ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.1
Committed: Sat Mar 26 06:22:50 2016 UTC (8 years, 2 months ago) by jsr166
Branch: MAIN
Log Message:
fork jdk8 maintenance branch for source and jtreg tests

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11     import java.util.Iterator;
12     import java.util.NoSuchElementException;
13     import java.util.Spliterator;
14     import java.util.Spliterators;
15     import java.util.concurrent.locks.Condition;
16     import java.util.concurrent.locks.ReentrantLock;
17     import java.util.function.Consumer;
18    
19     /**
20     * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
21     * linked nodes.
22     *
23     * <p>The optional capacity bound constructor argument serves as a
24     * way to prevent excessive expansion. The capacity, if unspecified,
25     * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
26     * dynamically created upon each insertion unless this would bring the
27     * deque above capacity.
28     *
29     * <p>Most operations run in constant time (ignoring time spent
30     * blocking). Exceptions include {@link #remove(Object) remove},
31     * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
32     * #removeLastOccurrence removeLastOccurrence}, {@link #contains
33     * contains}, {@link #iterator iterator.remove()}, and the bulk
34     * operations, all of which run in linear time.
35     *
36     * <p>This class and its iterator implement all of the
37     * <em>optional</em> methods of the {@link Collection} and {@link
38     * Iterator} interfaces.
39     *
40     * <p>This class is a member of the
41     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @since 1.6
45     * @author Doug Lea
46     * @param <E> the type of elements held in this deque
47     */
48     public class LinkedBlockingDeque<E>
49     extends AbstractQueue<E>
50     implements BlockingDeque<E>, java.io.Serializable {
51    
52     /*
53     * Implemented as a simple doubly-linked list protected by a
54     * single lock and using conditions to manage blocking.
55     *
56     * To implement weakly consistent iterators, it appears we need to
57     * keep all Nodes GC-reachable from a predecessor dequeued Node.
58     * That would cause two problems:
59     * - allow a rogue Iterator to cause unbounded memory retention
60     * - cause cross-generational linking of old Nodes to new Nodes if
61     * a Node was tenured while live, which generational GCs have a
62     * hard time dealing with, causing repeated major collections.
63     * However, only non-deleted Nodes need to be reachable from
64     * dequeued Nodes, and reachability does not necessarily have to
65     * be of the kind understood by the GC. We use the trick of
66     * linking a Node that has just been dequeued to itself. Such a
67     * self-link implicitly means to jump to "first" (for next links)
68     * or "last" (for prev links).
69     */
70    
71     /*
72     * We have "diamond" multiple interface/abstract class inheritance
73     * here, and that introduces ambiguities. Often we want the
74     * BlockingDeque javadoc combined with the AbstractQueue
75     * implementation, so a lot of method specs are duplicated here.
76     */
77    
78     private static final long serialVersionUID = -387911632671998426L;
79    
80     /** Doubly-linked list node class */
81     static final class Node<E> {
82     /**
83     * The item, or null if this node has been removed.
84     */
85     E item;
86    
87     /**
88     * One of:
89     * - the real predecessor Node
90     * - this Node, meaning the predecessor is tail
91     * - null, meaning there is no predecessor
92     */
93     Node<E> prev;
94    
95     /**
96     * One of:
97     * - the real successor Node
98     * - this Node, meaning the successor is head
99     * - null, meaning there is no successor
100     */
101     Node<E> next;
102    
103     Node(E x) {
104     item = x;
105     }
106     }
107    
108     /**
109     * Pointer to first node.
110     * Invariant: (first == null && last == null) ||
111     * (first.prev == null && first.item != null)
112     */
113     transient Node<E> first;
114    
115     /**
116     * Pointer to last node.
117     * Invariant: (first == null && last == null) ||
118     * (last.next == null && last.item != null)
119     */
120     transient Node<E> last;
121    
122     /** Number of items in the deque */
123     private transient int count;
124    
125     /** Maximum number of items in the deque */
126     private final int capacity;
127    
128     /** Main lock guarding all access */
129     final ReentrantLock lock = new ReentrantLock();
130    
131     /** Condition for waiting takes */
132     private final Condition notEmpty = lock.newCondition();
133    
134     /** Condition for waiting puts */
135     private final Condition notFull = lock.newCondition();
136    
137     /**
138     * Creates a {@code LinkedBlockingDeque} with a capacity of
139     * {@link Integer#MAX_VALUE}.
