ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.2
Committed: Sun Jun 4 23:04:03 2017 UTC (6 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +42 -49 lines
Log Message:
backport thread pool code to jdk8, fixing 4jdk8-tck ant target

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.ConcurrentModificationException;
11     import java.util.HashSet;
12     import java.util.Iterator;
13     import java.util.List;
14     import java.util.concurrent.atomic.AtomicInteger;
15     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
16     import java.util.concurrent.locks.Condition;
17     import java.util.concurrent.locks.ReentrantLock;
18    
19     /**
20     * An {@link ExecutorService} that executes each submitted task using
21     * one of possibly several pooled threads, normally configured
22     * using {@link Executors} factory methods.
23     *
24     * <p>Thread pools address two different problems: they usually
25     * provide improved performance when executing large numbers of
26     * asynchronous tasks, due to reduced per-task invocation overhead,
27     * and they provide a means of bounding and managing the resources,
28     * including threads, consumed when executing a collection of tasks.
29     * Each {@code ThreadPoolExecutor} also maintains some basic
30     * statistics, such as the number of completed tasks.
31     *
32     * <p>To be useful across a wide range of contexts, this class
33     * provides many adjustable parameters and extensibility
34     * hooks. However, programmers are urged to use the more convenient
35     * {@link Executors} factory methods {@link
36     * Executors#newCachedThreadPool} (unbounded thread pool, with
37     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
38     * (fixed size thread pool) and {@link
39     * Executors#newSingleThreadExecutor} (single background thread), that
40     * preconfigure settings for the most common usage
41     * scenarios. Otherwise, use the following guide when manually
42     * configuring and tuning this class:
43     *
44     * <dl>
45     *
46     * <dt>Core and maximum pool sizes</dt>
47     *
48 jsr166 1.2 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
49 jsr166 1.1 * pool size (see {@link #getPoolSize})
50     * according to the bounds set by
51     * corePoolSize (see {@link #getCorePoolSize}) and
52     * maximumPoolSize (see {@link #getMaximumPoolSize}).
53     *
54     * When a new task is submitted in method {@link #execute(Runnable)},
55 jsr166 1.2 * if fewer than corePoolSize threads are running, a new thread is
56 jsr166 1.1 * created to handle the request, even if other worker threads are
57 jsr166 1.2 * idle. Else if fewer than maximumPoolSize threads are running, a
58     * new thread will be created to handle the request only if the queue
59     * is full. By setting corePoolSize and maximumPoolSize the same, you
60     * create a fixed-size thread pool. By setting maximumPoolSize to an
61     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
62     * allow the pool to accommodate an arbitrary number of concurrent
63     * tasks. Most typically, core and maximum pool sizes are set only
64     * upon construction, but they may also be changed dynamically using
65     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
66 jsr166 1.1 *
67     * <dt>On-demand construction</dt>
68     *
69 jsr166 1.2 * <dd>By default, even core threads are initially created and
70 jsr166 1.1 * started only when new tasks arrive, but this can be overridden
71     * dynamically using method {@link #prestartCoreThread} or {@link
72     * #prestartAllCoreThreads}. You probably want to prestart threads if
73     * you construct the pool with a non-empty queue. </dd>
74     *
75     * <dt>Creating new threads</dt>
76     *
77 jsr166 1.2 * <dd>New threads are created using a {@link ThreadFactory}. If not
78 jsr166 1.1 * otherwise specified, a {@link Executors#defaultThreadFactory} is
79     * used, that creates threads to all be in the same {@link
80     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
81     * non-daemon status. By supplying a different ThreadFactory, you can
82     * alter the thread's name, thread group, priority, daemon status,
83     * etc. If a {@code ThreadFactory} fails to create a thread when asked
84     * by returning null from {@code newThread}, the executor will
85     * continue, but might not be able to execute any tasks. Threads
86     * should possess the "modifyThread" {@code RuntimePermission}. If
87     * worker threads or other threads using the pool do not possess this
88     * permission, service may be degraded: configuration changes may not
89     * take effect in a timely manner, and a shutdown pool may remain in a
90     * state in which termination is possible but not completed.</dd>
91     *
92     * <dt>Keep-alive times</dt>
93     *
94 jsr166 1.2 * <dd>If the pool currently has more than corePoolSize threads,
95 jsr166 1.1 * excess threads will be terminated if they have been idle for more
96     * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
97     * This provides a means of reducing resource consumption when the
98     * pool is not being actively used. If the pool becomes more active
99     * later, new threads will be constructed. This parameter can also be
100     * changed dynamically using method {@link #setKeepAliveTime(long,
101     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
102     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
103     * terminating prior to shut down. By default, the keep-alive policy
104     * applies only when there are more than corePoolSize threads, but
105     * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
106     * apply this time-out policy to core threads as well, so long as the
107     * keepAliveTime value is non-zero. </dd>
108     *
109     * <dt>Queuing</dt>
110     *
111 jsr166 1.2 * <dd>Any {@link BlockingQueue} may be used to transfer and hold
112 jsr166 1.1 * submitted tasks. The use of this queue interacts with pool sizing:
113     *
114     * <ul>
115     *
116     * <li>If fewer than corePoolSize threads are running, the Executor
117     * always prefers adding a new thread
118     * rather than queuing.
119     *
120     * <li>If corePoolSize or more threads are running, the Executor
121     * always prefers queuing a request rather than adding a new
122     * thread.
123     *
124     * <li>If a request cannot be queued, a new thread is created unless
125     * this would exceed maximumPoolSize, in which case, the task will be
126     * rejected.
127     *
128     * </ul>
129     *
130     * There are three general strategies for queuing:
131     * <ol>
132     *
133     * <li><em> Direct handoffs.</em> A good default choice for a work
134     * queue is a {@link SynchronousQueue} that hands off tasks to threads
135     * without otherwise holding them. Here, an attempt to queue a task
136     * will fail if no threads are immediately available to run it, so a
137     * new thread will be constructed. This policy avoids lockups when
138     * handling sets of requests that might have internal dependencies.
139     * Direct handoffs generally require unbounded maximumPoolSizes to
140     * avoid rejection of new submitted tasks. This in turn admits the
141     * possibility of unbounded thread growth when commands continue to
142     * arrive on average faster than they can be processed.
143     *
144     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
145     * example a {@link LinkedBlockingQueue} without a predefined
146     * capacity) will cause new tasks to wait in the queue when all
147     * corePoolSize threads are busy. Thus, no more than corePoolSize
148     * threads will ever be created. (And the value of the maximumPoolSize
149     * therefore doesn't have any effect.) This may be appropriate when
150     * each task is completely independent of others, so tasks cannot
151     * affect each others execution; for example, in a web page server.
152     * While this style of queuing can be useful in smoothing out
153     * transient bursts of requests, it admits the possibility of
154     * unbounded work queue growth when commands continue to arrive on
155     * average faster than they can be processed.
156     *
157     * <li><em>Bounded queues.</em> A bounded queue (for example, an
158     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
159     * used with finite maximumPoolSizes, but can be more difficult to
160     * tune and control. Queue sizes and maximum pool sizes may be traded
161     * off for each other: Using large queues and small pools minimizes
162     * CPU usage, OS resources, and context-switching overhead, but can
163     * lead to artificially low throughput. If tasks frequently block (for
164     * example if they are I/O bound), a system may be able to schedule
165     * time for more threads than you otherwise allow. Use of small queues
166     * generally requires larger pool sizes, which keeps CPUs busier but
167     * may encounter unacceptable scheduling overhead, which also
168     * decreases throughput.
169     *
170     * </ol>
171     *
172     * </dd>
173     *
174     * <dt>Rejected tasks</dt>
175     *
176 jsr166 1.2 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
177 jsr166 1.1 * <em>rejected</em> when the Executor has been shut down, and also when
178     * the Executor uses finite bounds for both maximum threads and work queue
179     * capacity, and is saturated. In either case, the {@code execute} method
180     * invokes the {@link
181     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
182     * method of its {@link RejectedExecutionHandler}. Four predefined handler
183     * policies are provided:
184     *
185     * <ol>
186     *
187 jsr166 1.2 * <li>In the default {@link ThreadPoolExecutor.AbortPolicy}, the handler
188     * throws a runtime {@link RejectedExecutionException} upon rejection.
189 jsr166 1.1 *
190     * <li>In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
191     * that invokes {@code execute} itself runs the task. This provides a
192     * simple feedback control mechanism that will slow down the rate that
193     * new tasks are submitted.
194     *
195     * <li>In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
196     * cannot be executed is simply dropped.
197     *
198     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
199     * executor is not shut down, the task at the head of the work queue
200     * is dropped, and then execution is retried (which can fail again,
201     * causing this to be repeated.)
202     *
203     * </ol>
204     *
205     * It is possible to define and use other kinds of {@link
206     * RejectedExecutionHandler} classes. Doing so requires some care
207     * especially when policies are designed to work only under particular
208     * capacity or queuing policies. </dd>
209     *
210     * <dt>Hook methods</dt>
211     *
212 jsr166 1.2 * <dd>This class provides {@code protected} overridable
213 jsr166 1.1 * {@link #beforeExecute(Thread, Runnable)} and
214     * {@link #afterExecute(Runnable, Throwable)} methods that are called
215     * before and after execution of each task. These can be used to
216     * manipulate the execution environment; for example, reinitializing
217     * ThreadLocals, gathering statistics, or adding log entries.
