ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.2
Committed: Sat Nov 26 23:00:05 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +2 -2 lines
Log Message:
fix URL for 2004_DISC_dual_DS.pdf

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Iterator;
13     import java.util.NoSuchElementException;
14     import java.util.Queue;
15     import java.util.Spliterator;
16     import java.util.Spliterators;
17     import java.util.concurrent.locks.LockSupport;
18     import java.util.function.Consumer;
19    
20     /**
21     * An unbounded {@link TransferQueue} based on linked nodes.
22     * This queue orders elements FIFO (first-in-first-out) with respect
23     * to any given producer. The <em>head</em> of the queue is that
24     * element that has been on the queue the longest time for some
25     * producer. The <em>tail</em> of the queue is that element that has
26     * been on the queue the shortest time for some producer.
27     *
28     * <p>Beware that, unlike in most collections, the {@code size} method
29     * is <em>NOT</em> a constant-time operation. Because of the
30     * asynchronous nature of these queues, determining the current number
31     * of elements requires a traversal of the elements, and so may report
32     * inaccurate results if this collection is modified during traversal.
33     * Additionally, the bulk operations {@code addAll},
34     * {@code removeAll}, {@code retainAll}, {@code containsAll},
35     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
36     * to be performed atomically. For example, an iterator operating
37     * concurrently with an {@code addAll} operation might view only some
38     * of the added elements.
39     *
40     * <p>This class and its iterator implement all of the
41     * <em>optional</em> methods of the {@link Collection} and {@link
42     * Iterator} interfaces.
43     *
44     * <p>Memory consistency effects: As with other concurrent
45     * collections, actions in a thread prior to placing an object into a
46     * {@code LinkedTransferQueue}
47     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
48     * actions subsequent to the access or removal of that element from
49     * the {@code LinkedTransferQueue} in another thread.
50     *
51     * <p>This class is a member of the
52     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
53     * Java Collections Framework</a>.
54     *
55     * @since 1.7
56     * @author Doug Lea
57     * @param <E> the type of elements held in this queue
58     */
59     public class LinkedTransferQueue<E> extends AbstractQueue<E>
60     implements TransferQueue<E>, java.io.Serializable {
61     private static final long serialVersionUID = -3223113410248163686L;
62    
63     /*
64     * *** Overview of Dual Queues with Slack ***
65     *
66     * Dual Queues, introduced by Scherer and Scott
67 jsr166 1.2 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
68     * are (linked) queues in which nodes may represent either data or
69 jsr166 1.1 * requests. When a thread tries to enqueue a data node, but
70     * encounters a request node, it instead "matches" and removes it;
71     * and vice versa for enqueuing requests. Blocking Dual Queues
72     * arrange that threads enqueuing unmatched requests block until
73     * other threads provide the match. Dual Synchronous Queues (see
74     * Scherer, Lea, & Scott
75     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
76     * additionally arrange that threads enqueuing unmatched data also
77     * block. Dual Transfer Queues support all of these modes, as
78     * dictated by callers.
79     *
80     * A FIFO dual queue may be implemented using a variation of the
81     * Michael & Scott (M&S) lock-free queue algorithm
82     * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
83     * It maintains two pointer fields, "head", pointing to a
84     * (matched) node that in turn points to the first actual
85     * (unmatched) queue node (or null if empty); and "tail" that
86     * points to the last node on the queue (or again null if
87     * empty). For example, here is a possible queue with four data
88     * elements:
89     *
90     * head tail
91     * | |
92     * v v
93     * M -> U -> U -> U -> U
94     *
95     * The M&S queue algorithm is known to be prone to scalability and
96     * overhead limitations when maintaining (via CAS) these head and
97     * tail pointers. This has led to the development of
98     * contention-reducing variants such as elimination arrays (see
99     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
100     * optimistic back pointers (see Ladan-Mozes & Shavit
101     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
102     * However, the nature of dual queues enables a simpler tactic for
103     * improving M&S-style implementations when dual-ness is needed.
104     *
105     * In a dual queue, each node must atomically maintain its match
106     * status. While there are other possible variants, we implement
107     * this here as: for a data-mode node, matching entails CASing an
108     * "item" field from a non-null data value to null upon match, and
109     * vice-versa for request nodes, CASing from null to a data
110     * value. (Note that the linearization properties of this style of
111     * queue are easy to verify -- elements are made available by
112     * linking, and unavailable by matching.) Compared to plain M&S
113     * queues, this property of dual queues requires one additional
114     * successful atomic operation per enq/deq pair. But it also
115     * enables lower cost variants of queue maintenance mechanics. (A
116     * variation of this idea applies even for non-dual queues that
117     * support deletion of interior elements, such as
118     * j.u.c.ConcurrentLinkedQueue.)
119     *
120     * Once a node is matched, its match status can never again
121     * change. We may thus arrange that the linked list of them
122     * contain a prefix of zero or more matched nodes, followed by a
123     * suffix of zero or more unmatched nodes. (Note that we allow
124     * both the prefix and suffix to be zero length, which in turn
125     * means that we do not use a dummy header.) If we were not
126     * concerned with either time or space efficiency, we could
127     * correctly perform enqueue and dequeue operations by traversing
128     * from a pointer to the initial node; CASing the item of the
129     * first unmatched node on match and CASing the next field of the
130     * trailing node on appends. (Plus some special-casing when
131     * initially empty). While this would be a terrible idea in
132     * itself, it does have the benefit of not requiring ANY atomic
133     * updates on head/tail fields.
134     *
135     * We introduce here an approach that lies between the extremes of
136     * never versus always updating queue (head and tail) pointers.
137     * This offers a tradeoff between sometimes requiring extra
138     * traversal steps to locate the first and/or last unmatched
139     * nodes, versus the reduced overhead and contention of fewer
140     * updates to queue pointers. For example, a possible snapshot of
141     * a queue is:
142     *
143     * head tail
144     * | |
145     * v v
146     * M -> M -> U -> U -> U -> U
147     *
148     * The best value for this "slack" (the targeted maximum distance
149     * between the value of "head" and the first unmatched node, and
150     * similarly for "tail") is an empirical matter. We have found
151     * that using very small constants in the range of 1-3 work best
152     * over a range of platforms. Larger values introduce increasing
153     * costs of cache misses and risks of long traversal chains, while
154     * smaller values increase CAS contention and overhead.
155     *
156     * Dual queues with slack differ from plain M&S dual queues by
157     * virtue of only sometimes updating head or tail pointers when
158     * matching, appending, or even traversing nodes; in order to
159     * maintain a targeted slack. The idea of "sometimes" may be
160     * operationalized in several ways. The simplest is to use a
161     * per-operation counter incremented on each traversal step, and
162     * to try (via CAS) to update the associated queue pointer
163     * whenever the count exceeds a threshold. Another, that requires
164     * more overhead, is to use random number generators to update
165     * with a given probability per traversal step.