140     */
141     public LinkedBlockingDeque() {
142     this(Integer.MAX_VALUE);
143     }
144    
145     /**
146     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
147     *
148     * @param capacity the capacity of this deque
149     * @throws IllegalArgumentException if {@code capacity} is less than 1
150     */
151     public LinkedBlockingDeque(int capacity) {
152     if (capacity <= 0) throw new IllegalArgumentException();
153     this.capacity = capacity;
154     }
155    
156     /**
157     * Creates a {@code LinkedBlockingDeque} with a capacity of
158     * {@link Integer#MAX_VALUE}, initially containing the elements of
159     * the given collection, added in traversal order of the
160     * collection's iterator.
161     *
162     * @param c the collection of elements to initially contain
163     * @throws NullPointerException if the specified collection or any
164     * of its elements are null
165     */
166     public LinkedBlockingDeque(Collection<? extends E> c) {
167     this(Integer.MAX_VALUE);
168     final ReentrantLock lock = this.lock;
169     lock.lock(); // Never contended, but necessary for visibility
170     try {
171     for (E e : c) {
172     if (e == null)
173     throw new NullPointerException();
174     if (!linkLast(new Node<E>(e)))
175     throw new IllegalStateException("Deque full");
176     }
177     } finally {
178     lock.unlock();
179     }
180     }
181    
182    
183     // Basic linking and unlinking operations, called only while holding lock
184    
185     /**
186     * Links node as first element, or returns false if full.
187     */
188     private boolean linkFirst(Node<E> node) {
189     // assert lock.isHeldByCurrentThread();
190     if (count >= capacity)
191     return false;
192     Node<E> f = first;
193     node.next = f;
194     first = node;
195     if (last == null)
196     last = node;
197     else
198     f.prev = node;
199     ++count;
200     notEmpty.signal();
201     return true;
202     }
203    
204     /**
205     * Links node as last element, or returns false if full.
206     */
207     private boolean linkLast(Node<E> node) {
208     // assert lock.isHeldByCurrentThread();
209     if (count >= capacity)
210     return false;
211     Node<E> l = last;
212     node.prev = l;
213     last = node;
214     if (first == null)
215     first = node;
216     else
217     l.next = node;
218     ++count;
219     notEmpty.signal();
220     return true;
221     }
222    
223     /**
224     * Removes and returns first element, or null if empty.
225     */
226     private E unlinkFirst() {
227     // assert lock.isHeldByCurrentThread();
228     Node<E> f = first;
229     if (f == null)
230     return null;
231     Node<E> n = f.next;
232     E item = f.item;
233     f.item = null;
234     f.next = f; // help GC
235     first = n;
236     if (n == null)
237     last = null;
238     else
239     n.prev = null;
240     --count;
241     notFull.signal();
242     return item;
243     }
244    
245     /**
246     * Removes and returns last element, or null if empty.
247     */
248     private E unlinkLast() {
249     // assert lock.isHeldByCurrentThread();
250     Node<E> l = last;
251     if (l == null)
252     return null;
253     Node<E> p = l.prev;
254     E item = l.item;
255     l.item = null;
256     l.prev = l; // help GC
257     last = p;
258     if (p == null)
259     first = null;
260     else
261     p.next = null;
262     --count;
263     notFull.signal();
264     return item;
265     }
266    
267     /**
268     * Unlinks x.
269     */
270     void unlink(Node<E> x) {
271     // assert lock.isHeldByCurrentThread();
272     Node<E> p = x.prev;
273     Node<E> n = x.next;
274     if (p == null) {
275     unlinkFirst();
276     } else if (n == null) {
277     unlinkLast();
278     } else {
279     p.next = n;
280     n.prev = p;
281     x.item = null;
282     // Don't mess with x's links. They may still be in use by
283     // an iterator.
