ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.1
Committed: Sat Mar 26 06:22:50 2016 UTC (8 years, 1 month ago) by jsr166
Branch: MAIN
Log Message:
fork jdk8 maintenance branch for source and jtreg tests

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Spliterator;
14 import java.util.Spliterators;
15 import java.util.concurrent.locks.Condition;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.function.Consumer;
18
19 /**
20 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
21 * linked nodes.
22 *
23 * <p>The optional capacity bound constructor argument serves as a
24 * way to prevent excessive expansion. The capacity, if unspecified,
25 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
26 * dynamically created upon each insertion unless this would bring the
27 * deque above capacity.
28 *
29 * <p>Most operations run in constant time (ignoring time spent
30 * blocking). Exceptions include {@link #remove(Object) remove},
31 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
32 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
33 * contains}, {@link #iterator iterator.remove()}, and the bulk
34 * operations, all of which run in linear time.
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.6
45 * @author Doug Lea
46 * @param <E> the type of elements held in this deque
47 */
48 public class LinkedBlockingDeque<E>
49 extends AbstractQueue<E>
50 implements BlockingDeque<E>, java.io.Serializable {
51
52 /*
53 * Implemented as a simple doubly-linked list protected by a
54 * single lock and using conditions to manage blocking.
55 *
56 * To implement weakly consistent iterators, it appears we need to
57 * keep all Nodes GC-reachable from a predecessor dequeued Node.
58 * That would cause two problems:
59 * - allow a rogue Iterator to cause unbounded memory retention
60 * - cause cross-generational linking of old Nodes to new Nodes if
61 * a Node was tenured while live, which generational GCs have a
62 * hard time dealing with, causing repeated major collections.
63 * However, only non-deleted Nodes need to be reachable from
64 * dequeued Nodes, and reachability does not necessarily have to
65 * be of the kind understood by the GC. We use the trick of
66 * linking a Node that has just been dequeued to itself. Such a
67 * self-link implicitly means to jump to "first" (for next links)
68 * or "last" (for prev links).
69 */
70
71 /*
72 * We have "diamond" multiple interface/abstract class inheritance
73 * here, and that introduces ambiguities. Often we want the
74 * BlockingDeque javadoc combined with the AbstractQueue
75 * implementation, so a lot of method specs are duplicated here.
76 */
77
78 private static final long serialVersionUID = -387911632671998426L;
79
80 /** Doubly-linked list node class */
81 static final class Node<E> {
82 /**
83 * The item, or null if this node has been removed.
84 */
85 E item;
86
87 /**
88 * One of:
89 * - the real predecessor Node
90 * - this Node, meaning the predecessor is tail
91 * - null, meaning there is no predecessor
92 */
93 Node<E> prev;
94
95 /**
96 * One of:
97 * - the real successor Node
98 * - this Node, meaning the successor is head
99 * - null, meaning there is no successor
100 */
101 Node<E> next;
102
103 Node(E x) {
104 item = x;
105 }
106 }
107
108 /**
109 * Pointer to first node.
110 * Invariant: (first == null && last == null) ||
111 * (first.prev == null && first.item != null)
112 */
113 transient Node<E> first;
114
115 /**
116 * Pointer to last node.
117 * Invariant: (first == null && last == null) ||
118 * (last.next == null && last.item != null)
119 */
120 transient Node<E> last;
121
122 /** Number of items in the deque */
123 private transient int count;
124
125 /** Maximum number of items in the deque */
126 private final int capacity;
127
128 /** Main lock guarding all access */
129 final ReentrantLock lock = new ReentrantLock();
130
131 /** Condition for waiting takes */
132 private final Condition notEmpty = lock.newCondition();
133
134 /** Condition for waiting puts */
135 private final Condition notFull = lock.newCondition();
136
137 /**
138 * Creates a {@code LinkedBlockingDeque} with a capacity of
139 * {@link Integer#MAX_VALUE}.
140 */
141 public LinkedBlockingDeque() {
142 this(Integer.MAX_VALUE);
143 }
144
145 /**
146 * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
147 *
148 * @param capacity the capacity of this deque
149 * @throws IllegalArgumentException if {@code capacity} is less than 1
150 */
151 public LinkedBlockingDeque(int capacity) {
152 if (capacity <= 0) throw new IllegalArgumentException();
153 this.capacity = capacity;
154 }
155
156 /**
157 * Creates a {@code LinkedBlockingDeque} with a capacity of
158 * {@link Integer#MAX_VALUE}, initially containing the elements of
159 * the given collection, added in traversal order of the
160 * collection's iterator.
