ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ForkJoinPool.java
Revision: 1.4
Committed: Tue Jun 28 14:52:19 2016 UTC (7 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.3: +1 -1 lines
Log Message:
s/nonnull/non-null/

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.lang.Thread.UncaughtExceptionHandler;
10     import java.security.AccessControlContext;
11     import java.security.Permissions;
12     import java.security.ProtectionDomain;
13     import java.util.ArrayList;
14     import java.util.Arrays;
15     import java.util.Collection;
16     import java.util.Collections;
17     import java.util.List;
18     import java.util.function.Predicate;
19     import java.util.concurrent.TimeUnit;
20     import java.util.concurrent.CountedCompleter;
21     import java.util.concurrent.ForkJoinTask;
22     import java.util.concurrent.ForkJoinWorkerThread;
23     import java.util.concurrent.locks.LockSupport;
24    
25     /**
26     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27     * A {@code ForkJoinPool} provides the entry point for submissions
28     * from non-{@code ForkJoinTask} clients, as well as management and
29     * monitoring operations.
30     *
31     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32     * ExecutorService} mainly by virtue of employing
33     * <em>work-stealing</em>: all threads in the pool attempt to find and
34     * execute tasks submitted to the pool and/or created by other active
35     * tasks (eventually blocking waiting for work if none exist). This
36     * enables efficient processing when most tasks spawn other subtasks
37     * (as do most {@code ForkJoinTask}s), as well as when many small
38     * tasks are submitted to the pool from external clients. Especially
39     * when setting <em>asyncMode</em> to true in constructors, {@code
40     * ForkJoinPool}s may also be appropriate for use with event-style
41     * tasks that are never joined.
42     *
43     * <p>A static {@link #commonPool()} is available and appropriate for
44     * most applications. The common pool is used by any ForkJoinTask that
45     * is not explicitly submitted to a specified pool. Using the common
46     * pool normally reduces resource usage (its threads are slowly
47     * reclaimed during periods of non-use, and reinstated upon subsequent
48     * use).
49     *
50     * <p>For applications that require separate or custom pools, a {@code
51     * ForkJoinPool} may be constructed with a given target parallelism
52     * level; by default, equal to the number of available processors.
53     * The pool attempts to maintain enough active (or available) threads
54     * by dynamically adding, suspending, or resuming internal worker
55     * threads, even if some tasks are stalled waiting to join others.
56     * However, no such adjustments are guaranteed in the face of blocked
57     * I/O or other unmanaged synchronization. The nested {@link
58     * ManagedBlocker} interface enables extension of the kinds of
59     * synchronization accommodated. The default policies may be
60     * overridden using a constructor with parameters corresponding to
61     * those documented in class {@link ThreadPoolExecutor}.
62     *
63     * <p>In addition to execution and lifecycle control methods, this
64     * class provides status check methods (for example
65     * {@link #getStealCount}) that are intended to aid in developing,
66     * tuning, and monitoring fork/join applications. Also, method
67     * {@link #toString} returns indications of pool state in a
68     * convenient form for informal monitoring.
69     *
70     * <p>As is the case with other ExecutorServices, there are three
71     * main task execution methods summarized in the following table.
72     * These are designed to be used primarily by clients not already
73     * engaged in fork/join computations in the current pool. The main
74     * forms of these methods accept instances of {@code ForkJoinTask},
75     * but overloaded forms also allow mixed execution of plain {@code
76     * Runnable}- or {@code Callable}- based activities as well. However,
77     * tasks that are already executing in a pool should normally instead
78     * use the within-computation forms listed in the table unless using
79     * async event-style tasks that are not usually joined, in which case
80     * there is little difference among choice of methods.
81     *
82     * <table BORDER CELLPADDING=3 CELLSPACING=1>
83     * <caption>Summary of task execution methods</caption>
84     * <tr>
85     * <td></td>
86     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88     * </tr>
89     * <tr>
90     * <td> <b>Arrange async execution</b></td>
91     * <td> {@link #execute(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork}</td>
93     * </tr>
94     * <tr>
95     * <td> <b>Await and obtain result</b></td>
96     * <td> {@link #invoke(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#invoke}</td>
98     * </tr>
99     * <tr>
100     * <td> <b>Arrange exec and obtain Future</b></td>
101     * <td> {@link #submit(ForkJoinTask)}</td>
102     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103     * </tr>
104     * </table>
105     *
106     * <p>The common pool is by default constructed with default
107     * parameters, but these may be controlled by setting three
108     * {@linkplain System#getProperty system properties}:
109     * <ul>
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111     * - the parallelism level, a non-negative integer
112     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113     * - the class name of a {@link ForkJoinWorkerThreadFactory}
114     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115     * - the class name of a {@link UncaughtExceptionHandler}
116     * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
117     * - the maximum number of allowed extra threads to maintain target
118     * parallelism (default 256).
119     * </ul>
120     * If a {@link SecurityManager} is present and no factory is
121     * specified, then the default pool uses a factory supplying
122     * threads that have no {@link Permissions} enabled.
123     * The system class loader is used to load these classes.
124     * Upon any error in establishing these settings, default parameters
125     * are used. It is possible to disable or limit the use of threads in
126     * the common pool by setting the parallelism property to zero, and/or
127     * using a factory that may return {@code null}. However doing so may
128     * cause unjoined tasks to never be executed.
129     *
130     * <p><b>Implementation notes</b>: This implementation restricts the
131     * maximum number of running threads to 32767. Attempts to create
132     * pools with greater than the maximum number result in
133     * {@code IllegalArgumentException}.
134     *
135     * <p>This implementation rejects submitted tasks (that is, by throwing
136     * {@link RejectedExecutionException}) only when the pool is shut down
137     * or internal resources have been exhausted.
138     *
139     * @since 1.7
140     * @author Doug Lea
141     */
142     public class ForkJoinPool extends AbstractExecutorService {
143    
144     /*
145     * Implementation Overview
146     *
147     * This class and its nested classes provide the main
148     * functionality and control for a set of worker threads:
149     * Submissions from non-FJ threads enter into submission queues.
150     * Workers take these tasks and typically split them into subtasks
151     * that may be stolen by other workers. Preference rules give
152     * first priority to processing tasks from their own queues (LIFO
153     * or FIFO, depending on mode), then to randomized FIFO steals of
154     * tasks in other queues. This framework began as vehicle for
155     * supporting tree-structured parallelism using work-stealing.
156     * Over time, its scalability advantages led to extensions and
157     * changes to better support more diverse usage contexts. Because
158     * most internal methods and nested classes are interrelated,
159     * their main rationale and descriptions are presented here;
160     * individual methods and nested classes contain only brief
161     * comments about details.
162     *
163     * WorkQueues
164     * ==========
165     *
166     * Most operations occur within work-stealing queues (in nested
167     * class WorkQueue). These are special forms of Deques that
168     * support only three of the four possible end-operations -- push,
169     * pop, and poll (aka steal), under the further constraints that
170     * push and pop are called only from the owning thread (or, as
171     * extended here, under a lock), while poll may be called from
172     * other threads. (If you are unfamiliar with them, you probably
173     * want to read Herlihy and Shavit's book "The Art of
174     * Multiprocessor programming", chapter 16 describing these in
175     * more detail before proceeding.) The main work-stealing queue
176     * design is roughly similar to those in the papers "Dynamic
177     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
178     * (http://research.sun.com/scalable/pubs/index.html) and
179     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
180     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
181     * The main differences ultimately stem from GC requirements that
182     * we null out taken slots as soon as we can, to maintain as small
183     * a footprint as possible even in programs generating huge
184     * numbers of tasks. To accomplish this, we shift the CAS
185     * arbitrating pop vs poll (steal) from being on the indices
186     * ("base" and "top") to the slots themselves.
187     *
188     * Adding tasks then takes the form of a classic array push(task)
189     * in a circular buffer:
190     * q.array[q.top++ % length] = task;
191     *
192     * (The actual code needs to null-check and size-check the array,
193     * uses masking, not mod, for indexing a power-of-two-sized array,
194     * properly fences accesses, and possibly signals waiting workers
195     * to start scanning -- see below.) Both a successful pop and
196     * poll mainly entail a CAS of a slot from non-null to null.
197     *
198     * The pop operation (always performed by owner) is:
199     * if ((the task at top slot is not null) and
200     * (CAS slot to null))
201     * decrement top and return task;
202     *
203     * And the poll operation (usually by a stealer) is
204     * if ((the task at base slot is not null) and
205     * (CAS slot to null))
206     * increment base and return task;
207     *
208     * There are several variants of each of these. In particular,
209     * almost all uses of poll occur within scan operations that also
210     * interleave contention tracking (with associated code sprawl.)
211     *
212     * Memory ordering. See "Correct and Efficient Work-Stealing for
213     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
214     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
215     * analysis of memory ordering requirements in work-stealing
216     * algorithms similar to (but different than) the one used here.
217     * Extracting tasks in array slots via (fully fenced) CAS provides
218     * primary synchronization. The base and top indices imprecisely
219     * guide where to extract from. We do not always require strict
220     * orderings of array and index updates, so sometimes let them be
221     * subject to compiler and processor reorderings. However, the
222     * volatile "base" index also serves as a basis for memory
223     * ordering: Slot accesses are preceded by a read of base,
224     * ensuring happens-before ordering with respect to stealers (so
225     * the slots themselves can be read via plain array reads.) The
226     * only other memory orderings relied on are maintained in the
227     * course of signalling and activation (see below). A check that
228     * base == top indicates (momentary) emptiness, but otherwise may
229     * err on the side of possibly making the queue appear nonempty
230     * when a push, pop, or poll have not fully committed, or making
231     * it appear empty when an update of top has not yet been visibly
232     * written. (Method isEmpty() checks the case of a partially
233     * completed removal of the last element.) Because of this, the
234     * poll operation, considered individually, is not wait-free. One
235     * thief cannot successfully continue until another in-progress
236     * one (or, if previously empty, a push) visibly completes.
237     * However, in the aggregate, we ensure at least probabilistic
238     * non-blockingness. If an attempted steal fails, a scanning
239     * thief chooses a different random victim target to try next. So,
240     * in order for one thief to progress, it suffices for any
241     * in-progress poll or new push on any empty queue to
242     * complete.
243     *
244     * This approach also enables support of a user mode in which
245     * local task processing is in FIFO, not LIFO order, simply by
246     * using poll rather than pop. This can be useful in
247     * message-passing frameworks in which tasks are never joined.
248     *
249     * WorkQueues are also used in a similar way for tasks submitted
250     * to the pool. We cannot mix these tasks in the same queues used
251     * by workers. Instead, we randomly associate submission queues
252     * with submitting threads, using a form of hashing. The
253     * ThreadLocalRandom probe value serves as a hash code for
254     * choosing existing queues, and may be randomly repositioned upon
255     * contention with other submitters. In essence, submitters act
256     * like workers except that they are restricted to executing local
257     * tasks that they submitted. Insertion of tasks in shared mode
258     * requires a lock but we use only a simple spinlock (using field
259     * phase), because submitters encountering a busy queue move to a
260     * different position to use or create other queues -- they block
261     * only when creating and registering new queues. Because it is
262     * used only as a spinlock, unlocking requires only a "releasing"
263     * store (using putOrderedInt).
264     *
265     * Management
266     * ==========
267     *
268     * The main throughput advantages of work-stealing stem from
269     * decentralized control -- workers mostly take tasks from
270     * themselves or each other, at rates that can exceed a billion
271     * per second. The pool itself creates, activates (enables
272     * scanning for and running tasks), deactivates, blocks, and
273     * terminates threads, all with minimal central information.
274     * There are only a few properties that we can globally track or
275     * maintain, so we pack them into a small number of variables,
276     * often maintaining atomicity without blocking or locking.
277     * Nearly all essentially atomic control state is held in a few
278     * volatile variables that are by far most often read (not
279     * written) as status and consistency checks. We pack as much
280     * information into them as we can.
281     *
282     * Field "ctl" contains 64 bits holding information needed to
283     * atomically decide to add, enqueue (on an event queue), and
284     * dequeue (and release)-activate workers. To enable this
285     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
286     * far in excess of normal operating range) to allow ids, counts,
287     * and their negations (used for thresholding) to fit into 16bit
288     * subfields.
289     *
290     * Field "mode" holds configuration parameters as well as lifetime
291     * status, atomically and monotonically setting SHUTDOWN, STOP,
292     * and finally TERMINATED bits.
293     *
294     * Field "workQueues" holds references to WorkQueues. It is
295     * updated (only during worker creation and termination) under
296     * lock (using field workerNamePrefix as lock), but is otherwise
297     * concurrently readable, and accessed directly. We also ensure
298     * that uses of the array reference itself never become too stale
299     * in case of resizing. To simplify index-based operations, the
300     * array size is always a power of two, and all readers must
301     * tolerate null slots. Worker queues are at odd indices. Shared
302     * (submission) queues are at even indices, up to a maximum of 64
303     * slots, to limit growth even if array needs to expand to add
304     * more workers. Grouping them together in this way simplifies and
305     * speeds up task scanning.
306     *
307     * All worker thread creation is on-demand, triggered by task
308     * submissions, replacement of terminated workers, and/or
309     * compensation for blocked workers. However, all other support
310     * code is set up to work with other policies. To ensure that we
311     * do not hold on to worker references that would prevent GC, all
312     * accesses to workQueues are via indices into the workQueues
313     * array (which is one source of some of the messy code
314     * constructions here). In essence, the workQueues array serves as
315     * a weak reference mechanism. Thus for example the stack top
316     * subfield of ctl stores indices, not references.
317     *
318     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
319     * cannot let workers spin indefinitely scanning for tasks when
320     * none can be found immediately, and we cannot start/resume
321     * workers unless there appear to be tasks available. On the
322     * other hand, we must quickly prod them into action when new
323     * tasks are submitted or generated. In many usages, ramp-up time
324     * is the main limiting factor in overall performance, which is
325     * compounded at program start-up by JIT compilation and
326     * allocation. So we streamline this as much as possible.
327     *
328     * The "ctl" field atomically maintains total worker and
329     * "released" worker counts, plus the head of the available worker
330     * queue (actually stack, represented by the lower 32bit subfield
331     * of ctl). Released workers are those known to be scanning for
332     * and/or running tasks. Unreleased ("available") workers are
333     * recorded in the ctl stack. These workers are made available for
334     * signalling by enqueuing in ctl (see method runWorker). The
335     * "queue" is a form of Treiber stack. This is ideal for
336     * activating threads in most-recently used order, and improves
337     * performance and locality, outweighing the disadvantages of
338     * being prone to contention and inability to release a worker
339     * unless it is topmost on stack. To avoid missed signal problems
340     * inherent in any wait/signal design, available workers rescan
341     * for (and if found run) tasks after enqueuing. Normally their
342     * release status will be updated while doing so, but the released
343     * worker ctl count may underestimate the number of active
344     * threads. (However, it is still possible to determine quiescence
345     * via a validation traversal -- see isQuiescent). After an
346     * unsuccessful rescan, available workers are blocked until
347     * signalled (see signalWork). The top stack state holds the
348     * value of the "phase" field of the worker: its index and status,
349     * plus a version counter that, in addition to the count subfields
350     * (also serving as version stamps) provide protection against
351     * Treiber stack ABA effects.
