ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.11
Committed: Wed Oct 31 12:49:13 2012 UTC (11 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.10: +94 -113 lines
Log Message:
commonPool improvements

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.Random;
15     import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21 dl 1.7 import java.util.concurrent.ThreadLocalRandom;
22 dl 1.1 import java.util.concurrent.TimeUnit;
23     import java.util.concurrent.atomic.AtomicInteger;
24     import java.util.concurrent.atomic.AtomicLong;
25     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26     import java.util.concurrent.locks.Condition;
27    
28     /**
29     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30     * A {@code ForkJoinPool} provides the entry point for submissions
31     * from non-{@code ForkJoinTask} clients, as well as management and
32     * monitoring operations.
33     *
34     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37     * execute tasks submitted to the pool and/or created by other active
38     * tasks (eventually blocking waiting for work if none exist). This
39     * enables efficient processing when most tasks spawn other subtasks
40     * (as do most {@code ForkJoinTask}s), as well as when many small
41     * tasks are submitted to the pool from external clients. Especially
42     * when setting <em>asyncMode</em> to true in constructors, {@code
43     * ForkJoinPool}s may also be appropriate for use with event-style
44     * tasks that are never joined.
45     *
46 dl 1.7 * <p>A static {@link #commonPool} is available and appropriate for
47 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
48     * is not explicitly submitted to a specified pool. Using the common
49     * pool normally reduces resource usage (its threads are slowly
50     * reclaimed during periods of non-use, and reinstated upon subsequent
51     * use). The common pool is by default constructed with default
52     * parameters, but these may be controlled by setting any or all of
53     * the three properties {@code
54 dl 1.7 * java.util.concurrent.ForkJoinPool.common.{parallelism,
55     * threadFactory, exceptionHandler}}.
56     *
57     * <p>For applications that require separate or custom pools, a {@code
58     * ForkJoinPool} may be constructed with a given target parallelism
59     * level; by default, equal to the number of available processors. The
60     * pool attempts to maintain enough active (or available) threads by
61     * dynamically adding, suspending, or resuming internal worker
62     * threads, even if some tasks are stalled waiting to join
63     * others. However, no such adjustments are guaranteed in the face of
64     * blocked IO or other unmanaged synchronization. The nested {@link
65     * ManagedBlocker} interface enables extension of the kinds of
66 dl 1.1 * synchronization accommodated.
67     *
68     * <p>In addition to execution and lifecycle control methods, this
69     * class provides status check methods (for example
70     * {@link #getStealCount}) that are intended to aid in developing,
71     * tuning, and monitoring fork/join applications. Also, method
72     * {@link #toString} returns indications of pool state in a
73     * convenient form for informal monitoring.
74     *
75     * <p> As is the case with other ExecutorServices, there are three
76     * main task execution methods summarized in the following table.
77     * These are designed to be used primarily by clients not already
78     * engaged in fork/join computations in the current pool. The main
79     * forms of these methods accept instances of {@code ForkJoinTask},
80     * but overloaded forms also allow mixed execution of plain {@code
81     * Runnable}- or {@code Callable}- based activities as well. However,
82     * tasks that are already executing in a pool should normally instead
83     * use the within-computation forms listed in the table unless using
84     * async event-style tasks that are not usually joined, in which case
85     * there is little difference among choice of methods.
86     *
87     * <table BORDER CELLPADDING=3 CELLSPACING=1>
88     * <tr>
89     * <td></td>
90     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
91     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange async execution</td>
95     * <td> {@link #execute(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork}</td>
97     * </tr>
98     * <tr>
99     * <td> <b>Await and obtain result</td>
100     * <td> {@link #invoke(ForkJoinTask)}</td>
101     * <td> {@link ForkJoinTask#invoke}</td>
102     * </tr>
103     * <tr>
104     * <td> <b>Arrange exec and obtain Future</td>
105     * <td> {@link #submit(ForkJoinTask)}</td>
106     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107     * </tr>
108     * </table>
109     *
110     * <p><b>Implementation notes</b>: This implementation restricts the
111     * maximum number of running threads to 32767. Attempts to create
112     * pools with greater than the maximum number result in
113     * {@code IllegalArgumentException}.
114     *
115     * <p>This implementation rejects submitted tasks (that is, by throwing
116     * {@link RejectedExecutionException}) only when the pool is shut down
117     * or internal resources have been exhausted.
118     *
119     * @since 1.7
120     * @author Doug Lea
121     */
122     public class ForkJoinPool extends AbstractExecutorService {
123    
124     /*
125     * Implementation Overview
126     *
127     * This class and its nested classes provide the main
128     * functionality and control for a set of worker threads:
129     * Submissions from non-FJ threads enter into submission queues.
130     * Workers take these tasks and typically split them into subtasks
131     * that may be stolen by other workers. Preference rules give
132     * first priority to processing tasks from their own queues (LIFO
133     * or FIFO, depending on mode), then to randomized FIFO steals of
134     * tasks in other queues.
135     *
136     * WorkQueues
137     * ==========
138     *
139     * Most operations occur within work-stealing queues (in nested
140     * class WorkQueue). These are special forms of Deques that
141     * support only three of the four possible end-operations -- push,
142     * pop, and poll (aka steal), under the further constraints that
143     * push and pop are called only from the owning thread (or, as
144     * extended here, under a lock), while poll may be called from
145     * other threads. (If you are unfamiliar with them, you probably
146     * want to read Herlihy and Shavit's book "The Art of
147     * Multiprocessor programming", chapter 16 describing these in
148     * more detail before proceeding.) The main work-stealing queue
149     * design is roughly similar to those in the papers "Dynamic
150     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151     * (http://research.sun.com/scalable/pubs/index.html) and
152     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154     * The main differences ultimately stem from GC requirements that
155     * we null out taken slots as soon as we can, to maintain as small
156     * a footprint as possible even in programs generating huge
157     * numbers of tasks. To accomplish this, we shift the CAS
158     * arbitrating pop vs poll (steal) from being on the indices
159     * ("base" and "top") to the slots themselves. So, both a
160     * successful pop and poll mainly entail a CAS of a slot from
161     * non-null to null. Because we rely on CASes of references, we
162     * do not need tag bits on base or top. They are simple ints as
163     * used in any circular array-based queue (see for example
164     * ArrayDeque). Updates to the indices must still be ordered in a
165     * way that guarantees that top == base means the queue is empty,
166     * but otherwise may err on the side of possibly making the queue
167     * appear nonempty when a push, pop, or poll have not fully
168     * committed. Note that this means that the poll operation,
169     * considered individually, is not wait-free. One thief cannot
170     * successfully continue until another in-progress one (or, if
171     * previously empty, a push) completes. However, in the
172     * aggregate, we ensure at least probabilistic non-blockingness.
173     * If an attempted steal fails, a thief always chooses a different
174     * random victim target to try next. So, in order for one thief to
175     * progress, it suffices for any in-progress poll or new push on
176     * any empty queue to complete. (This is why we normally use
177     * method pollAt and its variants that try once at the apparent
178     * base index, else consider alternative actions, rather than
179     * method poll.)
180     *
181     * This approach also enables support of a user mode in which local
182     * task processing is in FIFO, not LIFO order, simply by using
183     * poll rather than pop. This can be useful in message-passing
184     * frameworks in which tasks are never joined. However neither
185     * mode considers affinities, loads, cache localities, etc, so
186     * rarely provide the best possible performance on a given
187     * machine, but portably provide good throughput by averaging over
188     * these factors. (Further, even if we did try to use such
189     * information, we do not usually have a basis for exploiting it.
190     * For example, some sets of tasks profit from cache affinities,
191     * but others are harmed by cache pollution effects.)
192     *
193     * WorkQueues are also used in a similar way for tasks submitted
194     * to the pool. We cannot mix these tasks in the same queues used
195     * for work-stealing (this would contaminate lifo/fifo
196     * processing). Instead, we loosely associate submission queues
197     * with submitting threads, using a form of hashing. The
198     * ThreadLocal Submitter class contains a value initially used as
199     * a hash code for choosing existing queues, but may be randomly
200     * repositioned upon contention with other submitters. In
201     * essence, submitters act like workers except that they never
202     * take tasks, and they are multiplexed on to a finite number of
203     * shared work queues. However, classes are set up so that future
204     * extensions could allow submitters to optionally help perform
205     * tasks as well. Insertion of tasks in shared mode requires a
206     * lock (mainly to protect in the case of resizing) but we use
207     * only a simple spinlock (using bits in field runState), because
208     * submitters encountering a busy queue move on to try or create
209     * other queues -- they block only when creating and registering
210     * new queues.
211     *
212     * Management
213     * ==========
214     *
215     * The main throughput advantages of work-stealing stem from
216     * decentralized control -- workers mostly take tasks from
217     * themselves or each other. We cannot negate this in the
218     * implementation of other management responsibilities. The main
219     * tactic for avoiding bottlenecks is packing nearly all
220     * essentially atomic control state into two volatile variables
221     * that are by far most often read (not written) as status and
222     * consistency checks.
223     *
224     * Field "ctl" contains 64 bits holding all the information needed
225     * to atomically decide to add, inactivate, enqueue (on an event
226     * queue), dequeue, and/or re-activate workers. To enable this
227     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228     * far in excess of normal operating range) to allow ids, counts,
229     * and their negations (used for thresholding) to fit into 16bit
230     * fields.
231     *
232     * Field "runState" contains 32 bits needed to register and
233     * deregister WorkQueues, as well as to enable shutdown. It is
234     * only modified under a lock (normally briefly held, but
235     * occasionally protecting allocations and resizings) but even
236     * when locked remains available to check consistency.
237     *
238     * Recording WorkQueues. WorkQueues are recorded in the
239 dl 1.8 * "workQueues" array that is created upon first use and expanded
240     * if necessary. Updates to the array while recording new workers
241     * and unrecording terminated ones are protected from each other
242     * by a lock but the array is otherwise concurrently readable, and
243     * accessed directly. To simplify index-based operations, the
244     * array size is always a power of two, and all readers must
245     * tolerate null slots. Shared (submission) queues are at even
246     * indices, worker queues at odd indices. Grouping them together
247     * in this way simplifies and speeds up task scanning.
248 dl 1.1 *
249     * All worker thread creation is on-demand, triggered by task
250     * submissions, replacement of terminated workers, and/or
251     * compensation for blocked workers. However, all other support
252     * code is set up to work with other policies. To ensure that we
253     * do not hold on to worker references that would prevent GC, ALL
254     * accesses to workQueues are via indices into the workQueues
255     * array (which is one source of some of the messy code
256     * constructions here). In essence, the workQueues array serves as
257     * a weak reference mechanism. Thus for example the wait queue
258     * field of ctl stores indices, not references. Access to the
259     * workQueues in associated methods (for example signalWork) must
260     * both index-check and null-check the IDs. All such accesses
261     * ignore bad IDs by returning out early from what they are doing,
262     * since this can only be associated with termination, in which
263     * case it is OK to give up. All uses of the workQueues array
264     * also check that it is non-null (even if previously
265     * non-null). This allows nulling during termination, which is
266     * currently not necessary, but remains an option for
267     * resource-revocation-based shutdown schemes. It also helps
268     * reduce JIT issuance of uncommon-trap code, which tends to
269     * unnecessarily complicate control flow in some methods.
270     *
271     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
272     * let workers spin indefinitely scanning for tasks when none can
273     * be found immediately, and we cannot start/resume workers unless
274     * there appear to be tasks available. On the other hand, we must
275     * quickly prod them into action when new tasks are submitted or
276     * generated. In many usages, ramp-up time to activate workers is
277     * the main limiting factor in overall performance (this is
278     * compounded at program start-up by JIT compilation and
279     * allocation). So we try to streamline this as much as possible.
280     * We park/unpark workers after placing in an event wait queue
281     * when they cannot find work. This "queue" is actually a simple
282     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
283     * counter value (that reflects the number of times a worker has
284     * been inactivated) to avoid ABA effects (we need only as many
285     * version numbers as worker threads). Successors are held in
286     * field WorkQueue.nextWait. Queuing deals with several intrinsic
287     * races, mainly that a task-producing thread can miss seeing (and
288     * signalling) another thread that gave up looking for work but
289     * has not yet entered the wait queue. We solve this by requiring
290     * a full sweep of all workers (via repeated calls to method
291     * scan()) both before and after a newly waiting worker is added
292     * to the wait queue. During a rescan, the worker might release
293     * some other queued worker rather than itself, which has the same
294     * net effect. Because enqueued workers may actually be rescanning
295     * rather than waiting, we set and clear the "parker" field of
296     * WorkQueues to reduce unnecessary calls to unpark. (This
297     * requires a secondary recheck to avoid missed signals.) Note
298     * the unusual conventions about Thread.interrupts surrounding
299     * parking and other blocking: Because interrupts are used solely
300     * to alert threads to check termination, which is checked anyway
301     * upon blocking, we clear status (using Thread.interrupted)
302     * before any call to park, so that park does not immediately
303     * return due to status being set via some other unrelated call to
304     * interrupt in user code.
305     *
306     * Signalling. We create or wake up workers only when there
307     * appears to be at least one task they might be able to find and
308     * execute. When a submission is added or another worker adds a
309     * task to a queue that previously had fewer than two tasks, they
310     * signal waiting workers (or trigger creation of new ones if
311     * fewer than the given parallelism level -- see signalWork).
312     * These primary signals are buttressed by signals during rescans;
313     * together these cover the signals needed in cases when more
314     * tasks are pushed but untaken, and improve performance compared
315     * to having one thread wake up all workers.
316     *
317     * Trimming workers. To release resources after periods of lack of
318     * use, a worker starting to wait when the pool is quiescent will
319 dl 1.7 * time out and terminate if the pool has remained quiescent for a
320     * given period -- a short period if there are more threads than
321     * parallelism, longer as the number of threads decreases. This
322     * will slowly propagate, eventually terminating all workers after
323     * periods of non-use.
324 dl 1.1 *
325     * Shutdown and Termination. A call to shutdownNow atomically sets
326     * a runState bit and then (non-atomically) sets each worker's
327     * runState status, cancels all unprocessed tasks, and wakes up
328     * all waiting workers. Detecting whether termination should
329     * commence after a non-abrupt shutdown() call requires more work
330     * and bookkeeping. We need consensus about quiescence (i.e., that
331     * there is no more work). The active count provides a primary
332     * indication but non-abrupt shutdown still requires a rechecking
333     * scan for any workers that are inactive but not queued.
