     private static boolean runStateLessThan(int c, int s) {
368     return c < s;
369     }
370    
371     private static boolean runStateAtLeast(int c, int s) {
372     return c >= s;
373     }
374    
375     private static boolean isRunning(int c) {
376     return c < SHUTDOWN;
377     }
378    
379     /**
380     * Attempt to CAS-increment the workerCount field of ctl.
381     */
382     private boolean compareAndIncrementWorkerCount(int expect) {
383     return ctl.compareAndSet(expect, expect + 1);
384     }
385    
386     /**
387     * Attempt to CAS-decrement the workerCount field of ctl.
388     */
389     private boolean compareAndDecrementWorkerCount(int expect) {
390     return ctl.compareAndSet(expect, expect - 1);
391     }
392    
393     /**
394     * Decrements the workerCount field of ctl. This is called only on
395     * abrupt termination of a thread (see processWorkerExit). Other
396     * decrements are performed within getTask.
397     */
398     private void decrementWorkerCount() {
399     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
400     }
401    
402     /**
403     * The queue used for holding tasks and handing off to worker
404     * threads. We do not require that workQueue.poll() returning
405     * null necessarily means that workQueue.isEmpty(), so rely
406     * solely on isEmpty to see if the queue is empty (which we must
407     * do for example when deciding whether to transition from
408     * SHUTDOWN to TIDYING). This accommodates special-purpose
409     * queues such as DelayQueues for which poll() is allowed to
410     * return null even if it may later return non-null when delays
411     * expire.
412     */
413     private final BlockingQueue<Runnable> workQueue;
414    
415     /**
416     * Lock held on access to workers set and related bookkeeping.
417     * While we could use a concurrent set of some sort, it turns out
418     * to be generally preferable to use a lock. Among the reasons is
419     * that this serializes interruptIdleWorkers, which avoids
420     * unnecessary interrupt storms, especially during shutdown.
421     * Otherwise exiting threads would concurrently interrupt those
422     * that have not yet interrupted. It also simplifies some of the
423     * associated statistics bookkeeping of largestPoolSize etc. We
424     * also hold mainLock on shutdown and shutdownNow, for the sake of
425     * ensuring workers set is stable while separately checking
426     * permission to interrupt and actually interrupting.
427     */
428     private final ReentrantLock mainLock = new ReentrantLock();
429    
430     /**
431     * Set containing all worker threads in pool. Accessed only when
432     * holding mainLock.
433     */
434     private final HashSet<Worker> workers = new HashSet<Worker>();
435    
436     /**
437     * Wait condition to support awaitTermination
438     */
439     private final Condition termination = mainLock.newCondition();
440    
441     /**
442     * Tracks largest attained pool size. Accessed only under
443     * mainLock.
444     */
445     private int largestPoolSize;
446    
447     /**
448     * Counter for completed tasks. Updated only on termination of
449     * worker threads. Accessed only under mainLock.
450     */
451     private long completedTaskCount;
452    
453     /*
454     * All user control parameters are declared as volatiles so that
455     * ongoing actions are based on freshest values, but without need
456     * for locking, since no internal invariants depend on them
457     * changing synchronously with respect to other actions.
458     */
459    
460     /**
461     * Factory for new threads. All threads are created using this
462     * factory (via method addWorker). All callers must be prepared
463     * for addWorker to fail, which may reflect a system or user's
464     * policy limiting the number of threads. Even though it is not
465     * treated as an error, failure to create threads may result in
466     * new tasks being rejected or existing ones remaining stuck in
467     * the queue.
468     *
469     * We go further and preserve pool invariants even in the face of
470     * errors such as OutOfMemoryError, that might be thrown while
471     * trying to create threads. Such errors are rather common due to
472     * the need to allocate a native stack in Thread#start, and users
473     * will want to perform clean pool shutdown to clean up. There
474     * will likely be enough memory available for the cleanup code to
475     * complete without encountering yet another OutOfMemoryError.
476     */
477     private volatile ThreadFactory threadFactory;
478    
479     /**
480     * Handler called when saturated or shutdown in execute.
481     */
482     private volatile RejectedExecutionHandler handler;
483    
484     /**
485     * Timeout in nanoseconds for idle threads waiting for work.
486     * Threads use this timeout when there are more than corePoolSize
487     * present or if allowCoreThreadTimeOut. Otherwise they wait
488     * forever for new work.
489     */
490     private volatile long keepAliveTime;
491    
492     /**
493     * If false (default), core threads stay alive even when idle.
494     * If true, core threads use keepAliveTime to time out waiting
495     * for work.
496     */
497     private volatile boolean allowCoreThreadTimeOut;
498    
499     /**
500     * Core pool size is the minimum number of workers to keep alive
501     * (and not allow to time out etc) unless allowCoreThreadTimeOut
502     * is set, in which case the minimum is zero.
503     */
504     private volatile int corePoolSize;
505    
506     /**
507     * Maximum pool size. Note that the actual maximum is internally
508     * bounded by CAPACITY.
509     */
510     private volatile int maximumPoolSize;
511    
512     /**
513     * The default rejected execution handler
514     */
515     private static final RejectedExecutionHandler defaultHandler =
516     new AbortPolicy();
517    
518     /**
519     * Permission required for callers of shutdown and shutdownNow.
520     * We additionally require (see checkShutdownAccess) that callers
521     * have permission to actually interrupt threads in the worker set
522     * (as governed by Thread.interrupt, which relies on
523     * ThreadGroup.checkAccess, which in turn relies on
524     * SecurityManager.checkAccess). Shutdowns are attempted only if
525     * these checks pass.
526     *
527     * All actual invocations of Thread.interrupt (see
528     * interruptIdleWorkers and interruptWorkers) ignore
529     * SecurityExceptions, meaning that the attempted interrupts
530     * silently fail. In the case of shutdown, they should not fail
531     * unless the SecurityManager has inconsistent policies, sometimes
532     * allowing access to a thread and sometimes not. In such cases,
533     * failure to actually interrupt threads may disable or delay full
534     * termination. Other uses of interruptIdleWorkers are advisory,
535     * and failure to actually interrupt will merely delay response to
536     * configuration changes so is not handled exceptionally.
537     */
538     private static final RuntimePermission shutdownPerm =
539     new RuntimePermission("modifyThread");
540    
541     /**
542     * Class Worker mainly maintains interrupt control state for
543     * threads running tasks, along with other minor bookkeeping.
544     * This class opportunistically extends AbstractQueuedSynchronizer
545     * to simplify acquiring and releasing a lock surrounding each
546     * task execution. This protects against interrupts that are
547     * intended to wake up a worker thread waiting for a task from
548     * instead interrupting a task being run. We implement a simple
549     * non-reentrant mutual exclusion lock rather than use
550     * ReentrantLock because we do not want worker tasks to be able to
551     * reacquire the lock when they invoke pool control methods like
552     * setCorePoolSize. Additionally, to suppress interrupts until
553     * the thread actually starts running tasks, we initialize lock
554     * state to a negative value, and clear it upon start (in
555     * runWorker).
556     */
557     private final class Worker
558     extends AbstractQueuedSynchronizer
559     implements Runnable
560     {
561     /**
562     * This class will never be serialized, but we provide a
563     * serialVersionUID to suppress a javac warning.