352     *
353     * Creating workers. To create a worker, we pre-increment counts
354     * (serving as a reservation), and attempt to construct a
355     * ForkJoinWorkerThread via its factory. Upon construction, the
356     * new thread invokes registerWorker, where it constructs a
357     * WorkQueue and is assigned an index in the workQueues array
358     * (expanding the array if necessary). The thread is then started.
359     * Upon any exception across these steps, or null return from
360     * factory, deregisterWorker adjusts counts and records
361     * accordingly. If a null return, the pool continues running with
362     * fewer than the target number workers. If exceptional, the
363     * exception is propagated, generally to some external caller.
364     * Worker index assignment avoids the bias in scanning that would
365     * occur if entries were sequentially packed starting at the front
366     * of the workQueues array. We treat the array as a simple
367     * power-of-two hash table, expanding as needed. The seedIndex
368     * increment ensures no collisions until a resize is needed or a
369     * worker is deregistered and replaced, and thereafter keeps
370     * probability of collision low. We cannot use
371     * ThreadLocalRandom.getProbe() for similar purposes here because
372     * the thread has not started yet, but do so for creating
373     * submission queues for existing external threads (see
374     * externalPush).
375     *
376     * WorkQueue field "phase" is used by both workers and the pool to
377     * manage and track whether a worker is UNSIGNALLED (possibly
378     * blocked waiting for a signal). When a worker is enqueued its
379     * phase field is set. Note that phase field updates lag queue CAS
380     * releases so usage requires care -- seeing a negative phase does
381     * not guarantee that the worker is available. When queued, the
382     * lower 16 bits of scanState must hold its pool index. So we
383     * place the index there upon initialization (see registerWorker)
384     * and otherwise keep it there or restore it when necessary.
385     *
386     * The ctl field also serves as the basis for memory
387     * synchronization surrounding activation. This uses a more
388     * efficient version of a Dekker-like rule that task producers and
389     * consumers sync with each other by both writing/CASing ctl (even
390     * if to its current value). This would be extremely costly. So
391     * we relax it in several ways: (1) Producers only signal when
392     * their queue is empty. Other workers propagate this signal (in
393     * method scan) when they find tasks; to further reduce flailing,
394     * each worker signals only one other per activation. (2) Workers
395     * only enqueue after scanning (see below) and not finding any
396     * tasks. (3) Rather than CASing ctl to its current value in the
397     * common case where no action is required, we reduce write
398     * contention by equivalently prefacing signalWork when called by
399     * an external task producer using a memory access with
400     * full-volatile semantics or a "fullFence".
401     *
402     * Almost always, too many signals are issued. A task producer
403     * cannot in general tell if some existing worker is in the midst
404     * of finishing one task (or already scanning) and ready to take
405     * another without being signalled. So the producer might instead
406     * activate a different worker that does not find any work, and
407     * then inactivates. This scarcely matters in steady-state
408     * computations involving all workers, but can create contention
409     * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
410     * computations involving only a few workers.
411     *
412     * Scanning. Method runWorker performs top-level scanning for
413     * tasks. Each scan traverses and tries to poll from each queue
414     * starting at a random index and circularly stepping. Scans are
415     * not performed in ideal random permutation order, to reduce
416     * cacheline contention. The pseudorandom generator need not have
417     * high-quality statistical properties in the long term, but just
418     * within computations; We use Marsaglia XorShifts (often via
419     * ThreadLocalRandom.nextSecondarySeed), which are cheap and
420     * suffice. Scanning also employs contention reduction: When
421     * scanning workers fail to extract an apparently existing task,
422     * they soon restart at a different pseudorandom index. This
423     * improves throughput when many threads are trying to take tasks
424     * from few queues, which can be common in some usages. Scans do
425     * not otherwise explicitly take into account core affinities,
426     * loads, cache localities, etc, However, they do exploit temporal
427     * locality (which usually approximates these) by preferring to
428     * re-poll (at most #workers times) from the same queue after a
429     * successful poll before trying others.
430     *
431     * Trimming workers. To release resources after periods of lack of
432     * use, a worker starting to wait when the pool is quiescent will
433     * time out and terminate (see method scan) if the pool has
434     * remained quiescent for period given by field keepAlive.
435     *
436     * Shutdown and Termination. A call to shutdownNow invokes
437     * tryTerminate to atomically set a runState bit. The calling
438     * thread, as well as every other worker thereafter terminating,
439     * helps terminate others by cancelling their unprocessed tasks,
440     * and waking them up, doing so repeatedly until stable. Calls to
441     * non-abrupt shutdown() preface this by checking whether
442     * termination should commence by sweeping through queues (until
443     * stable) to ensure lack of in-flight submissions and workers
444     * about to process them before triggering the "STOP" phase of
445     * termination.
446     *
447     * Joining Tasks
448     * =============
449     *
450     * Any of several actions may be taken when one worker is waiting
451     * to join a task stolen (or always held) by another. Because we
452     * are multiplexing many tasks on to a pool of workers, we can't
453     * always just let them block (as in Thread.join). We also cannot
454     * just reassign the joiner's run-time stack with another and
455     * replace it later, which would be a form of "continuation", that
456     * even if possible is not necessarily a good idea since we may
457     * need both an unblocked task and its continuation to progress.
458     * Instead we combine two tactics:
459     *
460     * Helping: Arranging for the joiner to execute some task that it
461     * would be running if the steal had not occurred.
462     *
463     * Compensating: Unless there are already enough live threads,
464     * method tryCompensate() may create or re-activate a spare
465     * thread to compensate for blocked joiners until they unblock.
466     *
467     * A third form (implemented in tryRemoveAndExec) amounts to
468     * helping a hypothetical compensator: If we can readily tell that
469     * a possible action of a compensator is to steal and execute the
470     * task being joined, the joining thread can do so directly,
471     * without the need for a compensation thread.
472     *
473     * The ManagedBlocker extension API can't use helping so relies
474     * only on compensation in method awaitBlocker.
475     *
476     * The algorithm in awaitJoin entails a form of "linear helping".
477     * Each worker records (in field source) the id of the queue from
478     * which it last stole a task. The scan in method awaitJoin uses
479     * these markers to try to find a worker to help (i.e., steal back
480     * a task from and execute it) that could hasten completion of the
481     * actively joined task. Thus, the joiner executes a task that
482     * would be on its own local deque if the to-be-joined task had
483     * not been stolen. This is a conservative variant of the approach
484     * described in Wagner & Calder "Leapfrogging: a portable
485     * technique for implementing efficient futures" SIGPLAN Notices,
486     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
487     * mainly in that we only record queue ids, not full dependency
488     * links. This requires a linear scan of the workQueues array to
489     * locate stealers, but isolates cost to when it is needed, rather
490     * than adding to per-task overhead. Searches can fail to locate
491     * stealers GC stalls and the like delay recording sources.
492     * Further, even when accurately identified, stealers might not
493     * ever produce a task that the joiner can in turn help with. So,
494     * compensation is tried upon failure to find tasks to run.
495     *
496     * Compensation does not by default aim to keep exactly the target
497     * parallelism number of unblocked threads running at any given
498     * time. Some previous versions of this class employed immediate
499     * compensations for any blocked join. However, in practice, the
500     * vast majority of blockages are transient byproducts of GC and
501     * other JVM or OS activities that are made worse by replacement.
502     * Rather than impose arbitrary policies, we allow users to
503     * override the default of only adding threads upon apparent
504     * starvation. The compensation mechanism may also be bounded.
505     * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
506     * JVMs to cope with programming errors and abuse before running
507     * out of resources to do so.
508     *
509     * Common Pool
510     * ===========
511     *
512     * The static common pool always exists after static
513     * initialization. Since it (or any other created pool) need
514     * never be used, we minimize initial construction overhead and
515     * footprint to the setup of about a dozen fields.
516     *
517     * When external threads submit to the common pool, they can
518     * perform subtask processing (see externalHelpComplete and
519     * related methods) upon joins. This caller-helps policy makes it
520     * sensible to set common pool parallelism level to one (or more)
521     * less than the total number of available cores, or even zero for
522     * pure caller-runs. We do not need to record whether external
523     * submissions are to the common pool -- if not, external help
524     * methods return quickly. These submitters would otherwise be
525     * blocked waiting for completion, so the extra effort (with
526     * liberally sprinkled task status checks) in inapplicable cases
527     * amounts to an odd form of limited spin-wait before blocking in
528     * ForkJoinTask.join.
529     *
530     * As a more appropriate default in managed environments, unless
531     * overridden by system properties, we use workers of subclass
532     * InnocuousForkJoinWorkerThread when there is a SecurityManager
533     * present. These workers have no permissions set, do not belong
534     * to any user-defined ThreadGroup, and erase all ThreadLocals
535     * after executing any top-level task (see
536     * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
537     * in ForkJoinWorkerThread) may be JVM-dependent and must access
538     * particular Thread class fields to achieve this effect.
539     *
540     * Style notes
541     * ===========
542     *
543     * Memory ordering relies mainly on Unsafe intrinsics that carry
544     * the further responsibility of explicitly performing null- and
545     * bounds- checks otherwise carried out implicitly by JVMs. This
546     * can be awkward and ugly, but also reflects the need to control
547     * outcomes across the unusual cases that arise in very racy code
548     * with very few invariants. So these explicit checks would exist
549     * in some form anyway. All fields are read into locals before
550     * use, and null-checked if they are references. This is usually
551     * done in a "C"-like style of listing declarations at the heads
552     * of methods or blocks, and using inline assignments on first
553     * encounter. Array bounds-checks are usually performed by
554     * masking with array.length-1, which relies on the invariant that
555     * these arrays are created with positive lengths, which is itself
556     * paranoically checked. Nearly all explicit checks lead to
557     * bypass/return, not exception throws, because they may
558     * legitimately arise due to cancellation/revocation during
559     * shutdown.
560     *
561     * There is a lot of representation-level coupling among classes
562     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
563     * fields of WorkQueue maintain data structures managed by
564     * ForkJoinPool, so are directly accessed. There is little point
565     * trying to reduce this, since any associated future changes in
566     * representations will need to be accompanied by algorithmic
567     * changes anyway. Several methods intrinsically sprawl because
568     * they must accumulate sets of consistent reads of fields held in
569     * local variables. There are also other coding oddities
570     * (including several unnecessary-looking hoisted null checks)
571     * that help some methods perform reasonably even when interpreted
572     * (not compiled).
573     *
574     * The order of declarations in this file is (with a few exceptions):
575     * (1) Static utility functions
576     * (2) Nested (static) classes
577     * (3) Static fields
578     * (4) Fields, along with constants used when unpacking some of them
579     * (5) Internal control methods
580     * (6) Callbacks and other support for ForkJoinTask methods
581     * (7) Exported methods
582     * (8) Static block initializing statics in minimally dependent order
583     */
584    
585     // Static utilities
586    
587     /**
588     * If there is a security manager, makes sure caller has
589     * permission to modify threads.
590     */
591     private static void checkPermission() {
592     SecurityManager security = System.getSecurityManager();
593     if (security != null)
594     security.checkPermission(modifyThreadPermission);
595     }
596    
597     // Nested classes
598    
599     /**
600     * Factory for creating new {@link ForkJoinWorkerThread}s.
601     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
602     * for {@code ForkJoinWorkerThread} subclasses that extend base
603     * functionality or initialize threads with different contexts.
604     */
605     public static interface ForkJoinWorkerThreadFactory {
606     /**
607     * Returns a new worker thread operating in the given pool.
608     * Returning null or throwing an exception may result in tasks
609     * never being executed. If this method throws an exception,
610     * it is relayed to the caller of the method (for example
611     * {@code execute}) causing attempted thread creation. If this
612     * method returns null or throws an exception, it is not
613     * retried until the next attempted creation (for example
614     * another call to {@code execute}).
615     *
616     * @param pool the pool this thread works in
617     * @return the new worker thread, or {@code null} if the request
618     * to create a thread is rejected.
619     * @throws NullPointerException if the pool is null
620     */
621     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
622     }
623    
624     /**
625     * Default ForkJoinWorkerThreadFactory implementation; creates a
626     * new ForkJoinWorkerThread.
627     */
628     private static final class DefaultForkJoinWorkerThreadFactory
629     implements ForkJoinWorkerThreadFactory {
630     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
631     return new ForkJoinWorkerThread(pool);
632     }
633     }
634    
635     // Constants shared across ForkJoinPool and WorkQueue
636    
637     // Bounds
638     static final int SWIDTH = 16; // width of short
639     static final int SMASK = 0xffff; // short bits == max index
640     static final int MAX_CAP = 0x7fff; // max #workers - 1
641     static final int SQMASK = 0x007e; // max 64 (even) slots
642    
643     // Masks and units for WorkQueue.phase and ctl sp subfield
644     static final int UNSIGNALLED = 1 << 31; // must be negative
645     static final int SS_SEQ = 1 << 16; // version count
646     static final int QLOCK = 1; // must be 1
647    
648     // Mode bits and sentinels, some also used in WorkQueue id and.source fields
649     static final int OWNED = 1; // queue has owner thread
650     static final int FIFO = 1 << 16; // fifo queue or access mode
651     static final int SHUTDOWN = 1 << 18;
652     static final int TERMINATED = 1 << 19;
653     static final int STOP = 1 << 31; // must be negative
654     static final int QUIET = 1 << 30; // not scanning or working
655     static final int DORMANT = QUIET | UNSIGNALLED;
656    
657     /**
658     * The maximum number of local polls from the same queue before
659     * checking others. This is a safeguard against infinitely unfair
660     * looping under unbounded user task recursion, and must be larger
661     * than plausible cases of intentional bounded task recursion.
662     */
663     static final int POLL_LIMIT = 1 << 10;
664    
665     /**
666     * Queues supporting work-stealing as well as external task
667     * submission. See above for descriptions and algorithms.
668     * Performance on most platforms is very sensitive to placement of
669     * instances of both WorkQueues and their arrays -- we absolutely
670     * do not want multiple WorkQueue instances or multiple queue
671     * arrays sharing cache lines. The @Contended annotation alerts
672     * JVMs to try to keep instances apart.
673     */
674     // For now, using manual padding.
675     // @jdk.internal.vm.annotation.Contended
676     // @sun.misc.Contended
677     static final class WorkQueue {
678    
679     /**
680     * Capacity of work-stealing queue array upon initialization.
681     * Must be a power of two; at least 4, but should be larger to
682     * reduce or eliminate cacheline sharing among queues.