218     * Additionally, method {@link #terminated} can be overridden to perform
219     * any special processing that needs to be done once the Executor has
220     * fully terminated.
221     *
222     * <p>If hook, callback, or BlockingQueue methods throw exceptions,
223     * internal worker threads may in turn fail, abruptly terminate, and
224     * possibly be replaced.</dd>
225     *
226     * <dt>Queue maintenance</dt>
227     *
228 jsr166 1.2 * <dd>Method {@link #getQueue()} allows access to the work queue
229 jsr166 1.1 * for purposes of monitoring and debugging. Use of this method for
230     * any other purpose is strongly discouraged. Two supplied methods,
231     * {@link #remove(Runnable)} and {@link #purge} are available to
232     * assist in storage reclamation when large numbers of queued tasks
233     * become cancelled.</dd>
234     *
235     * <dt>Finalization</dt>
236     *
237 jsr166 1.2 * <dd>A pool that is no longer referenced in a program <em>AND</em>
238 jsr166 1.1 * has no remaining threads will be {@code shutdown} automatically. If
239     * you would like to ensure that unreferenced pools are reclaimed even
240     * if users forget to call {@link #shutdown}, then you must arrange
241     * that unused threads eventually die, by setting appropriate
242     * keep-alive times, using a lower bound of zero core threads and/or
243     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
244     *
245     * </dl>
246     *
247     * <p><b>Extension example</b>. Most extensions of this class
248     * override one or more of the protected hook methods. For example,
249     * here is a subclass that adds a simple pause/resume feature:
250     *
251     * <pre> {@code
252     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
253     * private boolean isPaused;
254     * private ReentrantLock pauseLock = new ReentrantLock();
255     * private Condition unpaused = pauseLock.newCondition();
256     *
257     * public PausableThreadPoolExecutor(...) { super(...); }
258     *
259     * protected void beforeExecute(Thread t, Runnable r) {
260     * super.beforeExecute(t, r);
261     * pauseLock.lock();
262     * try {
263     * while (isPaused) unpaused.await();
264     * } catch (InterruptedException ie) {
265     * t.interrupt();
266     * } finally {
267     * pauseLock.unlock();
268     * }
269     * }
270     *
271     * public void pause() {
272     * pauseLock.lock();
273     * try {
274     * isPaused = true;
275     * } finally {
276     * pauseLock.unlock();
277     * }
278     * }
279     *
280     * public void resume() {
281     * pauseLock.lock();
282     * try {
283     * isPaused = false;
284     * unpaused.signalAll();
285     * } finally {
286     * pauseLock.unlock();
287     * }
288     * }
289     * }}</pre>
290     *
291     * @since 1.5
292     * @author Doug Lea
293     */
294     public class ThreadPoolExecutor extends AbstractExecutorService {
295     /**
296     * The main pool control state, ctl, is an atomic integer packing
297     * two conceptual fields
298     * workerCount, indicating the effective number of threads
299     * runState, indicating whether running, shutting down etc
300     *
301     * In order to pack them into one int, we limit workerCount to
302     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
303     * billion) otherwise representable. If this is ever an issue in
304     * the future, the variable can be changed to be an AtomicLong,
305     * and the shift/mask constants below adjusted. But until the need
306     * arises, this code is a bit faster and simpler using an int.
307     *
308     * The workerCount is the number of workers that have been
309     * permitted to start and not permitted to stop. The value may be
310     * transiently different from the actual number of live threads,
311     * for example when a ThreadFactory fails to create a thread when
312     * asked, and when exiting threads are still performing
313     * bookkeeping before terminating. The user-visible pool size is
314     * reported as the current size of the workers set.
315     *
316     * The runState provides the main lifecycle control, taking on values:
317     *
318     * RUNNING: Accept new tasks and process queued tasks
319     * SHUTDOWN: Don't accept new tasks, but process queued tasks
320     * STOP: Don't accept new tasks, don't process queued tasks,
321     * and interrupt in-progress tasks
322     * TIDYING: All tasks have terminated, workerCount is zero,
323     * the thread transitioning to state TIDYING
324     * will run the terminated() hook method
325     * TERMINATED: terminated() has completed
326     *
327     * The numerical order among these values matters, to allow
328     * ordered comparisons. The runState monotonically increases over
329     * time, but need not hit each state. The transitions are:
330     *
331     * RUNNING -> SHUTDOWN
332     * On invocation of shutdown(), perhaps implicitly in finalize()
333     * (RUNNING or SHUTDOWN) -> STOP
334     * On invocation of shutdownNow()
335     * SHUTDOWN -> TIDYING
336     * When both queue and pool are empty
337     * STOP -> TIDYING
338     * When pool is empty
339     * TIDYING -> TERMINATED
340     * When the terminated() hook method has completed
341     *
342     * Threads waiting in awaitTermination() will return when the
343     * state reaches TERMINATED.
344     *
345     * Detecting the transition from SHUTDOWN to TIDYING is less
346     * straightforward than you'd like because the queue may become
347     * empty after non-empty and vice versa during SHUTDOWN state, but
348     * we can only terminate if, after seeing that it is empty, we see
349     * that workerCount is 0 (which sometimes entails a recheck -- see
350     * below).
351     */
352     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
353     private static final int COUNT_BITS = Integer.SIZE - 3;
354     private static final int CAPACITY = (1 << COUNT_BITS) - 1;
355    
356     // runState is stored in the high-order bits
357     private static final int RUNNING = -1 << COUNT_BITS;
358     private static final int SHUTDOWN = 0 << COUNT_BITS;
359     private static final int STOP = 1 << COUNT_BITS;
360     private static final int TIDYING = 2 << COUNT_BITS;
361     private static final int TERMINATED = 3 << COUNT_BITS;
362    
363     // Packing and unpacking ctl
364     private static int runStateOf(int c) { return c & ~CAPACITY; }
365     private static int workerCountOf(int c) { return c & CAPACITY; }
366     private static int ctlOf(int rs, int wc) { return rs | wc; }
367    
368     /*
369     * Bit field accessors that don't require unpacking ctl.
370     * These depend on the bit layout and on workerCount being never negative.
371     */
372    
373     private static boolean runStateLessThan(int c, int s) {
374     return c < s;
375     }
376    
377     private static boolean runStateAtLeast(int c, int s) {
378     return c >= s;
379     }
380    
381     private static boolean isRunning(int c) {
382     return c < SHUTDOWN;
383     }
384    
385     /**
386     * Attempts to CAS-increment the workerCount field of ctl.
387     */
388     private boolean compareAndIncrementWorkerCount(int expect) {
389     return ctl.compareAndSet(expect, expect + 1);
390     }
391    
392     /**
393     * Attempts to CAS-decrement the workerCount field of ctl.
394     */
395     private boolean compareAndDecrementWorkerCount(int expect) {
396     return ctl.compareAndSet(expect, expect - 1);
397     }
398    
399     /**
400     * Decrements the workerCount field of ctl. This is called only on
401     * abrupt termination of a thread (see processWorkerExit). Other
402     * decrements are performed within getTask.
403     */
404     private void decrementWorkerCount() {
405     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
406     }
407    
408     /**
409     * The queue used for holding tasks and handing off to worker
410     * threads. We do not require that workQueue.poll() returning
411     * null necessarily means that workQueue.isEmpty(), so rely
412     * solely on isEmpty to see if the queue is empty (which we must
413     * do for example when deciding whether to transition from
414     * SHUTDOWN to TIDYING). This accommodates special-purpose
415     * queues such as DelayQueues for which poll() is allowed to
416     * return null even if it may later return non-null when delays
417     * expire.
418     */
419     private final BlockingQueue<Runnable> workQueue;
420    
421     /**
422     * Lock held on access to workers set and related bookkeeping.
423     * While we could use a concurrent set of some sort, it turns out
424     * to be generally preferable to use a lock. Among the reasons is
425     * that this serializes interruptIdleWorkers, which avoids
426     * unnecessary interrupt storms, especially during shutdown.
427     * Otherwise exiting threads would concurrently interrupt those
428     * that have not yet interrupted. It also simplifies some of the
429     * associated statistics bookkeeping of largestPoolSize etc. We
430     * also hold mainLock on shutdown and shutdownNow, for the sake of
431     * ensuring workers set is stable while separately checking
432     * permission to interrupt and actually interrupting.
433     */
434     private final ReentrantLock mainLock = new ReentrantLock();
435    
436     /**
437     * Set containing all worker threads in pool. Accessed only when
438     * holding mainLock.
439     */
440     private final HashSet<Worker> workers = new HashSet<>();
441    
442     /**
443     * Wait condition to support awaitTermination.
444     */
445     private final Condition termination = mainLock.newCondition();
446    
447     /**
448     * Tracks largest attained pool size. Accessed only under
449     * mainLock.
450     */
451     private int largestPoolSize;
452    
453     /**
454     * Counter for completed tasks. Updated only on termination of
455     * worker threads. Accessed only under mainLock.
456     */
457     private long completedTaskCount;
458    
459     /*
460     * All user control parameters are declared as volatiles so that
461     * ongoing actions are based on freshest values, but without need
462     * for locking, since no internal invariants depend on them
463     * changing synchronously with respect to other actions.