334     *
335     * Joining Tasks
336     * =============
337     *
338     * Any of several actions may be taken when one worker is waiting
339     * to join a task stolen (or always held) by another. Because we
340     * are multiplexing many tasks on to a pool of workers, we can't
341     * just let them block (as in Thread.join). We also cannot just
342     * reassign the joiner's run-time stack with another and replace
343     * it later, which would be a form of "continuation", that even if
344     * possible is not necessarily a good idea since we sometimes need
345     * both an unblocked task and its continuation to progress.
346     * Instead we combine two tactics:
347     *
348     * Helping: Arranging for the joiner to execute some task that it
349     * would be running if the steal had not occurred.
350     *
351     * Compensating: Unless there are already enough live threads,
352     * method tryCompensate() may create or re-activate a spare
353     * thread to compensate for blocked joiners until they unblock.
354     *
355     * A third form (implemented in tryRemoveAndExec and
356     * tryPollForAndExec) amounts to helping a hypothetical
357     * compensator: If we can readily tell that a possible action of a
358     * compensator is to steal and execute the task being joined, the
359     * joining thread can do so directly, without the need for a
360     * compensation thread (although at the expense of larger run-time
361     * stacks, but the tradeoff is typically worthwhile).
362     *
363     * The ManagedBlocker extension API can't use helping so relies
364     * only on compensation in method awaitBlocker.
365     *
366     * The algorithm in tryHelpStealer entails a form of "linear"
367     * helping: Each worker records (in field currentSteal) the most
368     * recent task it stole from some other worker. Plus, it records
369     * (in field currentJoin) the task it is currently actively
370     * joining. Method tryHelpStealer uses these markers to try to
371     * find a worker to help (i.e., steal back a task from and execute
372     * it) that could hasten completion of the actively joined task.
373     * In essence, the joiner executes a task that would be on its own
374     * local deque had the to-be-joined task not been stolen. This may
375     * be seen as a conservative variant of the approach in Wagner &
376     * Calder "Leapfrogging: a portable technique for implementing
377     * efficient futures" SIGPLAN Notices, 1993
378     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
379     * that: (1) We only maintain dependency links across workers upon
380     * steals, rather than use per-task bookkeeping. This sometimes
381     * requires a linear scan of workQueues array to locate stealers,
382     * but often doesn't because stealers leave hints (that may become
383     * stale/wrong) of where to locate them. A stealHint is only a
384     * hint because a worker might have had multiple steals and the
385     * hint records only one of them (usually the most current).
386     * Hinting isolates cost to when it is needed, rather than adding
387     * to per-task overhead. (2) It is "shallow", ignoring nesting
388     * and potentially cyclic mutual steals. (3) It is intentionally
389     * racy: field currentJoin is updated only while actively joining,
390     * which means that we miss links in the chain during long-lived
391     * tasks, GC stalls etc (which is OK since blocking in such cases
392     * is usually a good idea). (4) We bound the number of attempts
393     * to find work (see MAX_HELP) and fall back to suspending the
394     * worker and if necessary replacing it with another.
395     *
396     * It is impossible to keep exactly the target parallelism number
397     * of threads running at any given time. Determining the
398     * existence of conservatively safe helping targets, the
399     * availability of already-created spares, and the apparent need
400     * to create new spares are all racy, so we rely on multiple
401     * retries of each. Compensation in the apparent absence of
402     * helping opportunities is challenging to control on JVMs, where
403     * GC and other activities can stall progress of tasks that in
404     * turn stall out many other dependent tasks, without us being
405     * able to determine whether they will ever require compensation.
406     * Even though work-stealing otherwise encounters little
407     * degradation in the presence of more threads than cores,
408     * aggressively adding new threads in such cases entails risk of
409     * unwanted positive feedback control loops in which more threads
410     * cause more dependent stalls (as well as delayed progress of
411     * unblocked threads to the point that we know they are available)
412     * leading to more situations requiring more threads, and so
413     * on. This aspect of control can be seen as an (analytically
414     * intractable) game with an opponent that may choose the worst
415     * (for us) active thread to stall at any time. We take several
416     * precautions to bound losses (and thus bound gains), mainly in
417     * methods tryCompensate and awaitJoin: (1) We only try
418     * compensation after attempting enough helping steps (measured
419     * via counting and timing) that we have already consumed the
420     * estimated cost of creating and activating a new thread. (2) We
421     * allow up to 50% of threads to be blocked before initially
422     * adding any others, and unless completely saturated, check that
423     * some work is available for a new worker before adding. Also, we
424     * create up to only 50% more threads until entering a mode that
425     * only adds a thread if all others are possibly blocked. All
426     * together, this means that we might be half as fast to react,
427     * and create half as many threads as possible in the ideal case,
428     * but present vastly fewer anomalies in all other cases compared
429     * to both more aggressive and more conservative alternatives.
430     *
431     * Style notes: There is a lot of representation-level coupling
432     * among classes ForkJoinPool, ForkJoinWorkerThread, and
433     * ForkJoinTask. The fields of WorkQueue maintain data structures
434     * managed by ForkJoinPool, so are directly accessed. There is
435     * little point trying to reduce this, since any associated future
436     * changes in representations will need to be accompanied by
437     * algorithmic changes anyway. Several methods intrinsically
438     * sprawl because they must accumulate sets of consistent reads of
439     * volatiles held in local variables. Methods signalWork() and
440     * scan() are the main bottlenecks, so are especially heavily
441     * micro-optimized/mangled. There are lots of inline assignments
442     * (of form "while ((local = field) != 0)") which are usually the
443     * simplest way to ensure the required read orderings (which are
444     * sometimes critical). This leads to a "C"-like style of listing
445     * declarations of these locals at the heads of methods or blocks.
446     * There are several occurrences of the unusual "do {} while
447     * (!cas...)" which is the simplest way to force an update of a
448     * CAS'ed variable. There are also other coding oddities that help
449     * some methods perform reasonably even when interpreted (not
450     * compiled).
451     *
452     * The order of declarations in this file is:
453     * (1) Static utility functions
454     * (2) Nested (static) classes
455     * (3) Static fields
456     * (4) Fields, along with constants used when unpacking some of them
457     * (5) Internal control methods
458     * (6) Callbacks and other support for ForkJoinTask methods
459     * (7) Exported methods
460     * (8) Static block initializing statics in minimally dependent order
461     */
462    
463     // Static utilities
464    
465     /**
466     * If there is a security manager, makes sure caller has
467     * permission to modify threads.
468     */
469     private static void checkPermission() {
470     SecurityManager security = System.getSecurityManager();
471     if (security != null)
472     security.checkPermission(modifyThreadPermission);
473     }
474    
475     // Nested classes
476    
477     /**
478     * Factory for creating new {@link ForkJoinWorkerThread}s.
479     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
480     * for {@code ForkJoinWorkerThread} subclasses that extend base
481     * functionality or initialize threads with different contexts.
482     */
483     public static interface ForkJoinWorkerThreadFactory {
484     /**
485     * Returns a new worker thread operating in the given pool.
486     *
487     * @param pool the pool this thread works in
488     * @throws NullPointerException if the pool is null
489     */
490     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
491     }
492    
493     /**
494     * Default ForkJoinWorkerThreadFactory implementation; creates a
495     * new ForkJoinWorkerThread.
496     */
497     static class DefaultForkJoinWorkerThreadFactory
498     implements ForkJoinWorkerThreadFactory {
499     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
500     return new ForkJoinWorkerThread(pool);
501     }
502     }
503    
504     /**
505     * Class for artificial tasks that are used to replace the target
506     * of local joins if they are removed from an interior queue slot
507     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
508     * actually do anything beyond having a unique identity.
509     */
510     static final class EmptyTask extends ForkJoinTask<Void> {
511     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
512     public final Void getRawResult() { return null; }
513     public final void setRawResult(Void x) {}
514     public final boolean exec() { return true; }
515     }
516    
517     /**
518     * Queues supporting work-stealing as well as external task
519     * submission. See above for main rationale and algorithms.
520     * Implementation relies heavily on "Unsafe" intrinsics
521     * and selective use of "volatile":
522     *
523     * Field "base" is the index (mod array.length) of the least valid
524     * queue slot, which is always the next position to steal (poll)
525     * from if nonempty. Reads and writes require volatile orderings
526     * but not CAS, because updates are only performed after slot
527     * CASes.
528     *
529     * Field "top" is the index (mod array.length) of the next queue
530     * slot to push to or pop from. It is written only by owner thread
531     * for push, or under lock for trySharedPush, and accessed by
532     * other threads only after reading (volatile) base. Both top and
533     * base are allowed to wrap around on overflow, but (top - base)
534     * (or more commonly -(base - top) to force volatile read of base
535     * before top) still estimates size.
536     *
537     * The array slots are read and written using the emulation of
538     * volatiles/atomics provided by Unsafe. Insertions must in
539     * general use putOrderedObject as a form of releasing store to
540     * ensure that all writes to the task object are ordered before
541     * its publication in the queue. (Although we can avoid one case
542     * of this when locked in trySharedPush.) All removals entail a
543     * CAS to null. The array is always a power of two. To ensure
544     * safety of Unsafe array operations, all accesses perform
545     * explicit null checks and implicit bounds checks via
546     * power-of-two masking.
547     *
548     * In addition to basic queuing support, this class contains
549     * fields described elsewhere to control execution. It turns out
550     * to work better memory-layout-wise to include them in this
551     * class rather than a separate class.
552     *
553     * Performance on most platforms is very sensitive to placement of
554     * instances of both WorkQueues and their arrays -- we absolutely
555     * do not want multiple WorkQueue instances or multiple queue
556     * arrays sharing cache lines. (It would be best for queue objects
557     * and their arrays to share, but there is nothing available to
558     * help arrange that). Unfortunately, because they are recorded
559     * in a common array, WorkQueue instances are often moved to be
560     * adjacent by garbage collectors. To reduce impact, we use field
561     * padding that works OK on common platforms; this effectively
562     * trades off slightly slower average field access for the sake of
563     * avoiding really bad worst-case access. (Until better JVM
564     * support is in place, this padding is dependent on transient
565     * properties of JVM field layout rules.) We also take care in
566     * allocating, sizing and resizing the array. Non-shared queue
567     * arrays are initialized (via method growArray) by workers before
568     * use. Others are allocated on first use.
569     */
570     static final class WorkQueue {
571     /**
572     * Capacity of work-stealing queue array upon initialization.
573     * Must be a power of two; at least 4, but should be larger to
574     * reduce or eliminate cacheline sharing among queues.
575     * Currently, it is much larger, as a partial workaround for
576     * the fact that JVMs often place arrays in locations that
577     * share GC bookkeeping (especially cardmarks) such that
578     * per-write accesses encounter serious memory contention.
579     */
580     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
581    
582     /**
583     * Maximum size for queue arrays. Must be a power of two less
584     * than or equal to 1 << (31 - width of array entry) to ensure
585     * lack of wraparound of index calculations, but defined to a
586     * value a bit less than this to help users trap runaway
587     * programs before saturating systems.
588     */
589     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
590    
591     volatile long totalSteals; // cumulative number of steals
592     int seed; // for random scanning; initialize nonzero
593     volatile int eventCount; // encoded inactivation count; < 0 if inactive
594     int nextWait; // encoded record of next event waiter
595     int rescans; // remaining scans until block
596     int nsteals; // top-level task executions since last idle
597     final int mode; // lifo, fifo, or shared
598     int poolIndex; // index of this queue in pool (or 0)
599     int stealHint; // index of most recent known stealer
600     volatile int runState; // 1: locked, -1: terminate; else 0
601     volatile int base; // index of next slot for poll
602     int top; // index of next slot for push
603     ForkJoinTask<?>[] array; // the elements (initially unallocated)
604     final ForkJoinPool pool; // the containing pool (may be null)
605     final ForkJoinWorkerThread owner; // owning thread or null if shared
606     volatile Thread parker; // == owner during call to park; else null
607     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
608     ForkJoinTask<?> currentSteal; // current non-local task being executed
609     // Heuristic padding to ameliorate unfortunate memory placements
610     Object p00, p01, p02, p03, p04, p05, p06, p07;
611     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
612    
613     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
614     this.mode = mode;
615     this.pool = pool;
616     this.owner = owner;
617     // Place indices in the center of array (that is not yet allocated)
618     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
619     }
620    
621     /**
622     * Returns the approximate number of tasks in the queue.
623     */
624     final int queueSize() {
625     int n = base - top; // non-owner callers must read base first
626     return (n >= 0) ? 0 : -n; // ignore transient negative
627     }
628    
629     /**
630     * Provides a more accurate estimate of whether this queue has
631     * any tasks than does queueSize, by checking whether a
632     * near-empty queue has at least one unclaimed task.
633     */
634     final boolean isEmpty() {
635     ForkJoinTask<?>[] a; int m, s;
636     int n = base - (s = top);
637     return (n >= 0 ||
638     (n == -1 &&
639     ((a = array) == null ||
640     (m = a.length - 1) < 0 ||
641     U.getObjectVolatile
642     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
643     }
644    
645     /**
646     * Pushes a task. Call only by owner in unshared queues.
647     *
648     * @param task the task. Caller must ensure non-null.
649     * @throw RejectedExecutionException if array cannot be resized
650     */
651     final void push(ForkJoinTask<?> task) {
652     ForkJoinTask<?>[] a; ForkJoinPool p;
653     int s = top, m, n;
654     if ((a = array) != null) { // ignore if queue removed
655     U.putOrderedObject
656     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
657     if ((n = (top = s + 1) - base) <= 2) {
658     if ((p = pool) != null)
659     p.signalWork();
660     }
661     else if (n >= m)
662     growArray(true);
663     }
664     }
665    
666     /**
667     * Pushes a task if lock is free and array is either big
668     * enough or can be resized to be big enough.
669     *
670     * @param task the task. Caller must ensure non-null.
671     * @return true if submitted
672     */
673     final boolean trySharedPush(ForkJoinTask<?> task) {
674     boolean submitted = false;
675     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
676     ForkJoinTask<?>[] a = array;
677     int s = top;
678     try {
679     if ((a != null && a.length > s + 1 - base) ||
680     (a = growArray(false)) != null) { // must presize
681     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
682     U.putObject(a, (long)j, task); // don't need "ordered"
683     top = s + 1;
684     submitted = true;
685     }
686     } finally {
687     runState = 0; // unlock
688     }
689     }
690     return submitted;
691     }
692    
693     /**
694     * Takes next task, if one exists, in LIFO order. Call only
695 dl 1.9 * by owner in unshared queues.