564     */
565     private static final long serialVersionUID = 6138294804551838833L;
566    
567     /** Thread this worker is running in. Null if factory fails. */
568     final Thread thread;
569     /** Initial task to run. Possibly null. */
570     Runnable firstTask;
571     /** Per-thread task counter */
572     volatile long completedTasks;
573    
574     /**
575     * Creates with given first task and thread from ThreadFactory.
576     * @param firstTask the first task (null if none)
577     */
578     Worker(Runnable firstTask) {
579     setState(-1); // inhibit interrupts until runWorker
580     this.firstTask = firstTask;
581     this.thread = getThreadFactory().newThread(this);
582     }
583    
584     /** Delegates main run loop to outer runWorker */
585     public void run() {
586     runWorker(this);
587     }
588    
589     // Lock methods
590     //
591     // The value 0 represents the unlocked state.
592     // The value 1 represents the locked state.
593    
594     protected boolean isHeldExclusively() {
595     return getState() != 0;
596     }
597    
598     protected boolean tryAcquire(int unused) {
599     if (compareAndSetState(0, 1)) {
600     setExclusiveOwnerThread(Thread.currentThread());
601     return true;
602     }
603     return false;
604     }
605    
606     protected boolean tryRelease(int unused) {
607     setExclusiveOwnerThread(null);
608     setState(0);
609     return true;
610     }
611    
612     public void lock() { acquire(1); }
613     public boolean tryLock() { return tryAcquire(1); }
614     public void unlock() { release(1); }
615     public boolean isLocked() { return isHeldExclusively(); }
616    
617     void interruptIfStarted() {
618     Thread t;
619     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
620     try {
621     t.interrupt();
622     } catch (SecurityException ignore) {
623     }
624     }
625     }
626     }
627    
628     /*
629     * Methods for setting control state
630     */
631    
632     /**
633     * Transitions runState to given target, or leaves it alone if
634     * already at least the given target.
635     *
636     * @param targetState the desired state, either SHUTDOWN or STOP
637     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
638     */
639     private void advanceRunState(int targetState) {
640     for (;;) {
641     int c = ctl.get();
642     if (runStateAtLeast(c, targetState) ||
643     ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
644     break;
645     }
646     }
647    
648     /**
649     * Transitions to TERMINATED state if either (SHUTDOWN and pool
650     * and queue empty) or (STOP and pool empty). If otherwise
651     * eligible to terminate but workerCount is nonzero, interrupts an
652     * idle worker to ensure that shutdown signals propagate. This
653     * method must be called following any action that might make
654     * termination possible -- reducing worker count or removing tasks
655     * from the queue during shutdown. The method is non-private to
656     * allow access from ScheduledThreadPoolExecutor.
657     */
658     final void tryTerminate() {
659     for (;;) {
660     int c = ctl.get();
661     if (isRunning(c) ||
662     runStateAtLeast(c, TIDYING) ||
663     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
664     return;
665     if (workerCountOf(c) != 0) { // Eligible to terminate
666     interruptIdleWorkers(ONLY_ONE);
667     return;
668     }
669    
670     final ReentrantLock mainLock = this.mainLock;
671     mainLock.lock();
672     try {
673     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
674     try {
675     terminated();
676     } finally {
677     ctl.set(ctlOf(TERMINATED, 0));
678     termination.signalAll();
679     }
680     return;
681     }
682     } finally {
683     mainLock.unlock();
684     }
685     // else retry on failed CAS
686     }
687     }
688    
689     /*
690     * Methods for controlling interrupts to worker threads.
691     */
692    
693     /**
694     * If there is a security manager, makes sure caller has
695     * permission to shut down threads in general (see shutdownPerm).
696     * If this passes, additionally makes sure the caller is allowed
697     * to interrupt each worker thread. This might not be true even if
698     * first check passed, if the SecurityManager treats some threads
699     * specially.
700     */
701     private void checkShutdownAccess() {
702     SecurityManager security = System.getSecurityManager();
703     if (security != null) {
704     security.checkPermission(shutdownPerm);
705     final ReentrantLock mainLock = this.mainLock;
706     mainLock.lock();
707     try {
708     for (Worker w : workers)
709     security.checkAccess(w.thread);
710     } finally {
711     mainLock.unlock();
712     }
713     }
714     }
715    
716     /**
717     * Interrupts all threads, even if active. Ignores SecurityExceptions
718     * (in which case some threads may remain uninterrupted).
719     */
720     private void interruptWorkers() {
721     final ReentrantLock mainLock = this.mainLock;
722     mainLock.lock();
723     try {
724     for (Worker w : workers)
725     w.interruptIfStarted();
726     } finally {
727     mainLock.unlock();
728     }
729     }
730    
731     /**
732     * Interrupts threads that might be waiting for tasks (as
733     * indicated by not being locked) so they can check for
734     * termination or configuration changes. Ignores
735     * SecurityExceptions (in which case some threads may remain
736     * uninterrupted).
737     *
738     * @param onlyOne If true, interrupt at most one worker. This is
739     * called only from tryTerminate when termination is otherwise
740     * enabled but there are still other workers. In this case, at
741     * most one waiting worker is interrupted to propagate shutdown
742     * signals in case all threads are currently waiting.
743     * Interrupting any arbitrary thread ensures that newly arriving
744     * workers since shutdown began will also eventually exit.
745     * To guarantee eventual termination, it suffices to always
746     * interrupt only one idle worker, but shutdown() interrupts all
747     * idle workers so that redundant workers exit promptly, not
748     * waiting for a straggler task to finish.
749     */
750     private void interruptIdleWorkers(boolean onlyOne) {
751     final ReentrantLock mainLock = this.mainLock;
752     mainLock.lock();
753     try {
754     for (Worker w : workers) {
755     Thread t = w.thread;
756     if (!t.isInterrupted() && w.tryLock()) {
757     try {
758     t.interrupt();
759     } catch (SecurityException ignore) {
760     } finally {
761     w.unlock();
762     }
763     }
764     if (onlyOne)
765     break;
766     }
767     } finally {
768     mainLock.unlock();
769     }
770     }
771    
772     /**
773     * Common form of interruptIdleWorkers, to avoid having to
774     * remember what the boolean argument means.
775     */
776     private void interruptIdleWorkers() {
777     interruptIdleWorkers(false);
778     }
779    
780     private static final boolean ONLY_ONE = true;
781    
782     /*
783     * Misc utilities, most of which are also exported to
784     * ScheduledThreadPoolExecutor
785     */
786    
787     /**
788     * Invokes the rejected execution handler for the given command.
789     * Package-protected for use by ScheduledThreadPoolExecutor.
790     */
791     final void reject(Runnable command) {
792     handler.rejectedExecution(command, this);
793     }
794    
795     /**
796     * Performs any further cleanup following run state transition on
797     * invocation of shutdown. A no-op here, but used by
798     * ScheduledThreadPoolExecutor to cancel delayed tasks.
799     */
800     void onShutdown() {
801     }
802    
803     /**
804     * State check needed by ScheduledThreadPoolExecutor to
805     * enable running tasks during shutdown.
806     *
807     * @param shutdownOK true if should return true if SHUTDOWN
808     */
809     final boolean isRunningOrShutdown(boolean shutdownOK) {
810     int rs = runStateOf(ctl.get());
811     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
812     }
813    
814     /**
815     * Drains the task queue into a new list, normally using
816     * drainTo. But if the queue is a DelayQueue or any other kind of
817     * queue for which poll or drainTo may fail to remove some
818     * elements, it deletes them one by one.