683     * Currently, it is much larger, as a partial workaround for
684     * the fact that JVMs often place arrays in locations that
685     * share GC bookkeeping (especially cardmarks) such that
686     * per-write accesses encounter serious memory contention.
687     */
688     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
689    
690     /**
691     * Maximum size for queue arrays. Must be a power of two less
692     * than or equal to 1 << (31 - width of array entry) to ensure
693     * lack of wraparound of index calculations, but defined to a
694     * value a bit less than this to help users trap runaway
695     * programs before saturating systems.
696     */
697     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
698    
699     // Instance fields
700     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06, pad07;
701     volatile long pad08, pad09, pad0a, pad0b, pad0c, pad0d, pad0e, pad0f;
702     volatile int phase; // versioned, negative: queued, 1: locked
703     int stackPred; // pool stack (ctl) predecessor link
704     int nsteals; // number of steals
705     int id; // index, mode, tag
706     volatile int source; // source queue id, or sentinel
707     volatile int base; // index of next slot for poll
708     int top; // index of next slot for push
709     ForkJoinTask<?>[] array; // the elements (initially unallocated)
710     final ForkJoinPool pool; // the containing pool (may be null)
711     final ForkJoinWorkerThread owner; // owning thread or null if shared
712     volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
713     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d, pad1e, pad1f;
714    
715     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
716     this.pool = pool;
717     this.owner = owner;
718     // Place indices in the center of array (that is not yet allocated)
719     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
720     }
721    
722     /**
723     * Returns an exportable index (used by ForkJoinWorkerThread).
724     */
725     final int getPoolIndex() {
726     return (id & 0xffff) >>> 1; // ignore odd/even tag bit
727     }
728    
729     /**
730     * Returns the approximate number of tasks in the queue.
731     */
732     final int queueSize() {
733     int n = base - top; // read base first
734     return (n >= 0) ? 0 : -n; // ignore transient negative
735     }
736    
737     /**
738     * Provides a more accurate estimate of whether this queue has
739     * any tasks than does queueSize, by checking whether a
740     * near-empty queue has at least one unclaimed task.
741     */
742     final boolean isEmpty() {
743     ForkJoinTask<?>[] a; int n, al, b;
744     return ((n = (b = base) - top) >= 0 || // possibly one task
745     (n == -1 && ((a = array) == null ||
746     (al = a.length) == 0 ||
747     a[(al - 1) & b] == null)));
748     }
749    
750    
751     /**
752     * Pushes a task. Call only by owner in unshared queues.
753     *
754     * @param task the task. Caller must ensure non-null.
755     * @throws RejectedExecutionException if array cannot be resized
756     */
757     final void push(ForkJoinTask<?> task) {
758     int s = top; ForkJoinTask<?>[] a; int al, d;
759     if ((a = array) != null && (al = a.length) > 0) {
760     int index = (al - 1) & s;
761     long offset = ((long)index << ASHIFT) + ABASE;
762     ForkJoinPool p = pool;
763     top = s + 1;
764     U.putOrderedObject(a, offset, task);
765     if ((d = base - s) == 0 && p != null) {
766     U.fullFence();
767     p.signalWork();
768     }
769     else if (d + al == 1)
770     growArray();
771     }
772     }
773    
774     /**
775     * Initializes or doubles the capacity of array. Call either
776     * by owner or with lock held -- it is OK for base, but not
777     * top, to move while resizings are in progress.
778     */
779     final ForkJoinTask<?>[] growArray() {
780     ForkJoinTask<?>[] oldA = array;
781     int oldSize = oldA != null ? oldA.length : 0;
782     int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
783     if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
784     throw new RejectedExecutionException("Queue capacity exceeded");
785     int oldMask, t, b;
786     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
787     if (oldA != null && (oldMask = oldSize - 1) > 0 &&
788     (t = top) - (b = base) > 0) {
789     int mask = size - 1;
790     do { // emulate poll from old array, push to new array
791     int index = b & oldMask;
792     long offset = ((long)index << ASHIFT) + ABASE;
793     ForkJoinTask<?> x = (ForkJoinTask<?>)
794     U.getObjectVolatile(oldA, offset);
795     if (x != null &&
796     U.compareAndSwapObject(oldA, offset, x, null))
797     a[b & mask] = x;
798     } while (++b != t);
799     U.storeFence();
800     }
801     return a;
802     }
803    
804     /**
805     * Takes next task, if one exists, in LIFO order. Call only
806     * by owner in unshared queues.
807     */
808     final ForkJoinTask<?> pop() {
809     int b = base, s = top, al, i; ForkJoinTask<?>[] a;
810     if ((a = array) != null && b != s && (al = a.length) > 0) {
811     int index = (al - 1) & --s;
812     long offset = ((long)index << ASHIFT) + ABASE;
813     ForkJoinTask<?> t = (ForkJoinTask<?>)
814     U.getObject(a, offset);
815     if (t != null &&
816     U.compareAndSwapObject(a, offset, t, null)) {
817     top = s;
818     U.storeFence();
819     return t;
820     }
821     }
822     return null;
823     }
824    
825     /**
826     * Takes next task, if one exists, in FIFO order.
827     */
828     final ForkJoinTask<?> poll() {
829     for (;;) {
830     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
831     if ((a = array) != null && (d = b - s) < 0 &&
832     (al = a.length) > 0) {
833     int index = (al - 1) & b;
834     long offset = ((long)index << ASHIFT) + ABASE;
835     ForkJoinTask<?> t = (ForkJoinTask<?>)
836     U.getObjectVolatile(a, offset);
837     if (b++ == base) {
838     if (t != null) {
839     if (U.compareAndSwapObject(a, offset, t, null)) {
840     base = b;
841     return t;
842     }
843     }
844     else if (d == -1)
845     break; // now empty
846     }
847     }
848     else
849     break;
850     }
851     return null;
852     }
853    
854     /**
855     * Takes next task, if one exists, in order specified by mode.
856     */
857     final ForkJoinTask<?> nextLocalTask() {
858     return ((id & FIFO) != 0) ? poll() : pop();
859     }
860    
861     /**
862     * Returns next task, if one exists, in order specified by mode.
863     */
864     final ForkJoinTask<?> peek() {
865     int al; ForkJoinTask<?>[] a;
866     return ((a = array) != null && (al = a.length) > 0) ?
867     a[(al - 1) &
868     ((id & FIFO) != 0 ? base : top - 1)] : null;
869     }
870    
871     /**
872     * Pops the given task only if it is at the current top.
873     */
874     final boolean tryUnpush(ForkJoinTask<?> task) {
875     int b = base, s = top, al; ForkJoinTask<?>[] a;
876     if ((a = array) != null && b != s && (al = a.length) > 0) {
877     int index = (al - 1) & --s;
878     long offset = ((long)index << ASHIFT) + ABASE;
879     if (U.compareAndSwapObject(a, offset, task, null)) {
880     top = s;
881     U.storeFence();
882     return true;
883     }
884     }
885     return false;
886     }
887    
888     /**
889     * Removes and cancels all known tasks, ignoring any exceptions.
890     */
891     final void cancelAll() {
892     for (ForkJoinTask<?> t; (t = poll()) != null; )
893     ForkJoinTask.cancelIgnoringExceptions(t);
894     }
895    
896     // Specialized execution methods
897    
898     /**
899     * Pops and executes up to limit consecutive tasks or until empty.
900     *
901     * @param limit max runs, or zero for no limit
902     */
903     final void localPopAndExec(int limit) {
904     for (;;) {
905     int b = base, s = top, al; ForkJoinTask<?>[] a;
906     if ((a = array) != null && b != s && (al = a.length) > 0) {
907     int index = (al - 1) & --s;
908     long offset = ((long)index << ASHIFT) + ABASE;
909     ForkJoinTask<?> t = (ForkJoinTask<?>)
910     U.getAndSetObject(a, offset, null);
911     if (t != null) {
912     top = s;
913     U.storeFence();
914     t.doExec();
915     if (limit != 0 && --limit == 0)
916     break;
917     }
918     else
919     break;
920     }
921     else
922     break;
923     }
924     }
925    
926     /**
927     * Polls and executes up to limit consecutive tasks or until empty.
928     *
929     * @param limit, or zero for no limit
930     */
931     final void localPollAndExec(int limit) {
932     for (int polls = 0;;) {
933     int b = base, s = top, d, al; ForkJoinTask<?>[] a;
934     if ((a = array) != null && (d = b - s) < 0 &&
935     (al = a.length) > 0) {
936     int index = (al - 1) & b++;
937     long offset = ((long)index << ASHIFT) + ABASE;
938     ForkJoinTask<?> t = (ForkJoinTask<?>)
939     U.getAndSetObject(a, offset, null);
940     if (t != null) {
941     base = b;
942     t.doExec();
943     if (limit != 0 && ++polls == limit)
944     break;
945     }
946     else if (d == -1)
947     break; // now empty
948     else
949     polls = 0; // stolen; reset
950     }
951     else
952     break;
953     }
954     }
955    
956     /**
957     * If present, removes task from queue and executes it.
958     */
959     final void tryRemoveAndExec(ForkJoinTask<?> task) {
960     ForkJoinTask<?>[] wa; int s, wal;
961     if (base - (s = top) < 0 && // traverse from top
962     (wa = array) != null && (wal = wa.length) > 0) {
963     for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
964     int index = i & m;
965     long offset = (index << ASHIFT) + ABASE;
966     ForkJoinTask<?> t = (ForkJoinTask<?>)
967     U.getObject(wa, offset);
968     if (t == null)
969     break;
970     else if (t == task) {
971     if (U.compareAndSwapObject(wa, offset, t, null)) {
972     top = ns; // safely shift down
973     for (int j = i; j != ns; ++j) {
974     ForkJoinTask<?> f;
975     int pindex = (j + 1) & m;
976     long pOffset = (pindex << ASHIFT) + ABASE;
977     f = (ForkJoinTask<?>)U.getObject(wa, pOffset);
978     U.putObjectVolatile(wa, pOffset, null);
979    
980     int jindex = j & m;
981     long jOffset = (jindex << ASHIFT) + ABASE;
982     U.putOrderedObject(wa, jOffset, f);
983     }
984     U.storeFence();
985     t.doExec();
986     }
987     break;
988     }
989     }
990     }
991     }
992    
993     /**
994     * Tries to steal and run tasks within the target's
995     * computation until done, not found, or limit exceeded.
996     *
997     * @param task root of CountedCompleter computation
998     * @param limit max runs, or zero for no limit
999     * @return task status on exit
1000     */
1001     final int localHelpCC(CountedCompleter<?> task, int limit) {
1002     int status = 0;
1003     if (task != null && (status = task.status) >= 0) {
1004     for (;;) {
1005     boolean help = false;
1006     int b = base, s = top, al; ForkJoinTask<?>[] a;
1007     if ((a = array) != null && b != s && (al = a.length) > 0) {
1008     int index = (al - 1) & (s - 1);
1009     long offset = ((long)index << ASHIFT) + ABASE;
1010     ForkJoinTask<?> o = (ForkJoinTask<?>)
1011     U.getObject(a, offset);
1012     if (o instanceof CountedCompleter) {
1013     CountedCompleter<?> t = (CountedCompleter<?>)o;
1014     for (CountedCompleter<?> f = t;;) {
1015     if (f != task) {
1016     if ((f = f.completer) == null) // try parent
1017     break;
1018     }
1019     else {
1020     if (U.compareAndSwapObject(a, offset,
1021     t, null)) {
1022     top = s - 1;
1023     U.storeFence();
1024     t.doExec();
1025     help = true;
1026     }
1027     break;
1028     }
1029     }
1030     }
1031     }
1032     if ((status = task.status) < 0 || !help ||
1033     (limit != 0 && --limit == 0))
1034     break;
1035     }
1036     }
1037     return status;
1038     }
1039    
1040     // Operations on shared queues
1041    
1042     /**
1043     * Tries to lock shared queue by CASing phase field.
1044     */
1045     final boolean tryLockSharedQueue() {
1046     return U.compareAndSwapInt(this, PHASE, 0, QLOCK);
1047     }
1048    
1049     /**
1050     * Shared version of tryUnpush.
1051     */
1052     final boolean trySharedUnpush(ForkJoinTask<?> task) {
1053     boolean popped = false;
1054     int s = top - 1, al; ForkJoinTask<?>[] a;
1055     if ((a = array) != null && (al = a.length) > 0) {
1056     int index = (al - 1) & s;
1057     long offset = ((long)index << ASHIFT) + ABASE;
1058     ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1059     if (t == task &&
1060     U.compareAndSwapInt(this, PHASE, 0, QLOCK)) {
1061     if (top == s + 1 && array == a &&
1062     U.compareAndSwapObject(a, offset, task, null)) {
1063     popped = true;
1064     top = s;
1065     }
1066     U.putOrderedInt(this, PHASE, 0);
1067     }
1068     }
1069     return popped;
1070     }
1071    
1072     /**
1073     * Shared version of localHelpCC.
1074     */
1075     final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1076     int status = 0;
1077     if (task != null && (status = task.status) >= 0) {
1078     for (;;) {
1079     boolean help = false;
1080     int b = base, s = top, al; ForkJoinTask<?>[] a;
1081     if ((a = array) != null && b != s && (al = a.length) > 0) {
1082     int index = (al - 1) & (s - 1);
1083     long offset = ((long)index << ASHIFT) + ABASE;
1084     ForkJoinTask<?> o = (ForkJoinTask<?>)
1085     U.getObject(a, offset);
1086     if (o instanceof CountedCompleter) {
1087     CountedCompleter<?> t = (CountedCompleter<?>)o;
1088     for (CountedCompleter<?> f = t;;) {
1089     if (f != task) {
1090     if ((f = f.completer) == null)
1091     break;
1092     }
1093     else {
1094     if (U.compareAndSwapInt(this, PHASE,
1095     0, QLOCK)) {
1096     if (top == s && array == a &&
1097     U.compareAndSwapObject(a, offset,
1098     t, null)) {
1099     help = true;
1100     top = s - 1;
1101     }
1102     U.putOrderedInt(this, PHASE, 0);
1103     if (help)
1104     t.doExec();
1105     }
1106     break;
1107     }
1108     }
1109     }
1110     }
1111     if ((status = task.status) < 0 || !help ||
1112     (limit != 0 && --limit == 0))
1113     break;
1114     }
1115     }
1116     return status;
1117     }
1118    
1119     /**
1120     * Returns true if owned and not known to be blocked.