696 dl 1.1 */
697     final ForkJoinTask<?> pop() {
698     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
699     if ((a = array) != null && (m = a.length - 1) >= 0) {
700     for (int s; (s = top - 1) - base >= 0;) {
701     long j = ((m & s) << ASHIFT) + ABASE;
702     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
703     break;
704     if (U.compareAndSwapObject(a, j, t, null)) {
705     top = s;
706     return t;
707     }
708     }
709     }
710     return null;
711     }
712    
713 dl 1.9 final ForkJoinTask<?> sharedPop() {
714     ForkJoinTask<?> task = null;
715     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
716     try {
717     ForkJoinTask<?>[] a; int m;
718     if ((a = array) != null && (m = a.length - 1) >= 0) {
719     for (int s; (s = top - 1) - base >= 0;) {
720     long j = ((m & s) << ASHIFT) + ABASE;
721     ForkJoinTask<?> t =
722     (ForkJoinTask<?>)U.getObject(a, j);
723     if (t == null)
724     break;
725     if (U.compareAndSwapObject(a, j, t, null)) {
726     top = s;
727     task = t;
728     break;
729     }
730     }
731     }
732     } finally {
733     runState = 0;
734     }
735     }
736     return task;
737     }
738    
739    
740 dl 1.1 /**
741     * Takes a task in FIFO order if b is base of queue and a task
742     * can be claimed without contention. Specialized versions
743     * appear in ForkJoinPool methods scan and tryHelpStealer.
744     */
745     final ForkJoinTask<?> pollAt(int b) {
746     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
747     if ((a = array) != null) {
748     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
749     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
750     base == b &&
751     U.compareAndSwapObject(a, j, t, null)) {
752     base = b + 1;
753     return t;
754     }
755     }
756     return null;
757     }
758    
759     /**
760     * Takes next task, if one exists, in FIFO order.
761     */
762     final ForkJoinTask<?> poll() {
763     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
764     while ((b = base) - top < 0 && (a = array) != null) {
765     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
767     if (t != null) {
768     if (base == b &&
769     U.compareAndSwapObject(a, j, t, null)) {
770     base = b + 1;
771     return t;
772     }
773     }
774     else if (base == b) {
775     if (b + 1 == top)
776     break;
777     Thread.yield(); // wait for lagging update
778     }
779     }
780     return null;
781     }
782    
783     /**
784     * Takes next task, if one exists, in order specified by mode.
785     */
786     final ForkJoinTask<?> nextLocalTask() {
787     return mode == 0 ? pop() : poll();
788     }
789    
790     /**
791     * Returns next task, if one exists, in order specified by mode.
792     */
793     final ForkJoinTask<?> peek() {
794     ForkJoinTask<?>[] a = array; int m;
795     if (a == null || (m = a.length - 1) < 0)
796     return null;
797     int i = mode == 0 ? top - 1 : base;
798     int j = ((i & m) << ASHIFT) + ABASE;
799     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
800     }
801    
802     /**
803     * Pops the given task only if it is at the current top.
804     */
805     final boolean tryUnpush(ForkJoinTask<?> t) {
806     ForkJoinTask<?>[] a; int s;
807     if ((a = array) != null && (s = top) != base &&
808     U.compareAndSwapObject
809     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
810     top = s;
811     return true;
812     }
813     return false;
814     }
815    
816     /**
817 dl 1.7 * Version of tryUnpush for shared queues; called by non-FJ
818 dl 1.8 * submitters after prechecking that task probably exists.
819 dl 1.7 */
820 dl 1.8 final boolean trySharedUnpush(ForkJoinTask<?> t) {
821 dl 1.7 boolean success = false;
822 dl 1.8 if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823 dl 1.7 try {
824 dl 1.8 ForkJoinTask<?>[] a; int s;
825     if ((a = array) != null && (s = top) != base &&
826     U.compareAndSwapObject
827     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828     top = s;
829     success = true;
830 dl 1.7 }
831     } finally {
832     runState = 0; // unlock
833     }
834     }
835     return success;
836     }
837    
838     /**
839 dl 1.1 * Polls the given task only if it is at the current base.
840     */
841     final boolean pollFor(ForkJoinTask<?> task) {
842     ForkJoinTask<?>[] a; int b;
843     if ((b = base) - top < 0 && (a = array) != null) {
844     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
845     if (U.getObjectVolatile(a, j) == task && base == b &&
846     U.compareAndSwapObject(a, j, task, null)) {
847     base = b + 1;
848     return true;
849     }
850     }
851     return false;
852     }
853    
854     /**
855     * Initializes or doubles the capacity of array. Call either
856     * by owner or with lock held -- it is OK for base, but not
857     * top, to move while resizings are in progress.
858     *
859     * @param rejectOnFailure if true, throw exception if capacity
860     * exceeded (relayed ultimately to user); else return null.
861     */
862     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
863     ForkJoinTask<?>[] oldA = array;
864     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
865     if (size <= MAXIMUM_QUEUE_CAPACITY) {
866     int oldMask, t, b;
867     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
868     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
869     (t = top) - (b = base) > 0) {
870     int mask = size - 1;
871     do {
872     ForkJoinTask<?> x;
873     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
874     int j = ((b & mask) << ASHIFT) + ABASE;
875     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
876     if (x != null &&
877     U.compareAndSwapObject(oldA, oldj, x, null))
878     U.putObjectVolatile(a, j, x);
879     } while (++b != t);
880     }
881     return a;
882     }
883     else if (!rejectOnFailure)
884     return null;
885     else
886     throw new RejectedExecutionException("Queue capacity exceeded");
887     }
888    
889     /**
890     * Removes and cancels all known tasks, ignoring any exceptions.
891     */
892     final void cancelAll() {
893     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
894     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
895     for (ForkJoinTask<?> t; (t = poll()) != null; )
896     ForkJoinTask.cancelIgnoringExceptions(t);
897     }
898    
899     /**
900     * Computes next value for random probes. Scans don't require
901     * a very high quality generator, but also not a crummy one.
902     * Marsaglia xor-shift is cheap and works well enough. Note:
903     * This is manually inlined in its usages in ForkJoinPool to
904     * avoid writes inside busy scan loops.
905     */
906     final int nextSeed() {
907     int r = seed;
908     r ^= r << 13;
909     r ^= r >>> 17;
910     return seed = r ^= r << 5;
911     }
912    
913 dl 1.11 // Specialized execution methods
914 dl 1.1
915     /**
916     * Pops and runs tasks until empty.
917     */
918     private void popAndExecAll() {
919     // A bit faster than repeated pop calls
920     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
921     while ((a = array) != null && (m = a.length - 1) >= 0 &&
922     (s = top - 1) - base >= 0 &&
923     (t = ((ForkJoinTask<?>)
924     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
925     != null) {
926     if (U.compareAndSwapObject(a, j, t, null)) {
927     top = s;
928     t.doExec();
929     }
930     }
931     }
932    
933     /**
934     * Polls and runs tasks until empty.
935     */
936     private void pollAndExecAll() {
937     for (ForkJoinTask<?> t; (t = poll()) != null;)
938     t.doExec();
939     }
940    
941     /**
942     * If present, removes from queue and executes the given task, or
943     * any other cancelled task. Returns (true) immediately on any CAS
944     * or consistency check failure so caller can retry.
945     *
946     * @return 0 if no progress can be made, else positive
947     * (this unusual convention simplifies use with tryHelpStealer.)
948     */
949     final int tryRemoveAndExec(ForkJoinTask<?> task) {
950     int stat = 1;
951     boolean removed = false, empty = true;
952     ForkJoinTask<?>[] a; int m, s, b, n;
953     if ((a = array) != null && (m = a.length - 1) >= 0 &&
954     (n = (s = top) - (b = base)) > 0) {
955     for (ForkJoinTask<?> t;;) { // traverse from s to b
956     int j = ((--s & m) << ASHIFT) + ABASE;
957     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
958     if (t == null) // inconsistent length
959     break;
960     else if (t == task) {
961     if (s + 1 == top) { // pop
962     if (!U.compareAndSwapObject(a, j, task, null))
963     break;
964     top = s;
965     removed = true;
966     }
967     else if (base == b) // replace with proxy
968     removed = U.compareAndSwapObject(a, j, task,
969     new EmptyTask());
970     break;
971     }
972     else if (t.status >= 0)
973     empty = false;
974     else if (s + 1 == top) { // pop and throw away
975     if (U.compareAndSwapObject(a, j, t, null))
976     top = s;
977     break;
978     }
979     if (--n == 0) {
980     if (!empty && base == b)
981     stat = 0;
982     break;
983     }
984     }
985     }
986     if (removed)
987     task.doExec();
988     return stat;
989     }
990    
991     /**
992 dl 1.11 * Version of shared pop that takes top element only if it
993     * its root is the given CountedCompleter.
994     */
995     final CountedCompleter<?> sharedPopCC(CountedCompleter<?> root) {
996     CountedCompleter<?> task = null;
997     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
998     try {
999     ForkJoinTask<?>[] a; int m;
1000     if ((a = array) != null && (m = a.length - 1) >= 0) {
1001     outer:for (int s; (s = top - 1) - base >= 0;) {
1002     long j = ((m & s) << ASHIFT) + ABASE;
1003     ForkJoinTask<?> t =
1004     (ForkJoinTask<?>)U.getObject(a, j);
1005     if (t == null || !(t instanceof CountedCompleter))
1006     break;
1007     CountedCompleter<?> cc = (CountedCompleter<?>)t;
1008     for (CountedCompleter<?> q = cc, p;;) {
1009     if (q == root) {
1010     if (U.compareAndSwapObject(a, j, cc, null)) {
1011     top = s;
1012     task = cc;
1013     break outer;
1014     }
1015     break;
1016     }
1017     if ((p = q.completer) == null)
1018     break outer;
1019     q = p;
1020     }
1021     }
1022     }
1023     } finally {
1024     runState = 0;
1025     }
1026     }
1027     return task;
1028     }
1029    
1030     /**
1031 dl 1.1 * Executes a top-level task and any local tasks remaining
1032     * after execution.
1033     */
1034     final void runTask(ForkJoinTask<?> t) {
1035     if (t != null) {
1036     currentSteal = t;
1037     t.doExec();
1038     if (top != base) { // process remaining local tasks
1039     if (mode == 0)
1040     popAndExecAll();
1041     else
1042     pollAndExecAll();
1043     }
1044     ++nsteals;
1045     currentSteal = null;
1046     }
1047     }
1048    
1049     /**
1050     * Executes a non-top-level (stolen) task.
1051     */
1052     final void runSubtask(ForkJoinTask<?> t) {
1053     if (t != null) {
1054     ForkJoinTask<?> ps = currentSteal;
1055     currentSteal = t;
1056     t.doExec();
1057     currentSteal = ps;
1058     }
1059     }
1060    
1061     /**
1062     * Returns true if owned and not known to be blocked.
1063     */
1064     final boolean isApparentlyUnblocked() {
1065     Thread wt; Thread.State s;
1066     return (eventCount >= 0 &&
1067     (wt = owner) != null &&
1068     (s = wt.getState()) != Thread.State.BLOCKED &&
1069     s != Thread.State.WAITING &&
1070     s != Thread.State.TIMED_WAITING);
1071     }
1072    
1073     /**
1074     * If this owned and is not already interrupted, try to
1075     * interrupt and/or unpark, ignoring exceptions.
1076     */
1077     final void interruptOwner() {
1078     Thread wt, p;
1079     if ((wt = owner) != null && !wt.isInterrupted()) {
1080     try {
1081     wt.interrupt();
1082     } catch (SecurityException ignore) {
1083     }
1084     }
1085     if ((p = parker) != null)
1086     U.unpark(p);
1087     }
1088    
1089     // Unsafe mechanics
1090     private static final sun.misc.Unsafe U;
1091     private static final long RUNSTATE;
1092     private static final int ABASE;
1093     private static final int ASHIFT;
1094     static {
1095     int s;
1096     try {
1097     U = getUnsafe();
1098     Class<?> k = WorkQueue.class;
1099     Class<?> ak = ForkJoinTask[].class;
1100     RUNSTATE = U.objectFieldOffset
1101     (k.getDeclaredField("runState"));
1102     ABASE = U.arrayBaseOffset(ak);
1103     s = U.arrayIndexScale(ak);
1104     } catch (Exception e) {
1105     throw new Error(e);
1106     }
1107     if ((s & (s-1)) != 0)
1108     throw new Error("data type scale not a power of two");
1109     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1110     }
1111     }
1112 jsr166 1.3
1113 dl 1.1 /**
1114     * Per-thread records for threads that submit to pools. Currently
1115     * holds only pseudo-random seed / index that is used to choose
1116     * submission queues in method doSubmit. In the future, this may
1117     * also incorporate a means to implement different task rejection
1118     * and resubmission policies.
1119     *
1120     * Seeds for submitters and workers/workQueues work in basically
1121     * the same way but are initialized and updated using slightly
1122     * different mechanics. Both are initialized using the same
1123     * approach as in class ThreadLocal, where successive values are
1124     * unlikely to collide with previous values. This is done during
1125     * registration for workers, but requires a separate AtomicInteger
1126     * for submitters. Seeds are then randomly modified upon
1127     * collisions using xorshifts, which requires a non-zero seed.
1128     */
1129     static final class Submitter {
1130     int seed;
1131     Submitter() {
1132     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1133     seed = (s == 0) ? 1 : s; // ensure non-zero
1134     }
1135     }
1136    
1137     /** ThreadLocal class for Submitters */
1138     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1139     public Submitter initialValue() { return new Submitter(); }
1140     }
1141    
1142     // static fields (initialized in static initializer below)
1143    
1144     /**
1145     * Creates a new ForkJoinWorkerThread. This factory is used unless
1146     * overridden in ForkJoinPool constructors.
1147     */
1148     public static final ForkJoinWorkerThreadFactory
1149     defaultForkJoinWorkerThreadFactory;
1150    
1151 dl 1.8 /** Property prefix for constructing common pool */
1152     private static final String propPrefix =
1153     "java.util.concurrent.ForkJoinPool.common.";
1154    
1155     /**
1156     * Common (static) pool. Non-null for public use unless a static
1157     * construction exception, but internal usages must null-check on
1158     * use.