161 *
162 * @param c the collection of elements to initially contain
163 * @throws NullPointerException if the specified collection or any
164 * of its elements are null
165 */
166 public LinkedBlockingDeque(Collection<? extends E> c) {
167 this(Integer.MAX_VALUE);
168 final ReentrantLock lock = this.lock;
169 lock.lock(); // Never contended, but necessary for visibility
170 try {
171 for (E e : c) {
172 if (e == null)
173 throw new NullPointerException();
174 if (!linkLast(new Node<E>(e)))
175 throw new IllegalStateException("Deque full");
176 }
177 } finally {
178 lock.unlock();
179 }
180 }
181
182
183 // Basic linking and unlinking operations, called only while holding lock
184
185 /**
186 * Links node as first element, or returns false if full.
187 */
188 private boolean linkFirst(Node<E> node) {
189 // assert lock.isHeldByCurrentThread();
190 if (count >= capacity)
191 return false;
192 Node<E> f = first;
193 node.next = f;
194 first = node;
195 if (last == null)
196 last = node;
197 else
198 f.prev = node;
199 ++count;
200 notEmpty.signal();
201 return true;
202 }
203
204 /**
205 * Links node as last element, or returns false if full.
206 */
207 private boolean linkLast(Node<E> node) {
208 // assert lock.isHeldByCurrentThread();
209 if (count >= capacity)
210 return false;
211 Node<E> l = last;
212 node.prev = l;
213 last = node;
214 if (first == null)
215 first = node;
216 else
217 l.next = node;
218 ++count;
219 notEmpty.signal();
220 return true;
221 }
222
223 /**
224 * Removes and returns first element, or null if empty.
225 */
226 private E unlinkFirst() {
227 // assert lock.isHeldByCurrentThread();
228 Node<E> f = first;
229 if (f == null)
230 return null;
231 Node<E> n = f.next;
232 E item = f.item;
233 f.item = null;
234 f.next = f; // help GC
235 first = n;
236 if (n == null)
237 last = null;
238 else
239 n.prev = null;
240 --count;
241 notFull.signal();
242 return item;
243 }
244
245 /**
246 * Removes and returns last element, or null if empty.
247 */
248 private E unlinkLast() {
249 // assert lock.isHeldByCurrentThread();
250 Node<E> l = last;
251 if (l == null)
252 return null;
253 Node<E> p = l.prev;
254 E item = l.item;
255 l.item = null;
256 l.prev = l; // help GC
257 last = p;
258 if (p == null)
259 first = null;
260 else
261 p.next = null;
262 --count;
263 notFull.signal();
264 return item;
265 }
266
267 /**
268 * Unlinks x.
269 */
270 void unlink(Node<E> x) {
271 // assert lock.isHeldByCurrentThread();
272 Node<E> p = x.prev;
273 Node<E> n = x.next;
274 if (p == null) {
275 unlinkFirst();
276 } else if (n == null) {
277 unlinkLast();
278 } else {
279 p.next = n;
280 n.prev = p;
281 x.item = null;
282 // Don't mess with x's links. They may still be in use by
283 // an iterator.
284 --count;
285 notFull.signal();
286 }
287 }
288
289 // BlockingDeque methods
290
291 /**
292 * @throws IllegalStateException if this deque is full
293 * @throws NullPointerException {@inheritDoc}
294 */
295 public void addFirst(E e) {
296 if (!offerFirst(e))
297 throw new IllegalStateException("Deque full");
298 }
299
300 /**
301 * @throws IllegalStateException if this deque is full
302 * @throws NullPointerException {@inheritDoc}
303 */
304 public void addLast(E e) {
305 if (!offerLast(e))
306 throw new IllegalStateException("Deque full");
307 }
308
309 /**
310 * @throws NullPointerException {@inheritDoc}
311 */
312 public boolean offerFirst(E e) {
313 if (e == null) throw new NullPointerException();
314 Node<E> node = new Node<E>(e);
315 final ReentrantLock lock = this.lock;
316 lock.lock();
317 try {
318 return linkFirst(node);
319 } finally {
320 lock.unlock();
321 }
322 }
323
324 /**
325 * @throws NullPointerException {@inheritDoc}
326 */
327 public boolean offerLast(E e) {
328 if (e == null) throw new NullPointerException();
329 Node<E> node = new Node<E>(e);
330 final ReentrantLock lock = this.lock;
331 lock.lock();
332 try {
333 return linkLast(node);
334 } finally {
335 lock.unlock();
336 }
337 }
338
339 /**
340 * @throws NullPointerException {@inheritDoc}
341 * @throws InterruptedException {@inheritDoc}