819     */
820     private List<Runnable> drainQueue() {
821     BlockingQueue<Runnable> q = workQueue;
822     List<Runnable> taskList = new ArrayList<Runnable>();
823     q.drainTo(taskList);
824     if (!q.isEmpty()) {
825     for (Runnable r : q.toArray(new Runnable[0])) {
826     if (q.remove(r))
827     taskList.add(r);
828     }
829     }
830     return taskList;
831     }
832    
833     /*
834     * Methods for creating, running and cleaning up after workers
835     */
836    
837     /**
838     * Checks if a new worker can be added with respect to current
839     * pool state and the given bound (either core or maximum). If so,
840     * the worker count is adjusted accordingly, and, if possible, a
841     * new worker is created and started, running firstTask as its
842     * first task. This method returns false if the pool is stopped or
843     * eligible to shut down. It also returns false if the thread
844     * factory fails to create a thread when asked. If the thread
845     * creation fails, either due to the thread factory returning
846     * null, or due to an exception (typically OutOfMemoryError in
847     * Thread#start), we roll back cleanly.
848     *
849     * @param firstTask the task the new thread should run first (or
850     * null if none). Workers are created with an initial first task
851     * (in method execute()) to bypass queuing when there are fewer
852     * than corePoolSize threads (in which case we always start one),
853     * or when the queue is full (in which case we must bypass queue).
854     * Initially idle threads are usually created via
855     * prestartCoreThread or to replace other dying workers.
856     *
857     * @param core if true use corePoolSize as bound, else
858     * maximumPoolSize. (A boolean indicator is used here rather than a
859     * value to ensure reads of fresh values after checking other pool
860     * state).
861     * @return true if successful
862     */
863     private boolean addWorker(Runnable firstTask, boolean core) {
864     retry:
865     for (;;) {
866     int c = ctl.get();
867     int rs = runStateOf(c);
868    
869     // Check if queue empty only if necessary.
870     if (rs >= SHUTDOWN &&
871     ! (rs == SHUTDOWN &&
872     firstTask == null &&
873     ! workQueue.isEmpty()))
874     return false;
875    
876     for (;;) {
877     int wc = workerCountOf(c);
878     if (wc >= CAPACITY ||
879     wc >= (core ? corePoolSize : maximumPoolSize))
880     return false;
881     if (compareAndIncrementWorkerCount(c))
882     break retry;
883     c = ctl.get(); // Re-read ctl
884     if (runStateOf(c) != rs)
885     continue retry;
886     // else CAS failed due to workerCount change; retry inner loop
887     }
888     }
889    
890     boolean workerStarted = false;
891     boolean workerAdded = false;
892     Worker w = null;
893     try {
894     w = new Worker(firstTask);
895     final Thread t = w.thread;
896     if (t != null) {
897     final ReentrantLock mainLock = this.mainLock;
898     mainLock.lock();
899     try {
900     // Recheck while holding lock.
901     // Back out on ThreadFactory failure or if
902     // shut down before lock acquired.
903     int rs = runStateOf(ctl.get());
904    
905     if (rs < SHUTDOWN ||
906     (rs == SHUTDOWN && firstTask == null)) {
907     if (t.isAlive()) // precheck that t is startable
908     throw new IllegalThreadStateException();
909     workers.add(w);
910     int s = workers.size();
911     if (s > largestPoolSize)
912     largestPoolSize = s;
913     workerAdded = true;
914     }
915     } finally {
916     mainLock.unlock();
917     }
918     if (workerAdded) {
919     t.start();
920     workerStarted = true;
921     }
922     }
923     } finally {
924     if (! workerStarted)
925     addWorkerFailed(w);
926     }
927     return workerStarted;
928     }
929    
930     /**
931     * Rolls back the worker thread creation.
932     * - removes worker from workers, if present
933     * - decrements worker count
934     * - rechecks for termination, in case the existence of this
935     * worker was holding up termination
936     */
937     private void addWorkerFailed(Worker w) {
938     final ReentrantLock mainLock = this.mainLock;
939     mainLock.lock();
940     try {
941     if (w != null)
942     workers.remove(w);
943     decrementWorkerCount();
944     tryTerminate();
945     } finally {
946     mainLock.unlock();
947     }
948     }
949    
950     /**
951     * Performs cleanup and bookkeeping for a dying worker. Called
952     * only from worker threads. Unless completedAbruptly is set,
953     * assumes that workerCount has already been adjusted to account
954     * for exit. This method removes thread from worker set, and
955     * possibly terminates the pool or replaces the worker if either
956     * it exited due to user task exception or if fewer than
957     * corePoolSize workers are running or queue is non-empty but
958     * there are no workers.
959     *
960     * @param w the worker
961     * @param completedAbruptly if the worker died due to user exception
962     */
963     private void processWorkerExit(Worker w, boolean completedAbruptly) {
964     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
965     decrementWorkerCount();
966    
967     final ReentrantLock mainLock = this.mainLock;
968     mainLock.lock();
969     try {
970     completedTaskCount += w.completedTasks;
971     workers.remove(w);
972     } finally {
973     mainLock.unlock();
974     }
975    
976     tryTerminate();
977    
978     int c = ctl.get();
979     if (runStateLessThan(c, STOP)) {
980     if (!completedAbruptly) {
981     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
982     if (min == 0 && ! workQueue.isEmpty())
983     min = 1;
984     if (workerCountOf(c) >= min)
985     return; // replacement not needed
986     }
987     addWorker(null, false);
988     }
989     }
990    
991     /**
992     * Performs blocking or timed wait for a task, depending on
993     * current configuration settings, or returns null if this worker
994     * must exit because of any of:
995     * 1. There are more than maximumPoolSize workers (due to
996     * a call to setMaximumPoolSize).
997     * 2. The pool is stopped.
998     * 3. The pool is shutdown and the queue is empty.
999     * 4. This worker timed out waiting for a task, and timed-out
1000     * workers are subject to termination (that is,
1001     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1002     * both before and after the timed wait.
1003     *
1004     * @return task, or null if the worker must exit, in which case
1005     * workerCount is decremented
1006     */
1007     private Runnable getTask() {
1008     boolean timedOut = false; // Did the last poll() time out?
1009    
1010     retry:
1011     for (;;) {
1012     int c = ctl.get();
1013     int rs = runStateOf(c);
1014    
1015     // Check if queue empty only if necessary.
1016     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1017     decrementWorkerCount();
1018     return null;
1019     }
1020    
1021     boolean timed; // Are workers subject to culling?
1022    
1023     for (;;) {
1024     int wc = workerCountOf(c);
1025     timed = allowCoreThreadTimeOut || wc > corePoolSize;
1026    
1027     if (wc <= maximumPoolSize && ! (timedOut && timed))
1028     break;
1029     if (compareAndDecrementWorkerCount(c))
1030     return null;
1031     c = ctl.get(); // Re-read ctl
1032     if (runStateOf(c) != rs)
1033     continue retry;
1034     // else CAS failed due to workerCount change; retry inner loop
1035     }
1036    
1037     try {
1038     Runnable r = timed ?
1039     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1040     workQueue.take();
1041     if (r != null)
1042     return r;
1043     timedOut = true;
1044     } catch (InterruptedException retry) {
1045     timedOut = false;
1046     }
1047     }
1048     }
1049    
1050     /**
1051     * Main worker run loop. Repeatedly gets tasks from queue and
1052     * executes them, while coping with a number of issues:
1053     *
1054     * 1. We may start out with an initial task, in which case we
1055     * don't need to get the first one. Otherwise, as long as pool is
1056     * running, we get tasks from getTask. If it returns null then the
1057     * worker exits due to changed pool state or configuration
1058     * parameters. Other exits result from exception throws in
1059     * external code, in which case completedAbruptly holds, which
1060     * usually leads processWorkerExit to replace this thread.
