ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.13
Committed: Mon Jul 22 18:31:19 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +1 -1 lines
Log Message:
javadoc style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.concurrent.atomic.AtomicInteger;
12     import java.util.*;
13    
14     /**
15     * An {@link ExecutorService} that executes each submitted task using
16     * one of possibly several pooled threads, normally configured
17     * using {@link Executors} factory methods.
18     *
19     * <p>Thread pools address two different problems: they usually
20     * provide improved performance when executing large numbers of
21     * asynchronous tasks, due to reduced per-task invocation overhead,
22     * and they provide a means of bounding and managing the resources,
23     * including threads, consumed when executing a collection of tasks.
24     * Each {@code ThreadPoolExecutor} also maintains some basic
25     * statistics, such as the number of completed tasks.
26     *
27     * <p>To be useful across a wide range of contexts, this class
28     * provides many adjustable parameters and extensibility
29     * hooks. However, programmers are urged to use the more convenient
30     * {@link Executors} factory methods {@link
31     * Executors#newCachedThreadPool} (unbounded thread pool, with
32     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
33     * (fixed size thread pool) and {@link
34     * Executors#newSingleThreadExecutor} (single background thread), that
35     * preconfigure settings for the most common usage
36     * scenarios. Otherwise, use the following guide when manually
37     * configuring and tuning this class:
38     *
39     * <dl>
40     *
41     * <dt>Core and maximum pool sizes</dt>
42     *
43     * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
44     * pool size (see {@link #getPoolSize})
45     * according to the bounds set by
46     * corePoolSize (see {@link #getCorePoolSize}) and
47     * maximumPoolSize (see {@link #getMaximumPoolSize}).
48     *
49 jsr166 1.12 * When a new task is submitted in method {@link #execute(Runnable)},
50     * and fewer than corePoolSize threads are running, a new thread is
51     * created to handle the request, even if other worker threads are
52     * idle. If there are more than corePoolSize but less than
53     * maximumPoolSize threads running, a new thread will be created only
54     * if the queue is full. By setting corePoolSize and maximumPoolSize
55     * the same, you create a fixed-size thread pool. By setting
56     * maximumPoolSize to an essentially unbounded value such as {@code
57     * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary
58     * number of concurrent tasks. Most typically, core and maximum pool
59     * sizes are set only upon construction, but they may also be changed
60     * dynamically using {@link #setCorePoolSize} and {@link
61     * #setMaximumPoolSize}. </dd>
62 dl 1.1 *
63     * <dt>On-demand construction</dt>
64     *
65 jsr166 1.9 * <dd>By default, even core threads are initially created and
66 dl 1.1 * started only when new tasks arrive, but this can be overridden
67     * dynamically using method {@link #prestartCoreThread} or {@link
68     * #prestartAllCoreThreads}. You probably want to prestart threads if
69     * you construct the pool with a non-empty queue. </dd>
70     *
71     * <dt>Creating new threads</dt>
72     *
73     * <dd>New threads are created using a {@link ThreadFactory}. If not
74     * otherwise specified, a {@link Executors#defaultThreadFactory} is
75     * used, that creates threads to all be in the same {@link
76     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
77     * non-daemon status. By supplying a different ThreadFactory, you can
78     * alter the thread's name, thread group, priority, daemon status,
79     * etc. If a {@code ThreadFactory} fails to create a thread when asked
80     * by returning null from {@code newThread}, the executor will
81     * continue, but might not be able to execute any tasks. Threads
82     * should possess the "modifyThread" {@code RuntimePermission}. If
83     * worker threads or other threads using the pool do not possess this
84     * permission, service may be degraded: configuration changes may not
85     * take effect in a timely manner, and a shutdown pool may remain in a
86     * state in which termination is possible but not completed.</dd>
87     *
88     * <dt>Keep-alive times</dt>
89     *
90     * <dd>If the pool currently has more than corePoolSize threads,
91     * excess threads will be terminated if they have been idle for more
92 jsr166 1.12 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
93     * This provides a means of reducing resource consumption when the
94     * pool is not being actively used. If the pool becomes more active
95     * later, new threads will be constructed. This parameter can also be
96     * changed dynamically using method {@link #setKeepAliveTime(long,
97     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
98     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
99     * terminating prior to shut down. By default, the keep-alive policy
100     * applies only when there are more than corePoolSize threads. But
101     * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
102     * apply this time-out policy to core threads as well, so long as the
103 dl 1.1 * keepAliveTime value is non-zero. </dd>
104     *
105     * <dt>Queuing</dt>
106     *
107     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
108     * submitted tasks. The use of this queue interacts with pool sizing:
109     *
110     * <ul>
111     *
112     * <li> If fewer than corePoolSize threads are running, the Executor
113     * always prefers adding a new thread
114     * rather than queuing.</li>
115     *
116     * <li> If corePoolSize or more threads are running, the Executor
117     * always prefers queuing a request rather than adding a new
118     * thread.</li>
119     *
120     * <li> If a request cannot be queued, a new thread is created unless
121     * this would exceed maximumPoolSize, in which case, the task will be
122     * rejected.</li>
123     *
124     * </ul>
125     *
126     * There are three general strategies for queuing:
127     * <ol>
128     *
129     * <li> <em> Direct handoffs.</em> A good default choice for a work
130     * queue is a {@link SynchronousQueue} that hands off tasks to threads
131     * without otherwise holding them. Here, an attempt to queue a task
132     * will fail if no threads are immediately available to run it, so a
133     * new thread will be constructed. This policy avoids lockups when
134     * handling sets of requests that might have internal dependencies.
135     * Direct handoffs generally require unbounded maximumPoolSizes to
136     * avoid rejection of new submitted tasks. This in turn admits the
137     * possibility of unbounded thread growth when commands continue to
138     * arrive on average faster than they can be processed. </li>
139     *
140     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
141     * example a {@link LinkedBlockingQueue} without a predefined
142     * capacity) will cause new tasks to wait in the queue when all
143     * corePoolSize threads are busy. Thus, no more than corePoolSize
144     * threads will ever be created. (And the value of the maximumPoolSize
145     * therefore doesn't have any effect.) This may be appropriate when
146     * each task is completely independent of others, so tasks cannot
147     * affect each others execution; for example, in a web page server.
148     * While this style of queuing can be useful in smoothing out
149     * transient bursts of requests, it admits the possibility of
150     * unbounded work queue growth when commands continue to arrive on
151     * average faster than they can be processed. </li>
152     *
153     * <li><em>Bounded queues.</em> A bounded queue (for example, an
154     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
155     * used with finite maximumPoolSizes, but can be more difficult to
156     * tune and control. Queue sizes and maximum pool sizes may be traded
157     * off for each other: Using large queues and small pools minimizes
158     * CPU usage, OS resources, and context-switching overhead, but can
159     * lead to artificially low throughput. If tasks frequently block (for
160     * example if they are I/O bound), a system may be able to schedule
161     * time for more threads than you otherwise allow. Use of small queues
162     * generally requires larger pool sizes, which keeps CPUs busier but
163     * may encounter unacceptable scheduling overhead, which also
164     * decreases throughput. </li>
165     *
166     * </ol>
167     *
168     * </dd>
169     *
170     * <dt>Rejected tasks</dt>
171     *
172 jsr166 1.12 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
173     * <em>rejected</em> when the Executor has been shut down, and also when
174     * the Executor uses finite bounds for both maximum threads and work queue
175     * capacity, and is saturated. In either case, the {@code execute} method
176     * invokes the {@link
177     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
178     * method of its {@link RejectedExecutionHandler}. Four predefined handler
179     * policies are provided:
180 dl 1.1 *
181     * <ol>
182     *
183     * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
184     * handler throws a runtime {@link RejectedExecutionException} upon
185     * rejection. </li>
186     *
187     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
188     * that invokes {@code execute} itself runs the task. This provides a
189     * simple feedback control mechanism that will slow down the rate that
190     * new tasks are submitted. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
193     * cannot be executed is simply dropped. </li>
194     *
195     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
196     * executor is not shut down, the task at the head of the work queue
197     * is dropped, and then execution is retried (which can fail again,
198     * causing this to be repeated.) </li>
199     *
200     * </ol>
201     *
202     * It is possible to define and use other kinds of {@link
203     * RejectedExecutionHandler} classes. Doing so requires some care
204     * especially when policies are designed to work only under particular
205     * capacity or queuing policies. </dd>
206     *
207     * <dt>Hook methods</dt>
208     *
209 jsr166 1.12 * <dd>This class provides {@code protected} overridable
210     * {@link #beforeExecute(Thread, Runnable)} and
211     * {@link #afterExecute(Runnable, Throwable)} methods that are called
212 dl 1.1 * before and after execution of each task. These can be used to
213     * manipulate the execution environment; for example, reinitializing
214 jsr166 1.12 * ThreadLocals, gathering statistics, or adding log entries.
215     * Additionally, method {@link #terminated} can be overridden to perform
216     * any special processing that needs to be done once the Executor has
217     * fully terminated.