284     --count;
285     notFull.signal();
286     }
287     }
288    
289     // BlockingDeque methods
290    
291     /**
292     * @throws IllegalStateException if this deque is full
293     * @throws NullPointerException {@inheritDoc}
294     */
295     public void addFirst(E e) {
296     if (!offerFirst(e))
297     throw new IllegalStateException("Deque full");
298     }
299    
300     /**
301     * @throws IllegalStateException if this deque is full
302     * @throws NullPointerException {@inheritDoc}
303     */
304     public void addLast(E e) {
305     if (!offerLast(e))
306     throw new IllegalStateException("Deque full");
307     }
308    
309     /**
310     * @throws NullPointerException {@inheritDoc}
311     */
312     public boolean offerFirst(E e) {
313     if (e == null) throw new NullPointerException();
314     Node<E> node = new Node<E>(e);
315     final ReentrantLock lock = this.lock;
316     lock.lock();
317     try {
318     return linkFirst(node);
319     } finally {
320     lock.unlock();
321     }
322     }
323    
324     /**
325     * @throws NullPointerException {@inheritDoc}
326     */
327     public boolean offerLast(E e) {
328     if (e == null) throw new NullPointerException();
329     Node<E> node = new Node<E>(e);
330     final ReentrantLock lock = this.lock;
331     lock.lock();
332     try {
333     return linkLast(node);
334     } finally {
335     lock.unlock();
336     }
337     }
338    
339     /**
340     * @throws NullPointerException {@inheritDoc}
341     * @throws InterruptedException {@inheritDoc}
342     */
343     public void putFirst(E e) throws InterruptedException {
344     if (e == null) throw new NullPointerException();
345     Node<E> node = new Node<E>(e);
346     final ReentrantLock lock = this.lock;
347     lock.lock();
348     try {
349     while (!linkFirst(node))
350     notFull.await();
351     } finally {
352     lock.unlock();
353     }
354     }
355    
356     /**
357     * @throws NullPointerException {@inheritDoc}
358     * @throws InterruptedException {@inheritDoc}
359     */
360     public void putLast(E e) throws InterruptedException {
361     if (e == null) throw new NullPointerException();
362     Node<E> node = new Node<E>(e);
363     final ReentrantLock lock = this.lock;
364     lock.lock();
365     try {
366     while (!linkLast(node))
367     notFull.await();
368     } finally {
369     lock.unlock();
370     }
371     }
372    
373     /**
374     * @throws NullPointerException {@inheritDoc}
375     * @throws InterruptedException {@inheritDoc}
376     */
377     public boolean offerFirst(E e, long timeout, TimeUnit unit)
378     throws InterruptedException {
379     if (e == null) throw new NullPointerException();
380     Node<E> node = new Node<E>(e);
381     long nanos = unit.toNanos(timeout);
382     final ReentrantLock lock = this.lock;
383     lock.lockInterruptibly();
384     try {
385     while (!linkFirst(node)) {
386     if (nanos <= 0L)
387     return false;
388     nanos = notFull.awaitNanos(nanos);
389     }
390     return true;
391     } finally {
392     lock.unlock();
393     }
394     }
395    
396     /**
397     * @throws NullPointerException {@inheritDoc}
398     * @throws InterruptedException {@inheritDoc}
399     */
400     public boolean offerLast(E e, long timeout, TimeUnit unit)
401     throws InterruptedException {
402     if (e == null) throw new NullPointerException();
403     Node<E> node = new Node<E>(e);
404     long nanos = unit.toNanos(timeout);
405     final ReentrantLock lock = this.lock;
406     lock.lockInterruptibly();
407     try {
408     while (!linkLast(node)) {
409     if (nanos <= 0L)
410     return false;
411     nanos = notFull.awaitNanos(nanos);
412     }
413     return true;
414     } finally {
415     lock.unlock();
416     }
417     }
418    
419     /**
420     * @throws NoSuchElementException {@inheritDoc}
421     */
422     public E removeFirst() {
423     E x = pollFirst();
424     if (x == null) throw new NoSuchElementException();
425     return x;
426     }
427    
428     /**
429     * @throws NoSuchElementException {@inheritDoc}
430     */
431     public E removeLast() {
432     E x = pollLast();
433     if (x == null) throw new NoSuchElementException();
434     return x;
435     }
436    
437     public E pollFirst() {
438     final ReentrantLock lock = this.lock;
439     lock.lock();
440     try {
441     return unlinkFirst();
442     } finally {
443     lock.unlock();
444     }
445     }
446    
447     public E pollLast() {
448     final ReentrantLock lock = this.lock;
449     lock.lock();
450     try {
451     return unlinkLast();
452     } finally {
453     lock.unlock();
454     }
455     }
456    
457     public E takeFirst() throws InterruptedException {
458     final ReentrantLock lock = this.lock;
459     lock.lock();
460     try {
461     E x;
462     while ( (x = unlinkFirst()) == null)
463     notEmpty.await();
464     return x;
465     } finally {
466     lock.unlock();
467     }
468     }
469    
470     public E takeLast() throws InterruptedException {
471     final ReentrantLock lock = this.lock;
472     lock.lock();
473     try {
474     E x;
475     while ( (x = unlinkLast()) == null)