1061     *
1062     * 2. Before running any task, the lock is acquired to prevent
1063     * other pool interrupts while the task is executing, and
1064     * clearInterruptsForTaskRun called to ensure that unless pool is
1065     * stopping, this thread does not have its interrupt set.
1066     *
1067     * 3. Each task run is preceded by a call to beforeExecute, which
1068     * might throw an exception, in which case we cause thread to die
1069     * (breaking loop with completedAbruptly true) without processing
1070     * the task.
1071     *
1072     * 4. Assuming beforeExecute completes normally, we run the task,
1073     * gathering any of its thrown exceptions to send to
1074     * afterExecute. We separately handle RuntimeException, Error
1075     * (both of which the specs guarantee that we trap) and arbitrary
1076     * Throwables. Because we cannot rethrow Throwables within
1077     * Runnable.run, we wrap them within Errors on the way out (to the
1078     * thread's UncaughtExceptionHandler). Any thrown exception also
1079     * conservatively causes thread to die.
1080     *
1081     * 5. After task.run completes, we call afterExecute, which may
1082     * also throw an exception, which will also cause thread to
1083     * die. According to JLS Sec 14.20, this exception is the one that
1084     * will be in effect even if task.run throws.
1085     *
1086     * The net effect of the exception mechanics is that afterExecute
1087     * and the thread's UncaughtExceptionHandler have as accurate
1088     * information as we can provide about any problems encountered by
1089     * user code.
1090     *
1091     * @param w the worker
1092     */
1093     final void runWorker(Worker w) {
1094     Thread wt = Thread.currentThread();
1095     Runnable task = w.firstTask;
1096     w.firstTask = null;
1097     w.unlock(); // allow interrupts
1098     boolean completedAbruptly = true;
1099     try {
1100     while (task != null || (task = getTask()) != null) {
1101     w.lock();
1102     // If pool is stopping, ensure thread is interrupted;
1103     // if not, ensure thread is not interrupted. This
1104     // requires a recheck in second case to deal with
1105     // shutdownNow race while clearing interrupt
1106     if ((runStateAtLeast(ctl.get(), STOP) ||
1107     (Thread.interrupted() &&
1108     runStateAtLeast(ctl.get(), STOP))) &&
1109     !wt.isInterrupted())
1110     wt.interrupt();
1111     try {
1112     beforeExecute(wt, task);
1113     Throwable thrown = null;
1114     try {
1115     task.run();
1116     } catch (RuntimeException x) {
1117     thrown = x; throw x;
1118     } catch (Error x) {
1119     thrown = x; throw x;
1120     } catch (Throwable x) {
1121     thrown = x; throw new Error(x);
1122     } finally {
1123     afterExecute(task, thrown);
1124     }
1125     } finally {
1126     task = null;
1127     w.completedTasks++;
1128     w.unlock();
1129     }
1130     }
1131     completedAbruptly = false;
1132     } finally {
1133     processWorkerExit(w, completedAbruptly);
1134     }
1135     }
1136    
1137     // Public constructors and methods
1138    
1139     /**
1140     * Creates a new {@code ThreadPoolExecutor} with the given initial
1141     * parameters and default thread factory and rejected execution handler.
1142     * It may be more convenient to use one of the {@link Executors} factory
1143     * methods instead of this general purpose constructor.
1144     *
1145     * @param corePoolSize the number of threads to keep in the pool, even
1146     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1147     * @param maximumPoolSize the maximum number of threads to allow in the
1148     * pool
1149     * @param keepAliveTime when the number of threads is greater than
1150     * the core, this is the maximum time that excess idle threads
1151     * will wait for new tasks before terminating.
1152     * @param unit the time unit for the {@code keepAliveTime} argument
1153     * @param workQueue the queue to use for holding tasks before they are
1154     * executed. This queue will hold only the {@code Runnable}
1155     * tasks submitted by the {@code execute} method.
1156     * @throws IllegalArgumentException if one of the following holds:<br>
1157     * {@code corePoolSize < 0}<br>
1158     * {@code keepAliveTime < 0}<br>
1159     * {@code maximumPoolSize <= 0}<br>
1160     * {@code maximumPoolSize < corePoolSize}
1161     * @throws NullPointerException if {@code workQueue} is null
1162     */
1163     public ThreadPoolExecutor(int corePoolSize,
1164     int maximumPoolSize,
1165     long keepAliveTime,
1166     TimeUnit unit,
1167     BlockingQueue<Runnable> workQueue) {
1168     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1169     Executors.defaultThreadFactory(), defaultHandler);
1170     }
1171    
1172     /**
1173     * Creates a new {@code ThreadPoolExecutor} with the given initial
1174     * parameters and default rejected execution handler.
1175     *
1176     * @param corePoolSize the number of threads to keep in the pool, even
1177     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1178     * @param maximumPoolSize the maximum number of threads to allow in the
1179     * pool
1180     * @param keepAliveTime when the number of threads is greater than
1181     * the core, this is the maximum time that excess idle threads
1182     * will wait for new tasks before terminating.
1183     * @param unit the time unit for the {@code keepAliveTime} argument
1184     * @param workQueue the queue to use for holding tasks before they are
1185     * executed. This queue will hold only the {@code Runnable}
1186     * tasks submitted by the {@code execute} method.
1187     * @param threadFactory the factory to use when the executor
1188     * creates a new thread
1189     * @throws IllegalArgumentException if one of the following holds:<br>
1190     * {@code corePoolSize < 0}<br>
1191     * {@code keepAliveTime < 0}<br>
1192     * {@code maximumPoolSize <= 0}<br>
1193     * {@code maximumPoolSize < corePoolSize}
1194     * @throws NullPointerException if {@code workQueue}
1195     * or {@code threadFactory} is null
1196     */
1197     public ThreadPoolExecutor(int corePoolSize,
1198     int maximumPoolSize,
1199     long keepAliveTime,
1200     TimeUnit unit,
1201     BlockingQueue<Runnable> workQueue,
1202     ThreadFactory threadFactory) {
1203     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1204     threadFactory, defaultHandler);
1205     }
1206    
1207     /**
1208     * Creates a new {@code ThreadPoolExecutor} with the given initial
1209     * parameters and default thread factory.
1210     *
1211     * @param corePoolSize the number of threads to keep in the pool, even
1212     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1213     * @param maximumPoolSize the maximum number of threads to allow in the
1214     * pool
1215     * @param keepAliveTime when the number of threads is greater than
1216     * the core, this is the maximum time that excess idle threads
1217     * will wait for new tasks before terminating.
1218     * @param unit the time unit for the {@code keepAliveTime} argument
1219     * @param workQueue the queue to use for holding tasks before they are
1220     * executed. This queue will hold only the {@code Runnable}
1221     * tasks submitted by the {@code execute} method.