218 dl 1.1 *
219     * <p>If hook or callback methods throw exceptions, internal worker
220     * threads may in turn fail and abruptly terminate.</dd>
221     *
222     * <dt>Queue maintenance</dt>
223     *
224 jsr166 1.12 * <dd>Method {@link #getQueue()} allows access to the work queue
225     * for purposes of monitoring and debugging. Use of this method for
226     * any other purpose is strongly discouraged. Two supplied methods,
227     * {@link #remove(Runnable)} and {@link #purge} are available to
228     * assist in storage reclamation when large numbers of queued tasks
229     * become cancelled.</dd>
230 dl 1.1 *
231     * <dt>Finalization</dt>
232     *
233 jsr166 1.9 * <dd>A pool that is no longer referenced in a program <em>AND</em>
234 dl 1.1 * has no remaining threads will be {@code shutdown} automatically. If
235     * you would like to ensure that unreferenced pools are reclaimed even
236     * if users forget to call {@link #shutdown}, then you must arrange
237     * that unused threads eventually die, by setting appropriate
238     * keep-alive times, using a lower bound of zero core threads and/or
239     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
240     *
241     * </dl>
242     *
243     * <p><b>Extension example</b>. Most extensions of this class
244     * override one or more of the protected hook methods. For example,
245     * here is a subclass that adds a simple pause/resume feature:
246     *
247     * <pre> {@code
248     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
249     * private boolean isPaused;
250     * private ReentrantLock pauseLock = new ReentrantLock();
251     * private Condition unpaused = pauseLock.newCondition();
252     *
253     * public PausableThreadPoolExecutor(...) { super(...); }
254     *
255     * protected void beforeExecute(Thread t, Runnable r) {
256     * super.beforeExecute(t, r);
257     * pauseLock.lock();
258     * try {
259     * while (isPaused) unpaused.await();
260     * } catch (InterruptedException ie) {
261     * t.interrupt();
262     * } finally {
263     * pauseLock.unlock();
264     * }
265     * }
266     *
267     * public void pause() {
268     * pauseLock.lock();
269     * try {
270     * isPaused = true;
271     * } finally {
272     * pauseLock.unlock();
273     * }
274     * }
275     *
276     * public void resume() {
277     * pauseLock.lock();
278     * try {
279     * isPaused = false;
280     * unpaused.signalAll();
281     * } finally {
282     * pauseLock.unlock();
283     * }
284     * }
285     * }}</pre>
286     *
287     * @since 1.5
288     * @author Doug Lea
289     */
290     public class ThreadPoolExecutor extends AbstractExecutorService {
291     /**
292     * The main pool control state, ctl, is an atomic integer packing
293     * two conceptual fields
294     * workerCount, indicating the effective number of threads
295     * runState, indicating whether running, shutting down etc
296     *
297     * In order to pack them into one int, we limit workerCount to
298     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
299     * billion) otherwise representable. If this is ever an issue in
300     * the future, the variable can be changed to be an AtomicLong,
301     * and the shift/mask constants below adjusted. But until the need
302     * arises, this code is a bit faster and simpler using an int.
303     *
304     * The workerCount is the number of workers that have been
305     * permitted to start and not permitted to stop. The value may be
306     * transiently different from the actual number of live threads,
307     * for example when a ThreadFactory fails to create a thread when
308     * asked, and when exiting threads are still performing
309     * bookkeeping before terminating. The user-visible pool size is
310     * reported as the current size of the workers set.
311     *
312     * The runState provides the main lifecycle control, taking on values:
313     *
314     * RUNNING: Accept new tasks and process queued tasks
315     * SHUTDOWN: Don't accept new tasks, but process queued tasks
316     * STOP: Don't accept new tasks, don't process queued tasks,
317     * and interrupt in-progress tasks
318     * TIDYING: All tasks have terminated, workerCount is zero,
319     * the thread transitioning to state TIDYING
320     * will run the terminated() hook method
321     * TERMINATED: terminated() has completed
322     *
323     * The numerical order among these values matters, to allow
324     * ordered comparisons. The runState monotonically increases over
325     * time, but need not hit each state. The transitions are:
326     *
327     * RUNNING -> SHUTDOWN
328     * On invocation of shutdown(), perhaps implicitly in finalize()
329     * (RUNNING or SHUTDOWN) -> STOP
330     * On invocation of shutdownNow()
331     * SHUTDOWN -> TIDYING
332     * When both queue and pool are empty
333     * STOP -> TIDYING
334     * When pool is empty
335     * TIDYING -> TERMINATED
336     * When the terminated() hook method has completed
337     *
338     * Threads waiting in awaitTermination() will return when the
339     * state reaches TERMINATED.
340     *
341     * Detecting the transition from SHUTDOWN to TIDYING is less
342     * straightforward than you'd like because the queue may become
343     * empty after non-empty and vice versa during SHUTDOWN state, but
344     * we can only terminate if, after seeing that it is empty, we see
345     * that workerCount is 0 (which sometimes entails a recheck -- see
346     * below).
347     */
348     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
349     private static final int COUNT_BITS = Integer.SIZE - 3;
350     private static final int CAPACITY = (1 << COUNT_BITS) - 1;
351    
352     // runState is stored in the high-order bits
353     private static final int RUNNING = -1 << COUNT_BITS;
354     private static final int SHUTDOWN = 0 << COUNT_BITS;
355     private static final int STOP = 1 << COUNT_BITS;
356     private static final int TIDYING = 2 << COUNT_BITS;
357     private static final int TERMINATED = 3 << COUNT_BITS;
358    
359     // Packing and unpacking ctl
360     private static int runStateOf(int c) { return c & ~CAPACITY; }
361     private static int workerCountOf(int c) { return c & CAPACITY; }
362     private static int ctlOf(int rs, int wc) { return rs | wc; }
363    
364     /*
365     * Bit field accessors that don't require unpacking ctl.
366     * These depend on the bit layout and on workerCount being never negative.
367     */
368    
369     private static boolean runStateLessThan(int c, int s) {
370     return c < s;
371     }
372    
373     private static boolean runStateAtLeast(int c, int s) {
374     return c >= s;
375     }
376    
377     private static boolean isRunning(int c) {
378     return c < SHUTDOWN;
379     }
380    
381     /**
382 jsr166 1.2 * Attempts to CAS-increment the workerCount field of ctl.
383 dl 1.1 */
384     private boolean compareAndIncrementWorkerCount(int expect) {
385     return ctl.compareAndSet(expect, expect + 1);
386     }
387    
388     /**
389 jsr166 1.2 * Attempts to CAS-decrement the workerCount field of ctl.
390 dl 1.1 */
391     private boolean compareAndDecrementWorkerCount(int expect) {
392     return ctl.compareAndSet(expect, expect - 1);
393     }
394    
395     /**
396     * Decrements the workerCount field of ctl. This is called only on
397     * abrupt termination of a thread (see processWorkerExit). Other
398     * decrements are performed within getTask.
399     */
400     private void decrementWorkerCount() {
401     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
402     }
403    
404     /**
405     * The queue used for holding tasks and handing off to worker
406     * threads. We do not require that workQueue.poll() returning
407     * null necessarily means that workQueue.isEmpty(), so rely
408     * solely on isEmpty to see if the queue is empty (which we must
409     * do for example when deciding whether to transition from
410     * SHUTDOWN to TIDYING). This accommodates special-purpose
411     * queues such as DelayQueues for which poll() is allowed to
412     * return null even if it may later return non-null when delays
413     * expire.
414     */
415     private final BlockingQueue<Runnable> workQueue;
416    
417     /**
418     * Lock held on access to workers set and related bookkeeping.
419     * While we could use a concurrent set of some sort, it turns out
420     * to be generally preferable to use a lock. Among the reasons is
421     * that this serializes interruptIdleWorkers, which avoids
422     * unnecessary interrupt storms, especially during shutdown.
423     * Otherwise exiting threads would concurrently interrupt those
424     * that have not yet interrupted. It also simplifies some of the
425     * associated statistics bookkeeping of largestPoolSize etc. We
426     * also hold mainLock on shutdown and shutdownNow, for the sake of
427     * ensuring workers set is stable while separately checking
428     * permission to interrupt and actually interrupting.
429     */
430     private final ReentrantLock mainLock = new ReentrantLock();
431    
432     /**
433     * Set containing all worker threads in pool. Accessed only when
434     * holding mainLock.
435     */
436     private final HashSet<Worker> workers = new HashSet<Worker>();
437    
438     /**
439     * Wait condition to support awaitTermination
440     */
441     private final Condition termination = mainLock.newCondition();
442    
443     /**
444     * Tracks largest attained pool size. Accessed only under
445     * mainLock.
446     */
447     private int largestPoolSize;
448    
449     /**
450     * Counter for completed tasks. Updated only on termination of
451     * worker threads. Accessed only under mainLock.
452     */
453     private long completedTaskCount;
454    
455     /*
456     * All user control parameters are declared as volatiles so that
457     * ongoing actions are based on freshest values, but without need
458     * for locking, since no internal invariants depend on them
459     * changing synchronously with respect to other actions.
460     */
461    
462     /**
463     * Factory for new threads. All threads are created using this
464     * factory (via method addWorker). All callers must be prepared
465     * for addWorker to fail, which may reflect a system or user's
466     * policy limiting the number of threads. Even though it is not
467     * treated as an error, failure to create threads may result in
468     * new tasks being rejected or existing ones remaining stuck in
469     * the queue.