476     notEmpty.await();
477     return x;
478     } finally {
479     lock.unlock();
480     }
481     }
482    
483     public E pollFirst(long timeout, TimeUnit unit)
484     throws InterruptedException {
485     long nanos = unit.toNanos(timeout);
486     final ReentrantLock lock = this.lock;
487     lock.lockInterruptibly();
488     try {
489     E x;
490     while ( (x = unlinkFirst()) == null) {
491     if (nanos <= 0L)
492     return null;
493     nanos = notEmpty.awaitNanos(nanos);
494     }
495     return x;
496     } finally {
497     lock.unlock();
498     }
499     }
500    
501     public E pollLast(long timeout, TimeUnit unit)
502     throws InterruptedException {
503     long nanos = unit.toNanos(timeout);
504     final ReentrantLock lock = this.lock;
505     lock.lockInterruptibly();
506     try {
507     E x;
508     while ( (x = unlinkLast()) == null) {
509     if (nanos <= 0L)
510     return null;
511     nanos = notEmpty.awaitNanos(nanos);
512     }
513     return x;
514     } finally {
515     lock.unlock();
516     }
517     }
518    
519     /**
520     * @throws NoSuchElementException {@inheritDoc}
521     */
522     public E getFirst() {
523     E x = peekFirst();
524     if (x == null) throw new NoSuchElementException();
525     return x;
526     }
527    
528     /**
529     * @throws NoSuchElementException {@inheritDoc}
530     */
531     public E getLast() {
532     E x = peekLast();
533     if (x == null) throw new NoSuchElementException();
534     return x;
535     }
536    
537     public E peekFirst() {
538     final ReentrantLock lock = this.lock;
539     lock.lock();
540     try {
541     return (first == null) ? null : first.item;
542     } finally {
543     lock.unlock();
544     }
545     }
546    
547     public E peekLast() {
548     final ReentrantLock lock = this.lock;
549     lock.lock();
550     try {
551     return (last == null) ? null : last.item;
552     } finally {
553     lock.unlock();
554     }
555     }
556    
557     public boolean removeFirstOccurrence(Object o) {
558     if (o == null) return false;
559     final ReentrantLock lock = this.lock;
560     lock.lock();
561     try {
562     for (Node<E> p = first; p != null; p = p.next) {
563     if (o.equals(p.item)) {
564     unlink(p);
565     return true;
566     }
567     }
568     return false;
569     } finally {
570     lock.unlock();
571     }
572     }
573    
574     public boolean removeLastOccurrence(Object o) {
575     if (o == null) return false;
576     final ReentrantLock lock = this.lock;
577     lock.lock();
578     try {
579     for (Node<E> p = last; p != null; p = p.prev) {
580     if (o.equals(p.item)) {
581     unlink(p);
582     return true;
583     }
584     }
585     return false;
586     } finally {
587     lock.unlock();
588     }
589     }
590    
591     // BlockingQueue methods
592    
593     /**
594     * Inserts the specified element at the end of this deque unless it would
595     * violate capacity restrictions. When using a capacity-restricted deque,
596     * it is generally preferable to use method {@link #offer(Object) offer}.
597     *
598     * <p>This method is equivalent to {@link #addLast}.
599     *
600     * @throws IllegalStateException if this deque is full
601     * @throws NullPointerException if the specified element is null
602     */
603     public boolean add(E e) {
604     addLast(e);
605     return true;
606     }
607    
608     /**
609     * @throws NullPointerException if the specified element is null
610     */
611     public boolean offer(E e) {
612     return offerLast(e);
613     }
614    
615     /**
616     * @throws NullPointerException {@inheritDoc}
617     * @throws InterruptedException {@inheritDoc}
618     */
619     public void put(E e) throws InterruptedException {
620     putLast(e);
621     }
622    
623     /**
624     * @throws NullPointerException {@inheritDoc}
625     * @throws InterruptedException {@inheritDoc}
626     */
627     public boolean offer(E e, long timeout, TimeUnit unit)
628     throws InterruptedException {
629     return offerLast(e, timeout, unit);
630     }
631    
632     /**
633     * Retrieves and removes the head of the queue represented by this deque.
634     * This method differs from {@link #poll poll} only in that it throws an
635     * exception if this deque is empty.
636     *
637     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
638     *
639     * @return the head of the queue represented by this deque
640     * @throws NoSuchElementException if this deque is empty
641     */
642     public E remove() {
643     return removeFirst();
644     }
645    
646     public E poll() {
647     return pollFirst();
648     }
649    
650     public E take() throws InterruptedException {
651     return takeFirst();
652     }
653    
654     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
655     return pollFirst(timeout, unit);
656     }
657    
658     /**
659     * Retrieves, but does not remove, the head of the queue represented by
660     * this deque. This method differs from {@link #peek peek} only in that
661     * it throws an exception if this deque is empty.
662     *
663     * <p>This method is equivalent to {@link #getFirst() getFirst}.
