ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.13
Committed: Wed Nov 14 18:45:53 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +4 -4 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20 dl 1.7 import java.util.concurrent.ThreadLocalRandom;
21 dl 1.1 import java.util.concurrent.TimeUnit;
22    
23     /**
24     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25     * A {@code ForkJoinPool} provides the entry point for submissions
26     * from non-{@code ForkJoinTask} clients, as well as management and
27     * monitoring operations.
28     *
29     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32     * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40     *
41 dl 1.7 * <p>A static {@link #commonPool} is available and appropriate for
42 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.12 * use).
47 dl 1.7 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53     * threads, even if some tasks are stalled waiting to join
54     * others. However, no such adjustments are guaranteed in the face of
55     * blocked IO or other unmanaged synchronization. The nested {@link
56     * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.1 * synchronization accommodated.
58     *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61     * {@link #getStealCount}) that are intended to aid in developing,
62     * tuning, and monitoring fork/join applications. Also, method
63     * {@link #toString} returns indications of pool state in a
64     * convenient form for informal monitoring.
65     *
66     * <p> As is the case with other ExecutorServices, there are three
67     * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77     *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79     * <tr>
80     * <td></td>
81     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
82     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
83     * </tr>
84     * <tr>
85     * <td> <b>Arrange async execution</td>
86     * <td> {@link #execute(ForkJoinTask)}</td>
87     * <td> {@link ForkJoinTask#fork}</td>
88     * </tr>
89     * <tr>
90     * <td> <b>Await and obtain result</td>
91     * <td> {@link #invoke(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#invoke}</td>
93     * </tr>
94     * <tr>
95     * <td> <b>Arrange exec and obtain Future</td>
96     * <td> {@link #submit(ForkJoinTask)}</td>
97     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
98     * </tr>
99     * </table>
100     *
101 dl 1.12 * <p>The common pool is by default constructed with default
102     * parameters, but these may be controlled by setting three {@link
103     * System#getProperty properties} with prefix {@code
104     * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
105     * an integer greater than zero, {@code threadFactory} -- the class
106     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
107     * exceptionHandler} -- the class name of a {@link
108     * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113     * pools with greater than the maximum number result in
114     * {@code IllegalArgumentException}.
115     *
116     * <p>This implementation rejects submitted tasks (that is, by throwing
117     * {@link RejectedExecutionException}) only when the pool is shut down
118     * or internal resources have been exhausted.
119     *
120     * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126     * Implementation Overview
127     *
128     * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130     * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136     *
137     * WorkQueues
138     * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155     * The main differences ultimately stem from GC requirements that
156     * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177     * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181     *
182     * This approach also enables support of a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.12 * processing). Instead, we randomly associate submission queues
198 dl 1.1 * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202 dl 1.12 * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.1 *
216     * Management
217     * ==========
218     *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224     * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226     * consistency checks.
227     *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242     * blocking when needed.
243 dl 1.1 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.8 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.12 * tolerate null slots. Worker queues are at odd indices Shared
252     * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.1 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259     * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271     * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278     *
279     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280     * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284     * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296     * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298     * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304     * WorkQueues to reduce unnecessary calls to unpark. (This
305     * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313     *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.12 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319     * added or another worker adds a task to a queue that is
320     * apparently empty, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- see signalWork). These primary signals are buttressed by
323     * signals whenever other threads scan for work or do not have a
324     * task to process. On most platforms, signalling (unpark)
325     * overhead time is noticeably long, and the time between
326     * signalling a thread and it actually making progress can be very
327     * noticeably long, so it is worth offloading these delays from
328     * critical paths as much as possible.
329 dl 1.1 *
330     * Trimming workers. To release resources after periods of lack of
331     * use, a worker starting to wait when the pool is quiescent will
332 dl 1.7 * time out and terminate if the pool has remained quiescent for a
333     * given period -- a short period if there are more threads than
334     * parallelism, longer as the number of threads decreases. This
335     * will slowly propagate, eventually terminating all workers after
336     * periods of non-use.
337 dl 1.1 *
338     * Shutdown and Termination. A call to shutdownNow atomically sets
339 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
340     * qlock status, cancels all unprocessed tasks, and wakes up
341 dl 1.1 * all waiting workers. Detecting whether termination should
342     * commence after a non-abrupt shutdown() call requires more work
343     * and bookkeeping. We need consensus about quiescence (i.e., that
344     * there is no more work). The active count provides a primary
345     * indication but non-abrupt shutdown still requires a rechecking
346     * scan for any workers that are inactive but not queued.
347     *
348     * Joining Tasks
349     * =============
350     *
351     * Any of several actions may be taken when one worker is waiting
352     * to join a task stolen (or always held) by another. Because we
353     * are multiplexing many tasks on to a pool of workers, we can't
354     * just let them block (as in Thread.join). We also cannot just
355     * reassign the joiner's run-time stack with another and replace
356     * it later, which would be a form of "continuation", that even if
357     * possible is not necessarily a good idea since we sometimes need
358     * both an unblocked task and its continuation to progress.
359     * Instead we combine two tactics:
360     *
361     * Helping: Arranging for the joiner to execute some task that it
362     * would be running if the steal had not occurred.
363     *
364     * Compensating: Unless there are already enough live threads,
365     * method tryCompensate() may create or re-activate a spare
366     * thread to compensate for blocked joiners until they unblock.
367     *
368 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
369     * helping a hypothetical compensator: If we can readily tell that
370     * a possible action of a compensator is to steal and execute the
371     * task being joined, the joining thread can do so directly,
372     * without the need for a compensation thread (although at the
373     * expense of larger run-time stacks, but the tradeoff is
374     * typically worthwhile).
375 dl 1.1 *
376     * The ManagedBlocker extension API can't use helping so relies
377     * only on compensation in method awaitBlocker.
378     *
379     * The algorithm in tryHelpStealer entails a form of "linear"
380     * helping: Each worker records (in field currentSteal) the most
381     * recent task it stole from some other worker. Plus, it records
382     * (in field currentJoin) the task it is currently actively
383     * joining. Method tryHelpStealer uses these markers to try to
384     * find a worker to help (i.e., steal back a task from and execute
385     * it) that could hasten completion of the actively joined task.
386     * In essence, the joiner executes a task that would be on its own
387     * local deque had the to-be-joined task not been stolen. This may
388     * be seen as a conservative variant of the approach in Wagner &
389     * Calder "Leapfrogging: a portable technique for implementing
390     * efficient futures" SIGPLAN Notices, 1993
391     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392     * that: (1) We only maintain dependency links across workers upon
393     * steals, rather than use per-task bookkeeping. This sometimes
394     * requires a linear scan of workQueues array to locate stealers,
395     * but often doesn't because stealers leave hints (that may become
396     * stale/wrong) of where to locate them. A stealHint is only a
397     * hint because a worker might have had multiple steals and the
398     * hint records only one of them (usually the most current).
399     * Hinting isolates cost to when it is needed, rather than adding
400     * to per-task overhead. (2) It is "shallow", ignoring nesting
401     * and potentially cyclic mutual steals. (3) It is intentionally
402     * racy: field currentJoin is updated only while actively joining,
403     * which means that we miss links in the chain during long-lived
404     * tasks, GC stalls etc (which is OK since blocking in such cases
405     * is usually a good idea). (4) We bound the number of attempts
406     * to find work (see MAX_HELP) and fall back to suspending the
407     * worker and if necessary replacing it with another.
408     *
409 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
410     * helpComplete can take and execute any task with the same root
411     * as the task being waited on. However, this still entails some
412     * traversal of completer chains, so is less efficient than using
413     * CountedCompleters without explicit joins.
414     *
415 dl 1.1 * It is impossible to keep exactly the target parallelism number
416     * of threads running at any given time. Determining the
417     * existence of conservatively safe helping targets, the
418     * availability of already-created spares, and the apparent need
419     * to create new spares are all racy, so we rely on multiple
420     * retries of each. Compensation in the apparent absence of
421     * helping opportunities is challenging to control on JVMs, where
422     * GC and other activities can stall progress of tasks that in
423     * turn stall out many other dependent tasks, without us being
424     * able to determine whether they will ever require compensation.
425     * Even though work-stealing otherwise encounters little
426     * degradation in the presence of more threads than cores,
427     * aggressively adding new threads in such cases entails risk of
428     * unwanted positive feedback control loops in which more threads
429     * cause more dependent stalls (as well as delayed progress of
430     * unblocked threads to the point that we know they are available)
431     * leading to more situations requiring more threads, and so
432     * on. This aspect of control can be seen as an (analytically
433     * intractable) game with an opponent that may choose the worst
434     * (for us) active thread to stall at any time. We take several
435     * precautions to bound losses (and thus bound gains), mainly in
436 dl 1.12 * methods tryCompensate and awaitJoin.
437     *
438     * Common Pool
439     * ===========
440     *
441     * The static commonPool always exists after static
442     * initialization. Since it (or any other created pool) need
443     * never be used, we minimize initial construction overhead and
444     * footprint to the setup of about a dozen fields, with no nested
445     * allocation. Most bootstrapping occurs within method
446     * fullExternalPush during the first submission to the pool.
447     *
448     * When external threads submit to the common pool, they can
449     * perform some subtask processing (see externalHelpJoin and
450     * related methods). We do not need to record whether these
451     * submissions are to the common pool -- if not, externalHelpJoin
452     * returns quicky (at the most helping to signal some common pool
453     * workers). These submitters would otherwise be blocked waiting
454     * for completion, so the extra effort (with liberally sprinkled
455     * task status checks) in inapplicable cases amounts to an odd
456     * form of limited spin-wait before blocking in ForkJoinTask.join.
