ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.15
Committed: Fri Sep 4 19:29:08 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.14: +3 -1 lines
Log Message:
Backport JDK-7153400 to jdk7

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8 jsr166 1.14
9 dl 1.1 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
10     import java.util.concurrent.locks.Condition;
11     import java.util.concurrent.locks.ReentrantLock;
12     import java.util.concurrent.atomic.AtomicInteger;
13     import java.util.*;
14    
15     /**
16     * An {@link ExecutorService} that executes each submitted task using
17     * one of possibly several pooled threads, normally configured
18     * using {@link Executors} factory methods.
19     *
20     * <p>Thread pools address two different problems: they usually
21     * provide improved performance when executing large numbers of
22     * asynchronous tasks, due to reduced per-task invocation overhead,
23     * and they provide a means of bounding and managing the resources,
24     * including threads, consumed when executing a collection of tasks.
25     * Each {@code ThreadPoolExecutor} also maintains some basic
26     * statistics, such as the number of completed tasks.
27     *
28     * <p>To be useful across a wide range of contexts, this class
29     * provides many adjustable parameters and extensibility
30     * hooks. However, programmers are urged to use the more convenient
31     * {@link Executors} factory methods {@link
32     * Executors#newCachedThreadPool} (unbounded thread pool, with
33     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
34     * (fixed size thread pool) and {@link
35     * Executors#newSingleThreadExecutor} (single background thread), that
36     * preconfigure settings for the most common usage
37     * scenarios. Otherwise, use the following guide when manually
38     * configuring and tuning this class:
39     *
40     * <dl>
41     *
42     * <dt>Core and maximum pool sizes</dt>
43     *
44     * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
45     * pool size (see {@link #getPoolSize})
46     * according to the bounds set by
47     * corePoolSize (see {@link #getCorePoolSize}) and
48     * maximumPoolSize (see {@link #getMaximumPoolSize}).
49     *
50 jsr166 1.12 * When a new task is submitted in method {@link #execute(Runnable)},
51     * and fewer than corePoolSize threads are running, a new thread is
52     * created to handle the request, even if other worker threads are
53     * idle. If there are more than corePoolSize but less than
54     * maximumPoolSize threads running, a new thread will be created only
55     * if the queue is full. By setting corePoolSize and maximumPoolSize
56     * the same, you create a fixed-size thread pool. By setting
57     * maximumPoolSize to an essentially unbounded value such as {@code
58     * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary
59     * number of concurrent tasks. Most typically, core and maximum pool
60     * sizes are set only upon construction, but they may also be changed
61     * dynamically using {@link #setCorePoolSize} and {@link
62     * #setMaximumPoolSize}. </dd>
63 dl 1.1 *
64     * <dt>On-demand construction</dt>
65     *
66 jsr166 1.9 * <dd>By default, even core threads are initially created and
67 dl 1.1 * started only when new tasks arrive, but this can be overridden
68     * dynamically using method {@link #prestartCoreThread} or {@link
69     * #prestartAllCoreThreads}. You probably want to prestart threads if
70     * you construct the pool with a non-empty queue. </dd>
71     *
72     * <dt>Creating new threads</dt>
73     *
74     * <dd>New threads are created using a {@link ThreadFactory}. If not
75     * otherwise specified, a {@link Executors#defaultThreadFactory} is
76     * used, that creates threads to all be in the same {@link
77     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
78     * non-daemon status. By supplying a different ThreadFactory, you can
79     * alter the thread's name, thread group, priority, daemon status,
80     * etc. If a {@code ThreadFactory} fails to create a thread when asked
81     * by returning null from {@code newThread}, the executor will
82     * continue, but might not be able to execute any tasks. Threads
83     * should possess the "modifyThread" {@code RuntimePermission}. If
84     * worker threads or other threads using the pool do not possess this
85     * permission, service may be degraded: configuration changes may not
86     * take effect in a timely manner, and a shutdown pool may remain in a
87     * state in which termination is possible but not completed.</dd>
88     *
89     * <dt>Keep-alive times</dt>
90     *
91     * <dd>If the pool currently has more than corePoolSize threads,
92     * excess threads will be terminated if they have been idle for more
93 jsr166 1.12 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
94     * This provides a means of reducing resource consumption when the
95     * pool is not being actively used. If the pool becomes more active
96     * later, new threads will be constructed. This parameter can also be
97     * changed dynamically using method {@link #setKeepAliveTime(long,
98     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
99     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
100     * terminating prior to shut down. By default, the keep-alive policy
101     * applies only when there are more than corePoolSize threads. But
102     * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
103     * apply this time-out policy to core threads as well, so long as the
104 dl 1.1 * keepAliveTime value is non-zero. </dd>
105     *
106     * <dt>Queuing</dt>
107     *
108     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
109     * submitted tasks. The use of this queue interacts with pool sizing:
110     *
111     * <ul>
112     *
113     * <li> If fewer than corePoolSize threads are running, the Executor
114     * always prefers adding a new thread
115     * rather than queuing.</li>
116     *
117     * <li> If corePoolSize or more threads are running, the Executor
118     * always prefers queuing a request rather than adding a new
119     * thread.</li>
120     *
121     * <li> If a request cannot be queued, a new thread is created unless
122     * this would exceed maximumPoolSize, in which case, the task will be
123     * rejected.</li>
124     *
125     * </ul>
126     *
127     * There are three general strategies for queuing:
128     * <ol>
129     *
130     * <li> <em> Direct handoffs.</em> A good default choice for a work
131     * queue is a {@link SynchronousQueue} that hands off tasks to threads
132     * without otherwise holding them. Here, an attempt to queue a task
133     * will fail if no threads are immediately available to run it, so a
134     * new thread will be constructed. This policy avoids lockups when
135     * handling sets of requests that might have internal dependencies.
136     * Direct handoffs generally require unbounded maximumPoolSizes to
137     * avoid rejection of new submitted tasks. This in turn admits the
138     * possibility of unbounded thread growth when commands continue to
139     * arrive on average faster than they can be processed. </li>
140     *
141     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
142     * example a {@link LinkedBlockingQueue} without a predefined
143     * capacity) will cause new tasks to wait in the queue when all
144     * corePoolSize threads are busy. Thus, no more than corePoolSize
145     * threads will ever be created. (And the value of the maximumPoolSize
146     * therefore doesn't have any effect.) This may be appropriate when
147     * each task is completely independent of others, so tasks cannot
148     * affect each others execution; for example, in a web page server.
149     * While this style of queuing can be useful in smoothing out
150     * transient bursts of requests, it admits the possibility of
151     * unbounded work queue growth when commands continue to arrive on
152     * average faster than they can be processed. </li>
153     *
154     * <li><em>Bounded queues.</em> A bounded queue (for example, an
155     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
156     * used with finite maximumPoolSizes, but can be more difficult to
157     * tune and control. Queue sizes and maximum pool sizes may be traded
158     * off for each other: Using large queues and small pools minimizes
159     * CPU usage, OS resources, and context-switching overhead, but can
160     * lead to artificially low throughput. If tasks frequently block (for
161     * example if they are I/O bound), a system may be able to schedule
162     * time for more threads than you otherwise allow. Use of small queues
163     * generally requires larger pool sizes, which keeps CPUs busier but
164     * may encounter unacceptable scheduling overhead, which also
165     * decreases throughput. </li>
166     *
167     * </ol>
168     *
169     * </dd>
170     *
171     * <dt>Rejected tasks</dt>
172     *
173 jsr166 1.12 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
174     * <em>rejected</em> when the Executor has been shut down, and also when
175     * the Executor uses finite bounds for both maximum threads and work queue
176     * capacity, and is saturated. In either case, the {@code execute} method
177     * invokes the {@link
178     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
179     * method of its {@link RejectedExecutionHandler}. Four predefined handler
180     * policies are provided:
181 dl 1.1 *
182     * <ol>
183     *
184     * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
185     * handler throws a runtime {@link RejectedExecutionException} upon
186     * rejection. </li>
187     *
188     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
189     * that invokes {@code execute} itself runs the task. This provides a
190     * simple feedback control mechanism that will slow down the rate that
191     * new tasks are submitted. </li>
192     *
193     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
194     * cannot be executed is simply dropped. </li>
195     *
196     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
197     * executor is not shut down, the task at the head of the work queue
198     * is dropped, and then execution is retried (which can fail again,
199     * causing this to be repeated.) </li>
200     *
201     * </ol>
202     *
203     * It is possible to define and use other kinds of {@link
204     * RejectedExecutionHandler} classes. Doing so requires some care
205     * especially when policies are designed to work only under particular
206     * capacity or queuing policies. </dd>
207     *
208     * <dt>Hook methods</dt>
209     *
210 jsr166 1.12 * <dd>This class provides {@code protected} overridable
211     * {@link #beforeExecute(Thread, Runnable)} and
212     * {@link #afterExecute(Runnable, Throwable)} methods that are called
213 dl 1.1 * before and after execution of each task. These can be used to
214     * manipulate the execution environment; for example, reinitializing
215 jsr166 1.12 * ThreadLocals, gathering statistics, or adding log entries.
216     * Additionally, method {@link #terminated} can be overridden to perform
217     * any special processing that needs to be done once the Executor has
218     * fully terminated.
