ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/ArrayList.java
Revision: 1.3
Committed: Mon May 7 23:38:48 2018 UTC (6 years ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +14 -8 lines
Log Message:
minimal backport to fix testReplaceAllIsNotStructuralModification failure

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32     /**
33 jsr166 1.2 * Resizable-array implementation of the {@code List} interface. Implements
34 jsr166 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.2 * {@code null}. In addition to implementing the {@code List} interface,
36 jsr166 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.2 * {@code Vector}, except that it is unsynchronized.)
39 jsr166 1.1 *
40 jsr166 1.2 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 jsr166 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.2 * to that for the {@code LinkedList} implementation.
46 jsr166 1.1 *
47 jsr166 1.2 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 jsr166 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52     * time cost.
53     *
54 jsr166 1.2 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 jsr166 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.2 * If multiple threads access an {@code ArrayList} instance concurrently,
60 jsr166 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73     * <p><a name="fail-fast">
74     * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:</a>
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84     *
85     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86     * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88     * throw {@code ConcurrentModificationException} on a best-effort basis.
89     * Therefore, it would be wrong to write a program that depended on this
90     * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92     *
93     * <p>This class is a member of the
94     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95     * Java Collections Framework</a>.
96     *
97     * @author Josh Bloch
98     * @author Neal Gafter
99     * @see Collection
100     * @see List
101     * @see LinkedList
102     * @see Vector
103     * @since 1.2
104     */
105     public class ArrayList<E> extends AbstractList<E>
106     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
107     {
108     private static final long serialVersionUID = 8683452581122892189L;
109    
110     /**
111     * Default initial capacity.
112     */
113     private static final int DEFAULT_CAPACITY = 10;
114    
115     /**
116     * Shared empty array instance used for empty instances.
117     */
118     private static final Object[] EMPTY_ELEMENTDATA = {};
119    
120     /**
121     * Shared empty array instance used for default sized empty instances. We
122     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
123     * first element is added.
124     */
125     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
126    
127     /**
128     * The array buffer into which the elements of the ArrayList are stored.
129     * The capacity of the ArrayList is the length of this array buffer. Any
130     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
131     * will be expanded to DEFAULT_CAPACITY when the first element is added.
132     */
133     transient Object[] elementData; // non-private to simplify nested class access
134    
135     /**
136     * The size of the ArrayList (the number of elements it contains).
137     *
138     * @serial
139     */
140     private int size;
141    
142     /**
143     * Constructs an empty list with the specified initial capacity.
144     *
145     * @param initialCapacity the initial capacity of the list
146     * @throws IllegalArgumentException if the specified initial capacity
147     * is negative
148     */
149     public ArrayList(int initialCapacity) {
150     if (initialCapacity > 0) {
151     this.elementData = new Object[initialCapacity];
152     } else if (initialCapacity == 0) {
153     this.elementData = EMPTY_ELEMENTDATA;
154     } else {
155     throw new IllegalArgumentException("Illegal Capacity: "+
156     initialCapacity);
157     }
158     }
159    
160     /**
161     * Constructs an empty list with an initial capacity of ten.
162     */
163     public ArrayList() {
164     this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
165     }
166    
167     /**
168     * Constructs a list containing the elements of the specified
169     * collection, in the order they are returned by the collection's
170     * iterator.
171     *
172     * @param c the collection whose elements are to be placed into this list
173     * @throws NullPointerException if the specified collection is null
174     */
175     public ArrayList(Collection<? extends E> c) {
176     elementData = c.toArray();
177     if ((size = elementData.length) != 0) {
178     // c.toArray might (incorrectly) not return Object[] (see 6260652)
179     if (elementData.getClass() != Object[].class)
180     elementData = Arrays.copyOf(elementData, size, Object[].class);
181     } else {
182     // replace with empty array.
183     this.elementData = EMPTY_ELEMENTDATA;
184     }
185     }
186    
187     /**
188 jsr166 1.2 * Trims the capacity of this {@code ArrayList} instance to be the
189 jsr166 1.1 * list's current size. An application can use this operation to minimize
190 jsr166 1.2 * the storage of an {@code ArrayList} instance.
191 jsr166 1.1 */
192     public void trimToSize() {
193     modCount++;
194     if (size < elementData.length) {
195     elementData = (size == 0)
196     ? EMPTY_ELEMENTDATA
197     : Arrays.copyOf(elementData, size);
198     }
199     }
200    
201     /**
202 jsr166 1.2 * Increases the capacity of this {@code ArrayList} instance, if
203 jsr166 1.1 * necessary, to ensure that it can hold at least the number of elements
204     * specified by the minimum capacity argument.
205     *
206     * @param minCapacity the desired minimum capacity
207     */
208     public void ensureCapacity(int minCapacity) {
209     int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
210     // any size if not default element table
211     ? 0
212     // larger than default for default empty table. It's already
213     // supposed to be at default size.
214     : DEFAULT_CAPACITY;
215    
216     if (minCapacity > minExpand) {
217     ensureExplicitCapacity(minCapacity);
218     }
219     }
220    
221     private void ensureCapacityInternal(int minCapacity) {
222     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
223     minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
224     }
225    
226     ensureExplicitCapacity(minCapacity);
227     }
228    
229     private void ensureExplicitCapacity(int minCapacity) {
230     modCount++;
231    
232     // overflow-conscious code
233     if (minCapacity - elementData.length > 0)
234     grow(minCapacity);
235     }
236    
237     /**
238     * The maximum size of array to allocate.
239     * Some VMs reserve some header words in an array.
240     * Attempts to allocate larger arrays may result in
241     * OutOfMemoryError: Requested array size exceeds VM limit
242     */
243     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
244    
245     /**
246     * Increases the capacity to ensure that it can hold at least the
247     * number of elements specified by the minimum capacity argument.