457     *
458     * Style notes
459     * ===========
460     *
461     * There is a lot of representation-level coupling among classes
462     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
463     * fields of WorkQueue maintain data structures managed by
464     * ForkJoinPool, so are directly accessed. There is little point
465     * trying to reduce this, since any associated future changes in
466     * representations will need to be accompanied by algorithmic
467     * changes anyway. Several methods intrinsically sprawl because
468     * they must accumulate sets of consistent reads of volatiles held
469     * in local variables. Methods signalWork() and scan() are the
470     * main bottlenecks, so are especially heavily
471 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
472     * (of form "while ((local = field) != 0)") which are usually the
473     * simplest way to ensure the required read orderings (which are
474     * sometimes critical). This leads to a "C"-like style of listing
475     * declarations of these locals at the heads of methods or blocks.
476     * There are several occurrences of the unusual "do {} while
477     * (!cas...)" which is the simplest way to force an update of a
478 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
479     * several unnecessary-looking hoisted null checks) that help
480 dl 1.1 * some methods perform reasonably even when interpreted (not
481     * compiled).
482     *
483     * The order of declarations in this file is:
484     * (1) Static utility functions
485     * (2) Nested (static) classes
486     * (3) Static fields
487     * (4) Fields, along with constants used when unpacking some of them
488     * (5) Internal control methods
489     * (6) Callbacks and other support for ForkJoinTask methods
490     * (7) Exported methods
491     * (8) Static block initializing statics in minimally dependent order
492     */
493    
494     // Static utilities
495    
496     /**
497     * If there is a security manager, makes sure caller has
498     * permission to modify threads.
499     */
500     private static void checkPermission() {
501     SecurityManager security = System.getSecurityManager();
502     if (security != null)
503     security.checkPermission(modifyThreadPermission);
504     }
505    
506     // Nested classes
507    
508     /**
509     * Factory for creating new {@link ForkJoinWorkerThread}s.
510     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
511     * for {@code ForkJoinWorkerThread} subclasses that extend base
512     * functionality or initialize threads with different contexts.
513     */
514     public static interface ForkJoinWorkerThreadFactory {
515     /**
516     * Returns a new worker thread operating in the given pool.
517     *
518     * @param pool the pool this thread works in
519     * @throws NullPointerException if the pool is null
520     */
521     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
522     }
523    
524     /**
525     * Default ForkJoinWorkerThreadFactory implementation; creates a
526     * new ForkJoinWorkerThread.
527     */
528     static class DefaultForkJoinWorkerThreadFactory
529     implements ForkJoinWorkerThreadFactory {
530     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
531     return new ForkJoinWorkerThread(pool);
532     }
533     }
534    
535     /**
536     * Class for artificial tasks that are used to replace the target
537     * of local joins if they are removed from an interior queue slot
538     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
539     * actually do anything beyond having a unique identity.
540     */
541     static final class EmptyTask extends ForkJoinTask<Void> {
542 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
543 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
544     public final Void getRawResult() { return null; }
545     public final void setRawResult(Void x) {}
546     public final boolean exec() { return true; }
547     }
548    
549     /**
550     * Queues supporting work-stealing as well as external task
551     * submission. See above for main rationale and algorithms.
552     * Implementation relies heavily on "Unsafe" intrinsics
553     * and selective use of "volatile":
554     *
555     * Field "base" is the index (mod array.length) of the least valid
556     * queue slot, which is always the next position to steal (poll)
557     * from if nonempty. Reads and writes require volatile orderings
558     * but not CAS, because updates are only performed after slot
559     * CASes.
560     *
561     * Field "top" is the index (mod array.length) of the next queue
562     * slot to push to or pop from. It is written only by owner thread
563 dl 1.12 * for push, or under lock for external/shared push, and accessed
564     * by other threads only after reading (volatile) base. Both top
565     * and base are allowed to wrap around on overflow, but (top -
566     * base) (or more commonly -(base - top) to force volatile read of
567     * base before top) still estimates size. The lock ("qlock") is
568     * forced to -1 on termination, causing all further lock attempts
569     * to fail. (Note: we don't need CAS for termination state because
570     * upon pool shutdown, all shared-queues will stop being used
571     * anyway.) Nearly all lock bodies are set up so that exceptions
572     * within lock bodies are "impossible" (modulo JVM errors that
573     * would cause failure anyway.)
574 dl 1.1 *
575     * The array slots are read and written using the emulation of
576     * volatiles/atomics provided by Unsafe. Insertions must in
577     * general use putOrderedObject as a form of releasing store to
578     * ensure that all writes to the task object are ordered before
579 dl 1.12 * its publication in the queue. All removals entail a CAS to
580     * null. The array is always a power of two. To ensure safety of
581     * Unsafe array operations, all accesses perform explicit null
582     * checks and implicit bounds checks via power-of-two masking.
583 dl 1.1 *
584     * In addition to basic queuing support, this class contains
585     * fields described elsewhere to control execution. It turns out
586 dl 1.12 * to work better memory-layout-wise to include them in this class
587     * rather than a separate class.
588 dl 1.1 *
589     * Performance on most platforms is very sensitive to placement of
590     * instances of both WorkQueues and their arrays -- we absolutely
591     * do not want multiple WorkQueue instances or multiple queue
592     * arrays sharing cache lines. (It would be best for queue objects
593     * and their arrays to share, but there is nothing available to
594     * help arrange that). Unfortunately, because they are recorded
595     * in a common array, WorkQueue instances are often moved to be
596     * adjacent by garbage collectors. To reduce impact, we use field
597     * padding that works OK on common platforms; this effectively
598     * trades off slightly slower average field access for the sake of
599     * avoiding really bad worst-case access. (Until better JVM
600     * support is in place, this padding is dependent on transient
601     * properties of JVM field layout rules.) We also take care in
602     * allocating, sizing and resizing the array. Non-shared queue
603 dl 1.12 * arrays are initialized by workers before use. Others are
604     * allocated on first use.
605 dl 1.1 */
606     static final class WorkQueue {
607     /**
608     * Capacity of work-stealing queue array upon initialization.
609     * Must be a power of two; at least 4, but should be larger to
610     * reduce or eliminate cacheline sharing among queues.
611     * Currently, it is much larger, as a partial workaround for
612     * the fact that JVMs often place arrays in locations that
613     * share GC bookkeeping (especially cardmarks) such that
614     * per-write accesses encounter serious memory contention.
615     */
616     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
617    
618     /**
619     * Maximum size for queue arrays. Must be a power of two less
620     * than or equal to 1 << (31 - width of array entry) to ensure
621     * lack of wraparound of index calculations, but defined to a
622     * value a bit less than this to help users trap runaway
623     * programs before saturating systems.
624     */
625     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
626    
627     int seed; // for random scanning; initialize nonzero
628     volatile int eventCount; // encoded inactivation count; < 0 if inactive
629     int nextWait; // encoded record of next event waiter
630     final int mode; // lifo, fifo, or shared
631 dl 1.12 int nsteals; // cumulative number of steals
632 dl 1.1 int poolIndex; // index of this queue in pool (or 0)
633     int stealHint; // index of most recent known stealer
634 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
635 dl 1.1 volatile int base; // index of next slot for poll
636     int top; // index of next slot for push
637     ForkJoinTask<?>[] array; // the elements (initially unallocated)
638     final ForkJoinPool pool; // the containing pool (may be null)
639     final ForkJoinWorkerThread owner; // owning thread or null if shared
640     volatile Thread parker; // == owner during call to park; else null
641     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
642     ForkJoinTask<?> currentSteal; // current non-local task being executed
643     // Heuristic padding to ameliorate unfortunate memory placements
644     Object p00, p01, p02, p03, p04, p05, p06, p07;
645     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
646    
647     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
648     this.mode = mode;
649     this.pool = pool;
650     this.owner = owner;
651     // Place indices in the center of array (that is not yet allocated)
652     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
653     }
654    
655     /**
656     * Pushes a task. Call only by owner in unshared queues.
657 dl 1.12 * Cases needing resizing or rejection are relyaed to fullPush
658     * (that also handles shared queues).
659 dl 1.1 *
660     * @param task the task. Caller must ensure non-null.
661     * @throw RejectedExecutionException if array cannot be resized
662     */
663     final void push(ForkJoinTask<?> task) {
664 dl 1.12 ForkJoinPool p; ForkJoinTask<?>[] a;
665     int s = top, n;
666     if ((a = array) != null && a.length > (n = s + 1 - base)) {
667 dl 1.1 U.putOrderedObject
668 dl 1.12 (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
669     top = s + 1;
670     if (n <= 1 && (p = pool) != null)
671     p.signalWork(this, 1);
672 dl 1.1 }
673 dl 1.12 else
674     fullPush(task, true);
675 dl 1.1 }
676    
677     /**
678     * Pushes a task if lock is free and array is either big
679 dl 1.12 * enough or can be resized to be big enough. Note: a
680     * specialization of a common fast path of this method is in
681     * ForkJoinPool.externalPush. When called from a FJWT queue,
682     * this can fail only if the pool has been shut down or
683     * an out of memory error.
684 dl 1.1 *
685     * @param task the task. Caller must ensure non-null.
686 dl 1.12 * @param owned if true, throw RJE on failure
687 dl 1.1 */
688 dl 1.12 final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
689     ForkJoinPool p; ForkJoinTask<?>[] a;
690     if (owned) {
691     if (qlock < 0) // must be shutting down
692     throw new RejectedExecutionException();
693     }
694     else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
695     return false;
696     try {
697     int s = top, oldLen, len;
698     if ((a = array) == null)
699     a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
700     else if ((oldLen = a.length) > s + 1 - base)
701     len = oldLen;
702     else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
703     throw new RejectedExecutionException("Capacity exceeded");
704     else {
705     int oldMask, b;
706     ForkJoinTask<?>[] oldA = a;
707     a = array = new ForkJoinTask<?>[len];
708     if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
709     int mask = len - 1;
710     do {
711     ForkJoinTask<?> x;
712     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
713     int j = ((b & mask) << ASHIFT) + ABASE;
714     x = (ForkJoinTask<?>)
715     U.getObjectVolatile(oldA, oldj);
716     if (x != null &&
717     U.compareAndSwapObject(oldA, oldj, x, null))
718     U.putObjectVolatile(a, j, x);
719     } while (++b != s);
720 dl 1.1 }
721     }
722 dl 1.12 U.putOrderedObject
723     (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
724     top = s + 1;
725     } finally {
726     if (!owned)
727     qlock = 0;
728 dl 1.1 }
729 dl 1.12 if ((p = pool) != null)
730     p.signalWork(this, 1);
731     return true;
732 dl 1.1 }
733    
734     /**
735     * Takes next task, if one exists, in LIFO order. Call only
736 dl 1.9 * by owner in unshared queues.