464     */
465    
466     /**
467     * Factory for new threads. All threads are created using this
468     * factory (via method addWorker). All callers must be prepared
469     * for addWorker to fail, which may reflect a system or user's
470     * policy limiting the number of threads. Even though it is not
471     * treated as an error, failure to create threads may result in
472     * new tasks being rejected or existing ones remaining stuck in
473     * the queue.
474     *
475     * We go further and preserve pool invariants even in the face of
476     * errors such as OutOfMemoryError, that might be thrown while
477     * trying to create threads. Such errors are rather common due to
478     * the need to allocate a native stack in Thread.start, and users
479     * will want to perform clean pool shutdown to clean up. There
480     * will likely be enough memory available for the cleanup code to
481     * complete without encountering yet another OutOfMemoryError.
482     */
483     private volatile ThreadFactory threadFactory;
484    
485     /**
486     * Handler called when saturated or shutdown in execute.
487     */
488     private volatile RejectedExecutionHandler handler;
489    
490     /**
491     * Timeout in nanoseconds for idle threads waiting for work.
492     * Threads use this timeout when there are more than corePoolSize
493     * present or if allowCoreThreadTimeOut. Otherwise they wait
494     * forever for new work.
495     */
496     private volatile long keepAliveTime;
497    
498     /**
499     * If false (default), core threads stay alive even when idle.
500     * If true, core threads use keepAliveTime to time out waiting
501     * for work.
502     */
503     private volatile boolean allowCoreThreadTimeOut;
504    
505     /**
506     * Core pool size is the minimum number of workers to keep alive
507     * (and not allow to time out etc) unless allowCoreThreadTimeOut
508     * is set, in which case the minimum is zero.
509     */
510     private volatile int corePoolSize;
511    
512     /**
513     * Maximum pool size. Note that the actual maximum is internally
514     * bounded by CAPACITY.
515     */
516     private volatile int maximumPoolSize;
517    
518     /**
519     * The default rejected execution handler.
520     */
521     private static final RejectedExecutionHandler defaultHandler =
522     new AbortPolicy();
523    
524     /**
525     * Permission required for callers of shutdown and shutdownNow.
526     * We additionally require (see checkShutdownAccess) that callers
527     * have permission to actually interrupt threads in the worker set
528     * (as governed by Thread.interrupt, which relies on
529     * ThreadGroup.checkAccess, which in turn relies on
530     * SecurityManager.checkAccess). Shutdowns are attempted only if
531     * these checks pass.
532     *
533     * All actual invocations of Thread.interrupt (see
534     * interruptIdleWorkers and interruptWorkers) ignore
535     * SecurityExceptions, meaning that the attempted interrupts
536     * silently fail. In the case of shutdown, they should not fail
537     * unless the SecurityManager has inconsistent policies, sometimes
538     * allowing access to a thread and sometimes not. In such cases,
539     * failure to actually interrupt threads may disable or delay full
540     * termination. Other uses of interruptIdleWorkers are advisory,
541     * and failure to actually interrupt will merely delay response to
542     * configuration changes so is not handled exceptionally.
543     */
544     private static final RuntimePermission shutdownPerm =
545     new RuntimePermission("modifyThread");
546    
547     /**
548     * Class Worker mainly maintains interrupt control state for
549     * threads running tasks, along with other minor bookkeeping.
550     * This class opportunistically extends AbstractQueuedSynchronizer
551     * to simplify acquiring and releasing a lock surrounding each
552     * task execution. This protects against interrupts that are
553     * intended to wake up a worker thread waiting for a task from
554     * instead interrupting a task being run. We implement a simple
555     * non-reentrant mutual exclusion lock rather than use
556     * ReentrantLock because we do not want worker tasks to be able to
557     * reacquire the lock when they invoke pool control methods like
558     * setCorePoolSize. Additionally, to suppress interrupts until
559     * the thread actually starts running tasks, we initialize lock
560     * state to a negative value, and clear it upon start (in
561     * runWorker).
562     */
563     private final class Worker
564     extends AbstractQueuedSynchronizer
565     implements Runnable
566     {
567     /**
568     * This class will never be serialized, but we provide a
569     * serialVersionUID to suppress a javac warning.
570     */
571     private static final long serialVersionUID = 6138294804551838833L;
572    
573     /** Thread this worker is running in. Null if factory fails. */
574     final Thread thread;
575     /** Initial task to run. Possibly null. */
576     Runnable firstTask;
577     /** Per-thread task counter */
578     volatile long completedTasks;
579    
580 jsr166 1.2 // TODO: switch to AbstractQueuedLongSynchronizer and move
581     // completedTasks into the lock word.
582    
583 jsr166 1.1 /**
584     * Creates with given first task and thread from ThreadFactory.
585     * @param firstTask the first task (null if none)
586     */
587     Worker(Runnable firstTask) {
588     setState(-1); // inhibit interrupts until runWorker
589     this.firstTask = firstTask;
590     this.thread = getThreadFactory().newThread(this);
591     }
592    
593     /** Delegates main run loop to outer runWorker. */
594     public void run() {
595     runWorker(this);
596     }
597    
598     // Lock methods
599     //
600     // The value 0 represents the unlocked state.
601     // The value 1 represents the locked state.
602    
603     protected boolean isHeldExclusively() {
604     return getState() != 0;
605     }
606    
607     protected boolean tryAcquire(int unused) {
608     if (compareAndSetState(0, 1)) {
609     setExclusiveOwnerThread(Thread.currentThread());
610     return true;
611     }
612     return false;
613     }
614    
615     protected boolean tryRelease(int unused) {
616     setExclusiveOwnerThread(null);
617     setState(0);
618     return true;
619     }
620    
621     public void lock() { acquire(1); }
622     public boolean tryLock() { return tryAcquire(1); }
623     public void unlock() { release(1); }
624     public boolean isLocked() { return isHeldExclusively(); }
625    
626     void interruptIfStarted() {
627     Thread t;
628     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
629     try {
630     t.interrupt();
631     } catch (SecurityException ignore) {
632     }
633     }
634     }
635     }
636    
637     /*
638     * Methods for setting control state
639     */
640    
641     /**
642     * Transitions runState to given target, or leaves it alone if
643     * already at least the given target.
644     *
645     * @param targetState the desired state, either SHUTDOWN or STOP
646     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
647     */
648     private void advanceRunState(int targetState) {
649     // assert targetState == SHUTDOWN || targetState == STOP;
650     for (;;) {
651     int c = ctl.get();
652     if (runStateAtLeast(c, targetState) ||
653     ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
654     break;
655     }
656     }
657    
658     /**
659     * Transitions to TERMINATED state if either (SHUTDOWN and pool
660     * and queue empty) or (STOP and pool empty). If otherwise
661     * eligible to terminate but workerCount is nonzero, interrupts an
662     * idle worker to ensure that shutdown signals propagate. This
663     * method must be called following any action that might make
664     * termination possible -- reducing worker count or removing tasks
665     * from the queue during shutdown. The method is non-private to
666     * allow access from ScheduledThreadPoolExecutor.
667     */
668     final void tryTerminate() {
669     for (;;) {
670     int c = ctl.get();
671     if (isRunning(c) ||
672     runStateAtLeast(c, TIDYING) ||
673     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
674     return;
675     if (workerCountOf(c) != 0) { // Eligible to terminate
676     interruptIdleWorkers(ONLY_ONE);
677     return;
678     }
679    
680     final ReentrantLock mainLock = this.mainLock;
681     mainLock.lock();
682     try {
683     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
684     try {
685     terminated();
686     } finally {
687     ctl.set(ctlOf(TERMINATED, 0));
688     termination.signalAll();
689     }
690     return;
691     }
692     } finally {
693     mainLock.unlock();
694     }
695     // else retry on failed CAS
696     }
697     }
698    
699     /*
700     * Methods for controlling interrupts to worker threads.
701     */
702    
703     /**
704     * If there is a security manager, makes sure caller has
705     * permission to shut down threads in general (see shutdownPerm).
706     * If this passes, additionally makes sure the caller is allowed
707     * to interrupt each worker thread. This might not be true even if
708     * first check passed, if the SecurityManager treats some threads
709     * specially.
710     */
711     private void checkShutdownAccess() {
712     SecurityManager security = System.getSecurityManager();
713     if (security != null) {
714     security.checkPermission(shutdownPerm);
715     final ReentrantLock mainLock = this.mainLock;
716     mainLock.lock();
717     try {
718     for (Worker w : workers)
719     security.checkAccess(w.thread);
720     } finally {
721     mainLock.unlock();
722     }
723     }
724     }
725    
726     /**
727     * Interrupts all threads, even if active. Ignores SecurityExceptions
728     * (in which case some threads may remain uninterrupted).
729     */
730     private void interruptWorkers() {
731     final ReentrantLock mainLock = this.mainLock;
732     mainLock.lock();
733     try {
734     for (Worker w : workers)
735     w.interruptIfStarted();
736     } finally {
737     mainLock.unlock();
738     }
739     }
740    
741     /**
742     * Interrupts threads that might be waiting for tasks (as
743     * indicated by not being locked) so they can check for
744     * termination or configuration changes. Ignores
745     * SecurityExceptions (in which case some threads may remain
746     * uninterrupted).
747     *
748     * @param onlyOne If true, interrupt at most one worker. This is
749     * called only from tryTerminate when termination is otherwise
750     * enabled but there are still other workers. In this case, at
751     * most one waiting worker is interrupted to propagate shutdown
752     * signals in case all threads are currently waiting.