248     *
249     * @param minCapacity the desired minimum capacity
250     */
251     private void grow(int minCapacity) {
252     // overflow-conscious code
253     int oldCapacity = elementData.length;
254     int newCapacity = oldCapacity + (oldCapacity >> 1);
255     if (newCapacity - minCapacity < 0)
256     newCapacity = minCapacity;
257     if (newCapacity - MAX_ARRAY_SIZE > 0)
258     newCapacity = hugeCapacity(minCapacity);
259     // minCapacity is usually close to size, so this is a win:
260     elementData = Arrays.copyOf(elementData, newCapacity);
261     }
262    
263     private static int hugeCapacity(int minCapacity) {
264     if (minCapacity < 0) // overflow
265     throw new OutOfMemoryError();
266     return (minCapacity > MAX_ARRAY_SIZE) ?
267     Integer.MAX_VALUE :
268     MAX_ARRAY_SIZE;
269     }
270    
271     /**
272     * Returns the number of elements in this list.
273     *
274     * @return the number of elements in this list
275     */
276     public int size() {
277     return size;
278     }
279    
280     /**
281 jsr166 1.2 * Returns {@code true} if this list contains no elements.
282 jsr166 1.1 *
283 jsr166 1.2 * @return {@code true} if this list contains no elements
284 jsr166 1.1 */
285     public boolean isEmpty() {
286     return size == 0;
287     }
288    
289     /**
290 jsr166 1.2 * Returns {@code true} if this list contains the specified element.
291     * More formally, returns {@code true} if and only if this list contains
292     * at least one element {@code e} such that
293     * {@code Objects.equals(o, e)}.
294 jsr166 1.1 *
295     * @param o element whose presence in this list is to be tested
296 jsr166 1.2 * @return {@code true} if this list contains the specified element
297 jsr166 1.1 */
298     public boolean contains(Object o) {
299     return indexOf(o) >= 0;
300     }
301    
302     /**
303     * Returns the index of the first occurrence of the specified element
304     * in this list, or -1 if this list does not contain the element.
305 jsr166 1.2 * More formally, returns the lowest index {@code i} such that
306     * {@code Objects.equals(o, get(i))},
307 jsr166 1.1 * or -1 if there is no such index.
308     */
309     public int indexOf(Object o) {
310     if (o == null) {
311     for (int i = 0; i < size; i++)
312     if (elementData[i]==null)
313     return i;
314     } else {
315     for (int i = 0; i < size; i++)
316     if (o.equals(elementData[i]))
317     return i;
318     }
319     return -1;
320     }
321    
322     /**
323     * Returns the index of the last occurrence of the specified element
324     * in this list, or -1 if this list does not contain the element.
325 jsr166 1.2 * More formally, returns the highest index {@code i} such that
326     * {@code Objects.equals(o, get(i))},
327 jsr166 1.1 * or -1 if there is no such index.
328     */
329     public int lastIndexOf(Object o) {
330     if (o == null) {
331     for (int i = size-1; i >= 0; i--)
332     if (elementData[i]==null)
333     return i;
334     } else {
335     for (int i = size-1; i >= 0; i--)
336     if (o.equals(elementData[i]))
337     return i;
338     }
339     return -1;
340     }
341    
342     /**
343 jsr166 1.2 * Returns a shallow copy of this {@code ArrayList} instance. (The
344 jsr166 1.1 * elements themselves are not copied.)
345     *
346 jsr166 1.2 * @return a clone of this {@code ArrayList} instance
347 jsr166 1.1 */
348     public Object clone() {
349     try {
350     ArrayList<?> v = (ArrayList<?>) super.clone();
351     v.elementData = Arrays.copyOf(elementData, size);
352     v.modCount = 0;
353     return v;
354     } catch (CloneNotSupportedException e) {
355     // this shouldn't happen, since we are Cloneable
356     throw new InternalError(e);
357     }
358     }
359    
360     /**
361     * Returns an array containing all of the elements in this list
362     * in proper sequence (from first to last element).
363     *
364     * <p>The returned array will be "safe" in that no references to it are
365     * maintained by this list. (In other words, this method must allocate
366     * a new array). The caller is thus free to modify the returned array.
367     *
368     * <p>This method acts as bridge between array-based and collection-based
369     * APIs.
370     *
371     * @return an array containing all of the elements in this list in
372     * proper sequence
373     */
374     public Object[] toArray() {
375     return Arrays.copyOf(elementData, size);
376     }
377    
378     /**
379     * Returns an array containing all of the elements in this list in proper
380     * sequence (from first to last element); the runtime type of the returned
381     * array is that of the specified array. If the list fits in the
382     * specified array, it is returned therein. Otherwise, a new array is
383     * allocated with the runtime type of the specified array and the size of
384     * this list.
385     *
386     * <p>If the list fits in the specified array with room to spare
387     * (i.e., the array has more elements than the list), the element in
388     * the array immediately following the end of the collection is set to
389 jsr166 1.2 * {@code null}. (This is useful in determining the length of the
390 jsr166 1.1 * list <i>only</i> if the caller knows that the list does not contain
391     * any null elements.)
392     *
393     * @param a the array into which the elements of the list are to
394     * be stored, if it is big enough; otherwise, a new array of the
395     * same runtime type is allocated for this purpose.