166     *
167     * In any strategy along these lines, because CASes updating
168     * fields may fail, the actual slack may exceed targeted
169     * slack. However, they may be retried at any time to maintain
170     * targets. Even when using very small slack values, this
171     * approach works well for dual queues because it allows all
172     * operations up to the point of matching or appending an item
173     * (hence potentially allowing progress by another thread) to be
174     * read-only, thus not introducing any further contention. As
175     * described below, we implement this by performing slack
176     * maintenance retries only after these points.
177     *
178     * As an accompaniment to such techniques, traversal overhead can
179     * be further reduced without increasing contention of head
180     * pointer updates: Threads may sometimes shortcut the "next" link
181     * path from the current "head" node to be closer to the currently
182     * known first unmatched node, and similarly for tail. Again, this
183     * may be triggered with using thresholds or randomization.
184     *
185     * These ideas must be further extended to avoid unbounded amounts
186     * of costly-to-reclaim garbage caused by the sequential "next"
187     * links of nodes starting at old forgotten head nodes: As first
188     * described in detail by Boehm
189     * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
190     * delays noticing that any arbitrarily old node has become
191     * garbage, all newer dead nodes will also be unreclaimed.
192     * (Similar issues arise in non-GC environments.) To cope with
193     * this in our implementation, upon CASing to advance the head
194     * pointer, we set the "next" link of the previous head to point
195     * only to itself; thus limiting the length of connected dead lists.
196     * (We also take similar care to wipe out possibly garbage
197     * retaining values held in other Node fields.) However, doing so
198     * adds some further complexity to traversal: If any "next"
199     * pointer links to itself, it indicates that the current thread
200     * has lagged behind a head-update, and so the traversal must
201     * continue from the "head". Traversals trying to find the
202     * current tail starting from "tail" may also encounter
203     * self-links, in which case they also continue at "head".
204     *
205     * It is tempting in slack-based scheme to not even use CAS for
206     * updates (similarly to Ladan-Mozes & Shavit). However, this
207     * cannot be done for head updates under the above link-forgetting
208     * mechanics because an update may leave head at a detached node.
209     * And while direct writes are possible for tail updates, they
210     * increase the risk of long retraversals, and hence long garbage
211     * chains, which can be much more costly than is worthwhile
212     * considering that the cost difference of performing a CAS vs
213     * write is smaller when they are not triggered on each operation
214     * (especially considering that writes and CASes equally require
215     * additional GC bookkeeping ("write barriers") that are sometimes
216     * more costly than the writes themselves because of contention).
217     *
218     * *** Overview of implementation ***
219     *
220     * We use a threshold-based approach to updates, with a slack
221     * threshold of two -- that is, we update head/tail when the
222     * current pointer appears to be two or more steps away from the
223     * first/last node. The slack value is hard-wired: a path greater
224     * than one is naturally implemented by checking equality of
225     * traversal pointers except when the list has only one element,
226     * in which case we keep slack threshold at one. Avoiding tracking
227     * explicit counts across method calls slightly simplifies an
228     * already-messy implementation. Using randomization would
229     * probably work better if there were a low-quality dirt-cheap
230     * per-thread one available, but even ThreadLocalRandom is too
231     * heavy for these purposes.
232     *
233     * With such a small slack threshold value, it is not worthwhile
234     * to augment this with path short-circuiting (i.e., unsplicing
235     * interior nodes) except in the case of cancellation/removal (see
236     * below).
237     *
238     * We allow both the head and tail fields to be null before any
239     * nodes are enqueued; initializing upon first append. This
240     * simplifies some other logic, as well as providing more
241     * efficient explicit control paths instead of letting JVMs insert
242     * implicit NullPointerExceptions when they are null. While not
243     * currently fully implemented, we also leave open the possibility
244     * of re-nulling these fields when empty (which is complicated to
245     * arrange, for little benefit.)
246     *
247     * All enqueue/dequeue operations are handled by the single method
248     * "xfer" with parameters indicating whether to act as some form
249     * of offer, put, poll, take, or transfer (each possibly with
250     * timeout). The relative complexity of using one monolithic
251     * method outweighs the code bulk and maintenance problems of
252     * using separate methods for each case.
253     *
254     * Operation consists of up to three phases. The first is
255     * implemented within method xfer, the second in tryAppend, and
256     * the third in method awaitMatch.
257     *
258     * 1. Try to match an existing node
259     *
260     * Starting at head, skip already-matched nodes until finding
261     * an unmatched node of opposite mode, if one exists, in which
262     * case matching it and returning, also if necessary updating
263     * head to one past the matched node (or the node itself if the
264     * list has no other unmatched nodes). If the CAS misses, then
265     * a loop retries advancing head by two steps until either
266     * success or the slack is at most two. By requiring that each
267     * attempt advances head by two (if applicable), we ensure that
268     * the slack does not grow without bound. Traversals also check
269     * if the initial head is now off-list, in which case they
270     * start at the new head.
271     *
272     * If no candidates are found and the call was untimed
273     * poll/offer, (argument "how" is NOW) return.
274     *
275     * 2. Try to append a new node (method tryAppend)
276     *
277     * Starting at current tail pointer, find the actual last node
278     * and try to append a new node (or if head was null, establish
279     * the first node). Nodes can be appended only if their
280     * predecessors are either already matched or are of the same
281     * mode. If we detect otherwise, then a new node with opposite
282     * mode must have been appended during traversal, so we must
283     * restart at phase 1. The traversal and update steps are
284     * otherwise similar to phase 1: Retrying upon CAS misses and
285     * checking for staleness. In particular, if a self-link is
286     * encountered, then we can safely jump to a node on the list
287     * by continuing the traversal at current head.
288     *
289     * On successful append, if the call was ASYNC, return.
290     *
291     * 3. Await match or cancellation (method awaitMatch)
292     *
293     * Wait for another thread to match node; instead cancelling if
294     * the current thread was interrupted or the wait timed out. On
295     * multiprocessors, we use front-of-queue spinning: If a node
296     * appears to be the first unmatched node in the queue, it
297     * spins a bit before blocking. In either case, before blocking
298     * it tries to unsplice any nodes between the current "head"
299     * and the first unmatched node.
300     *
301     * Front-of-queue spinning vastly improves performance of
302     * heavily contended queues. And so long as it is relatively
303     * brief and "quiet", spinning does not much impact performance
304     * of less-contended queues. During spins threads check their
305     * interrupt status and generate a thread-local random number
306     * to decide to occasionally perform a Thread.yield. While
307     * yield has underdefined specs, we assume that it might help,
308     * and will not hurt, in limiting impact of spinning on busy
309     * systems. We also use smaller (1/2) spins for nodes that are
310     * not known to be front but whose predecessors have not
311     * blocked -- these "chained" spins avoid artifacts of
312     * front-of-queue rules which otherwise lead to alternating
313     * nodes spinning vs blocking. Further, front threads that
314     * represent phase changes (from data to request node or vice
315     * versa) compared to their predecessors receive additional
316     * chained spins, reflecting longer paths typically required to
317     * unblock threads during phase changes.