342 */
343 public void putFirst(E e) throws InterruptedException {
344 if (e == null) throw new NullPointerException();
345 Node<E> node = new Node<E>(e);
346 final ReentrantLock lock = this.lock;
347 lock.lock();
348 try {
349 while (!linkFirst(node))
350 notFull.await();
351 } finally {
352 lock.unlock();
353 }
354 }
355
356 /**
357 * @throws NullPointerException {@inheritDoc}
358 * @throws InterruptedException {@inheritDoc}
359 */
360 public void putLast(E e) throws InterruptedException {
361 if (e == null) throw new NullPointerException();
362 Node<E> node = new Node<E>(e);
363 final ReentrantLock lock = this.lock;
364 lock.lock();
365 try {
366 while (!linkLast(node))
367 notFull.await();
368 } finally {
369 lock.unlock();
370 }
371 }
372
373 /**
374 * @throws NullPointerException {@inheritDoc}
375 * @throws InterruptedException {@inheritDoc}
376 */
377 public boolean offerFirst(E e, long timeout, TimeUnit unit)
378 throws InterruptedException {
379 if (e == null) throw new NullPointerException();
380 Node<E> node = new Node<E>(e);
381 long nanos = unit.toNanos(timeout);
382 final ReentrantLock lock = this.lock;
383 lock.lockInterruptibly();
384 try {
385 while (!linkFirst(node)) {
386 if (nanos <= 0L)
387 return false;
388 nanos = notFull.awaitNanos(nanos);
389 }
390 return true;
391 } finally {
392 lock.unlock();
393 }
394 }
395
396 /**
397 * @throws NullPointerException {@inheritDoc}
398 * @throws InterruptedException {@inheritDoc}
399 */
400 public boolean offerLast(E e, long timeout, TimeUnit unit)
401 throws InterruptedException {
402 if (e == null) throw new NullPointerException();
403 Node<E> node = new Node<E>(e);
404 long nanos = unit.toNanos(timeout);
405 final ReentrantLock lock = this.lock;
406 lock.lockInterruptibly();
407 try {
408 while (!linkLast(node)) {
409 if (nanos <= 0L)
410 return false;
411 nanos = notFull.awaitNanos(nanos);
412 }
413 return true;
414 } finally {
415 lock.unlock();
416 }
417 }
418
419 /**
420 * @throws NoSuchElementException {@inheritDoc}
421 */
422 public E removeFirst() {
423 E x = pollFirst();
424 if (x == null) throw new NoSuchElementException();
425 return x;
426 }
427
428 /**
429 * @throws NoSuchElementException {@inheritDoc}
430 */
431 public E removeLast() {
432 E x = pollLast();
433 if (x == null) throw new NoSuchElementException();
434 return x;
435 }
436
437 public E pollFirst() {
438 final ReentrantLock lock = this.lock;
439 lock.lock();
440 try {
441 return unlinkFirst();
442 } finally {
443 lock.unlock();
444 }
445 }
446
447 public E pollLast() {
448 final ReentrantLock lock = this.lock;
449 lock.lock();
450 try {
451 return unlinkLast();
452 } finally {
453 lock.unlock();
454 }
455 }
456
457 public E takeFirst() throws InterruptedException {
458 final ReentrantLock lock = this.lock;
459 lock.lock();
460 try {
461 E x;
462 while ( (x = unlinkFirst()) == null)
463 notEmpty.await();
464 return x;
465 } finally {
466 lock.unlock();
467 }
468 }
469
470 public E takeLast() throws InterruptedException {
471 final ReentrantLock lock = this.lock;
472 lock.lock();
473 try {
474 E x;
475 while ( (x = unlinkLast()) == null)
476 notEmpty.await();
477 return x;
478 } finally {
479 lock.unlock();
480 }
481 }
482
483 public E pollFirst(long timeout, TimeUnit unit)
484 throws InterruptedException {
485 long nanos = unit.toNanos(timeout);
486 final ReentrantLock lock = this.lock;
487 lock.lockInterruptibly();
488 try {
489 E x;
490 while ( (x = unlinkFirst()) == null) {
491 if (nanos <= 0L)
492 return null;
493 nanos = notEmpty.awaitNanos(nanos);
494 }
495 return x;
496 } finally {
497 lock.unlock();
498 }
499 }
500
501 public E pollLast(long timeout, TimeUnit unit)
502 throws InterruptedException {
503 long nanos = unit.toNanos(timeout);
504 final ReentrantLock lock = this.lock;
505 lock.lockInterruptibly();
506 try {
507 E x;
508 while ( (x = unlinkLast()) == null) {
509 if (nanos <= 0L)
510 return null;
511 nanos = notEmpty.awaitNanos(nanos);
512 }
513 return x;
514 } finally {
515 lock.unlock();
516 }
517 }
518
519 /**
520 * @throws NoSuchElementException {@inheritDoc}