737 dl 1.1 */
738     final ForkJoinTask<?> pop() {
739     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
740     if ((a = array) != null && (m = a.length - 1) >= 0) {
741     for (int s; (s = top - 1) - base >= 0;) {
742     long j = ((m & s) << ASHIFT) + ABASE;
743     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
744     break;
745     if (U.compareAndSwapObject(a, j, t, null)) {
746     top = s;
747     return t;
748     }
749     }
750     }
751     return null;
752     }
753    
754     /**
755     * Takes a task in FIFO order if b is base of queue and a task
756     * can be claimed without contention. Specialized versions
757     * appear in ForkJoinPool methods scan and tryHelpStealer.
758     */
759     final ForkJoinTask<?> pollAt(int b) {
760     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
761     if ((a = array) != null) {
762     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
763     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
764     base == b &&
765     U.compareAndSwapObject(a, j, t, null)) {
766     base = b + 1;
767     return t;
768     }
769     }
770     return null;
771     }
772    
773     /**
774     * Takes next task, if one exists, in FIFO order.
775     */
776     final ForkJoinTask<?> poll() {
777     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
778     while ((b = base) - top < 0 && (a = array) != null) {
779     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
780     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
781     if (t != null) {
782     if (base == b &&
783     U.compareAndSwapObject(a, j, t, null)) {
784     base = b + 1;
785     return t;
786     }
787     }
788     else if (base == b) {
789     if (b + 1 == top)
790     break;
791 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
792 dl 1.1 }
793     }
794     return null;
795     }
796    
797     /**
798     * Takes next task, if one exists, in order specified by mode.
799     */
800     final ForkJoinTask<?> nextLocalTask() {
801     return mode == 0 ? pop() : poll();
802     }
803    
804     /**
805     * Returns next task, if one exists, in order specified by mode.
806     */
807     final ForkJoinTask<?> peek() {
808     ForkJoinTask<?>[] a = array; int m;
809     if (a == null || (m = a.length - 1) < 0)
810     return null;
811     int i = mode == 0 ? top - 1 : base;
812     int j = ((i & m) << ASHIFT) + ABASE;
813     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
814     }
815    
816     /**
817     * Pops the given task only if it is at the current top.
818 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
819 dl 1.1 */
820     final boolean tryUnpush(ForkJoinTask<?> t) {
821     ForkJoinTask<?>[] a; int s;
822     if ((a = array) != null && (s = top) != base &&
823     U.compareAndSwapObject
824     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
825     top = s;
826     return true;
827     }
828     return false;
829     }
830    
831     /**
832     * Removes and cancels all known tasks, ignoring any exceptions.
833     */
834     final void cancelAll() {
835     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
836     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
837     for (ForkJoinTask<?> t; (t = poll()) != null; )
838     ForkJoinTask.cancelIgnoringExceptions(t);
839     }
840    
841     /**
842     * Computes next value for random probes. Scans don't require
843     * a very high quality generator, but also not a crummy one.
844     * Marsaglia xor-shift is cheap and works well enough. Note:
845     * This is manually inlined in its usages in ForkJoinPool to
846     * avoid writes inside busy scan loops.
847     */
848     final int nextSeed() {
849     int r = seed;
850     r ^= r << 13;
851     r ^= r >>> 17;
852     return seed = r ^= r << 5;
853     }
854    
855 dl 1.12 /**
856     * Provides a more accurate estimate of size than (top - base)
857     * by ordering reads and checking whether a near-empty queue
858     * has at least one unclaimed task.
859     */
860     final int queueSize() {
861     ForkJoinTask<?>[] a; int k, s, n;
862     return ((n = base - (s = top)) < 0 &&
863     (n != -1 ||
864     ((a = array) != null && (k = a.length) > 0 &&
865     U.getObject
866     (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
867     -n : 0;
868     }
869    
870 dl 1.11 // Specialized execution methods
871 dl 1.1
872     /**
873     * Pops and runs tasks until empty.
874     */
875     private void popAndExecAll() {
876     // A bit faster than repeated pop calls
877     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
878     while ((a = array) != null && (m = a.length - 1) >= 0 &&
879     (s = top - 1) - base >= 0 &&
880     (t = ((ForkJoinTask<?>)
881     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
882     != null) {
883     if (U.compareAndSwapObject(a, j, t, null)) {
884     top = s;
885     t.doExec();
886     }
887     }
888     }
889    
890     /**
891     * Polls and runs tasks until empty.
892     */
893     private void pollAndExecAll() {
894     for (ForkJoinTask<?> t; (t = poll()) != null;)
895     t.doExec();
896     }
897    
898     /**
899 dl 1.12 * If present, removes from queue and executes the given task,
900     * or any other cancelled task. Returns (true) on any CAS
901 dl 1.1 * or consistency check failure so caller can retry.
902     *
903 dl 1.12 * @return false if no progress can be made, else true;
904 dl 1.1 */
905 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
906     boolean stat = true, removed = false, empty = true;
907 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
908     if ((a = array) != null && (m = a.length - 1) >= 0 &&
909     (n = (s = top) - (b = base)) > 0) {
910     for (ForkJoinTask<?> t;;) { // traverse from s to b
911     int j = ((--s & m) << ASHIFT) + ABASE;
912     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
913     if (t == null) // inconsistent length
914     break;
915     else if (t == task) {
916     if (s + 1 == top) { // pop
917     if (!U.compareAndSwapObject(a, j, task, null))
918     break;
919     top = s;
920     removed = true;
921     }
922     else if (base == b) // replace with proxy
923     removed = U.compareAndSwapObject(a, j, task,
924     new EmptyTask());
925     break;
926     }
927     else if (t.status >= 0)
928     empty = false;
929     else if (s + 1 == top) { // pop and throw away
930     if (U.compareAndSwapObject(a, j, t, null))
931     top = s;
932     break;
933     }
934     if (--n == 0) {
935     if (!empty && base == b)
936 dl 1.12 stat = false;
937 dl 1.1 break;
938     }
939     }
940     }
941     if (removed)
942     task.doExec();
943     return stat;
944     }
945    
946     /**
947 dl 1.12 * Polls for and executes the given task or any other task in
948     * its CountedCompleter computation
949 dl 1.11 */
950 dl 1.12 final boolean pollAndExecCC(ForkJoinTask<?> root) {
951     ForkJoinTask<?>[] a; int b; Object o;
952     outer: while ((b = base) - top < 0 && (a = array) != null) {
953     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
954     if ((o = U.getObject(a, j)) == null ||
955     !(o instanceof CountedCompleter))
956     break;
957     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
958     if (r == root) {
959     if (base == b &&
960     U.compareAndSwapObject(a, j, t, null)) {
961     base = b + 1;
962     t.doExec();
963     return true;
964 dl 1.11 }
965 dl 1.12 else
966     break; // restart
967 dl 1.11 }
968 dl 1.12 if ((r = r.completer) == null)
969     break outer; // not part of root computation
970 dl 1.11 }
971     }
972 dl 1.12 return false;
973 dl 1.11 }
974    
975     /**
976 dl 1.1 * Executes a top-level task and any local tasks remaining
977     * after execution.
978     */
979     final void runTask(ForkJoinTask<?> t) {
980     if (t != null) {
981 dl 1.12 (currentSteal = t).doExec();
982     currentSteal = null;
983     if (++nsteals < 0) { // spill on overflow
984     ForkJoinPool p;
985     if ((p = pool) != null)
986     p.collectStealCount(this);
987     }
988 dl 1.1 if (top != base) { // process remaining local tasks
989     if (mode == 0)
990     popAndExecAll();
991     else
992     pollAndExecAll();
993     }
994     }
995     }
996    
997     /**
998     * Executes a non-top-level (stolen) task.
999     */
1000     final void runSubtask(ForkJoinTask<?> t) {
1001     if (t != null) {
1002     ForkJoinTask<?> ps = currentSteal;
1003 dl 1.12 (currentSteal = t).doExec();
1004 dl 1.1 currentSteal = ps;
1005     }
1006     }
1007    
1008     /**
1009     * Returns true if owned and not known to be blocked.
1010     */
1011     final boolean isApparentlyUnblocked() {
1012     Thread wt; Thread.State s;
1013     return (eventCount >= 0 &&
1014     (wt = owner) != null &&
1015     (s = wt.getState()) != Thread.State.BLOCKED &&
1016     s != Thread.State.WAITING &&
1017     s != Thread.State.TIMED_WAITING);
1018     }
1019    
1020     /**
1021     * If this owned and is not already interrupted, try to
1022     * interrupt and/or unpark, ignoring exceptions.
1023     */
1024     final void interruptOwner() {
1025     Thread wt, p;
1026     if ((wt = owner) != null && !wt.isInterrupted()) {
1027     try {
1028     wt.interrupt();
1029     } catch (SecurityException ignore) {
1030     }
1031     }
1032     if ((p = parker) != null)
1033     U.unpark(p);
1034     }
1035    
1036     // Unsafe mechanics
1037     private static final sun.misc.Unsafe U;
1038 dl 1.12 private static final long QLOCK;
1039 dl 1.1 private static final int ABASE;
1040     private static final int ASHIFT;
1041     static {
1042     int s;
1043     try {
1044     U = getUnsafe();
1045     Class<?> k = WorkQueue.class;
1046     Class<?> ak = ForkJoinTask[].class;
1047 dl 1.12 QLOCK = U.objectFieldOffset
1048     (k.getDeclaredField("qlock"));
1049 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1050     s = U.arrayIndexScale(ak);
1051     } catch (Exception e) {
1052     throw new Error(e);
1053     }
1054     if ((s & (s-1)) != 0)
1055     throw new Error("data type scale not a power of two");
1056     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1057     }
1058     }
1059 jsr166 1.3
1060 dl 1.1 /**
1061     * Per-thread records for threads that submit to pools. Currently
1062     * holds only pseudo-random seed / index that is used to choose
1063 dl 1.12 * submission queues in method externalPush. In the future, this may
1064 dl 1.1 * also incorporate a means to implement different task rejection
1065     * and resubmission policies.