318     *
319     *
320     * ** Unlinking removed interior nodes **
321     *
322     * In addition to minimizing garbage retention via self-linking
323     * described above, we also unlink removed interior nodes. These
324     * may arise due to timed out or interrupted waits, or calls to
325     * remove(x) or Iterator.remove. Normally, given a node that was
326     * at one time known to be the predecessor of some node s that is
327     * to be removed, we can unsplice s by CASing the next field of
328     * its predecessor if it still points to s (otherwise s must
329     * already have been removed or is now offlist). But there are two
330     * situations in which we cannot guarantee to make node s
331     * unreachable in this way: (1) If s is the trailing node of list
332     * (i.e., with null next), then it is pinned as the target node
333     * for appends, so can only be removed later after other nodes are
334     * appended. (2) We cannot necessarily unlink s given a
335     * predecessor node that is matched (including the case of being
336     * cancelled): the predecessor may already be unspliced, in which
337     * case some previous reachable node may still point to s.
338     * (For further explanation see Herlihy & Shavit "The Art of
339     * Multiprocessor Programming" chapter 9). Although, in both
340     * cases, we can rule out the need for further action if either s
341     * or its predecessor are (or can be made to be) at, or fall off
342     * from, the head of list.
343     *
344     * Without taking these into account, it would be possible for an
345     * unbounded number of supposedly removed nodes to remain
346     * reachable. Situations leading to such buildup are uncommon but
347     * can occur in practice; for example when a series of short timed
348     * calls to poll repeatedly time out but never otherwise fall off
349     * the list because of an untimed call to take at the front of the
350     * queue.
351     *
352     * When these cases arise, rather than always retraversing the
353     * entire list to find an actual predecessor to unlink (which
354     * won't help for case (1) anyway), we record a conservative
355     * estimate of possible unsplice failures (in "sweepVotes").
356     * We trigger a full sweep when the estimate exceeds a threshold
357     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
358     * removal failures to tolerate before sweeping through, unlinking
359     * cancelled nodes that were not unlinked upon initial removal.
360     * We perform sweeps by the thread hitting threshold (rather than
361     * background threads or by spreading work to other threads)
362     * because in the main contexts in which removal occurs, the
363     * caller is already timed-out, cancelled, or performing a
364     * potentially O(n) operation (e.g. remove(x)), none of which are
365     * time-critical enough to warrant the overhead that alternatives
366     * would impose on other threads.
367     *
368     * Because the sweepVotes estimate is conservative, and because
369     * nodes become unlinked "naturally" as they fall off the head of
370     * the queue, and because we allow votes to accumulate even while
371     * sweeps are in progress, there are typically significantly fewer
372     * such nodes than estimated. Choice of a threshold value
373     * balances the likelihood of wasted effort and contention, versus
374     * providing a worst-case bound on retention of interior nodes in
375     * quiescent queues. The value defined below was chosen
376     * empirically to balance these under various timeout scenarios.
377     *
378     * Note that we cannot self-link unlinked interior nodes during
379     * sweeps. However, the associated garbage chains terminate when
380     * some successor ultimately falls off the head of the list and is
381     * self-linked.
382     */
383    
384     /** True if on multiprocessor */
385     private static final boolean MP =
386     Runtime.getRuntime().availableProcessors() > 1;
387    
388     /**
389     * The number of times to spin (with randomly interspersed calls
390     * to Thread.yield) on multiprocessor before blocking when a node
391     * is apparently the first waiter in the queue. See above for
392     * explanation. Must be a power of two. The value is empirically
393     * derived -- it works pretty well across a variety of processors,
394     * numbers of CPUs, and OSes.
395     */
396     private static final int FRONT_SPINS = 1 << 7;
397    
398     /**
399     * The number of times to spin before blocking when a node is
400     * preceded by another node that is apparently spinning. Also
401     * serves as an increment to FRONT_SPINS on phase changes, and as
402     * base average frequency for yielding during spins. Must be a
403     * power of two.
404     */
405     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
406    
407     /**
408     * The maximum number of estimated removal failures (sweepVotes)
409     * to tolerate before sweeping through the queue unlinking
410     * cancelled nodes that were not unlinked upon initial
411     * removal. See above for explanation. The value must be at least
412     * two to avoid useless sweeps when removing trailing nodes.
413     */
414     static final int SWEEP_THRESHOLD = 32;
415    
416     /**
417     * Queue nodes. Uses Object, not E, for items to allow forgetting
418     * them after use. Relies heavily on Unsafe mechanics to minimize
419     * unnecessary ordering constraints: Writes that are intrinsically
420     * ordered wrt other accesses or CASes use simple relaxed forms.
421     */
422     static final class Node {
423     final boolean isData; // false if this is a request node
424     volatile Object item; // initially non-null if isData; CASed to match
425     volatile Node next;
426     volatile Thread waiter; // null until waiting
427    
428     // CAS methods for fields
429     final boolean casNext(Node cmp, Node val) {
430     return U.compareAndSwapObject(this, NEXT, cmp, val);
431     }
432    
433     final boolean casItem(Object cmp, Object val) {
434     // assert cmp == null || cmp.getClass() != Node.class;
435     return U.compareAndSwapObject(this, ITEM, cmp, val);
436     }
437    
438     /**
439     * Constructs a new node. Uses relaxed write because item can
440     * only be seen after publication via casNext.
441     */
442     Node(Object item, boolean isData) {
443     U.putObject(this, ITEM, item); // relaxed write
444     this.isData = isData;
445     }
446    
447     /**
448     * Links node to itself to avoid garbage retention. Called
449     * only after CASing head field, so uses relaxed write.
450     */
451     final void forgetNext() {
452     U.putObject(this, NEXT, this);
453     }
454    
455     /**
456     * Sets item to self and waiter to null, to avoid garbage
457     * retention after matching or cancelling. Uses relaxed writes
458     * because order is already constrained in the only calling
459     * contexts: item is forgotten only after volatile/atomic
460     * mechanics that extract items. Similarly, clearing waiter
461     * follows either CAS or return from park (if ever parked;
462     * else we don't care).
463     */
464     final void forgetContents() {
465     U.putObject(this, ITEM, this);
466     U.putObject(this, WAITER, null);
467     }
468    
469     /**
470     * Returns true if this node has been matched, including the
471     * case of artificial matches due to cancellation.
472     */
473     final boolean isMatched() {
474     Object x = item;
475     return (x == this) || ((x == null) == isData);
476     }
477    
478     /**
479     * Returns true if this is an unmatched request node.