470     *
471     * We go further and preserve pool invariants even in the face of
472     * errors such as OutOfMemoryError, that might be thrown while
473     * trying to create threads. Such errors are rather common due to
474 jsr166 1.10 * the need to allocate a native stack in Thread.start, and users
475 dl 1.1 * will want to perform clean pool shutdown to clean up. There
476     * will likely be enough memory available for the cleanup code to
477     * complete without encountering yet another OutOfMemoryError.
478     */
479     private volatile ThreadFactory threadFactory;
480    
481     /**
482     * Handler called when saturated or shutdown in execute.
483     */
484     private volatile RejectedExecutionHandler handler;
485    
486     /**
487     * Timeout in nanoseconds for idle threads waiting for work.
488     * Threads use this timeout when there are more than corePoolSize
489     * present or if allowCoreThreadTimeOut. Otherwise they wait
490     * forever for new work.
491     */
492     private volatile long keepAliveTime;
493    
494     /**
495     * If false (default), core threads stay alive even when idle.
496     * If true, core threads use keepAliveTime to time out waiting
497     * for work.
498     */
499     private volatile boolean allowCoreThreadTimeOut;
500    
501     /**
502     * Core pool size is the minimum number of workers to keep alive
503     * (and not allow to time out etc) unless allowCoreThreadTimeOut
504     * is set, in which case the minimum is zero.
505     */
506     private volatile int corePoolSize;
507    
508     /**
509     * Maximum pool size. Note that the actual maximum is internally
510     * bounded by CAPACITY.
511     */
512     private volatile int maximumPoolSize;
513    
514     /**
515     * The default rejected execution handler
516     */
517     private static final RejectedExecutionHandler defaultHandler =
518     new AbortPolicy();
519    
520     /**
521     * Permission required for callers of shutdown and shutdownNow.
522     * We additionally require (see checkShutdownAccess) that callers
523     * have permission to actually interrupt threads in the worker set
524     * (as governed by Thread.interrupt, which relies on
525     * ThreadGroup.checkAccess, which in turn relies on
526     * SecurityManager.checkAccess). Shutdowns are attempted only if
527     * these checks pass.
528     *
529     * All actual invocations of Thread.interrupt (see
530     * interruptIdleWorkers and interruptWorkers) ignore
531     * SecurityExceptions, meaning that the attempted interrupts
532     * silently fail. In the case of shutdown, they should not fail
533     * unless the SecurityManager has inconsistent policies, sometimes
534     * allowing access to a thread and sometimes not. In such cases,
535     * failure to actually interrupt threads may disable or delay full
536     * termination. Other uses of interruptIdleWorkers are advisory,
537     * and failure to actually interrupt will merely delay response to
538     * configuration changes so is not handled exceptionally.
539     */
540     private static final RuntimePermission shutdownPerm =
541     new RuntimePermission("modifyThread");
542    
543     /**
544     * Class Worker mainly maintains interrupt control state for
545     * threads running tasks, along with other minor bookkeeping.
546     * This class opportunistically extends AbstractQueuedSynchronizer
547     * to simplify acquiring and releasing a lock surrounding each
548     * task execution. This protects against interrupts that are
549     * intended to wake up a worker thread waiting for a task from
550     * instead interrupting a task being run. We implement a simple
551     * non-reentrant mutual exclusion lock rather than use
552     * ReentrantLock because we do not want worker tasks to be able to
553     * reacquire the lock when they invoke pool control methods like
554     * setCorePoolSize. Additionally, to suppress interrupts until
555     * the thread actually starts running tasks, we initialize lock
556     * state to a negative value, and clear it upon start (in
557     * runWorker).
558     */
559     private final class Worker
560     extends AbstractQueuedSynchronizer
561     implements Runnable
562     {
563     /**
564     * This class will never be serialized, but we provide a
565     * serialVersionUID to suppress a javac warning.
566     */
567     private static final long serialVersionUID = 6138294804551838833L;
568    
569     /** Thread this worker is running in. Null if factory fails. */
570     final Thread thread;
571     /** Initial task to run. Possibly null. */
572     Runnable firstTask;
573     /** Per-thread task counter */
574     volatile long completedTasks;
575    
576     /**
577     * Creates with given first task and thread from ThreadFactory.
578     * @param firstTask the first task (null if none)
579     */
580     Worker(Runnable firstTask) {
581     setState(-1); // inhibit interrupts until runWorker
582     this.firstTask = firstTask;
583     this.thread = getThreadFactory().newThread(this);
584     }
585    
586 jsr166 1.13 /** Delegates main run loop to outer runWorker. */
587 dl 1.1 public void run() {
588     runWorker(this);
589     }
590    
591     // Lock methods
592     //
593     // The value 0 represents the unlocked state.
594     // The value 1 represents the locked state.
595    
596     protected boolean isHeldExclusively() {
597     return getState() != 0;
598     }
599    
600     protected boolean tryAcquire(int unused) {
601     if (compareAndSetState(0, 1)) {
602     setExclusiveOwnerThread(Thread.currentThread());
603     return true;
604     }
605     return false;
606     }
607    
608     protected boolean tryRelease(int unused) {
609     setExclusiveOwnerThread(null);
610     setState(0);
611     return true;
612     }
613    
614     public void lock() { acquire(1); }
615     public boolean tryLock() { return tryAcquire(1); }
616     public void unlock() { release(1); }
617     public boolean isLocked() { return isHeldExclusively(); }
618    
619     void interruptIfStarted() {
620     Thread t;
621     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
622     try {
623     t.interrupt();
624     } catch (SecurityException ignore) {
625     }
626     }
627     }
628     }
629    
630     /*
631     * Methods for setting control state
632     */
633    
634     /**
635     * Transitions runState to given target, or leaves it alone if
636     * already at least the given target.
637     *
638     * @param targetState the desired state, either SHUTDOWN or STOP
639     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
640     */
641     private void advanceRunState(int targetState) {
642     for (;;) {
643     int c = ctl.get();
644     if (runStateAtLeast(c, targetState) ||
645     ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
646     break;
647     }
648     }
649    
650     /**
651     * Transitions to TERMINATED state if either (SHUTDOWN and pool
652     * and queue empty) or (STOP and pool empty). If otherwise
653     * eligible to terminate but workerCount is nonzero, interrupts an
654     * idle worker to ensure that shutdown signals propagate. This
655     * method must be called following any action that might make
656     * termination possible -- reducing worker count or removing tasks
657     * from the queue during shutdown. The method is non-private to
658     * allow access from ScheduledThreadPoolExecutor.
659     */
660     final void tryTerminate() {
661     for (;;) {
662     int c = ctl.get();
663     if (isRunning(c) ||
664     runStateAtLeast(c, TIDYING) ||
665     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
666     return;
667     if (workerCountOf(c) != 0) { // Eligible to terminate
668     interruptIdleWorkers(ONLY_ONE);
669     return;
670     }
671    
672     final ReentrantLock mainLock = this.mainLock;
673     mainLock.lock();
674     try {
675     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
676     try {
677     terminated();
678     } finally {
679     ctl.set(ctlOf(TERMINATED, 0));
680     termination.signalAll();
681     }
682     return;
683     }
684     } finally {
685     mainLock.unlock();
686     }
687     // else retry on failed CAS
688     }
689     }
690    
691     /*
692     * Methods for controlling interrupts to worker threads.
693     */
694    
695     /**
696     * If there is a security manager, makes sure caller has
697     * permission to shut down threads in general (see shutdownPerm).
698     * If this passes, additionally makes sure the caller is allowed
699     * to interrupt each worker thread. This might not be true even if
700     * first check passed, if the SecurityManager treats some threads
701     * specially.
702     */
703     private void checkShutdownAccess() {
704     SecurityManager security = System.getSecurityManager();
705     if (security != null) {
706     security.checkPermission(shutdownPerm);
707     final ReentrantLock mainLock = this.mainLock;
708     mainLock.lock();
709     try {
710     for (Worker w : workers)
711     security.checkAccess(w.thread);
712     } finally {
713     mainLock.unlock();
714     }
715     }
716     }
717    
718     /**
719     * Interrupts all threads, even if active. Ignores SecurityExceptions
720     * (in which case some threads may remain uninterrupted).
721     */
722     private void interruptWorkers() {
723     final ReentrantLock mainLock = this.mainLock;
724     mainLock.lock();
725     try {
726     for (Worker w : workers)
727     w.interruptIfStarted();
728     } finally {
729     mainLock.unlock();
730     }
731     }
732    
733     /**
734     * Interrupts threads that might be waiting for tasks (as
735     * indicated by not being locked) so they can check for
736     * termination or configuration changes. Ignores
737     * SecurityExceptions (in which case some threads may remain
738     * uninterrupted).
739     *
740     * @param onlyOne If true, interrupt at most one worker. This is
741     * called only from tryTerminate when termination is otherwise
742     * enabled but there are still other workers. In this case, at
743     * most one waiting worker is interrupted to propagate shutdown
744     * signals in case all threads are currently waiting.
745     * Interrupting any arbitrary thread ensures that newly arriving
746     * workers since shutdown began will also eventually exit.
747     * To guarantee eventual termination, it suffices to always
748     * interrupt only one idle worker, but shutdown() interrupts all
749     * idle workers so that redundant workers exit promptly, not
750     * waiting for a straggler task to finish.