1066     *
1067     * Seeds for submitters and workers/workQueues work in basically
1068     * the same way but are initialized and updated using slightly
1069     * different mechanics. Both are initialized using the same
1070     * approach as in class ThreadLocal, where successive values are
1071 dl 1.12 * unlikely to collide with previous values. Seeds are then
1072     * randomly modified upon collisions using xorshifts, which
1073     * requires a non-zero seed.
1074 dl 1.1 */
1075     static final class Submitter {
1076     int seed;
1077 dl 1.12 Submitter(int s) { seed = s; }
1078 dl 1.1 }
1079    
1080 dl 1.12 /** Property prefix for constructing common pool */
1081     private static final String propPrefix =
1082     "java.util.concurrent.ForkJoinPool.common.";
1083 dl 1.1
1084     // static fields (initialized in static initializer below)
1085    
1086     /**
1087     * Creates a new ForkJoinWorkerThread. This factory is used unless
1088     * overridden in ForkJoinPool constructors.
1089     */
1090     public static final ForkJoinWorkerThreadFactory
1091     defaultForkJoinWorkerThreadFactory;
1092    
1093 dl 1.8 /**
1094     * Common (static) pool. Non-null for public use unless a static
1095 dl 1.12 * construction exception, but internal usages null-check on use
1096     * to paranoically avoid potential initialization circularities
1097     * as well as to simplify generated code.
1098 dl 1.8 */
1099     static final ForkJoinPool commonPool;
1100    
1101     /**
1102 dl 1.12 * Permission required for callers of methods that may start or
1103     * kill threads.
1104 dl 1.8 */
1105 dl 1.12 private static final RuntimePermission modifyThreadPermission;
1106 dl 1.8
1107 dl 1.1 /**
1108 dl 1.12 * Per-thread submission bookkeeping. Shared across all pools
1109     * to reduce ThreadLocal pollution and because random motion
1110     * to avoid contention in one pool is likely to hold for others.
1111     * Lazily initialized on first submission (but null-checked
1112     * in other contexts to avoid unnecessary initialization).
1113 dl 1.1 */
1114 dl 1.12 static final ThreadLocal<Submitter> submitters;
1115 dl 1.1
1116     /**
1117 dl 1.12 * Common pool parallelism. Must equal commonPool.parallelism.
1118 dl 1.1 */
1119 dl 1.12 static final int commonPoolParallelism;
1120 dl 1.1
1121     /**
1122 dl 1.12 * Sequence number for creating workerNamePrefix.
1123 dl 1.1 */
1124 dl 1.12 private static int poolNumberSequence;
1125 dl 1.1
1126     /**
1127 dl 1.12 * Return the next sequence number. We don't expect this to
1128     * ever contend so use simple builtin sync.
1129 dl 1.1 */
1130 dl 1.12 private static final synchronized int nextPoolId() {
1131     return ++poolNumberSequence;
1132     }
1133 dl 1.1
1134     // static constants
1135    
1136     /**
1137 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1138     * triggering quiescence to park waiting for new work. On timeout,
1139     * the thread will instead try to shrink the number of
1140     * workers. The value should be large enough to avoid overly
1141     * aggressive shrinkage during most transient stalls (long GCs
1142     * etc).
1143 dl 1.1 */
1144 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1145 dl 1.1
1146     /**
1147 dl 1.7 * Timeout value when there are more threads than parallelism level
1148 dl 1.1 */
1149 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1150 dl 1.1
1151     /**
1152     * The maximum stolen->joining link depth allowed in method
1153 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1154 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1155     * (otherwise unchecked) cycles and to bound staleness of
1156     * traversal parameters at the expense of sometimes blocking when
1157     * we could be helping.
1158     */
1159     private static final int MAX_HELP = 64;
1160    
1161     /**
1162     * Increment for seed generators. See class ThreadLocal for
1163     * explanation.
1164     */
1165     private static final int SEED_INCREMENT = 0x61c88647;
1166    
1167     /**
1168     * Bits and masks for control variables
1169     *
1170     * Field ctl is a long packed with:
1171     * AC: Number of active running workers minus target parallelism (16 bits)
1172     * TC: Number of total workers minus target parallelism (16 bits)
1173     * ST: true if pool is terminating (1 bit)
1174     * EC: the wait count of top waiting thread (15 bits)
1175     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1176     *
1177     * When convenient, we can extract the upper 32 bits of counts and
1178     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1179     * (int)ctl. The ec field is never accessed alone, but always
1180     * together with id and st. The offsets of counts by the target
1181     * parallelism and the positionings of fields makes it possible to
1182     * perform the most common checks via sign tests of fields: When
1183     * ac is negative, there are not enough active workers, when tc is
1184     * negative, there are not enough total workers, and when e is
1185     * negative, the pool is terminating. To deal with these possibly
1186     * negative fields, we use casts in and out of "short" and/or
1187     * signed shifts to maintain signedness.
1188     *
1189     * When a thread is queued (inactivated), its eventCount field is
1190     * set negative, which is the only way to tell if a worker is
1191     * prevented from executing tasks, even though it must continue to
1192     * scan for them to avoid queuing races. Note however that
1193     * eventCount updates lag releases so usage requires care.
1194     *
1195 dl 1.12 * Field plock is an int packed with:
1196 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1197 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1198     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1199 dl 1.1 *
1200     * The sequence number enables simple consistency checks:
1201     * Staleness of read-only operations on the workQueues array can
1202 dl 1.12 * be checked by comparing plock before vs after the reads.
1203 dl 1.1 */
1204    
1205     // bit positions/shifts for fields
1206     private static final int AC_SHIFT = 48;
1207     private static final int TC_SHIFT = 32;
1208     private static final int ST_SHIFT = 31;
1209     private static final int EC_SHIFT = 16;
1210    
1211     // bounds
1212     private static final int SMASK = 0xffff; // short bits
1213     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1214 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1215     private static final int SQMASK = 0x007e; // max 64 (even) slots
1216 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1217     private static final int INT_SIGN = 1 << 31;
1218    
1219     // masks
1220     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1221     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1222     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1223    
1224     // units for incrementing and decrementing
1225     private static final long TC_UNIT = 1L << TC_SHIFT;
1226     private static final long AC_UNIT = 1L << AC_SHIFT;
1227    
1228     // masks and units for dealing with u = (int)(ctl >>> 32)
1229     private static final int UAC_SHIFT = AC_SHIFT - 32;
1230     private static final int UTC_SHIFT = TC_SHIFT - 32;
1231     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1232     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1233     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1234     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1235    
1236     // masks and units for dealing with e = (int)ctl
1237     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1238     private static final int E_SEQ = 1 << EC_SHIFT;
1239    
1240 dl 1.12 // plock bits
1241 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1242 dl 1.12 private static final int PL_LOCK = 2;
1243     private static final int PL_SIGNAL = 1;
1244     private static final int PL_SPINS = 1 << 8;
1245 dl 1.1
1246     // access mode for WorkQueue
1247     static final int LIFO_QUEUE = 0;
1248     static final int FIFO_QUEUE = 1;
1249     static final int SHARED_QUEUE = -1;
1250    
1251     // Instance fields
1252    
1253     /*
1254     * Field layout order in this class tends to matter more than one
1255     * would like. Runtime layout order is only loosely related to
1256     * declaration order and may differ across JVMs, but the following
1257     * empirically works OK on current JVMs.
1258     */
1259 dl 1.8 volatile long stealCount; // collects worker counts
1260 dl 1.1 volatile long ctl; // main pool control
1261     final int parallelism; // parallelism level
1262     final int localMode; // per-worker scheduling mode
1263 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1264     volatile int plock; // shutdown status and seqLock
1265 dl 1.1 WorkQueue[] workQueues; // main registry
1266     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1267     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1268 dl 1.8 final String workerNamePrefix; // to create worker name string
1269    
1270     /*
1271 dl 1.12 * Acquires the plock lock to protect worker array and related
1272     * updates. This method is called only if an initial CAS on plock
1273     * fails. This acts as a spinLock for normal cases, but falls back
1274     * to builtin monitor to block when (rarely) needed. This would be
1275     * a terrible idea for a highly contended lock, but works fine as
1276     * a more conservative alternative to a pure spinlock. See
1277     * internal ConcurrentHashMap documentation for further
1278     * explanation of nearly the same construction.
1279     */
1280     private int acquirePlock() {
1281     int spins = PL_SPINS, r = 0, ps, nps;
1282     for (;;) {
1283     if (((ps = plock) & PL_LOCK) == 0 &&
1284     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1285     return nps;
1286     else if (r == 0)
1287 dl 1.8 r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288     else if (spins >= 0) {
1289     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290     if (r >= 0)
1291     --spins;
1292     }
1293 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1294 jsr166 1.13 synchronized (this) {
1295 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1296 dl 1.8 try {
1297     wait();
1298     } catch (InterruptedException ie) {
1299 dl 1.11 try {
1300     Thread.currentThread().interrupt();
1301     } catch (SecurityException ignore) {
1302     }
1303 dl 1.8 }
1304     }
1305     else
1306 dl 1.12 notifyAll();
1307 dl 1.8 }
1308     }
1309     }
1310     }
1311 dl 1.1
1312     /**
1313 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1314     * when CAS of seq value for unlock fails.