1222     * @param handler the handler to use when execution is blocked
1223     * because the thread bounds and queue capacities are reached
1224     * @throws IllegalArgumentException if one of the following holds:<br>
1225     * {@code corePoolSize < 0}<br>
1226     * {@code keepAliveTime < 0}<br>
1227     * {@code maximumPoolSize <= 0}<br>
1228     * {@code maximumPoolSize < corePoolSize}
1229     * @throws NullPointerException if {@code workQueue}
1230     * or {@code handler} is null
1231     */
1232     public ThreadPoolExecutor(int corePoolSize,
1233     int maximumPoolSize,
1234     long keepAliveTime,
1235     TimeUnit unit,
1236     BlockingQueue<Runnable> workQueue,
1237     RejectedExecutionHandler handler) {
1238     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1239     Executors.defaultThreadFactory(), handler);
1240     }
1241    
1242     /**
1243     * Creates a new {@code ThreadPoolExecutor} with the given initial
1244     * parameters.
1245     *
1246     * @param corePoolSize the number of threads to keep in the pool, even
1247     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1248     * @param maximumPoolSize the maximum number of threads to allow in the
1249     * pool
1250     * @param keepAliveTime when the number of threads is greater than
1251     * the core, this is the maximum time that excess idle threads
1252     * will wait for new tasks before terminating.
1253     * @param unit the time unit for the {@code keepAliveTime} argument
1254     * @param workQueue the queue to use for holding tasks before they are
1255     * executed. This queue will hold only the {@code Runnable}
1256     * tasks submitted by the {@code execute} method.
1257     * @param threadFactory the factory to use when the executor
1258     * creates a new thread
1259     * @param handler the handler to use when execution is blocked
1260     * because the thread bounds and queue capacities are reached
1261     * @throws IllegalArgumentException if one of the following holds:<br>
1262     * {@code corePoolSize < 0}<br>
1263     * {@code keepAliveTime < 0}<br>
1264     * {@code maximumPoolSize <= 0}<br>
1265     * {@code maximumPoolSize < corePoolSize}
1266     * @throws NullPointerException if {@code workQueue}
1267     * or {@code threadFactory} or {@code handler} is null
1268     */
1269     public ThreadPoolExecutor(int corePoolSize,
1270     int maximumPoolSize,
1271     long keepAliveTime,
1272     TimeUnit unit,
1273     BlockingQueue<Runnable> workQueue,
1274     ThreadFactory threadFactory,
1275     RejectedExecutionHandler handler) {
1276     if (corePoolSize < 0 ||
1277     maximumPoolSize <= 0 ||
1278     maximumPoolSize < corePoolSize ||
1279     keepAliveTime < 0)
1280     throw new IllegalArgumentException();
1281     if (workQueue == null || threadFactory == null || handler == null)
1282     throw new NullPointerException();
1283     this.corePoolSize = corePoolSize;
1284     this.maximumPoolSize = maximumPoolSize;
1285     this.workQueue = workQueue;
1286     this.keepAliveTime = unit.toNanos(keepAliveTime);
1287     this.threadFactory = threadFactory;
1288     this.handler = handler;
1289     }
1290    
1291     /**
1292     * Executes the given task sometime in the future. The task
1293     * may execute in a new thread or in an existing pooled thread.
1294     *
1295     * If the task cannot be submitted for execution, either because this
1296     * executor has been shutdown or because its capacity has been reached,
1297     * the task is handled by the current {@code RejectedExecutionHandler}.
1298     *
1299     * @param command the task to execute
1300     * @throws RejectedExecutionException at discretion of
1301     * {@code RejectedExecutionHandler}, if the task
1302     * cannot be accepted for execution
1303     * @throws NullPointerException if {@code command} is null
1304     */
1305     public void execute(Runnable command) {
1306     if (command == null)
1307     throw new NullPointerException();
1308     /*
1309     * Proceed in 3 steps:
1310     *
1311     * 1. If fewer than corePoolSize threads are running, try to
1312     * start a new thread with the given command as its first
1313     * task. The call to addWorker atomically checks runState and
1314     * workerCount, and so prevents false alarms that would add
1315     * threads when it shouldn't, by returning false.
1316     *
1317     * 2. If a task can be successfully queued, then we still need
1318     * to double-check whether we should have added a thread
1319     * (because existing ones died since last checking) or that
1320     * the pool shut down since entry into this method. So we
1321     * recheck state and if necessary roll back the enqueuing if
1322     * stopped, or start a new thread if there are none.
1323     *
1324     * 3. If we cannot queue task, then we try to add a new
1325     * thread. If it fails, we know we are shut down or saturated
1326     * and so reject the task.
1327     */
1328     int c = ctl.get();
1329     if (workerCountOf(c) < corePoolSize) {
1330     if (addWorker(command, true))
1331     return;
1332     c = ctl.get();
1333     }
1334     if (isRunning(c) && workQueue.offer(command)) {
1335     int recheck = ctl.get();
1336     if (! isRunning(recheck) && remove(command))
1337     reject(command);
1338     else if (workerCountOf(recheck) == 0)
1339     addWorker(null, false);
1340     }
1341     else if (!addWorker(command, false))
1342     reject(command);
1343     }
1344    
1345     /**
1346     * Initiates an orderly shutdown in which previously submitted
1347     * tasks are executed, but no new tasks will be accepted.
1348     * Invocation has no additional effect if already shut down.
1349     *
1350     * <p>This method does not wait for previously submitted tasks to
1351     * complete execution. Use {@link #awaitTermination awaitTermination}
1352     * to do that.
1353     *
1354     * @throws SecurityException {@inheritDoc}
1355     */
1356     public void shutdown() {
1357     final ReentrantLock mainLock = this.mainLock;
1358     mainLock.lock();
1359     try {
1360     checkShutdownAccess();
1361     advanceRunState(SHUTDOWN);
1362     interruptIdleWorkers();
1363     onShutdown(); // hook for ScheduledThreadPoolExecutor
1364     } finally {
1365     mainLock.unlock();
1366     }
1367     tryTerminate();
1368     }
1369    
1370     /**
1371     * Attempts to stop all actively executing tasks, halts the
1372     * processing of waiting tasks, and returns a list of the tasks
1373     * that were awaiting execution. These tasks are drained (removed)
1374     * from the task queue upon return from this method.
1375     *
1376     * <p>This method does not wait for actively executing tasks to
1377     * terminate. Use {@link #awaitTermination awaitTermination} to
1378     * do that.
1379     *
1380     * <p>There are no guarantees beyond best-effort attempts to stop
1381     * processing actively executing tasks. This implementation
1382     * cancels tasks via {@link Thread#interrupt}, so any task that
1383     * fails to respond to interrupts may never terminate.
1384     *
1385     * @throws SecurityException {@inheritDoc}
1386     */
1387     public List<Runnable> shutdownNow() {
1388     List<Runnable> tasks;
1389     final ReentrantLock mainLock = this.mainLock;
1390     mainLock.lock();
1391     try {
1392     checkShutdownAccess();
1393     advanceRunState(STOP);
1394     interruptWorkers();
1395     tasks = drainQueue();
1396     } finally {
1397     mainLock.unlock();
1398     }
1399     tryTerminate();
1400     return tasks;
1401     }
1402    
1403     public boolean isShutdown() {
1404     return ! isRunning(ctl.get());
1405     }
1406    
1407     /**
1408     * Returns true if this executor is in the process of terminating
1409     * after {@link #shutdown} or {@link #shutdownNow} but has not
1410     * completely terminated. This method may be useful for
1411     * debugging. A return of {@code true} reported a sufficient
1412     * period after shutdown may indicate that submitted tasks have
1413     * ignored or suppressed interruption, causing this executor not
1414     * to properly terminate.