480     */
481     final boolean isUnmatchedRequest() {
482     return !isData && item == null;
483     }
484    
485     /**
486     * Returns true if a node with the given mode cannot be
487     * appended to this node because this node is unmatched and
488     * has opposite data mode.
489     */
490     final boolean cannotPrecede(boolean haveData) {
491     boolean d = isData;
492     Object x;
493     return d != haveData && (x = item) != this && (x != null) == d;
494     }
495    
496     /**
497     * Tries to artificially match a data node -- used by remove.
498     */
499     final boolean tryMatchData() {
500     // assert isData;
501     Object x = item;
502     if (x != null && x != this && casItem(x, null)) {
503     LockSupport.unpark(waiter);
504     return true;
505     }
506     return false;
507     }
508    
509     private static final long serialVersionUID = -3375979862319811754L;
510    
511     // Unsafe mechanics
512     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
513     private static final long ITEM;
514     private static final long NEXT;
515     private static final long WAITER;
516     static {
517     try {
518     ITEM = U.objectFieldOffset
519     (Node.class.getDeclaredField("item"));
520     NEXT = U.objectFieldOffset
521     (Node.class.getDeclaredField("next"));
522     WAITER = U.objectFieldOffset
523     (Node.class.getDeclaredField("waiter"));
524     } catch (ReflectiveOperationException e) {
525     throw new Error(e);
526     }
527     }
528     }
529    
530     /** head of the queue; null until first enqueue */
531     transient volatile Node head;
532    
533     /** tail of the queue; null until first append */
534     private transient volatile Node tail;
535    
536     /** The number of apparent failures to unsplice removed nodes */
537     private transient volatile int sweepVotes;
538    
539     // CAS methods for fields
540     private boolean casTail(Node cmp, Node val) {
541     return U.compareAndSwapObject(this, TAIL, cmp, val);
542     }
543    
544     private boolean casHead(Node cmp, Node val) {
545     return U.compareAndSwapObject(this, HEAD, cmp, val);
546     }
547    
548     private boolean casSweepVotes(int cmp, int val) {
549     return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
550     }
551    
552     /*
553     * Possible values for "how" argument in xfer method.
554     */
555     private static final int NOW = 0; // for untimed poll, tryTransfer
556     private static final int ASYNC = 1; // for offer, put, add
557     private static final int SYNC = 2; // for transfer, take
558     private static final int TIMED = 3; // for timed poll, tryTransfer
559    
560     /**
561     * Implements all queuing methods. See above for explanation.
562     *
563     * @param e the item or null for take
564     * @param haveData true if this is a put, else a take
565     * @param how NOW, ASYNC, SYNC, or TIMED
566     * @param nanos timeout in nanosecs, used only if mode is TIMED
567     * @return an item if matched, else e
568     * @throws NullPointerException if haveData mode but e is null
569     */
570     private E xfer(E e, boolean haveData, int how, long nanos) {
571     if (haveData && (e == null))
572     throw new NullPointerException();
573     Node s = null; // the node to append, if needed
574    
575     retry:
576     for (;;) { // restart on append race
577    
578     for (Node h = head, p = h; p != null;) { // find & match first node
579     boolean isData = p.isData;
580     Object item = p.item;
581     if (item != p && (item != null) == isData) { // unmatched
582     if (isData == haveData) // can't match
583     break;
584     if (p.casItem(item, e)) { // match
585     for (Node q = p; q != h;) {
586     Node n = q.next; // update by 2 unless singleton
587     if (head == h && casHead(h, n == null ? q : n)) {
588     h.forgetNext();
589     break;
590     } // advance and retry
591     if ((h = head) == null ||
592     (q = h.next) == null || !q.isMatched())
593     break; // unless slack < 2
594     }
595     LockSupport.unpark(p.waiter);
596     @SuppressWarnings("unchecked") E itemE = (E) item;
597     return itemE;
598     }
599     }
600     Node n = p.next;
601     p = (p != n) ? n : (h = head); // Use head if p offlist
602     }
603    
604     if (how != NOW) { // No matches available
605     if (s == null)
606     s = new Node(e, haveData);
607     Node pred = tryAppend(s, haveData);
608     if (pred == null)
609     continue retry; // lost race vs opposite mode
610     if (how != ASYNC)
611     return awaitMatch(s, pred, e, (how == TIMED), nanos);
612     }
613     return e; // not waiting
614     }
615     }
616    
617     /**
618     * Tries to append node s as tail.
619     *
620     * @param s the node to append
621     * @param haveData true if appending in data mode
622     * @return null on failure due to losing race with append in
623     * different mode, else s's predecessor, or s itself if no
624     * predecessor
625     */
626     private Node tryAppend(Node s, boolean haveData) {
627     for (Node t = tail, p = t;;) { // move p to last node and append
628     Node n, u; // temps for reads of next & tail
629     if (p == null && (p = head) == null) {
630     if (casHead(null, s))
631     return s; // initialize
632     }
633     else if (p.cannotPrecede(haveData))
634     return null; // lost race vs opposite mode
635     else if ((n = p.next) != null) // not last; keep traversing
636     p = p != t && t != (u = tail) ? (t = u) : // stale tail
637     (p != n) ? n : null; // restart if off list
638     else if (!p.casNext(null, s))
639     p = p.next; // re-read on CAS failure
640     else {
641     if (p != t) { // update if slack now >= 2
642     while ((tail != t || !casTail(t, s)) &&
643     (t = tail) != null &&
644     (s = t.next) != null && // advance and retry
645     (s = s.next) != null && s != t);
646     }
647     return p;
648     }
649     }
650     }
651    
652     /**
653     * Spins/yields/blocks until node s is matched or caller gives up.
654     *
655     * @param s the waiting node
656     * @param pred the predecessor of s, or s itself if it has no
657     * predecessor, or null if unknown (the null case does not occur
658     * in any current calls but may in possible future extensions)
659     * @param e the comparison value for checking match
660     * @param timed if true, wait only until timeout elapses
661     * @param nanos timeout in nanosecs, used only if timed is true
662     * @return matched item, or e if unmatched on interrupt or timeout
663     */
664     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
665     final long deadline = timed ? System.nanoTime() + nanos : 0L;
666     Thread w = Thread.currentThread();
667     int spins = -1; // initialized after first item and cancel checks
668     ThreadLocalRandom randomYields = null; // bound if needed
669    
670     for (;;) {
671     Object item = s.item;
672     if (item != e) { // matched
673     // assert item != s;
674     s.forgetContents(); // avoid garbage
675     @SuppressWarnings("unchecked") E itemE = (E) item;
676     return itemE;
677     }
678     else if (w.isInterrupted() || (timed && nanos <= 0L)) {
679     unsplice(pred, s); // try to unlink and cancel
680     if (s.casItem(e, s)) // return normally if lost CAS
681     return e;
682     }
683     else if (spins < 0) { // establish spins at/near front
684     if ((spins = spinsFor(pred, s.isData)) > 0)
685     randomYields = ThreadLocalRandom.current();
686     }
687     else if (spins > 0) { // spin
688     --spins;
689     if (randomYields.nextInt(CHAINED_SPINS) == 0)
690     Thread.yield(); // occasionally yield
691     }
692     else if (s.waiter == null) {
693     s.waiter = w; // request unpark then recheck
694     }
695     else if (timed) {
696     nanos = deadline - System.nanoTime();
697     if (nanos > 0L)
698     LockSupport.parkNanos(this, nanos);
699     }
700     else {
701     LockSupport.park(this);
702     }
703     }
704     }
705    
706     /**
707     * Returns spin/yield value for a node with given predecessor and
708     * data mode. See above for explanation.