1315 dl 1.1 */
1316 dl 1.12 private void releasePlock(int ps) {
1317     plock = ps;
1318 jsr166 1.13 synchronized (this) { notifyAll(); }
1319 dl 1.1 }
1320    
1321 dl 1.12 // Registering and deregistering workers
1322 dl 1.1
1323     /**
1324     * Callback from ForkJoinWorkerThread constructor to establish its
1325     * poolIndex and record its WorkQueue. To avoid scanning bias due
1326     * to packing entries in front of the workQueues array, we treat
1327     * the array as a simple power-of-two hash table using per-thread
1328     * seed as hash, expanding as needed.
1329     *
1330     * @param w the worker's queue
1331     */
1332     final void registerWorker(WorkQueue w) {
1333 dl 1.12 int s, ps; // generate a rarely colliding candidate index seed
1334     do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1335     s = indexSeed, s += SEED_INCREMENT) ||
1336     s == 0); // skip 0
1337     if (((ps = plock) & PL_LOCK) != 0 ||
1338     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1339     ps = acquirePlock();
1340     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1341 dl 1.1 try {
1342 dl 1.8 WorkQueue[] ws;
1343 dl 1.12 if (w != null && (ws = workQueues) != null) {
1344     w.seed = s;
1345     int n = ws.length, m = n - 1;
1346 dl 1.1 int r = (s << 1) | 1; // use odd-numbered indices
1347     if (ws[r &= m] != null) { // collision
1348     int probes = 0; // step by approx half size
1349 dl 1.12 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1350 dl 1.1 while (ws[r = (r + step) & m] != null) {
1351     if (++probes >= n) {
1352     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1353     m = n - 1;
1354     probes = 0;
1355     }
1356     }
1357     }
1358     w.eventCount = w.poolIndex = r; // establish before recording
1359 dl 1.12 ws[r] = w;
1360 dl 1.1 }
1361     } finally {
1362 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1363     releasePlock(nps);
1364 dl 1.1 }
1365     }
1366    
1367     /**
1368     * Final callback from terminating worker, as well as upon failure
1369 dl 1.12 * to construct or start a worker. Removes record of worker from
1370     * array, and adjusts counts. If pool is shutting down, tries to
1371     * complete termination.
1372 dl 1.1 *
1373 dl 1.12 * @param wt the worker thread or null if construction failed
1374 dl 1.1 * @param ex the exception causing failure, or null if none
1375     */
1376     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1377     WorkQueue w = null;
1378     if (wt != null && (w = wt.workQueue) != null) {
1379 dl 1.12 int ps;
1380     collectStealCount(w);
1381     w.qlock = -1; // ensure set
1382     if (((ps = plock) & PL_LOCK) != 0 ||
1383     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1384     ps = acquirePlock();
1385     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1386 dl 1.8 try {
1387 dl 1.12 int idx = w.poolIndex;
1388 dl 1.1 WorkQueue[] ws = workQueues;
1389     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1390     ws[idx] = null;
1391     } finally {
1392 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1393     releasePlock(nps);
1394 dl 1.1 }
1395     }
1396    
1397     long c; // adjust ctl counts
1398     do {} while (!U.compareAndSwapLong
1399     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1400     ((c - TC_UNIT) & TC_MASK) |
1401     (c & ~(AC_MASK|TC_MASK)))));
1402    
1403     if (!tryTerminate(false, false) && w != null) {
1404     w.cancelAll(); // cancel remaining tasks
1405     if (w.array != null) // suppress signal if never ran
1406 dl 1.12 signalWork(null, 1); // wake up or create replacement
1407 dl 1.1 if (ex == null) // help clean refs on way out
1408     ForkJoinTask.helpExpungeStaleExceptions();
1409     }
1410    
1411     if (ex != null) // rethrow
1412 dl 1.11 ForkJoinTask.rethrow(ex);
1413 dl 1.1 }
1414    
1415 dl 1.12 /**
1416     * Collect worker steal count into total. Called on termination
1417     * and upon int overflow of local count. (There is a possible race
1418     * in the latter case vs any caller of getStealCount, which can
1419     * make its results less accurate than usual.)
1420     */
1421     final void collectStealCount(WorkQueue w) {
1422     if (w != null) {
1423     long sc;
1424     int ns = w.nsteals;
1425     w.nsteals = 0; // handle overflow
1426     long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1427     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1428     sc = stealCount, sc + steals));
1429     }
1430     }
1431    
1432 dl 1.1 // Submissions
1433    
1434     /**
1435     * Unless shutting down, adds the given task to a submission queue
1436     * at submitter's current queue index (modulo submission
1437 dl 1.12 * range). Only the most common path is directly handled in this
1438     * method. All others are relayed to fullExternalPush.
1439 dl 1.1 *
1440     * @param task the task. Caller must ensure non-null.
1441     */
1442 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1443     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1444     if ((z = submitters.get()) != null && plock > 0 &&
1445     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1446     (q = ws[m & z.seed & SQMASK]) != null &&
1447     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1448     int s = q.top, n;
1449     if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1450     U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1451     task);
1452     q.top = s + 1; // push on to deque
1453     q.qlock = 0;
1454     if (n <= 1)
1455     signalWork(q, 1);
1456 dl 1.1 return;
1457     }
1458 dl 1.12 q.qlock = 0;
1459 dl 1.1 }
1460 dl 1.12 fullExternalPush(task);
1461 dl 1.1 }
1462    
1463 dl 1.7 /**
1464 dl 1.12 * Full version of externalPush. This method is called, among
1465     * other times, upon the first submission of the first task to the
1466     * pool, so must perform secondary initialization: creating
1467     * workQueue array and setting plock to a valid value. It also
1468     * detects first submission by an external thread by looking up
1469     * its ThreadLocal, and creates a new shared queue if the one at
1470     * index if empty or contended. The lock bodies must be
1471     * exception-free (so no try/finally) so we optimistically
1472     * allocate new queues/arrays outside the locks and throw them
1473     * away if (very rarely) not needed. Note that the plock seq value
1474     * can eventually wrap around zero, but if so harmlessly fails to
1475     * reinitialize.
1476     */
1477     private void fullExternalPush(ForkJoinTask<?> task) {
1478     for (Submitter z = null;;) {
1479     WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1480     if ((ps = plock) < 0)
1481     throw new RejectedExecutionException();
1482     else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1483     int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1484     n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1485     WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1486     if ((ps & PL_LOCK) != 0 ||
1487     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488     ps = acquirePlock();
1489     if ((ws = workQueues) == null)
1490     workQueues = nws;
1491     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493     releasePlock(nps);
1494     }
1495     else if (z == null && (z = submitters.get()) == null) {
1496     if (U.compareAndSwapInt(this, INDEXSEED,
1497     s = indexSeed, s += SEED_INCREMENT) &&
1498     s != 0) // skip 0
1499     submitters.set(z = new Submitter(s));
1500 dl 1.11 }
1501 dl 1.12 else {
1502     int k = (r = z.seed) & m & SQMASK;
1503     if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1504     (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1505     if (((ps = plock) & PL_LOCK) != 0 ||
1506     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507     ps = acquirePlock();
1508     WorkQueue w = null;
1509     if ((ws = workQueues) != null && k < ws.length &&
1510     (w = ws[k]) == null)
1511     ws[k] = q;
1512     else
1513     q = w;
1514     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1515     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1516     releasePlock(nps);
1517 dl 1.11 }
1518 dl 1.12 if (q != null && q.qlock == 0 && q.fullPush(task, false))
1519     return;
1520     r ^= r << 13; // same xorshift as WorkQueues
1521     r ^= r >>> 17;
1522     z.seed = r ^= r << 5; // move to a different index
1523 dl 1.11 }
1524     }
1525 dl 1.9 }
1526    
1527 dl 1.1 // Maintaining ctl counts
1528    
1529     /**
1530     * Increments active count; mainly called upon return from blocking.
1531     */
1532     final void incrementActiveCount() {
1533     long c;
1534     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1535     }
1536    
1537     /**
1538 dl 1.12 * Tries to create (at most one) or activate (possibly several)
1539     * workers if too few are active. On contention failure, continues
1540     * until at least one worker is signalled or the given queue is
1541     * empty or all workers are active.
1542     *
1543     * @param q if non-null, the queue holding tasks to be signalled
1544     * @param signals the target number of signals.
1545     */
1546     final void signalWork(WorkQueue q, int signals) {
1547     long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1548     while ((u = (int)((c = ctl) >>> 32)) < 0) {
1549     if ((e = (int)c) > 0) {
1550     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1551 dl 1.1 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1552     long nc = (((long)(w.nextWait & E_MASK)) |
1553     ((long)(u + UAC_UNIT) << 32));
1554     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1555     w.eventCount = (e + E_SEQ) & E_MASK;
1556     if ((p = w.parker) != null)
1557 dl 1.12 U.unpark(p);
1558     if (--signals <= 0)
1559     break;
1560     }
1561     else
1562     signals = 1;
1563     if ((q != null && q.queueSize() == 0))
1564 dl 1.1 break;
1565     }
1566     else
1567     break;
1568     }
1569 dl 1.12 else if (e == 0 && (u & SHORT_SIGN) != 0) {
1570 dl 1.1 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1571     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1572     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1573 dl 1.12 ForkJoinWorkerThread wt = null;
1574     Throwable ex = null;
1575     boolean started = false;
1576     try {
1577     ForkJoinWorkerThreadFactory fac;
1578     if ((fac = factory) != null &&
1579     (wt = fac.newThread(this)) != null) {
1580     wt.start();
1581     started = true;
1582     }
1583     } catch (Throwable rex) {
1584     ex = rex;
1585     }
1586     if (!started)
1587     deregisterWorker(wt, ex); // adjust counts on failure
1588 dl 1.1 break;
1589     }
1590     }
1591     else
1592     break;
1593     }
1594     }
1595    
1596     // Scanning for tasks
1597    
1598     /**
1599     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1600     */
1601     final void runWorker(WorkQueue w) {
1602 dl 1.12 // initialize queue array in this thread
1603     w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1604     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1605 dl 1.1 }
1606    
1607     /**
1608     * Scans for and, if found, returns one task, else possibly
1609     * inactivates the worker. This method operates on single reads of
1610     * volatile state and is designed to be re-invoked continuously,
1611     * in part because it returns upon detecting inconsistencies,
1612     * contention, or state changes that indicate possible success on
1613     * re-invocation.