1159     */
1160     static final ForkJoinPool commonPool;
1161    
1162     /**
1163     * Common pool parallelism. Must equal commonPool.parallelism.
1164     */
1165     static final int commonPoolParallelism;
1166    
1167 dl 1.1 /**
1168     * Generator for assigning sequence numbers as pool names.
1169     */
1170     private static final AtomicInteger poolNumberGenerator;
1171    
1172     /**
1173     * Generator for initial hashes/seeds for submitters. Accessed by
1174     * Submitter class constructor.
1175     */
1176     static final AtomicInteger nextSubmitterSeed;
1177    
1178     /**
1179     * Permission required for callers of methods that may start or
1180     * kill threads.
1181     */
1182     private static final RuntimePermission modifyThreadPermission;
1183    
1184     /**
1185 jsr166 1.2 * Per-thread submission bookkeeping. Shared across all pools
1186 dl 1.1 * to reduce ThreadLocal pollution and because random motion
1187     * to avoid contention in one pool is likely to hold for others.
1188     */
1189     private static final ThreadSubmitter submitters;
1190    
1191     // static constants
1192    
1193     /**
1194 dl 1.8 * Initial timeout value (in nanoseconds) for the thread triggering
1195 dl 1.7 * quiescence to park waiting for new work. On timeout, the thread
1196     * will instead try to shrink the number of workers.
1197 dl 1.1 */
1198 dl 1.7 private static final long IDLE_TIMEOUT = 1000L * 1000L * 1000L; // 1sec
1199 dl 1.1
1200     /**
1201 dl 1.7 * Timeout value when there are more threads than parallelism level
1202 dl 1.1 */
1203 dl 1.7 private static final long FAST_IDLE_TIMEOUT = 100L * 1000L * 1000L;
1204 dl 1.1
1205     /**
1206     * The maximum stolen->joining link depth allowed in method
1207     * tryHelpStealer. Must be a power of two. This value also
1208     * controls the maximum number of times to try to help join a task
1209     * without any apparent progress or change in pool state before
1210     * giving up and blocking (see awaitJoin). Depths for legitimate
1211     * chains are unbounded, but we use a fixed constant to avoid
1212     * (otherwise unchecked) cycles and to bound staleness of
1213     * traversal parameters at the expense of sometimes blocking when
1214     * we could be helping.
1215     */
1216     private static final int MAX_HELP = 64;
1217    
1218     /**
1219     * Secondary time-based bound (in nanosecs) for helping attempts
1220     * before trying compensated blocking in awaitJoin. Used in
1221     * conjunction with MAX_HELP to reduce variance due to different
1222     * polling rates associated with different helping options. The
1223     * value should roughly approximate the time required to create
1224     * and/or activate a worker thread.
1225     */
1226     private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1227    
1228     /**
1229     * Increment for seed generators. See class ThreadLocal for
1230     * explanation.
1231     */
1232     private static final int SEED_INCREMENT = 0x61c88647;
1233    
1234     /**
1235     * Bits and masks for control variables
1236     *
1237     * Field ctl is a long packed with:
1238     * AC: Number of active running workers minus target parallelism (16 bits)
1239     * TC: Number of total workers minus target parallelism (16 bits)
1240     * ST: true if pool is terminating (1 bit)
1241     * EC: the wait count of top waiting thread (15 bits)
1242     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1243     *
1244     * When convenient, we can extract the upper 32 bits of counts and
1245     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1246     * (int)ctl. The ec field is never accessed alone, but always
1247     * together with id and st. The offsets of counts by the target
1248     * parallelism and the positionings of fields makes it possible to
1249     * perform the most common checks via sign tests of fields: When
1250     * ac is negative, there are not enough active workers, when tc is
1251     * negative, there are not enough total workers, and when e is
1252     * negative, the pool is terminating. To deal with these possibly
1253     * negative fields, we use casts in and out of "short" and/or
1254     * signed shifts to maintain signedness.
1255     *
1256     * When a thread is queued (inactivated), its eventCount field is
1257     * set negative, which is the only way to tell if a worker is
1258     * prevented from executing tasks, even though it must continue to
1259     * scan for them to avoid queuing races. Note however that
1260     * eventCount updates lag releases so usage requires care.
1261     *
1262     * Field runState is an int packed with:
1263     * SHUTDOWN: true if shutdown is enabled (1 bit)
1264     * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1265     * INIT: set true after workQueues array construction (1 bit)
1266     *
1267     * The sequence number enables simple consistency checks:
1268     * Staleness of read-only operations on the workQueues array can
1269     * be checked by comparing runState before vs after the reads.
1270     */
1271    
1272     // bit positions/shifts for fields
1273     private static final int AC_SHIFT = 48;
1274     private static final int TC_SHIFT = 32;
1275     private static final int ST_SHIFT = 31;
1276     private static final int EC_SHIFT = 16;
1277    
1278     // bounds
1279     private static final int SMASK = 0xffff; // short bits
1280     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1281     private static final int SQMASK = 0xfffe; // even short bits
1282     private static final int SHORT_SIGN = 1 << 15;
1283     private static final int INT_SIGN = 1 << 31;
1284    
1285     // masks
1286     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1287     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1288     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1289    
1290     // units for incrementing and decrementing
1291     private static final long TC_UNIT = 1L << TC_SHIFT;
1292     private static final long AC_UNIT = 1L << AC_SHIFT;
1293    
1294     // masks and units for dealing with u = (int)(ctl >>> 32)
1295     private static final int UAC_SHIFT = AC_SHIFT - 32;
1296     private static final int UTC_SHIFT = TC_SHIFT - 32;
1297     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1298     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1299     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1300     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1301    
1302     // masks and units for dealing with e = (int)ctl
1303     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1304     private static final int E_SEQ = 1 << EC_SHIFT;
1305    
1306     // runState bits
1307     private static final int SHUTDOWN = 1 << 31;
1308    
1309     // access mode for WorkQueue
1310     static final int LIFO_QUEUE = 0;
1311     static final int FIFO_QUEUE = 1;
1312     static final int SHARED_QUEUE = -1;
1313    
1314     // Instance fields
1315    
1316     /*
1317     * Field layout order in this class tends to matter more than one
1318     * would like. Runtime layout order is only loosely related to
1319     * declaration order and may differ across JVMs, but the following
1320     * empirically works OK on current JVMs.
1321     */
1322    
1323 dl 1.8 volatile long stealCount; // collects worker counts
1324 dl 1.1 volatile long ctl; // main pool control
1325     final int parallelism; // parallelism level
1326     final int localMode; // per-worker scheduling mode
1327 dl 1.8 volatile int nextWorkerNumber; // to create worker name string
1328 dl 1.1 final int submitMask; // submit queue index bound
1329     int nextSeed; // for initializing worker seeds
1330 dl 1.8 volatile int mainLock; // spinlock for array updates
1331 dl 1.1 volatile int runState; // shutdown status and seq
1332     WorkQueue[] workQueues; // main registry
1333     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1334     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1335 dl 1.8 final String workerNamePrefix; // to create worker name string
1336    
1337     /*
1338     * Mechanics for main lock protecting worker array updates. Uses
1339     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1340     * normal cases, but falling back to builtin lock when (rarely)
1341     * needed. See internal ConcurrentHashMap documentation for
1342     * explanation.
1343     */
1344    
1345     static final int LOCK_WAITING = 2; // bit to indicate need for signal
1346     static final int MAX_LOCK_SPINS = 1 << 8;
1347    
1348     private void tryAwaitMainLock() {
1349     int spins = MAX_LOCK_SPINS, r = 0, h;
1350     while (((h = mainLock) & 1) != 0) {
1351     if (r == 0)
1352     r = ThreadLocalRandom.current().nextInt(); // randomize spins
1353     else if (spins >= 0) {
1354     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1355     if (r >= 0)
1356     --spins;
1357     }
1358     else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1359     synchronized (this) {
1360     if ((mainLock & LOCK_WAITING) != 0) {
1361     try {
1362     wait();
1363     } catch (InterruptedException ie) {
1364 dl 1.11 try {
1365     Thread.currentThread().interrupt();
1366     } catch (SecurityException ignore) {
1367     }
1368 dl 1.8 }
1369     }
1370     else
1371     notifyAll(); // possibly won race vs signaller
1372     }
1373     break;
1374     }
1375     }
1376     }
1377 dl 1.1
1378     // Creating, registering, and deregistering workers
1379    
1380     /**
1381     * Tries to create and start a worker
1382     */
1383     private void addWorker() {
1384     Throwable ex = null;
1385     ForkJoinWorkerThread wt = null;
1386     try {
1387     if ((wt = factory.newThread(this)) != null) {
1388     wt.start();
1389     return;
1390     }
1391     } catch (Throwable e) {
1392     ex = e;
1393     }
1394     deregisterWorker(wt, ex); // adjust counts etc on failure
1395     }
1396    
1397     /**
1398     * Callback from ForkJoinWorkerThread constructor to assign a
1399     * public name. This must be separate from registerWorker because
1400     * it is called during the "super" constructor call in
1401     * ForkJoinWorkerThread.
1402     */
1403     final String nextWorkerName() {
1404 dl 1.8 int n;
1405 jsr166 1.10 do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1406     n = nextWorkerNumber, ++n));
1407 dl 1.8 return workerNamePrefix.concat(Integer.toString(n));
1408 dl 1.1 }
1409    
1410     /**
1411     * Callback from ForkJoinWorkerThread constructor to establish its
1412     * poolIndex and record its WorkQueue. To avoid scanning bias due
1413     * to packing entries in front of the workQueues array, we treat
1414     * the array as a simple power-of-two hash table using per-thread
1415     * seed as hash, expanding as needed.
1416     *
1417     * @param w the worker's queue
1418     */
1419     final void registerWorker(WorkQueue w) {
1420 dl 1.8 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1421     tryAwaitMainLock();
1422 dl 1.1 try {
1423 dl 1.8 WorkQueue[] ws;
1424     if ((ws = workQueues) == null)
1425     ws = workQueues = new WorkQueue[submitMask + 1];
1426     if (w != null) {
1427 dl 1.7 int rs, n = ws.length, m = n - 1;
1428 dl 1.1 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1429     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1430     int r = (s << 1) | 1; // use odd-numbered indices
1431     if (ws[r &= m] != null) { // collision
1432     int probes = 0; // step by approx half size
1433     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1434     while (ws[r = (r + step) & m] != null) {
1435     if (++probes >= n) {
1436     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1437     m = n - 1;
1438     probes = 0;
1439     }
1440     }
1441     }
1442     w.eventCount = w.poolIndex = r; // establish before recording
1443     ws[r] = w; // also update seq
1444     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1445     }
1446     } finally {
1447 dl 1.8 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1448     mainLock = 0;
1449     synchronized (this) { notifyAll(); };
1450     }
1451 dl 1.1 }
1452     }
1453    
1454     /**
1455     * Final callback from terminating worker, as well as upon failure
1456     * to construct or start a worker in addWorker. Removes record of
1457     * worker from array, and adjusts counts. If pool is shutting
1458     * down, tries to complete termination.
1459     *
1460     * @param wt the worker thread or null if addWorker failed
1461     * @param ex the exception causing failure, or null if none
1462     */
1463     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1464     WorkQueue w = null;
1465     if (wt != null && (w = wt.workQueue) != null) {
1466     w.runState = -1; // ensure runState is set
1467 dl 1.8 long steals = w.totalSteals + w.nsteals, sc;
1468 jsr166 1.10 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1469     sc = stealCount, sc + steals));
1470 dl 1.1 int idx = w.poolIndex;
1471 dl 1.8 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1472     tryAwaitMainLock();
1473     try {
1474 dl 1.1 WorkQueue[] ws = workQueues;
1475     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1476     ws[idx] = null;
1477     } finally {
1478 dl 1.8 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1479     mainLock = 0;
1480     synchronized (this) { notifyAll(); };
1481     }
1482 dl 1.1 }
1483     }
1484    
1485     long c; // adjust ctl counts
1486     do {} while (!U.compareAndSwapLong
1487     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1488     ((c - TC_UNIT) & TC_MASK) |
1489     (c & ~(AC_MASK|TC_MASK)))));
1490    
1491     if (!tryTerminate(false, false) && w != null) {
1492     w.cancelAll(); // cancel remaining tasks
1493     if (w.array != null) // suppress signal if never ran
1494     signalWork(); // wake up or create replacement
1495     if (ex == null) // help clean refs on way out
1496     ForkJoinTask.helpExpungeStaleExceptions();
1497     }
1498    
1499     if (ex != null) // rethrow
1500 dl 1.11 ForkJoinTask.rethrow(ex);
1501 dl 1.1 }
1502    
1503     // Submissions
1504    
1505     /**
1506     * Unless shutting down, adds the given task to a submission queue
1507     * at submitter's current queue index (modulo submission
1508     * range). If no queue exists at the index, one is created. If
1509     * the queue is busy, another index is randomly chosen. The
1510     * submitMask bounds the effective number of queues to the
1511     * (nearest power of two for) parallelism level.
1512     *
1513     * @param task the task. Caller must ensure non-null.
1514     */
1515     private void doSubmit(ForkJoinTask<?> task) {
1516     Submitter s = submitters.get();
1517     for (int r = s.seed, m = submitMask;;) {
1518     WorkQueue[] ws; WorkQueue q;
1519     int k = r & m & SQMASK; // use only even indices
1520 dl 1.8 if (runState < 0)
1521 dl 1.1 throw new RejectedExecutionException(); // shutting down
1522 dl 1.8 else if ((ws = workQueues) == null || ws.length <= k) {
1523     while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1524     tryAwaitMainLock();
1525     try {
1526     if (workQueues == null)
1527     workQueues = new WorkQueue[submitMask + 1];
1528     } finally {
1529     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1530     mainLock = 0;
1531     synchronized (this) { notifyAll(); };
1532     }
1533     }
1534     }
1535 dl 1.1 else if ((q = ws[k]) == null) { // create new queue
1536     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1537 dl 1.8 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1538     tryAwaitMainLock();
1539     try {
1540 dl 1.1 int rs = runState; // to update seq
1541     if (ws == workQueues && ws[k] == null) {
1542     ws[k] = nq;
1543     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1544     }
1545     } finally {
1546 dl 1.8 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1547     mainLock = 0;
1548     synchronized (this) { notifyAll(); };
1549     }
1550 dl 1.1 }
1551     }
1552     else if (q.trySharedPush(task)) {
1553     signalWork();
1554     return;
1555     }
1556     else if (m > 1) { // move to a different index
1557     r ^= r << 13; // same xorshift as WorkQueues
1558     r ^= r >>> 17;
1559     s.seed = r ^= r << 5;
1560     }
1561     else
1562     Thread.yield(); // yield if no alternatives
1563     }
1564     }
1565    
1566 dl 1.7 /**
1567     * Submits the given (non-null) task to the common pool, if possible.
