ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/Phaser.java
Revision: 1.3
Committed: Fri Jul 8 20:02:54 2016 UTC (7 years, 10 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +0 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13     * A reusable synchronization barrier, similar in functionality to
14     * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18     * <p><b>Registration.</b> Unlike the case for other barriers, the
19     * number of parties <em>registered</em> to synchronize on a phaser
20     * may vary over time. Tasks may be registered at any time (using
21     * methods {@link #register}, {@link #bulkRegister}, or forms of
22     * constructors establishing initial numbers of parties), and
23     * optionally deregistered upon any arrival (using {@link
24     * #arriveAndDeregister}). As is the case with most basic
25     * synchronization constructs, registration and deregistration affect
26     * only internal counts; they do not establish any further internal
27     * bookkeeping, so tasks cannot query whether they are registered.
28     * (However, you can introduce such bookkeeping by subclassing this
29     * class.)
30     *
31     * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32     * Phaser} may be repeatedly awaited. Method {@link
33     * #arriveAndAwaitAdvance} has effect analogous to {@link
34     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35     * generation of a phaser has an associated phase number. The phase
36     * number starts at zero, and advances when all parties arrive at the
37     * phaser, wrapping around to zero after reaching {@code
38     * Integer.MAX_VALUE}. The use of phase numbers enables independent
39     * control of actions upon arrival at a phaser and upon awaiting
40     * others, via two kinds of methods that may be invoked by any
41     * registered party:
42     *
43     * <ul>
44     *
45     * <li><b>Arrival.</b> Methods {@link #arrive} and
46     * {@link #arriveAndDeregister} record arrival. These methods
47     * do not block, but return an associated <em>arrival phase
48     * number</em>; that is, the phase number of the phaser to which
49     * the arrival applied. When the final party for a given phase
50     * arrives, an optional action is performed and the phase
51     * advances. These actions are performed by the party
52     * triggering a phase advance, and are arranged by overriding
53     * method {@link #onAdvance(int, int)}, which also controls
54     * termination. Overriding this method is similar to, but more
55     * flexible than, providing a barrier action to a {@code
56     * CyclicBarrier}.
57     *
58     * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
59     * argument indicating an arrival phase number, and returns when
60     * the phaser advances to (or is already at) a different phase.
61     * Unlike similar constructions using {@code CyclicBarrier},
62     * method {@code awaitAdvance} continues to wait even if the
63     * waiting thread is interrupted. Interruptible and timeout
64     * versions are also available, but exceptions encountered while
65     * tasks wait interruptibly or with timeout do not change the
66     * state of the phaser. If necessary, you can perform any
67     * associated recovery within handlers of those exceptions,
68     * often after invoking {@code forceTermination}. Phasers may
69     * also be used by tasks executing in a {@link ForkJoinPool}.
70     * Progress is ensured if the pool's parallelismLevel can
71     * accommodate the maximum number of simultaneously blocked
72     * parties.
73     *
74     * </ul>
75     *
76     * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
77     * state, that may be checked using method {@link #isTerminated}. Upon
78     * termination, all synchronization methods immediately return without
79     * waiting for advance, as indicated by a negative return value.
80     * Similarly, attempts to register upon termination have no effect.
81     * Termination is triggered when an invocation of {@code onAdvance}
82     * returns {@code true}. The default implementation returns {@code
83     * true} if a deregistration has caused the number of registered
84     * parties to become zero. As illustrated below, when phasers control
85     * actions with a fixed number of iterations, it is often convenient
86     * to override this method to cause termination when the current phase
87     * number reaches a threshold. Method {@link #forceTermination} is
88     * also available to abruptly release waiting threads and allow them
89     * to terminate.
90     *
91     * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92     * constructed in tree structures) to reduce contention. Phasers with
93     * large numbers of parties that would otherwise experience heavy
94     * synchronization contention costs may instead be set up so that
95     * groups of sub-phasers share a common parent. This may greatly
96     * increase throughput even though it incurs greater per-operation
97     * overhead.
98     *
99     * <p>In a tree of tiered phasers, registration and deregistration of
100     * child phasers with their parent are managed automatically.
101     * Whenever the number of registered parties of a child phaser becomes
102     * non-zero (as established in the {@link #Phaser(Phaser,int)}
103     * constructor, {@link #register}, or {@link #bulkRegister}), the
104     * child phaser is registered with its parent. Whenever the number of
105     * registered parties becomes zero as the result of an invocation of
106     * {@link #arriveAndDeregister}, the child phaser is deregistered
107     * from its parent.
108     *
109     * <p><b>Monitoring.</b> While synchronization methods may be invoked
110     * only by registered parties, the current state of a phaser may be
111     * monitored by any caller. At any given moment there are {@link
112     * #getRegisteredParties} parties in total, of which {@link
113     * #getArrivedParties} have arrived at the current phase ({@link
114     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
115     * parties arrive, the phase advances. The values returned by these
116     * methods may reflect transient states and so are not in general
117     * useful for synchronization control. Method {@link #toString}
118     * returns snapshots of these state queries in a form convenient for
119     * informal monitoring.