521 */
522 public E getFirst() {
523 E x = peekFirst();
524 if (x == null) throw new NoSuchElementException();
525 return x;
526 }
527
528 /**
529 * @throws NoSuchElementException {@inheritDoc}
530 */
531 public E getLast() {
532 E x = peekLast();
533 if (x == null) throw new NoSuchElementException();
534 return x;
535 }
536
537 public E peekFirst() {
538 final ReentrantLock lock = this.lock;
539 lock.lock();
540 try {
541 return (first == null) ? null : first.item;
542 } finally {
543 lock.unlock();
544 }
545 }
546
547 public E peekLast() {
548 final ReentrantLock lock = this.lock;
549 lock.lock();
550 try {
551 return (last == null) ? null : last.item;
552 } finally {
553 lock.unlock();
554 }
555 }
556
557 public boolean removeFirstOccurrence(Object o) {
558 if (o == null) return false;
559 final ReentrantLock lock = this.lock;
560 lock.lock();
561 try {
562 for (Node<E> p = first; p != null; p = p.next) {
563 if (o.equals(p.item)) {
564 unlink(p);
565 return true;
566 }
567 }
568 return false;
569 } finally {
570 lock.unlock();
571 }
572 }
573
574 public boolean removeLastOccurrence(Object o) {
575 if (o == null) return false;
576 final ReentrantLock lock = this.lock;
577 lock.lock();
578 try {
579 for (Node<E> p = last; p != null; p = p.prev) {
580 if (o.equals(p.item)) {
581 unlink(p);
582 return true;
583 }
584 }
585 return false;
586 } finally {
587 lock.unlock();
588 }
589 }
590
591 // BlockingQueue methods
592
593 /**
594 * Inserts the specified element at the end of this deque unless it would
595 * violate capacity restrictions. When using a capacity-restricted deque,
596 * it is generally preferable to use method {@link #offer(Object) offer}.
597 *
598 * <p>This method is equivalent to {@link #addLast}.
599 *
600 * @throws IllegalStateException if this deque is full
601 * @throws NullPointerException if the specified element is null
602 */
603 public boolean add(E e) {
604 addLast(e);
605 return true;
606 }
607
608 /**
609 * @throws NullPointerException if the specified element is null
610 */
611 public boolean offer(E e) {
612 return offerLast(e);
613 }
614
615 /**
616 * @throws NullPointerException {@inheritDoc}
617 * @throws InterruptedException {@inheritDoc}
618 */
619 public void put(E e) throws InterruptedException {
620 putLast(e);
621 }
622
623 /**
624 * @throws NullPointerException {@inheritDoc}
625 * @throws InterruptedException {@inheritDoc}
626 */
627 public boolean offer(E e, long timeout, TimeUnit unit)
628 throws InterruptedException {
629 return offerLast(e, timeout, unit);
630 }
631
632 /**
633 * Retrieves and removes the head of the queue represented by this deque.
634 * This method differs from {@link #poll poll} only in that it throws an
635 * exception if this deque is empty.
636 *
637 * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
638 *
639 * @return the head of the queue represented by this deque
640 * @throws NoSuchElementException if this deque is empty
641 */
642 public E remove() {
643 return removeFirst();
644 }
645
646 public E poll() {
647 return pollFirst();
648 }
649
650 public E take() throws InterruptedException {
651 return takeFirst();
652 }
653
654 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
655 return pollFirst(timeout, unit);
656 }
657
658 /**
659 * Retrieves, but does not remove, the head of the queue represented by
660 * this deque. This method differs from {@link #peek peek} only in that
661 * it throws an exception if this deque is empty.
662 *
663 * <p>This method is equivalent to {@link #getFirst() getFirst}.
664 *
665 * @return the head of the queue represented by this deque
666 * @throws NoSuchElementException if this deque is empty
667 */
668 public E element() {
669 return getFirst();
670 }
671
672 public E peek() {
673 return peekFirst();
674 }
675
676 /**
677 * Returns the number of additional elements that this deque can ideally
678 * (in the absence of memory or resource constraints) accept without
679 * blocking. This is always equal to the initial capacity of this deque
680 * less the current {@code size} of this deque.