709     */
710     private static int spinsFor(Node pred, boolean haveData) {
711     if (MP && pred != null) {
712     if (pred.isData != haveData) // phase change
713     return FRONT_SPINS + CHAINED_SPINS;
714     if (pred.isMatched()) // probably at front
715     return FRONT_SPINS;
716     if (pred.waiter == null) // pred apparently spinning
717     return CHAINED_SPINS;
718     }
719     return 0;
720     }
721    
722     /* -------------- Traversal methods -------------- */
723    
724     /**
725     * Returns the successor of p, or the head node if p.next has been
726     * linked to self, which will only be true if traversing with a
727     * stale pointer that is now off the list.
728     */
729     final Node succ(Node p) {
730     Node next = p.next;
731     return (p == next) ? head : next;
732     }
733    
734     /**
735     * Returns the first unmatched data node, or null if none.
736     * Callers must recheck if the returned node's item field is null
737     * or self-linked before using.
738     */
739     final Node firstDataNode() {
740     restartFromHead: for (;;) {
741     for (Node p = head; p != null;) {
742     Object item = p.item;
743     if (p.isData) {
744     if (item != null && item != p)
745     return p;
746     }
747     else if (item == null)
748     break;
749     if (p == (p = p.next))
750     continue restartFromHead;
751     }
752     return null;
753     }
754     }
755    
756     /**
757     * Traverses and counts unmatched nodes of the given mode.
758     * Used by methods size and getWaitingConsumerCount.
759     */
760     private int countOfMode(boolean data) {
761     restartFromHead: for (;;) {
762     int count = 0;
763     for (Node p = head; p != null;) {
764     if (!p.isMatched()) {
765     if (p.isData != data)
766     return 0;
767     if (++count == Integer.MAX_VALUE)
768     break; // @see Collection.size()
769     }
770     if (p == (p = p.next))
771     continue restartFromHead;
772     }
773     return count;
774     }
775     }
776    
777     public String toString() {
778     String[] a = null;
779     restartFromHead: for (;;) {
780     int charLength = 0;
781     int size = 0;
782     for (Node p = head; p != null;) {
783     Object item = p.item;
784     if (p.isData) {
785     if (item != null && item != p) {
786     if (a == null)
787     a = new String[4];
788     else if (size == a.length)
789     a = Arrays.copyOf(a, 2 * size);
790     String s = item.toString();
791     a[size++] = s;
792     charLength += s.length();
793     }
794     } else if (item == null)
795     break;
796     if (p == (p = p.next))
797     continue restartFromHead;
798     }
799    
800     if (size == 0)
801     return "[]";
802    
803     return Helpers.toString(a, size, charLength);
804     }
805     }
806    
807     private Object[] toArrayInternal(Object[] a) {
808     Object[] x = a;
809     restartFromHead: for (;;) {
810     int size = 0;
811     for (Node p = head; p != null;) {
812     Object item = p.item;
813     if (p.isData) {
814     if (item != null && item != p) {
815     if (x == null)
816     x = new Object[4];
817     else if (size == x.length)
818     x = Arrays.copyOf(x, 2 * (size + 4));
819     x[size++] = item;
820     }
821     } else if (item == null)
822     break;
823     if (p == (p = p.next))
824     continue restartFromHead;
825     }
826     if (x == null)
827     return new Object[0];
828     else if (a != null && size <= a.length) {
829     if (a != x)
830     System.arraycopy(x, 0, a, 0, size);
831     if (size < a.length)
832     a[size] = null;
833     return a;
834     }
835     return (size == x.length) ? x : Arrays.copyOf(x, size);
836     }
837     }
838    
839     /**
840     * Returns an array containing all of the elements in this queue, in
841     * proper sequence.
842     *
843     * <p>The returned array will be "safe" in that no references to it are
844     * maintained by this queue. (In other words, this method must allocate
845     * a new array). The caller is thus free to modify the returned array.
846     *
847     * <p>This method acts as bridge between array-based and collection-based
848     * APIs.
849     *
850     * @return an array containing all of the elements in this queue
851     */
852     public Object[] toArray() {
853     return toArrayInternal(null);
854     }
855    
856     /**
857     * Returns an array containing all of the elements in this queue, in
858     * proper sequence; the runtime type of the returned array is that of
859     * the specified array. If the queue fits in the specified array, it
860     * is returned therein. Otherwise, a new array is allocated with the
861     * runtime type of the specified array and the size of this queue.
862     *
863     * <p>If this queue fits in the specified array with room to spare
864     * (i.e., the array has more elements than this queue), the element in
865     * the array immediately following the end of the queue is set to
866     * {@code null}.
867     *
868     * <p>Like the {@link #toArray()} method, this method acts as bridge between
869     * array-based and collection-based APIs. Further, this method allows
870     * precise control over the runtime type of the output array, and may,
871     * under certain circumstances, be used to save allocation costs.
872     *
873     * <p>Suppose {@code x} is a queue known to contain only strings.
874     * The following code can be used to dump the queue into a newly
875     * allocated array of {@code String}:
876     *
877     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
878     *
879     * Note that {@code toArray(new Object[0])} is identical in function to
880     * {@code toArray()}.
881     *
882     * @param a the array into which the elements of the queue are to
883     * be stored, if it is big enough; otherwise, a new array of the
884     * same runtime type is allocated for this purpose
885     * @return an array containing all of the elements in this queue
886     * @throws ArrayStoreException if the runtime type of the specified array
887     * is not a supertype of the runtime type of every element in
888     * this queue
889     * @throws NullPointerException if the specified array is null
890     */
891     @SuppressWarnings("unchecked")
892     public <T> T[] toArray(T[] a) {
893     if (a == null) throw new NullPointerException();
894     return (T[]) toArrayInternal(a);
895     }
896    
897     final class Itr implements Iterator<E> {
898     private Node nextNode; // next node to return item for
899     private E nextItem; // the corresponding item
900     private Node lastRet; // last returned node, to support remove
901     private Node lastPred; // predecessor to unlink lastRet
902    
903     /**
904     * Moves to next node after prev, or first node if prev null.