120     *
121     * <p><b>Sample usages:</b>
122     *
123     * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
124     * to control a one-shot action serving a variable number of parties.
125     * The typical idiom is for the method setting this up to first
126     * register, then start the actions, then deregister, as in:
127     *
128     * <pre> {@code
129     * void runTasks(List<Runnable> tasks) {
130     * final Phaser phaser = new Phaser(1); // "1" to register self
131     * // create and start threads
132     * for (final Runnable task : tasks) {
133     * phaser.register();
134     * new Thread() {
135     * public void run() {
136     * phaser.arriveAndAwaitAdvance(); // await all creation
137     * task.run();
138     * }
139     * }.start();
140     * }
141     *
142     * // allow threads to start and deregister self
143     * phaser.arriveAndDeregister();
144     * }}</pre>
145     *
146     * <p>One way to cause a set of threads to repeatedly perform actions
147     * for a given number of iterations is to override {@code onAdvance}:
148     *
149     * <pre> {@code
150     * void startTasks(List<Runnable> tasks, final int iterations) {
151     * final Phaser phaser = new Phaser() {
152     * protected boolean onAdvance(int phase, int registeredParties) {
153     * return phase >= iterations || registeredParties == 0;
154     * }
155     * };
156     * phaser.register();
157     * for (final Runnable task : tasks) {
158     * phaser.register();
159     * new Thread() {
160     * public void run() {
161     * do {
162     * task.run();
163     * phaser.arriveAndAwaitAdvance();
164     * } while (!phaser.isTerminated());
165     * }
166     * }.start();
167     * }
168     * phaser.arriveAndDeregister(); // deregister self, don't wait
169     * }}</pre>
170     *
171     * If the main task must later await termination, it
172     * may re-register and then execute a similar loop:
173     * <pre> {@code
174     * // ...
175     * phaser.register();
176     * while (!phaser.isTerminated())
177     * phaser.arriveAndAwaitAdvance();}</pre>
178     *
179     * <p>Related constructions may be used to await particular phase numbers
180     * in contexts where you are sure that the phase will never wrap around
181     * {@code Integer.MAX_VALUE}. For example:
182     *
183     * <pre> {@code
184     * void awaitPhase(Phaser phaser, int phase) {
185     * int p = phaser.register(); // assumes caller not already registered
186     * while (p < phase) {
187     * if (phaser.isTerminated())
188     * // ... deal with unexpected termination
189     * else
190     * p = phaser.arriveAndAwaitAdvance();
191     * }
192     * phaser.arriveAndDeregister();
193     * }}</pre>
194     *
195     * <p>To create a set of {@code n} tasks using a tree of phasers, you
196     * could use code of the following form, assuming a Task class with a
197     * constructor accepting a {@code Phaser} that it registers with upon
198     * construction. After invocation of {@code build(new Task[n], 0, n,
199     * new Phaser())}, these tasks could then be started, for example by
200     * submitting to a pool:
201     *
202     * <pre> {@code
203     * void build(Task[] tasks, int lo, int hi, Phaser ph) {
204     * if (hi - lo > TASKS_PER_PHASER) {
205     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
206     * int j = Math.min(i + TASKS_PER_PHASER, hi);
207     * build(tasks, i, j, new Phaser(ph));
208     * }
209     * } else {
210     * for (int i = lo; i < hi; ++i)
211     * tasks[i] = new Task(ph);
212     * // assumes new Task(ph) performs ph.register()
213     * }
214     * }}</pre>
215     *
216     * The best value of {@code TASKS_PER_PHASER} depends mainly on
217     * expected synchronization rates. A value as low as four may
218     * be appropriate for extremely small per-phase task bodies (thus
219     * high rates), or up to hundreds for extremely large ones.
220     *
221     * <p><b>Implementation notes</b>: This implementation restricts the
222     * maximum number of parties to 65535. Attempts to register additional
223     * parties result in {@code IllegalStateException}. However, you can and
224     * should create tiered phasers to accommodate arbitrarily large sets
225     * of participants.
226     *
227     * @since 1.7
228     * @author Doug Lea
229     */
230     public class Phaser {
231     /*
232     * This class implements an extension of X10 "clocks". Thanks to
233     * Vijay Saraswat for the idea, and to Vivek Sarkar for
234     * enhancements to extend functionality.
235     */
236    
237     /**
238     * Primary state representation, holding four bit-fields:
239     *
240     * unarrived -- the number of parties yet to hit barrier (bits 0-15)
241     * parties -- the number of parties to wait (bits 16-31)
242     * phase -- the generation of the barrier (bits 32-62)
243     * terminated -- set if barrier is terminated (bit 63 / sign)
244     *
245     * Except that a phaser with no registered parties is
246     * distinguished by the otherwise illegal state of having zero
247     * parties and one unarrived parties (encoded as EMPTY below).