681 *
682 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
683 * an element will succeed by inspecting {@code remainingCapacity}
684 * because it may be the case that another thread is about to
685 * insert or remove an element.
686 */
687 public int remainingCapacity() {
688 final ReentrantLock lock = this.lock;
689 lock.lock();
690 try {
691 return capacity - count;
692 } finally {
693 lock.unlock();
694 }
695 }
696
697 /**
698 * @throws UnsupportedOperationException {@inheritDoc}
699 * @throws ClassCastException {@inheritDoc}
700 * @throws NullPointerException {@inheritDoc}
701 * @throws IllegalArgumentException {@inheritDoc}
702 */
703 public int drainTo(Collection<? super E> c) {
704 return drainTo(c, Integer.MAX_VALUE);
705 }
706
707 /**
708 * @throws UnsupportedOperationException {@inheritDoc}
709 * @throws ClassCastException {@inheritDoc}
710 * @throws NullPointerException {@inheritDoc}
711 * @throws IllegalArgumentException {@inheritDoc}
712 */
713 public int drainTo(Collection<? super E> c, int maxElements) {
714 if (c == null)
715 throw new NullPointerException();
716 if (c == this)
717 throw new IllegalArgumentException();
718 if (maxElements <= 0)
719 return 0;
720 final ReentrantLock lock = this.lock;
721 lock.lock();
722 try {
723 int n = Math.min(maxElements, count);
724 for (int i = 0; i < n; i++) {
725 c.add(first.item); // In this order, in case add() throws.
726 unlinkFirst();
727 }
728 return n;
729 } finally {
730 lock.unlock();
731 }
732 }
733
734 // Stack methods
735
736 /**
737 * @throws IllegalStateException if this deque is full
738 * @throws NullPointerException {@inheritDoc}
739 */
740 public void push(E e) {
741 addFirst(e);
742 }
743
744 /**
745 * @throws NoSuchElementException {@inheritDoc}
746 */
747 public E pop() {
748 return removeFirst();
749 }
750
751 // Collection methods
752
753 /**
754 * Removes the first occurrence of the specified element from this deque.
755 * If the deque does not contain the element, it is unchanged.
756 * More formally, removes the first element {@code e} such that
757 * {@code o.equals(e)} (if such an element exists).
758 * Returns {@code true} if this deque contained the specified element
759 * (or equivalently, if this deque changed as a result of the call).
760 *
761 * <p>This method is equivalent to
762 * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
763 *
764 * @param o element to be removed from this deque, if present
765 * @return {@code true} if this deque changed as a result of the call
766 */
767 public boolean remove(Object o) {
768 return removeFirstOccurrence(o);
769 }
770
771 /**
772 * Returns the number of elements in this deque.
773 *
774 * @return the number of elements in this deque
775 */
776 public int size() {
777 final ReentrantLock lock = this.lock;
778 lock.lock();
779 try {
780 return count;
781 } finally {
782 lock.unlock();
783 }
784 }
785
786 /**
787 * Returns {@code true} if this deque contains the specified element.
788 * More formally, returns {@code true} if and only if this deque contains
789 * at least one element {@code e} such that {@code o.equals(e)}.
790 *
791 * @param o object to be checked for containment in this deque
792 * @return {@code true} if this deque contains the specified element
793 */
794 public boolean contains(Object o) {
795 if (o == null) return false;
796 final ReentrantLock lock = this.lock;
797 lock.lock();
798 try {
799 for (Node<E> p = first; p != null; p = p.next)
800 if (o.equals(p.item))
801 return true;
802 return false;
803 } finally {
804 lock.unlock();
805 }
806 }
807
808 /*
809 * TODO: Add support for more efficient bulk operations.
810 *
811 * We don't want to acquire the lock for every iteration, but we
812 * also want other threads a chance to interact with the
813 * collection, especially when count is close to capacity.
814 */
815
816 // /**
817 // * Adds all of the elements in the specified collection to this
818 // * queue. Attempts to addAll of a queue to itself result in
819 // * {@code IllegalArgumentException}. Further, the behavior of
820 // * this operation is undefined if the specified collection is
821 // * modified while the operation is in progress.