396     * @return an array containing the elements of the list
397     * @throws ArrayStoreException if the runtime type of the specified array
398     * is not a supertype of the runtime type of every element in
399     * this list
400     * @throws NullPointerException if the specified array is null
401     */
402     @SuppressWarnings("unchecked")
403     public <T> T[] toArray(T[] a) {
404     if (a.length < size)
405     // Make a new array of a's runtime type, but my contents:
406     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
407     System.arraycopy(elementData, 0, a, 0, size);
408     if (a.length > size)
409     a[size] = null;
410     return a;
411     }
412    
413     // Positional Access Operations
414    
415     @SuppressWarnings("unchecked")
416     E elementData(int index) {
417     return (E) elementData[index];
418     }
419    
420 jsr166 1.3 @SuppressWarnings("unchecked")
421     static <E> E elementAt(Object[] es, int index) {
422     return (E) es[index];
423     }
424    
425 jsr166 1.1 /**
426     * Returns the element at the specified position in this list.
427     *
428     * @param index index of the element to return
429     * @return the element at the specified position in this list
430     * @throws IndexOutOfBoundsException {@inheritDoc}
431     */
432     public E get(int index) {
433     rangeCheck(index);
434    
435     return elementData(index);
436     }
437    
438     /**
439     * Replaces the element at the specified position in this list with
440     * the specified element.
441     *
442     * @param index index of the element to replace
443     * @param element element to be stored at the specified position
444     * @return the element previously at the specified position
445     * @throws IndexOutOfBoundsException {@inheritDoc}
446     */
447     public E set(int index, E element) {
448     rangeCheck(index);
449    
450     E oldValue = elementData(index);
451     elementData[index] = element;
452     return oldValue;
453     }
454    
455     /**
456     * Appends the specified element to the end of this list.
457     *
458     * @param e element to be appended to this list
459 jsr166 1.2 * @return {@code true} (as specified by {@link Collection#add})
460 jsr166 1.1 */
461     public boolean add(E e) {
462     ensureCapacityInternal(size + 1); // Increments modCount!!
463     elementData[size++] = e;
464     return true;
465     }
466    
467     /**
468     * Inserts the specified element at the specified position in this
469     * list. Shifts the element currently at that position (if any) and
470     * any subsequent elements to the right (adds one to their indices).
471     *
472     * @param index index at which the specified element is to be inserted
473     * @param element element to be inserted
474     * @throws IndexOutOfBoundsException {@inheritDoc}
475     */
476     public void add(int index, E element) {
477     rangeCheckForAdd(index);
478    
479     ensureCapacityInternal(size + 1); // Increments modCount!!
480     System.arraycopy(elementData, index, elementData, index + 1,
481     size - index);
482     elementData[index] = element;
483     size++;
484     }
485    
486     /**
487     * Removes the element at the specified position in this list.
488     * Shifts any subsequent elements to the left (subtracts one from their
489     * indices).
490     *
491     * @param index the index of the element to be removed
492     * @return the element that was removed from the list
493     * @throws IndexOutOfBoundsException {@inheritDoc}
494     */
495     public E remove(int index) {
496     rangeCheck(index);
497    
498     modCount++;
499     E oldValue = elementData(index);
500    
501     int numMoved = size - index - 1;
502     if (numMoved > 0)
503     System.arraycopy(elementData, index+1, elementData, index,
504     numMoved);
505     elementData[--size] = null; // clear to let GC do its work
506    
507     return oldValue;
508     }
509    
510     /**
511     * Removes the first occurrence of the specified element from this list,
512     * if it is present. If the list does not contain the element, it is
513     * unchanged. More formally, removes the element with the lowest index
514 jsr166 1.2 * {@code i} such that
515     * {@code Objects.equals(o, get(i))}
516     * (if such an element exists). Returns {@code true} if this list
517 jsr166 1.1 * contained the specified element (or equivalently, if this list
518     * changed as a result of the call).
519     *
520     * @param o element to be removed from this list, if present
521 jsr166 1.2 * @return {@code true} if this list contained the specified element
522 jsr166 1.1 */
523     public boolean remove(Object o) {
524     if (o == null) {
525     for (int index = 0; index < size; index++)
526     if (elementData[index] == null) {
527     fastRemove(index);
528     return true;
529     }
530     } else {
531     for (int index = 0; index < size; index++)
532     if (o.equals(elementData[index])) {
533     fastRemove(index);
534     return true;
535     }
536     }
537     return false;
538     }
539    
540     /*
541     * Private remove method that skips bounds checking and does not
542     * return the value removed.
543     */
544     private void fastRemove(int index) {
545     modCount++;
546     int numMoved = size - index - 1;
547     if (numMoved > 0)
548     System.arraycopy(elementData, index+1, elementData, index,
549     numMoved);
550     elementData[--size] = null; // clear to let GC do its work
551     }
552    
553     /**
554     * Removes all of the elements from this list. The list will
555     * be empty after this call returns.
556     */
557     public void clear() {
558     modCount++;
559    
560     // clear to let GC do its work
561     for (int i = 0; i < size; i++)
562     elementData[i] = null;
563    
564     size = 0;
565     }
566    
567     /**
568     * Appends all of the elements in the specified collection to the end of
569     * this list, in the order that they are returned by the
570     * specified collection's Iterator. The behavior of this operation is
571     * undefined if the specified collection is modified while the operation
572     * is in progress. (This implies that the behavior of this call is
573     * undefined if the specified collection is this list, and this
574     * list is nonempty.)
575     *
576     * @param c collection containing elements to be added to this list
577 jsr166 1.2 * @return {@code true} if this list changed as a result of the call
578 jsr166 1.1 * @throws NullPointerException if the specified collection is null
579     */
580     public boolean addAll(Collection<? extends E> c) {
581     Object[] a = c.toArray();
582     int numNew = a.length;
583     ensureCapacityInternal(size + numNew); // Increments modCount
584     System.arraycopy(a, 0, elementData, size, numNew);
585     size += numNew;
586     return numNew != 0;
587     }
588    
589     /**
590     * Inserts all of the elements in the specified collection into this
591     * list, starting at the specified position. Shifts the element
592     * currently at that position (if any) and any subsequent elements to
593     * the right (increases their indices). The new elements will appear
594     * in the list in the order that they are returned by the
595     * specified collection's iterator.