753     * Interrupting any arbitrary thread ensures that newly arriving
754     * workers since shutdown began will also eventually exit.
755     * To guarantee eventual termination, it suffices to always
756     * interrupt only one idle worker, but shutdown() interrupts all
757     * idle workers so that redundant workers exit promptly, not
758     * waiting for a straggler task to finish.
759     */
760     private void interruptIdleWorkers(boolean onlyOne) {
761     final ReentrantLock mainLock = this.mainLock;
762     mainLock.lock();
763     try {
764     for (Worker w : workers) {
765     Thread t = w.thread;
766     if (!t.isInterrupted() && w.tryLock()) {
767     try {
768     t.interrupt();
769     } catch (SecurityException ignore) {
770     } finally {
771     w.unlock();
772     }
773     }
774     if (onlyOne)
775     break;
776     }
777     } finally {
778     mainLock.unlock();
779     }
780     }
781    
782     /**
783     * Common form of interruptIdleWorkers, to avoid having to
784     * remember what the boolean argument means.
785     */
786     private void interruptIdleWorkers() {
787     interruptIdleWorkers(false);
788     }
789    
790     private static final boolean ONLY_ONE = true;
791    
792     /*
793     * Misc utilities, most of which are also exported to
794     * ScheduledThreadPoolExecutor
795     */
796    
797     /**
798     * Invokes the rejected execution handler for the given command.
799     * Package-protected for use by ScheduledThreadPoolExecutor.
800     */
801     final void reject(Runnable command) {
802     handler.rejectedExecution(command, this);
803     }
804    
805     /**
806     * Performs any further cleanup following run state transition on
807     * invocation of shutdown. A no-op here, but used by
808     * ScheduledThreadPoolExecutor to cancel delayed tasks.
809     */
810     void onShutdown() {
811     }
812    
813     /**
814     * Drains the task queue into a new list, normally using
815     * drainTo. But if the queue is a DelayQueue or any other kind of
816     * queue for which poll or drainTo may fail to remove some
817     * elements, it deletes them one by one.
818     */
819     private List<Runnable> drainQueue() {
820     BlockingQueue<Runnable> q = workQueue;
821     ArrayList<Runnable> taskList = new ArrayList<>();
822     q.drainTo(taskList);
823     if (!q.isEmpty()) {
824     for (Runnable r : q.toArray(new Runnable[0])) {
825     if (q.remove(r))
826     taskList.add(r);
827     }
828     }
829     return taskList;
830     }
831    
832     /*
833     * Methods for creating, running and cleaning up after workers
834     */
835    
836     /**
837     * Checks if a new worker can be added with respect to current
838     * pool state and the given bound (either core or maximum). If so,
839     * the worker count is adjusted accordingly, and, if possible, a
840     * new worker is created and started, running firstTask as its
841     * first task. This method returns false if the pool is stopped or
842     * eligible to shut down. It also returns false if the thread
843     * factory fails to create a thread when asked. If the thread
844     * creation fails, either due to the thread factory returning
845     * null, or due to an exception (typically OutOfMemoryError in
846     * Thread.start()), we roll back cleanly.
847     *
848     * @param firstTask the task the new thread should run first (or
849     * null if none). Workers are created with an initial first task
850     * (in method execute()) to bypass queuing when there are fewer
851     * than corePoolSize threads (in which case we always start one),
852     * or when the queue is full (in which case we must bypass queue).
853     * Initially idle threads are usually created via
854     * prestartCoreThread or to replace other dying workers.
855     *
856     * @param core if true use corePoolSize as bound, else
857     * maximumPoolSize. (A boolean indicator is used here rather than a
858     * value to ensure reads of fresh values after checking other pool
859     * state).
860     * @return true if successful
861     */
862     private boolean addWorker(Runnable firstTask, boolean core) {
863     retry:
864     for (;;) {
865     int c = ctl.get();
866     int rs = runStateOf(c);
867    
868     // Check if queue empty only if necessary.
869     if (rs >= SHUTDOWN &&
870     ! (rs == SHUTDOWN &&
871     firstTask == null &&
872     ! workQueue.isEmpty()))
873     return false;
874    
875     for (;;) {
876     int wc = workerCountOf(c);
877     if (wc >= CAPACITY ||
878     wc >= (core ? corePoolSize : maximumPoolSize))
879     return false;
880     if (compareAndIncrementWorkerCount(c))
881     break retry;
882     c = ctl.get(); // Re-read ctl
883     if (runStateOf(c) != rs)
884     continue retry;
885     // else CAS failed due to workerCount change; retry inner loop
886     }
887     }
888    
889     boolean workerStarted = false;
890     boolean workerAdded = false;
891     Worker w = null;
892     try {
893     w = new Worker(firstTask);
894     final Thread t = w.thread;
895     if (t != null) {
896     final ReentrantLock mainLock = this.mainLock;
897     mainLock.lock();
898     try {
899     // Recheck while holding lock.
900     // Back out on ThreadFactory failure or if
901     // shut down before lock acquired.
902     int rs = runStateOf(ctl.get());
903    
904     if (rs < SHUTDOWN ||
905     (rs == SHUTDOWN && firstTask == null)) {
906     if (t.isAlive()) // precheck that t is startable
907     throw new IllegalThreadStateException();
908     workers.add(w);
909     int s = workers.size();
910     if (s > largestPoolSize)
911     largestPoolSize = s;
912     workerAdded = true;
913     }
914     } finally {
915     mainLock.unlock();
916     }
917     if (workerAdded) {
918     t.start();
919     workerStarted = true;
920     }
921     }
922     } finally {
923     if (! workerStarted)
924     addWorkerFailed(w);
925     }
926     return workerStarted;
927     }
928    
929     /**
930     * Rolls back the worker thread creation.
931     * - removes worker from workers, if present
932     * - decrements worker count
933     * - rechecks for termination, in case the existence of this
934     * worker was holding up termination
935     */
936     private void addWorkerFailed(Worker w) {
937     final ReentrantLock mainLock = this.mainLock;
938     mainLock.lock();
939     try {
940     if (w != null)
941     workers.remove(w);
942     decrementWorkerCount();
943     tryTerminate();
944     } finally {
945     mainLock.unlock();
946     }
947     }
948    
949     /**
950     * Performs cleanup and bookkeeping for a dying worker. Called
951     * only from worker threads. Unless completedAbruptly is set,
952     * assumes that workerCount has already been adjusted to account
953     * for exit. This method removes thread from worker set, and
954     * possibly terminates the pool or replaces the worker if either
955     * it exited due to user task exception or if fewer than
956     * corePoolSize workers are running or queue is non-empty but
957     * there are no workers.
958     *
959     * @param w the worker
960     * @param completedAbruptly if the worker died due to user exception
961     */
962     private void processWorkerExit(Worker w, boolean completedAbruptly) {
963     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
964     decrementWorkerCount();
965    
966     final ReentrantLock mainLock = this.mainLock;
967     mainLock.lock();
968     try {
969     completedTaskCount += w.completedTasks;
970     workers.remove(w);
971     } finally {
972     mainLock.unlock();
973     }
974    
975     tryTerminate();
976    
977     int c = ctl.get();
978     if (runStateLessThan(c, STOP)) {
979     if (!completedAbruptly) {
980     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
981     if (min == 0 && ! workQueue.isEmpty())
982     min = 1;
983     if (workerCountOf(c) >= min)
984     return; // replacement not needed
985     }
986     addWorker(null, false);
987     }
988     }
989    
990     /**
991     * Performs blocking or timed wait for a task, depending on
992     * current configuration settings, or returns null if this worker
993     * must exit because of any of:
994     * 1. There are more than maximumPoolSize workers (due to
995     * a call to setMaximumPoolSize).
996     * 2. The pool is stopped.
997     * 3. The pool is shutdown and the queue is empty.
998     * 4. This worker timed out waiting for a task, and timed-out
999     * workers are subject to termination (that is,
1000     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1001     * both before and after the timed wait, and if the queue is
1002     * non-empty, this worker is not the last thread in the pool.
1003     *
1004     * @return task, or null if the worker must exit, in which case
1005     * workerCount is decremented
1006     */
1007     private Runnable getTask() {
1008     boolean timedOut = false; // Did the last poll() time out?
1009    
1010     for (;;) {
1011     int c = ctl.get();
1012     int rs = runStateOf(c);
1013    
1014     // Check if queue empty only if necessary.
1015     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1016     decrementWorkerCount();
1017     return null;
1018     }
1019    
1020     int wc = workerCountOf(c);
1021    
1022     // Are workers subject to culling?
1023     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1024    
1025     if ((wc > maximumPoolSize || (timed && timedOut))
1026     && (wc > 1 || workQueue.isEmpty())) {
1027     if (compareAndDecrementWorkerCount(c))
1028     return null;
1029     continue;
1030     }
1031    
1032     try {
1033     Runnable r = timed ?
1034     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1035     workQueue.take();
1036     if (r != null)
1037     return r;
1038     timedOut = true;
1039     } catch (InterruptedException retry) {
1040     timedOut = false;
1041     }
1042     }
1043     }
1044    
1045     /**
1046     * Main worker run loop. Repeatedly gets tasks from queue and
1047     * executes them, while coping with a number of issues:
1048     *
1049     * 1. We may start out with an initial task, in which case we
1050     * don't need to get the first one. Otherwise, as long as pool is
1051     * running, we get tasks from getTask. If it returns null then the
1052     * worker exits due to changed pool state or configuration
1053     * parameters. Other exits result from exception throws in
1054     * external code, in which case completedAbruptly holds, which
1055     * usually leads processWorkerExit to replace this thread.