751     */
752     private void interruptIdleWorkers(boolean onlyOne) {
753     final ReentrantLock mainLock = this.mainLock;
754     mainLock.lock();
755     try {
756     for (Worker w : workers) {
757     Thread t = w.thread;
758     if (!t.isInterrupted() && w.tryLock()) {
759     try {
760     t.interrupt();
761     } catch (SecurityException ignore) {
762     } finally {
763     w.unlock();
764     }
765     }
766     if (onlyOne)
767     break;
768     }
769     } finally {
770     mainLock.unlock();
771     }
772     }
773    
774     /**
775     * Common form of interruptIdleWorkers, to avoid having to
776     * remember what the boolean argument means.
777     */
778     private void interruptIdleWorkers() {
779     interruptIdleWorkers(false);
780     }
781    
782     private static final boolean ONLY_ONE = true;
783    
784     /*
785     * Misc utilities, most of which are also exported to
786     * ScheduledThreadPoolExecutor
787     */
788    
789     /**
790     * Invokes the rejected execution handler for the given command.
791     * Package-protected for use by ScheduledThreadPoolExecutor.
792     */
793     final void reject(Runnable command) {
794     handler.rejectedExecution(command, this);
795     }
796    
797     /**
798     * Performs any further cleanup following run state transition on
799     * invocation of shutdown. A no-op here, but used by
800     * ScheduledThreadPoolExecutor to cancel delayed tasks.
801     */
802     void onShutdown() {
803     }
804    
805     /**
806     * State check needed by ScheduledThreadPoolExecutor to
807     * enable running tasks during shutdown.
808     *
809     * @param shutdownOK true if should return true if SHUTDOWN
810     */
811     final boolean isRunningOrShutdown(boolean shutdownOK) {
812     int rs = runStateOf(ctl.get());
813     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
814     }
815    
816     /**
817     * Drains the task queue into a new list, normally using
818     * drainTo. But if the queue is a DelayQueue or any other kind of
819     * queue for which poll or drainTo may fail to remove some
820     * elements, it deletes them one by one.
821     */
822     private List<Runnable> drainQueue() {
823     BlockingQueue<Runnable> q = workQueue;
824 jsr166 1.7 ArrayList<Runnable> taskList = new ArrayList<Runnable>();
825 dl 1.1 q.drainTo(taskList);
826     if (!q.isEmpty()) {
827     for (Runnable r : q.toArray(new Runnable[0])) {
828     if (q.remove(r))
829     taskList.add(r);
830     }
831     }
832     return taskList;
833     }
834    
835     /*
836     * Methods for creating, running and cleaning up after workers
837     */
838    
839     /**
840     * Checks if a new worker can be added with respect to current
841     * pool state and the given bound (either core or maximum). If so,
842     * the worker count is adjusted accordingly, and, if possible, a
843     * new worker is created and started, running firstTask as its
844     * first task. This method returns false if the pool is stopped or
845     * eligible to shut down. It also returns false if the thread
846     * factory fails to create a thread when asked. If the thread
847     * creation fails, either due to the thread factory returning
848     * null, or due to an exception (typically OutOfMemoryError in
849 jsr166 1.11 * Thread.start()), we roll back cleanly.
850 dl 1.1 *
851     * @param firstTask the task the new thread should run first (or
852     * null if none). Workers are created with an initial first task
853     * (in method execute()) to bypass queuing when there are fewer
854     * than corePoolSize threads (in which case we always start one),
855     * or when the queue is full (in which case we must bypass queue).
856     * Initially idle threads are usually created via
857     * prestartCoreThread or to replace other dying workers.
858     *
859     * @param core if true use corePoolSize as bound, else
860     * maximumPoolSize. (A boolean indicator is used here rather than a
861     * value to ensure reads of fresh values after checking other pool
862     * state).
863     * @return true if successful
864     */
865     private boolean addWorker(Runnable firstTask, boolean core) {
866     retry:
867     for (;;) {
868     int c = ctl.get();
869     int rs = runStateOf(c);
870    
871     // Check if queue empty only if necessary.
872     if (rs >= SHUTDOWN &&
873     ! (rs == SHUTDOWN &&
874     firstTask == null &&
875     ! workQueue.isEmpty()))
876     return false;
877    
878     for (;;) {
879     int wc = workerCountOf(c);
880     if (wc >= CAPACITY ||
881     wc >= (core ? corePoolSize : maximumPoolSize))
882     return false;
883     if (compareAndIncrementWorkerCount(c))
884     break retry;
885     c = ctl.get(); // Re-read ctl
886     if (runStateOf(c) != rs)
887     continue retry;
888     // else CAS failed due to workerCount change; retry inner loop
889     }
890     }
891    
892     boolean workerStarted = false;
893     boolean workerAdded = false;
894     Worker w = null;
895     try {
896     w = new Worker(firstTask);
897     final Thread t = w.thread;
898     if (t != null) {
899     final ReentrantLock mainLock = this.mainLock;
900     mainLock.lock();
901     try {
902     // Recheck while holding lock.
903     // Back out on ThreadFactory failure or if
904     // shut down before lock acquired.
905     int rs = runStateOf(ctl.get());
906    
907     if (rs < SHUTDOWN ||
908     (rs == SHUTDOWN && firstTask == null)) {
909     if (t.isAlive()) // precheck that t is startable
910     throw new IllegalThreadStateException();
911     workers.add(w);
912     int s = workers.size();
913     if (s > largestPoolSize)
914     largestPoolSize = s;
915     workerAdded = true;
916     }
917     } finally {
918     mainLock.unlock();
919     }
920     if (workerAdded) {
921     t.start();
922     workerStarted = true;
923     }
924     }
925     } finally {
926     if (! workerStarted)
927     addWorkerFailed(w);
928     }
929     return workerStarted;
930     }
931    
932     /**
933     * Rolls back the worker thread creation.
934     * - removes worker from workers, if present
935     * - decrements worker count
936     * - rechecks for termination, in case the existence of this
937     * worker was holding up termination
938     */
939     private void addWorkerFailed(Worker w) {
940     final ReentrantLock mainLock = this.mainLock;
941     mainLock.lock();
942     try {
943     if (w != null)
944     workers.remove(w);
945     decrementWorkerCount();
946     tryTerminate();
947     } finally {
948     mainLock.unlock();
949     }
950     }
951    
952     /**
953     * Performs cleanup and bookkeeping for a dying worker. Called
954     * only from worker threads. Unless completedAbruptly is set,
955     * assumes that workerCount has already been adjusted to account
956     * for exit. This method removes thread from worker set, and
957     * possibly terminates the pool or replaces the worker if either
958     * it exited due to user task exception or if fewer than
959     * corePoolSize workers are running or queue is non-empty but
960     * there are no workers.
961     *
962     * @param w the worker
963     * @param completedAbruptly if the worker died due to user exception
964     */
965     private void processWorkerExit(Worker w, boolean completedAbruptly) {
966     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
967     decrementWorkerCount();
968    
969     final ReentrantLock mainLock = this.mainLock;
970     mainLock.lock();
971     try {
972     completedTaskCount += w.completedTasks;
973     workers.remove(w);
974     } finally {
975     mainLock.unlock();
976     }
977    
978     tryTerminate();
979    
980     int c = ctl.get();
981     if (runStateLessThan(c, STOP)) {
982     if (!completedAbruptly) {
983     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
984     if (min == 0 && ! workQueue.isEmpty())
985     min = 1;
986     if (workerCountOf(c) >= min)
987     return; // replacement not needed
988     }
989     addWorker(null, false);
990     }
991     }
992    
993     /**
994     * Performs blocking or timed wait for a task, depending on
995     * current configuration settings, or returns null if this worker
996     * must exit because of any of:
997     * 1. There are more than maximumPoolSize workers (due to
998     * a call to setMaximumPoolSize).
999     * 2. The pool is stopped.
1000     * 3. The pool is shutdown and the queue is empty.
1001     * 4. This worker timed out waiting for a task, and timed-out
1002     * workers are subject to termination (that is,
1003     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1004 jsr166 1.6 * both before and after the timed wait, and if the queue is
1005     * non-empty, this worker is not the last thread in the pool.
1006 dl 1.1 *
1007     * @return task, or null if the worker must exit, in which case
1008     * workerCount is decremented
1009     */
1010     private Runnable getTask() {
1011     boolean timedOut = false; // Did the last poll() time out?
1012    
1013     for (;;) {
1014     int c = ctl.get();
1015     int rs = runStateOf(c);
1016    
1017     // Check if queue empty only if necessary.
1018     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1019     decrementWorkerCount();
1020     return null;
1021     }
1022    
1023 jsr166 1.6 int wc = workerCountOf(c);
1024 dl 1.1
1025 jsr166 1.6 // Are workers subject to culling?