1614     *
1615     * The scan searches for tasks across a random permutation of
1616     * queues (starting at a random index and stepping by a random
1617     * relative prime, checking each at least once). The scan
1618     * terminates upon either finding a non-empty queue, or completing
1619     * the sweep. If the worker is not inactivated, it takes and
1620 dl 1.12 * returns a task from this queue. Otherwise, if not activated, it
1621     * signals workers (that may include itself) and returns so caller
1622     * can retry. Also returns for trtry if the worker array may have
1623     * changed during an empty scan. On failure to find a task, we
1624 dl 1.1 * take one of the following actions, after which the caller will
1625     * retry calling this method unless terminated.
1626     *
1627     * * If pool is terminating, terminate the worker.
1628     *
1629     * * If not already enqueued, try to inactivate and enqueue the
1630     * worker on wait queue. Or, if inactivating has caused the pool
1631     * to be quiescent, relay to idleAwaitWork to check for
1632     * termination and possibly shrink pool.
1633     *
1634 dl 1.12 * * If already enqueued and none of the above apply, possibly
1635     * (with 1/2 probablility) park awaiting signal, else lingering to
1636     * help scan and signal.
1637 dl 1.1 *
1638     * @param w the worker (via its WorkQueue)
1639 jsr166 1.5 * @return a task or null if none found
1640 dl 1.1 */
1641     private final ForkJoinTask<?> scan(WorkQueue w) {
1642 dl 1.12 WorkQueue[] ws; WorkQueue q; // first update random seed
1643 dl 1.1 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1644 dl 1.12 int ps = plock, m; // volatile read order matters
1645 dl 1.1 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1646 dl 1.12 int ec = w.eventCount; // ec is negative if inactive
1647     int step = (r >>> 16) | 1; // relatively prime
1648     for (int j = (m + 1) << 2; ; --j, r += step) {
1649     ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1650 dl 1.1 if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1651 dl 1.12 (a = q.array) != null) { // probably nonempty
1652 dl 1.1 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1653     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1654     if (q.base == b && ec >= 0 && t != null &&
1655     U.compareAndSwapObject(a, i, t, null)) {
1656 dl 1.12 if ((n = q.top - (q.base = b + 1)) > 0)
1657     signalWork(q, n);
1658     return t; // taken
1659     }
1660     if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1661     if ((n = q.queueSize() - 1) > 0)
1662     signalWork(q, n);
1663     break; // let caller retry after signal
1664 dl 1.1 }
1665 dl 1.12 }
1666     else if (j < 0) { // end of scan
1667     long c = ctl; int e;
1668     if (plock != ps) // incomplete sweep
1669     break;
1670     if ((e = (int)c) < 0) // pool is terminating
1671     w.qlock = -1;
1672     else if (ec >= 0) { // try to enqueue/inactivate
1673     long nc = ((long)ec |
1674     ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1675     w.nextWait = e;
1676     w.eventCount = ec | INT_SIGN; // mark as inactive
1677     if (ctl != c ||
1678     !U.compareAndSwapLong(this, CTL, c, nc))
1679     w.eventCount = ec; // unmark on CAS failure
1680     else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1681     idleAwaitWork(w, nc, c); // quiescent
1682     }
1683     else if (w.seed >= 0 && w.eventCount < 0) {
1684     Thread wt = Thread.currentThread();
1685     Thread.interrupted(); // clear status
1686     U.putObject(wt, PARKBLOCKER, this);
1687     w.parker = wt; // emulate LockSupport.park
1688     if (w.eventCount < 0) // recheck
1689     U.park(false, 0L);
1690     w.parker = null;
1691     U.putObject(wt, PARKBLOCKER, null);
1692 dl 1.1 }
1693     break;
1694     }
1695     }
1696     }
1697     return null;
1698     }
1699    
1700     /**
1701     * If inactivating worker w has caused the pool to become
1702     * quiescent, checks for pool termination, and, so long as this is
1703 dl 1.7 * not the only worker, waits for event for up to a given
1704     * duration. On timeout, if ctl has not changed, terminates the
1705 dl 1.1 * worker, which will in turn wake up another worker to possibly
1706     * repeat this process.
1707     *
1708     * @param w the calling worker
1709     * @param currentCtl the ctl value triggering possible quiescence
1710     * @param prevCtl the ctl value to restore if thread is terminated
1711     */
1712     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1713 dl 1.12 if (w.eventCount < 0 &&
1714     (this == commonPool || !tryTerminate(false, false)) &&
1715     (int)prevCtl != 0) {
1716 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1717     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1718     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1719 dl 1.1 Thread wt = Thread.currentThread();
1720     while (ctl == currentCtl) {
1721     Thread.interrupted(); // timed variant of version in scan()
1722     U.putObject(wt, PARKBLOCKER, this);
1723     w.parker = wt;
1724     if (ctl == currentCtl)
1725 dl 1.7 U.park(false, parkTime);
1726 dl 1.1 w.parker = null;
1727     U.putObject(wt, PARKBLOCKER, null);
1728     if (ctl != currentCtl)
1729     break;
1730 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1731 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1732     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1733 dl 1.12 w.qlock = -1; // shrink
1734 dl 1.1 break;
1735     }
1736     }
1737     }
1738     }
1739    
1740     /**
1741 dl 1.12 * Scans through queues looking for work while joining a task;
1742     * if any are present, signals.
1743     *
1744     * @param task to return early if done
1745     * @param origin an index to start scan
1746     */
1747     final int helpSignal(ForkJoinTask<?> task, int origin) {
1748     WorkQueue[] ws; WorkQueue q; int m, n, s;
1749     if (task != null && (ws = workQueues) != null &&
1750     (m = ws.length - 1) >= 0) {
1751     for (int i = 0; i <= m; ++i) {
1752     if ((s = task.status) < 0)
1753     return s;
1754     if ((q = ws[(i + origin) & m]) != null &&
1755     (n = q.queueSize()) > 0) {
1756     signalWork(q, n);
1757     if ((int)(ctl >> AC_SHIFT) >= 0)
1758     break;
1759     }
1760     }
1761     }
1762     return 0;
1763     }
1764    
1765     /**
1766 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1767     * task, or in turn one of its stealers, Traces currentSteal ->
1768     * currentJoin links looking for a thread working on a descendant
1769     * of the given task and with a non-empty queue to steal back and
1770     * execute tasks from. The first call to this method upon a
1771     * waiting join will often entail scanning/search, (which is OK
1772     * because the joiner has nothing better to do), but this method
1773     * leaves hints in workers to speed up subsequent calls. The
1774     * implementation is very branchy to cope with potential
1775     * inconsistencies or loops encountering chains that are stale,
1776     * unknown, or so long that they are likely cyclic.
1777     *
1778     * @param joiner the joining worker
1779     * @param task the task to join
1780     * @return 0 if no progress can be made, negative if task
1781     * known complete, else positive
1782     */
1783     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1784     int stat = 0, steps = 0; // bound to avoid cycles
1785     if (joiner != null && task != null) { // hoist null checks
1786     restart: for (;;) {
1787     ForkJoinTask<?> subtask = task; // current target
1788     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1789     WorkQueue[] ws; int m, s, h;
1790     if ((s = task.status) < 0) {
1791     stat = s;
1792     break restart;
1793     }
1794     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1795     break restart; // shutting down
1796     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1797     v.currentSteal != subtask) {
1798     for (int origin = h;;) { // find stealer
1799     if (((h = (h + 2) & m) & 15) == 1 &&
1800     (subtask.status < 0 || j.currentJoin != subtask))
1801     continue restart; // occasional staleness check
1802     if ((v = ws[h]) != null &&
1803     v.currentSteal == subtask) {
1804     j.stealHint = h; // save hint
1805     break;
1806     }
1807     if (h == origin)
1808     break restart; // cannot find stealer
1809     }
1810     }
1811     for (;;) { // help stealer or descend to its stealer
1812     ForkJoinTask[] a; int b;
1813     if (subtask.status < 0) // surround probes with
1814     continue restart; // consistency checks
1815     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1816     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1817     ForkJoinTask<?> t =
1818     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1819     if (subtask.status < 0 || j.currentJoin != subtask ||
1820     v.currentSteal != subtask)
1821     continue restart; // stale
1822     stat = 1; // apparent progress
1823     if (t != null && v.base == b &&
1824     U.compareAndSwapObject(a, i, t, null)) {
1825     v.base = b + 1; // help stealer
1826     joiner.runSubtask(t);
1827     }
1828     else if (v.base == b && ++steps == MAX_HELP)
1829     break restart; // v apparently stalled
1830     }
1831     else { // empty -- try to descend
1832     ForkJoinTask<?> next = v.currentJoin;
1833     if (subtask.status < 0 || j.currentJoin != subtask ||
1834     v.currentSteal != subtask)
1835     continue restart; // stale
1836     else if (next == null || ++steps == MAX_HELP)
1837     break restart; // dead-end or maybe cyclic
1838     else {
1839     subtask = next;
1840     j = v;
1841     break;
1842     }
1843     }
1844     }
1845     }
1846     }
1847     }
1848     return stat;
1849     }
1850    
1851     /**
1852 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1853     * and run tasks within the target's computation
1854     *
1855     * @param task the task to join
1856     * @param mode if shared, exit upon completing any task
1857     * if all workers are active
1858 dl 1.1 *
1859     */
1860 dl 1.12 private int helpComplete(ForkJoinTask<?> task, int mode) {
1861     WorkQueue[] ws; WorkQueue q; int m, n, s;
1862     if (task != null && (ws = workQueues) != null &&
1863     (m = ws.length - 1) >= 0) {
1864     for (int j = 1, origin = j;;) {
1865     if ((s = task.status) < 0)
1866     return s;
1867     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1868     origin = j;
1869     if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1870     break;
1871     }
1872     else if ((j = (j + 2) & m) == origin)
1873 dl 1.1 break;
1874     }
1875     }
1876 dl 1.12 return 0;
1877 dl 1.1 }
1878    
1879     /**
1880     * Tries to decrement active count (sometimes implicitly) and
1881     * possibly release or create a compensating worker in preparation
1882     * for blocking. Fails on contention or termination. Otherwise,
1883 dl 1.12 * adds a new thread if no idle workers are available and pool
1884     * may become starved.