905     */
906     private void advance(Node prev) {
907     /*
908     * To track and avoid buildup of deleted nodes in the face
909     * of calls to both Queue.remove and Itr.remove, we must
910     * include variants of unsplice and sweep upon each
911     * advance: Upon Itr.remove, we may need to catch up links
912     * from lastPred, and upon other removes, we might need to
913     * skip ahead from stale nodes and unsplice deleted ones
914     * found while advancing.
915     */
916    
917     Node r, b; // reset lastPred upon possible deletion of lastRet
918     if ((r = lastRet) != null && !r.isMatched())
919     lastPred = r; // next lastPred is old lastRet
920     else if ((b = lastPred) == null || b.isMatched())
921     lastPred = null; // at start of list
922     else {
923     Node s, n; // help with removal of lastPred.next
924     while ((s = b.next) != null &&
925     s != b && s.isMatched() &&
926     (n = s.next) != null && n != s)
927     b.casNext(s, n);
928     }
929    
930     this.lastRet = prev;
931    
932     for (Node p = prev, s, n;;) {
933     s = (p == null) ? head : p.next;
934     if (s == null)
935     break;
936     else if (s == p) {
937     p = null;
938     continue;
939     }
940     Object item = s.item;
941     if (s.isData) {
942     if (item != null && item != s) {
943     @SuppressWarnings("unchecked") E itemE = (E) item;
944     nextItem = itemE;
945     nextNode = s;
946     return;
947     }
948     }
949     else if (item == null)
950     break;
951     // assert s.isMatched();
952     if (p == null)
953     p = s;
954     else if ((n = s.next) == null)
955     break;
956     else if (s == n)
957     p = null;
958     else
959     p.casNext(s, n);
960     }
961     nextNode = null;
962     nextItem = null;
963     }
964    
965     Itr() {
966     advance(null);
967     }
968    
969     public final boolean hasNext() {
970     return nextNode != null;
971     }
972    
973     public final E next() {
974     Node p = nextNode;
975     if (p == null) throw new NoSuchElementException();
976     E e = nextItem;
977     advance(p);
978     return e;
979     }
980    
981     public final void remove() {
982     final Node lastRet = this.lastRet;
983     if (lastRet == null)
984     throw new IllegalStateException();
985     this.lastRet = null;
986     if (lastRet.tryMatchData())
987     unsplice(lastPred, lastRet);
988     }
989     }
990    
991     /** A customized variant of Spliterators.IteratorSpliterator */
992     final class LTQSpliterator<E> implements Spliterator<E> {
993     static final int MAX_BATCH = 1 << 25; // max batch array size;
994     Node current; // current node; null until initialized
995     int batch; // batch size for splits
996     boolean exhausted; // true when no more nodes
997     LTQSpliterator() {}
998    
999     public Spliterator<E> trySplit() {
1000     Node p;
1001     int b = batch;
1002     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1003     if (!exhausted &&
1004     ((p = current) != null || (p = firstDataNode()) != null) &&
1005     p.next != null) {
1006     Object[] a = new Object[n];
1007     int i = 0;
1008     do {
1009     Object e = p.item;
1010     if (e != p && (a[i] = e) != null)
1011     ++i;
1012     if (p == (p = p.next))
1013     p = firstDataNode();
1014     } while (p != null && i < n && p.isData);
1015     if ((current = p) == null)
1016     exhausted = true;
1017     if (i > 0) {
1018     batch = i;
1019     return Spliterators.spliterator
1020     (a, 0, i, (Spliterator.ORDERED |
1021     Spliterator.NONNULL |
1022     Spliterator.CONCURRENT));
1023     }
1024     }
1025     return null;
1026     }
1027    
1028     @SuppressWarnings("unchecked")
1029     public void forEachRemaining(Consumer<? super E> action) {
1030     Node p;
1031     if (action == null) throw new NullPointerException();
1032     if (!exhausted &&
1033     ((p = current) != null || (p = firstDataNode()) != null)) {
1034     exhausted = true;
1035     do {
1036     Object e = p.item;
1037     if (e != null && e != p)
1038     action.accept((E)e);
1039     if (p == (p = p.next))
1040     p = firstDataNode();
1041     } while (p != null && p.isData);
1042     }
1043     }
1044    
1045     @SuppressWarnings("unchecked")
1046     public boolean tryAdvance(Consumer<? super E> action) {
1047     Node p;
1048     if (action == null) throw new NullPointerException();
1049     if (!exhausted &&
1050     ((p = current) != null || (p = firstDataNode()) != null)) {
1051     Object e;
1052     do {
1053     if ((e = p.item) == p)
1054     e = null;
1055     if (p == (p = p.next))
1056     p = firstDataNode();
1057     } while (e == null && p != null && p.isData);
1058     if ((current = p) == null)
1059     exhausted = true;
1060     if (e != null) {
1061     action.accept((E)e);
1062     return true;
1063     }
1064     }
1065     return false;
1066     }
1067    
1068     public long estimateSize() { return Long.MAX_VALUE; }
1069    
1070     public int characteristics() {
1071     return Spliterator.ORDERED | Spliterator.NONNULL |
1072     Spliterator.CONCURRENT;
1073     }
1074     }
1075    
1076     /**
1077     * Returns a {@link Spliterator} over the elements in this queue.
1078     *
1079     * <p>The returned spliterator is
1080     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1081     *
1082     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1083     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1084     *
1085     * @implNote
1086     * The {@code Spliterator} implements {@code trySplit} to permit limited
1087     * parallelism.
1088     *
1089     * @return a {@code Spliterator} over the elements in this queue
1090     * @since 1.8
1091     */
1092     public Spliterator<E> spliterator() {
1093     return new LTQSpliterator<E>();
1094     }
1095    
1096     /* -------------- Removal methods -------------- */
1097    
1098     /**
1099     * Unsplices (now or later) the given deleted/cancelled node with
1100     * the given predecessor.
1101     *
1102     * @param pred a node that was at one time known to be the
1103     * predecessor of s, or null or s itself if s is/was at head
1104     * @param s the node to be unspliced
1105     */
1106     final void unsplice(Node pred, Node s) {
1107     s.waiter = null; // disable signals
1108     /*
1109     * See above for rationale. Briefly: if pred still points to
1110     * s, try to unlink s. If s cannot be unlinked, because it is
1111     * trailing node or pred might be unlinked, and neither pred
1112     * nor s are head or offlist, add to sweepVotes, and if enough
1113     * votes have accumulated, sweep.