822 // *
823 // * @param c collection containing elements to be added to this queue
824 // * @return {@code true} if this queue changed as a result of the call
825 // * @throws ClassCastException {@inheritDoc}
826 // * @throws NullPointerException {@inheritDoc}
827 // * @throws IllegalArgumentException {@inheritDoc}
828 // * @throws IllegalStateException if this deque is full
829 // * @see #add(Object)
830 // */
831 // public boolean addAll(Collection<? extends E> c) {
832 // if (c == null)
833 // throw new NullPointerException();
834 // if (c == this)
835 // throw new IllegalArgumentException();
836 // final ReentrantLock lock = this.lock;
837 // lock.lock();
838 // try {
839 // boolean modified = false;
840 // for (E e : c)
841 // if (linkLast(e))
842 // modified = true;
843 // return modified;
844 // } finally {
845 // lock.unlock();
846 // }
847 // }
848
849 /**
850 * Returns an array containing all of the elements in this deque, in
851 * proper sequence (from first to last element).
852 *
853 * <p>The returned array will be "safe" in that no references to it are
854 * maintained by this deque. (In other words, this method must allocate
855 * a new array). The caller is thus free to modify the returned array.
856 *
857 * <p>This method acts as bridge between array-based and collection-based
858 * APIs.
859 *
860 * @return an array containing all of the elements in this deque
861 */
862 @SuppressWarnings("unchecked")
863 public Object[] toArray() {
864 final ReentrantLock lock = this.lock;
865 lock.lock();
866 try {
867 Object[] a = new Object[count];
868 int k = 0;
869 for (Node<E> p = first; p != null; p = p.next)
870 a[k++] = p.item;
871 return a;
872 } finally {
873 lock.unlock();
874 }
875 }
876
877 /**
878 * Returns an array containing all of the elements in this deque, in
879 * proper sequence; the runtime type of the returned array is that of
880 * the specified array. If the deque fits in the specified array, it
881 * is returned therein. Otherwise, a new array is allocated with the
882 * runtime type of the specified array and the size of this deque.
883 *
884 * <p>If this deque fits in the specified array with room to spare
885 * (i.e., the array has more elements than this deque), the element in
886 * the array immediately following the end of the deque is set to
887 * {@code null}.
888 *
889 * <p>Like the {@link #toArray()} method, this method acts as bridge between
890 * array-based and collection-based APIs. Further, this method allows
891 * precise control over the runtime type of the output array, and may,
892 * under certain circumstances, be used to save allocation costs.
893 *
894 * <p>Suppose {@code x} is a deque known to contain only strings.
895 * The following code can be used to dump the deque into a newly
896 * allocated array of {@code String}:
897 *
898 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
899 *
900 * Note that {@code toArray(new Object[0])} is identical in function to
901 * {@code toArray()}.
902 *
903 * @param a the array into which the elements of the deque are to
904 * be stored, if it is big enough; otherwise, a new array of the
905 * same runtime type is allocated for this purpose
906 * @return an array containing all of the elements in this deque
907 * @throws ArrayStoreException if the runtime type of the specified array
908 * is not a supertype of the runtime type of every element in
909 * this deque
910 * @throws NullPointerException if the specified array is null
911 */
912 @SuppressWarnings("unchecked")
913 public <T> T[] toArray(T[] a) {
914 final ReentrantLock lock = this.lock;
915 lock.lock();
916 try {
917 if (a.length < count)
918 a = (T[])java.lang.reflect.Array.newInstance
919 (a.getClass().getComponentType(), count);
920
921 int k = 0;
922 for (Node<E> p = first; p != null; p = p.next)
923 a[k++] = (T)p.item;
924 if (a.length > k)
925 a[k] = null;
926 return a;
927 } finally {
928 lock.unlock();
929 }
930 }
931
932 public String toString() {
933 return Helpers.collectionToString(this);
934 }
935
936 /**
937 * Atomically removes all of the elements from this deque.
938 * The deque will be empty after this call returns.
939 */
940 public void clear() {
941 final ReentrantLock lock = this.lock;
942 lock.lock();
943 try {
944 for (Node<E> f = first; f != null; ) {
945 f.item = null;
946 Node<E> n = f.next;
947 f.prev = null;
948 f.next = null;
949 f = n;
950 }
951 first = last = null;
952 count = 0;
953 notFull.signalAll();
954 } finally {
955 lock.unlock();
956 }
957 }
958
959 /**
960 * Returns an iterator over the elements in this deque in proper sequence.
961 * The elements will be returned in order from first (head) to last (tail).
962 *
963 * <p>The returned iterator is
964 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
965 *
966 * @return an iterator over the elements in this deque in proper sequence
967 */
968 public Iterator<E> iterator() {
969 return new Itr();
970 }
971
972 /**
973 * Returns an iterator over the elements in this deque in reverse
974 * sequential order. The elements will be returned in order from
975 * last (tail) to first (head).