1121     */
1122     final boolean isApparentlyUnblocked() {
1123     Thread wt; Thread.State s;
1124     return ((wt = owner) != null &&
1125     (s = wt.getState()) != Thread.State.BLOCKED &&
1126     s != Thread.State.WAITING &&
1127     s != Thread.State.TIMED_WAITING);
1128     }
1129    
1130     // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1131     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1132     private static final long PHASE;
1133     private static final int ABASE;
1134     private static final int ASHIFT;
1135     static {
1136     try {
1137     PHASE = U.objectFieldOffset
1138     (WorkQueue.class.getDeclaredField("phase"));
1139     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1140     int scale = U.arrayIndexScale(ForkJoinTask[].class);
1141     if ((scale & (scale - 1)) != 0)
1142     throw new Error("array index scale not a power of two");
1143     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1144     } catch (ReflectiveOperationException e) {
1145     throw new Error(e);
1146     }
1147     }
1148     }
1149    
1150     // static fields (initialized in static initializer below)
1151    
1152     /**
1153     * Creates a new ForkJoinWorkerThread. This factory is used unless
1154     * overridden in ForkJoinPool constructors.
1155     */
1156     public static final ForkJoinWorkerThreadFactory
1157     defaultForkJoinWorkerThreadFactory;
1158    
1159     /**
1160     * Permission required for callers of methods that may start or
1161     * kill threads.
1162     */
1163     static final RuntimePermission modifyThreadPermission;
1164    
1165     /**
1166     * Common (static) pool. Non-null for public use unless a static
1167     * construction exception, but internal usages null-check on use
1168     * to paranoically avoid potential initialization circularities
1169     * as well as to simplify generated code.
1170     */
1171     static final ForkJoinPool common;
1172    
1173     /**
1174     * Common pool parallelism. To allow simpler use and management
1175     * when common pool threads are disabled, we allow the underlying
1176     * common.parallelism field to be zero, but in that case still report
1177     * parallelism as 1 to reflect resulting caller-runs mechanics.
1178     */
1179     static final int COMMON_PARALLELISM;
1180    
1181     /**
1182     * Limit on spare thread construction in tryCompensate.
1183     */
1184     private static final int COMMON_MAX_SPARES;
1185    
1186     /**
1187     * Sequence number for creating workerNamePrefix.
1188     */
1189     private static int poolNumberSequence;
1190    
1191     /**
1192     * Returns the next sequence number. We don't expect this to
1193     * ever contend, so use simple builtin sync.
1194     */
1195     private static final synchronized int nextPoolId() {
1196     return ++poolNumberSequence;
1197     }
1198    
1199     // static configuration constants
1200    
1201     /**
1202     * Default idle timeout value (in milliseconds) for the thread
1203     * triggering quiescence to park waiting for new work
1204     */
1205     private static final long DEFAULT_KEEPALIVE = 60000L;
1206    
1207     /**
1208     * Undershoot tolerance for idle timeouts
1209     */
1210     private static final long TIMEOUT_SLOP = 20L;
1211    
1212     /**
1213     * The default value for COMMON_MAX_SPARES. Overridable using the
1214     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1215     * property. The default value is far in excess of normal
1216     * requirements, but also far short of MAX_CAP and typical OS
1217     * thread limits, so allows JVMs to catch misuse/abuse before
1218     * running out of resources needed to do so.
1219     */
1220     private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1221    
1222     /**
1223     * Increment for seed generators. See class ThreadLocal for
1224     * explanation.
1225     */
1226     private static final int SEED_INCREMENT = 0x9e3779b9;
1227    
1228     /*
1229     * Bits and masks for field ctl, packed with 4 16 bit subfields:
1230     * RC: Number of released (unqueued) workers minus target parallelism
1231     * TC: Number of total workers minus target parallelism
1232     * SS: version count and status of top waiting thread
1233     * ID: poolIndex of top of Treiber stack of waiters
1234     *
1235     * When convenient, we can extract the lower 32 stack top bits
1236     * (including version bits) as sp=(int)ctl. The offsets of counts
1237     * by the target parallelism and the positionings of fields makes
1238     * it possible to perform the most common checks via sign tests of
1239     * fields: When ac is negative, there are not enough unqueued
1240     * workers, when tc is negative, there are not enough total
1241     * workers. When sp is non-zero, there are waiting workers. To
1242     * deal with possibly negative fields, we use casts in and out of
1243     * "short" and/or signed shifts to maintain signedness.
1244     *
1245     * Because it occupies uppermost bits, we can add one release count
1246     * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1247     * from a blocked join. Other updates entail multiple subfields
1248     * and masking, requiring CAS.
1249     *
1250     * The limits packed in field "bounds" are also offset by the
1251     * parallelism level to make them comparable to the ctl rc and tc
1252     * fields.
1253     */
1254    
1255     // Lower and upper word masks
1256     private static final long SP_MASK = 0xffffffffL;
1257     private static final long UC_MASK = ~SP_MASK;
1258    
1259     // Release counts
1260     private static final int RC_SHIFT = 48;
1261     private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1262     private static final long RC_MASK = 0xffffL << RC_SHIFT;
1263    
1264     // Total counts
1265     private static final int TC_SHIFT = 32;
1266     private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1267     private static final long TC_MASK = 0xffffL << TC_SHIFT;
1268     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1269    
1270     // Instance fields
1271    
1272     // Segregate ctl field, For now using padding vs @Contended
1273     // @jdk.internal.vm.annotation.Contended("fjpctl")
1274     // @sun.misc.Contended("fjpctl")
1275     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06, pad07;
1276     volatile long pad08, pad09, pad0a, pad0b, pad0c, pad0d, pad0e, pad0f;
1277     volatile long ctl; // main pool control
1278     volatile long pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1279     volatile long pad18, pad19, pad1a, pad1b, pad1c, pad1d, pad1e;
1280    
1281     volatile long stealCount; // collects worker nsteals
1282     final long keepAlive; // milliseconds before dropping if idle
1283     int indexSeed; // next worker index
1284     final int bounds; // min, max threads packed as shorts
1285     volatile int mode; // parallelism, runstate, queue mode
1286     WorkQueue[] workQueues; // main registry
1287     final String workerNamePrefix; // for worker thread string; sync lock
1288     final ForkJoinWorkerThreadFactory factory;
1289     final UncaughtExceptionHandler ueh; // per-worker UEH
1290     final Predicate<? super ForkJoinPool> saturate;
1291    
1292     // Creating, registering and deregistering workers
1293    
1294     /**
1295     * Tries to construct and start one worker. Assumes that total
1296     * count has already been incremented as a reservation. Invokes
1297     * deregisterWorker on any failure.
1298     *
1299     * @return true if successful
1300     */
1301     private boolean createWorker() {
1302     ForkJoinWorkerThreadFactory fac = factory;
1303     Throwable ex = null;
1304     ForkJoinWorkerThread wt = null;
1305     try {
1306     if (fac != null && (wt = fac.newThread(this)) != null) {
1307     wt.start();
1308     return true;
1309     }
1310     } catch (Throwable rex) {
1311     ex = rex;
1312     }
1313     deregisterWorker(wt, ex);
1314     return false;
1315     }
1316    
1317     /**
1318     * Tries to add one worker, incrementing ctl counts before doing
1319     * so, relying on createWorker to back out on failure.
1320     *
1321     * @param c incoming ctl value, with total count negative and no
1322     * idle workers. On CAS failure, c is refreshed and retried if
1323     * this holds (otherwise, a new worker is not needed).
1324     */
1325     private void tryAddWorker(long c) {
1326     do {
1327     long nc = ((RC_MASK & (c + RC_UNIT)) |
1328     (TC_MASK & (c + TC_UNIT)));
1329     if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1330     createWorker();
1331     break;
1332     }
1333     } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1334     }
1335    
1336     /**
1337     * Callback from ForkJoinWorkerThread constructor to establish and
1338     * record its WorkQueue.
1339     *
1340     * @param wt the worker thread
1341     * @return the worker's queue
1342     */
1343     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1344     UncaughtExceptionHandler handler;
1345     wt.setDaemon(true); // configure thread
1346     if ((handler = ueh) != null)
1347     wt.setUncaughtExceptionHandler(handler);
1348     WorkQueue w = new WorkQueue(this, wt);
1349     int tid = 0; // for thread name
1350     int fifo = mode & FIFO;
1351     String prefix = workerNamePrefix;
1352     if (prefix != null) {
1353     synchronized (prefix) {
1354     WorkQueue[] ws = workQueues; int n;
1355     int s = indexSeed += SEED_INCREMENT;
1356     if (ws != null && (n = ws.length) > 1) {
1357     int m = n - 1;
1358     tid = s & m;
1359     int i = m & ((s << 1) | 1); // odd-numbered indices
1360     for (int probes = n >>> 1;;) { // find empty slot
1361     WorkQueue q;
1362     if ((q = ws[i]) == null || q.phase == QUIET)
1363     break;
1364     else if (--probes == 0) {
1365     i = n | 1; // resize below
1366     break;
1367     }
1368     else
1369     i = (i + 2) & m;
1370     }
1371    
1372     int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1373     w.phase = w.id = id; // now publishable
1374    
1375     if (i < n)
1376     ws[i] = w;
1377     else { // expand array
1378     int an = n << 1;
1379     WorkQueue[] as = new WorkQueue[an];
1380     as[i] = w;
1381     int am = an - 1;
1382     for (int j = 0; j < n; ++j) {
1383     WorkQueue v; // copy external queue
1384     if ((v = ws[j]) != null) // position may change
1385     as[v.id & am & SQMASK] = v;
1386     if (++j >= n)
1387     break;
1388     as[j] = ws[j]; // copy worker
1389     }
1390     workQueues = as;
1391     }
1392     }
1393     }
1394     wt.setName(prefix.concat(Integer.toString(tid)));
1395     }
1396     return w;
1397     }
1398    
1399     /**
1400     * Final callback from terminating worker, as well as upon failure
1401     * to construct or start a worker. Removes record of worker from
1402     * array, and adjusts counts. If pool is shutting down, tries to
1403     * complete termination.
1404     *
1405     * @param wt the worker thread, or null if construction failed
1406     * @param ex the exception causing failure, or null if none
1407     */
1408     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1409     WorkQueue w = null;
1410     int phase = 0;
1411     if (wt != null && (w = wt.workQueue) != null) {
1412     Object lock = workerNamePrefix;
1413     long ns = (long)w.nsteals & 0xffffffffL;
1414     int idx = w.id & SMASK;
1415     if (lock != null) {
1416     WorkQueue[] ws; // remove index from array
1417     synchronized (lock) {
1418     if ((ws = workQueues) != null && ws.length > idx &&
1419     ws[idx] == w)
1420     ws[idx] = null;
1421     stealCount += ns;
1422     }
1423     }
1424     phase = w.phase;
1425     }
1426     if (phase != QUIET) { // else pre-adjusted
1427     long c; // decrement counts
1428     do {} while (!U.compareAndSwapLong
1429     (this, CTL, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1430     (TC_MASK & (c - TC_UNIT)) |
1431     (SP_MASK & c))));
1432     }
1433     if (w != null)
1434     w.cancelAll(); // cancel remaining tasks
1435    
1436     if (!tryTerminate(false, false) && // possibly replace worker
1437     w != null && w.array != null) // avoid repeated failures
1438     signalWork();
1439    
1440     if (ex == null) // help clean on way out
1441     ForkJoinTask.helpExpungeStaleExceptions();
1442     else // rethrow
1443     ForkJoinTask.rethrow(ex);
1444     }
1445    
1446     /**
1447     * Tries to create or release a worker if too few are running.
1448     */
1449     final void signalWork() {
1450     for (;;) {
1451     long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1452     if ((c = ctl) >= 0L) // enough workers
1453     break;
1454     else if ((sp = (int)c) == 0) { // no idle workers
1455     if ((c & ADD_WORKER) != 0L) // too few workers
1456     tryAddWorker(c);
1457     break;
1458     }
1459     else if ((ws = workQueues) == null)
1460     break; // unstarted/terminated
1461     else if (ws.length <= (i = sp & SMASK))
1462     break; // terminated
1463     else if ((v = ws[i]) == null)
1464     break; // terminating
1465     else {
1466     int np = sp & ~UNSIGNALLED;
1467     int vp = v.phase;
1468     long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1469     Thread vt = v.owner;
1470     if (sp == vp && U.compareAndSwapLong(this, CTL, c, nc)) {
1471     v.phase = np;
1472     if (v.source < 0)
1473     LockSupport.unpark(vt);
1474     break;
1475     }
1476     }
1477     }
1478     }
1479    
1480     /**
1481     * Tries to decrement counts (sometimes implicitly) and possibly
1482     * arrange for a compensating worker in preparation for blocking:
1483     * If not all core workers yet exist, creates one, else if any are
1484     * unreleased (possibly including caller) releases one, else if
1485     * fewer than the minimum allowed number of workers running,
1486     * checks to see that they are all active, and if so creates an
1487     * extra worker unless over maximum limit and policy is to
1488     * saturate. Most of these steps can fail due to interference, in
1489     * which case 0 is returned so caller will retry. A negative
1490     * return value indicates that the caller doesn't need to
1491     * re-adjust counts when later unblocked.
1492     *
1493     * @return 1: block then adjust, -1: block without adjust, 0 : retry
1494     */
1495     private int tryCompensate(WorkQueue w) {
1496     int t, n, sp;
1497     long c = ctl;
1498     WorkQueue[] ws = workQueues;
1499 dl 1.2 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1500 jsr166 1.1 if (ws == null || (n = ws.length) <= 0 || w == null)
1501     return 0; // disabled
1502     else if ((sp = (int)c) != 0) { // replace or release
1503     WorkQueue v = ws[sp & (n - 1)];
1504     int wp = w.phase;
1505     long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1506     int np = sp & ~UNSIGNALLED;
1507     if (v != null) {
1508     int vp = v.phase;
1509     Thread vt = v.owner;
1510     long nc = ((long)v.stackPred & SP_MASK) | uc;
1511     if (vp == sp && U.compareAndSwapLong(this, CTL, c, nc)) {
1512     v.phase = np;
1513     if (v.source < 0)
1514     LockSupport.unpark(vt);
1515     return (wp < 0) ? -1 : 1;
1516     }
1517     }
1518     return 0;
1519     }
1520     else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1521     (short)(bounds & SMASK) > 0) {
1522     long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1523     return U.compareAndSwapLong(this, CTL, c, nc) ? 1 : 0;
1524     }
1525     else { // validate
1526     int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1527     boolean unstable = false;
1528     for (int i = 1; i < n; i += 2) {
1529     WorkQueue q; Thread wt; Thread.State ts;
1530     if ((q = ws[i]) != null) {
1531     if (q.source == 0) {
1532     unstable = true;
1533     break;
1534     }
1535     else {
1536     --tc;
1537     if ((wt = q.owner) != null &&
1538     ((ts = wt.getState()) == Thread.State.BLOCKED ||
1539     ts == Thread.State.WAITING))
1540     ++bc; // worker is blocking
1541     }
1542     }
1543     }
1544     if (unstable || tc != 0 || ctl != c)
1545     return 0; // inconsistent
1546     else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1547     Predicate<? super ForkJoinPool> sat;
1548     if ((sat = saturate) != null && sat.test(this))
1549     return -1;
1550     else if (bc < pc) { // lagging
1551     Thread.yield(); // for retry spins
1552     return 0;
1553     }
1554     else
1555     throw new RejectedExecutionException(
1556     "Thread limit exceeded replacing blocked worker");
1557     }
1558     }
1559     }
1560    
1561     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1562     return U.compareAndSwapLong(this, CTL, c, nc) && createWorker() ? 1 : 0;
1563     }
1564    
1565     /**
1566     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1567     * See above for explanation.