1114     */
1115     if (pred != null && pred != s && pred.next == s) {
1116     Node n = s.next;
1117     if (n == null ||
1118     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1119     for (;;) { // check if at, or could be, head
1120     Node h = head;
1121     if (h == pred || h == s || h == null)
1122     return; // at head or list empty
1123     if (!h.isMatched())
1124     break;
1125     Node hn = h.next;
1126     if (hn == null)
1127     return; // now empty
1128     if (hn != h && casHead(h, hn))
1129     h.forgetNext(); // advance head
1130     }
1131     if (pred.next != pred && s.next != s) { // recheck if offlist
1132     for (;;) { // sweep now if enough votes
1133     int v = sweepVotes;
1134     if (v < SWEEP_THRESHOLD) {
1135     if (casSweepVotes(v, v + 1))
1136     break;
1137     }
1138     else if (casSweepVotes(v, 0)) {
1139     sweep();
1140     break;
1141     }
1142     }
1143     }
1144     }
1145     }
1146     }
1147    
1148     /**
1149     * Unlinks matched (typically cancelled) nodes encountered in a
1150     * traversal from head.
1151     */
1152     private void sweep() {
1153     for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1154     if (!s.isMatched())
1155     // Unmatched nodes are never self-linked
1156     p = s;
1157     else if ((n = s.next) == null) // trailing node is pinned
1158     break;
1159     else if (s == n) // stale
1160     // No need to also check for p == s, since that implies s == n
1161     p = head;
1162     else
1163     p.casNext(s, n);
1164     }
1165     }
1166    
1167     /**
1168     * Main implementation of remove(Object)
1169     */
1170     private boolean findAndRemove(Object e) {
1171     if (e != null) {
1172     for (Node pred = null, p = head; p != null; ) {
1173     Object item = p.item;
1174     if (p.isData) {
1175     if (item != null && item != p && e.equals(item) &&
1176     p.tryMatchData()) {
1177     unsplice(pred, p);
1178     return true;
1179     }
1180     }
1181     else if (item == null)
1182     break;
1183     pred = p;
1184     if ((p = p.next) == pred) { // stale
1185     pred = null;
1186     p = head;
1187     }
1188     }
1189     }
1190     return false;
1191     }
1192    
1193     /**
1194     * Creates an initially empty {@code LinkedTransferQueue}.
1195     */
1196     public LinkedTransferQueue() {
1197     }
1198    
1199     /**
1200     * Creates a {@code LinkedTransferQueue}
1201     * initially containing the elements of the given collection,
1202     * added in traversal order of the collection's iterator.
1203     *
1204     * @param c the collection of elements to initially contain
1205     * @throws NullPointerException if the specified collection or any
1206     * of its elements are null
1207     */
1208     public LinkedTransferQueue(Collection<? extends E> c) {
1209     this();
1210     addAll(c);
1211     }
1212    
1213     /**
1214     * Inserts the specified element at the tail of this queue.
1215     * As the queue is unbounded, this method will never block.
1216     *
1217     * @throws NullPointerException if the specified element is null
1218     */
1219     public void put(E e) {
1220     xfer(e, true, ASYNC, 0);
1221     }
1222    
1223     /**
1224     * Inserts the specified element at the tail of this queue.
1225     * As the queue is unbounded, this method will never block or
1226     * return {@code false}.
1227     *
1228     * @return {@code true} (as specified by
1229     * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1230     * BlockingQueue.offer})
1231     * @throws NullPointerException if the specified element is null
1232     */
1233     public boolean offer(E e, long timeout, TimeUnit unit) {
1234     xfer(e, true, ASYNC, 0);
1235     return true;
1236     }
1237    
1238     /**
1239     * Inserts the specified element at the tail of this queue.
1240     * As the queue is unbounded, this method will never return {@code false}.
1241     *
1242     * @return {@code true} (as specified by {@link Queue#offer})
1243     * @throws NullPointerException if the specified element is null
1244     */
1245     public boolean offer(E e) {
1246     xfer(e, true, ASYNC, 0);
1247     return true;
1248     }
1249    
1250     /**
1251     * Inserts the specified element at the tail of this queue.
1252     * As the queue is unbounded, this method will never throw
1253     * {@link IllegalStateException} or return {@code false}.
1254     *
1255     * @return {@code true} (as specified by {@link Collection#add})
1256     * @throws NullPointerException if the specified element is null
1257     */
1258     public boolean add(E e) {
1259     xfer(e, true, ASYNC, 0);
1260     return true;
1261     }
1262    
1263     /**
1264     * Transfers the element to a waiting consumer immediately, if possible.
1265     *
1266     * <p>More precisely, transfers the specified element immediately
1267     * if there exists a consumer already waiting to receive it (in
1268     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1269     * otherwise returning {@code false} without enqueuing the element.
1270     *
1271     * @throws NullPointerException if the specified element is null
1272     */
1273     public boolean tryTransfer(E e) {
1274     return xfer(e, true, NOW, 0) == null;
1275     }
1276    
1277     /**
1278     * Transfers the element to a consumer, waiting if necessary to do so.
1279     *
1280     * <p>More precisely, transfers the specified element immediately
1281     * if there exists a consumer already waiting to receive it (in
1282     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1283     * else inserts the specified element at the tail of this queue
1284     * and waits until the element is received by a consumer.
1285     *
1286     * @throws NullPointerException if the specified element is null
1287     */
1288     public void transfer(E e) throws InterruptedException {
1289     if (xfer(e, true, SYNC, 0) != null) {
1290     Thread.interrupted(); // failure possible only due to interrupt
1291     throw new InterruptedException();
1292     }
1293     }
1294    
1295     /**
1296     * Transfers the element to a consumer if it is possible to do so
1297     * before the timeout elapses.
1298     *
1299     * <p>More precisely, transfers the specified element immediately
1300     * if there exists a consumer already waiting to receive it (in
1301     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1302     * else inserts the specified element at the tail of this queue
1303     * and waits until the element is received by a consumer,
1304     * returning {@code false} if the specified wait time elapses
1305     * before the element can be transferred.