219 dl 1.1 *
220     * <p>If hook or callback methods throw exceptions, internal worker
221     * threads may in turn fail and abruptly terminate.</dd>
222     *
223     * <dt>Queue maintenance</dt>
224     *
225 jsr166 1.12 * <dd>Method {@link #getQueue()} allows access to the work queue
226     * for purposes of monitoring and debugging. Use of this method for
227     * any other purpose is strongly discouraged. Two supplied methods,
228     * {@link #remove(Runnable)} and {@link #purge} are available to
229     * assist in storage reclamation when large numbers of queued tasks
230     * become cancelled.</dd>
231 dl 1.1 *
232     * <dt>Finalization</dt>
233     *
234 jsr166 1.9 * <dd>A pool that is no longer referenced in a program <em>AND</em>
235 dl 1.1 * has no remaining threads will be {@code shutdown} automatically. If
236     * you would like to ensure that unreferenced pools are reclaimed even
237     * if users forget to call {@link #shutdown}, then you must arrange
238     * that unused threads eventually die, by setting appropriate
239     * keep-alive times, using a lower bound of zero core threads and/or
240     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
241     *
242     * </dl>
243     *
244     * <p><b>Extension example</b>. Most extensions of this class
245     * override one or more of the protected hook methods. For example,
246     * here is a subclass that adds a simple pause/resume feature:
247     *
248     * <pre> {@code
249     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
250     * private boolean isPaused;
251     * private ReentrantLock pauseLock = new ReentrantLock();
252     * private Condition unpaused = pauseLock.newCondition();
253     *
254     * public PausableThreadPoolExecutor(...) { super(...); }
255     *
256     * protected void beforeExecute(Thread t, Runnable r) {
257     * super.beforeExecute(t, r);
258     * pauseLock.lock();
259     * try {
260     * while (isPaused) unpaused.await();
261     * } catch (InterruptedException ie) {
262     * t.interrupt();
263     * } finally {
264     * pauseLock.unlock();
265     * }
266     * }
267     *
268     * public void pause() {
269     * pauseLock.lock();
270     * try {
271     * isPaused = true;
272     * } finally {
273     * pauseLock.unlock();
274     * }
275     * }
276     *
277     * public void resume() {
278     * pauseLock.lock();
279     * try {
280     * isPaused = false;
281     * unpaused.signalAll();
282     * } finally {
283     * pauseLock.unlock();
284     * }
285     * }
286     * }}</pre>
287     *
288     * @since 1.5
289     * @author Doug Lea
290     */
291     public class ThreadPoolExecutor extends AbstractExecutorService {
292     /**
293     * The main pool control state, ctl, is an atomic integer packing
294     * two conceptual fields
295     * workerCount, indicating the effective number of threads
296     * runState, indicating whether running, shutting down etc
297     *
298     * In order to pack them into one int, we limit workerCount to
299     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
300     * billion) otherwise representable. If this is ever an issue in
301     * the future, the variable can be changed to be an AtomicLong,
302     * and the shift/mask constants below adjusted. But until the need
303     * arises, this code is a bit faster and simpler using an int.
304     *
305     * The workerCount is the number of workers that have been
306     * permitted to start and not permitted to stop. The value may be
307     * transiently different from the actual number of live threads,
308     * for example when a ThreadFactory fails to create a thread when
309     * asked, and when exiting threads are still performing
310     * bookkeeping before terminating. The user-visible pool size is
311     * reported as the current size of the workers set.
312     *
313     * The runState provides the main lifecycle control, taking on values:
314     *
315     * RUNNING: Accept new tasks and process queued tasks
316     * SHUTDOWN: Don't accept new tasks, but process queued tasks
317     * STOP: Don't accept new tasks, don't process queued tasks,
318     * and interrupt in-progress tasks
319     * TIDYING: All tasks have terminated, workerCount is zero,
320     * the thread transitioning to state TIDYING
321     * will run the terminated() hook method
322     * TERMINATED: terminated() has completed
323     *
324     * The numerical order among these values matters, to allow
325     * ordered comparisons. The runState monotonically increases over
326     * time, but need not hit each state. The transitions are:
327     *
328     * RUNNING -> SHUTDOWN
329     * On invocation of shutdown(), perhaps implicitly in finalize()
330     * (RUNNING or SHUTDOWN) -> STOP
331     * On invocation of shutdownNow()
332     * SHUTDOWN -> TIDYING
333     * When both queue and pool are empty
334     * STOP -> TIDYING
335     * When pool is empty
336     * TIDYING -> TERMINATED
337     * When the terminated() hook method has completed
338     *
339     * Threads waiting in awaitTermination() will return when the
340     * state reaches TERMINATED.
341     *
342     * Detecting the transition from SHUTDOWN to TIDYING is less
343     * straightforward than you'd like because the queue may become
344     * empty after non-empty and vice versa during SHUTDOWN state, but
345     * we can only terminate if, after seeing that it is empty, we see
346     * that workerCount is 0 (which sometimes entails a recheck -- see
347     * below).
348     */
349     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
350     private static final int COUNT_BITS = Integer.SIZE - 3;
351     private static final int CAPACITY = (1 << COUNT_BITS) - 1;
352    
353     // runState is stored in the high-order bits
354     private static final int RUNNING = -1 << COUNT_BITS;
355     private static final int SHUTDOWN = 0 << COUNT_BITS;
356     private static final int STOP = 1 << COUNT_BITS;
357     private static final int TIDYING = 2 << COUNT_BITS;
358     private static final int TERMINATED = 3 << COUNT_BITS;
359    
360     // Packing and unpacking ctl
361     private static int runStateOf(int c) { return c & ~CAPACITY; }
362     private static int workerCountOf(int c) { return c & CAPACITY; }
363     private static int ctlOf(int rs, int wc) { return rs | wc; }
364    
365     /*
366     * Bit field accessors that don't require unpacking ctl.
367     * These depend on the bit layout and on workerCount being never negative.
368     */
369    
370     private static boolean runStateLessThan(int c, int s) {
371     return c < s;
372     }
373    
374     private static boolean runStateAtLeast(int c, int s) {
375     return c >= s;
376     }
377    
378     private static boolean isRunning(int c) {
379     return c < SHUTDOWN;
380     }
381    
382     /**
383 jsr166 1.2 * Attempts to CAS-increment the workerCount field of ctl.
384 dl 1.1 */
385     private boolean compareAndIncrementWorkerCount(int expect) {
386     return ctl.compareAndSet(expect, expect + 1);
387     }
388    
389     /**
390 jsr166 1.2 * Attempts to CAS-decrement the workerCount field of ctl.
391 dl 1.1 */
392     private boolean compareAndDecrementWorkerCount(int expect) {
393     return ctl.compareAndSet(expect, expect - 1);
394     }
395    
396     /**
397     * Decrements the workerCount field of ctl. This is called only on
398     * abrupt termination of a thread (see processWorkerExit). Other
399     * decrements are performed within getTask.
400     */
401     private void decrementWorkerCount() {
402     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
403     }
404    
405     /**
406     * The queue used for holding tasks and handing off to worker
407     * threads. We do not require that workQueue.poll() returning
408     * null necessarily means that workQueue.isEmpty(), so rely
409     * solely on isEmpty to see if the queue is empty (which we must
410     * do for example when deciding whether to transition from
411     * SHUTDOWN to TIDYING). This accommodates special-purpose
412     * queues such as DelayQueues for which poll() is allowed to
413     * return null even if it may later return non-null when delays
414     * expire.
415     */
416     private final BlockingQueue<Runnable> workQueue;
417    
418     /**
419     * Lock held on access to workers set and related bookkeeping.
420     * While we could use a concurrent set of some sort, it turns out
421     * to be generally preferable to use a lock. Among the reasons is
422     * that this serializes interruptIdleWorkers, which avoids
423     * unnecessary interrupt storms, especially during shutdown.
424     * Otherwise exiting threads would concurrently interrupt those
425     * that have not yet interrupted. It also simplifies some of the
426     * associated statistics bookkeeping of largestPoolSize etc. We
427     * also hold mainLock on shutdown and shutdownNow, for the sake of
428     * ensuring workers set is stable while separately checking
429     * permission to interrupt and actually interrupting.
430     */
431     private final ReentrantLock mainLock = new ReentrantLock();
432    
433     /**
434     * Set containing all worker threads in pool. Accessed only when
435     * holding mainLock.
436     */
437     private final HashSet<Worker> workers = new HashSet<Worker>();
438    
439     /**
440     * Wait condition to support awaitTermination
441     */
442     private final Condition termination = mainLock.newCondition();
443    
444     /**
445     * Tracks largest attained pool size. Accessed only under
446     * mainLock.
447     */
448     private int largestPoolSize;
449    
450     /**
451     * Counter for completed tasks. Updated only on termination of
452     * worker threads. Accessed only under mainLock.
453     */
454     private long completedTaskCount;
455    
456     /*
457     * All user control parameters are declared as volatiles so that
458     * ongoing actions are based on freshest values, but without need
459     * for locking, since no internal invariants depend on them
460     * changing synchronously with respect to other actions.
461     */
462    
463     /**
464     * Factory for new threads. All threads are created using this
465     * factory (via method addWorker). All callers must be prepared
466     * for addWorker to fail, which may reflect a system or user's
467     * policy limiting the number of threads. Even though it is not
468     * treated as an error, failure to create threads may result in
469     * new tasks being rejected or existing ones remaining stuck in
470     * the queue.