1415     *
1416     * @return true if terminating but not yet terminated
1417     */
1418     public boolean isTerminating() {
1419     int c = ctl.get();
1420     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1421     }
1422    
1423     public boolean isTerminated() {
1424     return runStateAtLeast(ctl.get(), TERMINATED);
1425     }
1426    
1427     public boolean awaitTermination(long timeout, TimeUnit unit)
1428     throws InterruptedException {
1429     long nanos = unit.toNanos(timeout);
1430     final ReentrantLock mainLock = this.mainLock;
1431     mainLock.lock();
1432     try {
1433     for (;;) {
1434     if (runStateAtLeast(ctl.get(), TERMINATED))
1435     return true;
1436     if (nanos <= 0)
1437     return false;
1438     nanos = termination.awaitNanos(nanos);
1439     }
1440     } finally {
1441     mainLock.unlock();
1442     }
1443     }
1444    
1445     /**
1446     * Invokes {@code shutdown} when this executor is no longer
1447     * referenced and it has no threads.
1448     */
1449     protected void finalize() {
1450     shutdown();
1451     }
1452    
1453     /**
1454     * Sets the thread factory used to create new threads.
1455     *
1456     * @param threadFactory the new thread factory
1457     * @throws NullPointerException if threadFactory is null
1458     * @see #getThreadFactory
1459     */
1460     public void setThreadFactory(ThreadFactory threadFactory) {
1461     if (threadFactory == null)
1462     throw new NullPointerException();
1463     this.threadFactory = threadFactory;
1464     }
1465    
1466     /**
1467     * Returns the thread factory used to create new threads.
1468     *
1469     * @return the current thread factory
1470     * @see #setThreadFactory
1471     */
1472     public ThreadFactory getThreadFactory() {
1473     return threadFactory;
1474     }
1475    
1476     /**
1477     * Sets a new handler for unexecutable tasks.
1478     *
1479     * @param handler the new handler
1480     * @throws NullPointerException if handler is null
1481     * @see #getRejectedExecutionHandler
1482     */
1483     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1484     if (handler == null)
1485     throw new NullPointerException();
1486     this.handler = handler;
1487     }
1488    
1489     /**
1490     * Returns the current handler for unexecutable tasks.
1491     *
1492     * @return the current handler
1493     * @see #setRejectedExecutionHandler
1494     */
1495     public RejectedExecutionHandler getRejectedExecutionHandler() {
1496     return handler;
1497     }
1498    
1499     /**
1500     * Sets the core number of threads. This overrides any value set
1501     * in the constructor. If the new value is smaller than the
1502     * current value, excess existing threads will be terminated when
1503     * they next become idle. If larger, new threads will, if needed,
1504     * be started to execute any queued tasks.
1505     *
1506     * @param corePoolSize the new core size
1507     * @throws IllegalArgumentException if {@code corePoolSize < 0}
1508     * @see #getCorePoolSize
1509     */
1510     public void setCorePoolSize(int corePoolSize) {
1511     if (corePoolSize < 0)
1512     throw new IllegalArgumentException();
1513     int delta = corePoolSize - this.corePoolSize;
1514     this.corePoolSize = corePoolSize;
1515     if (workerCountOf(ctl.get()) > corePoolSize)
1516     interruptIdleWorkers();
1517     else if (delta > 0) {
1518     // We don't really know how many new threads are "needed".
1519     // As a heuristic, prestart enough new workers (up to new
1520     // core size) to handle the current number of tasks in
1521     // queue, but stop if queue becomes empty while doing so.
1522     int k = Math.min(delta, workQueue.size());
1523     while (k-- > 0 && addWorker(null, true)) {
1524     if (workQueue.isEmpty())
1525     break;
1526     }
1527     }
1528     }
1529    
1530     /**
1531     * Returns the core number of threads.
1532     *
1533     * @return the core number of threads
1534     * @see #setCorePoolSize
1535     */
1536     public int getCorePoolSize() {
1537     return corePoolSize;
1538     }
1539    
1540     /**
1541     * Starts a core thread, causing it to idly wait for work. This
1542     * overrides the default policy of starting core threads only when
1543     * new tasks are executed. This method will return {@code false}
1544     * if all core threads have already been started.
1545     *
1546     * @return {@code true} if a thread was started
1547     */
1548     public boolean prestartCoreThread() {
1549     return workerCountOf(ctl.get()) < corePoolSize &&
1550     addWorker(null, true);
1551     }
1552    
1553     /**
1554     * Same as prestartCoreThread except arranges that at least one
1555     * thread is started even if corePoolSize is 0.
1556     */
1557     void ensurePrestart() {
1558     int wc = workerCountOf(ctl.get());
1559     if (wc < corePoolSize)
1560     addWorker(null, true);
1561     else if (wc == 0)
1562     addWorker(null, false);
1563     }
1564    
1565     /**
1566     * Starts all core threads, causing them to idly wait for work. This
1567     * overrides the default policy of starting core threads only when
1568     * new tasks are executed.
1569     *
1570     * @return the number of threads started
1571     */
1572     public int prestartAllCoreThreads() {
1573     int n = 0;
1574     while (addWorker(null, true))
1575     ++n;
1576     return n;
1577     }
1578    
1579     /**
1580     * Returns true if this pool allows core threads to time out and
1581     * terminate if no tasks arrive within the keepAlive time, being
1582     * replaced if needed when new tasks arrive. When true, the same
1583     * keep-alive policy applying to non-core threads applies also to
1584     * core threads. When false (the default), core threads are never
1585     * terminated due to lack of incoming tasks.
1586     *
1587     * @return {@code true} if core threads are allowed to time out,
1588     * else {@code false}
1589     *
1590     * @since 1.6
1591     */
1592     public boolean allowsCoreThreadTimeOut() {
1593     return allowCoreThreadTimeOut;
1594     }
1595    
1596     /**
1597     * Sets the policy governing whether core threads may time out and
1598     * terminate if no tasks arrive within the keep-alive time, being
1599     * replaced if needed when new tasks arrive. When false, core
1600     * threads are never terminated due to lack of incoming
1601     * tasks. When true, the same keep-alive policy applying to
1602     * non-core threads applies also to core threads. To avoid
1603     * continual thread replacement, the keep-alive time must be
1604     * greater than zero when setting {@code true}. This method
1605     * should in general be called before the pool is actively used.
1606     *
1607     * @param value {@code true} if should time out, else {@code false}
1608     * @throws IllegalArgumentException if value is {@code true}
1609     * and the current keep-alive time is not greater than zero
1610     *
1611     * @since 1.6
1612     */
1613     public void allowCoreThreadTimeOut(boolean value) {
1614     if (value && keepAliveTime <= 0)
1615     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1616     if (value != allowCoreThreadTimeOut) {
1617     allowCoreThreadTimeOut = value;
1618     if (value)
1619     interruptIdleWorkers();
1620     }
1621     }
1622    
1623     /**
1624     * Sets the maximum allowed number of threads. This overrides any
1625     * value set in the constructor. If the new value is smaller than
1626     * the current value, excess existing threads will be
1627     * terminated when they next become idle.