248     *
249     * To efficiently maintain atomicity, these values are packed into
250     * a single (atomic) long. Good performance relies on keeping
251     * state decoding and encoding simple, and keeping race windows
252     * short.
253     *
254     * All state updates are performed via CAS except initial
255     * registration of a sub-phaser (i.e., one with a non-null
256     * parent). In this (relatively rare) case, we use built-in
257     * synchronization to lock while first registering with its
258     * parent.
259     *
260     * The phase of a subphaser is allowed to lag that of its
261     * ancestors until it is actually accessed -- see method
262     * reconcileState.
263     */
264     private volatile long state;
265    
266     private static final int MAX_PARTIES = 0xffff;
267     private static final int MAX_PHASE = Integer.MAX_VALUE;
268     private static final int PARTIES_SHIFT = 16;
269     private static final int PHASE_SHIFT = 32;
270     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
271     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
272     private static final long COUNTS_MASK = 0xffffffffL;
273     private static final long TERMINATION_BIT = 1L << 63;
274    
275     // some special values
276     private static final int ONE_ARRIVAL = 1;
277     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
278     private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
279     private static final int EMPTY = 1;
280    
281     // The following unpacking methods are usually manually inlined
282    
283     private static int unarrivedOf(long s) {
284     int counts = (int)s;
285     return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
286     }
287    
288     private static int partiesOf(long s) {
289     return (int)s >>> PARTIES_SHIFT;
290     }
291    
292     private static int phaseOf(long s) {
293     return (int)(s >>> PHASE_SHIFT);
294     }
295    
296     private static int arrivedOf(long s) {
297     int counts = (int)s;
298     return (counts == EMPTY) ? 0 :
299     (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300     }
301    
302     /**
303     * The parent of this phaser, or null if none.
304     */
305     private final Phaser parent;
306    
307     /**
308     * The root of phaser tree. Equals this if not in a tree.
309     */
310     private final Phaser root;
311    
312     /**
313     * Heads of Treiber stacks for waiting threads. To eliminate
314     * contention when releasing some threads while adding others, we
315     * use two of them, alternating across even and odd phases.
316     * Subphasers share queues with root to speed up releases.
317     */
318     private final AtomicReference<QNode> evenQ;
319     private final AtomicReference<QNode> oddQ;
320    
321     /**
322     * Returns message string for bounds exceptions on arrival.
323     */
324     private String badArrive(long s) {
325     return "Attempted arrival of unregistered party for " +
326     stateToString(s);
327     }
328    
329     /**
330     * Returns message string for bounds exceptions on registration.
331     */
332     private String badRegister(long s) {
333     return "Attempt to register more than " +
334     MAX_PARTIES + " parties for " + stateToString(s);
335     }
336    
337     /**
338     * Main implementation for methods arrive and arriveAndDeregister.
339     * Manually tuned to speed up and minimize race windows for the
340     * common case of just decrementing unarrived field.
341     *
342     * @param adjust value to subtract from state;
343     * ONE_ARRIVAL for arrive,
344     * ONE_DEREGISTER for arriveAndDeregister
345     */
346     private int doArrive(int adjust) {
347     final Phaser root = this.root;
348     for (;;) {
349     long s = (root == this) ? state : reconcileState();
350     int phase = (int)(s >>> PHASE_SHIFT);
351     if (phase < 0)
352     return phase;
353     int counts = (int)s;
354     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
355     if (unarrived <= 0)
356     throw new IllegalStateException(badArrive(s));
357     if (U.compareAndSwapLong(this, STATE, s, s-=adjust)) {
358     if (unarrived == 1) {
359     long n = s & PARTIES_MASK; // base of next state
360     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
361     if (root == this) {
362     if (onAdvance(phase, nextUnarrived))
363     n |= TERMINATION_BIT;
364     else if (nextUnarrived == 0)
365     n |= EMPTY;
366     else
367     n |= nextUnarrived;
368     int nextPhase = (phase + 1) & MAX_PHASE;
369     n |= (long)nextPhase << PHASE_SHIFT;
370     U.compareAndSwapLong(this, STATE, s, n);
371     releaseWaiters(phase);
372     }
373     else if (nextUnarrived == 0) { // propagate deregistration
374     phase = parent.doArrive(ONE_DEREGISTER);
375     U.compareAndSwapLong(this, STATE, s, s | EMPTY);
376     }
377     else
378     phase = parent.doArrive(ONE_ARRIVAL);
379     }
380     return phase;
381     }
382     }
383     }
384    
385     /**
386     * Implementation of register, bulkRegister.
387     *
388     * @param registrations number to add to both parties and
389     * unarrived fields. Must be greater than zero.