471     *
472     * We go further and preserve pool invariants even in the face of
473     * errors such as OutOfMemoryError, that might be thrown while
474     * trying to create threads. Such errors are rather common due to
475 jsr166 1.10 * the need to allocate a native stack in Thread.start, and users
476 dl 1.1 * will want to perform clean pool shutdown to clean up. There
477     * will likely be enough memory available for the cleanup code to
478     * complete without encountering yet another OutOfMemoryError.
479     */
480     private volatile ThreadFactory threadFactory;
481    
482     /**
483     * Handler called when saturated or shutdown in execute.
484     */
485     private volatile RejectedExecutionHandler handler;
486    
487     /**
488     * Timeout in nanoseconds for idle threads waiting for work.
489     * Threads use this timeout when there are more than corePoolSize
490     * present or if allowCoreThreadTimeOut. Otherwise they wait
491     * forever for new work.
492     */
493     private volatile long keepAliveTime;
494    
495     /**
496     * If false (default), core threads stay alive even when idle.
497     * If true, core threads use keepAliveTime to time out waiting
498     * for work.
499     */
500     private volatile boolean allowCoreThreadTimeOut;
501    
502     /**
503     * Core pool size is the minimum number of workers to keep alive
504     * (and not allow to time out etc) unless allowCoreThreadTimeOut
505     * is set, in which case the minimum is zero.
506     */
507     private volatile int corePoolSize;
508    
509     /**
510     * Maximum pool size. Note that the actual maximum is internally
511     * bounded by CAPACITY.
512     */
513     private volatile int maximumPoolSize;
514    
515     /**
516     * The default rejected execution handler
517     */
518     private static final RejectedExecutionHandler defaultHandler =
519     new AbortPolicy();
520    
521     /**
522     * Permission required for callers of shutdown and shutdownNow.
523     * We additionally require (see checkShutdownAccess) that callers
524     * have permission to actually interrupt threads in the worker set
525     * (as governed by Thread.interrupt, which relies on
526     * ThreadGroup.checkAccess, which in turn relies on
527     * SecurityManager.checkAccess). Shutdowns are attempted only if
528     * these checks pass.
529     *
530     * All actual invocations of Thread.interrupt (see
531     * interruptIdleWorkers and interruptWorkers) ignore
532     * SecurityExceptions, meaning that the attempted interrupts
533     * silently fail. In the case of shutdown, they should not fail
534     * unless the SecurityManager has inconsistent policies, sometimes
535     * allowing access to a thread and sometimes not. In such cases,
536     * failure to actually interrupt threads may disable or delay full
537     * termination. Other uses of interruptIdleWorkers are advisory,
538     * and failure to actually interrupt will merely delay response to
539     * configuration changes so is not handled exceptionally.
540     */
541     private static final RuntimePermission shutdownPerm =
542     new RuntimePermission("modifyThread");
543    
544     /**
545     * Class Worker mainly maintains interrupt control state for
546     * threads running tasks, along with other minor bookkeeping.
547     * This class opportunistically extends AbstractQueuedSynchronizer
548     * to simplify acquiring and releasing a lock surrounding each
549     * task execution. This protects against interrupts that are
550     * intended to wake up a worker thread waiting for a task from
551     * instead interrupting a task being run. We implement a simple
552     * non-reentrant mutual exclusion lock rather than use
553     * ReentrantLock because we do not want worker tasks to be able to
554     * reacquire the lock when they invoke pool control methods like
555     * setCorePoolSize. Additionally, to suppress interrupts until
556     * the thread actually starts running tasks, we initialize lock
557     * state to a negative value, and clear it upon start (in
558     * runWorker).
559     */
560     private final class Worker
561     extends AbstractQueuedSynchronizer
562     implements Runnable
563     {
564     /**
565     * This class will never be serialized, but we provide a
566     * serialVersionUID to suppress a javac warning.
567     */
568     private static final long serialVersionUID = 6138294804551838833L;
569    
570     /** Thread this worker is running in. Null if factory fails. */
571     final Thread thread;
572     /** Initial task to run. Possibly null. */
573     Runnable firstTask;
574     /** Per-thread task counter */
575     volatile long completedTasks;
576    
577     /**
578     * Creates with given first task and thread from ThreadFactory.
579     * @param firstTask the first task (null if none)
580     */
581     Worker(Runnable firstTask) {
582     setState(-1); // inhibit interrupts until runWorker
583     this.firstTask = firstTask;
584     this.thread = getThreadFactory().newThread(this);
585     }
586    
587 jsr166 1.13 /** Delegates main run loop to outer runWorker. */
588 dl 1.1 public void run() {
589     runWorker(this);
590     }
591    
592     // Lock methods
593     //
594     // The value 0 represents the unlocked state.
595     // The value 1 represents the locked state.
596    
597     protected boolean isHeldExclusively() {
598     return getState() != 0;
599     }
600    
601     protected boolean tryAcquire(int unused) {
602     if (compareAndSetState(0, 1)) {
603     setExclusiveOwnerThread(Thread.currentThread());
604     return true;
605     }
606     return false;
607     }
608    
609     protected boolean tryRelease(int unused) {
610     setExclusiveOwnerThread(null);
611     setState(0);
612     return true;
613     }
614    
615     public void lock() { acquire(1); }
616     public boolean tryLock() { return tryAcquire(1); }
617     public void unlock() { release(1); }
618     public boolean isLocked() { return isHeldExclusively(); }
619    
620     void interruptIfStarted() {
621     Thread t;
622     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
623     try {
624     t.interrupt();
625     } catch (SecurityException ignore) {
626     }
627     }
628     }
629     }
630    
631     /*
632     * Methods for setting control state
633     */
634    
635     /**
636     * Transitions runState to given target, or leaves it alone if
637     * already at least the given target.
638     *
639     * @param targetState the desired state, either SHUTDOWN or STOP
640     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
641     */
642     private void advanceRunState(int targetState) {
643     for (;;) {
644     int c = ctl.get();
645     if (runStateAtLeast(c, targetState) ||
646     ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
647     break;
648     }
649     }
650    
651     /**
652     * Transitions to TERMINATED state if either (SHUTDOWN and pool
653     * and queue empty) or (STOP and pool empty). If otherwise
654     * eligible to terminate but workerCount is nonzero, interrupts an
655     * idle worker to ensure that shutdown signals propagate. This
656     * method must be called following any action that might make
657     * termination possible -- reducing worker count or removing tasks
658     * from the queue during shutdown. The method is non-private to
659     * allow access from ScheduledThreadPoolExecutor.
660     */
661     final void tryTerminate() {
662     for (;;) {
663     int c = ctl.get();
664     if (isRunning(c) ||
665     runStateAtLeast(c, TIDYING) ||
666     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
667     return;
668     if (workerCountOf(c) != 0) { // Eligible to terminate
669     interruptIdleWorkers(ONLY_ONE);
670     return;
671     }
672    
673     final ReentrantLock mainLock = this.mainLock;
674     mainLock.lock();
675     try {
676     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
677     try {
678     terminated();
679     } finally {
680     ctl.set(ctlOf(TERMINATED, 0));
681     termination.signalAll();
682     }
683     return;
684     }
685     } finally {
686     mainLock.unlock();
687     }
688     // else retry on failed CAS
689     }
690     }
691    
692     /*
693     * Methods for controlling interrupts to worker threads.
694     */
695    
696     /**
697     * If there is a security manager, makes sure caller has
698     * permission to shut down threads in general (see shutdownPerm).
699     * If this passes, additionally makes sure the caller is allowed
700     * to interrupt each worker thread. This might not be true even if
701     * first check passed, if the SecurityManager treats some threads
702     * specially.
703     */
704     private void checkShutdownAccess() {
705     SecurityManager security = System.getSecurityManager();
706     if (security != null) {
707     security.checkPermission(shutdownPerm);
708     final ReentrantLock mainLock = this.mainLock;
709     mainLock.lock();
710     try {
711     for (Worker w : workers)
712     security.checkAccess(w.thread);
713     } finally {
714     mainLock.unlock();
715     }
716     }
717     }
718    
719     /**
720     * Interrupts all threads, even if active. Ignores SecurityExceptions
721     * (in which case some threads may remain uninterrupted).
722     */
723     private void interruptWorkers() {
724     final ReentrantLock mainLock = this.mainLock;
725     mainLock.lock();
726     try {
727     for (Worker w : workers)
728     w.interruptIfStarted();
729     } finally {
730     mainLock.unlock();
731     }
732     }
733    
734     /**
735     * Interrupts threads that might be waiting for tasks (as
736     * indicated by not being locked) so they can check for
737     * termination or configuration changes. Ignores
738     * SecurityExceptions (in which case some threads may remain
739     * uninterrupted).
740     *
741     * @param onlyOne If true, interrupt at most one worker. This is
742     * called only from tryTerminate when termination is otherwise
743     * enabled but there are still other workers. In this case, at
744     * most one waiting worker is interrupted to propagate shutdown
745     * signals in case all threads are currently waiting.
746     * Interrupting any arbitrary thread ensures that newly arriving
747     * workers since shutdown began will also eventually exit.
748     * To guarantee eventual termination, it suffices to always
749     * interrupt only one idle worker, but shutdown() interrupts all
750     * idle workers so that redundant workers exit promptly, not
751     * waiting for a straggler task to finish.