1568     */
1569     static void submitToCommonPool(ForkJoinTask<?> task) {
1570     ForkJoinPool p;
1571     if ((p = commonPool) == null)
1572 dl 1.8 throw new RejectedExecutionException("Common Pool Unavailable");
1573 dl 1.7 p.doSubmit(task);
1574     }
1575    
1576     /**
1577     * Returns true if the given task was submitted to common pool
1578     * and has not yet commenced execution, and is available for
1579     * removal according to execution policies; if so removing the
1580     * submission from the pool.
1581     *
1582     * @param task the task
1583     * @return true if successful
1584     */
1585     static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1586 dl 1.11 // If not oversaturating platform, peek, looking for task and
1587     // eligibility before using trySharedUnpush to actually take
1588     // it under lock
1589     ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
1590     ForkJoinTask<?>[] a; int ac, s, m;
1591     if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1592     int k = submitters.get().seed & p.submitMask & SQMASK;
1593     if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1594     (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1595     if (ac == 0) { // double check if all workers active
1596     for (int i = 1; i <= m; i += 2) {
1597     if ((w = ws[i]) != null && w.parker != null) {
1598     ac = -1;
1599     break;
1600     }
1601     }
1602     }
1603     return (ac < 0 && (a = q.array) != null &&
1604     (s = q.top - 1) - q.base >= 0 &&
1605     s >= 0 && s < a.length &&
1606     a[s] == task &&
1607     q.trySharedUnpush(task));
1608     }
1609     }
1610     return false;
1611 dl 1.7 }
1612    
1613 dl 1.9 /**
1614 dl 1.11 * Tries to pop and run a task within same computation from common pool
1615 dl 1.9 */
1616 dl 1.11 static void popAndExecCCFromCommonPool(CountedCompleter<?> cc) {
1617     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; int m, ac;
1618     CountedCompleter<?> par, task;
1619     if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1620     while ((par = cc.completer) != null) // find root
1621     cc = par;
1622     int k = submitters.get().seed & p.submitMask & SQMASK;
1623     if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1624     (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1625     if (ac == 0) {
1626     for (int i = 1; i <= m; i += 2) {
1627     if ((w = ws[i]) != null && w.parker != null) {
1628     ac = -1;
1629     break;
1630     }
1631     }
1632     }
1633     if (ac < 0 && q.top - q.base > 0 &&
1634     (task = q.sharedPopCC(cc)) != null)
1635     task.exec();
1636     }
1637     }
1638 dl 1.9 }
1639    
1640 dl 1.1 // Maintaining ctl counts
1641    
1642     /**
1643     * Increments active count; mainly called upon return from blocking.
1644     */
1645     final void incrementActiveCount() {
1646     long c;
1647     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1648     }
1649    
1650     /**
1651 dl 1.7 * Tries to create one or activate one or more workers if too few are active.
1652 dl 1.1 */
1653     final void signalWork() {
1654     long c; int u;
1655     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1656     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1657     if ((e = (int)c) > 0) { // at least one waiting
1658     if (ws != null && (i = e & SMASK) < ws.length &&
1659     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1660     long nc = (((long)(w.nextWait & E_MASK)) |
1661     ((long)(u + UAC_UNIT) << 32));
1662     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1663     w.eventCount = (e + E_SEQ) & E_MASK;
1664     if ((p = w.parker) != null)
1665     U.unpark(p); // activate and release
1666     break;
1667     }
1668     }
1669     else
1670     break;
1671     }
1672     else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1673     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1674     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1675     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1676     addWorker();
1677     break;
1678     }
1679     }
1680     else
1681     break;
1682     }
1683     }
1684    
1685     // Scanning for tasks
1686    
1687     /**
1688     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1689     */
1690     final void runWorker(WorkQueue w) {
1691     w.growArray(false); // initialize queue array in this thread
1692     do { w.runTask(scan(w)); } while (w.runState >= 0);
1693     }
1694    
1695     /**
1696     * Scans for and, if found, returns one task, else possibly
1697     * inactivates the worker. This method operates on single reads of
1698     * volatile state and is designed to be re-invoked continuously,
1699     * in part because it returns upon detecting inconsistencies,
1700     * contention, or state changes that indicate possible success on
1701     * re-invocation.
1702     *
1703     * The scan searches for tasks across a random permutation of
1704     * queues (starting at a random index and stepping by a random
1705     * relative prime, checking each at least once). The scan
1706     * terminates upon either finding a non-empty queue, or completing
1707     * the sweep. If the worker is not inactivated, it takes and
1708     * returns a task from this queue. On failure to find a task, we
1709     * take one of the following actions, after which the caller will
1710     * retry calling this method unless terminated.
1711     *
1712     * * If pool is terminating, terminate the worker.
1713     *
1714     * * If not a complete sweep, try to release a waiting worker. If
1715     * the scan terminated because the worker is inactivated, then the
1716     * released worker will often be the calling worker, and it can
1717     * succeed obtaining a task on the next call. Or maybe it is
1718     * another worker, but with same net effect. Releasing in other
1719     * cases as well ensures that we have enough workers running.
1720     *
1721     * * If not already enqueued, try to inactivate and enqueue the
1722     * worker on wait queue. Or, if inactivating has caused the pool
1723     * to be quiescent, relay to idleAwaitWork to check for
1724     * termination and possibly shrink pool.
1725     *
1726     * * If already inactive, and the caller has run a task since the
1727     * last empty scan, return (to allow rescan) unless others are
1728     * also inactivated. Field WorkQueue.rescans counts down on each
1729     * scan to ensure eventual inactivation and blocking.
1730     *
1731     * * If already enqueued and none of the above apply, park
1732     * awaiting signal,
1733     *
1734     * @param w the worker (via its WorkQueue)
1735 jsr166 1.5 * @return a task or null if none found
1736 dl 1.1 */
1737     private final ForkJoinTask<?> scan(WorkQueue w) {
1738     WorkQueue[] ws; // first update random seed
1739     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1740     int rs = runState, m; // volatile read order matters
1741     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1742     int ec = w.eventCount; // ec is negative if inactive
1743     int step = (r >>> 16) | 1; // relative prime
1744     for (int j = (m + 1) << 2; ; r += step) {
1745     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1746     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1747     (a = q.array) != null) { // probably nonempty
1748     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1749     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1750     if (q.base == b && ec >= 0 && t != null &&
1751     U.compareAndSwapObject(a, i, t, null)) {
1752 dl 1.7 if (q.top - (q.base = b + 1) > 0)
1753 dl 1.1 signalWork(); // help pushes signal
1754     return t;
1755     }
1756     else if (ec < 0 || j <= m) {
1757     rs = 0; // mark scan as imcomplete
1758     break; // caller can retry after release
1759     }
1760     }
1761     if (--j < 0)
1762     break;
1763     }
1764    
1765     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1766     if (e < 0) // decode ctl on empty scan
1767     w.runState = -1; // pool is terminating
1768     else if (rs == 0 || rs != runState) { // incomplete scan
1769     WorkQueue v; Thread p; // try to release a waiter
1770     if (e > 0 && a < 0 && w.eventCount == ec &&
1771     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1772     long nc = ((long)(v.nextWait & E_MASK) |
1773     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1774     if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1775     v.eventCount = (e + E_SEQ) & E_MASK;
1776     if ((p = v.parker) != null)
1777     U.unpark(p);
1778     }
1779     }
1780     }
1781     else if (ec >= 0) { // try to enqueue/inactivate
1782     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1783     w.nextWait = e;
1784     w.eventCount = ec | INT_SIGN; // mark as inactive
1785     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1786     w.eventCount = ec; // unmark on CAS failure
1787     else {
1788     if ((ns = w.nsteals) != 0) {
1789     w.nsteals = 0; // set rescans if ran task
1790     w.rescans = (a > 0) ? 0 : a + parallelism;
1791     w.totalSteals += ns;
1792     }
1793     if (a == 1 - parallelism) // quiescent
1794     idleAwaitWork(w, nc, c);
1795     }
1796     }
1797     else if (w.eventCount < 0) { // already queued
1798 dl 1.7 int ac = a + parallelism;
1799     if ((nr = w.rescans) > 0) // continue rescanning
1800     w.rescans = (ac < nr) ? ac : nr - 1;
1801     else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1802 dl 1.1 Thread.interrupted(); // clear status
1803     Thread wt = Thread.currentThread();
1804     U.putObject(wt, PARKBLOCKER, this);
1805     w.parker = wt; // emulate LockSupport.park
1806     if (w.eventCount < 0) // recheck
1807     U.park(false, 0L);
1808     w.parker = null;
1809     U.putObject(wt, PARKBLOCKER, null);
1810     }
1811     }
1812     }
1813     return null;
1814     }
1815    
1816     /**
1817     * If inactivating worker w has caused the pool to become
1818     * quiescent, checks for pool termination, and, so long as this is
1819 dl 1.7 * not the only worker, waits for event for up to a given
1820     * duration. On timeout, if ctl has not changed, terminates the
1821 dl 1.1 * worker, which will in turn wake up another worker to possibly
1822     * repeat this process.
1823     *
1824     * @param w the calling worker
1825     * @param currentCtl the ctl value triggering possible quiescence
1826     * @param prevCtl the ctl value to restore if thread is terminated
1827     */
1828     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1829     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1830     (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1831 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1832     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1833     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1834 dl 1.1 Thread wt = Thread.currentThread();
1835     while (ctl == currentCtl) {
1836     Thread.interrupted(); // timed variant of version in scan()
1837     U.putObject(wt, PARKBLOCKER, this);
1838     w.parker = wt;
1839     if (ctl == currentCtl)
1840 dl 1.7 U.park(false, parkTime);
1841 dl 1.1 w.parker = null;
1842     U.putObject(wt, PARKBLOCKER, null);
1843     if (ctl != currentCtl)
1844     break;
1845 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1846 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1847     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1848     w.runState = -1; // shrink
1849     break;
1850     }
1851     }
1852     }
1853     }
1854    
1855     /**
1856     * Tries to locate and execute tasks for a stealer of the given
1857     * task, or in turn one of its stealers, Traces currentSteal ->
1858     * currentJoin links looking for a thread working on a descendant
1859     * of the given task and with a non-empty queue to steal back and
1860     * execute tasks from. The first call to this method upon a
1861     * waiting join will often entail scanning/search, (which is OK
1862     * because the joiner has nothing better to do), but this method
1863     * leaves hints in workers to speed up subsequent calls. The
1864     * implementation is very branchy to cope with potential
1865     * inconsistencies or loops encountering chains that are stale,
1866     * unknown, or so long that they are likely cyclic.
1867     *
1868     * @param joiner the joining worker
1869     * @param task the task to join
1870     * @return 0 if no progress can be made, negative if task
1871     * known complete, else positive
1872     */
1873     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1874     int stat = 0, steps = 0; // bound to avoid cycles
1875     if (joiner != null && task != null) { // hoist null checks
1876     restart: for (;;) {
1877     ForkJoinTask<?> subtask = task; // current target
1878     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1879     WorkQueue[] ws; int m, s, h;
1880     if ((s = task.status) < 0) {
1881     stat = s;
1882     break restart;
1883     }
1884     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1885     break restart; // shutting down
1886     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1887     v.currentSteal != subtask) {
1888     for (int origin = h;;) { // find stealer
1889     if (((h = (h + 2) & m) & 15) == 1 &&
1890     (subtask.status < 0 || j.currentJoin != subtask))
1891     continue restart; // occasional staleness check
1892     if ((v = ws[h]) != null &&
1893     v.currentSteal == subtask) {
1894     j.stealHint = h; // save hint
1895     break;
1896     }
1897     if (h == origin)
1898     break restart; // cannot find stealer
1899     }
1900     }
1901     for (;;) { // help stealer or descend to its stealer
1902     ForkJoinTask[] a; int b;
1903     if (subtask.status < 0) // surround probes with
1904     continue restart; // consistency checks
1905     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1906     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1907     ForkJoinTask<?> t =
1908     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1909     if (subtask.status < 0 || j.currentJoin != subtask ||
1910     v.currentSteal != subtask)
1911     continue restart; // stale
1912     stat = 1; // apparent progress
1913     if (t != null && v.base == b &&
1914     U.compareAndSwapObject(a, i, t, null)) {
1915     v.base = b + 1; // help stealer
1916     joiner.runSubtask(t);
1917     }
1918     else if (v.base == b && ++steps == MAX_HELP)
1919     break restart; // v apparently stalled
1920     }
1921     else { // empty -- try to descend
1922     ForkJoinTask<?> next = v.currentJoin;
1923     if (subtask.status < 0 || j.currentJoin != subtask ||
1924     v.currentSteal != subtask)
1925     continue restart; // stale
1926     else if (next == null || ++steps == MAX_HELP)
1927     break restart; // dead-end or maybe cyclic
1928     else {
1929     subtask = next;
1930     j = v;
1931     break;
1932     }
1933     }
1934     }
1935     }
1936     }
1937     }
1938     return stat;
1939     }
1940    
1941     /**
1942     * If task is at base of some steal queue, steals and executes it.
1943     *
1944     * @param joiner the joining worker
1945     * @param task the task
1946     */
1947     private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1948     WorkQueue[] ws;
1949     if ((ws = workQueues) != null) {
1950     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1951     WorkQueue q = ws[j];
1952     if (q != null && q.pollFor(task)) {
1953     joiner.runSubtask(task);
1954     break;
1955     }
1956     }
1957     }
1958     }
1959    
1960     /**
1961     * Tries to decrement active count (sometimes implicitly) and
1962     * possibly release or create a compensating worker in preparation
1963     * for blocking. Fails on contention or termination. Otherwise,
1964     * adds a new thread if no idle workers are available and either
1965     * pool would become completely starved or: (at least half
1966     * starved, and fewer than 50% spares exist, and there is at least
1967     * one task apparently available). Even though the availability
1968     * check requires a full scan, it is worthwhile in reducing false
1969     * alarms.