390     */
391     private int doRegister(int registrations) {
392     // adjustment to state
393     long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
394     final Phaser parent = this.parent;
395     int phase;
396     for (;;) {
397     long s = (parent == null) ? state : reconcileState();
398     int counts = (int)s;
399     int parties = counts >>> PARTIES_SHIFT;
400     int unarrived = counts & UNARRIVED_MASK;
401     if (registrations > MAX_PARTIES - parties)
402     throw new IllegalStateException(badRegister(s));
403     phase = (int)(s >>> PHASE_SHIFT);
404     if (phase < 0)
405     break;
406     if (counts != EMPTY) { // not 1st registration
407     if (parent == null || reconcileState() == s) {
408     if (unarrived == 0) // wait out advance
409     root.internalAwaitAdvance(phase, null);
410     else if (U.compareAndSwapLong(this, STATE, s, s + adjust))
411     break;
412     }
413     }
414     else if (parent == null) { // 1st root registration
415     long next = ((long)phase << PHASE_SHIFT) | adjust;
416     if (U.compareAndSwapLong(this, STATE, s, next))
417     break;
418     }
419     else {
420     synchronized (this) { // 1st sub registration
421     if (state == s) { // recheck under lock
422     phase = parent.doRegister(1);
423     if (phase < 0)
424     break;
425     // finish registration whenever parent registration
426     // succeeded, even when racing with termination,
427     // since these are part of the same "transaction".
428     while (!U.compareAndSwapLong
429     (this, STATE, s,
430     ((long)phase << PHASE_SHIFT) | adjust)) {
431     s = state;
432     phase = (int)(root.state >>> PHASE_SHIFT);
433     // assert (int)s == EMPTY;
434     }
435     break;
436     }
437     }
438     }
439     }
440     return phase;
441     }
442    
443     /**
444     * Resolves lagged phase propagation from root if necessary.
445     * Reconciliation normally occurs when root has advanced but
446     * subphasers have not yet done so, in which case they must finish
447     * their own advance by setting unarrived to parties (or if
448     * parties is zero, resetting to unregistered EMPTY state).
449     *
450     * @return reconciled state
451     */
452     private long reconcileState() {
453     final Phaser root = this.root;
454     long s = state;
455     if (root != this) {
456     int phase, p;
457     // CAS to root phase with current parties, tripping unarrived
458     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
459     (int)(s >>> PHASE_SHIFT) &&
460     !U.compareAndSwapLong
461     (this, STATE, s,
462     s = (((long)phase << PHASE_SHIFT) |
463     ((phase < 0) ? (s & COUNTS_MASK) :
464     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
465     ((s & PARTIES_MASK) | p))))))
466     s = state;
467     }
468     return s;
469     }
470    
471     /**
472     * Creates a new phaser with no initially registered parties, no
473     * parent, and initial phase number 0. Any thread using this
474     * phaser will need to first register for it.
475     */
476     public Phaser() {
477     this(null, 0);
478     }
479    
480     /**
481     * Creates a new phaser with the given number of registered
482     * unarrived parties, no parent, and initial phase number 0.
483     *
484     * @param parties the number of parties required to advance to the
485     * next phase
486     * @throws IllegalArgumentException if parties less than zero
487     * or greater than the maximum number of parties supported
488     */
489     public Phaser(int parties) {
490     this(null, parties);
491     }
492    
493     /**
494     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
495     *
496     * @param parent the parent phaser
497     */
498     public Phaser(Phaser parent) {
499     this(parent, 0);
500     }
501    
502     /**
503     * Creates a new phaser with the given parent and number of
504     * registered unarrived parties. When the given parent is non-null
505     * and the given number of parties is greater than zero, this
506     * child phaser is registered with its parent.
507     *
508     * @param parent the parent phaser
509     * @param parties the number of parties required to advance to the
510     * next phase
511     * @throws IllegalArgumentException if parties less than zero
512     * or greater than the maximum number of parties supported
513     */
514     public Phaser(Phaser parent, int parties) {
515     if (parties >>> PARTIES_SHIFT != 0)
516     throw new IllegalArgumentException("Illegal number of parties");
517     int phase = 0;
518     this.parent = parent;
519     if (parent != null) {
520     final Phaser root = parent.root;
521     this.root = root;
522     this.evenQ = root.evenQ;
523     this.oddQ = root.oddQ;
524     if (parties != 0)
525     phase = parent.doRegister(1);
526     }
527     else {
528     this.root = this;
529     this.evenQ = new AtomicReference<QNode>();
530     this.oddQ = new AtomicReference<QNode>();
531     }
532     this.state = (parties == 0) ? (long)EMPTY :
533     ((long)phase << PHASE_SHIFT) |
534     ((long)parties << PARTIES_SHIFT) |
535     ((long)parties);
536     }
537    
538     /**
539     * Adds a new unarrived party to this phaser. If an ongoing
540     * invocation of {@link #onAdvance} is in progress, this method
541     * may await its completion before returning. If this phaser has
542     * a parent, and this phaser previously had no registered parties,
543     * this child phaser is also registered with its parent. If
544     * this phaser is terminated, the attempt to register has
545     * no effect, and a negative value is returned.
546     *
547     * @return the arrival phase number to which this registration
548     * applied. If this value is negative, then this phaser has
549     * terminated, in which case registration has no effect.