1568     */
1569     final void runWorker(WorkQueue w) {
1570     WorkQueue[] ws;
1571     w.growArray(); // allocate queue
1572     int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1573     if (r == 0) // initial nonzero seed
1574     r = 1;
1575     int lastSignalId = 0; // avoid unneeded signals
1576     while ((ws = workQueues) != null) {
1577     boolean nonempty = false; // scan
1578     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1579     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1580     if ((i = r & m) >= 0 && i < n && // always true
1581     (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1582     (a = q.array) != null && (al = a.length) > 0) {
1583     int qid = q.id; // (never zero)
1584     int index = (al - 1) & b;
1585     long offset = ((long)index << ASHIFT) + ABASE;
1586     ForkJoinTask<?> t = (ForkJoinTask<?>)
1587     U.getObjectVolatile(a, offset);
1588     if (t != null && b++ == q.base &&
1589     U.compareAndSwapObject(a, offset, t, null)) {
1590     if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1591     signalWork(); // propagate signal
1592     w.source = lastSignalId = qid;
1593     t.doExec();
1594     if ((w.id & FIFO) != 0) // run remaining locals
1595     w.localPollAndExec(POLL_LIMIT);
1596     else
1597     w.localPopAndExec(POLL_LIMIT);
1598     ForkJoinWorkerThread thread = w.owner;
1599     ++w.nsteals;
1600     w.source = 0; // now idle
1601     if (thread != null)
1602     thread.afterTopLevelExec();
1603     }
1604     nonempty = true;
1605     }
1606     else if (nonempty)
1607     break;
1608     else
1609     ++r;
1610     }
1611    
1612     if (nonempty) { // move (xorshift)
1613     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1614     }
1615     else {
1616     int phase;
1617     lastSignalId = 0; // clear for next scan
1618     if ((phase = w.phase) >= 0) { // enqueue
1619     int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1620     long c, nc;
1621     do {
1622     w.stackPred = (int)(c = ctl);
1623     nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1624     } while (!U.compareAndSwapLong(this, CTL, c, nc));
1625     }
1626     else { // already queued
1627     int pred = w.stackPred;
1628     w.source = DORMANT; // enable signal
1629     for (int steps = 0;;) {
1630     int md, rc; long c;
1631     if (w.phase >= 0) {
1632     w.source = 0;
1633     break;
1634     }
1635     else if ((md = mode) < 0) // shutting down
1636     return;
1637     else if ((rc = ((md & SMASK) + // possibly quiescent
1638     (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1639     (md & SHUTDOWN) != 0 &&
1640     tryTerminate(false, false))
1641     return; // help terminate
1642     else if ((++steps & 1) == 0)
1643     Thread.interrupted(); // clear between parks
1644     else if (rc <= 0 && pred != 0 && phase == (int)c) {
1645     long d = keepAlive + System.currentTimeMillis();
1646     LockSupport.parkUntil(this, d);
1647     if (ctl == c &&
1648     d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1649     long nc = ((UC_MASK & (c - TC_UNIT)) |
1650     (SP_MASK & pred));
1651     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1652     w.phase = QUIET;
1653     return; // drop on timeout
1654     }
1655     }
1656     }
1657     else
1658     LockSupport.park(this);
1659     }
1660     }
1661     }
1662     }
1663     }
1664    
1665     /**
1666     * Helps and/or blocks until the given task is done or timeout.
1667     * First tries locally helping, then scans other queues for a task
1668     * produced by one of w's stealers; compensating and blocking if
1669     * none are found (rescanning if tryCompensate fails).
1670     *
1671     * @param w caller
1672     * @param task the task
1673     * @param deadline for timed waits, if nonzero
1674     * @return task status on exit
1675     */
1676     final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1677     int s = 0;
1678     if (w != null && task != null &&
1679     (!(task instanceof CountedCompleter) ||
1680     (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1681     w.tryRemoveAndExec(task);
1682     int src = w.source, id = w.id;
1683     s = task.status;
1684     while (s >= 0) {
1685     WorkQueue[] ws;
1686     boolean nonempty = false;
1687     int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1688     if ((ws = workQueues) != null) { // scan for matching id
1689     for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1690     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1691     if ((i = (r + j) & m) >= 0 && i < n &&
1692     (q = ws[i]) != null && q.source == id &&
1693     (b = q.base) - q.top < 0 &&
1694     (a = q.array) != null && (al = a.length) > 0) {
1695     int qid = q.id;
1696     int index = (al - 1) & b;
1697     long offset = ((long)index << ASHIFT) + ABASE;
1698     ForkJoinTask<?> t = (ForkJoinTask<?>)
1699     U.getObjectVolatile(a, offset);
1700     if (t != null && b++ == q.base && id == q.source &&
1701     U.compareAndSwapObject(a, offset, t, null)) {
1702     q.base = b;
1703     w.source = qid;
1704     t.doExec();
1705     w.source = src;
1706     }
1707     nonempty = true;
1708     break;
1709     }
1710     }
1711     }
1712     if ((s = task.status) < 0)
1713     break;
1714     else if (!nonempty) {
1715     long ms, ns; int block;
1716     if (deadline == 0L)
1717     ms = 0L; // untimed
1718     else if ((ns = deadline - System.nanoTime()) <= 0L)
1719     break; // timeout
1720     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1721     ms = 1L; // avoid 0 for timed wait
1722     if ((block = tryCompensate(w)) != 0) {
1723     task.internalWait(ms);
1724     U.getAndAddLong(this, CTL, (block > 0) ? RC_UNIT : 0L);
1725     }
1726     s = task.status;
1727     }
1728     }
1729     }
1730     return s;
1731     }
1732    
1733     /**
1734     * Runs tasks until {@code isQuiescent()}. Rather than blocking
1735     * when tasks cannot be found, rescans until all others cannot
1736     * find tasks either.
1737     */
1738     final void helpQuiescePool(WorkQueue w) {
1739     int prevSrc = w.source, fifo = w.id & FIFO;
1740     for (int source = prevSrc, released = -1;;) { // -1 until known
1741     WorkQueue[] ws;
1742     if (fifo != 0)
1743     w.localPollAndExec(0);
1744     else
1745     w.localPopAndExec(0);
1746     if (released == -1 && w.phase >= 0)
1747     released = 1;
1748     boolean quiet = true, empty = true;
1749     int r = ThreadLocalRandom.nextSecondarySeed();
1750     if ((ws = workQueues) != null) {
1751     for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1752     WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1753     if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1754     if ((b = q.base) - q.top < 0 &&
1755     (a = q.array) != null && (al = a.length) > 0) {
1756     int qid = q.id;
1757     if (released == 0) { // increment
1758     released = 1;
1759     U.getAndAddLong(this, CTL, RC_UNIT);
1760     }
1761     int index = (al - 1) & b;
1762     long offset = ((long)index << ASHIFT) + ABASE;
1763     ForkJoinTask<?> t = (ForkJoinTask<?>)
1764     U.getObjectVolatile(a, offset);
1765     if (t != null && b++ == q.base &&
1766     U.compareAndSwapObject(a, offset, t, null)) {
1767     q.base = b;
1768     w.source = source = q.id;
1769     t.doExec();
1770     w.source = source = prevSrc;
1771     }
1772     quiet = empty = false;
1773     break;
1774     }
1775     else if ((q.source & QUIET) == 0)
1776     quiet = false;
1777     }
1778     }
1779     }
1780     if (quiet) {
1781     if (released == 0)
1782     U.getAndAddLong(this, CTL, RC_UNIT);
1783     w.source = prevSrc;
1784     break;
1785     }
1786     else if (empty) {
1787     if (source != QUIET)
1788     w.source = source = QUIET;
1789     if (released == 1) { // decrement
1790     released = 0;
1791     U.getAndAddLong(this, CTL, RC_MASK & -RC_UNIT);
1792     }
1793     }
1794     }
1795     }
1796    
1797     /**
1798     * Scans for and returns a polled task, if available.
1799     * Used only for untracked polls.
1800     *
1801     * @param submissionsOnly if true, only scan submission queues
1802     */
1803     private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1804     WorkQueue[] ws; int n;
1805     rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1806     (n = ws.length) > 0) {
1807     int m = n - 1;
1808     int r = ThreadLocalRandom.nextSecondarySeed();
1809     int h = r >>> 16;
1810     int origin, step;
1811     if (submissionsOnly) {
1812     origin = (r & ~1) & m; // even indices and steps
1813     step = (h & ~1) | 2;
1814     }
1815     else {
1816     origin = r & m;
1817     step = h | 1;
1818     }
1819     for (int k = origin, oldSum = 0, checkSum = 0;;) {
1820     WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1821     if ((q = ws[k]) != null) {
1822     checkSum += b = q.base;
1823     if (b - q.top < 0 &&
1824     (a = q.array) != null && (al = a.length) > 0) {
1825     int index = (al - 1) & b;
1826     long offset = ((long)index << ASHIFT) + ABASE;
1827     ForkJoinTask<?> t = (ForkJoinTask<?>)
1828     U.getObjectVolatile(a, offset);
1829     if (t != null && b++ == q.base &&
1830     U.compareAndSwapObject(a, offset, t, null)) {
1831     q.base = b;
1832     return t;
1833     }
1834     else
1835     break; // restart
1836     }
1837     }
1838     if ((k = (k + step) & m) == origin) {
1839     if (oldSum == (oldSum = checkSum))
1840     break rescan;
1841     checkSum = 0;
1842     }
1843     }
1844     }
1845     return null;
1846     }
1847    
1848     /**
1849     * Gets and removes a local or stolen task for the given worker.
1850     *
1851     * @return a task, if available
1852     */
1853     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1854     ForkJoinTask<?> t;
1855     if (w != null &&
1856     (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1857     return t;
1858     else
1859     return pollScan(false);
1860     }
1861    
1862     // External operations
1863    
1864     /**
1865     * Adds the given task to a submission queue at submitter's
1866     * current queue, creating one if null or contended.
1867     *
1868     * @param task the task. Caller must ensure non-null.
1869     */
1870     final void externalPush(ForkJoinTask<?> task) {
1871     int r; // initialize caller's probe
1872     if ((r = ThreadLocalRandom.getProbe()) == 0) {
1873     ThreadLocalRandom.localInit();
1874     r = ThreadLocalRandom.getProbe();
1875     }
1876     for (;;) {
1877     int md = mode, n;
1878     WorkQueue[] ws = workQueues;
1879     if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1880     throw new RejectedExecutionException();
1881     else {
1882     WorkQueue q;
1883     boolean push = false, grow = false;
1884     if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1885     Object lock = workerNamePrefix;
1886     int qid = (r | QUIET) & ~(FIFO | OWNED);
1887     q = new WorkQueue(this, null);
1888     q.id = qid;
1889     q.source = QUIET;
1890     q.phase = QLOCK; // lock queue
1891     if (lock != null) {
1892     synchronized (lock) { // lock pool to install
1893     int i;
1894     if ((ws = workQueues) != null &&
1895     (n = ws.length) > 0 &&
1896     ws[i = qid & (n - 1) & SQMASK] == null) {
1897     ws[i] = q;
1898     push = grow = true;
1899     }
1900     }
1901     }
1902     }
1903     else if (q.tryLockSharedQueue()) {
1904     int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1905     if ((a = q.array) != null && (al = a.length) > 0 &&
1906     al - 1 + (d = b - s) > 0) {
1907     a[(al - 1) & s] = task;
1908     q.top = s + 1; // relaxed writes OK here
1909     q.phase = 0;
1910 dl 1.3 if (d < 0 && q.base - s < -1)
1911 jsr166 1.1 break; // no signal needed
1912     }
1913     else
1914     grow = true;
1915     push = true;
1916     }
1917     if (push) {
1918     if (grow) {
1919     try {
1920     q.growArray();
1921     int s = q.top, al; ForkJoinTask<?>[] a;
1922     if ((a = q.array) != null && (al = a.length) > 0) {
1923     a[(al - 1) & s] = task;
1924     q.top = s + 1;
1925     }
1926     } finally {
1927     q.phase = 0;
1928     }
1929     }
1930     signalWork();
1931     break;
1932     }
1933     else // move if busy
1934     r = ThreadLocalRandom.advanceProbe(r);
1935     }
1936     }
1937     }
1938    
1939     /**
1940     * Pushes a possibly-external submission.
1941     */
1942     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1943     Thread t; ForkJoinWorkerThread w; WorkQueue q;
1944     if (task == null)
1945     throw new NullPointerException();
1946     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1947     (w = (ForkJoinWorkerThread)t).pool == this &&
1948     (q = w.workQueue) != null)
1949     q.push(task);
1950     else
1951     externalPush(task);
1952     return task;
1953     }
1954    
1955     /**
1956     * Returns common pool queue for an external thread.
1957     */
1958     static WorkQueue commonSubmitterQueue() {
1959     ForkJoinPool p = common;
1960     int r = ThreadLocalRandom.getProbe();
1961     WorkQueue[] ws; int n;
1962     return (p != null && (ws = p.workQueues) != null &&
1963     (n = ws.length) > 0) ?
1964     ws[(n - 1) & r & SQMASK] : null;
1965     }
1966    
1967     /**
1968     * Performs tryUnpush for an external submitter.
1969     */
1970     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1971     int r = ThreadLocalRandom.getProbe();
1972     WorkQueue[] ws; WorkQueue w; int n;
1973     return ((ws = workQueues) != null &&
1974     (n = ws.length) > 0 &&
1975     (w = ws[(n - 1) & r & SQMASK]) != null &&
1976     w.trySharedUnpush(task));
1977     }
1978    
1979     /**
1980     * Performs helpComplete for an external submitter.
1981     */
1982     final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1983     int r = ThreadLocalRandom.getProbe();
1984     WorkQueue[] ws; WorkQueue w; int n;
1985     return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1986     (w = ws[(n - 1) & r & SQMASK]) != null) ?
1987     w.sharedHelpCC(task, maxTasks) : 0;
1988     }
1989    
1990     /**
1991     * Tries to steal and run tasks within the target's computation.
1992     * The maxTasks argument supports external usages; internal calls
1993     * use zero, allowing unbounded steps (external calls trap
1994     * non-positive values).
1995     *
1996     * @param w caller
1997     * @param maxTasks if non-zero, the maximum number of other tasks to run
1998     * @return task status on exit
1999     */
2000     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2001     int maxTasks) {
2002     return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
2003     }
2004    
2005     /**
2006     * Returns a cheap heuristic guide for task partitioning when
2007     * programmers, frameworks, tools, or languages have little or no
2008     * idea about task granularity. In essence, by offering this
2009     * method, we ask users only about tradeoffs in overhead vs
2010     * expected throughput and its variance, rather than how finely to
2011     * partition tasks.