1026     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1027 dl 1.1
1028 jsr166 1.6 if ((wc > maximumPoolSize || (timed && timedOut))
1029     && (wc > 1 || workQueue.isEmpty())) {
1030 dl 1.1 if (compareAndDecrementWorkerCount(c))
1031     return null;
1032 jsr166 1.6 continue;
1033 dl 1.1 }
1034    
1035     try {
1036     Runnable r = timed ?
1037     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1038     workQueue.take();
1039     if (r != null)
1040     return r;
1041     timedOut = true;
1042     } catch (InterruptedException retry) {
1043     timedOut = false;
1044     }
1045     }
1046     }
1047    
1048     /**
1049     * Main worker run loop. Repeatedly gets tasks from queue and
1050     * executes them, while coping with a number of issues:
1051     *
1052     * 1. We may start out with an initial task, in which case we
1053     * don't need to get the first one. Otherwise, as long as pool is
1054     * running, we get tasks from getTask. If it returns null then the
1055     * worker exits due to changed pool state or configuration
1056     * parameters. Other exits result from exception throws in
1057     * external code, in which case completedAbruptly holds, which
1058     * usually leads processWorkerExit to replace this thread.
1059     *
1060     * 2. Before running any task, the lock is acquired to prevent
1061 jsr166 1.4 * other pool interrupts while the task is executing, and then we
1062     * ensure that unless pool is stopping, this thread does not have
1063     * its interrupt set.
1064 dl 1.1 *
1065     * 3. Each task run is preceded by a call to beforeExecute, which
1066     * might throw an exception, in which case we cause thread to die
1067     * (breaking loop with completedAbruptly true) without processing
1068     * the task.
1069     *
1070     * 4. Assuming beforeExecute completes normally, we run the task,
1071 jsr166 1.3 * gathering any of its thrown exceptions to send to afterExecute.
1072     * We separately handle RuntimeException, Error (both of which the
1073     * specs guarantee that we trap) and arbitrary Throwables.
1074     * Because we cannot rethrow Throwables within Runnable.run, we
1075     * wrap them within Errors on the way out (to the thread's
1076     * UncaughtExceptionHandler). Any thrown exception also
1077 dl 1.1 * conservatively causes thread to die.
1078     *
1079     * 5. After task.run completes, we call afterExecute, which may
1080     * also throw an exception, which will also cause thread to
1081     * die. According to JLS Sec 14.20, this exception is the one that
1082     * will be in effect even if task.run throws.
1083     *
1084     * The net effect of the exception mechanics is that afterExecute
1085     * and the thread's UncaughtExceptionHandler have as accurate
1086     * information as we can provide about any problems encountered by
1087     * user code.
1088     *
1089     * @param w the worker
1090     */
1091     final void runWorker(Worker w) {
1092     Thread wt = Thread.currentThread();
1093     Runnable task = w.firstTask;
1094     w.firstTask = null;
1095     w.unlock(); // allow interrupts
1096     boolean completedAbruptly = true;
1097     try {
1098     while (task != null || (task = getTask()) != null) {
1099     w.lock();
1100     // If pool is stopping, ensure thread is interrupted;
1101     // if not, ensure thread is not interrupted. This
1102     // requires a recheck in second case to deal with
1103     // shutdownNow race while clearing interrupt
1104     if ((runStateAtLeast(ctl.get(), STOP) ||
1105     (Thread.interrupted() &&
1106     runStateAtLeast(ctl.get(), STOP))) &&
1107     !wt.isInterrupted())
1108     wt.interrupt();
1109     try {
1110     beforeExecute(wt, task);
1111     Throwable thrown = null;
1112     try {
1113     task.run();
1114     } catch (RuntimeException x) {
1115     thrown = x; throw x;
1116     } catch (Error x) {
1117     thrown = x; throw x;
1118     } catch (Throwable x) {
1119     thrown = x; throw new Error(x);
1120     } finally {
1121     afterExecute(task, thrown);
1122     }
1123     } finally {
1124     task = null;
1125     w.completedTasks++;
1126     w.unlock();
1127     }
1128     }
1129     completedAbruptly = false;
1130     } finally {
1131     processWorkerExit(w, completedAbruptly);
1132     }
1133     }
1134    
1135     // Public constructors and methods
1136    
1137     /**
1138     * Creates a new {@code ThreadPoolExecutor} with the given initial
1139     * parameters and default thread factory and rejected execution handler.
1140     * It may be more convenient to use one of the {@link Executors} factory
1141     * methods instead of this general purpose constructor.
1142     *
1143     * @param corePoolSize the number of threads to keep in the pool, even
1144     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1145     * @param maximumPoolSize the maximum number of threads to allow in the
1146     * pool
1147     * @param keepAliveTime when the number of threads is greater than
1148     * the core, this is the maximum time that excess idle threads
1149     * will wait for new tasks before terminating.
1150     * @param unit the time unit for the {@code keepAliveTime} argument
1151     * @param workQueue the queue to use for holding tasks before they are
1152     * executed. This queue will hold only the {@code Runnable}
1153     * tasks submitted by the {@code execute} method.
1154     * @throws IllegalArgumentException if one of the following holds:<br>
1155     * {@code corePoolSize < 0}<br>
1156     * {@code keepAliveTime < 0}<br>
1157     * {@code maximumPoolSize <= 0}<br>
1158     * {@code maximumPoolSize < corePoolSize}
1159     * @throws NullPointerException if {@code workQueue} is null
1160     */
1161     public ThreadPoolExecutor(int corePoolSize,
1162     int maximumPoolSize,
1163     long keepAliveTime,
1164     TimeUnit unit,
1165     BlockingQueue<Runnable> workQueue) {
1166     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1167     Executors.defaultThreadFactory(), defaultHandler);
1168     }
1169    
1170     /**
1171     * Creates a new {@code ThreadPoolExecutor} with the given initial
1172     * parameters and default rejected execution handler.
1173     *
1174     * @param corePoolSize the number of threads to keep in the pool, even
1175     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1176     * @param maximumPoolSize the maximum number of threads to allow in the
1177     * pool
1178     * @param keepAliveTime when the number of threads is greater than
1179     * the core, this is the maximum time that excess idle threads
1180     * will wait for new tasks before terminating.
1181     * @param unit the time unit for the {@code keepAliveTime} argument
1182     * @param workQueue the queue to use for holding tasks before they are
1183     * executed. This queue will hold only the {@code Runnable}
1184     * tasks submitted by the {@code execute} method.
1185     * @param threadFactory the factory to use when the executor
1186     * creates a new thread
1187     * @throws IllegalArgumentException if one of the following holds:<br>
1188     * {@code corePoolSize < 0}<br>
1189     * {@code keepAliveTime < 0}<br>
1190     * {@code maximumPoolSize <= 0}<br>
1191     * {@code maximumPoolSize < corePoolSize}
1192     * @throws NullPointerException if {@code workQueue}
1193     * or {@code threadFactory} is null
1194     */
1195     public ThreadPoolExecutor(int corePoolSize,
1196     int maximumPoolSize,
1197     long keepAliveTime,
1198     TimeUnit unit,
1199     BlockingQueue<Runnable> workQueue,
1200     ThreadFactory threadFactory) {
1201     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1202     threadFactory, defaultHandler);
1203     }
1204    
1205     /**
1206     * Creates a new {@code ThreadPoolExecutor} with the given initial
1207     * parameters and default thread factory.
1208     *
1209     * @param corePoolSize the number of threads to keep in the pool, even
1210     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1211     * @param maximumPoolSize the maximum number of threads to allow in the
1212     * pool
1213     * @param keepAliveTime when the number of threads is greater than
1214     * the core, this is the maximum time that excess idle threads
1215     * will wait for new tasks before terminating.
1216     * @param unit the time unit for the {@code keepAliveTime} argument
1217     * @param workQueue the queue to use for holding tasks before they are
1218     * executed. This queue will hold only the {@code Runnable}
1219     * tasks submitted by the {@code execute} method.
1220     * @param handler the handler to use when execution is blocked
1221     * because the thread bounds and queue capacities are reached
1222     * @throws IllegalArgumentException if one of the following holds:<br>
1223     * {@code corePoolSize < 0}<br>
1224     * {@code keepAliveTime < 0}<br>
1225     * {@code maximumPoolSize <= 0}<br>
1226     * {@code maximumPoolSize < corePoolSize}
1227     * @throws NullPointerException if {@code workQueue}
1228     * or {@code handler} is null
1229     */
1230     public ThreadPoolExecutor(int corePoolSize,
1231     int maximumPoolSize,
1232     long keepAliveTime,
1233     TimeUnit unit,
1234     BlockingQueue<Runnable> workQueue,
1235     RejectedExecutionHandler handler) {
1236     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1237     Executors.defaultThreadFactory(), handler);
1238     }
1239    
1240     /**
1241     * Creates a new {@code ThreadPoolExecutor} with the given initial
1242     * parameters.
1243     *
1244     * @param corePoolSize the number of threads to keep in the pool, even
1245     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1246     * @param maximumPoolSize the maximum number of threads to allow in the
1247     * pool
1248     * @param keepAliveTime when the number of threads is greater than
1249     * the core, this is the maximum time that excess idle threads
1250     * will wait for new tasks before terminating.
1251     * @param unit the time unit for the {@code keepAliveTime} argument
1252     * @param workQueue the queue to use for holding tasks before they are
1253     * executed. This queue will hold only the {@code Runnable}
1254     * tasks submitted by the {@code execute} method.