596     *
597     * @param index index at which to insert the first element from the
598     * specified collection
599     * @param c collection containing elements to be added to this list
600 jsr166 1.2 * @return {@code true} if this list changed as a result of the call
601 jsr166 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
602     * @throws NullPointerException if the specified collection is null
603     */
604     public boolean addAll(int index, Collection<? extends E> c) {
605     rangeCheckForAdd(index);
606    
607     Object[] a = c.toArray();
608     int numNew = a.length;
609     ensureCapacityInternal(size + numNew); // Increments modCount
610    
611     int numMoved = size - index;
612     if (numMoved > 0)
613     System.arraycopy(elementData, index, elementData, index + numNew,
614     numMoved);
615    
616     System.arraycopy(a, 0, elementData, index, numNew);
617     size += numNew;
618     return numNew != 0;
619     }
620    
621     /**
622     * Removes from this list all of the elements whose index is between
623     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
624     * Shifts any succeeding elements to the left (reduces their index).
625     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
626     * (If {@code toIndex==fromIndex}, this operation has no effect.)
627     *
628     * @throws IndexOutOfBoundsException if {@code fromIndex} or
629     * {@code toIndex} is out of range
630     * ({@code fromIndex < 0 ||
631     * fromIndex >= size() ||
632     * toIndex > size() ||
633     * toIndex < fromIndex})
634     */
635     protected void removeRange(int fromIndex, int toIndex) {
636     modCount++;
637     int numMoved = size - toIndex;
638     System.arraycopy(elementData, toIndex, elementData, fromIndex,
639     numMoved);
640    
641     // clear to let GC do its work
642     int newSize = size - (toIndex-fromIndex);
643     for (int i = newSize; i < size; i++) {
644     elementData[i] = null;
645     }
646     size = newSize;
647     }
648    
649     /**
650     * Checks if the given index is in range. If not, throws an appropriate
651     * runtime exception. This method does *not* check if the index is
652     * negative: It is always used immediately prior to an array access,
653     * which throws an ArrayIndexOutOfBoundsException if index is negative.
654     */
655     private void rangeCheck(int index) {
656     if (index >= size)
657     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
658     }
659    
660     /**
661     * A version of rangeCheck used by add and addAll.
662     */
663     private void rangeCheckForAdd(int index) {
664     if (index > size || index < 0)
665     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
666     }
667    
668     /**
669     * Constructs an IndexOutOfBoundsException detail message.
670     * Of the many possible refactorings of the error handling code,
671     * this "outlining" performs best with both server and client VMs.
672     */
673     private String outOfBoundsMsg(int index) {
674     return "Index: "+index+", Size: "+size;
675     }
676    
677     /**
678     * Removes from this list all of its elements that are contained in the
679     * specified collection.
680     *
681     * @param c collection containing elements to be removed from this list
682     * @return {@code true} if this list changed as a result of the call
683     * @throws ClassCastException if the class of an element of this list
684     * is incompatible with the specified collection
685     * (<a href="Collection.html#optional-restrictions">optional</a>)
686     * @throws NullPointerException if this list contains a null element and the
687     * specified collection does not permit null elements
688     * (<a href="Collection.html#optional-restrictions">optional</a>),
689     * or if the specified collection is null
690     * @see Collection#contains(Object)
691     */
692     public boolean removeAll(Collection<?> c) {
693     Objects.requireNonNull(c);
694     return batchRemove(c, false);
695     }
696    
697     /**
698     * Retains only the elements in this list that are contained in the
699     * specified collection. In other words, removes from this list all
700     * of its elements that are not contained in the specified collection.
701     *
702     * @param c collection containing elements to be retained in this list
703     * @return {@code true} if this list changed as a result of the call
704     * @throws ClassCastException if the class of an element of this list
705     * is incompatible with the specified collection
706     * (<a href="Collection.html#optional-restrictions">optional</a>)
707     * @throws NullPointerException if this list contains a null element and the
708     * specified collection does not permit null elements
709     * (<a href="Collection.html#optional-restrictions">optional</a>),
710     * or if the specified collection is null
711     * @see Collection#contains(Object)
712     */
713     public boolean retainAll(Collection<?> c) {
714     Objects.requireNonNull(c);
715     return batchRemove(c, true);
716     }
717    
718     private boolean batchRemove(Collection<?> c, boolean complement) {
719     final Object[] elementData = this.elementData;
720     int r = 0, w = 0;
721     boolean modified = false;
722     try {
723     for (; r < size; r++)
724     if (c.contains(elementData[r]) == complement)
725     elementData[w++] = elementData[r];
726     } finally {
727     // Preserve behavioral compatibility with AbstractCollection,
728     // even if c.contains() throws.
729     if (r != size) {
730     System.arraycopy(elementData, r,
731     elementData, w,
732     size - r);
733     w += size - r;
734     }
735     if (w != size) {
736     // clear to let GC do its work
737     for (int i = w; i < size; i++)
738     elementData[i] = null;
739     modCount += size - w;
740     size = w;
741     modified = true;
742     }
743     }
744     return modified;
745     }
746    
747     /**
748 jsr166 1.2 * Save the state of the {@code ArrayList} instance to a stream (that
749 jsr166 1.1 * is, serialize it).
750     *
751 jsr166 1.2 * @serialData The length of the array backing the {@code ArrayList}
752 jsr166 1.1 * instance is emitted (int), followed by all of its elements
753 jsr166 1.2 * (each an {@code Object}) in the proper order.