1970     *
1971     * @param task if non-null, a task being waited for
1972     * @param blocker if non-null, a blocker being waited for
1973     * @return true if the caller can block, else should recheck and retry
1974     */
1975     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1976     int pc = parallelism, e;
1977     long c = ctl;
1978     WorkQueue[] ws = workQueues;
1979     if ((e = (int)c) >= 0 && ws != null) {
1980     int u, a, ac, hc;
1981     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1982     boolean replace = false;
1983     if ((a = u >> UAC_SHIFT) <= 0) {
1984     if ((ac = a + pc) <= 1)
1985     replace = true;
1986     else if ((e > 0 || (task != null &&
1987     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1988     WorkQueue w;
1989     for (int j = 0; j < ws.length; ++j) {
1990     if ((w = ws[j]) != null && !w.isEmpty()) {
1991     replace = true;
1992     break; // in compensation range and tasks available
1993     }
1994     }
1995     }
1996     }
1997     if ((task == null || task.status >= 0) && // recheck need to block
1998     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1999     if (!replace) { // no compensation
2000     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2001     if (U.compareAndSwapLong(this, CTL, c, nc))
2002     return true;
2003     }
2004     else if (e != 0) { // release an idle worker
2005     WorkQueue w; Thread p; int i;
2006     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2007     long nc = ((long)(w.nextWait & E_MASK) |
2008     (c & (AC_MASK|TC_MASK)));
2009     if (w.eventCount == (e | INT_SIGN) &&
2010     U.compareAndSwapLong(this, CTL, c, nc)) {
2011     w.eventCount = (e + E_SEQ) & E_MASK;
2012     if ((p = w.parker) != null)
2013     U.unpark(p);
2014     return true;
2015     }
2016     }
2017     }
2018     else if (tc < MAX_CAP) { // create replacement
2019     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2020     if (U.compareAndSwapLong(this, CTL, c, nc)) {
2021     addWorker();
2022     return true;
2023     }
2024     }
2025     }
2026     }
2027     return false;
2028     }
2029    
2030     /**
2031     * Helps and/or blocks until the given task is done.
2032     *
2033     * @param joiner the joining worker
2034     * @param task the task
2035     * @return task status on exit
2036     */
2037     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2038     int s;
2039     if ((s = task.status) >= 0) {
2040     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2041     joiner.currentJoin = task;
2042     long startTime = 0L;
2043     for (int k = 0;;) {
2044     if ((s = (joiner.isEmpty() ? // try to help
2045     tryHelpStealer(joiner, task) :
2046     joiner.tryRemoveAndExec(task))) == 0 &&
2047     (s = task.status) >= 0) {
2048     if (k == 0) {
2049     startTime = System.nanoTime();
2050     tryPollForAndExec(joiner, task); // check uncommon case
2051     }
2052     else if ((k & (MAX_HELP - 1)) == 0 &&
2053     System.nanoTime() - startTime >=
2054     COMPENSATION_DELAY &&
2055     tryCompensate(task, null)) {
2056     if (task.trySetSignal()) {
2057     synchronized (task) {
2058     if (task.status >= 0) {
2059     try { // see ForkJoinTask
2060     task.wait(); // for explanation
2061     } catch (InterruptedException ie) {
2062     }
2063     }
2064     else
2065     task.notifyAll();
2066     }
2067     }
2068     long c; // re-activate
2069     do {} while (!U.compareAndSwapLong
2070     (this, CTL, c = ctl, c + AC_UNIT));
2071     }
2072     }
2073     if (s < 0 || (s = task.status) < 0) {
2074     joiner.currentJoin = prevJoin;
2075     break;
2076     }
2077     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2078     Thread.yield(); // for politeness
2079     }
2080     }
2081     return s;
2082     }
2083    
2084     /**
2085     * Stripped-down variant of awaitJoin used by timed joins. Tries
2086     * to help join only while there is continuous progress. (Caller
2087     * will then enter a timed wait.)
2088     *
2089     * @param joiner the joining worker
2090     * @param task the task
2091     * @return task status on exit
2092     */
2093     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2094     int s;
2095     while ((s = task.status) >= 0 &&
2096     (joiner.isEmpty() ?
2097     tryHelpStealer(joiner, task) :
2098     joiner.tryRemoveAndExec(task)) != 0)
2099     ;
2100     return s;
2101     }
2102    
2103     /**
2104     * Returns a (probably) non-empty steal queue, if one is found
2105     * during a random, then cyclic scan, else null. This method must
2106     * be retried by caller if, by the time it tries to use the queue,
2107     * it is empty.
2108     */
2109     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2110     // Similar to loop in scan(), but ignoring submissions
2111 dl 1.8 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2112 dl 1.1 int step = (r >>> 16) | 1;
2113     for (WorkQueue[] ws;;) {
2114     int rs = runState, m;
2115     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2116     return null;
2117     for (int j = (m + 1) << 2; ; r += step) {
2118     WorkQueue q = ws[((r << 1) | 1) & m];
2119     if (q != null && !q.isEmpty())
2120     return q;
2121     else if (--j < 0) {
2122     if (runState == rs)
2123     return null;
2124     break;
2125     }
2126     }
2127     }
2128     }
2129    
2130     /**
2131     * Runs tasks until {@code isQuiescent()}. We piggyback on
2132     * active count ctl maintenance, but rather than blocking
2133     * when tasks cannot be found, we rescan until all others cannot
2134     * find tasks either.
2135     */
2136     final void helpQuiescePool(WorkQueue w) {
2137     for (boolean active = true;;) {
2138     ForkJoinTask<?> localTask; // exhaust local queue
2139     while ((localTask = w.nextLocalTask()) != null)
2140     localTask.doExec();
2141     WorkQueue q = findNonEmptyStealQueue(w);
2142     if (q != null) {
2143     ForkJoinTask<?> t; int b;
2144     if (!active) { // re-establish active count
2145     long c;
2146     active = true;
2147     do {} while (!U.compareAndSwapLong
2148     (this, CTL, c = ctl, c + AC_UNIT));
2149     }
2150     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2151     w.runSubtask(t);
2152     }
2153     else {
2154     long c;
2155     if (active) { // decrement active count without queuing
2156     active = false;
2157     do {} while (!U.compareAndSwapLong
2158     (this, CTL, c = ctl, c -= AC_UNIT));
2159     }
2160     else
2161     c = ctl; // re-increment on exit
2162     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2163     do {} while (!U.compareAndSwapLong
2164     (this, CTL, c = ctl, c + AC_UNIT));
2165     break;
2166     }
2167     }
2168     }
2169     }
2170    
2171     /**
2172 dl 1.7 * Restricted version of helpQuiescePool for non-FJ callers
2173     */
2174     static void externalHelpQuiescePool() {
2175 dl 1.9 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2176     ForkJoinTask<?>[] a; int b;
2177     ForkJoinTask<?> t = null;
2178 dl 1.7 int k = submitters.get().seed & SQMASK;
2179     if ((p = commonPool) != null &&
2180     (ws = p.workQueues) != null &&
2181     ws.length > (k &= p.submitMask) &&
2182 dl 1.9 (q = ws[k]) != null) {
2183     while (q.top - q.base > 0) {
2184     if ((t = q.sharedPop()) != null)
2185     break;
2186     }
2187     if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2188     (b = sq.base) - sq.top < 0)
2189     t = sq.pollAt(b);
2190     if (t != null)
2191     t.doExec();
2192     }
2193 dl 1.7 }
2194    
2195     /**
2196 dl 1.1 * Gets and removes a local or stolen task for the given worker.
2197     *
2198     * @return a task, if available
2199     */
2200     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2201     for (ForkJoinTask<?> t;;) {
2202     WorkQueue q; int b;
2203     if ((t = w.nextLocalTask()) != null)
2204     return t;
2205     if ((q = findNonEmptyStealQueue(w)) == null)
2206     return null;
2207     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2208     return t;
2209     }
2210     }
2211    
2212     /**
2213     * Returns the approximate (non-atomic) number of idle threads per
2214     * active thread to offset steal queue size for method
2215     * ForkJoinTask.getSurplusQueuedTaskCount().
2216     */
2217     final int idlePerActive() {
2218     // Approximate at powers of two for small values, saturate past 4
2219     int p = parallelism;
2220     int a = p + (int)(ctl >> AC_SHIFT);
2221     return (a > (p >>>= 1) ? 0 :
2222     a > (p >>>= 1) ? 1 :
2223     a > (p >>>= 1) ? 2 :
2224     a > (p >>>= 1) ? 4 :
2225     8);
2226     }
2227    
2228 dl 1.7 /**
2229     * Returns approximate submission queue length for the given caller
2230     */
2231     static int getEstimatedSubmitterQueueLength() {
2232     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2233     int k = submitters.get().seed & SQMASK;
2234 dl 1.11 return ((p = commonPool) != null && (ws = p.workQueues) != null &&
2235 dl 1.7 ws.length > (k &= p.submitMask) &&
2236     (q = ws[k]) != null) ?
2237     q.queueSize() : 0;
2238     }
2239    
2240 dl 1.1 // Termination
2241    
2242     /**
2243     * Possibly initiates and/or completes termination. The caller
2244     * triggering termination runs three passes through workQueues:
2245     * (0) Setting termination status, followed by wakeups of queued
2246     * workers; (1) cancelling all tasks; (2) interrupting lagging
2247     * threads (likely in external tasks, but possibly also blocked in
2248     * joins). Each pass repeats previous steps because of potential
2249     * lagging thread creation.
2250     *
2251     * @param now if true, unconditionally terminate, else only
2252     * if no work and no active workers
2253     * @param enable if true, enable shutdown when next possible
2254     * @return true if now terminating or terminated
2255     */
2256     private boolean tryTerminate(boolean now, boolean enable) {
2257     for (long c;;) {
2258     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2259     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2260 jsr166 1.10 synchronized (this) {
2261 dl 1.8 notifyAll(); // signal when 0 workers
2262     }
2263 dl 1.1 }
2264     return true;
2265     }
2266     if (runState >= 0) { // not yet enabled
2267     if (!enable)
2268     return false;
2269 dl 1.8 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2270     tryAwaitMainLock();
2271     try {
2272     runState |= SHUTDOWN;
2273     } finally {
2274     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2275     mainLock = 0;
2276     synchronized (this) { notifyAll(); };
2277     }
2278     }
2279 dl 1.1 }
2280     if (!now) { // check if idle & no tasks
2281     if ((int)(c >> AC_SHIFT) != -parallelism ||
2282     hasQueuedSubmissions())
2283     return false;
2284     // Check for unqueued inactive workers. One pass suffices.
2285     WorkQueue[] ws = workQueues; WorkQueue w;
2286     if (ws != null) {
2287     for (int i = 1; i < ws.length; i += 2) {
2288     if ((w = ws[i]) != null && w.eventCount >= 0)
2289     return false;
2290     }
2291     }
2292     }
2293     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2294     for (int pass = 0; pass < 3; ++pass) {
2295     WorkQueue[] ws = workQueues;
2296     if (ws != null) {
2297     WorkQueue w;
2298     int n = ws.length;
2299     for (int i = 0; i < n; ++i) {
2300     if ((w = ws[i]) != null) {
2301     w.runState = -1;
2302     if (pass > 0) {
2303     w.cancelAll();
2304     if (pass > 1)
2305     w.interruptOwner();
2306     }
2307     }
2308     }
2309     // Wake up workers parked on event queue
2310     int i, e; long cc; Thread p;
2311     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2312     (i = e & SMASK) < n &&
2313     (w = ws[i]) != null) {
2314     long nc = ((long)(w.nextWait & E_MASK) |
2315     ((cc + AC_UNIT) & AC_MASK) |
2316     (cc & (TC_MASK|STOP_BIT)));
2317     if (w.eventCount == (e | INT_SIGN) &&
2318     U.compareAndSwapLong(this, CTL, cc, nc)) {
2319     w.eventCount = (e + E_SEQ) & E_MASK;
2320     w.runState = -1;
2321     if ((p = w.parker) != null)
2322     U.unpark(p);
2323     }
2324     }
2325     }
2326     }
2327     }
2328     }
2329     }
2330    
2331     // Exported methods
2332    
2333     // Constructors
2334    
2335     /**
2336     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2337     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2338     * #defaultForkJoinWorkerThreadFactory default thread factory},
2339     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2340     *
2341     * @throws SecurityException if a security manager exists and
2342     * the caller is not permitted to modify threads
2343     * because it does not hold {@link
2344     * java.lang.RuntimePermission}{@code ("modifyThread")}
2345     */
2346     public ForkJoinPool() {
2347     this(Runtime.getRuntime().availableProcessors(),
2348     defaultForkJoinWorkerThreadFactory, null, false);
2349     }
2350    
2351     /**
2352     * Creates a {@code ForkJoinPool} with the indicated parallelism
2353     * level, the {@linkplain
2354     * #defaultForkJoinWorkerThreadFactory default thread factory},
2355     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2356     *
2357     * @param parallelism the parallelism level
2358     * @throws IllegalArgumentException if parallelism less than or
2359     * equal to zero, or greater than implementation limit
2360     * @throws SecurityException if a security manager exists and
2361     * the caller is not permitted to modify threads
2362     * because it does not hold {@link
2363     * java.lang.RuntimePermission}{@code ("modifyThread")}
2364     */
2365     public ForkJoinPool(int parallelism) {
2366     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2367     }
2368    
2369     /**
2370     * Creates a {@code ForkJoinPool} with the given parameters.
2371     *
2372     * @param parallelism the parallelism level. For default value,
2373     * use {@link java.lang.Runtime#availableProcessors}.
2374     * @param factory the factory for creating new threads. For default value,
2375     * use {@link #defaultForkJoinWorkerThreadFactory}.
2376     * @param handler the handler for internal worker threads that
2377     * terminate due to unrecoverable errors encountered while executing
2378     * tasks. For default value, use {@code null}.
2379     * @param asyncMode if true,
2380     * establishes local first-in-first-out scheduling mode for forked
2381     * tasks that are never joined. This mode may be more appropriate
2382     * than default locally stack-based mode in applications in which
2383     * worker threads only process event-style asynchronous tasks.
2384     * For default value, use {@code false}.