2012     *
2013     * In a steady state strict (tree-structured) computation, each
2014     * thread makes available for stealing enough tasks for other
2015     * threads to remain active. Inductively, if all threads play by
2016     * the same rules, each thread should make available only a
2017     * constant number of tasks.
2018     *
2019     * The minimum useful constant is just 1. But using a value of 1
2020     * would require immediate replenishment upon each steal to
2021     * maintain enough tasks, which is infeasible. Further,
2022     * partitionings/granularities of offered tasks should minimize
2023     * steal rates, which in general means that threads nearer the top
2024     * of computation tree should generate more than those nearer the
2025     * bottom. In perfect steady state, each thread is at
2026     * approximately the same level of computation tree. However,
2027     * producing extra tasks amortizes the uncertainty of progress and
2028     * diffusion assumptions.
2029     *
2030     * So, users will want to use values larger (but not much larger)
2031     * than 1 to both smooth over transient shortages and hedge
2032     * against uneven progress; as traded off against the cost of
2033     * extra task overhead. We leave the user to pick a threshold
2034     * value to compare with the results of this call to guide
2035     * decisions, but recommend values such as 3.
2036     *
2037     * When all threads are active, it is on average OK to estimate
2038     * surplus strictly locally. In steady-state, if one thread is
2039     * maintaining say 2 surplus tasks, then so are others. So we can
2040     * just use estimated queue length. However, this strategy alone
2041     * leads to serious mis-estimates in some non-steady-state
2042     * conditions (ramp-up, ramp-down, other stalls). We can detect
2043     * many of these by further considering the number of "idle"
2044     * threads, that are known to have zero queued tasks, so
2045     * compensate by a factor of (#idle/#active) threads.
2046     */
2047     static int getSurplusQueuedTaskCount() {
2048     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2049     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2050     (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2051     (q = wt.workQueue) != null) {
2052     int p = pool.mode & SMASK;
2053     int a = p + (int)(pool.ctl >> RC_SHIFT);
2054     int n = q.top - q.base;
2055     return n - (a > (p >>>= 1) ? 0 :
2056     a > (p >>>= 1) ? 1 :
2057     a > (p >>>= 1) ? 2 :
2058     a > (p >>>= 1) ? 4 :
2059     8);
2060     }
2061     return 0;
2062     }
2063    
2064     // Termination
2065    
2066     /**
2067     * Possibly initiates and/or completes termination.
2068     *
2069     * @param now if true, unconditionally terminate, else only
2070     * if no work and no active workers
2071     * @param enable if true, terminate when next possible
2072     * @return true if terminating or terminated
2073     */
2074     private boolean tryTerminate(boolean now, boolean enable) {
2075     int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2076    
2077     while (((md = mode) & SHUTDOWN) == 0) {
2078     if (!enable || this == common) // cannot shutdown
2079     return false;
2080     else
2081     U.compareAndSwapInt(this, MODE, md, md | SHUTDOWN);
2082     }
2083    
2084     while (((md = mode) & STOP) == 0) { // try to initiate termination
2085     if (!now) { // check if quiescent & empty
2086     for (long oldSum = 0L;;) { // repeat until stable
2087     boolean running = false;
2088     long checkSum = ctl;
2089     WorkQueue[] ws = workQueues;
2090     if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2091     running = true;
2092     else if (ws != null) {
2093     WorkQueue w; int b;
2094     for (int i = 0; i < ws.length; ++i) {
2095     if ((w = ws[i]) != null) {
2096     checkSum += (b = w.base) + w.id;
2097     if (b != w.top ||
2098     ((i & 1) == 1 && w.source >= 0)) {
2099     running = true;
2100     break;
2101     }
2102     }
2103     }
2104     }
2105     if (((md = mode) & STOP) != 0)
2106     break; // already triggered
2107     else if (running)
2108     return false;
2109     else if (workQueues == ws && oldSum == (oldSum = checkSum))
2110     break;
2111     }
2112     }
2113     if ((md & STOP) == 0)
2114     U.compareAndSwapInt(this, MODE, md, md | STOP);
2115     }
2116    
2117     while (((md = mode) & TERMINATED) == 0) { // help terminate others
2118     for (long oldSum = 0L;;) { // repeat until stable
2119     WorkQueue[] ws; WorkQueue w;
2120     long checkSum = ctl;
2121     if ((ws = workQueues) != null) {
2122     for (int i = 0; i < ws.length; ++i) {
2123     if ((w = ws[i]) != null) {
2124     ForkJoinWorkerThread wt = w.owner;
2125     w.cancelAll(); // clear queues
2126     if (wt != null) {
2127     try { // unblock join or park
2128     wt.interrupt();
2129     } catch (Throwable ignore) {
2130     }
2131     }
2132     checkSum += w.base + w.id;
2133     }
2134     }
2135     }
2136     if (((md = mode) & TERMINATED) != 0 ||
2137     (workQueues == ws && oldSum == (oldSum = checkSum)))
2138     break;
2139     }
2140     if ((md & TERMINATED) != 0)
2141     break;
2142     else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2143     break;
2144     else if (U.compareAndSwapInt(this, MODE, md, md | TERMINATED)) {
2145     synchronized (this) {
2146     notifyAll(); // for awaitTermination
2147     }
2148     break;
2149     }
2150     }
2151     return true;
2152     }
2153    
2154     // Exported methods
2155    
2156     // Constructors
2157    
2158     /**
2159     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2160     * java.lang.Runtime#availableProcessors}, using defaults for all
2161     * other parameters.
2162     *
2163     * @throws SecurityException if a security manager exists and
2164     * the caller is not permitted to modify threads
2165     * because it does not hold {@link
2166     * java.lang.RuntimePermission}{@code ("modifyThread")}
2167     */
2168     public ForkJoinPool() {
2169     this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2170     defaultForkJoinWorkerThreadFactory, null, false,
2171     0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2172     }
2173    
2174     /**
2175     * Creates a {@code ForkJoinPool} with the indicated parallelism
2176     * level, using defaults for all other parameters.
2177     *
2178     * @param parallelism the parallelism level
2179     * @throws IllegalArgumentException if parallelism less than or
2180     * equal to zero, or greater than implementation limit
2181     * @throws SecurityException if a security manager exists and
2182     * the caller is not permitted to modify threads
2183     * because it does not hold {@link
2184     * java.lang.RuntimePermission}{@code ("modifyThread")}
2185     */
2186     public ForkJoinPool(int parallelism) {
2187     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2188     0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2189     }
2190    
2191     /**
2192     * Creates a {@code ForkJoinPool} with the given parameters (using
2193     * defaults for others).
2194     *
2195     * @param parallelism the parallelism level. For default value,
2196     * use {@link java.lang.Runtime#availableProcessors}.
2197     * @param factory the factory for creating new threads. For default value,
2198     * use {@link #defaultForkJoinWorkerThreadFactory}.
2199     * @param handler the handler for internal worker threads that
2200     * terminate due to unrecoverable errors encountered while executing
2201     * tasks. For default value, use {@code null}.
2202     * @param asyncMode if true,
2203     * establishes local first-in-first-out scheduling mode for forked
2204     * tasks that are never joined. This mode may be more appropriate
2205     * than default locally stack-based mode in applications in which
2206     * worker threads only process event-style asynchronous tasks.
2207     * For default value, use {@code false}.
2208     * @throws IllegalArgumentException if parallelism less than or
2209     * equal to zero, or greater than implementation limit
2210     * @throws NullPointerException if the factory is null
2211     * @throws SecurityException if a security manager exists and
2212     * the caller is not permitted to modify threads
2213     * because it does not hold {@link
2214     * java.lang.RuntimePermission}{@code ("modifyThread")}
2215     */
2216     public ForkJoinPool(int parallelism,
2217     ForkJoinWorkerThreadFactory factory,
2218     UncaughtExceptionHandler handler,
2219     boolean asyncMode) {
2220     this(parallelism, factory, handler, asyncMode,
2221     0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2222     }
2223    
2224     /**
2225     * Creates a {@code ForkJoinPool} with the given parameters.
2226     *
2227     * @param parallelism the parallelism level. For default value,
2228     * use {@link java.lang.Runtime#availableProcessors}.
2229     *
2230     * @param factory the factory for creating new threads. For
2231     * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2232     *
2233     * @param handler the handler for internal worker threads that
2234     * terminate due to unrecoverable errors encountered while
2235     * executing tasks. For default value, use {@code null}.
2236     *
2237     * @param asyncMode if true, establishes local first-in-first-out
2238     * scheduling mode for forked tasks that are never joined. This
2239     * mode may be more appropriate than default locally stack-based
2240     * mode in applications in which worker threads only process
2241     * event-style asynchronous tasks. For default value, use {@code
2242     * false}.
2243     *
2244     * @param corePoolSize the number of threads to keep in the pool
2245     * (unless timed out after an elapsed keep-alive). Normally (and
2246     * by default) this is the same value as the parallelism level,
2247     * but may be set to a larger value to reduce dynamic overhead if
2248     * tasks regularly block. Using a smaller value (for example
2249     * {@code 0}) has the same effect as the default.
2250     *
2251     * @param maximumPoolSize the maximum number of threads allowed.
2252     * When the maximum is reached, attempts to replace blocked
2253     * threads fail. (However, because creation and termination of
2254     * different threads may overlap, and may be managed by the given
2255     * thread factory, this value may be transiently exceeded.) To
2256     * arrange the same value as is used by default for the common
2257     * pool, use {@code 256} plus the parallelism level. Using a value
2258     * (for example {@code Integer.MAX_VALUE}) larger than the
2259     * implementation's total thread limit has the same effect as
2260     * using this limit (which is the default).
2261     *
2262     * @param minimumRunnable the minimum allowed number of core
2263     * threads not blocked by a join or {@link ManagedBlocker}. To
2264     * ensure progress, when too few unblocked threads exist and
2265     * unexecuted tasks may exist, new threads are constructed, up to
2266     * the given maximumPoolSize. For the default value, use {@code
2267     * 1}, that ensures liveness. A larger value might improve
2268     * throughput in the presence of blocked activities, but might
2269     * not, due to increased overhead. A value of zero may be
2270     * acceptable when submitted tasks cannot have dependencies
2271     * requiring additional threads.
2272     *
2273 jsr166 1.4 * @param saturate if non-null, a predicate invoked upon attempts
2274 jsr166 1.1 * to create more than the maximum total allowed threads. By
2275     * default, when a thread is about to block on a join or {@link
2276     * ManagedBlocker}, but cannot be replaced because the
2277     * maximumPoolSize would be exceeded, a {@link
2278     * RejectedExecutionException} is thrown. But if this predicate
2279     * returns {@code true}, then no exception is thrown, so the pool
2280     * continues to operate with fewer than the target number of
2281     * runnable threads, which might not ensure progress.
2282     *
2283     * @param keepAliveTime the elapsed time since last use before
2284     * a thread is terminated (and then later replaced if needed).
2285     * For the default value, use {@code 60, TimeUnit.SECONDS}.
2286     *
2287     * @param unit the time unit for the {@code keepAliveTime} argument
2288     *
2289     * @throws IllegalArgumentException if parallelism is less than or
2290     * equal to zero, or is greater than implementation limit,
2291     * or if maximumPoolSize is less than parallelism,
2292     * of if the keepAliveTime is less than or equal to zero.
2293     * @throws NullPointerException if the factory is null
2294     * @throws SecurityException if a security manager exists and
2295     * the caller is not permitted to modify threads
2296     * because it does not hold {@link
2297     * java.lang.RuntimePermission}{@code ("modifyThread")}
2298     * @since 9
2299     */
2300     public ForkJoinPool(int parallelism,
2301     ForkJoinWorkerThreadFactory factory,
2302     UncaughtExceptionHandler handler,
2303     boolean asyncMode,
2304     int corePoolSize,
2305     int maximumPoolSize,
2306     int minimumRunnable,
2307     Predicate<? super ForkJoinPool> saturate,
2308     long keepAliveTime,
2309     TimeUnit unit) {
2310     // check, encode, pack parameters
2311     if (parallelism <= 0 || parallelism > MAX_CAP ||
2312     maximumPoolSize < parallelism || keepAliveTime <= 0L)
2313     throw new IllegalArgumentException();
2314     if (factory == null)
2315     throw new NullPointerException();
2316     long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2317    
2318     String prefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2319     int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2320     long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2321     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2322     int m = parallelism | (asyncMode ? FIFO : 0);
2323     int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2324     int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2325     int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2326     int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2327     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2328     n = (n + 1) << 1; // power of two, including space for submission queues
2329    
2330     this.workQueues = new WorkQueue[n];
2331     this.workerNamePrefix = prefix;
2332     this.factory = factory;
2333     this.ueh = handler;
2334     this.saturate = saturate;
2335     this.keepAlive = ms;
2336     this.bounds = b;
2337     this.mode = m;
2338     this.ctl = c;
2339     checkPermission();
2340     }
2341    
2342     /**
2343     * Constructor for common pool using parameters possibly
2344     * overridden by system properties
2345     */
2346     private ForkJoinPool(byte forCommonPoolOnly) {
2347     int parallelism = -1;
2348     ForkJoinWorkerThreadFactory fac = null;
2349     UncaughtExceptionHandler handler = null;
2350     try { // ignore exceptions in accessing/parsing properties
2351     String pp = System.getProperty
2352     ("java.util.concurrent.ForkJoinPool.common.parallelism");
2353     String fp = System.getProperty
2354     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
2355     String hp = System.getProperty
2356     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2357     if (pp != null)
2358     parallelism = Integer.parseInt(pp);
2359     if (fp != null)
2360     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
2361     getSystemClassLoader().loadClass(fp).newInstance());
2362     if (hp != null)
2363     handler = ((UncaughtExceptionHandler)ClassLoader.
2364     getSystemClassLoader().loadClass(hp).newInstance());
2365     } catch (Exception ignore) {
2366     }
2367    
2368     if (fac == null) {
2369     if (System.getSecurityManager() == null)
2370     fac = defaultForkJoinWorkerThreadFactory;
2371     else // use security-managed default
2372     fac = new InnocuousForkJoinWorkerThreadFactory();
2373     }
2374     if (parallelism < 0 && // default 1 less than #cores
2375     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2376     parallelism = 1;
2377     if (parallelism > MAX_CAP)
2378     parallelism = MAX_CAP;
2379    
2380     long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2381     (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2382     int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2383     int n = (parallelism > 1) ? parallelism - 1 : 1;
2384     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2385     n = (n + 1) << 1;
2386    
2387     this.workQueues = new WorkQueue[n];
2388     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2389     this.factory = fac;
2390     this.ueh = handler;
2391     this.saturate = null;
2392     this.keepAlive = DEFAULT_KEEPALIVE;
2393     this.bounds = b;
2394 dl 1.2 this.mode = parallelism;
2395 jsr166 1.1 this.ctl = c;
2396     }
2397    
2398     /**
2399     * Returns the common pool instance. This pool is statically
2400     * constructed; its run state is unaffected by attempts to {@link
2401     * #shutdown} or {@link #shutdownNow}. However this pool and any
2402     * ongoing processing are automatically terminated upon program
2403     * {@link System#exit}. Any program that relies on asynchronous
2404     * task processing to complete before program termination should
2405     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2406     * before exit.