550     * @throws IllegalStateException if attempting to register more
551     * than the maximum supported number of parties
552     */
553     public int register() {
554     return doRegister(1);
555     }
556    
557     /**
558     * Adds the given number of new unarrived parties to this phaser.
559     * If an ongoing invocation of {@link #onAdvance} is in progress,
560     * this method may await its completion before returning. If this
561     * phaser has a parent, and the given number of parties is greater
562     * than zero, and this phaser previously had no registered
563     * parties, this child phaser is also registered with its parent.
564     * If this phaser is terminated, the attempt to register has no
565     * effect, and a negative value is returned.
566     *
567     * @param parties the number of additional parties required to
568     * advance to the next phase
569     * @return the arrival phase number to which this registration
570     * applied. If this value is negative, then this phaser has
571     * terminated, in which case registration has no effect.
572     * @throws IllegalStateException if attempting to register more
573     * than the maximum supported number of parties
574     * @throws IllegalArgumentException if {@code parties < 0}
575     */
576     public int bulkRegister(int parties) {
577     if (parties < 0)
578     throw new IllegalArgumentException();
579     if (parties == 0)
580     return getPhase();
581     return doRegister(parties);
582     }
583    
584     /**
585     * Arrives at this phaser, without waiting for others to arrive.
586     *
587     * <p>It is a usage error for an unregistered party to invoke this
588     * method. However, this error may result in an {@code
589     * IllegalStateException} only upon some subsequent operation on
590     * this phaser, if ever.
591     *
592     * @return the arrival phase number, or a negative value if terminated
593     * @throws IllegalStateException if not terminated and the number
594     * of unarrived parties would become negative
595     */
596     public int arrive() {
597     return doArrive(ONE_ARRIVAL);
598     }
599    
600     /**
601     * Arrives at this phaser and deregisters from it without waiting
602     * for others to arrive. Deregistration reduces the number of
603     * parties required to advance in future phases. If this phaser
604     * has a parent, and deregistration causes this phaser to have
605     * zero parties, this phaser is also deregistered from its parent.
606     *
607     * <p>It is a usage error for an unregistered party to invoke this
608     * method. However, this error may result in an {@code
609     * IllegalStateException} only upon some subsequent operation on
610     * this phaser, if ever.
611     *
612     * @return the arrival phase number, or a negative value if terminated
613     * @throws IllegalStateException if not terminated and the number
614     * of registered or unarrived parties would become negative
615     */
616     public int arriveAndDeregister() {
617     return doArrive(ONE_DEREGISTER);
618     }
619    
620     /**
621     * Arrives at this phaser and awaits others. Equivalent in effect
622     * to {@code awaitAdvance(arrive())}. If you need to await with
623     * interruption or timeout, you can arrange this with an analogous
624     * construction using one of the other forms of the {@code
625     * awaitAdvance} method. If instead you need to deregister upon
626     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
627     *
628     * <p>It is a usage error for an unregistered party to invoke this
629     * method. However, this error may result in an {@code
630     * IllegalStateException} only upon some subsequent operation on
631     * this phaser, if ever.
632     *
633     * @return the arrival phase number, or the (negative)
634     * {@linkplain #getPhase() current phase} if terminated
635     * @throws IllegalStateException if not terminated and the number
636     * of unarrived parties would become negative
637     */
638     public int arriveAndAwaitAdvance() {
639     // Specialization of doArrive+awaitAdvance eliminating some reads/paths
640     final Phaser root = this.root;
641     for (;;) {
642     long s = (root == this) ? state : reconcileState();
643     int phase = (int)(s >>> PHASE_SHIFT);
644     if (phase < 0)
645     return phase;
646     int counts = (int)s;
647     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
648     if (unarrived <= 0)
649     throw new IllegalStateException(badArrive(s));
650     if (U.compareAndSwapLong(this, STATE, s, s -= ONE_ARRIVAL)) {
651     if (unarrived > 1)
652     return root.internalAwaitAdvance(phase, null);
653     if (root != this)
654     return parent.arriveAndAwaitAdvance();
655     long n = s & PARTIES_MASK; // base of next state
656     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
657     if (onAdvance(phase, nextUnarrived))
658     n |= TERMINATION_BIT;
659     else if (nextUnarrived == 0)
660     n |= EMPTY;
661     else
662     n |= nextUnarrived;
663     int nextPhase = (phase + 1) & MAX_PHASE;
664     n |= (long)nextPhase << PHASE_SHIFT;
665     if (!U.compareAndSwapLong(this, STATE, s, n))
666     return (int)(state >>> PHASE_SHIFT); // terminated
667     releaseWaiters(phase);
668     return nextPhase;
669     }
670     }
671     }
672    
673     /**
674     * Awaits the phase of this phaser to advance from the given phase
675     * value, returning immediately if the current phase is not equal
676     * to the given phase value or this phaser is terminated.
677     *
678     * @param phase an arrival phase number, or negative value if
679     * terminated; this argument is normally the value returned by a
680     * previous call to {@code arrive} or {@code arriveAndDeregister}.