1306     *
1307     * @throws NullPointerException if the specified element is null
1308     */
1309     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1310     throws InterruptedException {
1311     if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1312     return true;
1313     if (!Thread.interrupted())
1314     return false;
1315     throw new InterruptedException();
1316     }
1317    
1318     public E take() throws InterruptedException {
1319     E e = xfer(null, false, SYNC, 0);
1320     if (e != null)
1321     return e;
1322     Thread.interrupted();
1323     throw new InterruptedException();
1324     }
1325    
1326     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1327     E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1328     if (e != null || !Thread.interrupted())
1329     return e;
1330     throw new InterruptedException();
1331     }
1332    
1333     public E poll() {
1334     return xfer(null, false, NOW, 0);
1335     }
1336    
1337     /**
1338     * @throws NullPointerException {@inheritDoc}
1339     * @throws IllegalArgumentException {@inheritDoc}
1340     */
1341     public int drainTo(Collection<? super E> c) {
1342     if (c == null)
1343     throw new NullPointerException();
1344     if (c == this)
1345     throw new IllegalArgumentException();
1346     int n = 0;
1347     for (E e; (e = poll()) != null;) {
1348     c.add(e);
1349     ++n;
1350     }
1351     return n;
1352     }
1353    
1354     /**
1355     * @throws NullPointerException {@inheritDoc}
1356     * @throws IllegalArgumentException {@inheritDoc}
1357     */
1358     public int drainTo(Collection<? super E> c, int maxElements) {
1359     if (c == null)
1360     throw new NullPointerException();
1361     if (c == this)
1362     throw new IllegalArgumentException();
1363     int n = 0;
1364     for (E e; n < maxElements && (e = poll()) != null;) {
1365     c.add(e);
1366     ++n;
1367     }
1368     return n;
1369     }
1370    
1371     /**
1372     * Returns an iterator over the elements in this queue in proper sequence.
1373     * The elements will be returned in order from first (head) to last (tail).
1374     *
1375     * <p>The returned iterator is
1376     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1377     *
1378     * @return an iterator over the elements in this queue in proper sequence
1379     */
1380     public Iterator<E> iterator() {
1381     return new Itr();
1382     }
1383    
1384     public E peek() {
1385     restartFromHead: for (;;) {
1386     for (Node p = head; p != null;) {
1387     Object item = p.item;
1388     if (p.isData) {
1389     if (item != null && item != p) {
1390     @SuppressWarnings("unchecked") E e = (E) item;
1391     return e;
1392     }
1393     }
1394     else if (item == null)
1395     break;
1396     if (p == (p = p.next))
1397     continue restartFromHead;
1398     }
1399     return null;
1400     }
1401     }
1402    
1403     /**
1404     * Returns {@code true} if this queue contains no elements.
1405     *
1406     * @return {@code true} if this queue contains no elements
1407     */
1408     public boolean isEmpty() {
1409     return firstDataNode() == null;
1410     }
1411    
1412     public boolean hasWaitingConsumer() {
1413     restartFromHead: for (;;) {
1414     for (Node p = head; p != null;) {
1415     Object item = p.item;
1416     if (p.isData) {
1417     if (item != null && item != p)
1418     break;
1419     }
1420     else if (item == null)
1421     return true;
1422     if (p == (p = p.next))
1423     continue restartFromHead;
1424     }
1425     return false;
1426     }
1427     }
1428    
1429     /**
1430     * Returns the number of elements in this queue. If this queue
1431     * contains more than {@code Integer.MAX_VALUE} elements, returns
1432     * {@code Integer.MAX_VALUE}.
1433     *
1434     * <p>Beware that, unlike in most collections, this method is
1435     * <em>NOT</em> a constant-time operation. Because of the
1436     * asynchronous nature of these queues, determining the current
1437     * number of elements requires an O(n) traversal.
1438     *
1439     * @return the number of elements in this queue
1440     */
1441     public int size() {
1442     return countOfMode(true);
1443     }
1444    
1445     public int getWaitingConsumerCount() {
1446     return countOfMode(false);
1447     }
1448    
1449     /**
1450     * Removes a single instance of the specified element from this queue,
1451     * if it is present. More formally, removes an element {@code e} such
1452     * that {@code o.equals(e)}, if this queue contains one or more such
1453     * elements.
1454     * Returns {@code true} if this queue contained the specified element
1455     * (or equivalently, if this queue changed as a result of the call).
1456     *
1457     * @param o element to be removed from this queue, if present
1458     * @return {@code true} if this queue changed as a result of the call
1459     */
1460     public boolean remove(Object o) {
1461     return findAndRemove(o);
1462     }
1463    
1464     /**
1465     * Returns {@code true} if this queue contains the specified element.
1466     * More formally, returns {@code true} if and only if this queue contains
1467     * at least one element {@code e} such that {@code o.equals(e)}.
1468     *
1469     * @param o object to be checked for containment in this queue
1470     * @return {@code true} if this queue contains the specified element
1471     */
1472     public boolean contains(Object o) {
1473     if (o != null) {
1474     for (Node p = head; p != null; p = succ(p)) {
1475     Object item = p.item;
1476     if (p.isData) {
1477     if (item != null && item != p && o.equals(item))
1478     return true;
1479     }
1480     else if (item == null)
1481     break;
1482     }
1483     }
1484     return false;
1485     }
1486    
1487     /**
1488     * Always returns {@code Integer.MAX_VALUE} because a
1489     * {@code LinkedTransferQueue} is not capacity constrained.
1490     *
1491     * @return {@code Integer.MAX_VALUE} (as specified by
1492     * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1493     * BlockingQueue.remainingCapacity})
1494     */
1495     public int remainingCapacity() {
1496     return Integer.MAX_VALUE;
1497     }
1498    
1499     /**
1500     * Saves this queue to a stream (that is, serializes it).
1501     *
1502     * @param s the stream
1503     * @throws java.io.IOException if an I/O error occurs
1504     * @serialData All of the elements (each an {@code E}) in
1505     * the proper order, followed by a null
1506     */
1507     private void writeObject(java.io.ObjectOutputStream s)
1508     throws java.io.IOException {
1509     s.defaultWriteObject();
1510     for (E e : this)
1511     s.writeObject(e);
1512     // Use trailing null as sentinel
1513     s.writeObject(null);
1514     }
1515    
1516     /**
1517     * Reconstitutes this queue from a stream (that is, deserializes it).
1518     * @param s the stream
1519     * @throws ClassNotFoundException if the class of a serialized object
1520     * could not be found
1521     * @throws java.io.IOException if an I/O error occurs
1522     */
1523     private void readObject(java.io.ObjectInputStream s)
1524     throws java.io.IOException, ClassNotFoundException {
1525     s.defaultReadObject();
1526     for (;;) {
1527     @SuppressWarnings("unchecked")
1528     E item = (E) s.readObject();
1529     if (item == null)
1530     break;
1531     else
1532     offer(item);
1533     }
1534     }
1535    
1536     // Unsafe mechanics
1537    
1538     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1539     private static final long HEAD;
1540     private static final long TAIL;
1541     private static final long SWEEPVOTES;
1542     static {
1543     try {
1544     HEAD = U.objectFieldOffset
1545     (LinkedTransferQueue.class.getDeclaredField("head"));
1546     TAIL = U.objectFieldOffset
1547     (LinkedTransferQueue.class.getDeclaredField("tail"));
1548     SWEEPVOTES = U.objectFieldOffset
1549     (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1550     } catch (ReflectiveOperationException e) {
1551     throw new Error(e);
1552     }
1553    
1554     // Reduce the risk of rare disastrous classloading in first call to
1555     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1556     Class<?> ensureLoaded = LockSupport.class;
1557     }
1558     }