664     *
665     * @return the head of the queue represented by this deque
666     * @throws NoSuchElementException if this deque is empty
667     */
668     public E element() {
669     return getFirst();
670     }
671    
672     public E peek() {
673     return peekFirst();
674     }
675    
676     /**
677     * Returns the number of additional elements that this deque can ideally
678     * (in the absence of memory or resource constraints) accept without
679     * blocking. This is always equal to the initial capacity of this deque
680     * less the current {@code size} of this deque.
681     *
682     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
683     * an element will succeed by inspecting {@code remainingCapacity}
684     * because it may be the case that another thread is about to
685     * insert or remove an element.
686     */
687     public int remainingCapacity() {
688     final ReentrantLock lock = this.lock;
689     lock.lock();
690     try {
691     return capacity - count;
692     } finally {
693     lock.unlock();
694     }
695     }
696    
697     /**
698     * @throws UnsupportedOperationException {@inheritDoc}
699     * @throws ClassCastException {@inheritDoc}
700     * @throws NullPointerException {@inheritDoc}
701     * @throws IllegalArgumentException {@inheritDoc}
702     */
703     public int drainTo(Collection<? super E> c) {
704     return drainTo(c, Integer.MAX_VALUE);
705     }
706    
707     /**
708     * @throws UnsupportedOperationException {@inheritDoc}
709     * @throws ClassCastException {@inheritDoc}
710     * @throws NullPointerException {@inheritDoc}
711     * @throws IllegalArgumentException {@inheritDoc}
712     */
713     public int drainTo(Collection<? super E> c, int maxElements) {
714     if (c == null)
715     throw new NullPointerException();
716     if (c == this)
717     throw new IllegalArgumentException();
718     if (maxElements <= 0)
719     return 0;
720     final ReentrantLock lock = this.lock;
721     lock.lock();
722     try {
723     int n = Math.min(maxElements, count);
724     for (int i = 0; i < n; i++) {
725     c.add(first.item); // In this order, in case add() throws.
726     unlinkFirst();
727     }
728     return n;
729     } finally {
730     lock.unlock();
731     }
732     }
733    
734     // Stack methods
735    
736     /**
737     * @throws IllegalStateException if this deque is full
738     * @throws NullPointerException {@inheritDoc}
739     */
740     public void push(E e) {
741     addFirst(e);
742     }
743    
744     /**
745     * @throws NoSuchElementException {@inheritDoc}
746     */
747     public E pop() {
748     return removeFirst();
749     }
750    
751     // Collection methods
752    
753     /**
754     * Removes the first occurrence of the specified element from this deque.
755     * If the deque does not contain the element, it is unchanged.
756     * More formally, removes the first element {@code e} such that
757     * {@code o.equals(e)} (if such an element exists).
758     * Returns {@code true} if this deque contained the specified element
759     * (or equivalently, if this deque changed as a result of the call).
760     *
761     * <p>This method is equivalent to
762     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
763     *
764     * @param o element to be removed from this deque, if present
765     * @return {@code true} if this deque changed as a result of the call
766     */
767     public boolean remove(Object o) {
768     return removeFirstOccurrence(o);
769     }
770    
771     /**
772     * Returns the number of elements in this deque.
773     *
774     * @return the number of elements in this deque
775     */
776     public int size() {
777     final ReentrantLock lock = this.lock;
778     lock.lock();
779     try {
780     return count;
781     } finally {
782     lock.unlock();
783     }
784     }
785    
786     /**
787     * Returns {@code true} if this deque contains the specified element.
788     * More formally, returns {@code true} if and only if this deque contains
789     * at least one element {@code e} such that {@code o.equals(e)}.
790     *
791     * @param o object to be checked for containment in this deque
792     * @return {@code true} if this deque contains the specified element
793     */
794     public boolean contains(Object o) {
795     if (o == null) return false;
796     final ReentrantLock lock = this.lock;
797     lock.lock();
798     try {
799     for (Node<E> p = first; p != null; p = p.next)
800     if (o.equals(p.item))
801     return true;
802     return false;
803     } finally {
804     lock.unlock();
805     }
806     }
807    
808     /*
809     * TODO: Add support for more efficient bulk operations.
810     *
811     * We don't want to acquire the lock for every iteration, but we
812     * also want other threads a chance to interact with the
813     * collection, especially when count is close to capacity.
814     */
815    
816     // /**
817     // * Adds all of the elements in the specified collection to this
818     // * queue. Attempts to addAll of a queue to itself result in
819     // * {@code IllegalArgumentException}. Further, the behavior of
820     // * this operation is undefined if the specified collection is
821     // * modified while the operation is in progress.