752     */
753     private void interruptIdleWorkers(boolean onlyOne) {
754     final ReentrantLock mainLock = this.mainLock;
755     mainLock.lock();
756     try {
757     for (Worker w : workers) {
758     Thread t = w.thread;
759     if (!t.isInterrupted() && w.tryLock()) {
760     try {
761     t.interrupt();
762     } catch (SecurityException ignore) {
763     } finally {
764     w.unlock();
765     }
766     }
767     if (onlyOne)
768     break;
769     }
770     } finally {
771     mainLock.unlock();
772     }
773     }
774    
775     /**
776     * Common form of interruptIdleWorkers, to avoid having to
777     * remember what the boolean argument means.
778     */
779     private void interruptIdleWorkers() {
780     interruptIdleWorkers(false);
781     }
782    
783     private static final boolean ONLY_ONE = true;
784    
785     /*
786     * Misc utilities, most of which are also exported to
787     * ScheduledThreadPoolExecutor
788     */
789    
790     /**
791     * Invokes the rejected execution handler for the given command.
792     * Package-protected for use by ScheduledThreadPoolExecutor.
793     */
794     final void reject(Runnable command) {
795     handler.rejectedExecution(command, this);
796     }
797    
798     /**
799     * Performs any further cleanup following run state transition on
800     * invocation of shutdown. A no-op here, but used by
801     * ScheduledThreadPoolExecutor to cancel delayed tasks.
802     */
803     void onShutdown() {
804     }
805    
806     /**
807     * State check needed by ScheduledThreadPoolExecutor to
808     * enable running tasks during shutdown.
809     *
810     * @param shutdownOK true if should return true if SHUTDOWN
811     */
812     final boolean isRunningOrShutdown(boolean shutdownOK) {
813     int rs = runStateOf(ctl.get());
814     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
815     }
816    
817     /**
818     * Drains the task queue into a new list, normally using
819     * drainTo. But if the queue is a DelayQueue or any other kind of
820     * queue for which poll or drainTo may fail to remove some
821     * elements, it deletes them one by one.
822     */
823     private List<Runnable> drainQueue() {
824     BlockingQueue<Runnable> q = workQueue;
825 jsr166 1.7 ArrayList<Runnable> taskList = new ArrayList<Runnable>();
826 dl 1.1 q.drainTo(taskList);
827     if (!q.isEmpty()) {
828     for (Runnable r : q.toArray(new Runnable[0])) {
829     if (q.remove(r))
830     taskList.add(r);
831     }
832     }
833     return taskList;
834     }
835    
836     /*
837     * Methods for creating, running and cleaning up after workers
838     */
839    
840     /**
841     * Checks if a new worker can be added with respect to current
842     * pool state and the given bound (either core or maximum). If so,
843     * the worker count is adjusted accordingly, and, if possible, a
844     * new worker is created and started, running firstTask as its
845     * first task. This method returns false if the pool is stopped or
846     * eligible to shut down. It also returns false if the thread
847     * factory fails to create a thread when asked. If the thread
848     * creation fails, either due to the thread factory returning
849     * null, or due to an exception (typically OutOfMemoryError in
850 jsr166 1.11 * Thread.start()), we roll back cleanly.
851 dl 1.1 *
852     * @param firstTask the task the new thread should run first (or
853     * null if none). Workers are created with an initial first task
854     * (in method execute()) to bypass queuing when there are fewer
855     * than corePoolSize threads (in which case we always start one),
856     * or when the queue is full (in which case we must bypass queue).
857     * Initially idle threads are usually created via
858     * prestartCoreThread or to replace other dying workers.
859     *
860     * @param core if true use corePoolSize as bound, else
861     * maximumPoolSize. (A boolean indicator is used here rather than a
862     * value to ensure reads of fresh values after checking other pool
863     * state).
864     * @return true if successful
865     */
866     private boolean addWorker(Runnable firstTask, boolean core) {
867     retry:
868     for (;;) {
869     int c = ctl.get();
870     int rs = runStateOf(c);
871    
872     // Check if queue empty only if necessary.
873     if (rs >= SHUTDOWN &&
874     ! (rs == SHUTDOWN &&
875     firstTask == null &&
876     ! workQueue.isEmpty()))
877     return false;
878    
879     for (;;) {
880     int wc = workerCountOf(c);
881     if (wc >= CAPACITY ||
882     wc >= (core ? corePoolSize : maximumPoolSize))
883     return false;
884     if (compareAndIncrementWorkerCount(c))
885     break retry;
886     c = ctl.get(); // Re-read ctl
887     if (runStateOf(c) != rs)
888     continue retry;
889     // else CAS failed due to workerCount change; retry inner loop
890     }
891     }
892    
893     boolean workerStarted = false;
894     boolean workerAdded = false;
895     Worker w = null;
896     try {
897     w = new Worker(firstTask);
898     final Thread t = w.thread;
899     if (t != null) {
900     final ReentrantLock mainLock = this.mainLock;
901     mainLock.lock();
902     try {
903     // Recheck while holding lock.
904     // Back out on ThreadFactory failure or if
905     // shut down before lock acquired.
906     int rs = runStateOf(ctl.get());
907    
908     if (rs < SHUTDOWN ||
909     (rs == SHUTDOWN && firstTask == null)) {
910     if (t.isAlive()) // precheck that t is startable
911     throw new IllegalThreadStateException();
912     workers.add(w);
913     int s = workers.size();
914     if (s > largestPoolSize)
915     largestPoolSize = s;
916     workerAdded = true;
917     }
918     } finally {
919     mainLock.unlock();
920     }
921     if (workerAdded) {
922     t.start();
923     workerStarted = true;
924     }
925     }
926     } finally {
927     if (! workerStarted)
928     addWorkerFailed(w);
929     }
930     return workerStarted;
931     }
932    
933     /**
934     * Rolls back the worker thread creation.
935     * - removes worker from workers, if present
936     * - decrements worker count
937     * - rechecks for termination, in case the existence of this
938     * worker was holding up termination
939     */
940     private void addWorkerFailed(Worker w) {
941     final ReentrantLock mainLock = this.mainLock;
942     mainLock.lock();
943     try {
944     if (w != null)
945     workers.remove(w);
946     decrementWorkerCount();
947     tryTerminate();
948     } finally {
949     mainLock.unlock();
950     }
951     }
952    
953     /**
954     * Performs cleanup and bookkeeping for a dying worker. Called
955     * only from worker threads. Unless completedAbruptly is set,
956     * assumes that workerCount has already been adjusted to account
957     * for exit. This method removes thread from worker set, and
958     * possibly terminates the pool or replaces the worker if either
959     * it exited due to user task exception or if fewer than
960     * corePoolSize workers are running or queue is non-empty but
961     * there are no workers.
962     *
963     * @param w the worker
964     * @param completedAbruptly if the worker died due to user exception
965     */
966     private void processWorkerExit(Worker w, boolean completedAbruptly) {
967     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
968     decrementWorkerCount();
969    
970     final ReentrantLock mainLock = this.mainLock;
971     mainLock.lock();
972     try {
973     completedTaskCount += w.completedTasks;
974     workers.remove(w);
975     } finally {
976     mainLock.unlock();
977     }
978    
979     tryTerminate();
980    
981     int c = ctl.get();
982     if (runStateLessThan(c, STOP)) {
983     if (!completedAbruptly) {
984     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
985     if (min == 0 && ! workQueue.isEmpty())
986     min = 1;
987     if (workerCountOf(c) >= min)
988     return; // replacement not needed
989     }
990     addWorker(null, false);
991     }
992     }
993    
994     /**
995     * Performs blocking or timed wait for a task, depending on
996     * current configuration settings, or returns null if this worker
997     * must exit because of any of:
998     * 1. There are more than maximumPoolSize workers (due to
999     * a call to setMaximumPoolSize).
1000     * 2. The pool is stopped.
1001     * 3. The pool is shutdown and the queue is empty.
1002     * 4. This worker timed out waiting for a task, and timed-out
1003     * workers are subject to termination (that is,
1004     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1005 jsr166 1.6 * both before and after the timed wait, and if the queue is
1006     * non-empty, this worker is not the last thread in the pool.
1007 dl 1.1 *
1008     * @return task, or null if the worker must exit, in which case
1009     * workerCount is decremented
1010     */
1011     private Runnable getTask() {
1012     boolean timedOut = false; // Did the last poll() time out?
1013    
1014     for (;;) {
1015     int c = ctl.get();
1016     int rs = runStateOf(c);
1017    
1018     // Check if queue empty only if necessary.
1019     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1020     decrementWorkerCount();
1021     return null;
1022     }
1023    
1024 jsr166 1.6 int wc = workerCountOf(c);
1025 dl 1.1
1026 jsr166 1.6 // Are workers subject to culling?