754 jsr166 1.1 */
755     private void writeObject(java.io.ObjectOutputStream s)
756     throws java.io.IOException{
757     // Write out element count, and any hidden stuff
758     int expectedModCount = modCount;
759     s.defaultWriteObject();
760    
761     // Write out size as capacity for behavioural compatibility with clone()
762     s.writeInt(size);
763    
764     // Write out all elements in the proper order.
765     for (int i=0; i<size; i++) {
766     s.writeObject(elementData[i]);
767     }
768    
769     if (modCount != expectedModCount) {
770     throw new ConcurrentModificationException();
771     }
772     }
773    
774     /**
775 jsr166 1.2 * Reconstitute the {@code ArrayList} instance from a stream (that is,
776 jsr166 1.1 * deserialize it).
777     */
778     private void readObject(java.io.ObjectInputStream s)
779     throws java.io.IOException, ClassNotFoundException {
780     elementData = EMPTY_ELEMENTDATA;
781    
782     // Read in size, and any hidden stuff
783     s.defaultReadObject();
784    
785     // Read in capacity
786     s.readInt(); // ignored
787    
788     if (size > 0) {
789     // be like clone(), allocate array based upon size not capacity
790     ensureCapacityInternal(size);
791    
792     Object[] a = elementData;
793     // Read in all elements in the proper order.
794     for (int i=0; i<size; i++) {
795     a[i] = s.readObject();
796     }
797     }
798     }
799    
800     /**
801     * Returns a list iterator over the elements in this list (in proper
802     * sequence), starting at the specified position in the list.
803     * The specified index indicates the first element that would be
804     * returned by an initial call to {@link ListIterator#next next}.
805     * An initial call to {@link ListIterator#previous previous} would
806     * return the element with the specified index minus one.
807     *
808     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
809     *
810     * @throws IndexOutOfBoundsException {@inheritDoc}
811     */
812     public ListIterator<E> listIterator(int index) {
813     if (index < 0 || index > size)
814     throw new IndexOutOfBoundsException("Index: "+index);
815     return new ListItr(index);
816     }
817    
818     /**
819     * Returns a list iterator over the elements in this list (in proper
820     * sequence).
821     *
822     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
823     *
824     * @see #listIterator(int)
825     */
826     public ListIterator<E> listIterator() {
827     return new ListItr(0);
828     }
829    
830     /**
831     * Returns an iterator over the elements in this list in proper sequence.
832     *
833     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
834     *
835     * @return an iterator over the elements in this list in proper sequence
836     */
837     public Iterator<E> iterator() {
838     return new Itr();
839     }
840    
841     /**
842     * An optimized version of AbstractList.Itr
843     */
844     private class Itr implements Iterator<E> {
845     int cursor; // index of next element to return
846     int lastRet = -1; // index of last element returned; -1 if no such
847     int expectedModCount = modCount;
848    
849     Itr() {}
850    
851     public boolean hasNext() {
852     return cursor != size;
853     }
854    
855     @SuppressWarnings("unchecked")
856     public E next() {
857     checkForComodification();
858     int i = cursor;
859     if (i >= size)
860     throw new NoSuchElementException();
861     Object[] elementData = ArrayList.this.elementData;
862     if (i >= elementData.length)
863     throw new ConcurrentModificationException();
864     cursor = i + 1;
865     return (E) elementData[lastRet = i];
866     }
867    
868     public void remove() {
869     if (lastRet < 0)
870     throw new IllegalStateException();
871     checkForComodification();
872    
873     try {
874     ArrayList.this.remove(lastRet);
875     cursor = lastRet;
876     lastRet = -1;
877     expectedModCount = modCount;
878     } catch (IndexOutOfBoundsException ex) {
879     throw new ConcurrentModificationException();
880     }
881     }
882    
883     @Override
884     @SuppressWarnings("unchecked")
885     public void forEachRemaining(Consumer<? super E> consumer) {
886     Objects.requireNonNull(consumer);
887     final int size = ArrayList.this.size;
888     int i = cursor;
889     if (i >= size) {
890     return;
891     }
892     final Object[] elementData = ArrayList.this.elementData;
893     if (i >= elementData.length) {
894     throw new ConcurrentModificationException();
895     }
896     while (i != size && modCount == expectedModCount) {
897     consumer.accept((E) elementData[i++]);
898     }
899     // update once at end of iteration to reduce heap write traffic
900     cursor = i;
901     lastRet = i - 1;
902     checkForComodification();
903     }
904    
905     final void checkForComodification() {
906     if (modCount != expectedModCount)
907     throw new ConcurrentModificationException();
908     }
909     }
910    
911     /**
912     * An optimized version of AbstractList.ListItr
913     */
914     private class ListItr extends Itr implements ListIterator<E> {
915     ListItr(int index) {
916     super();
917     cursor = index;
918     }
919    
920     public boolean hasPrevious() {
921     return cursor != 0;
922     }
923    
924     public int nextIndex() {
925     return cursor;
926     }
927    
928     public int previousIndex() {
929     return cursor - 1;
930     }
931    
932     @SuppressWarnings("unchecked")
933     public E previous() {
934     checkForComodification();
935     int i = cursor - 1;
936     if (i < 0)
937     throw new NoSuchElementException();
938     Object[] elementData = ArrayList.this.elementData;
939     if (i >= elementData.length)
940     throw new ConcurrentModificationException();
941     cursor = i;
942     return (E) elementData[lastRet = i];
943     }
944    
945     public void set(E e) {
946     if (lastRet < 0)
947     throw new IllegalStateException();
948     checkForComodification();
949    
950     try {
951     ArrayList.this.set(lastRet, e);
952     } catch (IndexOutOfBoundsException ex) {
953     throw new ConcurrentModificationException();
954     }
955     }
956    
957     public void add(E e) {
958     checkForComodification();
959    
960     try {
961     int i = cursor;
962     ArrayList.this.add(i, e);
963     cursor = i + 1;
964     lastRet = -1;
965     expectedModCount = modCount;
966     } catch (IndexOutOfBoundsException ex) {
967     throw new ConcurrentModificationException();
968     }
969     }
970     }
971    
972     /**
973     * Returns a view of the portion of this list between the specified
974     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
975     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
976     * empty.) The returned list is backed by this list, so non-structural
977     * changes in the returned list are reflected in this list, and vice-versa.