822     // *
823     // * @param c collection containing elements to be added to this queue
824     // * @return {@code true} if this queue changed as a result of the call
825     // * @throws ClassCastException {@inheritDoc}
826     // * @throws NullPointerException {@inheritDoc}
827     // * @throws IllegalArgumentException {@inheritDoc}
828     // * @throws IllegalStateException if this deque is full
829     // * @see #add(Object)
830     // */
831     // public boolean addAll(Collection<? extends E> c) {
832     // if (c == null)
833     // throw new NullPointerException();
834     // if (c == this)
835     // throw new IllegalArgumentException();
836     // final ReentrantLock lock = this.lock;
837     // lock.lock();
838     // try {
839     // boolean modified = false;
840     // for (E e : c)
841     // if (linkLast(e))
842     // modified = true;
843     // return modified;
844     // } finally {
845     // lock.unlock();
846     // }
847     // }
848    
849     /**
850     * Returns an array containing all of the elements in this deque, in
851     * proper sequence (from first to last element).
852     *
853     * <p>The returned array will be "safe" in that no references to it are
854     * maintained by this deque. (In other words, this method must allocate
855     * a new array). The caller is thus free to modify the returned array.
856     *
857     * <p>This method acts as bridge between array-based and collection-based
858     * APIs.
859     *
860     * @return an array containing all of the elements in this deque
861     */
862     @SuppressWarnings("unchecked")
863     public Object[] toArray() {
864     final ReentrantLock lock = this.lock;
865     lock.lock();
866     try {
867     Object[] a = new Object[count];
868     int k = 0;
869     for (Node<E> p = first; p != null; p = p.next)
870     a[k++] = p.item;
871     return a;
872     } finally {
873     lock.unlock();
874     }
875     }
876    
877     /**
878     * Returns an array containing all of the elements in this deque, in
879     * proper sequence; the runtime type of the returned array is that of
880     * the specified array. If the deque fits in the specified array, it
881     * is returned therein. Otherwise, a new array is allocated with the
882     * runtime type of the specified array and the size of this deque.
883     *
884     * <p>If this deque fits in the specified array with room to spare
885     * (i.e., the array has more elements than this deque), the element in
886     * the array immediately following the end of the deque is set to
887     * {@code null}.
888     *
889     * <p>Like the {@link #toArray()} method, this method acts as bridge between
890     * array-based and collection-based APIs. Further, this method allows
891     * precise control over the runtime type of the output array, and may,
892     * under certain circumstances, be used to save allocation costs.
893     *
894     * <p>Suppose {@code x} is a deque known to contain only strings.
895     * The following code can be used to dump the deque into a newly
896     * allocated array of {@code String}:
897     *
898     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
899     *
900     * Note that {@code toArray(new Object[0])} is identical in function to
901     * {@code toArray()}.
902     *
903     * @param a the array into which the elements of the deque are to
904     * be stored, if it is big enough; otherwise, a new array of the
905     * same runtime type is allocated for this purpose
906     * @return an array containing all of the elements in this deque
907     * @throws ArrayStoreException if the runtime type of the specified array
908     * is not a supertype of the runtime type of every element in
909     * this deque
910     * @throws NullPointerException if the specified array is null
911     */
912     @SuppressWarnings("unchecked")
913     public <T> T[] toArray(T[] a) {
914     final ReentrantLock lock = this.lock;
915     lock.lock();
916     try {
917     if (a.length < count)
918     a = (T[])java.lang.reflect.Array.newInstance
919     (a.getClass().getComponentType(), count);
920    
921     int k = 0;
922     for (Node<E> p = first; p != null; p = p.next)
923     a[k++] = (T)p.item;
924     if (a.length > k)
925     a[k] = null;
926     return a;
927     } finally {
928     lock.unlock();
929     }
930     }
931    
932     public String toString() {
933     return Helpers.collectionToString(this);
934     }
935    
936     /**
937     * Atomically removes all of the elements from this deque.
938     * The deque will be empty after this call returns.
939     */
940     public void clear() {
941     final ReentrantLock lock = this.lock;
942     lock.lock();
943     try {
944     for (Node<E> f = first; f != null; ) {
945     f.item = null;
946     Node<E> n = f.next;
947     f.prev = null;
948     f.next = null;
949     f = n;
950     }
951     first = last = null;
952     count = 0;
953     notFull.signalAll();
954     } finally {
955     lock.unlock();
956     }
957     }
958    
959     /**
960     * Returns an iterator over the elements in this deque in proper sequence.
961     * The elements will be returned in order from first (head) to last (tail).