1885 dl 1.1 */
1886 dl 1.12 final boolean tryCompensate() {
1887     int pc = parallelism, e, u, i, tc; long c;
1888     WorkQueue[] ws; WorkQueue w; Thread p;
1889     if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1890     if (e != 0 && (i = e & SMASK) < ws.length &&
1891     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1892     long nc = ((long)(w.nextWait & E_MASK) |
1893     (c & (AC_MASK|TC_MASK)));
1894     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1895     w.eventCount = (e + E_SEQ) & E_MASK;
1896     if ((p = w.parker) != null)
1897     U.unpark(p);
1898     return true; // replace with idle worker
1899 dl 1.1 }
1900     }
1901 dl 1.12 else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1902     (u >> UAC_SHIFT) + pc > 1) {
1903     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1904     if (U.compareAndSwapLong(this, CTL, c, nc))
1905     return true; // no compensation
1906     }
1907     else if ((tc = u + pc) < MAX_CAP) {
1908     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1909     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910     Throwable ex = null;
1911     ForkJoinWorkerThread wt = null;
1912     try {
1913     ForkJoinWorkerThreadFactory fac;
1914     if ((fac = factory) != null &&
1915     (wt = fac.newThread(this)) != null) {
1916     wt.start();
1917 dl 1.1 return true;
1918     }
1919 dl 1.12 } catch (Throwable rex) {
1920     ex = rex;
1921 dl 1.1 }
1922 dl 1.12 deregisterWorker(wt, ex); // adjust counts etc
1923 dl 1.1 }
1924     }
1925     }
1926     return false;
1927     }
1928    
1929     /**
1930     * Helps and/or blocks until the given task is done.
1931     *
1932     * @param joiner the joining worker
1933     * @param task the task
1934     * @return task status on exit
1935     */
1936     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1937 dl 1.12 int s = 0;
1938     if (joiner != null && task != null && (s = task.status) >= 0) {
1939 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1940     joiner.currentJoin = task;
1941 dl 1.12 do {} while ((s = task.status) >= 0 &&
1942     joiner.queueSize() > 0 &&
1943     joiner.tryRemoveAndExec(task)); // process local tasks
1944     if (s >= 0 && (s = task.status) >= 0 &&
1945     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1946     (task instanceof CountedCompleter))
1947     s = helpComplete(task, LIFO_QUEUE);
1948     while (s >= 0 && (s = task.status) >= 0) {
1949     if ((joiner.queueSize() > 0 || // try helping
1950     (s = tryHelpStealer(joiner, task)) == 0) &&
1951     (s = task.status) >= 0 && tryCompensate()) {
1952     if (task.trySetSignal() && (s = task.status) >= 0) {
1953     synchronized (task) {
1954     if (task.status >= 0) {
1955     try { // see ForkJoinTask
1956     task.wait(); // for explanation
1957     } catch (InterruptedException ie) {
1958 dl 1.1 }
1959     }
1960 dl 1.12 else
1961     task.notifyAll();
1962 dl 1.1 }
1963     }
1964 dl 1.12 long c; // re-activate
1965     do {} while (!U.compareAndSwapLong
1966     (this, CTL, c = ctl, c + AC_UNIT));
1967 dl 1.1 }
1968     }
1969 dl 1.12 joiner.currentJoin = prevJoin;
1970 dl 1.1 }
1971     return s;
1972     }
1973    
1974     /**
1975     * Stripped-down variant of awaitJoin used by timed joins. Tries
1976     * to help join only while there is continuous progress. (Caller
1977     * will then enter a timed wait.)
1978     *
1979     * @param joiner the joining worker
1980     * @param task the task
1981     */
1982 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1983 dl 1.1 int s;
1984 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
1985     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1986     joiner.currentJoin = task;
1987     do {} while ((s = task.status) >= 0 &&
1988     joiner.queueSize() > 0 &&
1989     joiner.tryRemoveAndExec(task));
1990     if (s >= 0 && (s = task.status) >= 0 &&
1991     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1992     (task instanceof CountedCompleter))
1993     s = helpComplete(task, LIFO_QUEUE);
1994     if (s >= 0 && joiner.queueSize() == 0) {
1995     do {} while (task.status >= 0 &&
1996     tryHelpStealer(joiner, task) > 0);
1997     }
1998     joiner.currentJoin = prevJoin;
1999     }
2000 dl 1.1 }
2001    
2002     /**
2003     * Returns a (probably) non-empty steal queue, if one is found
2004     * during a random, then cyclic scan, else null. This method must
2005     * be retried by caller if, by the time it tries to use the queue,
2006     * it is empty.
2007 dl 1.12 * @param r a (random) seed for scanning
2008 dl 1.1 */
2009 dl 1.12 private WorkQueue findNonEmptyStealQueue(int r) {
2010 dl 1.1 int step = (r >>> 16) | 1;
2011     for (WorkQueue[] ws;;) {
2012 dl 1.12 int ps = plock, m;
2013 dl 1.1 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2014     return null;
2015     for (int j = (m + 1) << 2; ; r += step) {
2016     WorkQueue q = ws[((r << 1) | 1) & m];
2017 dl 1.12 if (q != null && q.queueSize() > 0)
2018 dl 1.1 return q;
2019     else if (--j < 0) {
2020 dl 1.12 if (plock == ps)
2021 dl 1.1 return null;
2022     break;
2023     }
2024     }
2025     }
2026     }
2027    
2028     /**
2029     * Runs tasks until {@code isQuiescent()}. We piggyback on
2030     * active count ctl maintenance, but rather than blocking
2031     * when tasks cannot be found, we rescan until all others cannot
2032     * find tasks either.
2033     */
2034     final void helpQuiescePool(WorkQueue w) {
2035     for (boolean active = true;;) {
2036     ForkJoinTask<?> localTask; // exhaust local queue
2037     while ((localTask = w.nextLocalTask()) != null)
2038     localTask.doExec();
2039 dl 1.12 // Similar to loop in scan(), but ignoring submissions
2040     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2041 dl 1.1 if (q != null) {
2042     ForkJoinTask<?> t; int b;
2043     if (!active) { // re-establish active count
2044     long c;
2045     active = true;
2046     do {} while (!U.compareAndSwapLong
2047     (this, CTL, c = ctl, c + AC_UNIT));
2048     }
2049     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2050     w.runSubtask(t);
2051     }
2052     else {
2053     long c;
2054     if (active) { // decrement active count without queuing
2055     active = false;
2056     do {} while (!U.compareAndSwapLong
2057     (this, CTL, c = ctl, c -= AC_UNIT));
2058     }
2059     else
2060     c = ctl; // re-increment on exit
2061     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2062     do {} while (!U.compareAndSwapLong
2063     (this, CTL, c = ctl, c + AC_UNIT));
2064     break;
2065     }
2066     }
2067     }
2068     }
2069    
2070     /**
2071     * Gets and removes a local or stolen task for the given worker.
2072     *
2073     * @return a task, if available
2074     */
2075     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2076     for (ForkJoinTask<?> t;;) {
2077     WorkQueue q; int b;
2078     if ((t = w.nextLocalTask()) != null)
2079     return t;
2080 dl 1.12 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2081 dl 1.1 return null;
2082     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2083     return t;
2084     }
2085     }
2086    
2087     /**
2088 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2089     * programmers, frameworks, tools, or languages have little or no
2090     * idea about task granularity. In essence by offering this
2091     * method, we ask users only about tradeoffs in overhead vs
2092     * expected throughput and its variance, rather than how finely to
2093     * partition tasks.
2094     *
2095     * In a steady state strict (tree-structured) computation, each
2096     * thread makes available for stealing enough tasks for other
2097     * threads to remain active. Inductively, if all threads play by
2098     * the same rules, each thread should make available only a
2099     * constant number of tasks.
2100     *
2101     * The minimum useful constant is just 1. But using a value of 1
2102     * would require immediate replenishment upon each steal to
2103     * maintain enough tasks, which is infeasible. Further,
2104     * partitionings/granularities of offered tasks should minimize
2105     * steal rates, which in general means that threads nearer the top
2106     * of computation tree should generate more than those nearer the
2107     * bottom. In perfect steady state, each thread is at
2108     * approximately the same level of computation tree. However,
2109     * producing extra tasks amortizes the uncertainty of progress and
2110     * diffusion assumptions.
2111     *
2112     * So, users will want to use values larger, but not much larger
2113     * than 1 to both smooth over transient shortages and hedge
2114     * against uneven progress; as traded off against the cost of
2115     * extra task overhead. We leave the user to pick a threshold
2116     * value to compare with the results of this call to guide
2117     * decisions, but recommend values such as 3.
2118     *
2119     * When all threads are active, it is on average OK to estimate
2120     * surplus strictly locally. In steady-state, if one thread is
2121     * maintaining say 2 surplus tasks, then so are others. So we can
2122     * just use estimated queue length. However, this strategy alone
2123     * leads to serious mis-estimates in some non-steady-state
2124     * conditions (ramp-up, ramp-down, other stalls). We can detect
2125     * many of these by further considering the number of "idle"
2126     * threads, that are known to have zero queued tasks, so
2127     * compensate by a factor of (#idle/#active) threads.
2128     *
2129     * Note: The approximation of #busy workers as #active workers is
2130     * not very good under current signalling scheme, and should be
2131     * improved.