978     * The returned list supports all of the optional list operations.
979     *
980     * <p>This method eliminates the need for explicit range operations (of
981     * the sort that commonly exist for arrays). Any operation that expects
982     * a list can be used as a range operation by passing a subList view
983     * instead of a whole list. For example, the following idiom
984     * removes a range of elements from a list:
985     * <pre>
986     * list.subList(from, to).clear();
987     * </pre>
988     * Similar idioms may be constructed for {@link #indexOf(Object)} and
989     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
990     * {@link Collections} class can be applied to a subList.
991     *
992     * <p>The semantics of the list returned by this method become undefined if
993     * the backing list (i.e., this list) is <i>structurally modified</i> in
994     * any way other than via the returned list. (Structural modifications are
995     * those that change the size of this list, or otherwise perturb it in such
996     * a fashion that iterations in progress may yield incorrect results.)
997     *
998     * @throws IndexOutOfBoundsException {@inheritDoc}
999     * @throws IllegalArgumentException {@inheritDoc}
1000     */
1001     public List<E> subList(int fromIndex, int toIndex) {
1002     subListRangeCheck(fromIndex, toIndex, size);
1003     return new SubList(this, 0, fromIndex, toIndex);
1004     }
1005    
1006     static void subListRangeCheck(int fromIndex, int toIndex, int size) {
1007     if (fromIndex < 0)
1008     throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1009     if (toIndex > size)
1010     throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1011     if (fromIndex > toIndex)
1012     throw new IllegalArgumentException("fromIndex(" + fromIndex +
1013     ") > toIndex(" + toIndex + ")");
1014     }
1015    
1016     private class SubList extends AbstractList<E> implements RandomAccess {
1017     private final AbstractList<E> parent;
1018     private final int parentOffset;
1019     private final int offset;
1020     int size;
1021    
1022     SubList(AbstractList<E> parent,
1023     int offset, int fromIndex, int toIndex) {
1024     this.parent = parent;
1025     this.parentOffset = fromIndex;
1026     this.offset = offset + fromIndex;
1027     this.size = toIndex - fromIndex;
1028     this.modCount = ArrayList.this.modCount;
1029     }
1030    
1031     public E set(int index, E e) {
1032     rangeCheck(index);
1033     checkForComodification();
1034     E oldValue = ArrayList.this.elementData(offset + index);
1035     ArrayList.this.elementData[offset + index] = e;
1036     return oldValue;
1037     }
1038    
1039     public E get(int index) {
1040     rangeCheck(index);
1041     checkForComodification();
1042     return ArrayList.this.elementData(offset + index);
1043     }
1044    
1045     public int size() {
1046     checkForComodification();
1047     return this.size;
1048     }
1049    
1050     public void add(int index, E e) {
1051     rangeCheckForAdd(index);
1052     checkForComodification();
1053     parent.add(parentOffset + index, e);
1054     this.modCount = parent.modCount;
1055     this.size++;
1056     }
1057    
1058     public E remove(int index) {
1059     rangeCheck(index);
1060     checkForComodification();
1061     E result = parent.remove(parentOffset + index);
1062     this.modCount = parent.modCount;
1063     this.size--;
1064     return result;
1065     }
1066    
1067     protected void removeRange(int fromIndex, int toIndex) {
1068     checkForComodification();
1069     parent.removeRange(parentOffset + fromIndex,
1070     parentOffset + toIndex);
1071     this.modCount = parent.modCount;
1072     this.size -= toIndex - fromIndex;
1073     }
1074    
1075     public boolean addAll(Collection<? extends E> c) {
1076     return addAll(this.size, c);
1077     }
1078    
1079     public boolean addAll(int index, Collection<? extends E> c) {
1080     rangeCheckForAdd(index);
1081     int cSize = c.size();
1082     if (cSize==0)
1083     return false;
1084    
1085     checkForComodification();
1086     parent.addAll(parentOffset + index, c);
1087     this.modCount = parent.modCount;
1088     this.size += cSize;
1089     return true;
1090     }
1091    
1092     public Iterator<E> iterator() {
1093     return listIterator();
1094     }
1095    
1096     public ListIterator<E> listIterator(final int index) {
1097     checkForComodification();
1098     rangeCheckForAdd(index);
1099     final int offset = this.offset;
1100    
1101     return new ListIterator<E>() {
1102     int cursor = index;
1103     int lastRet = -1;
1104     int expectedModCount = ArrayList.this.modCount;
1105    
1106     public boolean hasNext() {
1107     return cursor != SubList.this.size;
1108     }
1109    
1110     @SuppressWarnings("unchecked")
1111     public E next() {
1112     checkForComodification();
1113     int i = cursor;
1114     if (i >= SubList.this.size)
1115     throw new NoSuchElementException();
1116     Object[] elementData = ArrayList.this.elementData;
1117     if (offset + i >= elementData.length)
1118     throw new ConcurrentModificationException();
1119     cursor = i + 1;
1120     return (E) elementData[offset + (lastRet = i)];
1121     }
1122    
1123     public boolean hasPrevious() {
1124     return cursor != 0;
1125     }
1126    
1127     @SuppressWarnings("unchecked")
1128     public E previous() {
1129     checkForComodification();
1130     int i = cursor - 1;
1131     if (i < 0)
1132     throw new NoSuchElementException();
1133     Object[] elementData = ArrayList.this.elementData;
1134     if (offset + i >= elementData.length)
1135     throw new ConcurrentModificationException();
1136     cursor = i;
1137     return (E) elementData[offset + (lastRet = i)];
1138     }
1139    
1140     @SuppressWarnings("unchecked")
1141     public void forEachRemaining(Consumer<? super E> consumer) {
1142     Objects.requireNonNull(consumer);
1143     final int size = SubList.this.size;
1144     int i = cursor;
1145     if (i >= size) {
1146     return;
1147     }
1148     final Object[] elementData = ArrayList.this.elementData;
1149     if (offset + i >= elementData.length) {