1027     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1028 dl 1.1
1029 jsr166 1.6 if ((wc > maximumPoolSize || (timed && timedOut))
1030     && (wc > 1 || workQueue.isEmpty())) {
1031 dl 1.1 if (compareAndDecrementWorkerCount(c))
1032     return null;
1033 jsr166 1.6 continue;
1034 dl 1.1 }
1035    
1036     try {
1037     Runnable r = timed ?
1038     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1039     workQueue.take();
1040     if (r != null)
1041     return r;
1042     timedOut = true;
1043     } catch (InterruptedException retry) {
1044     timedOut = false;
1045     }
1046     }
1047     }
1048    
1049     /**
1050     * Main worker run loop. Repeatedly gets tasks from queue and
1051     * executes them, while coping with a number of issues:
1052     *
1053     * 1. We may start out with an initial task, in which case we
1054     * don't need to get the first one. Otherwise, as long as pool is
1055     * running, we get tasks from getTask. If it returns null then the
1056     * worker exits due to changed pool state or configuration
1057     * parameters. Other exits result from exception throws in
1058     * external code, in which case completedAbruptly holds, which
1059     * usually leads processWorkerExit to replace this thread.
1060     *
1061     * 2. Before running any task, the lock is acquired to prevent
1062 jsr166 1.4 * other pool interrupts while the task is executing, and then we
1063     * ensure that unless pool is stopping, this thread does not have
1064     * its interrupt set.
1065 dl 1.1 *
1066     * 3. Each task run is preceded by a call to beforeExecute, which
1067     * might throw an exception, in which case we cause thread to die
1068     * (breaking loop with completedAbruptly true) without processing
1069     * the task.
1070     *
1071     * 4. Assuming beforeExecute completes normally, we run the task,
1072 jsr166 1.3 * gathering any of its thrown exceptions to send to afterExecute.
1073     * We separately handle RuntimeException, Error (both of which the
1074     * specs guarantee that we trap) and arbitrary Throwables.
1075     * Because we cannot rethrow Throwables within Runnable.run, we
1076     * wrap them within Errors on the way out (to the thread's
1077     * UncaughtExceptionHandler). Any thrown exception also
1078 dl 1.1 * conservatively causes thread to die.
1079     *
1080     * 5. After task.run completes, we call afterExecute, which may
1081     * also throw an exception, which will also cause thread to
1082     * die. According to JLS Sec 14.20, this exception is the one that
1083     * will be in effect even if task.run throws.
1084     *
1085     * The net effect of the exception mechanics is that afterExecute
1086     * and the thread's UncaughtExceptionHandler have as accurate
1087     * information as we can provide about any problems encountered by
1088     * user code.
1089     *
1090     * @param w the worker
1091     */
1092     final void runWorker(Worker w) {
1093     Thread wt = Thread.currentThread();
1094     Runnable task = w.firstTask;
1095     w.firstTask = null;
1096     w.unlock(); // allow interrupts
1097     boolean completedAbruptly = true;
1098     try {
1099     while (task != null || (task = getTask()) != null) {
1100     w.lock();
1101     // If pool is stopping, ensure thread is interrupted;
1102     // if not, ensure thread is not interrupted. This
1103     // requires a recheck in second case to deal with
1104     // shutdownNow race while clearing interrupt
1105     if ((runStateAtLeast(ctl.get(), STOP) ||
1106     (Thread.interrupted() &&
1107     runStateAtLeast(ctl.get(), STOP))) &&
1108     !wt.isInterrupted())
1109     wt.interrupt();
1110     try {
1111     beforeExecute(wt, task);
1112     Throwable thrown = null;
1113     try {
1114     task.run();
1115     } catch (RuntimeException x) {
1116     thrown = x; throw x;
1117     } catch (Error x) {
1118     thrown = x; throw x;
1119     } catch (Throwable x) {
1120     thrown = x; throw new Error(x);
1121     } finally {
1122     afterExecute(task, thrown);
1123     }
1124     } finally {
1125     task = null;
1126     w.completedTasks++;
1127     w.unlock();
1128     }
1129     }
1130     completedAbruptly = false;
1131     } finally {
1132     processWorkerExit(w, completedAbruptly);
1133     }
1134     }
1135    
1136     // Public constructors and methods
1137    
1138     /**
1139     * Creates a new {@code ThreadPoolExecutor} with the given initial
1140     * parameters and default thread factory and rejected execution handler.
1141     * It may be more convenient to use one of the {@link Executors} factory
1142     * methods instead of this general purpose constructor.
1143     *
1144     * @param corePoolSize the number of threads to keep in the pool, even
1145     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1146     * @param maximumPoolSize the maximum number of threads to allow in the
1147     * pool
1148     * @param keepAliveTime when the number of threads is greater than
1149     * the core, this is the maximum time that excess idle threads
1150     * will wait for new tasks before terminating.
1151     * @param unit the time unit for the {@code keepAliveTime} argument
1152     * @param workQueue the queue to use for holding tasks before they are
1153     * executed. This queue will hold only the {@code Runnable}
1154     * tasks submitted by the {@code execute} method.
1155     * @throws IllegalArgumentException if one of the following holds:<br>
1156     * {@code corePoolSize < 0}<br>
1157     * {@code keepAliveTime < 0}<br>
1158     * {@code maximumPoolSize <= 0}<br>
1159     * {@code maximumPoolSize < corePoolSize}
1160     * @throws NullPointerException if {@code workQueue} is null
1161     */
1162     public ThreadPoolExecutor(int corePoolSize,
1163     int maximumPoolSize,
1164     long keepAliveTime,
1165     TimeUnit unit,
1166     BlockingQueue<Runnable> workQueue) {
1167     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1168     Executors.defaultThreadFactory(), defaultHandler);
1169     }
1170    
1171     /**
1172     * Creates a new {@code ThreadPoolExecutor} with the given initial
1173     * parameters and default rejected execution handler.
1174     *
1175     * @param corePoolSize the number of threads to keep in the pool, even
1176     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1177     * @param maximumPoolSize the maximum number of threads to allow in the
1178     * pool
1179     * @param keepAliveTime when the number of threads is greater than
1180     * the core, this is the maximum time that excess idle threads
1181     * will wait for new tasks before terminating.
1182     * @param unit the time unit for the {@code keepAliveTime} argument
1183     * @param workQueue the queue to use for holding tasks before they are
1184     * executed. This queue will hold only the {@code Runnable}
1185     * tasks submitted by the {@code execute} method.
1186     * @param threadFactory the factory to use when the executor
1187     * creates a new thread
1188     * @throws IllegalArgumentException if one of the following holds:<br>
1189     * {@code corePoolSize < 0}<br>
1190     * {@code keepAliveTime < 0}<br>
1191     * {@code maximumPoolSize <= 0}<br>
1192     * {@code maximumPoolSize < corePoolSize}
1193     * @throws NullPointerException if {@code workQueue}
1194     * or {@code threadFactory} is null
1195     */
1196     public ThreadPoolExecutor(int corePoolSize,
1197     int maximumPoolSize,
1198     long keepAliveTime,
1199     TimeUnit unit,
1200     BlockingQueue<Runnable> workQueue,
1201     ThreadFactory threadFactory) {
1202     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1203     threadFactory, defaultHandler);
1204     }
1205    
1206     /**
1207     * Creates a new {@code ThreadPoolExecutor} with the given initial
1208     * parameters and default thread factory.
1209     *
1210     * @param corePoolSize the number of threads to keep in the pool, even
1211     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1212     * @param maximumPoolSize the maximum number of threads to allow in the
1213     * pool
1214     * @param keepAliveTime when the number of threads is greater than
1215     * the core, this is the maximum time that excess idle threads
1216     * will wait for new tasks before terminating.
1217     * @param unit the time unit for the {@code keepAliveTime} argument
1218     * @param workQueue the queue to use for holding tasks before they are
1219     * executed. This queue will hold only the {@code Runnable}
1220     * tasks submitted by the {@code execute} method.
1221     * @param handler the handler to use when execution is blocked
1222     * because the thread bounds and queue capacities are reached
1223     * @throws IllegalArgumentException if one of the following holds:<br>
1224     * {@code corePoolSize < 0}<br>
1225     * {@code keepAliveTime < 0}<br>
1226     * {@code maximumPoolSize <= 0}<br>
1227     * {@code maximumPoolSize < corePoolSize}
1228     * @throws NullPointerException if {@code workQueue}
1229     * or {@code handler} is null
1230     */
1231     public ThreadPoolExecutor(int corePoolSize,
1232     int maximumPoolSize,
1233     long keepAliveTime,
1234     TimeUnit unit,
1235     BlockingQueue<Runnable> workQueue,
1236     RejectedExecutionHandler handler) {
1237     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1238     Executors.defaultThreadFactory(), handler);
1239     }
1240    
1241     /**
1242     * Creates a new {@code ThreadPoolExecutor} with the given initial
1243     * parameters.
1244     *
1245     * @param corePoolSize the number of threads to keep in the pool, even
1246     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1247     * @param maximumPoolSize the maximum number of threads to allow in the
1248     * pool
1249     * @param keepAliveTime when the number of threads is greater than
1250     * the core, this is the maximum time that excess idle threads
1251     * will wait for new tasks before terminating.
1252     * @param unit the time unit for the {@code keepAliveTime} argument
1253     * @param workQueue the queue to use for holding tasks before they are
1254     * executed. This queue will hold only the {@code Runnable}
1255     * tasks submitted by the {@code execute} method.