681     * @return the next arrival phase number, or the argument if it is
682     * negative, or the (negative) {@linkplain #getPhase() current phase}
683     * if terminated
684     */
685     public int awaitAdvance(int phase) {
686     final Phaser root = this.root;
687     long s = (root == this) ? state : reconcileState();
688     int p = (int)(s >>> PHASE_SHIFT);
689     if (phase < 0)
690     return phase;
691     if (p == phase)
692     return root.internalAwaitAdvance(phase, null);
693     return p;
694     }
695    
696     /**
697     * Awaits the phase of this phaser to advance from the given phase
698     * value, throwing {@code InterruptedException} if interrupted
699     * while waiting, or returning immediately if the current phase is
700     * not equal to the given phase value or this phaser is
701     * terminated.
702     *
703     * @param phase an arrival phase number, or negative value if
704     * terminated; this argument is normally the value returned by a
705     * previous call to {@code arrive} or {@code arriveAndDeregister}.
706     * @return the next arrival phase number, or the argument if it is
707     * negative, or the (negative) {@linkplain #getPhase() current phase}
708     * if terminated
709     * @throws InterruptedException if thread interrupted while waiting
710     */
711     public int awaitAdvanceInterruptibly(int phase)
712     throws InterruptedException {
713     final Phaser root = this.root;
714     long s = (root == this) ? state : reconcileState();
715     int p = (int)(s >>> PHASE_SHIFT);
716     if (phase < 0)
717     return phase;
718     if (p == phase) {
719     QNode node = new QNode(this, phase, true, false, 0L);
720     p = root.internalAwaitAdvance(phase, node);
721     if (node.wasInterrupted)
722     throw new InterruptedException();
723     }
724     return p;
725     }
726    
727     /**
728     * Awaits the phase of this phaser to advance from the given phase
729     * value or the given timeout to elapse, throwing {@code
730     * InterruptedException} if interrupted while waiting, or
731     * returning immediately if the current phase is not equal to the
732     * given phase value or this phaser is terminated.
733     *
734     * @param phase an arrival phase number, or negative value if
735     * terminated; this argument is normally the value returned by a
736     * previous call to {@code arrive} or {@code arriveAndDeregister}.
737     * @param timeout how long to wait before giving up, in units of
738     * {@code unit}
739     * @param unit a {@code TimeUnit} determining how to interpret the
740     * {@code timeout} parameter
741     * @return the next arrival phase number, or the argument if it is
742     * negative, or the (negative) {@linkplain #getPhase() current phase}
743     * if terminated
744     * @throws InterruptedException if thread interrupted while waiting
745     * @throws TimeoutException if timed out while waiting
746     */
747     public int awaitAdvanceInterruptibly(int phase,
748     long timeout, TimeUnit unit)
749     throws InterruptedException, TimeoutException {
750     long nanos = unit.toNanos(timeout);
751     final Phaser root = this.root;
752     long s = (root == this) ? state : reconcileState();
753     int p = (int)(s >>> PHASE_SHIFT);
754     if (phase < 0)
755     return phase;
756     if (p == phase) {
757     QNode node = new QNode(this, phase, true, true, nanos);
758     p = root.internalAwaitAdvance(phase, node);
759     if (node.wasInterrupted)
760     throw new InterruptedException();
761     else if (p == phase)
762     throw new TimeoutException();
763     }
764     return p;
765     }
766    
767     /**
768     * Forces this phaser to enter termination state. Counts of
769     * registered parties are unaffected. If this phaser is a member
770     * of a tiered set of phasers, then all of the phasers in the set
771     * are terminated. If this phaser is already terminated, this
772     * method has no effect. This method may be useful for
773     * coordinating recovery after one or more tasks encounter
774     * unexpected exceptions.
775     */
776     public void forceTermination() {
777     // Only need to change root state
778     final Phaser root = this.root;
779     long s;
780     while ((s = root.state) >= 0) {
781     if (U.compareAndSwapLong(root, STATE, s, s | TERMINATION_BIT)) {
782     // signal all threads
783     releaseWaiters(0); // Waiters on evenQ
784     releaseWaiters(1); // Waiters on oddQ
785     return;
786     }
787     }
788     }
789    
790     /**
791     * Returns the current phase number. The maximum phase number is
792     * {@code Integer.MAX_VALUE}, after which it restarts at
793     * zero. Upon termination, the phase number is negative,
794     * in which case the prevailing phase prior to termination
795     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
796     *
797     * @return the phase number, or a negative value if terminated
798     */
799     public final int getPhase() {
800     return (int)(root.state >>> PHASE_SHIFT);
801     }
802    
803     /**
804     * Returns the number of parties registered at this phaser.
805     *
806     * @return the number of parties
807     */
808     public int getRegisteredParties() {
809     return partiesOf(state);
810     }
811    
812     /**
813     * Returns the number of registered parties that have arrived at
814     * the current phase of this phaser. If this phaser has terminated,
815     * the returned value is meaningless and arbitrary.