1150     throw new ConcurrentModificationException();
1151     }
1152     while (i != size && modCount == expectedModCount) {
1153     consumer.accept((E) elementData[offset + (i++)]);
1154     }
1155     // update once at end of iteration to reduce heap write traffic
1156     cursor = i;
1157     lastRet = i - 1;
1158     checkForComodification();
1159     }
1160    
1161     public int nextIndex() {
1162     return cursor;
1163     }
1164    
1165     public int previousIndex() {
1166     return cursor - 1;
1167     }
1168    
1169     public void remove() {
1170     if (lastRet < 0)
1171     throw new IllegalStateException();
1172     checkForComodification();
1173    
1174     try {
1175     SubList.this.remove(lastRet);
1176     cursor = lastRet;
1177     lastRet = -1;
1178     expectedModCount = ArrayList.this.modCount;
1179     } catch (IndexOutOfBoundsException ex) {
1180     throw new ConcurrentModificationException();
1181     }
1182     }
1183    
1184     public void set(E e) {
1185     if (lastRet < 0)
1186     throw new IllegalStateException();
1187     checkForComodification();
1188    
1189     try {
1190     ArrayList.this.set(offset + lastRet, e);
1191     } catch (IndexOutOfBoundsException ex) {
1192     throw new ConcurrentModificationException();
1193     }
1194     }
1195    
1196     public void add(E e) {
1197     checkForComodification();
1198    
1199     try {
1200     int i = cursor;
1201     SubList.this.add(i, e);
1202     cursor = i + 1;
1203     lastRet = -1;
1204     expectedModCount = ArrayList.this.modCount;
1205     } catch (IndexOutOfBoundsException ex) {
1206     throw new ConcurrentModificationException();
1207     }
1208     }
1209    
1210     final void checkForComodification() {
1211     if (expectedModCount != ArrayList.this.modCount)
1212     throw new ConcurrentModificationException();
1213     }
1214     };
1215     }
1216    
1217     public List<E> subList(int fromIndex, int toIndex) {
1218     subListRangeCheck(fromIndex, toIndex, size);
1219     return new SubList(this, offset, fromIndex, toIndex);
1220     }
1221    
1222     private void rangeCheck(int index) {
1223     if (index < 0 || index >= this.size)
1224     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1225     }
1226    
1227     private void rangeCheckForAdd(int index) {
1228     if (index < 0 || index > this.size)
1229     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1230     }
1231    
1232     private String outOfBoundsMsg(int index) {
1233     return "Index: "+index+", Size: "+this.size;
1234     }
1235    
1236     private void checkForComodification() {
1237     if (ArrayList.this.modCount != this.modCount)
1238     throw new ConcurrentModificationException();
1239     }
1240    
1241     public Spliterator<E> spliterator() {
1242     checkForComodification();
1243     return new ArrayListSpliterator<E>(ArrayList.this, offset,
1244     offset + this.size, this.modCount);
1245     }
1246     }
1247    
1248     @Override
1249     public void forEach(Consumer<? super E> action) {
1250     Objects.requireNonNull(action);
1251     final int expectedModCount = modCount;
1252     @SuppressWarnings("unchecked")
1253     final E[] elementData = (E[]) this.elementData;
1254     final int size = this.size;
1255     for (int i=0; modCount == expectedModCount && i < size; i++) {
1256     action.accept(elementData[i]);
1257     }
1258     if (modCount != expectedModCount) {
1259     throw new ConcurrentModificationException();
1260     }
1261     }
1262    
1263     /**
1264     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1265     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1266     * list.
1267     *
1268     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1269     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1270     * Overriding implementations should document the reporting of additional
1271     * characteristic values.
1272     *
1273     * @return a {@code Spliterator} over the elements in this list
1274     * @since 1.8
1275     */
1276     @Override
1277     public Spliterator<E> spliterator() {
1278     return new ArrayListSpliterator<>(this, 0, -1, 0);
1279     }
1280    
1281     /** Index-based split-by-two, lazily initialized Spliterator */
1282     static final class ArrayListSpliterator<E> implements Spliterator<E> {
1283    
1284     /*
1285     * If ArrayLists were immutable, or structurally immutable (no
1286     * adds, removes, etc), we could implement their spliterators
1287     * with Arrays.spliterator. Instead we detect as much
1288     * interference during traversal as practical without
1289     * sacrificing much performance. We rely primarily on
1290     * modCounts. These are not guaranteed to detect concurrency
1291     * violations, and are sometimes overly conservative about
1292     * within-thread interference, but detect enough problems to
1293     * be worthwhile in practice. To carry this out, we (1) lazily
1294     * initialize fence and expectedModCount until the latest
1295     * point that we need to commit to the state we are checking
1296     * against; thus improving precision. (This doesn't apply to
1297     * SubLists, that create spliterators with current non-lazy
1298     * values). (2) We perform only a single
1299     * ConcurrentModificationException check at the end of forEach
1300     * (the most performance-sensitive method). When using forEach
1301     * (as opposed to iterators), we can normally only detect
1302     * interference after actions, not before. Further
1303     * CME-triggering checks apply to all other possible
1304     * violations of assumptions for example null or too-small
1305     * elementData array given its size(), that could only have
1306     * occurred due to interference. This allows the inner loop
1307     * of forEach to run without any further checks, and
1308     * simplifies lambda-resolution. While this does entail a
1309     * number of checks, note that in the common case of
1310     * list.stream().forEach(a), no checks or other computation
1311     * occur anywhere other than inside forEach itself. The other
1312     * less-often-used methods cannot take advantage of most of
1313     * these streamlinings.