1256     * @param threadFactory the factory to use when the executor
1257     * creates a new thread
1258     * @param handler the handler to use when execution is blocked
1259     * because the thread bounds and queue capacities are reached
1260     * @throws IllegalArgumentException if one of the following holds:<br>
1261     * {@code corePoolSize < 0}<br>
1262     * {@code keepAliveTime < 0}<br>
1263     * {@code maximumPoolSize <= 0}<br>
1264     * {@code maximumPoolSize < corePoolSize}
1265     * @throws NullPointerException if {@code workQueue}
1266     * or {@code threadFactory} or {@code handler} is null
1267     */
1268     public ThreadPoolExecutor(int corePoolSize,
1269     int maximumPoolSize,
1270     long keepAliveTime,
1271     TimeUnit unit,
1272     BlockingQueue<Runnable> workQueue,
1273     ThreadFactory threadFactory,
1274     RejectedExecutionHandler handler) {
1275     if (corePoolSize < 0 ||
1276     maximumPoolSize <= 0 ||
1277     maximumPoolSize < corePoolSize ||
1278     keepAliveTime < 0)
1279     throw new IllegalArgumentException();
1280     if (workQueue == null || threadFactory == null || handler == null)
1281     throw new NullPointerException();
1282     this.corePoolSize = corePoolSize;
1283     this.maximumPoolSize = maximumPoolSize;
1284     this.workQueue = workQueue;
1285     this.keepAliveTime = unit.toNanos(keepAliveTime);
1286     this.threadFactory = threadFactory;
1287     this.handler = handler;
1288     }
1289    
1290     /**
1291     * Executes the given task sometime in the future. The task
1292     * may execute in a new thread or in an existing pooled thread.
1293     *
1294     * If the task cannot be submitted for execution, either because this
1295     * executor has been shutdown or because its capacity has been reached,
1296     * the task is handled by the current {@code RejectedExecutionHandler}.
1297     *
1298     * @param command the task to execute
1299     * @throws RejectedExecutionException at discretion of
1300     * {@code RejectedExecutionHandler}, if the task
1301     * cannot be accepted for execution
1302     * @throws NullPointerException if {@code command} is null
1303     */
1304     public void execute(Runnable command) {
1305     if (command == null)
1306     throw new NullPointerException();
1307     /*
1308     * Proceed in 3 steps:
1309     *
1310     * 1. If fewer than corePoolSize threads are running, try to
1311     * start a new thread with the given command as its first
1312     * task. The call to addWorker atomically checks runState and
1313     * workerCount, and so prevents false alarms that would add
1314     * threads when it shouldn't, by returning false.
1315     *
1316     * 2. If a task can be successfully queued, then we still need
1317     * to double-check whether we should have added a thread
1318     * (because existing ones died since last checking) or that
1319     * the pool shut down since entry into this method. So we
1320     * recheck state and if necessary roll back the enqueuing if
1321     * stopped, or start a new thread if there are none.
1322     *
1323     * 3. If we cannot queue task, then we try to add a new
1324     * thread. If it fails, we know we are shut down or saturated
1325     * and so reject the task.
1326     */
1327     int c = ctl.get();
1328     if (workerCountOf(c) < corePoolSize) {
1329     if (addWorker(command, true))
1330     return;
1331     c = ctl.get();
1332     }
1333     if (isRunning(c) && workQueue.offer(command)) {
1334     int recheck = ctl.get();
1335     if (! isRunning(recheck) && remove(command))
1336     reject(command);
1337     else if (workerCountOf(recheck) == 0)
1338     addWorker(null, false);
1339     }
1340     else if (!addWorker(command, false))
1341     reject(command);
1342     }
1343    
1344     /**
1345     * Initiates an orderly shutdown in which previously submitted
1346     * tasks are executed, but no new tasks will be accepted.
1347     * Invocation has no additional effect if already shut down.
1348     *
1349     * <p>This method does not wait for previously submitted tasks to
1350     * complete execution. Use {@link #awaitTermination awaitTermination}
1351     * to do that.
1352     *
1353     * @throws SecurityException {@inheritDoc}
1354     */
1355     public void shutdown() {
1356     final ReentrantLock mainLock = this.mainLock;
1357     mainLock.lock();
1358     try {
1359     checkShutdownAccess();
1360     advanceRunState(SHUTDOWN);
1361     interruptIdleWorkers();
1362     onShutdown(); // hook for ScheduledThreadPoolExecutor
1363     } finally {
1364     mainLock.unlock();
1365     }
1366     tryTerminate();
1367     }
1368    
1369     /**
1370     * Attempts to stop all actively executing tasks, halts the
1371     * processing of waiting tasks, and returns a list of the tasks
1372     * that were awaiting execution. These tasks are drained (removed)
1373     * from the task queue upon return from this method.
1374     *
1375     * <p>This method does not wait for actively executing tasks to
1376     * terminate. Use {@link #awaitTermination awaitTermination} to
1377     * do that.
1378     *
1379     * <p>There are no guarantees beyond best-effort attempts to stop
1380     * processing actively executing tasks. This implementation
1381     * cancels tasks via {@link Thread#interrupt}, so any task that
1382     * fails to respond to interrupts may never terminate.
1383     *
1384     * @throws SecurityException {@inheritDoc}
1385     */
1386     public List<Runnable> shutdownNow() {
1387     List<Runnable> tasks;
1388     final ReentrantLock mainLock = this.mainLock;
1389     mainLock.lock();
1390     try {
1391     checkShutdownAccess();
1392     advanceRunState(STOP);
1393     interruptWorkers();
1394     tasks = drainQueue();
1395     } finally {
1396     mainLock.unlock();
1397     }
1398     tryTerminate();
1399     return tasks;
1400     }
1401    
1402     public boolean isShutdown() {
1403     return ! isRunning(ctl.get());
1404     }
1405    
1406     /**
1407     * Returns true if this executor is in the process of terminating
1408     * after {@link #shutdown} or {@link #shutdownNow} but has not
1409     * completely terminated. This method may be useful for
1410     * debugging. A return of {@code true} reported a sufficient
1411     * period after shutdown may indicate that submitted tasks have
1412     * ignored or suppressed interruption, causing this executor not
1413     * to properly terminate.
1414     *
1415 jsr166 1.12 * @return {@code true} if terminating but not yet terminated
1416 dl 1.1 */
1417     public boolean isTerminating() {
1418     int c = ctl.get();
1419     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1420     }
1421    
1422     public boolean isTerminated() {
1423     return runStateAtLeast(ctl.get(), TERMINATED);
1424     }
1425    
1426     public boolean awaitTermination(long timeout, TimeUnit unit)
1427     throws InterruptedException {
1428     long nanos = unit.toNanos(timeout);
1429     final ReentrantLock mainLock = this.mainLock;
1430     mainLock.lock();
1431     try {
1432     for (;;) {
1433     if (runStateAtLeast(ctl.get(), TERMINATED))
1434     return true;
1435     if (nanos <= 0)
1436     return false;
1437     nanos = termination.awaitNanos(nanos);
1438     }
1439     } finally {
1440     mainLock.unlock();
1441     }
1442     }
1443    
1444     /**
1445     * Invokes {@code shutdown} when this executor is no longer
1446     * referenced and it has no threads.
1447     */
1448     protected void finalize() {
1449     shutdown();
1450     }
1451    
1452     /**
1453     * Sets the thread factory used to create new threads.
1454     *
1455     * @param threadFactory the new thread factory
1456     * @throws NullPointerException if threadFactory is null
1457     * @see #getThreadFactory
1458     */
1459     public void setThreadFactory(ThreadFactory threadFactory) {
1460     if (threadFactory == null)
1461     throw new NullPointerException();
1462     this.threadFactory = threadFactory;
1463     }
1464    
1465     /**
1466     * Returns the thread factory used to create new threads.
1467     *
1468     * @return the current thread factory
1469 jsr166 1.12 * @see #setThreadFactory(ThreadFactory)
1470 dl 1.1 */
1471     public ThreadFactory getThreadFactory() {
1472     return threadFactory;
1473     }
1474    
1475     /**
1476     * Sets a new handler for unexecutable tasks.
1477     *
1478     * @param handler the new handler
1479     * @throws NullPointerException if handler is null
1480     * @see #getRejectedExecutionHandler
1481     */
1482     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1483     if (handler == null)
1484     throw new NullPointerException();
1485     this.handler = handler;
1486     }
1487    
1488     /**
1489     * Returns the current handler for unexecutable tasks.
1490     *
1491     * @return the current handler
1492 jsr166 1.12 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1493 dl 1.1 */
1494     public RejectedExecutionHandler getRejectedExecutionHandler() {
1495     return handler;
1496     }
1497    
1498     /**
1499     * Sets the core number of threads. This overrides any value set
1500     * in the constructor. If the new value is smaller than the
1501     * current value, excess existing threads will be terminated when
1502     * they next become idle. If larger, new threads will, if needed,
1503     * be started to execute any queued tasks.
1504     *
1505     * @param corePoolSize the new core size
1506     * @throws IllegalArgumentException if {@code corePoolSize < 0}
1507 jsr166 1.15 * or {@code corePoolSize} is greater than the {@linkplain
1508     * #getMaximumPoolSize() maximum pool size}
1509 dl 1.1 * @see #getCorePoolSize
1510     */
1511     public void setCorePoolSize(int corePoolSize) {
1512 jsr166 1.15 if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1513 dl 1.1 throw new IllegalArgumentException();
1514     int delta = corePoolSize - this.corePoolSize;
1515     this.corePoolSize = corePoolSize;
1516     if (workerCountOf(ctl.get()) > corePoolSize)
1517     interruptIdleWorkers();
1518     else if (delta > 0) {
1519     // We don't really know how many new threads are "needed".