1056     *
1057     * 2. Before running any task, the lock is acquired to prevent
1058     * other pool interrupts while the task is executing, and then we
1059     * ensure that unless pool is stopping, this thread does not have
1060     * its interrupt set.
1061     *
1062     * 3. Each task run is preceded by a call to beforeExecute, which
1063     * might throw an exception, in which case we cause thread to die
1064     * (breaking loop with completedAbruptly true) without processing
1065     * the task.
1066     *
1067     * 4. Assuming beforeExecute completes normally, we run the task,
1068     * gathering any of its thrown exceptions to send to afterExecute.
1069     * We separately handle RuntimeException, Error (both of which the
1070     * specs guarantee that we trap) and arbitrary Throwables.
1071     * Because we cannot rethrow Throwables within Runnable.run, we
1072     * wrap them within Errors on the way out (to the thread's
1073     * UncaughtExceptionHandler). Any thrown exception also
1074     * conservatively causes thread to die.
1075     *
1076     * 5. After task.run completes, we call afterExecute, which may
1077     * also throw an exception, which will also cause thread to
1078     * die. According to JLS Sec 14.20, this exception is the one that
1079     * will be in effect even if task.run throws.
1080     *
1081     * The net effect of the exception mechanics is that afterExecute
1082     * and the thread's UncaughtExceptionHandler have as accurate
1083     * information as we can provide about any problems encountered by
1084     * user code.
1085     *
1086     * @param w the worker
1087     */
1088     final void runWorker(Worker w) {
1089     Thread wt = Thread.currentThread();
1090     Runnable task = w.firstTask;
1091     w.firstTask = null;
1092     w.unlock(); // allow interrupts
1093     boolean completedAbruptly = true;
1094     try {
1095     while (task != null || (task = getTask()) != null) {
1096     w.lock();
1097     // If pool is stopping, ensure thread is interrupted;
1098     // if not, ensure thread is not interrupted. This
1099     // requires a recheck in second case to deal with
1100     // shutdownNow race while clearing interrupt
1101     if ((runStateAtLeast(ctl.get(), STOP) ||
1102     (Thread.interrupted() &&
1103     runStateAtLeast(ctl.get(), STOP))) &&
1104     !wt.isInterrupted())
1105     wt.interrupt();
1106     try {
1107     beforeExecute(wt, task);
1108     Throwable thrown = null;
1109     try {
1110     task.run();
1111     } catch (RuntimeException x) {
1112     thrown = x; throw x;
1113     } catch (Error x) {
1114     thrown = x; throw x;
1115     } catch (Throwable x) {
1116     thrown = x; throw new Error(x);
1117     } finally {
1118     afterExecute(task, thrown);
1119     }
1120     } finally {
1121     task = null;
1122     w.completedTasks++;
1123     w.unlock();
1124     }
1125     }
1126     completedAbruptly = false;
1127     } finally {
1128     processWorkerExit(w, completedAbruptly);
1129     }
1130     }
1131    
1132     // Public constructors and methods
1133    
1134     /**
1135     * Creates a new {@code ThreadPoolExecutor} with the given initial
1136 jsr166 1.2 * parameters, the default thread factory and the default rejected
1137     * execution handler.
1138     *
1139     * <p>It may be more convenient to use one of the {@link Executors}
1140     * factory methods instead of this general purpose constructor.
1141 jsr166 1.1 *
1142     * @param corePoolSize the number of threads to keep in the pool, even
1143     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1144     * @param maximumPoolSize the maximum number of threads to allow in the
1145     * pool
1146     * @param keepAliveTime when the number of threads is greater than
1147     * the core, this is the maximum time that excess idle threads
1148     * will wait for new tasks before terminating.
1149     * @param unit the time unit for the {@code keepAliveTime} argument
1150     * @param workQueue the queue to use for holding tasks before they are
1151     * executed. This queue will hold only the {@code Runnable}
1152     * tasks submitted by the {@code execute} method.
1153     * @throws IllegalArgumentException if one of the following holds:<br>
1154     * {@code corePoolSize < 0}<br>
1155     * {@code keepAliveTime < 0}<br>
1156     * {@code maximumPoolSize <= 0}<br>
1157     * {@code maximumPoolSize < corePoolSize}
1158     * @throws NullPointerException if {@code workQueue} is null
1159     */
1160     public ThreadPoolExecutor(int corePoolSize,
1161     int maximumPoolSize,
1162     long keepAliveTime,
1163     TimeUnit unit,
1164     BlockingQueue<Runnable> workQueue) {
1165     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1166     Executors.defaultThreadFactory(), defaultHandler);
1167     }
1168    
1169     /**
1170     * Creates a new {@code ThreadPoolExecutor} with the given initial
1171 jsr166 1.2 * parameters and {@linkplain ThreadPoolExecutor.AbortPolicy
1172     * default rejected execution handler}.
1173 jsr166 1.1 *
1174     * @param corePoolSize the number of threads to keep in the pool, even
1175     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1176     * @param maximumPoolSize the maximum number of threads to allow in the
1177     * pool
1178     * @param keepAliveTime when the number of threads is greater than
1179     * the core, this is the maximum time that excess idle threads
1180     * will wait for new tasks before terminating.
1181     * @param unit the time unit for the {@code keepAliveTime} argument
1182     * @param workQueue the queue to use for holding tasks before they are
1183     * executed. This queue will hold only the {@code Runnable}
1184     * tasks submitted by the {@code execute} method.
1185     * @param threadFactory the factory to use when the executor
1186     * creates a new thread
1187     * @throws IllegalArgumentException if one of the following holds:<br>
1188     * {@code corePoolSize < 0}<br>
1189     * {@code keepAliveTime < 0}<br>
1190     * {@code maximumPoolSize <= 0}<br>
1191     * {@code maximumPoolSize < corePoolSize}
1192     * @throws NullPointerException if {@code workQueue}
1193     * or {@code threadFactory} is null
1194     */
1195     public ThreadPoolExecutor(int corePoolSize,
1196     int maximumPoolSize,
1197     long keepAliveTime,
1198     TimeUnit unit,
1199     BlockingQueue<Runnable> workQueue,
1200     ThreadFactory threadFactory) {
1201     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1202     threadFactory, defaultHandler);
1203     }
1204    
1205     /**
1206     * Creates a new {@code ThreadPoolExecutor} with the given initial
1207 jsr166 1.2 * parameters and
1208     * {@linkplain Executors#defaultThreadFactory default thread factory}.
1209 jsr166 1.1 *
1210     * @param corePoolSize the number of threads to keep in the pool, even
1211     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1212     * @param maximumPoolSize the maximum number of threads to allow in the
1213     * pool
1214     * @param keepAliveTime when the number of threads is greater than
1215     * the core, this is the maximum time that excess idle threads
1216     * will wait for new tasks before terminating.
1217     * @param unit the time unit for the {@code keepAliveTime} argument
1218     * @param workQueue the queue to use for holding tasks before they are
1219     * executed. This queue will hold only the {@code Runnable}
1220     * tasks submitted by the {@code execute} method.
1221     * @param handler the handler to use when execution is blocked
1222     * because the thread bounds and queue capacities are reached
1223     * @throws IllegalArgumentException if one of the following holds:<br>
1224     * {@code corePoolSize < 0}<br>
1225     * {@code keepAliveTime < 0}<br>
1226     * {@code maximumPoolSize <= 0}<br>
1227     * {@code maximumPoolSize < corePoolSize}
1228     * @throws NullPointerException if {@code workQueue}
1229     * or {@code handler} is null
1230     */
1231     public ThreadPoolExecutor(int corePoolSize,
1232     int maximumPoolSize,
1233     long keepAliveTime,
1234     TimeUnit unit,
1235     BlockingQueue<Runnable> workQueue,
1236     RejectedExecutionHandler handler) {
1237     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1238     Executors.defaultThreadFactory(), handler);
1239     }
1240    
1241     /**
1242     * Creates a new {@code ThreadPoolExecutor} with the given initial
1243     * parameters.
1244     *
1245     * @param corePoolSize the number of threads to keep in the pool, even
1246     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1247     * @param maximumPoolSize the maximum number of threads to allow in the
1248     * pool
1249     * @param keepAliveTime when the number of threads is greater than
1250     * the core, this is the maximum time that excess idle threads
1251     * will wait for new tasks before terminating.
1252     * @param unit the time unit for the {@code keepAliveTime} argument
1253     * @param workQueue the queue to use for holding tasks before they are
1254     * executed. This queue will hold only the {@code Runnable}
1255     * tasks submitted by the {@code execute} method.