2385     * @throws IllegalArgumentException if parallelism less than or
2386     * equal to zero, or greater than implementation limit
2387     * @throws NullPointerException if the factory is null
2388     * @throws SecurityException if a security manager exists and
2389     * the caller is not permitted to modify threads
2390     * because it does not hold {@link
2391     * java.lang.RuntimePermission}{@code ("modifyThread")}
2392     */
2393     public ForkJoinPool(int parallelism,
2394     ForkJoinWorkerThreadFactory factory,
2395     Thread.UncaughtExceptionHandler handler,
2396     boolean asyncMode) {
2397     checkPermission();
2398     if (factory == null)
2399     throw new NullPointerException();
2400     if (parallelism <= 0 || parallelism > MAX_CAP)
2401     throw new IllegalArgumentException();
2402     this.parallelism = parallelism;
2403     this.factory = factory;
2404     this.ueh = handler;
2405     this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2406     long np = (long)(-parallelism); // offset ctl counts
2407     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2408     // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2409     int n = parallelism - 1;
2410     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2411 dl 1.8 this.submitMask = ((n + 1) << 1) - 1;
2412 dl 1.1 int pn = poolNumberGenerator.incrementAndGet();
2413     StringBuilder sb = new StringBuilder("ForkJoinPool-");
2414     sb.append(Integer.toString(pn));
2415     sb.append("-worker-");
2416     this.workerNamePrefix = sb.toString();
2417     this.runState = 1; // set init flag
2418     }
2419    
2420 dl 1.7 /**
2421 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2422     * Basically the same as above, but uses smallest possible initial footprint.
2423     */
2424     ForkJoinPool(int parallelism, int submitMask,
2425     ForkJoinWorkerThreadFactory factory,
2426     Thread.UncaughtExceptionHandler handler) {
2427     this.factory = factory;
2428     this.ueh = handler;
2429     this.submitMask = submitMask;
2430     this.parallelism = parallelism;
2431     long np = (long)(-parallelism);
2432     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2433     this.localMode = LIFO_QUEUE;
2434     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2435     this.runState = 1;
2436     }
2437    
2438     /**
2439     * Returns the common pool instance.
2440 dl 1.7 *
2441     * @return the common pool instance
2442     */
2443     public static ForkJoinPool commonPool() {
2444     ForkJoinPool p;
2445 dl 1.8 if ((p = commonPool) == null)
2446     throw new Error("Common Pool Unavailable");
2447 dl 1.7 return p;
2448     }
2449    
2450 dl 1.1 // Execution methods
2451    
2452     /**
2453     * Performs the given task, returning its result upon completion.
2454     * If the computation encounters an unchecked Exception or Error,
2455     * it is rethrown as the outcome of this invocation. Rethrown
2456     * exceptions behave in the same way as regular exceptions, but,
2457     * when possible, contain stack traces (as displayed for example
2458     * using {@code ex.printStackTrace()}) of both the current thread
2459     * as well as the thread actually encountering the exception;
2460     * minimally only the latter.
2461     *
2462     * @param task the task
2463     * @return the task's result
2464     * @throws NullPointerException if the task is null
2465     * @throws RejectedExecutionException if the task cannot be
2466     * scheduled for execution
2467     */
2468     public <T> T invoke(ForkJoinTask<T> task) {
2469     if (task == null)
2470     throw new NullPointerException();
2471     doSubmit(task);
2472     return task.join();
2473     }
2474    
2475     /**
2476     * Arranges for (asynchronous) execution of the given task.
2477     *
2478     * @param task the task
2479     * @throws NullPointerException if the task is null
2480     * @throws RejectedExecutionException if the task cannot be
2481     * scheduled for execution
2482     */
2483     public void execute(ForkJoinTask<?> task) {
2484     if (task == null)
2485     throw new NullPointerException();
2486     doSubmit(task);
2487     }
2488    
2489     // AbstractExecutorService methods
2490    
2491     /**
2492     * @throws NullPointerException if the task is null
2493     * @throws RejectedExecutionException if the task cannot be
2494     * scheduled for execution
2495     */
2496     public void execute(Runnable task) {
2497     if (task == null)
2498     throw new NullPointerException();
2499     ForkJoinTask<?> job;
2500     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2501     job = (ForkJoinTask<?>) task;
2502     else
2503     job = new ForkJoinTask.AdaptedRunnableAction(task);
2504     doSubmit(job);
2505     }
2506    
2507     /**
2508     * Submits a ForkJoinTask for execution.
2509     *
2510     * @param task the task to submit
2511     * @return the task
2512     * @throws NullPointerException if the task is null
2513     * @throws RejectedExecutionException if the task cannot be
2514     * scheduled for execution
2515     */
2516     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2517     if (task == null)
2518     throw new NullPointerException();
2519     doSubmit(task);
2520     return task;
2521     }
2522    
2523     /**
2524     * @throws NullPointerException if the task is null
2525     * @throws RejectedExecutionException if the task cannot be
2526     * scheduled for execution
2527     */
2528     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2529     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2530     doSubmit(job);
2531     return job;
2532     }
2533    
2534     /**
2535     * @throws NullPointerException if the task is null
2536     * @throws RejectedExecutionException if the task cannot be
2537     * scheduled for execution
2538     */
2539     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2540     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2541     doSubmit(job);
2542     return job;
2543     }
2544    
2545     /**
2546     * @throws NullPointerException if the task is null
2547     * @throws RejectedExecutionException if the task cannot be
2548     * scheduled for execution
2549     */
2550     public ForkJoinTask<?> submit(Runnable task) {
2551     if (task == null)
2552     throw new NullPointerException();
2553     ForkJoinTask<?> job;
2554     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2555     job = (ForkJoinTask<?>) task;
2556     else
2557     job = new ForkJoinTask.AdaptedRunnableAction(task);
2558     doSubmit(job);
2559     return job;
2560     }
2561    
2562     /**
2563     * @throws NullPointerException {@inheritDoc}
2564     * @throws RejectedExecutionException {@inheritDoc}
2565     */
2566     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2567     // In previous versions of this class, this method constructed
2568     // a task to run ForkJoinTask.invokeAll, but now external
2569     // invocation of multiple tasks is at least as efficient.
2570     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2571     // Workaround needed because method wasn't declared with
2572     // wildcards in return type but should have been.
2573     @SuppressWarnings({"unchecked", "rawtypes"})
2574     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2575    
2576     boolean done = false;
2577     try {
2578     for (Callable<T> t : tasks) {
2579     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2580     doSubmit(f);
2581     fs.add(f);
2582     }
2583     for (ForkJoinTask<T> f : fs)
2584     f.quietlyJoin();
2585     done = true;
2586     return futures;
2587     } finally {
2588     if (!done)
2589     for (ForkJoinTask<T> f : fs)
2590     f.cancel(false);
2591     }
2592     }
2593    
2594     /**
2595     * Returns the factory used for constructing new workers.
2596     *
2597     * @return the factory used for constructing new workers
2598     */
2599     public ForkJoinWorkerThreadFactory getFactory() {
2600     return factory;
2601     }
2602    
2603     /**
2604     * Returns the handler for internal worker threads that terminate
2605     * due to unrecoverable errors encountered while executing tasks.
2606     *
2607     * @return the handler, or {@code null} if none
2608     */
2609     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2610     return ueh;
2611     }
2612    
2613     /**
2614     * Returns the targeted parallelism level of this pool.
2615     *
2616     * @return the targeted parallelism level of this pool
2617     */
2618     public int getParallelism() {
2619     return parallelism;
2620     }
2621    
2622     /**
2623 dl 1.7 * Returns the targeted parallelism level of the common pool.
2624     *
2625     * @return the targeted parallelism level of the common pool
2626     */
2627     public static int getCommonPoolParallelism() {
2628     return commonPoolParallelism;
2629     }
2630    
2631     /**
2632 dl 1.1 * Returns the number of worker threads that have started but not
2633     * yet terminated. The result returned by this method may differ
2634     * from {@link #getParallelism} when threads are created to
2635     * maintain parallelism when others are cooperatively blocked.
2636     *
2637     * @return the number of worker threads
2638     */
2639     public int getPoolSize() {
2640     return parallelism + (short)(ctl >>> TC_SHIFT);
2641     }
2642    
2643     /**
2644     * Returns {@code true} if this pool uses local first-in-first-out
2645     * scheduling mode for forked tasks that are never joined.
2646     *
2647     * @return {@code true} if this pool uses async mode
2648     */
2649     public boolean getAsyncMode() {
2650     return localMode != 0;
2651     }
2652    
2653     /**
2654     * Returns an estimate of the number of worker threads that are
2655     * not blocked waiting to join tasks or for other managed
2656     * synchronization. This method may overestimate the
2657     * number of running threads.
2658     *
2659     * @return the number of worker threads
2660     */
2661     public int getRunningThreadCount() {
2662     int rc = 0;
2663     WorkQueue[] ws; WorkQueue w;
2664     if ((ws = workQueues) != null) {
2665     for (int i = 1; i < ws.length; i += 2) {
2666     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2667     ++rc;
2668     }
2669     }
2670     return rc;
2671     }
2672    
2673     /**
2674     * Returns an estimate of the number of threads that are currently
2675     * stealing or executing tasks. This method may overestimate the
2676     * number of active threads.
2677     *
2678     * @return the number of active threads
2679     */
2680     public int getActiveThreadCount() {
2681     int r = parallelism + (int)(ctl >> AC_SHIFT);
2682     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2683     }
2684    
2685     /**
2686     * Returns {@code true} if all worker threads are currently idle.
2687     * An idle worker is one that cannot obtain a task to execute
2688     * because none are available to steal from other threads, and
2689     * there are no pending submissions to the pool. This method is
2690     * conservative; it might not return {@code true} immediately upon
2691     * idleness of all threads, but will eventually become true if
2692     * threads remain inactive.
2693     *
2694     * @return {@code true} if all threads are currently idle
2695     */
2696     public boolean isQuiescent() {
2697     return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2698     }
2699    
2700     /**
2701     * Returns an estimate of the total number of tasks stolen from
2702     * one thread's work queue by another. The reported value
2703     * underestimates the actual total number of steals when the pool
2704     * is not quiescent. This value may be useful for monitoring and
2705     * tuning fork/join programs: in general, steal counts should be
2706     * high enough to keep threads busy, but low enough to avoid
2707     * overhead and contention across threads.
2708     *
2709     * @return the number of steals
2710     */
2711     public long getStealCount() {
2712 dl 1.8 long count = stealCount;
2713 dl 1.1 WorkQueue[] ws; WorkQueue w;
2714     if ((ws = workQueues) != null) {
2715     for (int i = 1; i < ws.length; i += 2) {
2716     if ((w = ws[i]) != null)
2717     count += w.totalSteals;
2718     }
2719     }
2720     return count;
2721     }
2722    
2723     /**
2724     * Returns an estimate of the total number of tasks currently held
2725     * in queues by worker threads (but not including tasks submitted
2726     * to the pool that have not begun executing). This value is only
2727     * an approximation, obtained by iterating across all threads in
2728     * the pool. This method may be useful for tuning task
2729     * granularities.
2730     *
2731     * @return the number of queued tasks
2732     */
2733     public long getQueuedTaskCount() {
2734     long count = 0;
2735     WorkQueue[] ws; WorkQueue w;
2736     if ((ws = workQueues) != null) {
2737     for (int i = 1; i < ws.length; i += 2) {
2738     if ((w = ws[i]) != null)
2739     count += w.queueSize();
2740     }
2741     }
2742     return count;
2743     }
2744    
2745     /**
2746     * Returns an estimate of the number of tasks submitted to this
2747     * pool that have not yet begun executing. This method may take
2748     * time proportional to the number of submissions.
2749     *
2750     * @return the number of queued submissions
2751     */
2752     public int getQueuedSubmissionCount() {
2753     int count = 0;
2754     WorkQueue[] ws; WorkQueue w;
2755     if ((ws = workQueues) != null) {
2756     for (int i = 0; i < ws.length; i += 2) {
2757     if ((w = ws[i]) != null)
2758     count += w.queueSize();
2759     }
2760     }
2761     return count;
2762     }
2763    
2764     /**
2765     * Returns {@code true} if there are any tasks submitted to this
2766     * pool that have not yet begun executing.
2767     *
2768     * @return {@code true} if there are any queued submissions
2769     */
2770     public boolean hasQueuedSubmissions() {
2771     WorkQueue[] ws; WorkQueue w;
2772     if ((ws = workQueues) != null) {
2773     for (int i = 0; i < ws.length; i += 2) {
2774     if ((w = ws[i]) != null && !w.isEmpty())
2775     return true;
2776     }
2777     }
2778     return false;
2779     }
2780    
2781     /**
2782     * Removes and returns the next unexecuted submission if one is
2783     * available. This method may be useful in extensions to this
2784     * class that re-assign work in systems with multiple pools.
2785     *
2786     * @return the next submission, or {@code null} if none
2787     */
2788     protected ForkJoinTask<?> pollSubmission() {
2789     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2790     if ((ws = workQueues) != null) {
2791     for (int i = 0; i < ws.length; i += 2) {
2792     if ((w = ws[i]) != null && (t = w.poll()) != null)
2793     return t;
2794     }
2795     }
2796     return null;
2797     }
2798    
2799     /**
2800     * Removes all available unexecuted submitted and forked tasks
2801     * from scheduling queues and adds them to the given collection,
2802     * without altering their execution status. These may include
2803     * artificially generated or wrapped tasks. This method is
2804     * designed to be invoked only when the pool is known to be
2805     * quiescent. Invocations at other times may not remove all
2806     * tasks. A failure encountered while attempting to add elements
2807     * to collection {@code c} may result in elements being in
2808     * neither, either or both collections when the associated
2809     * exception is thrown. The behavior of this operation is
2810     * undefined if the specified collection is modified while the
2811     * operation is in progress.
2812     *
2813     * @param c the collection to transfer elements into
2814     * @return the number of elements transferred
2815     */
2816     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2817     int count = 0;
2818     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2819     if ((ws = workQueues) != null) {
2820     for (int i = 0; i < ws.length; ++i) {
2821     if ((w = ws[i]) != null) {
2822     while ((t = w.poll()) != null) {
2823     c.add(t);
2824     ++count;
2825     }
2826     }
2827     }
2828     }
2829     return count;
2830     }
2831    
2832     /**
2833     * Returns a string identifying this pool, as well as its state,
2834     * including indications of run state, parallelism level, and
2835     * worker and task counts.