1520     // As a heuristic, prestart enough new workers (up to new
1521     // core size) to handle the current number of tasks in
1522     // queue, but stop if queue becomes empty while doing so.
1523     int k = Math.min(delta, workQueue.size());
1524     while (k-- > 0 && addWorker(null, true)) {
1525     if (workQueue.isEmpty())
1526     break;
1527     }
1528     }
1529     }
1530    
1531     /**
1532     * Returns the core number of threads.
1533     *
1534     * @return the core number of threads
1535     * @see #setCorePoolSize
1536     */
1537     public int getCorePoolSize() {
1538     return corePoolSize;
1539     }
1540    
1541     /**
1542     * Starts a core thread, causing it to idly wait for work. This
1543     * overrides the default policy of starting core threads only when
1544     * new tasks are executed. This method will return {@code false}
1545     * if all core threads have already been started.
1546     *
1547     * @return {@code true} if a thread was started
1548     */
1549     public boolean prestartCoreThread() {
1550     return workerCountOf(ctl.get()) < corePoolSize &&
1551     addWorker(null, true);
1552     }
1553    
1554     /**
1555     * Same as prestartCoreThread except arranges that at least one
1556     * thread is started even if corePoolSize is 0.
1557     */
1558     void ensurePrestart() {
1559     int wc = workerCountOf(ctl.get());
1560     if (wc < corePoolSize)
1561     addWorker(null, true);
1562     else if (wc == 0)
1563     addWorker(null, false);
1564     }
1565    
1566     /**
1567     * Starts all core threads, causing them to idly wait for work. This
1568     * overrides the default policy of starting core threads only when
1569     * new tasks are executed.
1570     *
1571     * @return the number of threads started
1572     */
1573     public int prestartAllCoreThreads() {
1574     int n = 0;
1575     while (addWorker(null, true))
1576     ++n;
1577     return n;
1578     }
1579    
1580     /**
1581     * Returns true if this pool allows core threads to time out and
1582     * terminate if no tasks arrive within the keepAlive time, being
1583     * replaced if needed when new tasks arrive. When true, the same
1584     * keep-alive policy applying to non-core threads applies also to
1585     * core threads. When false (the default), core threads are never
1586     * terminated due to lack of incoming tasks.
1587     *
1588     * @return {@code true} if core threads are allowed to time out,
1589     * else {@code false}
1590     *
1591     * @since 1.6
1592     */
1593     public boolean allowsCoreThreadTimeOut() {
1594     return allowCoreThreadTimeOut;
1595     }
1596    
1597     /**
1598     * Sets the policy governing whether core threads may time out and
1599     * terminate if no tasks arrive within the keep-alive time, being
1600     * replaced if needed when new tasks arrive. When false, core
1601     * threads are never terminated due to lack of incoming
1602     * tasks. When true, the same keep-alive policy applying to
1603     * non-core threads applies also to core threads. To avoid
1604     * continual thread replacement, the keep-alive time must be
1605     * greater than zero when setting {@code true}. This method
1606     * should in general be called before the pool is actively used.
1607     *
1608     * @param value {@code true} if should time out, else {@code false}
1609     * @throws IllegalArgumentException if value is {@code true}
1610     * and the current keep-alive time is not greater than zero
1611     *
1612     * @since 1.6
1613     */
1614     public void allowCoreThreadTimeOut(boolean value) {
1615     if (value && keepAliveTime <= 0)
1616     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1617     if (value != allowCoreThreadTimeOut) {
1618     allowCoreThreadTimeOut = value;
1619     if (value)
1620     interruptIdleWorkers();
1621     }
1622     }
1623    
1624     /**
1625     * Sets the maximum allowed number of threads. This overrides any
1626     * value set in the constructor. If the new value is smaller than
1627     * the current value, excess existing threads will be
1628     * terminated when they next become idle.
1629     *
1630     * @param maximumPoolSize the new maximum
1631     * @throws IllegalArgumentException if the new maximum is
1632     * less than or equal to zero, or
1633     * less than the {@linkplain #getCorePoolSize core pool size}
1634     * @see #getMaximumPoolSize
1635     */
1636     public void setMaximumPoolSize(int maximumPoolSize) {
1637     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1638     throw new IllegalArgumentException();
1639     this.maximumPoolSize = maximumPoolSize;
1640     if (workerCountOf(ctl.get()) > maximumPoolSize)
1641     interruptIdleWorkers();
1642     }
1643    
1644     /**
1645     * Returns the maximum allowed number of threads.
1646     *
1647     * @return the maximum allowed number of threads
1648     * @see #setMaximumPoolSize
1649     */
1650     public int getMaximumPoolSize() {
1651     return maximumPoolSize;
1652     }
1653    
1654     /**
1655     * Sets the time limit for which threads may remain idle before
1656     * being terminated. If there are more than the core number of
1657     * threads currently in the pool, after waiting this amount of
1658     * time without processing a task, excess threads will be
1659     * terminated. This overrides any value set in the constructor.
1660     *
1661     * @param time the time to wait. A time value of zero will cause
1662     * excess threads to terminate immediately after executing tasks.
1663     * @param unit the time unit of the {@code time} argument
1664     * @throws IllegalArgumentException if {@code time} less than zero or
1665     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1666 jsr166 1.12 * @see #getKeepAliveTime(TimeUnit)
1667 dl 1.1 */
1668     public void setKeepAliveTime(long time, TimeUnit unit) {
1669     if (time < 0)
1670     throw new IllegalArgumentException();
1671     if (time == 0 && allowsCoreThreadTimeOut())
1672     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1673     long keepAliveTime = unit.toNanos(time);
1674     long delta = keepAliveTime - this.keepAliveTime;
1675     this.keepAliveTime = keepAliveTime;
1676     if (delta < 0)
1677     interruptIdleWorkers();
1678     }
1679    
1680     /**
1681     * Returns the thread keep-alive time, which is the amount of time
1682     * that threads in excess of the core pool size may remain
1683     * idle before being terminated.
1684     *
1685     * @param unit the desired time unit of the result
1686     * @return the time limit
1687 jsr166 1.12 * @see #setKeepAliveTime(long, TimeUnit)
1688 dl 1.1 */
1689     public long getKeepAliveTime(TimeUnit unit) {
1690     return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1691     }
1692    
1693     /* User-level queue utilities */
1694    
1695     /**
1696     * Returns the task queue used by this executor. Access to the
1697     * task queue is intended primarily for debugging and monitoring.
1698     * This queue may be in active use. Retrieving the task queue
1699     * does not prevent queued tasks from executing.
1700     *
1701     * @return the task queue
1702     */
1703     public BlockingQueue<Runnable> getQueue() {
1704     return workQueue;
1705     }
1706    
1707     /**
1708     * Removes this task from the executor's internal queue if it is
1709     * present, thus causing it not to be run if it has not already
1710     * started.
1711     *
1712     * <p>This method may be useful as one part of a cancellation
1713     * scheme. It may fail to remove tasks that have been converted
1714     * into other forms before being placed on the internal queue. For
1715     * example, a task entered using {@code submit} might be
1716     * converted into a form that maintains {@code Future} status.
1717     * However, in such cases, method {@link #purge} may be used to
1718     * remove those Futures that have been cancelled.
1719     *
1720     * @param task the task to remove
1721 jsr166 1.12 * @return {@code true} if the task was removed
1722 dl 1.1 */
1723     public boolean remove(Runnable task) {
1724     boolean removed = workQueue.remove(task);
1725     tryTerminate(); // In case SHUTDOWN and now empty
1726     return removed;
1727     }
1728    
1729     /**
1730     * Tries to remove from the work queue all {@link Future}
1731     * tasks that have been cancelled. This method can be useful as a
1732     * storage reclamation operation, that has no other impact on
1733     * functionality. Cancelled tasks are never executed, but may
1734     * accumulate in work queues until worker threads can actively
1735     * remove them. Invoking this method instead tries to remove them now.
1736     * However, this method may fail to remove tasks in
1737     * the presence of interference by other threads.
1738     */
1739     public void purge() {
1740     final BlockingQueue<Runnable> q = workQueue;
1741     try {
1742     Iterator<Runnable> it = q.iterator();
1743     while (it.hasNext()) {
1744     Runnable r = it.next();
1745     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1746     it.remove();
1747     }
1748     } catch (ConcurrentModificationException fallThrough) {
1749     // Take slow path if we encounter interference during traversal.
1750     // Make copy for traversal and call remove for cancelled entries.
1751     // The slow path is more likely to be O(N*N).
1752     for (Object r : q.toArray())
1753     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1754     q.remove(r);
1755     }
1756    
1757     tryTerminate(); // In case SHUTDOWN and now empty
1758     }
1759    
1760     /* Statistics */
1761    
1762     /**
1763     * Returns the current number of threads in the pool.
1764     *
1765     * @return the number of threads
1766     */
1767     public int getPoolSize() {
1768     final ReentrantLock mainLock = this.mainLock;
1769     mainLock.lock();
1770     try {
1771     // Remove rare and surprising possibility of
1772     // isTerminated() && getPoolSize() > 0
1773     return runStateAtLeast(ctl.get(), TIDYING) ? 0
1774     : workers.size();
1775     } finally {
1776     mainLock.unlock();
1777     }
1778     }
1779    
1780     /**
1781     * Returns the approximate number of threads that are actively
1782     * executing tasks.