1256     * @param threadFactory the factory to use when the executor
1257     * creates a new thread
1258     * @param handler the handler to use when execution is blocked
1259     * because the thread bounds and queue capacities are reached
1260     * @throws IllegalArgumentException if one of the following holds:<br>
1261     * {@code corePoolSize < 0}<br>
1262     * {@code keepAliveTime < 0}<br>
1263     * {@code maximumPoolSize <= 0}<br>
1264     * {@code maximumPoolSize < corePoolSize}
1265     * @throws NullPointerException if {@code workQueue}
1266     * or {@code threadFactory} or {@code handler} is null
1267     */
1268     public ThreadPoolExecutor(int corePoolSize,
1269     int maximumPoolSize,
1270     long keepAliveTime,
1271     TimeUnit unit,
1272     BlockingQueue<Runnable> workQueue,
1273     ThreadFactory threadFactory,
1274     RejectedExecutionHandler handler) {
1275     if (corePoolSize < 0 ||
1276     maximumPoolSize <= 0 ||
1277     maximumPoolSize < corePoolSize ||
1278     keepAliveTime < 0)
1279     throw new IllegalArgumentException();
1280     if (workQueue == null || threadFactory == null || handler == null)
1281     throw new NullPointerException();
1282     this.corePoolSize = corePoolSize;
1283     this.maximumPoolSize = maximumPoolSize;
1284     this.workQueue = workQueue;
1285     this.keepAliveTime = unit.toNanos(keepAliveTime);
1286     this.threadFactory = threadFactory;
1287     this.handler = handler;
1288     }
1289    
1290     /**
1291     * Executes the given task sometime in the future. The task
1292     * may execute in a new thread or in an existing pooled thread.
1293     *
1294     * If the task cannot be submitted for execution, either because this
1295     * executor has been shutdown or because its capacity has been reached,
1296     * the task is handled by the current {@code RejectedExecutionHandler}.
1297     *
1298     * @param command the task to execute
1299     * @throws RejectedExecutionException at discretion of
1300     * {@code RejectedExecutionHandler}, if the task
1301     * cannot be accepted for execution
1302     * @throws NullPointerException if {@code command} is null
1303     */
1304     public void execute(Runnable command) {
1305     if (command == null)
1306     throw new NullPointerException();
1307     /*
1308     * Proceed in 3 steps:
1309     *
1310     * 1. If fewer than corePoolSize threads are running, try to
1311     * start a new thread with the given command as its first
1312     * task. The call to addWorker atomically checks runState and
1313     * workerCount, and so prevents false alarms that would add
1314     * threads when it shouldn't, by returning false.
1315     *
1316     * 2. If a task can be successfully queued, then we still need
1317     * to double-check whether we should have added a thread
1318     * (because existing ones died since last checking) or that
1319     * the pool shut down since entry into this method. So we
1320     * recheck state and if necessary roll back the enqueuing if
1321     * stopped, or start a new thread if there are none.
1322     *
1323     * 3. If we cannot queue task, then we try to add a new
1324     * thread. If it fails, we know we are shut down or saturated
1325     * and so reject the task.
1326     */
1327     int c = ctl.get();
1328     if (workerCountOf(c) < corePoolSize) {
1329     if (addWorker(command, true))
1330     return;
1331     c = ctl.get();
1332     }
1333     if (isRunning(c) && workQueue.offer(command)) {
1334     int recheck = ctl.get();
1335     if (! isRunning(recheck) && remove(command))
1336     reject(command);
1337     else if (workerCountOf(recheck) == 0)
1338     addWorker(null, false);
1339     }
1340     else if (!addWorker(command, false))
1341     reject(command);
1342     }
1343    
1344     /**
1345     * Initiates an orderly shutdown in which previously submitted
1346     * tasks are executed, but no new tasks will be accepted.
1347     * Invocation has no additional effect if already shut down.
1348     *
1349     * <p>This method does not wait for previously submitted tasks to
1350     * complete execution. Use {@link #awaitTermination awaitTermination}
1351     * to do that.
1352     *
1353     * @throws SecurityException {@inheritDoc}
1354     */
1355     public void shutdown() {
1356     final ReentrantLock mainLock = this.mainLock;
1357     mainLock.lock();
1358     try {
1359     checkShutdownAccess();
1360     advanceRunState(SHUTDOWN);
1361     interruptIdleWorkers();
1362     onShutdown(); // hook for ScheduledThreadPoolExecutor
1363     } finally {
1364     mainLock.unlock();
1365     }
1366     tryTerminate();
1367     }
1368    
1369     /**
1370     * Attempts to stop all actively executing tasks, halts the
1371     * processing of waiting tasks, and returns a list of the tasks
1372     * that were awaiting execution. These tasks are drained (removed)
1373     * from the task queue upon return from this method.
1374     *
1375     * <p>This method does not wait for actively executing tasks to
1376     * terminate. Use {@link #awaitTermination awaitTermination} to
1377     * do that.
1378     *
1379     * <p>There are no guarantees beyond best-effort attempts to stop
1380     * processing actively executing tasks. This implementation
1381     * interrupts tasks via {@link Thread#interrupt}; any task that
1382     * fails to respond to interrupts may never terminate.
1383     *
1384     * @throws SecurityException {@inheritDoc}
1385     */
1386     public List<Runnable> shutdownNow() {
1387     List<Runnable> tasks;
1388     final ReentrantLock mainLock = this.mainLock;
1389     mainLock.lock();
1390     try {
1391     checkShutdownAccess();
1392     advanceRunState(STOP);
1393     interruptWorkers();
1394     tasks = drainQueue();
1395     } finally {
1396     mainLock.unlock();
1397     }
1398     tryTerminate();
1399     return tasks;
1400     }
1401    
1402     public boolean isShutdown() {
1403     return ! isRunning(ctl.get());
1404     }
1405    
1406 jsr166 1.2 /** Used by ScheduledThreadPoolExecutor. */
1407     boolean isStopped() {
1408     return runStateAtLeast(ctl.get(), STOP);
1409     }
1410    
1411 jsr166 1.1 /**
1412     * Returns true if this executor is in the process of terminating
1413     * after {@link #shutdown} or {@link #shutdownNow} but has not
1414     * completely terminated. This method may be useful for
1415     * debugging. A return of {@code true} reported a sufficient
1416     * period after shutdown may indicate that submitted tasks have
1417     * ignored or suppressed interruption, causing this executor not
1418     * to properly terminate.
1419     *
1420     * @return {@code true} if terminating but not yet terminated
1421     */
1422     public boolean isTerminating() {
1423     int c = ctl.get();
1424     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1425     }
1426    
1427     public boolean isTerminated() {
1428     return runStateAtLeast(ctl.get(), TERMINATED);
1429     }
1430    
1431     public boolean awaitTermination(long timeout, TimeUnit unit)
1432     throws InterruptedException {
1433     long nanos = unit.toNanos(timeout);
1434     final ReentrantLock mainLock = this.mainLock;
1435     mainLock.lock();
1436     try {
1437     while (!runStateAtLeast(ctl.get(), TERMINATED)) {
1438     if (nanos <= 0L)
1439     return false;
1440     nanos = termination.awaitNanos(nanos);
1441     }
1442     return true;
1443     } finally {
1444     mainLock.unlock();
1445     }
1446     }
1447    
1448     /**
1449     * Invokes {@code shutdown} when this executor is no longer
1450     * referenced and it has no threads.
1451     */
1452     protected void finalize() {
1453     shutdown();
1454     }
1455    
1456     /**
1457     * Sets the thread factory used to create new threads.
1458     *
1459     * @param threadFactory the new thread factory
1460     * @throws NullPointerException if threadFactory is null
1461     * @see #getThreadFactory
1462     */
1463     public void setThreadFactory(ThreadFactory threadFactory) {
1464     if (threadFactory == null)
1465     throw new NullPointerException();
1466     this.threadFactory = threadFactory;
1467     }
1468    
1469     /**
1470     * Returns the thread factory used to create new threads.
1471     *
1472     * @return the current thread factory
1473     * @see #setThreadFactory(ThreadFactory)
1474     */
1475     public ThreadFactory getThreadFactory() {
1476     return threadFactory;
1477     }
1478    
1479     /**
1480     * Sets a new handler for unexecutable tasks.
1481     *
1482     * @param handler the new handler
1483     * @throws NullPointerException if handler is null
1484     * @see #getRejectedExecutionHandler
1485     */
1486     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1487     if (handler == null)
1488     throw new NullPointerException();
1489     this.handler = handler;
1490     }
1491    
1492     /**
1493     * Returns the current handler for unexecutable tasks.
1494     *
1495     * @return the current handler
1496     * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1497     */
1498     public RejectedExecutionHandler getRejectedExecutionHandler() {
1499     return handler;
1500     }
1501    
1502     /**
1503     * Sets the core number of threads. This overrides any value set
1504     * in the constructor. If the new value is smaller than the
1505     * current value, excess existing threads will be terminated when
1506     * they next become idle. If larger, new threads will, if needed,
1507     * be started to execute any queued tasks.
1508     *
1509     * @param corePoolSize the new core size
1510     * @throws IllegalArgumentException if {@code corePoolSize < 0}
1511     * or {@code corePoolSize} is greater than the {@linkplain
1512     * #getMaximumPoolSize() maximum pool size}
1513     * @see #getCorePoolSize
1514     */
1515     public void setCorePoolSize(int corePoolSize) {
1516     if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1517     throw new IllegalArgumentException();
1518     int delta = corePoolSize - this.corePoolSize;
1519     this.corePoolSize = corePoolSize;
1520     if (workerCountOf(ctl.get()) > corePoolSize)
1521     interruptIdleWorkers();
1522     else if (delta > 0) {
1523     // We don't really know how many new threads are "needed".
1524     // As a heuristic, prestart enough new workers (up to new
1525     // core size) to handle the current number of tasks in
1526     // queue, but stop if queue becomes empty while doing so.