1314     */
1315    
1316     private final ArrayList<E> list;
1317     private int index; // current index, modified on advance/split
1318     private int fence; // -1 until used; then one past last index
1319     private int expectedModCount; // initialized when fence set
1320    
1321     /** Create new spliterator covering the given range */
1322     ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1323     int expectedModCount) {
1324     this.list = list; // OK if null unless traversed
1325     this.index = origin;
1326     this.fence = fence;
1327     this.expectedModCount = expectedModCount;
1328     }
1329    
1330     private int getFence() { // initialize fence to size on first use
1331     int hi; // (a specialized variant appears in method forEach)
1332     ArrayList<E> lst;
1333     if ((hi = fence) < 0) {
1334     if ((lst = list) == null)
1335     hi = fence = 0;
1336     else {
1337     expectedModCount = lst.modCount;
1338     hi = fence = lst.size;
1339     }
1340     }
1341     return hi;
1342     }
1343    
1344     public ArrayListSpliterator<E> trySplit() {
1345     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1346     return (lo >= mid) ? null : // divide range in half unless too small
1347     new ArrayListSpliterator<E>(list, lo, index = mid,
1348     expectedModCount);
1349     }
1350    
1351     public boolean tryAdvance(Consumer<? super E> action) {
1352     if (action == null)
1353     throw new NullPointerException();
1354     int hi = getFence(), i = index;
1355     if (i < hi) {
1356     index = i + 1;
1357     @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1358     action.accept(e);
1359     if (list.modCount != expectedModCount)
1360     throw new ConcurrentModificationException();
1361     return true;
1362     }
1363     return false;
1364     }
1365    
1366     public void forEachRemaining(Consumer<? super E> action) {
1367     int i, hi, mc; // hoist accesses and checks from loop
1368     ArrayList<E> lst; Object[] a;
1369     if (action == null)
1370     throw new NullPointerException();
1371     if ((lst = list) != null && (a = lst.elementData) != null) {
1372     if ((hi = fence) < 0) {
1373     mc = lst.modCount;
1374     hi = lst.size;
1375     }
1376     else
1377     mc = expectedModCount;
1378     if ((i = index) >= 0 && (index = hi) <= a.length) {
1379     for (; i < hi; ++i) {
1380     @SuppressWarnings("unchecked") E e = (E) a[i];
1381     action.accept(e);
1382     }
1383     if (lst.modCount == mc)
1384     return;
1385     }
1386     }
1387     throw new ConcurrentModificationException();
1388     }
1389    
1390     public long estimateSize() {
1391     return (long) (getFence() - index);
1392     }
1393    
1394     public int characteristics() {
1395     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1396     }
1397     }
1398    
1399     @Override
1400     public boolean removeIf(Predicate<? super E> filter) {
1401     Objects.requireNonNull(filter);
1402     // figure out which elements are to be removed
1403     // any exception thrown from the filter predicate at this stage
1404     // will leave the collection unmodified
1405     int removeCount = 0;
1406     final BitSet removeSet = new BitSet(size);
1407     final int expectedModCount = modCount;
1408     final int size = this.size;
1409     for (int i=0; modCount == expectedModCount && i < size; i++) {
1410     @SuppressWarnings("unchecked")
1411     final E element = (E) elementData[i];
1412     if (filter.test(element)) {
1413     removeSet.set(i);
1414     removeCount++;
1415     }
1416     }
1417     if (modCount != expectedModCount) {
1418     throw new ConcurrentModificationException();
1419     }
1420    
1421     // shift surviving elements left over the spaces left by removed elements
1422     final boolean anyToRemove = removeCount > 0;
1423     if (anyToRemove) {
1424     final int newSize = size - removeCount;
1425     for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
1426     i = removeSet.nextClearBit(i);
1427     elementData[j] = elementData[i];
1428     }
1429     for (int k=newSize; k < size; k++) {
1430     elementData[k] = null; // Let gc do its work
1431     }
1432     this.size = newSize;
1433     if (modCount != expectedModCount) {
1434     throw new ConcurrentModificationException();
1435     }
1436     modCount++;
1437     }
1438    
1439     return anyToRemove;
1440     }
1441    
1442     @Override
1443     public void replaceAll(UnaryOperator<E> operator) {
1444 jsr166 1.3 replaceAllRange(operator, 0, size);
1445     }
1446    
1447     private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1448 jsr166 1.1 Objects.requireNonNull(operator);
1449     final int expectedModCount = modCount;
1450 jsr166 1.3 final Object[] es = elementData;
1451     for (; modCount == expectedModCount && i < end; i++)
1452     es[i] = operator.apply(elementAt(es, i));
1453     if (modCount != expectedModCount)
1454 jsr166 1.1 throw new ConcurrentModificationException();
1455 jsr166 1.3 // checkInvariants();
1456 jsr166 1.1 }
1457    
1458     @Override
1459     @SuppressWarnings("unchecked")
1460     public void sort(Comparator<? super E> c) {
1461     final int expectedModCount = modCount;
1462     Arrays.sort((E[]) elementData, 0, size, c);
1463     if (modCount != expectedModCount) {
1464     throw new ConcurrentModificationException();
1465     }
1466     modCount++;
1467     }
1468     }