1783     *
1784     * @return the number of threads
1785     */
1786     public int getActiveCount() {
1787     final ReentrantLock mainLock = this.mainLock;
1788     mainLock.lock();
1789     try {
1790     int n = 0;
1791     for (Worker w : workers)
1792     if (w.isLocked())
1793     ++n;
1794     return n;
1795     } finally {
1796     mainLock.unlock();
1797     }
1798     }
1799    
1800     /**
1801     * Returns the largest number of threads that have ever
1802     * simultaneously been in the pool.
1803     *
1804     * @return the number of threads
1805     */
1806     public int getLargestPoolSize() {
1807     final ReentrantLock mainLock = this.mainLock;
1808     mainLock.lock();
1809     try {
1810     return largestPoolSize;
1811     } finally {
1812     mainLock.unlock();
1813     }
1814     }
1815    
1816     /**
1817     * Returns the approximate total number of tasks that have ever been
1818     * scheduled for execution. Because the states of tasks and
1819     * threads may change dynamically during computation, the returned
1820     * value is only an approximation.
1821     *
1822     * @return the number of tasks
1823     */
1824     public long getTaskCount() {
1825     final ReentrantLock mainLock = this.mainLock;
1826     mainLock.lock();
1827     try {
1828     long n = completedTaskCount;
1829     for (Worker w : workers) {
1830     n += w.completedTasks;
1831     if (w.isLocked())
1832     ++n;
1833     }
1834     return n + workQueue.size();
1835     } finally {
1836     mainLock.unlock();
1837     }
1838     }
1839    
1840     /**
1841     * Returns the approximate total number of tasks that have
1842     * completed execution. Because the states of tasks and threads
1843     * may change dynamically during computation, the returned value
1844     * is only an approximation, but one that does not ever decrease
1845     * across successive calls.
1846     *
1847     * @return the number of tasks
1848     */
1849     public long getCompletedTaskCount() {
1850     final ReentrantLock mainLock = this.mainLock;
1851     mainLock.lock();
1852     try {
1853     long n = completedTaskCount;
1854     for (Worker w : workers)
1855     n += w.completedTasks;
1856     return n;
1857     } finally {
1858     mainLock.unlock();
1859     }
1860     }
1861    
1862     /**
1863     * Returns a string identifying this pool, as well as its state,
1864     * including indications of run state and estimated worker and
1865     * task counts.
1866     *
1867     * @return a string identifying this pool, as well as its state
1868     */
1869     public String toString() {
1870     long ncompleted;
1871     int nworkers, nactive;
1872     final ReentrantLock mainLock = this.mainLock;
1873     mainLock.lock();
1874     try {
1875     ncompleted = completedTaskCount;
1876     nactive = 0;
1877     nworkers = workers.size();
1878     for (Worker w : workers) {
1879     ncompleted += w.completedTasks;
1880     if (w.isLocked())
1881     ++nactive;
1882     }
1883     } finally {
1884     mainLock.unlock();
1885     }
1886     int c = ctl.get();
1887     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1888     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1889     "Shutting down"));
1890     return super.toString() +
1891     "[" + rs +
1892     ", pool size = " + nworkers +
1893     ", active threads = " + nactive +
1894     ", queued tasks = " + workQueue.size() +
1895     ", completed tasks = " + ncompleted +
1896     "]";
1897     }
1898    
1899     /* Extension hooks */
1900    
1901     /**
1902     * Method invoked prior to executing the given Runnable in the
1903     * given thread. This method is invoked by thread {@code t} that
1904     * will execute task {@code r}, and may be used to re-initialize
1905     * ThreadLocals, or to perform logging.
1906     *
1907     * <p>This implementation does nothing, but may be customized in
1908     * subclasses. Note: To properly nest multiple overridings, subclasses
1909     * should generally invoke {@code super.beforeExecute} at the end of
1910     * this method.
1911     *
1912     * @param t the thread that will run task {@code r}
1913     * @param r the task that will be executed
1914     */
1915     protected void beforeExecute(Thread t, Runnable r) { }
1916    
1917     /**
1918     * Method invoked upon completion of execution of the given Runnable.
1919     * This method is invoked by the thread that executed the task. If
1920     * non-null, the Throwable is the uncaught {@code RuntimeException}
1921     * or {@code Error} that caused execution to terminate abruptly.
1922     *
1923     * <p>This implementation does nothing, but may be customized in
1924     * subclasses. Note: To properly nest multiple overridings, subclasses
1925     * should generally invoke {@code super.afterExecute} at the
1926     * beginning of this method.
1927     *
1928     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1929     * {@link FutureTask}) either explicitly or via methods such as
1930     * {@code submit}, these task objects catch and maintain
1931     * computational exceptions, and so they do not cause abrupt
1932     * termination, and the internal exceptions are <em>not</em>
1933     * passed to this method. If you would like to trap both kinds of
1934     * failures in this method, you can further probe for such cases,
1935     * as in this sample subclass that prints either the direct cause
1936     * or the underlying exception if a task has been aborted:
1937     *
1938     * <pre> {@code
1939     * class ExtendedExecutor extends ThreadPoolExecutor {
1940     * // ...
1941     * protected void afterExecute(Runnable r, Throwable t) {
1942     * super.afterExecute(r, t);
1943     * if (t == null && r instanceof Future<?>) {
1944     * try {
1945     * Object result = ((Future<?>) r).get();
1946     * } catch (CancellationException ce) {
1947     * t = ce;
1948     * } catch (ExecutionException ee) {
1949     * t = ee.getCause();
1950     * } catch (InterruptedException ie) {
1951     * Thread.currentThread().interrupt(); // ignore/reset
1952     * }
1953     * }
1954     * if (t != null)
1955     * System.out.println(t);
1956     * }
1957     * }}</pre>
1958     *
1959     * @param r the runnable that has completed
1960     * @param t the exception that caused termination, or null if
1961     * execution completed normally
1962     */
1963     protected void afterExecute(Runnable r, Throwable t) { }
1964    
1965     /**
1966     * Method invoked when the Executor has terminated. Default
1967     * implementation does nothing. Note: To properly nest multiple
1968     * overridings, subclasses should generally invoke
1969     * {@code super.terminated} within this method.
1970     */
1971     protected void terminated() { }
1972    
1973     /* Predefined RejectedExecutionHandlers */
1974    
1975     /**
1976     * A handler for rejected tasks that runs the rejected task
1977     * directly in the calling thread of the {@code execute} method,
1978     * unless the executor has been shut down, in which case the task
1979     * is discarded.
1980     */
1981     public static class CallerRunsPolicy implements RejectedExecutionHandler {
1982     /**
1983     * Creates a {@code CallerRunsPolicy}.
1984     */
1985     public CallerRunsPolicy() { }
1986    
1987     /**
1988     * Executes task r in the caller's thread, unless the executor
1989     * has been shut down, in which case the task is discarded.
1990     *
1991     * @param r the runnable task requested to be executed
1992     * @param e the executor attempting to execute this task
1993     */
1994     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1995     if (!e.isShutdown()) {
1996     r.run();
1997     }
1998     }
1999     }
2000    
2001     /**
2002     * A handler for rejected tasks that throws a
2003     * {@code RejectedExecutionException}.
2004     */
2005     public static class AbortPolicy implements RejectedExecutionHandler {
2006     /**
2007     * Creates an {@code AbortPolicy}.
2008     */
2009     public AbortPolicy() { }
2010    
2011     /**
2012     * Always throws RejectedExecutionException.
2013     *
2014     * @param r the runnable task requested to be executed
2015     * @param e the executor attempting to execute this task
2016 jsr166 1.8 * @throws RejectedExecutionException always
2017 dl 1.1 */
2018     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2019     throw new RejectedExecutionException("Task " + r.toString() +
2020     " rejected from " +
2021     e.toString());
2022     }
2023     }
2024    
2025     /**
2026     * A handler for rejected tasks that silently discards the
2027     * rejected task.
2028     */
2029     public static class DiscardPolicy implements RejectedExecutionHandler {
2030     /**
2031     * Creates a {@code DiscardPolicy}.
2032     */
2033     public DiscardPolicy() { }
2034    
2035     /**
2036     * Does nothing, which has the effect of discarding task r.
2037     *
2038     * @param r the runnable task requested to be executed
2039     * @param e the executor attempting to execute this task
2040     */
2041     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2042     }
2043     }
2044    
2045     /**
2046     * A handler for rejected tasks that discards the oldest unhandled
2047     * request and then retries {@code execute}, unless the executor
2048     * is shut down, in which case the task is discarded.
2049     */
2050     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2051     /**
2052     * Creates a {@code DiscardOldestPolicy} for the given executor.
2053     */
2054     public DiscardOldestPolicy() { }
2055    
2056     /**
2057     * Obtains and ignores the next task that the executor
2058     * would otherwise execute, if one is immediately available,
2059     * and then retries execution of task r, unless the executor
2060     * is shut down, in which case task r is instead discarded.
2061     *
2062     * @param r the runnable task requested to be executed
2063     * @param e the executor attempting to execute this task
2064     */
2065     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2066     if (!e.isShutdown()) {
2067     e.getQueue().poll();
2068     e.execute(r);
2069     }
2070     }
2071     }
2072     }