976 *
977 * <p>The returned iterator is
978 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
979 *
980 * @return an iterator over the elements in this deque in reverse order
981 */
982 public Iterator<E> descendingIterator() {
983 return new DescendingItr();
984 }
985
986 /**
987 * Base class for LinkedBlockingDeque iterators.
988 */
989 private abstract class AbstractItr implements Iterator<E> {
990 /**
991 * The next node to return in next().
992 */
993 Node<E> next;
994
995 /**
996 * nextItem holds on to item fields because once we claim that
997 * an element exists in hasNext(), we must return item read
998 * under lock (in advance()) even if it was in the process of
999 * being removed when hasNext() was called.
1000 */
1001 E nextItem;
1002
1003 /**
1004 * Node returned by most recent call to next. Needed by remove.
1005 * Reset to null if this element is deleted by a call to remove.
1006 */
1007 private Node<E> lastRet;
1008
1009 abstract Node<E> firstNode();
1010 abstract Node<E> nextNode(Node<E> n);
1011
1012 AbstractItr() {
1013 // set to initial position
1014 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1015 lock.lock();
1016 try {
1017 next = firstNode();
1018 nextItem = (next == null) ? null : next.item;
1019 } finally {
1020 lock.unlock();
1021 }
1022 }
1023
1024 /**
1025 * Returns the successor node of the given non-null, but
1026 * possibly previously deleted, node.
1027 */
1028 private Node<E> succ(Node<E> n) {
1029 // Chains of deleted nodes ending in null or self-links
1030 // are possible if multiple interior nodes are removed.
1031 for (;;) {
1032 Node<E> s = nextNode(n);
1033 if (s == null)
1034 return null;
1035 else if (s.item != null)
1036 return s;
1037 else if (s == n)
1038 return firstNode();
1039 else
1040 n = s;
1041 }
1042 }
1043
1044 /**
1045 * Advances next.
1046 */
1047 void advance() {
1048 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1049 lock.lock();
1050 try {
1051 // assert next != null;
1052 next = succ(next);
1053 nextItem = (next == null) ? null : next.item;
1054 } finally {
1055 lock.unlock();
1056 }
1057 }
1058
1059 public boolean hasNext() {
1060 return next != null;
1061 }
1062
1063 public E next() {
1064 if (next == null)
1065 throw new NoSuchElementException();
1066 lastRet = next;
1067 E x = nextItem;
1068 advance();
1069 return x;
1070 }
1071
1072 public void remove() {
1073 Node<E> n = lastRet;
1074 if (n == null)
1075 throw new IllegalStateException();
1076 lastRet = null;
1077 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078 lock.lock();
1079 try {
1080 if (n.item != null)
1081 unlink(n);
1082 } finally {
1083 lock.unlock();
1084 }
1085 }
1086 }
1087
1088 /** Forward iterator */
1089 private class Itr extends AbstractItr {
1090 Node<E> firstNode() { return first; }
1091 Node<E> nextNode(Node<E> n) { return n.next; }
1092 }
1093
1094 /** Descending iterator */
1095 private class DescendingItr extends AbstractItr {
1096 Node<E> firstNode() { return last; }
1097 Node<E> nextNode(Node<E> n) { return n.prev; }
1098 }
1099
1100 /** A customized variant of Spliterators.IteratorSpliterator */
1101 static final class LBDSpliterator<E> implements Spliterator<E> {
1102 static final int MAX_BATCH = 1 << 25; // max batch array size;
1103 final LinkedBlockingDeque<E> queue;
1104 Node<E> current; // current node; null until initialized
1105 int batch; // batch size for splits
1106 boolean exhausted; // true when no more nodes
1107 long est; // size estimate
1108 LBDSpliterator(LinkedBlockingDeque<E> queue) {
1109 this.queue = queue;
1110 this.est = queue.size();
1111 }
1112
1113 public long estimateSize() { return est; }
1114
1115 public Spliterator<E> trySplit() {
1116 Node<E> h;
1117 final LinkedBlockingDeque<E> q = this.queue;
1118 int b = batch;
1119 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1120 if (!exhausted &&
1121 ((h = current) != null || (h = q.first) != null) &&
1122 h.next != null) {
1123 Object[] a = new Object[n];
1124 final ReentrantLock lock = q.lock;
1125 int i = 0;
1126 Node<E> p = current;