2407     *
2408     * @return the common pool instance
2409     * @since 1.8
2410     */
2411     public static ForkJoinPool commonPool() {
2412     // assert common != null : "static init error";
2413     return common;
2414     }
2415    
2416     // Execution methods
2417    
2418     /**
2419     * Performs the given task, returning its result upon completion.
2420     * If the computation encounters an unchecked Exception or Error,
2421     * it is rethrown as the outcome of this invocation. Rethrown
2422     * exceptions behave in the same way as regular exceptions, but,
2423     * when possible, contain stack traces (as displayed for example
2424     * using {@code ex.printStackTrace()}) of both the current thread
2425     * as well as the thread actually encountering the exception;
2426     * minimally only the latter.
2427     *
2428     * @param task the task
2429     * @param <T> the type of the task's result
2430     * @return the task's result
2431     * @throws NullPointerException if the task is null
2432     * @throws RejectedExecutionException if the task cannot be
2433     * scheduled for execution
2434     */
2435     public <T> T invoke(ForkJoinTask<T> task) {
2436     if (task == null)
2437     throw new NullPointerException();
2438     externalSubmit(task);
2439     return task.join();
2440     }
2441    
2442     /**
2443     * Arranges for (asynchronous) execution of the given task.
2444     *
2445     * @param task the task
2446     * @throws NullPointerException if the task is null
2447     * @throws RejectedExecutionException if the task cannot be
2448     * scheduled for execution
2449     */
2450     public void execute(ForkJoinTask<?> task) {
2451     externalSubmit(task);
2452     }
2453    
2454     // AbstractExecutorService methods
2455    
2456     /**
2457     * @throws NullPointerException if the task is null
2458     * @throws RejectedExecutionException if the task cannot be
2459     * scheduled for execution
2460     */
2461     public void execute(Runnable task) {
2462     if (task == null)
2463     throw new NullPointerException();
2464     ForkJoinTask<?> job;
2465     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2466     job = (ForkJoinTask<?>) task;
2467     else
2468     job = new ForkJoinTask.RunnableExecuteAction(task);
2469     externalSubmit(job);
2470     }
2471    
2472     /**
2473     * Submits a ForkJoinTask for execution.
2474     *
2475     * @param task the task to submit
2476     * @param <T> the type of the task's result
2477     * @return the task
2478     * @throws NullPointerException if the task is null
2479     * @throws RejectedExecutionException if the task cannot be
2480     * scheduled for execution
2481     */
2482     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2483     return externalSubmit(task);
2484     }
2485    
2486     /**
2487     * @throws NullPointerException if the task is null
2488     * @throws RejectedExecutionException if the task cannot be
2489     * scheduled for execution
2490     */
2491     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2492     return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2493     }
2494    
2495     /**
2496     * @throws NullPointerException if the task is null
2497     * @throws RejectedExecutionException if the task cannot be
2498     * scheduled for execution
2499     */
2500     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2501     return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2502     }
2503    
2504     /**
2505     * @throws NullPointerException if the task is null
2506     * @throws RejectedExecutionException if the task cannot be
2507     * scheduled for execution
2508     */
2509     public ForkJoinTask<?> submit(Runnable task) {
2510     if (task == null)
2511     throw new NullPointerException();
2512     ForkJoinTask<?> job;
2513     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2514     job = (ForkJoinTask<?>) task;
2515     else
2516     job = new ForkJoinTask.AdaptedRunnableAction(task);
2517     return externalSubmit(job);
2518     }
2519    
2520     /**
2521     * @throws NullPointerException {@inheritDoc}
2522     * @throws RejectedExecutionException {@inheritDoc}
2523     */
2524     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2525     // In previous versions of this class, this method constructed
2526     // a task to run ForkJoinTask.invokeAll, but now external
2527     // invocation of multiple tasks is at least as efficient.
2528     ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2529    
2530     try {
2531     for (Callable<T> t : tasks) {
2532     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2533     futures.add(f);
2534     externalSubmit(f);
2535     }
2536     for (int i = 0, size = futures.size(); i < size; i++)
2537     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2538     return futures;
2539     } catch (Throwable t) {
2540     for (int i = 0, size = futures.size(); i < size; i++)
2541     futures.get(i).cancel(false);
2542     throw t;
2543     }
2544     }
2545    
2546     /**
2547     * Returns the factory used for constructing new workers.
2548     *
2549     * @return the factory used for constructing new workers
2550     */
2551     public ForkJoinWorkerThreadFactory getFactory() {
2552     return factory;
2553     }
2554    
2555     /**
2556     * Returns the handler for internal worker threads that terminate
2557     * due to unrecoverable errors encountered while executing tasks.
2558     *
2559     * @return the handler, or {@code null} if none
2560     */
2561     public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2562     return ueh;
2563     }
2564    
2565     /**
2566     * Returns the targeted parallelism level of this pool.
2567     *
2568     * @return the targeted parallelism level of this pool
2569     */
2570     public int getParallelism() {
2571 dl 1.2 int par = mode & SMASK;
2572     return (par > 0) ? par : 1;
2573 jsr166 1.1 }
2574    
2575     /**
2576     * Returns the targeted parallelism level of the common pool.
2577     *
2578     * @return the targeted parallelism level of the common pool
2579     * @since 1.8
2580     */
2581     public static int getCommonPoolParallelism() {
2582     return COMMON_PARALLELISM;
2583     }
2584    
2585     /**
2586     * Returns the number of worker threads that have started but not
2587     * yet terminated. The result returned by this method may differ
2588     * from {@link #getParallelism} when threads are created to
2589     * maintain parallelism when others are cooperatively blocked.
2590     *
2591     * @return the number of worker threads
2592     */
2593     public int getPoolSize() {
2594     return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2595     }
2596    
2597     /**
2598     * Returns {@code true} if this pool uses local first-in-first-out
2599     * scheduling mode for forked tasks that are never joined.
2600     *
2601     * @return {@code true} if this pool uses async mode
2602     */
2603     public boolean getAsyncMode() {
2604     return (mode & FIFO) != 0;
2605     }
2606    
2607     /**
2608     * Returns an estimate of the number of worker threads that are
2609     * not blocked waiting to join tasks or for other managed
2610     * synchronization. This method may overestimate the
2611     * number of running threads.
2612     *
2613     * @return the number of worker threads
2614     */
2615     public int getRunningThreadCount() {
2616     int rc = 0;
2617     WorkQueue[] ws; WorkQueue w;
2618     if ((ws = workQueues) != null) {
2619     for (int i = 1; i < ws.length; i += 2) {
2620     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2621     ++rc;
2622     }
2623     }
2624     return rc;
2625     }
2626    
2627     /**
2628     * Returns an estimate of the number of threads that are currently
2629     * stealing or executing tasks. This method may overestimate the
2630     * number of active threads.
2631     *
2632     * @return the number of active threads
2633     */
2634     public int getActiveThreadCount() {
2635     int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2636     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2637     }
2638    
2639     /**
2640     * Returns {@code true} if all worker threads are currently idle.
2641     * An idle worker is one that cannot obtain a task to execute
2642     * because none are available to steal from other threads, and
2643     * there are no pending submissions to the pool. This method is
2644     * conservative; it might not return {@code true} immediately upon
2645     * idleness of all threads, but will eventually become true if
2646     * threads remain inactive.
2647     *
2648     * @return {@code true} if all threads are currently idle
2649     */
2650     public boolean isQuiescent() {
2651     for (;;) {
2652     long c = ctl;
2653     int md = mode, pc = md & SMASK;
2654 dl 1.2 int tc = pc + (short)(c >>> TC_SHIFT);
2655 jsr166 1.1 int rc = pc + (int)(c >> RC_SHIFT);
2656     if ((md & (STOP | TERMINATED)) != 0)
2657     return true;
2658     else if (rc > 0)
2659     return false;
2660     else {
2661     WorkQueue[] ws; WorkQueue v;
2662     if ((ws = workQueues) != null) {
2663     for (int i = 1; i < ws.length; i += 2) {
2664     if ((v = ws[i]) != null) {
2665     if ((v.source & QUIET) == 0)
2666     return false;
2667     --tc;
2668     }
2669     }
2670     }
2671     if (tc == 0 && ctl == c)
2672     return true;
2673     }
2674     }
2675     }
2676    
2677     /**
2678     * Returns an estimate of the total number of tasks stolen from
2679     * one thread's work queue by another. The reported value
2680     * underestimates the actual total number of steals when the pool
2681     * is not quiescent. This value may be useful for monitoring and
2682     * tuning fork/join programs: in general, steal counts should be
2683     * high enough to keep threads busy, but low enough to avoid
2684     * overhead and contention across threads.
2685     *
2686     * @return the number of steals
2687     */
2688     public long getStealCount() {
2689     long count = stealCount;
2690     WorkQueue[] ws; WorkQueue w;
2691     if ((ws = workQueues) != null) {
2692     for (int i = 1; i < ws.length; i += 2) {
2693     if ((w = ws[i]) != null)
2694     count += (long)w.nsteals & 0xffffffffL;
2695     }
2696     }
2697     return count;
2698     }
2699    
2700     /**
2701     * Returns an estimate of the total number of tasks currently held
2702     * in queues by worker threads (but not including tasks submitted
2703     * to the pool that have not begun executing). This value is only
2704     * an approximation, obtained by iterating across all threads in
2705     * the pool. This method may be useful for tuning task
2706     * granularities.
2707     *
2708     * @return the number of queued tasks
2709     */
2710     public long getQueuedTaskCount() {
2711     long count = 0;
2712     WorkQueue[] ws; WorkQueue w;
2713     if ((ws = workQueues) != null) {
2714     for (int i = 1; i < ws.length; i += 2) {
2715     if ((w = ws[i]) != null)
2716     count += w.queueSize();
2717     }
2718     }
2719     return count;
2720     }
2721    
2722     /**
2723     * Returns an estimate of the number of tasks submitted to this
2724     * pool that have not yet begun executing. This method may take
2725     * time proportional to the number of submissions.
2726     *
2727     * @return the number of queued submissions
2728     */
2729     public int getQueuedSubmissionCount() {
2730     int count = 0;
2731     WorkQueue[] ws; WorkQueue w;
2732     if ((ws = workQueues) != null) {
2733     for (int i = 0; i < ws.length; i += 2) {
2734     if ((w = ws[i]) != null)
2735     count += w.queueSize();
2736     }
2737     }
2738     return count;
2739     }
2740    
2741     /**
2742     * Returns {@code true} if there are any tasks submitted to this
2743     * pool that have not yet begun executing.
2744     *
2745     * @return {@code true} if there are any queued submissions
2746     */
2747     public boolean hasQueuedSubmissions() {
2748     WorkQueue[] ws; WorkQueue w;
2749     if ((ws = workQueues) != null) {
2750     for (int i = 0; i < ws.length; i += 2) {
2751     if ((w = ws[i]) != null && !w.isEmpty())
2752     return true;
2753     }
2754     }
2755     return false;
2756     }
2757    
2758     /**
2759     * Removes and returns the next unexecuted submission if one is
2760     * available. This method may be useful in extensions to this
2761     * class that re-assign work in systems with multiple pools.
2762     *
2763     * @return the next submission, or {@code null} if none
2764     */
2765     protected ForkJoinTask<?> pollSubmission() {
2766     return pollScan(true);
2767     }
2768    
2769     /**
2770     * Removes all available unexecuted submitted and forked tasks
2771     * from scheduling queues and adds them to the given collection,
2772     * without altering their execution status. These may include
2773     * artificially generated or wrapped tasks. This method is
2774     * designed to be invoked only when the pool is known to be
2775     * quiescent. Invocations at other times may not remove all
2776     * tasks. A failure encountered while attempting to add elements
2777     * to collection {@code c} may result in elements being in
2778     * neither, either or both collections when the associated
2779     * exception is thrown. The behavior of this operation is
2780     * undefined if the specified collection is modified while the
2781     * operation is in progress.
2782     *
2783     * @param c the collection to transfer elements into
2784     * @return the number of elements transferred
2785     */
2786     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2787     int count = 0;
2788     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2789     if ((ws = workQueues) != null) {
2790     for (int i = 0; i < ws.length; ++i) {
2791     if ((w = ws[i]) != null) {
2792     while ((t = w.poll()) != null) {
2793     c.add(t);
2794     ++count;
2795     }
2796     }
2797     }
2798     }
2799     return count;
2800     }
2801    
2802     /**
2803     * Returns a string identifying this pool, as well as its state,
2804     * including indications of run state, parallelism level, and
2805     * worker and task counts.
2806     *
2807     * @return a string identifying this pool, as well as its state
2808     */
2809     public String toString() {
2810     // Use a single pass through workQueues to collect counts
2811     long qt = 0L, qs = 0L; int rc = 0;
2812     long st = stealCount;
2813     WorkQueue[] ws; WorkQueue w;
2814     if ((ws = workQueues) != null) {
2815     for (int i = 0; i < ws.length; ++i) {
2816     if ((w = ws[i]) != null) {
2817     int size = w.queueSize();
2818     if ((i & 1) == 0)
2819     qs += size;
2820     else {
2821     qt += size;
2822     st += (long)w.nsteals & 0xffffffffL;
2823     if (w.isApparentlyUnblocked())
2824     ++rc;
2825     }
2826     }
2827     }
2828     }
2829    
2830     int md = mode;
2831     int pc = (md & SMASK);
2832     long c = ctl;
2833     int tc = pc + (short)(c >>> TC_SHIFT);
2834     int ac = pc + (int)(c >> RC_SHIFT);
2835     if (ac < 0) // ignore transient negative
2836     ac = 0;
2837     String level = ((md & TERMINATED) != 0 ? "Terminated" :
2838     (md & STOP) != 0 ? "Terminating" :
2839     (md & SHUTDOWN) != 0 ? "Shutting down" :
2840     "Running");
2841     return super.toString() +
2842     "[" + level +
2843     ", parallelism = " + pc +
2844     ", size = " + tc +
2845     ", active = " + ac +
2846     ", running = " + rc +
2847     ", steals = " + st +
2848     ", tasks = " + qt +
2849     ", submissions = " + qs +
2850     "]";
2851     }
2852    
2853     /**
2854     * Possibly initiates an orderly shutdown in which previously
2855     * submitted tasks are executed, but no new tasks will be
2856     * accepted. Invocation has no effect on execution state if this
2857     * is the {@link #commonPool()}, and no additional effect if
2858     * already shut down. Tasks that are in the process of being
2859     * submitted concurrently during the course of this method may or
2860     * may not be rejected.