1527     int k = Math.min(delta, workQueue.size());
1528     while (k-- > 0 && addWorker(null, true)) {
1529     if (workQueue.isEmpty())
1530     break;
1531     }
1532     }
1533     }
1534    
1535     /**
1536     * Returns the core number of threads.
1537     *
1538     * @return the core number of threads
1539     * @see #setCorePoolSize
1540     */
1541     public int getCorePoolSize() {
1542     return corePoolSize;
1543     }
1544    
1545     /**
1546     * Starts a core thread, causing it to idly wait for work. This
1547     * overrides the default policy of starting core threads only when
1548     * new tasks are executed. This method will return {@code false}
1549     * if all core threads have already been started.
1550     *
1551     * @return {@code true} if a thread was started
1552     */
1553     public boolean prestartCoreThread() {
1554     return workerCountOf(ctl.get()) < corePoolSize &&
1555     addWorker(null, true);
1556     }
1557    
1558     /**
1559     * Same as prestartCoreThread except arranges that at least one
1560     * thread is started even if corePoolSize is 0.
1561     */
1562     void ensurePrestart() {
1563     int wc = workerCountOf(ctl.get());
1564     if (wc < corePoolSize)
1565     addWorker(null, true);
1566     else if (wc == 0)
1567     addWorker(null, false);
1568     }
1569    
1570     /**
1571     * Starts all core threads, causing them to idly wait for work. This
1572     * overrides the default policy of starting core threads only when
1573     * new tasks are executed.
1574     *
1575     * @return the number of threads started
1576     */
1577     public int prestartAllCoreThreads() {
1578     int n = 0;
1579     while (addWorker(null, true))
1580     ++n;
1581     return n;
1582     }
1583    
1584     /**
1585     * Returns true if this pool allows core threads to time out and
1586     * terminate if no tasks arrive within the keepAlive time, being
1587     * replaced if needed when new tasks arrive. When true, the same
1588     * keep-alive policy applying to non-core threads applies also to
1589     * core threads. When false (the default), core threads are never
1590     * terminated due to lack of incoming tasks.
1591     *
1592     * @return {@code true} if core threads are allowed to time out,
1593     * else {@code false}
1594     *
1595     * @since 1.6
1596     */
1597     public boolean allowsCoreThreadTimeOut() {
1598     return allowCoreThreadTimeOut;
1599     }
1600    
1601     /**
1602     * Sets the policy governing whether core threads may time out and
1603     * terminate if no tasks arrive within the keep-alive time, being
1604     * replaced if needed when new tasks arrive. When false, core
1605     * threads are never terminated due to lack of incoming
1606     * tasks. When true, the same keep-alive policy applying to
1607     * non-core threads applies also to core threads. To avoid
1608     * continual thread replacement, the keep-alive time must be
1609     * greater than zero when setting {@code true}. This method
1610     * should in general be called before the pool is actively used.
1611     *
1612     * @param value {@code true} if should time out, else {@code false}
1613     * @throws IllegalArgumentException if value is {@code true}
1614     * and the current keep-alive time is not greater than zero
1615     *
1616     * @since 1.6
1617     */
1618     public void allowCoreThreadTimeOut(boolean value) {
1619     if (value && keepAliveTime <= 0)
1620     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1621     if (value != allowCoreThreadTimeOut) {
1622     allowCoreThreadTimeOut = value;
1623     if (value)
1624     interruptIdleWorkers();
1625     }
1626     }
1627    
1628     /**
1629     * Sets the maximum allowed number of threads. This overrides any
1630     * value set in the constructor. If the new value is smaller than
1631     * the current value, excess existing threads will be
1632     * terminated when they next become idle.
1633     *
1634     * @param maximumPoolSize the new maximum
1635     * @throws IllegalArgumentException if the new maximum is
1636     * less than or equal to zero, or
1637     * less than the {@linkplain #getCorePoolSize core pool size}
1638     * @see #getMaximumPoolSize
1639     */
1640     public void setMaximumPoolSize(int maximumPoolSize) {
1641     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1642     throw new IllegalArgumentException();
1643     this.maximumPoolSize = maximumPoolSize;
1644     if (workerCountOf(ctl.get()) > maximumPoolSize)
1645     interruptIdleWorkers();
1646     }
1647    
1648     /**
1649     * Returns the maximum allowed number of threads.
1650     *
1651     * @return the maximum allowed number of threads
1652     * @see #setMaximumPoolSize
1653     */
1654     public int getMaximumPoolSize() {
1655     return maximumPoolSize;
1656     }
1657    
1658     /**
1659     * Sets the thread keep-alive time, which is the amount of time
1660     * that threads may remain idle before being terminated.
1661     * Threads that wait this amount of time without processing a
1662     * task will be terminated if there are more than the core
1663     * number of threads currently in the pool, or if this pool
1664     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1665     * This overrides any value set in the constructor.
1666     *
1667     * @param time the time to wait. A time value of zero will cause
1668     * excess threads to terminate immediately after executing tasks.
1669     * @param unit the time unit of the {@code time} argument
1670     * @throws IllegalArgumentException if {@code time} less than zero or
1671     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1672     * @see #getKeepAliveTime(TimeUnit)
1673     */
1674     public void setKeepAliveTime(long time, TimeUnit unit) {
1675     if (time < 0)
1676     throw new IllegalArgumentException();
1677     if (time == 0 && allowsCoreThreadTimeOut())
1678     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1679     long keepAliveTime = unit.toNanos(time);
1680     long delta = keepAliveTime - this.keepAliveTime;
1681     this.keepAliveTime = keepAliveTime;
1682     if (delta < 0)
1683     interruptIdleWorkers();
1684     }
1685    
1686     /**
1687     * Returns the thread keep-alive time, which is the amount of time
1688     * that threads may remain idle before being terminated.
1689     * Threads that wait this amount of time without processing a
1690     * task will be terminated if there are more than the core
1691     * number of threads currently in the pool, or if this pool
1692     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1693     *
1694     * @param unit the desired time unit of the result
1695     * @return the time limit
1696     * @see #setKeepAliveTime(long, TimeUnit)
1697     */
1698     public long getKeepAliveTime(TimeUnit unit) {
1699     return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1700     }
1701    
1702     /* User-level queue utilities */
1703    
1704     /**
1705     * Returns the task queue used by this executor. Access to the
1706     * task queue is intended primarily for debugging and monitoring.
1707     * This queue may be in active use. Retrieving the task queue
1708     * does not prevent queued tasks from executing.
1709     *
1710     * @return the task queue
1711     */
1712     public BlockingQueue<Runnable> getQueue() {
1713     return workQueue;
1714     }
1715    
1716     /**
1717     * Removes this task from the executor's internal queue if it is
1718     * present, thus causing it not to be run if it has not already
1719     * started.
1720     *
1721     * <p>This method may be useful as one part of a cancellation
1722     * scheme. It may fail to remove tasks that have been converted
1723     * into other forms before being placed on the internal queue.
1724     * For example, a task entered using {@code submit} might be
1725     * converted into a form that maintains {@code Future} status.
1726     * However, in such cases, method {@link #purge} may be used to
1727     * remove those Futures that have been cancelled.
1728     *
1729     * @param task the task to remove
1730     * @return {@code true} if the task was removed
1731     */
1732     public boolean remove(Runnable task) {
1733     boolean removed = workQueue.remove(task);
1734     tryTerminate(); // In case SHUTDOWN and now empty
1735     return removed;
1736     }
1737    
1738     /**
1739     * Tries to remove from the work queue all {@link Future}
1740     * tasks that have been cancelled. This method can be useful as a
1741     * storage reclamation operation, that has no other impact on
1742     * functionality. Cancelled tasks are never executed, but may
1743     * accumulate in work queues until worker threads can actively
1744     * remove them. Invoking this method instead tries to remove them now.
1745     * However, this method may fail to remove tasks in
1746     * the presence of interference by other threads.
1747     */
1748     public void purge() {
1749     final BlockingQueue<Runnable> q = workQueue;
1750     try {
1751     Iterator<Runnable> it = q.iterator();
1752     while (it.hasNext()) {
1753     Runnable r = it.next();
1754     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1755     it.remove();
1756     }
1757     } catch (ConcurrentModificationException fallThrough) {
1758     // Take slow path if we encounter interference during traversal.
1759     // Make copy for traversal and call remove for cancelled entries.
1760     // The slow path is more likely to be O(N*N).
1761     for (Object r : q.toArray())
1762     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1763     q.remove(r);
1764     }
1765    
1766     tryTerminate(); // In case SHUTDOWN and now empty
1767     }
1768    
1769     /* Statistics */
1770    
1771     /**
1772     * Returns the current number of threads in the pool.
1773     *
1774     * @return the number of threads
1775     */
1776     public int getPoolSize() {
1777     final ReentrantLock mainLock = this.mainLock;
1778     mainLock.lock();
1779     try {
1780     // Remove rare and surprising possibility of
1781     // isTerminated() && getPoolSize() > 0
1782     return runStateAtLeast(ctl.get(), TIDYING) ? 0
1783     : workers.size();
1784     } finally {
1785     mainLock.unlock();
1786     }
1787     }
1788    
1789     /**
1790     * Returns the approximate number of threads that are actively
1791     * executing tasks.