1255     * @param threadFactory the factory to use when the executor
1256     * creates a new thread
1257     * @param handler the handler to use when execution is blocked
1258     * because the thread bounds and queue capacities are reached
1259     * @throws IllegalArgumentException if one of the following holds:<br>
1260     * {@code corePoolSize < 0}<br>
1261     * {@code keepAliveTime < 0}<br>
1262     * {@code maximumPoolSize <= 0}<br>
1263     * {@code maximumPoolSize < corePoolSize}
1264     * @throws NullPointerException if {@code workQueue}
1265     * or {@code threadFactory} or {@code handler} is null
1266     */
1267     public ThreadPoolExecutor(int corePoolSize,
1268     int maximumPoolSize,
1269     long keepAliveTime,
1270     TimeUnit unit,
1271     BlockingQueue<Runnable> workQueue,
1272     ThreadFactory threadFactory,
1273     RejectedExecutionHandler handler) {
1274     if (corePoolSize < 0 ||
1275     maximumPoolSize <= 0 ||
1276     maximumPoolSize < corePoolSize ||
1277     keepAliveTime < 0)
1278     throw new IllegalArgumentException();
1279     if (workQueue == null || threadFactory == null || handler == null)
1280     throw new NullPointerException();
1281     this.corePoolSize = corePoolSize;
1282     this.maximumPoolSize = maximumPoolSize;
1283     this.workQueue = workQueue;
1284     this.keepAliveTime = unit.toNanos(keepAliveTime);
1285     this.threadFactory = threadFactory;
1286     this.handler = handler;
1287     }
1288    
1289     /**
1290     * Executes the given task sometime in the future. The task
1291     * may execute in a new thread or in an existing pooled thread.
1292     *
1293     * If the task cannot be submitted for execution, either because this
1294     * executor has been shutdown or because its capacity has been reached,
1295     * the task is handled by the current {@code RejectedExecutionHandler}.
1296     *
1297     * @param command the task to execute
1298     * @throws RejectedExecutionException at discretion of
1299     * {@code RejectedExecutionHandler}, if the task
1300     * cannot be accepted for execution
1301     * @throws NullPointerException if {@code command} is null
1302     */
1303     public void execute(Runnable command) {
1304     if (command == null)
1305     throw new NullPointerException();
1306     /*
1307     * Proceed in 3 steps:
1308     *
1309     * 1. If fewer than corePoolSize threads are running, try to
1310     * start a new thread with the given command as its first
1311     * task. The call to addWorker atomically checks runState and
1312     * workerCount, and so prevents false alarms that would add
1313     * threads when it shouldn't, by returning false.
1314     *
1315     * 2. If a task can be successfully queued, then we still need
1316     * to double-check whether we should have added a thread
1317     * (because existing ones died since last checking) or that
1318     * the pool shut down since entry into this method. So we
1319     * recheck state and if necessary roll back the enqueuing if
1320     * stopped, or start a new thread if there are none.
1321     *
1322     * 3. If we cannot queue task, then we try to add a new
1323     * thread. If it fails, we know we are shut down or saturated
1324     * and so reject the task.
1325     */
1326     int c = ctl.get();
1327     if (workerCountOf(c) < corePoolSize) {
1328     if (addWorker(command, true))
1329     return;
1330     c = ctl.get();
1331     }
1332     if (isRunning(c) && workQueue.offer(command)) {
1333     int recheck = ctl.get();
1334     if (! isRunning(recheck) && remove(command))
1335     reject(command);
1336     else if (workerCountOf(recheck) == 0)
1337     addWorker(null, false);
1338     }
1339     else if (!addWorker(command, false))
1340     reject(command);
1341     }
1342    
1343     /**
1344     * Initiates an orderly shutdown in which previously submitted
1345     * tasks are executed, but no new tasks will be accepted.
1346     * Invocation has no additional effect if already shut down.
1347     *
1348     * <p>This method does not wait for previously submitted tasks to
1349     * complete execution. Use {@link #awaitTermination awaitTermination}
1350     * to do that.
1351     *
1352     * @throws SecurityException {@inheritDoc}
1353     */
1354     public void shutdown() {
1355     final ReentrantLock mainLock = this.mainLock;
1356     mainLock.lock();
1357     try {
1358     checkShutdownAccess();
1359     advanceRunState(SHUTDOWN);
1360     interruptIdleWorkers();
1361     onShutdown(); // hook for ScheduledThreadPoolExecutor
1362     } finally {
1363     mainLock.unlock();
1364     }
1365     tryTerminate();
1366     }
1367    
1368     /**
1369     * Attempts to stop all actively executing tasks, halts the
1370     * processing of waiting tasks, and returns a list of the tasks
1371     * that were awaiting execution. These tasks are drained (removed)
1372     * from the task queue upon return from this method.
1373     *
1374     * <p>This method does not wait for actively executing tasks to
1375     * terminate. Use {@link #awaitTermination awaitTermination} to
1376     * do that.
1377     *
1378     * <p>There are no guarantees beyond best-effort attempts to stop
1379     * processing actively executing tasks. This implementation
1380     * cancels tasks via {@link Thread#interrupt}, so any task that
1381     * fails to respond to interrupts may never terminate.
1382     *
1383     * @throws SecurityException {@inheritDoc}
1384     */
1385     public List<Runnable> shutdownNow() {
1386     List<Runnable> tasks;
1387     final ReentrantLock mainLock = this.mainLock;
1388     mainLock.lock();
1389     try {
1390     checkShutdownAccess();
1391     advanceRunState(STOP);
1392     interruptWorkers();
1393     tasks = drainQueue();
1394     } finally {
1395     mainLock.unlock();
1396     }
1397     tryTerminate();
1398     return tasks;
1399     }
1400    
1401     public boolean isShutdown() {
1402     return ! isRunning(ctl.get());
1403     }
1404    
1405     /**
1406     * Returns true if this executor is in the process of terminating
1407     * after {@link #shutdown} or {@link #shutdownNow} but has not
1408     * completely terminated. This method may be useful for
1409     * debugging. A return of {@code true} reported a sufficient
1410     * period after shutdown may indicate that submitted tasks have
1411     * ignored or suppressed interruption, causing this executor not
1412     * to properly terminate.
1413     *
1414 jsr166 1.12 * @return {@code true} if terminating but not yet terminated
1415 dl 1.1 */
1416     public boolean isTerminating() {
1417     int c = ctl.get();
1418     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1419     }
1420    
1421     public boolean isTerminated() {
1422     return runStateAtLeast(ctl.get(), TERMINATED);
1423     }
1424    
1425     public boolean awaitTermination(long timeout, TimeUnit unit)
1426     throws InterruptedException {
1427     long nanos = unit.toNanos(timeout);
1428     final ReentrantLock mainLock = this.mainLock;
1429     mainLock.lock();
1430     try {
1431     for (;;) {
1432     if (runStateAtLeast(ctl.get(), TERMINATED))
1433     return true;
1434     if (nanos <= 0)
1435     return false;
1436     nanos = termination.awaitNanos(nanos);
1437     }
1438     } finally {
1439     mainLock.unlock();
1440     }
1441     }
1442    
1443     /**
1444     * Invokes {@code shutdown} when this executor is no longer
1445     * referenced and it has no threads.
1446     */
1447     protected void finalize() {
1448     shutdown();
1449     }
1450    
1451     /**
1452     * Sets the thread factory used to create new threads.
1453     *
1454     * @param threadFactory the new thread factory
1455     * @throws NullPointerException if threadFactory is null
1456     * @see #getThreadFactory
1457     */
1458     public void setThreadFactory(ThreadFactory threadFactory) {
1459     if (threadFactory == null)
1460     throw new NullPointerException();
1461     this.threadFactory = threadFactory;
1462     }
1463    
1464     /**
1465     * Returns the thread factory used to create new threads.
1466     *
1467     * @return the current thread factory
1468 jsr166 1.12 * @see #setThreadFactory(ThreadFactory)
1469 dl 1.1 */
1470     public ThreadFactory getThreadFactory() {
1471     return threadFactory;
1472     }
1473    
1474     /**
1475     * Sets a new handler for unexecutable tasks.
1476     *
1477     * @param handler the new handler
1478     * @throws NullPointerException if handler is null
1479     * @see #getRejectedExecutionHandler
1480     */
1481     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1482     if (handler == null)
1483     throw new NullPointerException();
1484     this.handler = handler;
1485     }
1486    
1487     /**
1488     * Returns the current handler for unexecutable tasks.
1489     *
1490     * @return the current handler
1491 jsr166 1.12 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1492 dl 1.1 */
1493     public RejectedExecutionHandler getRejectedExecutionHandler() {
1494     return handler;
1495     }
1496    
1497     /**
1498     * Sets the core number of threads. This overrides any value set
1499     * in the constructor. If the new value is smaller than the
1500     * current value, excess existing threads will be terminated when
1501     * they next become idle. If larger, new threads will, if needed,
1502     * be started to execute any queued tasks.
1503     *
1504     * @param corePoolSize the new core size
1505     * @throws IllegalArgumentException if {@code corePoolSize < 0}
1506     * @see #getCorePoolSize
1507     */
1508     public void setCorePoolSize(int corePoolSize) {
1509     if (corePoolSize < 0)
1510     throw new IllegalArgumentException();
1511     int delta = corePoolSize - this.corePoolSize;
1512     this.corePoolSize = corePoolSize;
1513     if (workerCountOf(ctl.get()) > corePoolSize)
1514     interruptIdleWorkers();
1515     else if (delta > 0) {
1516     // We don't really know how many new threads are "needed".