962     *
963     * <p>The returned iterator is
964     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
965     *
966     * @return an iterator over the elements in this deque in proper sequence
967     */
968     public Iterator<E> iterator() {
969     return new Itr();
970     }
971    
972     /**
973     * Returns an iterator over the elements in this deque in reverse
974     * sequential order. The elements will be returned in order from
975     * last (tail) to first (head).
976     *
977     * <p>The returned iterator is
978     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
979     *
980     * @return an iterator over the elements in this deque in reverse order
981     */
982     public Iterator<E> descendingIterator() {
983     return new DescendingItr();
984     }
985    
986     /**
987     * Base class for LinkedBlockingDeque iterators.
988     */
989     private abstract class AbstractItr implements Iterator<E> {
990     /**
991     * The next node to return in next().
992     */
993     Node<E> next;
994    
995     /**
996     * nextItem holds on to item fields because once we claim that
997     * an element exists in hasNext(), we must return item read
998     * under lock (in advance()) even if it was in the process of
999     * being removed when hasNext() was called.
1000     */
1001     E nextItem;
1002    
1003     /**
1004     * Node returned by most recent call to next. Needed by remove.
1005     * Reset to null if this element is deleted by a call to remove.
1006     */
1007     private Node<E> lastRet;
1008    
1009     abstract Node<E> firstNode();
1010     abstract Node<E> nextNode(Node<E> n);
1011    
1012     AbstractItr() {
1013     // set to initial position
1014     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1015     lock.lock();
1016     try {
1017     next = firstNode();
1018     nextItem = (next == null) ? null : next.item;
1019     } finally {
1020     lock.unlock();
1021     }
1022     }
1023    
1024     /**
1025     * Returns the successor node of the given non-null, but
1026     * possibly previously deleted, node.
1027     */
1028     private Node<E> succ(Node<E> n) {
1029     // Chains of deleted nodes ending in null or self-links
1030     // are possible if multiple interior nodes are removed.
1031     for (;;) {
1032     Node<E> s = nextNode(n);
1033     if (s == null)
1034     return null;
1035     else if (s.item != null)
1036     return s;
1037     else if (s == n)
1038     return firstNode();
1039     else
1040     n = s;
1041     }
1042     }
1043    
1044     /**
1045     * Advances next.
1046     */
1047     void advance() {
1048     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1049     lock.lock();
1050     try {
1051     // assert next != null;
1052     next = succ(next);
1053     nextItem = (next == null) ? null : next.item;
1054     } finally {
1055     lock.unlock();
1056     }
1057     }
1058    
1059     public boolean hasNext() {
1060     return next != null;
1061     }
1062    
1063     public E next() {
1064     if (next == null)
1065     throw new NoSuchElementException();
1066     lastRet = next;
1067     E x = nextItem;
1068     advance();
1069     return x;
1070     }
1071    
1072     public void remove() {
1073     Node<E> n = lastRet;
1074     if (n == null)
1075     throw new IllegalStateException();
1076     lastRet = null;
1077     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078     lock.lock();
1079     try {
1080     if (n.item != null)
1081     unlink(n);
1082     } finally {
1083     lock.unlock();
1084     }
1085     }
1086     }
1087    
1088     /** Forward iterator */
1089     private class Itr extends AbstractItr {
1090     Node<E> firstNode() { return first; }
1091     Node<E> nextNode(Node<E> n) { return n.next; }
1092     }
1093    
1094     /** Descending iterator */
1095     private class DescendingItr extends AbstractItr {
1096     Node<E> firstNode() { return last; }
1097     Node<E> nextNode(Node<E> n) { return n.prev; }
1098     }
1099    
1100     /** A customized variant of Spliterators.IteratorSpliterator */
1101     static final class LBDSpliterator<E> implements Spliterator<E> {
1102     static final int MAX_BATCH = 1 << 25; // max batch array size;
1103     final LinkedBlockingDeque<E> queue;
1104     Node<E> current; // current node; null until initialized
1105     int batch; // batch size for splits
1106     boolean exhausted; // true when no more nodes
1107     long est; // size estimate
1108     LBDSpliterator(LinkedBlockingDeque<E> queue) {
1109     this.queue = queue;
1110     this.est = queue.size();
1111     }
1112    
1113     public long estimateSize() { return est; }
1114    
1115     public Spliterator<E> trySplit() {
1116     Node<E> h;
1117     final LinkedBlockingDeque<E> q = this.queue;
1118     int b = batch;
1119     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1120     if (!exhausted &&