1792     *
1793     * @return the number of threads
1794     */
1795     public int getActiveCount() {
1796     final ReentrantLock mainLock = this.mainLock;
1797     mainLock.lock();
1798     try {
1799     int n = 0;
1800     for (Worker w : workers)
1801     if (w.isLocked())
1802     ++n;
1803     return n;
1804     } finally {
1805     mainLock.unlock();
1806     }
1807     }
1808    
1809     /**
1810     * Returns the largest number of threads that have ever
1811     * simultaneously been in the pool.
1812     *
1813     * @return the number of threads
1814     */
1815     public int getLargestPoolSize() {
1816     final ReentrantLock mainLock = this.mainLock;
1817     mainLock.lock();
1818     try {
1819     return largestPoolSize;
1820     } finally {
1821     mainLock.unlock();
1822     }
1823     }
1824    
1825     /**
1826     * Returns the approximate total number of tasks that have ever been
1827     * scheduled for execution. Because the states of tasks and
1828     * threads may change dynamically during computation, the returned
1829     * value is only an approximation.
1830     *
1831     * @return the number of tasks
1832     */
1833     public long getTaskCount() {
1834     final ReentrantLock mainLock = this.mainLock;
1835     mainLock.lock();
1836     try {
1837     long n = completedTaskCount;
1838     for (Worker w : workers) {
1839     n += w.completedTasks;
1840     if (w.isLocked())
1841     ++n;
1842     }
1843     return n + workQueue.size();
1844     } finally {
1845     mainLock.unlock();
1846     }
1847     }
1848    
1849     /**
1850     * Returns the approximate total number of tasks that have
1851     * completed execution. Because the states of tasks and threads
1852     * may change dynamically during computation, the returned value
1853     * is only an approximation, but one that does not ever decrease
1854     * across successive calls.
1855     *
1856     * @return the number of tasks
1857     */
1858     public long getCompletedTaskCount() {
1859     final ReentrantLock mainLock = this.mainLock;
1860     mainLock.lock();
1861     try {
1862     long n = completedTaskCount;
1863     for (Worker w : workers)
1864     n += w.completedTasks;
1865     return n;
1866     } finally {
1867     mainLock.unlock();
1868     }
1869     }
1870    
1871     /**
1872     * Returns a string identifying this pool, as well as its state,
1873     * including indications of run state and estimated worker and
1874     * task counts.
1875     *
1876     * @return a string identifying this pool, as well as its state
1877     */
1878     public String toString() {
1879     long ncompleted;
1880     int nworkers, nactive;
1881     final ReentrantLock mainLock = this.mainLock;
1882     mainLock.lock();
1883     try {
1884     ncompleted = completedTaskCount;
1885     nactive = 0;
1886     nworkers = workers.size();
1887     for (Worker w : workers) {
1888     ncompleted += w.completedTasks;
1889     if (w.isLocked())
1890     ++nactive;
1891     }
1892     } finally {
1893     mainLock.unlock();
1894     }
1895     int c = ctl.get();
1896     String runState =
1897     runStateLessThan(c, SHUTDOWN) ? "Running" :
1898     runStateAtLeast(c, TERMINATED) ? "Terminated" :
1899     "Shutting down";
1900     return super.toString() +
1901     "[" + runState +
1902     ", pool size = " + nworkers +
1903     ", active threads = " + nactive +
1904     ", queued tasks = " + workQueue.size() +
1905     ", completed tasks = " + ncompleted +
1906     "]";
1907     }
1908    
1909     /* Extension hooks */
1910    
1911     /**
1912     * Method invoked prior to executing the given Runnable in the
1913     * given thread. This method is invoked by thread {@code t} that
1914     * will execute task {@code r}, and may be used to re-initialize
1915     * ThreadLocals, or to perform logging.
1916     *
1917     * <p>This implementation does nothing, but may be customized in
1918     * subclasses. Note: To properly nest multiple overridings, subclasses
1919     * should generally invoke {@code super.beforeExecute} at the end of
1920     * this method.
1921     *
1922     * @param t the thread that will run task {@code r}
1923     * @param r the task that will be executed
1924     */
1925     protected void beforeExecute(Thread t, Runnable r) { }
1926    
1927     /**
1928     * Method invoked upon completion of execution of the given Runnable.
1929     * This method is invoked by the thread that executed the task. If
1930     * non-null, the Throwable is the uncaught {@code RuntimeException}
1931     * or {@code Error} that caused execution to terminate abruptly.
1932     *
1933     * <p>This implementation does nothing, but may be customized in
1934     * subclasses. Note: To properly nest multiple overridings, subclasses
1935     * should generally invoke {@code super.afterExecute} at the
1936     * beginning of this method.
1937     *
1938     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1939     * {@link FutureTask}) either explicitly or via methods such as
1940     * {@code submit}, these task objects catch and maintain
1941     * computational exceptions, and so they do not cause abrupt
1942     * termination, and the internal exceptions are <em>not</em>
1943     * passed to this method. If you would like to trap both kinds of
1944     * failures in this method, you can further probe for such cases,
1945     * as in this sample subclass that prints either the direct cause
1946     * or the underlying exception if a task has been aborted:
1947     *
1948     * <pre> {@code
1949     * class ExtendedExecutor extends ThreadPoolExecutor {
1950     * // ...
1951     * protected void afterExecute(Runnable r, Throwable t) {
1952     * super.afterExecute(r, t);
1953     * if (t == null
1954     * && r instanceof Future<?>
1955     * && ((Future<?>)r).isDone()) {
1956     * try {
1957     * Object result = ((Future<?>) r).get();
1958     * } catch (CancellationException ce) {
1959     * t = ce;
1960     * } catch (ExecutionException ee) {
1961     * t = ee.getCause();
1962     * } catch (InterruptedException ie) {
1963     * // ignore/reset
1964     * Thread.currentThread().interrupt();
1965     * }
1966     * }
1967     * if (t != null)
1968     * System.out.println(t);
1969     * }
1970     * }}</pre>
1971     *
1972     * @param r the runnable that has completed
1973     * @param t the exception that caused termination, or null if
1974     * execution completed normally
1975     */
1976     protected void afterExecute(Runnable r, Throwable t) { }
1977    
1978     /**
1979     * Method invoked when the Executor has terminated. Default
1980     * implementation does nothing. Note: To properly nest multiple
1981     * overridings, subclasses should generally invoke
1982     * {@code super.terminated} within this method.
1983     */
1984     protected void terminated() { }
1985    
1986     /* Predefined RejectedExecutionHandlers */
1987    
1988     /**
1989     * A handler for rejected tasks that runs the rejected task
1990     * directly in the calling thread of the {@code execute} method,
1991     * unless the executor has been shut down, in which case the task
1992     * is discarded.
1993     */
1994     public static class CallerRunsPolicy implements RejectedExecutionHandler {
1995     /**
1996     * Creates a {@code CallerRunsPolicy}.
1997     */
1998     public CallerRunsPolicy() { }
1999    
2000     /**
2001     * Executes task r in the caller's thread, unless the executor
2002     * has been shut down, in which case the task is discarded.
2003     *
2004     * @param r the runnable task requested to be executed
2005     * @param e the executor attempting to execute this task
2006     */
2007     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2008     if (!e.isShutdown()) {
2009     r.run();
2010     }
2011     }
2012     }
2013    
2014     /**
2015     * A handler for rejected tasks that throws a
2016 jsr166 1.2 * {@link RejectedExecutionException}.
2017     *
2018     * This is the default handler for {@link ThreadPoolExecutor} and
2019     * {@link ScheduledThreadPoolExecutor}.
2020 jsr166 1.1 */
2021     public static class AbortPolicy implements RejectedExecutionHandler {
2022     /**
2023     * Creates an {@code AbortPolicy}.
2024     */
2025     public AbortPolicy() { }
2026    
2027     /**
2028     * Always throws RejectedExecutionException.
2029     *
2030     * @param r the runnable task requested to be executed
2031     * @param e the executor attempting to execute this task
2032     * @throws RejectedExecutionException always
2033     */
2034     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2035     throw new RejectedExecutionException("Task " + r.toString() +
2036     " rejected from " +
2037     e.toString());
2038     }
2039     }
2040    
2041     /**
2042     * A handler for rejected tasks that silently discards the
2043     * rejected task.
2044     */
2045     public static class DiscardPolicy implements RejectedExecutionHandler {
2046     /**
2047     * Creates a {@code DiscardPolicy}.
2048     */
2049     public DiscardPolicy() { }
2050    
2051     /**
2052     * Does nothing, which has the effect of discarding task r.
2053     *
2054     * @param r the runnable task requested to be executed
2055     * @param e the executor attempting to execute this task
2056     */
2057     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2058     }
2059     }
2060    
2061     /**
2062     * A handler for rejected tasks that discards the oldest unhandled
2063     * request and then retries {@code execute}, unless the executor
2064     * is shut down, in which case the task is discarded.
2065     */
2066     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2067     /**
2068     * Creates a {@code DiscardOldestPolicy} for the given executor.
2069     */
2070     public DiscardOldestPolicy() { }
2071    
2072     /**
2073     * Obtains and ignores the next task that the executor
2074     * would otherwise execute, if one is immediately available,
2075     * and then retries execution of task r, unless the executor
2076     * is shut down, in which case task r is instead discarded.
2077     *
2078     * @param r the runnable task requested to be executed
2079     * @param e the executor attempting to execute this task
2080     */
2081     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2082     if (!e.isShutdown()) {
2083     e.getQueue().poll();
2084     e.execute(r);
2085     }
2086     }
2087     }
2088     }