1628     *
1629     * @param maximumPoolSize the new maximum
1630     * @throws IllegalArgumentException if the new maximum is
1631     * less than or equal to zero, or
1632     * less than the {@linkplain #getCorePoolSize core pool size}
1633     * @see #getMaximumPoolSize
1634     */
1635     public void setMaximumPoolSize(int maximumPoolSize) {
1636     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1637     throw new IllegalArgumentException();
1638     this.maximumPoolSize = maximumPoolSize;
1639     if (workerCountOf(ctl.get()) > maximumPoolSize)
1640     interruptIdleWorkers();
1641     }
1642    
1643     /**
1644     * Returns the maximum allowed number of threads.
1645     *
1646     * @return the maximum allowed number of threads
1647     * @see #setMaximumPoolSize
1648     */
1649     public int getMaximumPoolSize() {
1650     return maximumPoolSize;
1651     }
1652    
1653     /**
1654     * Sets the time limit for which threads may remain idle before
1655     * being terminated. If there are more than the core number of
1656     * threads currently in the pool, after waiting this amount of
1657     * time without processing a task, excess threads will be
1658     * terminated. This overrides any value set in the constructor.
1659     *
1660     * @param time the time to wait. A time value of zero will cause
1661     * excess threads to terminate immediately after executing tasks.
1662     * @param unit the time unit of the {@code time} argument
1663     * @throws IllegalArgumentException if {@code time} less than zero or
1664     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1665     * @see #getKeepAliveTime
1666     */
1667     public void setKeepAliveTime(long time, TimeUnit unit) {
1668     if (time < 0)
1669     throw new IllegalArgumentException();
1670     if (time == 0 && allowsCoreThreadTimeOut())
1671     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1672     long keepAliveTime = unit.toNanos(time);
1673     long delta = keepAliveTime - this.keepAliveTime;
1674     this.keepAliveTime = keepAliveTime;
1675     if (delta < 0)
1676     interruptIdleWorkers();
1677     }
1678    
1679     /**
1680     * Returns the thread keep-alive time, which is the amount of time
1681     * that threads in excess of the core pool size may remain
1682     * idle before being terminated.
1683     *
1684     * @param unit the desired time unit of the result
1685     * @return the time limit
1686     * @see #setKeepAliveTime
1687     */
1688     public long getKeepAliveTime(TimeUnit unit) {
1689     return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1690     }
1691    
1692     /* User-level queue utilities */
1693    
1694     /**
1695     * Returns the task queue used by this executor. Access to the
1696     * task queue is intended primarily for debugging and monitoring.
1697     * This queue may be in active use. Retrieving the task queue
1698     * does not prevent queued tasks from executing.
1699     *
1700     * @return the task queue
1701     */
1702     public BlockingQueue<Runnable> getQueue() {
1703     return workQueue;
1704     }
1705    
1706     /**
1707     * Removes this task from the executor's internal queue if it is
1708     * present, thus causing it not to be run if it has not already
1709     * started.
1710     *
1711     * <p>This method may be useful as one part of a cancellation
1712     * scheme. It may fail to remove tasks that have been converted
1713     * into other forms before being placed on the internal queue. For
1714     * example, a task entered using {@code submit} might be
1715     * converted into a form that maintains {@code Future} status.
1716     * However, in such cases, method {@link #purge} may be used to
1717     * remove those Futures that have been cancelled.
1718     *
1719     * @param task the task to remove
1720     * @return true if the task was removed
1721     */
1722     public boolean remove(Runnable task) {
1723     boolean removed = workQueue.remove(task);
1724     tryTerminate(); // In case SHUTDOWN and now empty
1725     return removed;
1726     }
1727    
1728     /**
1729     * Tries to remove from the work queue all {@link Future}
1730     * tasks that have been cancelled. This method can be useful as a
1731     * storage reclamation operation, that has no other impact on
1732     * functionality. Cancelled tasks are never executed, but may
1733     * accumulate in work queues until worker threads can actively
1734     * remove them. Invoking this method instead tries to remove them now.
1735     * However, this method may fail to remove tasks in
1736     * the presence of interference by other threads.
1737     */
1738     public void purge() {
1739     final BlockingQueue<Runnable> q = workQueue;
1740     try {
1741     Iterator<Runnable> it = q.iterator();
1742     while (it.hasNext()) {
1743     Runnable r = it.next();
1744     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1745     it.remove();
1746     }
1747     } catch (ConcurrentModificationException fallThrough) {
1748     // Take slow path if we encounter interference during traversal.
1749     // Make copy for traversal and call remove for cancelled entries.
1750     // The slow path is more likely to be O(N*N).
1751     for (Object r : q.toArray())
1752     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1753     q.remove(r);
1754     }
1755    
1756     tryTerminate(); // In case SHUTDOWN and now empty
1757     }
1758    
1759     /* Statistics */
1760    
1761     /**
1762     * Returns the current number of threads in the pool.
1763     *
1764     * @return the number of threads
1765     */
1766     public int getPoolSize() {
1767     final ReentrantLock mainLock = this.mainLock;
1768     mainLock.lock();
1769     try {
1770     // Remove rare and surprising possibility of
1771     // isTerminated() && getPoolSize() > 0
1772     return runStateAtLeast(ctl.get(), TIDYING) ? 0
1773     : workers.size();
1774     } finally {
1775     mainLock.unlock();
1776     }
1777     }
1778    
1779     /**
1780     * Returns the approximate number of threads that are actively
1781     * executing tasks.
1782     *
1783     * @return the number of threads
1784     */
1785     public int getActiveCount() {
1786     final ReentrantLock mainLock = this.mainLock;
1787     mainLock.lock();
1788     try {
1789     int n = 0;
1790     for (Worker w : workers)
1791     if (w.isLocked())
1792     ++n;
1793     return n;
1794     } finally {
1795     mainLock.unlock();
1796     }
1797     }
1798    
1799     /**
1800     * Returns the largest number of threads that have ever
1801     * simultaneously been in the pool.
1802     *
1803     * @return the number of threads
1804     */
1805     public int getLargestPoolSize() {
1806     final ReentrantLock mainLock = this.mainLock;
1807     mainLock.lock();
1808     try {
1809     return largestPoolSize;
1810     } finally {
1811     mainLock.unlock();
1812     }
1813     }
1814    
1815     /**
1816     * Returns the approximate total number of tasks that have ever been
1817     * scheduled for execution. Because the states of tasks and
1818     * threads may change dynamically during computation, the returned
1819     * value is only an approximation.
1820     *
1821     * @return the number of tasks
1822     */
1823     public long getTaskCount() {
1824     final ReentrantLock mainLock = this.mainLock;
1825     mainLock.lock();
1826     try {
1827     long n = completedTaskCount;
1828     for (Worker w : workers) {
1829     n += w.completedTasks;
1830     if (w.isLocked())
1831     ++n;
1832     }
1833     return n + workQueue.size();
1834     } finally {
1835     mainLock.unlock();
1836     }
1837     }
1838    
1839     /**
1840     * Returns the approximate total number of tasks that have
1841     * completed execution. Because the states of tasks and threads
1842     * may change dynamically during computation, the returned value
1843     * is only an approximation, but one that does not ever decrease
1844     * across successive calls.