816     *
817     * @return the number of arrived parties
818     */
819     public int getArrivedParties() {
820     return arrivedOf(reconcileState());
821     }
822    
823     /**
824     * Returns the number of registered parties that have not yet
825     * arrived at the current phase of this phaser. If this phaser has
826     * terminated, the returned value is meaningless and arbitrary.
827     *
828     * @return the number of unarrived parties
829     */
830     public int getUnarrivedParties() {
831     return unarrivedOf(reconcileState());
832     }
833    
834     /**
835     * Returns the parent of this phaser, or {@code null} if none.
836     *
837     * @return the parent of this phaser, or {@code null} if none
838     */
839     public Phaser getParent() {
840     return parent;
841     }
842    
843     /**
844     * Returns the root ancestor of this phaser, which is the same as
845     * this phaser if it has no parent.
846     *
847     * @return the root ancestor of this phaser
848     */
849     public Phaser getRoot() {
850     return root;
851     }
852    
853     /**
854     * Returns {@code true} if this phaser has been terminated.
855     *
856     * @return {@code true} if this phaser has been terminated
857     */
858     public boolean isTerminated() {
859     return root.state < 0L;
860     }
861    
862     /**
863     * Overridable method to perform an action upon impending phase
864     * advance, and to control termination. This method is invoked
865     * upon arrival of the party advancing this phaser (when all other
866     * waiting parties are dormant). If this method returns {@code
867     * true}, this phaser will be set to a final termination state
868     * upon advance, and subsequent calls to {@link #isTerminated}
869     * will return true. Any (unchecked) Exception or Error thrown by
870     * an invocation of this method is propagated to the party
871     * attempting to advance this phaser, in which case no advance
872     * occurs.
873     *
874     * <p>The arguments to this method provide the state of the phaser
875     * prevailing for the current transition. The effects of invoking
876     * arrival, registration, and waiting methods on this phaser from
877     * within {@code onAdvance} are unspecified and should not be
878     * relied on.
879     *
880     * <p>If this phaser is a member of a tiered set of phasers, then
881     * {@code onAdvance} is invoked only for its root phaser on each
882     * advance.
883     *
884     * <p>To support the most common use cases, the default
885     * implementation of this method returns {@code true} when the
886     * number of registered parties has become zero as the result of a
887     * party invoking {@code arriveAndDeregister}. You can disable
888     * this behavior, thus enabling continuation upon future
889     * registrations, by overriding this method to always return
890     * {@code false}:
891     *
892     * <pre> {@code
893     * Phaser phaser = new Phaser() {
894     * protected boolean onAdvance(int phase, int parties) { return false; }
895     * }}</pre>
896     *
897     * @param phase the current phase number on entry to this method,
898     * before this phaser is advanced
899     * @param registeredParties the current number of registered parties
900     * @return {@code true} if this phaser should terminate
901     */
902     protected boolean onAdvance(int phase, int registeredParties) {
903     return registeredParties == 0;
904     }
905    
906     /**
907     * Returns a string identifying this phaser, as well as its
908     * state. The state, in brackets, includes the String {@code
909     * "phase = "} followed by the phase number, {@code "parties = "}
910     * followed by the number of registered parties, and {@code
911     * "arrived = "} followed by the number of arrived parties.
912     *
913     * @return a string identifying this phaser, as well as its state
914     */
915     public String toString() {
916     return stateToString(reconcileState());
917     }
918    
919     /**
920     * Implementation of toString and string-based error messages.
921     */
922     private String stateToString(long s) {
923     return super.toString() +
924     "[phase = " + phaseOf(s) +
925     " parties = " + partiesOf(s) +
926     " arrived = " + arrivedOf(s) + "]";
927     }
928    
929     // Waiting mechanics
930    
931     /**
932     * Removes and signals threads from queue for phase.
933     */
934     private void releaseWaiters(int phase) {
935     QNode q; // first element of queue
936     Thread t; // its thread
937     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938     while ((q = head.get()) != null &&
939     q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940     if (head.compareAndSet(q, q.next) &&
941     (t = q.thread) != null) {
942     q.thread = null;
943     LockSupport.unpark(t);
944     }
945     }
946     }
947    
948     /**
949     * Variant of releaseWaiters that additionally tries to remove any
950     * nodes no longer waiting for advance due to timeout or
951     * interrupt. Currently, nodes are removed only if they are at
952     * head of queue, which suffices to reduce memory footprint in
953     * most usages.