2836     *
2837     * @return a string identifying this pool, as well as its state
2838     */
2839     public String toString() {
2840     // Use a single pass through workQueues to collect counts
2841     long qt = 0L, qs = 0L; int rc = 0;
2842 dl 1.8 long st = stealCount;
2843 dl 1.1 long c = ctl;
2844     WorkQueue[] ws; WorkQueue w;
2845     if ((ws = workQueues) != null) {
2846     for (int i = 0; i < ws.length; ++i) {
2847     if ((w = ws[i]) != null) {
2848     int size = w.queueSize();
2849     if ((i & 1) == 0)
2850     qs += size;
2851     else {
2852     qt += size;
2853     st += w.totalSteals;
2854     if (w.isApparentlyUnblocked())
2855     ++rc;
2856     }
2857     }
2858     }
2859     }
2860     int pc = parallelism;
2861     int tc = pc + (short)(c >>> TC_SHIFT);
2862     int ac = pc + (int)(c >> AC_SHIFT);
2863     if (ac < 0) // ignore transient negative
2864     ac = 0;
2865     String level;
2866     if ((c & STOP_BIT) != 0)
2867     level = (tc == 0) ? "Terminated" : "Terminating";
2868     else
2869     level = runState < 0 ? "Shutting down" : "Running";
2870     return super.toString() +
2871     "[" + level +
2872     ", parallelism = " + pc +
2873     ", size = " + tc +
2874     ", active = " + ac +
2875     ", running = " + rc +
2876     ", steals = " + st +
2877     ", tasks = " + qt +
2878     ", submissions = " + qs +
2879     "]";
2880     }
2881    
2882     /**
2883 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2884     * submitted tasks are executed, but no new tasks will be
2885     * accepted. Invocation has no effect on execution state if this
2886     * is the {@link #commonPool}, and no additional effect if
2887     * already shut down. Tasks that are in the process of being
2888     * submitted concurrently during the course of this method may or
2889     * may not be rejected.
2890 dl 1.1 *
2891     * @throws SecurityException if a security manager exists and
2892     * the caller is not permitted to modify threads
2893     * because it does not hold {@link
2894     * java.lang.RuntimePermission}{@code ("modifyThread")}
2895     */
2896     public void shutdown() {
2897     checkPermission();
2898 dl 1.7 if (this != commonPool)
2899     tryTerminate(false, true);
2900 dl 1.1 }
2901    
2902     /**
2903 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2904     * all subsequently submitted tasks. Invocation has no effect on
2905     * execution state if this is the {@link #commonPool}, and no
2906     * additional effect if already shut down. Otherwise, tasks that
2907     * are in the process of being submitted or executed concurrently
2908     * during the course of this method may or may not be
2909     * rejected. This method cancels both existing and unexecuted
2910     * tasks, in order to permit termination in the presence of task
2911     * dependencies. So the method always returns an empty list
2912     * (unlike the case for some other Executors).
2913 dl 1.1 *
2914     * @return an empty list
2915     * @throws SecurityException if a security manager exists and
2916     * the caller is not permitted to modify threads
2917     * because it does not hold {@link
2918     * java.lang.RuntimePermission}{@code ("modifyThread")}
2919     */
2920     public List<Runnable> shutdownNow() {
2921     checkPermission();
2922 dl 1.7 if (this != commonPool)
2923     tryTerminate(true, true);
2924 dl 1.1 return Collections.emptyList();
2925     }
2926    
2927     /**
2928     * Returns {@code true} if all tasks have completed following shut down.
2929     *
2930     * @return {@code true} if all tasks have completed following shut down
2931     */
2932     public boolean isTerminated() {
2933     long c = ctl;
2934     return ((c & STOP_BIT) != 0L &&
2935     (short)(c >>> TC_SHIFT) == -parallelism);
2936     }
2937    
2938     /**
2939     * Returns {@code true} if the process of termination has
2940     * commenced but not yet completed. This method may be useful for
2941     * debugging. A return of {@code true} reported a sufficient
2942     * period after shutdown may indicate that submitted tasks have
2943     * ignored or suppressed interruption, or are waiting for IO,
2944     * causing this executor not to properly terminate. (See the
2945     * advisory notes for class {@link ForkJoinTask} stating that
2946     * tasks should not normally entail blocking operations. But if
2947     * they do, they must abort them on interrupt.)
2948     *
2949     * @return {@code true} if terminating but not yet terminated
2950     */
2951     public boolean isTerminating() {
2952     long c = ctl;
2953     return ((c & STOP_BIT) != 0L &&
2954     (short)(c >>> TC_SHIFT) != -parallelism);
2955     }
2956    
2957     /**
2958     * Returns {@code true} if this pool has been shut down.
2959     *
2960     * @return {@code true} if this pool has been shut down
2961     */
2962     public boolean isShutdown() {
2963     return runState < 0;
2964     }
2965    
2966     /**
2967     * Blocks until all tasks have completed execution after a shutdown
2968     * request, or the timeout occurs, or the current thread is
2969     * interrupted, whichever happens first.
2970     *
2971     * @param timeout the maximum time to wait
2972     * @param unit the time unit of the timeout argument
2973     * @return {@code true} if this executor terminated and
2974     * {@code false} if the timeout elapsed before termination
2975     * @throws InterruptedException if interrupted while waiting
2976     */
2977     public boolean awaitTermination(long timeout, TimeUnit unit)
2978     throws InterruptedException {
2979     long nanos = unit.toNanos(timeout);
2980 dl 1.8 if (isTerminated())
2981     return true;
2982     long startTime = System.nanoTime();
2983     boolean terminated = false;
2984 jsr166 1.10 synchronized (this) {
2985 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
2986     if (terminated = isTerminated() ||
2987     waitTime <= 0L ||
2988     (millis = unit.toMillis(waitTime)) <= 0L)
2989     break;
2990     wait(millis);
2991     waitTime = nanos - (System.nanoTime() - startTime);
2992 dl 1.1 }
2993     }
2994 dl 1.8 return terminated;
2995 dl 1.1 }
2996    
2997     /**
2998     * Interface for extending managed parallelism for tasks running
2999     * in {@link ForkJoinPool}s.
3000     *
3001     * <p>A {@code ManagedBlocker} provides two methods. Method
3002     * {@code isReleasable} must return {@code true} if blocking is
3003     * not necessary. Method {@code block} blocks the current thread
3004     * if necessary (perhaps internally invoking {@code isReleasable}
3005     * before actually blocking). These actions are performed by any
3006     * thread invoking {@link ForkJoinPool#managedBlock}. The
3007     * unusual methods in this API accommodate synchronizers that may,
3008     * but don't usually, block for long periods. Similarly, they
3009     * allow more efficient internal handling of cases in which
3010     * additional workers may be, but usually are not, needed to
3011     * ensure sufficient parallelism. Toward this end,
3012     * implementations of method {@code isReleasable} must be amenable
3013     * to repeated invocation.
3014     *
3015     * <p>For example, here is a ManagedBlocker based on a
3016     * ReentrantLock:
3017     * <pre> {@code
3018     * class ManagedLocker implements ManagedBlocker {
3019     * final ReentrantLock lock;
3020     * boolean hasLock = false;
3021     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3022     * public boolean block() {
3023     * if (!hasLock)
3024     * lock.lock();
3025     * return true;
3026     * }
3027     * public boolean isReleasable() {
3028     * return hasLock || (hasLock = lock.tryLock());
3029     * }
3030     * }}</pre>
3031     *
3032     * <p>Here is a class that possibly blocks waiting for an
3033     * item on a given queue:
3034     * <pre> {@code
3035     * class QueueTaker<E> implements ManagedBlocker {
3036     * final BlockingQueue<E> queue;
3037     * volatile E item = null;
3038     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3039     * public boolean block() throws InterruptedException {
3040     * if (item == null)
3041     * item = queue.take();
3042     * return true;
3043     * }
3044     * public boolean isReleasable() {
3045     * return item != null || (item = queue.poll()) != null;
3046     * }
3047     * public E getItem() { // call after pool.managedBlock completes
3048     * return item;
3049     * }
3050     * }}</pre>
3051     */
3052     public static interface ManagedBlocker {
3053     /**
3054     * Possibly blocks the current thread, for example waiting for
3055     * a lock or condition.
3056     *
3057     * @return {@code true} if no additional blocking is necessary
3058     * (i.e., if isReleasable would return true)
3059     * @throws InterruptedException if interrupted while waiting
3060     * (the method is not required to do so, but is allowed to)
3061     */
3062     boolean block() throws InterruptedException;
3063    
3064     /**
3065     * Returns {@code true} if blocking is unnecessary.
3066     */
3067     boolean isReleasable();
3068     }
3069    
3070     /**
3071     * Blocks in accord with the given blocker. If the current thread
3072     * is a {@link ForkJoinWorkerThread}, this method possibly
3073     * arranges for a spare thread to be activated if necessary to
3074     * ensure sufficient parallelism while the current thread is blocked.
3075     *
3076     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3077     * behaviorally equivalent to
3078     * <pre> {@code
3079     * while (!blocker.isReleasable())
3080     * if (blocker.block())
3081     * return;
3082     * }</pre>
3083     *
3084     * If the caller is a {@code ForkJoinTask}, then the pool may
3085     * first be expanded to ensure parallelism, and later adjusted.
3086     *
3087     * @param blocker the blocker
3088     * @throws InterruptedException if blocker.block did so
3089     */
3090     public static void managedBlock(ManagedBlocker blocker)
3091     throws InterruptedException {
3092     Thread t = Thread.currentThread();
3093     ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3094     ((ForkJoinWorkerThread)t).pool : null);
3095     while (!blocker.isReleasable()) {
3096     if (p == null || p.tryCompensate(null, blocker)) {
3097     try {
3098     do {} while (!blocker.isReleasable() && !blocker.block());
3099     } finally {
3100     if (p != null)
3101     p.incrementActiveCount();
3102     }
3103     break;
3104     }
3105     }
3106     }
3107    
3108     // AbstractExecutorService overrides. These rely on undocumented
3109     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3110     // implement RunnableFuture.
3111    
3112     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3113     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3114     }
3115    
3116     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3117     return new ForkJoinTask.AdaptedCallable<T>(callable);
3118     }
3119    
3120     // Unsafe mechanics
3121     private static final sun.misc.Unsafe U;
3122     private static final long CTL;
3123     private static final long PARKBLOCKER;
3124     private static final int ABASE;
3125     private static final int ASHIFT;
3126 dl 1.8 private static final long NEXTWORKERNUMBER;
3127     private static final long STEALCOUNT;
3128     private static final long MAINLOCK;
3129 dl 1.1
3130     static {
3131     poolNumberGenerator = new AtomicInteger();
3132     nextSubmitterSeed = new AtomicInteger(0x55555555);
3133     modifyThreadPermission = new RuntimePermission("modifyThread");
3134     defaultForkJoinWorkerThreadFactory =
3135     new DefaultForkJoinWorkerThreadFactory();
3136     submitters = new ThreadSubmitter();
3137     int s;
3138     try {
3139     U = getUnsafe();
3140     Class<?> k = ForkJoinPool.class;
3141     Class<?> ak = ForkJoinTask[].class;
3142     CTL = U.objectFieldOffset
3143     (k.getDeclaredField("ctl"));
3144 dl 1.8 NEXTWORKERNUMBER = U.objectFieldOffset
3145     (k.getDeclaredField("nextWorkerNumber"));
3146     STEALCOUNT = U.objectFieldOffset
3147     (k.getDeclaredField("stealCount"));
3148     MAINLOCK = U.objectFieldOffset
3149     (k.getDeclaredField("mainLock"));
3150 dl 1.1 Class<?> tk = Thread.class;
3151     PARKBLOCKER = U.objectFieldOffset
3152     (tk.getDeclaredField("parkBlocker"));
3153     ABASE = U.arrayBaseOffset(ak);
3154     s = U.arrayIndexScale(ak);
3155 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3156 dl 1.1 } catch (Exception e) {
3157     throw new Error(e);
3158     }
3159     if ((s & (s-1)) != 0)
3160     throw new Error("data type scale not a power of two");
3161 dl 1.8 try { // Establish common pool
3162 dl 1.7 String pp = System.getProperty(propPrefix + "parallelism");
3163     String fp = System.getProperty(propPrefix + "threadFactory");
3164     String up = System.getProperty(propPrefix + "exceptionHandler");
3165 dl 1.8 ForkJoinWorkerThreadFactory fac = (fp == null) ?
3166     defaultForkJoinWorkerThreadFactory :
3167     ((ForkJoinWorkerThreadFactory)ClassLoader.
3168     getSystemClassLoader().loadClass(fp).newInstance());
3169 jsr166 1.10 Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3170 dl 1.8 ((Thread.UncaughtExceptionHandler)ClassLoader.
3171     getSystemClassLoader().loadClass(up).newInstance());
3172 dl 1.7 int par;
3173     if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3174     par = Runtime.getRuntime().availableProcessors();
3175 dl 1.8 if (par > MAX_CAP)
3176     par = MAX_CAP;
3177 dl 1.7 commonPoolParallelism = par;
3178 dl 1.8 int n = par - 1; // precompute submit mask
3179     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3180     n |= n >>> 8; n |= n >>> 16;
3181     int mask = ((n + 1) << 1) - 1;
3182     commonPool = new ForkJoinPool(par, mask, fac, ueh);
3183 dl 1.7 } catch (Exception e) {
3184     throw new Error(e);
3185     }
3186 dl 1.1 }
3187    
3188     /**
3189     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3190     * Replace with a simple call to Unsafe.getUnsafe when integrating
3191     * into a jdk.
3192     *
3193     * @return a sun.misc.Unsafe
3194     */
3195     private static sun.misc.Unsafe getUnsafe() {
3196     try {
3197     return sun.misc.Unsafe.getUnsafe();
3198     } catch (SecurityException se) {
3199     try {
3200     return java.security.AccessController.doPrivileged
3201     (new java.security
3202     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3203     public sun.misc.Unsafe run() throws Exception {
3204     java.lang.reflect.Field f = sun.misc
3205     .Unsafe.class.getDeclaredField("theUnsafe");
3206     f.setAccessible(true);
3207     return (sun.misc.Unsafe) f.get(null);
3208     }});
3209     } catch (java.security.PrivilegedActionException e) {
3210     throw new RuntimeException("Could not initialize intrinsics",
3211     e.getCause());
3212     }
3213     }
3214     }
3215    
3216     }