1517     // As a heuristic, prestart enough new workers (up to new
1518     // core size) to handle the current number of tasks in
1519     // queue, but stop if queue becomes empty while doing so.
1520     int k = Math.min(delta, workQueue.size());
1521     while (k-- > 0 && addWorker(null, true)) {
1522     if (workQueue.isEmpty())
1523     break;
1524     }
1525     }
1526     }
1527    
1528     /**
1529     * Returns the core number of threads.
1530     *
1531     * @return the core number of threads
1532     * @see #setCorePoolSize
1533     */
1534     public int getCorePoolSize() {
1535     return corePoolSize;
1536     }
1537    
1538     /**
1539     * Starts a core thread, causing it to idly wait for work. This
1540     * overrides the default policy of starting core threads only when
1541     * new tasks are executed. This method will return {@code false}
1542     * if all core threads have already been started.
1543     *
1544     * @return {@code true} if a thread was started
1545     */
1546     public boolean prestartCoreThread() {
1547     return workerCountOf(ctl.get()) < corePoolSize &&
1548     addWorker(null, true);
1549     }
1550    
1551     /**
1552     * Same as prestartCoreThread except arranges that at least one
1553     * thread is started even if corePoolSize is 0.
1554     */
1555     void ensurePrestart() {
1556     int wc = workerCountOf(ctl.get());
1557     if (wc < corePoolSize)
1558     addWorker(null, true);
1559     else if (wc == 0)
1560     addWorker(null, false);
1561     }
1562    
1563     /**
1564     * Starts all core threads, causing them to idly wait for work. This
1565     * overrides the default policy of starting core threads only when
1566     * new tasks are executed.
1567     *
1568     * @return the number of threads started
1569     */
1570     public int prestartAllCoreThreads() {
1571     int n = 0;
1572     while (addWorker(null, true))
1573     ++n;
1574     return n;
1575     }
1576    
1577     /**
1578     * Returns true if this pool allows core threads to time out and
1579     * terminate if no tasks arrive within the keepAlive time, being
1580     * replaced if needed when new tasks arrive. When true, the same
1581     * keep-alive policy applying to non-core threads applies also to
1582     * core threads. When false (the default), core threads are never
1583     * terminated due to lack of incoming tasks.
1584     *
1585     * @return {@code true} if core threads are allowed to time out,
1586     * else {@code false}
1587     *
1588     * @since 1.6
1589     */
1590     public boolean allowsCoreThreadTimeOut() {
1591     return allowCoreThreadTimeOut;
1592     }
1593    
1594     /**
1595     * Sets the policy governing whether core threads may time out and
1596     * terminate if no tasks arrive within the keep-alive time, being
1597     * replaced if needed when new tasks arrive. When false, core
1598     * threads are never terminated due to lack of incoming
1599     * tasks. When true, the same keep-alive policy applying to
1600     * non-core threads applies also to core threads. To avoid
1601     * continual thread replacement, the keep-alive time must be
1602     * greater than zero when setting {@code true}. This method
1603     * should in general be called before the pool is actively used.
1604     *
1605     * @param value {@code true} if should time out, else {@code false}
1606     * @throws IllegalArgumentException if value is {@code true}
1607     * and the current keep-alive time is not greater than zero
1608     *
1609     * @since 1.6
1610     */
1611     public void allowCoreThreadTimeOut(boolean value) {
1612     if (value && keepAliveTime <= 0)
1613     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1614     if (value != allowCoreThreadTimeOut) {
1615     allowCoreThreadTimeOut = value;
1616     if (value)
1617     interruptIdleWorkers();
1618     }
1619     }
1620    
1621     /**
1622     * Sets the maximum allowed number of threads. This overrides any
1623     * value set in the constructor. If the new value is smaller than
1624     * the current value, excess existing threads will be
1625     * terminated when they next become idle.
1626     *
1627     * @param maximumPoolSize the new maximum
1628     * @throws IllegalArgumentException if the new maximum is
1629     * less than or equal to zero, or
1630     * less than the {@linkplain #getCorePoolSize core pool size}
1631     * @see #getMaximumPoolSize
1632     */
1633     public void setMaximumPoolSize(int maximumPoolSize) {
1634     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1635     throw new IllegalArgumentException();
1636     this.maximumPoolSize = maximumPoolSize;
1637     if (workerCountOf(ctl.get()) > maximumPoolSize)
1638     interruptIdleWorkers();
1639     }
1640    
1641     /**
1642     * Returns the maximum allowed number of threads.
1643     *
1644     * @return the maximum allowed number of threads
1645     * @see #setMaximumPoolSize
1646     */
1647     public int getMaximumPoolSize() {
1648     return maximumPoolSize;
1649     }
1650    
1651     /**
1652     * Sets the time limit for which threads may remain idle before
1653     * being terminated. If there are more than the core number of
1654     * threads currently in the pool, after waiting this amount of
1655     * time without processing a task, excess threads will be
1656     * terminated. This overrides any value set in the constructor.
1657     *
1658     * @param time the time to wait. A time value of zero will cause
1659     * excess threads to terminate immediately after executing tasks.
1660     * @param unit the time unit of the {@code time} argument
1661     * @throws IllegalArgumentException if {@code time} less than zero or
1662     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1663 jsr166 1.12 * @see #getKeepAliveTime(TimeUnit)
1664 dl 1.1 */
1665     public void setKeepAliveTime(long time, TimeUnit unit) {
1666     if (time < 0)
1667     throw new IllegalArgumentException();
1668     if (time == 0 && allowsCoreThreadTimeOut())
1669     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1670     long keepAliveTime = unit.toNanos(time);
1671     long delta = keepAliveTime - this.keepAliveTime;
1672     this.keepAliveTime = keepAliveTime;
1673     if (delta < 0)
1674     interruptIdleWorkers();
1675     }
1676    
1677     /**
1678     * Returns the thread keep-alive time, which is the amount of time
1679     * that threads in excess of the core pool size may remain
1680     * idle before being terminated.
1681     *
1682     * @param unit the desired time unit of the result
1683     * @return the time limit
1684 jsr166 1.12 * @see #setKeepAliveTime(long, TimeUnit)
1685 dl 1.1 */
1686     public long getKeepAliveTime(TimeUnit unit) {
1687     return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1688     }
1689    
1690     /* User-level queue utilities */
1691    
1692     /**
1693     * Returns the task queue used by this executor. Access to the
1694     * task queue is intended primarily for debugging and monitoring.
1695     * This queue may be in active use. Retrieving the task queue
1696     * does not prevent queued tasks from executing.
1697     *
1698     * @return the task queue
1699     */
1700     public BlockingQueue<Runnable> getQueue() {
1701     return workQueue;
1702     }
1703    
1704     /**
1705     * Removes this task from the executor's internal queue if it is
1706     * present, thus causing it not to be run if it has not already
1707     * started.
1708     *
1709     * <p>This method may be useful as one part of a cancellation
1710     * scheme. It may fail to remove tasks that have been converted
1711     * into other forms before being placed on the internal queue. For
1712     * example, a task entered using {@code submit} might be
1713     * converted into a form that maintains {@code Future} status.
1714     * However, in such cases, method {@link #purge} may be used to
1715     * remove those Futures that have been cancelled.
1716     *
1717     * @param task the task to remove
1718 jsr166 1.12 * @return {@code true} if the task was removed
1719 dl 1.1 */
1720     public boolean remove(Runnable task) {
1721     boolean removed = workQueue.remove(task);
1722     tryTerminate(); // In case SHUTDOWN and now empty
1723     return removed;
1724     }
1725    
1726     /**
1727     * Tries to remove from the work queue all {@link Future}
1728     * tasks that have been cancelled. This method can be useful as a
1729     * storage reclamation operation, that has no other impact on
1730     * functionality. Cancelled tasks are never executed, but may
1731     * accumulate in work queues until worker threads can actively
1732     * remove them. Invoking this method instead tries to remove them now.
1733     * However, this method may fail to remove tasks in
1734     * the presence of interference by other threads.
1735     */
1736     public void purge() {
1737     final BlockingQueue<Runnable> q = workQueue;
1738     try {
1739     Iterator<Runnable> it = q.iterator();
1740     while (it.hasNext()) {
1741     Runnable r = it.next();
1742     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1743     it.remove();
1744     }
1745     } catch (ConcurrentModificationException fallThrough) {
1746     // Take slow path if we encounter interference during traversal.
1747     // Make copy for traversal and call remove for cancelled entries.
1748     // The slow path is more likely to be O(N*N).
1749     for (Object r : q.toArray())
1750     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1751     q.remove(r);
1752     }
1753    
1754     tryTerminate(); // In case SHUTDOWN and now empty
1755     }
1756    
1757     /* Statistics */
1758    
1759     /**
1760     * Returns the current number of threads in the pool.
1761     *
1762     * @return the number of threads
1763     */
1764     public int getPoolSize() {
1765     final ReentrantLock mainLock = this.mainLock;
1766     mainLock.lock();
1767     try {
1768     // Remove rare and surprising possibility of
1769     // isTerminated() && getPoolSize() > 0
1770     return runStateAtLeast(ctl.get(), TIDYING) ? 0
1771     : workers.size();
1772     } finally {
1773     mainLock.unlock();
1774     }
1775     }
1776    
1777     /**
1778     * Returns the approximate number of threads that are actively
1779     * executing tasks.