1121     ((h = current) != null || (h = q.first) != null) &&
1122     h.next != null) {
1123     Object[] a = new Object[n];
1124     final ReentrantLock lock = q.lock;
1125     int i = 0;
1126     Node<E> p = current;
1127     lock.lock();
1128     try {
1129     if (p != null || (p = q.first) != null) {
1130     do {
1131     if ((a[i] = p.item) != null)
1132     ++i;
1133     } while ((p = p.next) != null && i < n);
1134     }
1135     } finally {
1136     lock.unlock();
1137     }
1138     if ((current = p) == null) {
1139     est = 0L;
1140     exhausted = true;
1141     }
1142     else if ((est -= i) < 0L)
1143     est = 0L;
1144     if (i > 0) {
1145     batch = i;
1146     return Spliterators.spliterator
1147     (a, 0, i, (Spliterator.ORDERED |
1148     Spliterator.NONNULL |
1149     Spliterator.CONCURRENT));
1150     }
1151     }
1152     return null;
1153     }
1154    
1155     public void forEachRemaining(Consumer<? super E> action) {
1156     if (action == null) throw new NullPointerException();
1157     final LinkedBlockingDeque<E> q = this.queue;
1158     final ReentrantLock lock = q.lock;
1159     if (!exhausted) {
1160     exhausted = true;
1161     Node<E> p = current;
1162     do {
1163     E e = null;
1164     lock.lock();
1165     try {
1166     if (p == null)
1167     p = q.first;
1168     while (p != null) {
1169     e = p.item;
1170     p = p.next;
1171     if (e != null)
1172     break;
1173     }
1174     } finally {
1175     lock.unlock();
1176     }
1177     if (e != null)
1178     action.accept(e);
1179     } while (p != null);
1180     }
1181     }
1182    
1183     public boolean tryAdvance(Consumer<? super E> action) {
1184     if (action == null) throw new NullPointerException();
1185     final LinkedBlockingDeque<E> q = this.queue;
1186     final ReentrantLock lock = q.lock;
1187     if (!exhausted) {
1188     E e = null;
1189     lock.lock();
1190     try {
1191     if (current == null)
1192     current = q.first;
1193     while (current != null) {
1194     e = current.item;
1195     current = current.next;
1196     if (e != null)
1197     break;
1198     }
1199     } finally {
1200     lock.unlock();
1201     }
1202     if (current == null)
1203     exhausted = true;
1204     if (e != null) {
1205     action.accept(e);
1206     return true;
1207     }
1208     }
1209     return false;
1210     }
1211    
1212     public int characteristics() {
1213     return Spliterator.ORDERED | Spliterator.NONNULL |
1214     Spliterator.CONCURRENT;
1215     }
1216     }
1217    
1218     /**
1219     * Returns a {@link Spliterator} over the elements in this deque.
1220     *
1221     * <p>The returned spliterator is
1222     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1223     *
1224     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1225     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1226     *
1227     * @implNote
1228     * The {@code Spliterator} implements {@code trySplit} to permit limited
1229     * parallelism.
1230     *
1231     * @return a {@code Spliterator} over the elements in this deque
1232     * @since 1.8
1233     */
1234     public Spliterator<E> spliterator() {
1235     return new LBDSpliterator<E>(this);
1236     }
1237    
1238     /**
1239     * Saves this deque to a stream (that is, serializes it).
1240     *
1241     * @param s the stream
1242     * @throws java.io.IOException if an I/O error occurs
1243     * @serialData The capacity (int), followed by elements (each an
1244     * {@code Object}) in the proper order, followed by a null
1245     */
1246     private void writeObject(java.io.ObjectOutputStream s)
1247     throws java.io.IOException {
1248     final ReentrantLock lock = this.lock;
1249     lock.lock();
1250     try {
1251     // Write out capacity and any hidden stuff
1252     s.defaultWriteObject();
1253     // Write out all elements in the proper order.
1254     for (Node<E> p = first; p != null; p = p.next)
1255     s.writeObject(p.item);
1256     // Use trailing null as sentinel
1257     s.writeObject(null);
1258     } finally {
1259     lock.unlock();
1260     }
1261     }
1262    
1263     /**
1264     * Reconstitutes this deque from a stream (that is, deserializes it).
1265     * @param s the stream
1266     * @throws ClassNotFoundException if the class of a serialized object
1267     * could not be found
1268     * @throws java.io.IOException if an I/O error occurs
1269     */
1270     private void readObject(java.io.ObjectInputStream s)
1271     throws java.io.IOException, ClassNotFoundException {
1272     s.defaultReadObject();
1273     count = 0;
1274     first = null;
1275     last = null;
1276     // Read in all elements and place in queue
1277     for (;;) {
1278     @SuppressWarnings("unchecked")
1279     E item = (E)s.readObject();
1280     if (item == null)
1281     break;
1282     add(item);
1283     }
1284     }
1285    
1286     }