1845     *
1846     * @return the number of tasks
1847     */
1848     public long getCompletedTaskCount() {
1849     final ReentrantLock mainLock = this.mainLock;
1850     mainLock.lock();
1851     try {
1852     long n = completedTaskCount;
1853     for (Worker w : workers)
1854     n += w.completedTasks;
1855     return n;
1856     } finally {
1857     mainLock.unlock();
1858     }
1859     }
1860    
1861     /**
1862     * Returns a string identifying this pool, as well as its state,
1863     * including indications of run state and estimated worker and
1864     * task counts.
1865     *
1866     * @return a string identifying this pool, as well as its state
1867     */
1868     public String toString() {
1869     long ncompleted;
1870     int nworkers, nactive;
1871     final ReentrantLock mainLock = this.mainLock;
1872     mainLock.lock();
1873     try {
1874     ncompleted = completedTaskCount;
1875     nactive = 0;
1876     nworkers = workers.size();
1877     for (Worker w : workers) {
1878     ncompleted += w.completedTasks;
1879     if (w.isLocked())
1880     ++nactive;
1881     }
1882     } finally {
1883     mainLock.unlock();
1884     }
1885     int c = ctl.get();
1886     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1887     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1888     "Shutting down"));
1889     return super.toString() +
1890     "[" + rs +
1891     ", pool size = " + nworkers +
1892     ", active threads = " + nactive +
1893     ", queued tasks = " + workQueue.size() +
1894     ", completed tasks = " + ncompleted +
1895     "]";
1896     }
1897    
1898     /* Extension hooks */
1899    
1900     /**
1901     * Method invoked prior to executing the given Runnable in the
1902     * given thread. This method is invoked by thread {@code t} that
1903     * will execute task {@code r}, and may be used to re-initialize
1904     * ThreadLocals, or to perform logging.
1905     *
1906     * <p>This implementation does nothing, but may be customized in
1907     * subclasses. Note: To properly nest multiple overridings, subclasses
1908     * should generally invoke {@code super.beforeExecute} at the end of
1909     * this method.
1910     *
1911     * @param t the thread that will run task {@code r}
1912     * @param r the task that will be executed
1913     */
1914     protected void beforeExecute(Thread t, Runnable r) { }
1915    
1916     /**
1917     * Method invoked upon completion of execution of the given Runnable.
1918     * This method is invoked by the thread that executed the task. If
1919     * non-null, the Throwable is the uncaught {@code RuntimeException}
1920     * or {@code Error} that caused execution to terminate abruptly.
1921     *
1922     * <p>This implementation does nothing, but may be customized in
1923     * subclasses. Note: To properly nest multiple overridings, subclasses
1924     * should generally invoke {@code super.afterExecute} at the
1925     * beginning of this method.
1926     *
1927     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1928     * {@link FutureTask}) either explicitly or via methods such as
1929     * {@code submit}, these task objects catch and maintain
1930     * computational exceptions, and so they do not cause abrupt
1931     * termination, and the internal exceptions are <em>not</em>
1932     * passed to this method. If you would like to trap both kinds of
1933     * failures in this method, you can further probe for such cases,
1934     * as in this sample subclass that prints either the direct cause
1935     * or the underlying exception if a task has been aborted:
1936     *
1937     * <pre> {@code
1938     * class ExtendedExecutor extends ThreadPoolExecutor {
1939     * // ...
1940     * protected void afterExecute(Runnable r, Throwable t) {
1941     * super.afterExecute(r, t);
1942     * if (t == null && r instanceof Future<?>) {
1943     * try {
1944     * Object result = ((Future<?>) r).get();
1945     * } catch (CancellationException ce) {
1946     * t = ce;
1947     * } catch (ExecutionException ee) {
1948     * t = ee.getCause();
1949     * } catch (InterruptedException ie) {
1950     * Thread.currentThread().interrupt(); // ignore/reset
1951     * }
1952     * }
1953     * if (t != null)
1954     * System.out.println(t);
1955     * }
1956     * }}</pre>
1957     *
1958     * @param r the runnable that has completed
1959     * @param t the exception that caused termination, or null if
1960     * execution completed normally
1961     */
1962     protected void afterExecute(Runnable r, Throwable t) { }
1963    
1964     /**
1965     * Method invoked when the Executor has terminated. Default
1966     * implementation does nothing. Note: To properly nest multiple
1967     * overridings, subclasses should generally invoke
1968     * {@code super.terminated} within this method.
1969     */
1970     protected void terminated() { }
1971    
1972     /* Predefined RejectedExecutionHandlers */
1973    
1974     /**
1975     * A handler for rejected tasks that runs the rejected task
1976     * directly in the calling thread of the {@code execute} method,
1977     * unless the executor has been shut down, in which case the task
1978     * is discarded.
1979     */
1980     public static class CallerRunsPolicy implements RejectedExecutionHandler {
1981     /**
1982     * Creates a {@code CallerRunsPolicy}.
1983     */
1984     public CallerRunsPolicy() { }
1985    
1986     /**
1987     * Executes task r in the caller's thread, unless the executor
1988     * has been shut down, in which case the task is discarded.
1989     *
1990     * @param r the runnable task requested to be executed
1991     * @param e the executor attempting to execute this task
1992     */
1993     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1994     if (!e.isShutdown()) {
1995     r.run();
1996     }
1997     }
1998     }
1999    
2000     /**
2001     * A handler for rejected tasks that throws a
2002     * {@code RejectedExecutionException}.
2003     */
2004     public static class AbortPolicy implements RejectedExecutionHandler {
2005     /**
2006     * Creates an {@code AbortPolicy}.
2007     */
2008     public AbortPolicy() { }
2009    
2010     /**
2011     * Always throws RejectedExecutionException.
2012     *
2013     * @param r the runnable task requested to be executed
2014     * @param e the executor attempting to execute this task
2015     * @throws RejectedExecutionException always.
2016     */
2017     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2018     throw new RejectedExecutionException("Task " + r.toString() +
2019     " rejected from " +
2020     e.toString());
2021     }
2022     }
2023    
2024     /**
2025     * A handler for rejected tasks that silently discards the
2026     * rejected task.
2027     */
2028     public static class DiscardPolicy implements RejectedExecutionHandler {
2029     /**
2030     * Creates a {@code DiscardPolicy}.
2031     */
2032     public DiscardPolicy() { }
2033    
2034     /**
2035     * Does nothing, which has the effect of discarding task r.
2036     *
2037     * @param r the runnable task requested to be executed
2038     * @param e the executor attempting to execute this task
2039     */
2040     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2041     }
2042     }
2043    
2044     /**
2045     * A handler for rejected tasks that discards the oldest unhandled
2046     * request and then retries {@code execute}, unless the executor
2047     * is shut down, in which case the task is discarded.
2048     */
2049     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2050     /**
2051     * Creates a {@code DiscardOldestPolicy} for the given executor.
2052     */
2053     public DiscardOldestPolicy() { }
2054    
2055     /**
2056     * Obtains and ignores the next task that the executor
2057     * would otherwise execute, if one is immediately available,
2058     * and then retries execution of task r, unless the executor
2059     * is shut down, in which case task r is instead discarded.
2060     *
2061     * @param r the runnable task requested to be executed
2062     * @param e the executor attempting to execute this task
2063     */
2064     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2065     if (!e.isShutdown()) {
2066     e.getQueue().poll();
2067     e.execute(r);
2068     }
2069     }
2070     }
2071     }