1780     *
1781     * @return the number of threads
1782     */
1783     public int getActiveCount() {
1784     final ReentrantLock mainLock = this.mainLock;
1785     mainLock.lock();
1786     try {
1787     int n = 0;
1788     for (Worker w : workers)
1789     if (w.isLocked())
1790     ++n;
1791     return n;
1792     } finally {
1793     mainLock.unlock();
1794     }
1795     }
1796    
1797     /**
1798     * Returns the largest number of threads that have ever
1799     * simultaneously been in the pool.
1800     *
1801     * @return the number of threads
1802     */
1803     public int getLargestPoolSize() {
1804     final ReentrantLock mainLock = this.mainLock;
1805     mainLock.lock();
1806     try {
1807     return largestPoolSize;
1808     } finally {
1809     mainLock.unlock();
1810     }
1811     }
1812    
1813     /**
1814     * Returns the approximate total number of tasks that have ever been
1815     * scheduled for execution. Because the states of tasks and
1816     * threads may change dynamically during computation, the returned
1817     * value is only an approximation.
1818     *
1819     * @return the number of tasks
1820     */
1821     public long getTaskCount() {
1822     final ReentrantLock mainLock = this.mainLock;
1823     mainLock.lock();
1824     try {
1825     long n = completedTaskCount;
1826     for (Worker w : workers) {
1827     n += w.completedTasks;
1828     if (w.isLocked())
1829     ++n;
1830     }
1831     return n + workQueue.size();
1832     } finally {
1833     mainLock.unlock();
1834     }
1835     }
1836    
1837     /**
1838     * Returns the approximate total number of tasks that have
1839     * completed execution. Because the states of tasks and threads
1840     * may change dynamically during computation, the returned value
1841     * is only an approximation, but one that does not ever decrease
1842     * across successive calls.
1843     *
1844     * @return the number of tasks
1845     */
1846     public long getCompletedTaskCount() {
1847     final ReentrantLock mainLock = this.mainLock;
1848     mainLock.lock();
1849     try {
1850     long n = completedTaskCount;
1851     for (Worker w : workers)
1852     n += w.completedTasks;
1853     return n;
1854     } finally {
1855     mainLock.unlock();
1856     }
1857     }
1858    
1859     /**
1860     * Returns a string identifying this pool, as well as its state,
1861     * including indications of run state and estimated worker and
1862     * task counts.
1863     *
1864     * @return a string identifying this pool, as well as its state
1865     */
1866     public String toString() {
1867     long ncompleted;
1868     int nworkers, nactive;
1869     final ReentrantLock mainLock = this.mainLock;
1870     mainLock.lock();
1871     try {
1872     ncompleted = completedTaskCount;
1873     nactive = 0;
1874     nworkers = workers.size();
1875     for (Worker w : workers) {
1876     ncompleted += w.completedTasks;
1877     if (w.isLocked())
1878     ++nactive;
1879     }
1880     } finally {
1881     mainLock.unlock();
1882     }
1883     int c = ctl.get();
1884     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1885     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1886     "Shutting down"));
1887     return super.toString() +
1888     "[" + rs +
1889     ", pool size = " + nworkers +
1890     ", active threads = " + nactive +
1891     ", queued tasks = " + workQueue.size() +
1892     ", completed tasks = " + ncompleted +
1893     "]";
1894     }
1895    
1896     /* Extension hooks */
1897    
1898     /**
1899     * Method invoked prior to executing the given Runnable in the
1900     * given thread. This method is invoked by thread {@code t} that
1901     * will execute task {@code r}, and may be used to re-initialize
1902     * ThreadLocals, or to perform logging.
1903     *
1904     * <p>This implementation does nothing, but may be customized in
1905     * subclasses. Note: To properly nest multiple overridings, subclasses
1906     * should generally invoke {@code super.beforeExecute} at the end of
1907     * this method.
1908     *
1909     * @param t the thread that will run task {@code r}
1910     * @param r the task that will be executed
1911     */
1912     protected void beforeExecute(Thread t, Runnable r) { }
1913    
1914     /**
1915     * Method invoked upon completion of execution of the given Runnable.
1916     * This method is invoked by the thread that executed the task. If
1917     * non-null, the Throwable is the uncaught {@code RuntimeException}
1918     * or {@code Error} that caused execution to terminate abruptly.
1919     *
1920     * <p>This implementation does nothing, but may be customized in
1921     * subclasses. Note: To properly nest multiple overridings, subclasses
1922     * should generally invoke {@code super.afterExecute} at the
1923     * beginning of this method.
1924     *
1925     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1926     * {@link FutureTask}) either explicitly or via methods such as
1927     * {@code submit}, these task objects catch and maintain
1928     * computational exceptions, and so they do not cause abrupt
1929     * termination, and the internal exceptions are <em>not</em>
1930     * passed to this method. If you would like to trap both kinds of
1931     * failures in this method, you can further probe for such cases,
1932     * as in this sample subclass that prints either the direct cause
1933     * or the underlying exception if a task has been aborted:
1934     *
1935     * <pre> {@code
1936     * class ExtendedExecutor extends ThreadPoolExecutor {
1937     * // ...
1938     * protected void afterExecute(Runnable r, Throwable t) {
1939     * super.afterExecute(r, t);
1940     * if (t == null && r instanceof Future<?>) {
1941     * try {
1942     * Object result = ((Future<?>) r).get();
1943     * } catch (CancellationException ce) {
1944     * t = ce;
1945     * } catch (ExecutionException ee) {
1946     * t = ee.getCause();
1947     * } catch (InterruptedException ie) {
1948     * Thread.currentThread().interrupt(); // ignore/reset
1949     * }
1950     * }
1951     * if (t != null)
1952     * System.out.println(t);
1953     * }
1954     * }}</pre>
1955     *
1956     * @param r the runnable that has completed
1957     * @param t the exception that caused termination, or null if
1958     * execution completed normally
1959     */
1960     protected void afterExecute(Runnable r, Throwable t) { }
1961    
1962     /**
1963     * Method invoked when the Executor has terminated. Default
1964     * implementation does nothing. Note: To properly nest multiple
1965     * overridings, subclasses should generally invoke
1966     * {@code super.terminated} within this method.
1967     */
1968     protected void terminated() { }
1969    
1970     /* Predefined RejectedExecutionHandlers */
1971    
1972     /**
1973     * A handler for rejected tasks that runs the rejected task
1974     * directly in the calling thread of the {@code execute} method,
1975     * unless the executor has been shut down, in which case the task
1976     * is discarded.
1977     */
1978     public static class CallerRunsPolicy implements RejectedExecutionHandler {
1979     /**
1980     * Creates a {@code CallerRunsPolicy}.
1981     */
1982     public CallerRunsPolicy() { }
1983    
1984     /**
1985     * Executes task r in the caller's thread, unless the executor
1986     * has been shut down, in which case the task is discarded.
1987     *
1988     * @param r the runnable task requested to be executed
1989     * @param e the executor attempting to execute this task
1990     */
1991     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1992     if (!e.isShutdown()) {
1993     r.run();
1994     }
1995     }
1996     }
1997    
1998     /**
1999     * A handler for rejected tasks that throws a
2000     * {@code RejectedExecutionException}.
2001     */
2002     public static class AbortPolicy implements RejectedExecutionHandler {
2003     /**
2004     * Creates an {@code AbortPolicy}.
2005     */
2006     public AbortPolicy() { }
2007    
2008     /**
2009     * Always throws RejectedExecutionException.
2010     *
2011     * @param r the runnable task requested to be executed
2012     * @param e the executor attempting to execute this task
2013 jsr166 1.8 * @throws RejectedExecutionException always
2014 dl 1.1 */
2015     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2016     throw new RejectedExecutionException("Task " + r.toString() +
2017     " rejected from " +
2018     e.toString());
2019     }
2020     }
2021    
2022     /**
2023     * A handler for rejected tasks that silently discards the
2024     * rejected task.
2025     */
2026     public static class DiscardPolicy implements RejectedExecutionHandler {
2027     /**
2028     * Creates a {@code DiscardPolicy}.
2029     */
2030     public DiscardPolicy() { }
2031    
2032     /**
2033     * Does nothing, which has the effect of discarding task r.
2034     *
2035     * @param r the runnable task requested to be executed
2036     * @param e the executor attempting to execute this task
2037     */
2038     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2039     }
2040     }
2041    
2042     /**
2043     * A handler for rejected tasks that discards the oldest unhandled
2044     * request and then retries {@code execute}, unless the executor
2045     * is shut down, in which case the task is discarded.
2046     */
2047     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2048     /**
2049     * Creates a {@code DiscardOldestPolicy} for the given executor.
2050     */
2051     public DiscardOldestPolicy() { }
2052    
2053     /**
2054     * Obtains and ignores the next task that the executor
2055     * would otherwise execute, if one is immediately available,
2056     * and then retries execution of task r, unless the executor
2057     * is shut down, in which case task r is instead discarded.
2058     *
2059     * @param r the runnable task requested to be executed
2060     * @param e the executor attempting to execute this task
2061     */
2062     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2063     if (!e.isShutdown()) {
2064     e.getQueue().poll();
2065     e.execute(r);
2066     }
2067     }
2068     }
2069     }