1127 lock.lock();
1128 try {
1129 if (p != null || (p = q.first) != null) {
1130 do {
1131 if ((a[i] = p.item) != null)
1132 ++i;
1133 } while ((p = p.next) != null && i < n);
1134 }
1135 } finally {
1136 lock.unlock();
1137 }
1138 if ((current = p) == null) {
1139 est = 0L;
1140 exhausted = true;
1141 }
1142 else if ((est -= i) < 0L)
1143 est = 0L;
1144 if (i > 0) {
1145 batch = i;
1146 return Spliterators.spliterator
1147 (a, 0, i, (Spliterator.ORDERED |
1148 Spliterator.NONNULL |
1149 Spliterator.CONCURRENT));
1150 }
1151 }
1152 return null;
1153 }
1154
1155 public void forEachRemaining(Consumer<? super E> action) {
1156 if (action == null) throw new NullPointerException();
1157 final LinkedBlockingDeque<E> q = this.queue;
1158 final ReentrantLock lock = q.lock;
1159 if (!exhausted) {
1160 exhausted = true;
1161 Node<E> p = current;
1162 do {
1163 E e = null;
1164 lock.lock();
1165 try {
1166 if (p == null)
1167 p = q.first;
1168 while (p != null) {
1169 e = p.item;
1170 p = p.next;
1171 if (e != null)
1172 break;
1173 }
1174 } finally {
1175 lock.unlock();
1176 }
1177 if (e != null)
1178 action.accept(e);
1179 } while (p != null);
1180 }
1181 }
1182
1183 public boolean tryAdvance(Consumer<? super E> action) {
1184 if (action == null) throw new NullPointerException();
1185 final LinkedBlockingDeque<E> q = this.queue;
1186 final ReentrantLock lock = q.lock;
1187 if (!exhausted) {
1188 E e = null;
1189 lock.lock();
1190 try {
1191 if (current == null)
1192 current = q.first;
1193 while (current != null) {
1194 e = current.item;
1195 current = current.next;
1196 if (e != null)
1197 break;
1198 }
1199 } finally {
1200 lock.unlock();
1201 }
1202 if (current == null)
1203 exhausted = true;
1204 if (e != null) {
1205 action.accept(e);
1206 return true;
1207 }
1208 }
1209 return false;
1210 }
1211
1212 public int characteristics() {
1213 return Spliterator.ORDERED | Spliterator.NONNULL |
1214 Spliterator.CONCURRENT;
1215 }
1216 }
1217
1218 /**
1219 * Returns a {@link Spliterator} over the elements in this deque.
1220 *
1221 * <p>The returned spliterator is
1222 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1223 *
1224 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1225 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1226 *
1227 * @implNote
1228 * The {@code Spliterator} implements {@code trySplit} to permit limited
1229 * parallelism.
1230 *
1231 * @return a {@code Spliterator} over the elements in this deque
1232 * @since 1.8
1233 */
1234 public Spliterator<E> spliterator() {
1235 return new LBDSpliterator<E>(this);
1236 }
1237
1238 /**
1239 * Saves this deque to a stream (that is, serializes it).
1240 *
1241 * @param s the stream
1242 * @throws java.io.IOException if an I/O error occurs
1243 * @serialData The capacity (int), followed by elements (each an
1244 * {@code Object}) in the proper order, followed by a null
1245 */
1246 private void writeObject(java.io.ObjectOutputStream s)
1247 throws java.io.IOException {
1248 final ReentrantLock lock = this.lock;
1249 lock.lock();
1250 try {
1251 // Write out capacity and any hidden stuff
1252 s.defaultWriteObject();
1253 // Write out all elements in the proper order.
1254 for (Node<E> p = first; p != null; p = p.next)
1255 s.writeObject(p.item);
1256 // Use trailing null as sentinel
1257 s.writeObject(null);
1258 } finally {
1259 lock.unlock();
1260 }
1261 }
1262
1263 /**
1264 * Reconstitutes this deque from a stream (that is, deserializes it).
1265 * @param s the stream
1266 * @throws ClassNotFoundException if the class of a serialized object
1267 * could not be found
1268 * @throws java.io.IOException if an I/O error occurs
1269 */
1270 private void readObject(java.io.ObjectInputStream s)
1271 throws java.io.IOException, ClassNotFoundException {
1272 s.defaultReadObject();
1273 count = 0;
1274 first = null;
1275 last = null;
1276 // Read in all elements and place in queue
1277 for (;;) {
1278 @SuppressWarnings("unchecked")
1279 E item = (E)s.readObject();
1280 if (item == null)
1281 break;
1282 add(item);
1283 }
1284 }
1285
1286 }