954     *
955     * @return current phase on exit
956     */
957     private int abortWait(int phase) {
958     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959     for (;;) {
960     Thread t;
961     QNode q = head.get();
962     int p = (int)(root.state >>> PHASE_SHIFT);
963     if (q == null || ((t = q.thread) != null && q.phase == p))
964     return p;
965     if (head.compareAndSet(q, q.next) && t != null) {
966     q.thread = null;
967     LockSupport.unpark(t);
968     }
969     }
970     }
971    
972     /** The number of CPUs, for spin control */
973     private static final int NCPU = Runtime.getRuntime().availableProcessors();
974    
975     /**
976     * The number of times to spin before blocking while waiting for
977     * advance, per arrival while waiting. On multiprocessors, fully
978     * blocking and waking up a large number of threads all at once is
979     * usually a very slow process, so we use rechargeable spins to
980     * avoid it when threads regularly arrive: When a thread in
981     * internalAwaitAdvance notices another arrival before blocking,
982     * and there appear to be enough CPUs available, it spins
983     * SPINS_PER_ARRIVAL more times before blocking. The value trades
984     * off good-citizenship vs big unnecessary slowdowns.
985     */
986     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
987    
988     /**
989     * Possibly blocks and waits for phase to advance unless aborted.
990     * Call only on root phaser.
991     *
992     * @param phase current phase
993     * @param node if non-null, the wait node to track interrupt and timeout;
994     * if null, denotes noninterruptible wait
995     * @return current phase
996     */
997     private int internalAwaitAdvance(int phase, QNode node) {
998     // assert root == this;
999     releaseWaiters(phase-1); // ensure old queue clean
1000     boolean queued = false; // true when node is enqueued
1001     int lastUnarrived = 0; // to increase spins upon change
1002     int spins = SPINS_PER_ARRIVAL;
1003     long s;
1004     int p;
1005     while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1006     if (node == null) { // spinning in noninterruptible mode
1007     int unarrived = (int)s & UNARRIVED_MASK;
1008     if (unarrived != lastUnarrived &&
1009     (lastUnarrived = unarrived) < NCPU)
1010     spins += SPINS_PER_ARRIVAL;
1011     boolean interrupted = Thread.interrupted();
1012     if (interrupted || --spins < 0) { // need node to record intr
1013     node = new QNode(this, phase, false, false, 0L);
1014     node.wasInterrupted = interrupted;
1015     }
1016     }
1017     else if (node.isReleasable()) // done or aborted
1018     break;
1019     else if (!queued) { // push onto queue
1020     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1021     QNode q = node.next = head.get();
1022     if ((q == null || q.phase == phase) &&
1023     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1024     queued = head.compareAndSet(q, node);
1025     }
1026     else {
1027     try {
1028     ForkJoinPool.managedBlock(node);
1029     } catch (InterruptedException cantHappen) {
1030     node.wasInterrupted = true;
1031     }
1032     }
1033     }
1034    
1035     if (node != null) {
1036     if (node.thread != null)
1037     node.thread = null; // avoid need for unpark()
1038     if (node.wasInterrupted && !node.interruptible)
1039     Thread.currentThread().interrupt();
1040     if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1041     return abortWait(phase); // possibly clean up on abort
1042     }
1043     releaseWaiters(phase);
1044     return p;
1045     }
1046    
1047     /**
1048     * Wait nodes for Treiber stack representing wait queue.
1049     */
1050     static final class QNode implements ForkJoinPool.ManagedBlocker {
1051     final Phaser phaser;
1052     final int phase;
1053     final boolean interruptible;
1054     final boolean timed;
1055     boolean wasInterrupted;
1056     long nanos;
1057     final long deadline;
1058     volatile Thread thread; // nulled to cancel wait
1059     QNode next;
1060    
1061     QNode(Phaser phaser, int phase, boolean interruptible,
1062     boolean timed, long nanos) {
1063     this.phaser = phaser;
1064     this.phase = phase;
1065     this.interruptible = interruptible;
1066     this.nanos = nanos;
1067     this.timed = timed;
1068     this.deadline = timed ? System.nanoTime() + nanos : 0L;
1069     thread = Thread.currentThread();
1070     }
1071    
1072     public boolean isReleasable() {
1073     if (thread == null)
1074     return true;
1075     if (phaser.getPhase() != phase) {
1076     thread = null;
1077     return true;
1078     }
1079     if (Thread.interrupted())
1080     wasInterrupted = true;
1081     if (wasInterrupted && interruptible) {
1082     thread = null;
1083     return true;
1084     }
1085     if (timed &&
1086     (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1087     thread = null;
1088     return true;
1089     }
1090     return false;
1091     }
1092    
1093     public boolean block() {
1094     while (!isReleasable()) {
1095     if (timed)
1096     LockSupport.parkNanos(this, nanos);
1097     else
1098     LockSupport.park(this);
1099     }
1100     return true;
1101     }
1102     }
1103    
1104     // Unsafe mechanics
1105    
1106     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1107     private static final long STATE;
1108     static {
1109     try {
1110     STATE = U.objectFieldOffset
1111     (Phaser.class.getDeclaredField("state"));
1112     } catch (ReflectiveOperationException e) {
1113     throw new Error(e);
1114     }
1115    
1116     // Reduce the risk of rare disastrous classloading in first call to
1117     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1118     Class<?> ensureLoaded = LockSupport.class;
1119     }
1120     }