2861     *
2862     * @throws SecurityException if a security manager exists and
2863     * the caller is not permitted to modify threads
2864     * because it does not hold {@link
2865     * java.lang.RuntimePermission}{@code ("modifyThread")}
2866     */
2867     public void shutdown() {
2868     checkPermission();
2869     tryTerminate(false, true);
2870     }
2871    
2872     /**
2873     * Possibly attempts to cancel and/or stop all tasks, and reject
2874     * all subsequently submitted tasks. Invocation has no effect on
2875     * execution state if this is the {@link #commonPool()}, and no
2876     * additional effect if already shut down. Otherwise, tasks that
2877     * are in the process of being submitted or executed concurrently
2878     * during the course of this method may or may not be
2879     * rejected. This method cancels both existing and unexecuted
2880     * tasks, in order to permit termination in the presence of task
2881     * dependencies. So the method always returns an empty list
2882     * (unlike the case for some other Executors).
2883     *
2884     * @return an empty list
2885     * @throws SecurityException if a security manager exists and
2886     * the caller is not permitted to modify threads
2887     * because it does not hold {@link
2888     * java.lang.RuntimePermission}{@code ("modifyThread")}
2889     */
2890     public List<Runnable> shutdownNow() {
2891     checkPermission();
2892     tryTerminate(true, true);
2893     return Collections.emptyList();
2894     }
2895    
2896     /**
2897     * Returns {@code true} if all tasks have completed following shut down.
2898     *
2899     * @return {@code true} if all tasks have completed following shut down
2900     */
2901     public boolean isTerminated() {
2902     return (mode & TERMINATED) != 0;
2903     }
2904    
2905     /**
2906     * Returns {@code true} if the process of termination has
2907     * commenced but not yet completed. This method may be useful for
2908     * debugging. A return of {@code true} reported a sufficient
2909     * period after shutdown may indicate that submitted tasks have
2910     * ignored or suppressed interruption, or are waiting for I/O,
2911     * causing this executor not to properly terminate. (See the
2912     * advisory notes for class {@link ForkJoinTask} stating that
2913     * tasks should not normally entail blocking operations. But if
2914     * they do, they must abort them on interrupt.)
2915     *
2916     * @return {@code true} if terminating but not yet terminated
2917     */
2918     public boolean isTerminating() {
2919     int md = mode;
2920     return (md & STOP) != 0 && (md & TERMINATED) == 0;
2921     }
2922    
2923     /**
2924     * Returns {@code true} if this pool has been shut down.
2925     *
2926     * @return {@code true} if this pool has been shut down
2927     */
2928     public boolean isShutdown() {
2929     return (mode & SHUTDOWN) != 0;
2930     }
2931    
2932     /**
2933     * Blocks until all tasks have completed execution after a
2934     * shutdown request, or the timeout occurs, or the current thread
2935     * is interrupted, whichever happens first. Because the {@link
2936     * #commonPool()} never terminates until program shutdown, when
2937     * applied to the common pool, this method is equivalent to {@link
2938     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2939     *
2940     * @param timeout the maximum time to wait
2941     * @param unit the time unit of the timeout argument
2942     * @return {@code true} if this executor terminated and
2943     * {@code false} if the timeout elapsed before termination
2944     * @throws InterruptedException if interrupted while waiting
2945     */
2946     public boolean awaitTermination(long timeout, TimeUnit unit)
2947     throws InterruptedException {
2948     if (Thread.interrupted())
2949     throw new InterruptedException();
2950     if (this == common) {
2951     awaitQuiescence(timeout, unit);
2952     return false;
2953     }
2954     long nanos = unit.toNanos(timeout);
2955     if (isTerminated())
2956     return true;
2957     if (nanos <= 0L)
2958     return false;
2959     long deadline = System.nanoTime() + nanos;
2960     synchronized (this) {
2961     for (;;) {
2962     if (isTerminated())
2963     return true;
2964     if (nanos <= 0L)
2965     return false;
2966     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2967     wait(millis > 0L ? millis : 1L);
2968     nanos = deadline - System.nanoTime();
2969     }
2970     }
2971     }
2972    
2973     /**
2974     * If called by a ForkJoinTask operating in this pool, equivalent
2975     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2976     * waits and/or attempts to assist performing tasks until this
2977     * pool {@link #isQuiescent} or the indicated timeout elapses.
2978     *
2979     * @param timeout the maximum time to wait
2980     * @param unit the time unit of the timeout argument
2981     * @return {@code true} if quiescent; {@code false} if the
2982     * timeout elapsed.
2983     */
2984     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2985     long nanos = unit.toNanos(timeout);
2986     ForkJoinWorkerThread wt;
2987     Thread thread = Thread.currentThread();
2988     if ((thread instanceof ForkJoinWorkerThread) &&
2989     (wt = (ForkJoinWorkerThread)thread).pool == this) {
2990     helpQuiescePool(wt.workQueue);
2991     return true;
2992     }
2993     else {
2994     for (long startTime = System.nanoTime();;) {
2995     ForkJoinTask<?> t;
2996     if ((t = pollScan(false)) != null)
2997     t.doExec();
2998     else if (isQuiescent())
2999     return true;
3000     else if ((System.nanoTime() - startTime) > nanos)
3001     return false;
3002     else
3003     Thread.yield(); // cannot block
3004     }
3005     }
3006     }
3007    
3008     /**
3009     * Waits and/or attempts to assist performing tasks indefinitely
3010     * until the {@link #commonPool()} {@link #isQuiescent}.
3011     */
3012     static void quiesceCommonPool() {
3013     common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3014     }
3015    
3016     /**
3017     * Interface for extending managed parallelism for tasks running
3018     * in {@link ForkJoinPool}s.
3019     *
3020     * <p>A {@code ManagedBlocker} provides two methods. Method
3021     * {@link #isReleasable} must return {@code true} if blocking is
3022     * not necessary. Method {@link #block} blocks the current thread
3023     * if necessary (perhaps internally invoking {@code isReleasable}
3024     * before actually blocking). These actions are performed by any
3025     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3026     * The unusual methods in this API accommodate synchronizers that
3027     * may, but don't usually, block for long periods. Similarly, they
3028     * allow more efficient internal handling of cases in which
3029     * additional workers may be, but usually are not, needed to
3030     * ensure sufficient parallelism. Toward this end,
3031     * implementations of method {@code isReleasable} must be amenable
3032     * to repeated invocation.
3033     *
3034     * <p>For example, here is a ManagedBlocker based on a
3035     * ReentrantLock:
3036     * <pre> {@code
3037     * class ManagedLocker implements ManagedBlocker {
3038     * final ReentrantLock lock;
3039     * boolean hasLock = false;
3040     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3041     * public boolean block() {
3042     * if (!hasLock)
3043     * lock.lock();
3044     * return true;
3045     * }
3046     * public boolean isReleasable() {
3047     * return hasLock || (hasLock = lock.tryLock());
3048     * }
3049     * }}</pre>
3050     *
3051     * <p>Here is a class that possibly blocks waiting for an
3052     * item on a given queue:
3053     * <pre> {@code
3054     * class QueueTaker<E> implements ManagedBlocker {
3055     * final BlockingQueue<E> queue;
3056     * volatile E item = null;
3057     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3058     * public boolean block() throws InterruptedException {
3059     * if (item == null)
3060     * item = queue.take();
3061     * return true;
3062     * }
3063     * public boolean isReleasable() {
3064     * return item != null || (item = queue.poll()) != null;
3065     * }
3066     * public E getItem() { // call after pool.managedBlock completes
3067     * return item;
3068     * }
3069     * }}</pre>
3070     */
3071     public static interface ManagedBlocker {
3072     /**
3073     * Possibly blocks the current thread, for example waiting for
3074     * a lock or condition.
3075     *
3076     * @return {@code true} if no additional blocking is necessary
3077     * (i.e., if isReleasable would return true)
3078     * @throws InterruptedException if interrupted while waiting
3079     * (the method is not required to do so, but is allowed to)
3080     */
3081     boolean block() throws InterruptedException;
3082    
3083     /**
3084     * Returns {@code true} if blocking is unnecessary.
3085     * @return {@code true} if blocking is unnecessary
3086     */
3087     boolean isReleasable();
3088     }
3089    
3090     /**
3091     * Runs the given possibly blocking task. When {@linkplain
3092     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3093     * method possibly arranges for a spare thread to be activated if
3094     * necessary to ensure sufficient parallelism while the current
3095     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3096     *
3097     * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3098     * {@code blocker.block()} until either method returns {@code true}.
3099     * Every call to {@code blocker.block()} is preceded by a call to
3100     * {@code blocker.isReleasable()} that returned {@code false}.
3101     *
3102     * <p>If not running in a ForkJoinPool, this method is
3103     * behaviorally equivalent to
3104     * <pre> {@code
3105     * while (!blocker.isReleasable())
3106     * if (blocker.block())
3107     * break;}</pre>
3108     *
3109     * If running in a ForkJoinPool, the pool may first be expanded to
3110     * ensure sufficient parallelism available during the call to
3111     * {@code blocker.block()}.
3112     *
3113     * @param blocker the blocker task
3114     * @throws InterruptedException if {@code blocker.block()} did so
3115     */
3116     public static void managedBlock(ManagedBlocker blocker)
3117     throws InterruptedException {
3118     ForkJoinPool p;
3119     ForkJoinWorkerThread wt;
3120     WorkQueue w;
3121     Thread t = Thread.currentThread();
3122     if ((t instanceof ForkJoinWorkerThread) &&
3123     (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3124     (w = wt.workQueue) != null) {
3125     int block;
3126     while (!blocker.isReleasable()) {
3127     if ((block = p.tryCompensate(w)) != 0) {
3128     try {
3129     do {} while (!blocker.isReleasable() &&
3130     !blocker.block());
3131     } finally {
3132     U.getAndAddLong(p, CTL, (block > 0) ? RC_UNIT : 0L);
3133     }
3134     break;
3135     }
3136     }
3137     }
3138     else {
3139     do {} while (!blocker.isReleasable() &&
3140     !blocker.block());
3141     }
3142     }
3143    
3144 dl 1.2 /**
3145     * If the given executor is a ForkJoinPool, poll and execute
3146     * AsynchronousCompletionTasks from worker's queue until none are
3147     * available or blocker is released.
3148     */
3149     static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3150     if (blocker != null && (e instanceof ForkJoinPool)) {
3151     WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3152     ForkJoinPool p = (ForkJoinPool)e;
3153     Thread thread = Thread.currentThread();
3154     if (thread instanceof ForkJoinWorkerThread &&
3155     (wt = (ForkJoinWorkerThread)thread).pool == p)
3156     w = wt.workQueue;
3157     else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3158     (ws = p.workQueues) != null && (n = ws.length) > 0)
3159     w = ws[(n - 1) & r & SQMASK];
3160     else
3161     w = null;
3162     if (w != null) {
3163     for (;;) {
3164     int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3165     if ((a = w.array) != null && (d = b - s) < 0 &&
3166     (al = a.length) > 0) {
3167     int index = (al - 1) & b;
3168     long offset = ((long)index << ASHIFT) + ABASE;
3169     ForkJoinTask<?> t = (ForkJoinTask<?>)
3170     U.getObjectVolatile(a, offset);
3171     if (blocker.isReleasable())
3172     break;
3173     else if (b++ == w.base) {
3174     if (t == null) {
3175     if (d == -1)
3176     break;
3177     }
3178     else if (!(t instanceof CompletableFuture.
3179     AsynchronousCompletionTask))
3180     break;
3181     else if (U.compareAndSwapObject(a, offset,
3182     t, null)) {
3183     w.base = b;
3184     t.doExec();
3185     }
3186     }
3187     }
3188     else
3189     break;
3190     }
3191     }
3192     }
3193     }
3194    
3195 jsr166 1.1 // AbstractExecutorService overrides. These rely on undocumented
3196     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3197     // implement RunnableFuture.
3198    
3199     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3200     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3201     }
3202    
3203     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3204     return new ForkJoinTask.AdaptedCallable<T>(callable);
3205     }
3206    
3207     // Unsafe mechanics
3208     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3209     private static final long CTL;
3210     private static final long MODE;
3211     private static final int ABASE;
3212     private static final int ASHIFT;
3213    
3214     static {
3215     try {
3216     CTL = U.objectFieldOffset
3217     (ForkJoinPool.class.getDeclaredField("ctl"));
3218     MODE = U.objectFieldOffset
3219     (ForkJoinPool.class.getDeclaredField("mode"));
3220     ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3221     int scale = U.arrayIndexScale(ForkJoinTask[].class);
3222     if ((scale & (scale - 1)) != 0)
3223     throw new Error("array index scale not a power of two");
3224     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3225     } catch (ReflectiveOperationException e) {
3226     throw new Error(e);
3227     }
3228    
3229     // Reduce the risk of rare disastrous classloading in first call to
3230     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3231     Class<?> ensureLoaded = LockSupport.class;
3232    
3233     int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3234     try {
3235     String p = System.getProperty
3236     ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3237     if (p != null)
3238     commonMaxSpares = Integer.parseInt(p);
3239     } catch (Exception ignore) {}
3240     COMMON_MAX_SPARES = commonMaxSpares;
3241    
3242     defaultForkJoinWorkerThreadFactory =
3243     new DefaultForkJoinWorkerThreadFactory();
3244     modifyThreadPermission = new RuntimePermission("modifyThread");
3245    
3246     common = java.security.AccessController.doPrivileged
3247     (new java.security.PrivilegedAction<ForkJoinPool>() {
3248     public ForkJoinPool run() {
3249     return new ForkJoinPool((byte)0); }});
3250    
3251 dl 1.2 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3252 jsr166 1.1 }
3253    
3254     /**
3255     * Factory for innocuous worker threads.
3256     */
3257     private static final class InnocuousForkJoinWorkerThreadFactory
3258     implements ForkJoinWorkerThreadFactory {
3259    
3260     /**
3261     * An ACC to restrict permissions for the factory itself.
3262     * The constructed workers have no permissions set.
3263     */
3264     private static final AccessControlContext innocuousAcc;
3265     static {
3266     Permissions innocuousPerms = new Permissions();
3267     innocuousPerms.add(modifyThreadPermission);
3268     innocuousPerms.add(new RuntimePermission(
3269     "enableContextClassLoaderOverride"));
3270     innocuousPerms.add(new RuntimePermission(
3271     "modifyThreadGroup"));
3272     innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3273     new ProtectionDomain(null, innocuousPerms)
3274     });
3275     }
3276    
3277     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3278     return java.security.AccessController.doPrivileged(
3279     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3280     public ForkJoinWorkerThread run() {
3281     return new ForkJoinWorkerThread.
3282     InnocuousForkJoinWorkerThread(pool);
3283     }}, innocuousAcc);
3284     }
3285     }
3286    
3287     }