2132     */
2133     static int getSurplusQueuedTaskCount() {
2134     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2135     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2136     int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2137     int p = (pool = wt.pool).parallelism;
2138     int a = (int)(pool.ctl >> AC_SHIFT) + p;
2139     return q.top - b - (a > (p >>>= 1) ? 0 :
2140     a > (p >>>= 1) ? 1 :
2141     a > (p >>>= 1) ? 2 :
2142     a > (p >>>= 1) ? 4 :
2143     8);
2144     }
2145     return 0;
2146 dl 1.7 }
2147    
2148 dl 1.1 // Termination
2149    
2150     /**
2151     * Possibly initiates and/or completes termination. The caller
2152     * triggering termination runs three passes through workQueues:
2153     * (0) Setting termination status, followed by wakeups of queued
2154     * workers; (1) cancelling all tasks; (2) interrupting lagging
2155     * threads (likely in external tasks, but possibly also blocked in
2156     * joins). Each pass repeats previous steps because of potential
2157     * lagging thread creation.
2158     *
2159     * @param now if true, unconditionally terminate, else only
2160     * if no work and no active workers
2161     * @param enable if true, enable shutdown when next possible
2162     * @return true if now terminating or terminated
2163     */
2164     private boolean tryTerminate(boolean now, boolean enable) {
2165 dl 1.12 if (this == commonPool) // cannot shut down
2166     return false;
2167 dl 1.1 for (long c;;) {
2168     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2169     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2170 jsr166 1.10 synchronized (this) {
2171 dl 1.8 notifyAll(); // signal when 0 workers
2172     }
2173 dl 1.1 }
2174     return true;
2175     }
2176 dl 1.12 if (plock >= 0) { // not yet enabled
2177     int ps;
2178 dl 1.1 if (!enable)
2179     return false;
2180 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
2181     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2182     ps = acquirePlock();
2183     int nps = SHUTDOWN;
2184     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2185     releasePlock(nps);
2186 dl 1.1 }
2187     if (!now) { // check if idle & no tasks
2188     if ((int)(c >> AC_SHIFT) != -parallelism ||
2189     hasQueuedSubmissions())
2190     return false;
2191     // Check for unqueued inactive workers. One pass suffices.
2192     WorkQueue[] ws = workQueues; WorkQueue w;
2193     if (ws != null) {
2194     for (int i = 1; i < ws.length; i += 2) {
2195     if ((w = ws[i]) != null && w.eventCount >= 0)
2196     return false;
2197     }
2198     }
2199     }
2200     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2201     for (int pass = 0; pass < 3; ++pass) {
2202     WorkQueue[] ws = workQueues;
2203     if (ws != null) {
2204     WorkQueue w;
2205     int n = ws.length;
2206     for (int i = 0; i < n; ++i) {
2207     if ((w = ws[i]) != null) {
2208 dl 1.12 w.qlock = -1;
2209 dl 1.1 if (pass > 0) {
2210     w.cancelAll();
2211     if (pass > 1)
2212     w.interruptOwner();
2213     }
2214     }
2215     }
2216     // Wake up workers parked on event queue
2217     int i, e; long cc; Thread p;
2218     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2219     (i = e & SMASK) < n &&
2220     (w = ws[i]) != null) {
2221     long nc = ((long)(w.nextWait & E_MASK) |
2222     ((cc + AC_UNIT) & AC_MASK) |
2223     (cc & (TC_MASK|STOP_BIT)));
2224     if (w.eventCount == (e | INT_SIGN) &&
2225     U.compareAndSwapLong(this, CTL, cc, nc)) {
2226     w.eventCount = (e + E_SEQ) & E_MASK;
2227 dl 1.12 w.qlock = -1;
2228 dl 1.1 if ((p = w.parker) != null)
2229     U.unpark(p);
2230     }
2231     }
2232     }
2233     }
2234     }
2235     }
2236     }
2237    
2238 dl 1.12 // external operations on common pool
2239    
2240     /**
2241     * Returns common pool queue for a thread that has submitted at
2242     * least one task.
2243     */
2244     static WorkQueue commonSubmitterQueue() {
2245     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2246     return ((z = submitters.get()) != null &&
2247     (p = commonPool) != null &&
2248     (ws = p.workQueues) != null &&
2249     (m = ws.length - 1) >= 0) ?
2250     ws[m & z.seed & SQMASK] : null;
2251     }
2252    
2253     /**
2254     * Tries to pop the given task from submitter's queue in common pool.
2255     */
2256     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2257     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2258     ForkJoinTask<?>[] a; int m, s; long j;
2259     if ((z = submitters.get()) != null &&
2260     (p = commonPool) != null &&
2261     (ws = p.workQueues) != null &&
2262     (m = ws.length - 1) >= 0 &&
2263     (q = ws[m & z.seed & SQMASK]) != null &&
2264     (s = q.top) != q.base &&
2265     (a = q.array) != null &&
2266     U.getObjectVolatile
2267     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2268     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2269     if (q.array == a && q.top == s && // recheck
2270     U.compareAndSwapObject(a, j, t, null)) {
2271     q.top = s - 1;
2272     q.qlock = 0;
2273     return true;
2274     }
2275     q.qlock = 0;
2276     }
2277     return false;
2278     }
2279    
2280     /**
2281     * Tries to pop and run local tasks within the same computation
2282     * as the given root. On failure, tries to help complete from
2283     * other queues via helpComplete.
2284     */
2285     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2286     ForkJoinTask<?>[] a; int m;
2287     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2288     root != null && root.status >= 0) {
2289     for (;;) {
2290     int s; Object o; CountedCompleter<?> task = null;
2291     if ((s = q.top) - q.base > 0) {
2292     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2293     if ((o = U.getObject(a, j)) != null &&
2294     (o instanceof CountedCompleter)) {
2295     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2296     do {
2297     if (r == root) {
2298     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2299     if (q.array == a && q.top == s &&
2300     U.compareAndSwapObject(a, j, t, null)) {
2301     q.top = s - 1;
2302     task = t;
2303     }
2304     q.qlock = 0;
2305     }
2306     break;
2307     }
2308 jsr166 1.13 } while ((r = r.completer) != null);
2309 dl 1.12 }
2310     }
2311     if (task != null)
2312     task.doExec();
2313     if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2314     break;
2315     if (task == null) {
2316     if (helpSignal(root, q.poolIndex) >= 0)
2317     helpComplete(root, SHARED_QUEUE);
2318     break;
2319     }
2320     }
2321     }
2322     }
2323    
2324     /**
2325     * Tries to help execute or signal availability of the given task
2326     * from submitter's queue in common pool.
2327     */
2328     static void externalHelpJoin(ForkJoinTask<?> t) {
2329     // Some hard-to-avoid overlap with tryExternalUnpush
2330     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2331     ForkJoinTask<?>[] a; int m, s, n; long j;
2332     if (t != null && t.status >= 0 &&
2333     (z = submitters.get()) != null &&
2334     (p = commonPool) != null &&
2335     (ws = p.workQueues) != null &&
2336     (m = ws.length - 1) >= 0 &&
2337     (q = ws[m & z.seed & SQMASK]) != null &&
2338     (a = q.array) != null) {
2339     if ((s = q.top) != q.base &&
2340     U.getObjectVolatile
2341     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2342     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343     if (q.array == a && q.top == s &&
2344     U.compareAndSwapObject(a, j, t, null)) {
2345     q.top = s - 1;
2346     q.qlock = 0;
2347     t.doExec();
2348     }
2349     else
2350     q.qlock = 0;
2351     }
2352     if (t.status >= 0) {
2353     if (t instanceof CountedCompleter)
2354     p.externalHelpComplete(q, t);
2355     else
2356     p.helpSignal(t, q.poolIndex);
2357     }
2358     }
2359     }
2360    
2361     /**
2362     * Restricted version of helpQuiescePool for external callers
2363     */
2364     static void externalHelpQuiescePool() {
2365     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2366     int r = ThreadLocalRandom.current().nextInt();
2367     if ((p = commonPool) != null &&
2368     (q = p.findNonEmptyStealQueue(r)) != null &&
2369     (b = q.base) - q.top < 0 &&
2370     (t = q.pollAt(b)) != null)
2371     t.doExec();
2372     }
2373    
2374 dl 1.1 // Exported methods
2375    
2376     // Constructors
2377    
2378     /**
2379     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2380     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2381     * #defaultForkJoinWorkerThreadFactory default thread factory},
2382     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2383     *
2384     * @throws SecurityException if a security manager exists and
2385     * the caller is not permitted to modify threads
2386     * because it does not hold {@link
2387     * java.lang.RuntimePermission}{@code ("modifyThread")}
2388     */
2389     public ForkJoinPool() {
2390     this(Runtime.getRuntime().availableProcessors(),
2391     defaultForkJoinWorkerThreadFactory, null, false);
2392     }
2393    
2394     /**
2395     * Creates a {@code ForkJoinPool} with the indicated parallelism
2396     * level, the {@linkplain
2397     * #defaultForkJoinWorkerThreadFactory default thread factory},
2398     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2399     *
2400     * @param parallelism the parallelism level
2401     * @throws IllegalArgumentException if parallelism less than or
2402     * equal to zero, or greater than implementation limit
2403     * @throws SecurityException if a security manager exists and
2404     * the caller is not permitted to modify threads
2405     * because it does not hold {@link
2406     * java.lang.RuntimePermission}{@code ("modifyThread")}
2407     */
2408     public ForkJoinPool(int parallelism) {
2409     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2410     }
2411    
2412     /**
2413     * Creates a {@code ForkJoinPool} with the given parameters.
2414     *
2415     * @param parallelism the parallelism level. For default value,
2416     * use {@link java.lang.Runtime#availableProcessors}.
2417     * @param factory the factory for creating new threads. For default value,
2418     * use {@link #defaultForkJoinWorkerThreadFactory}.
2419     * @param handler the handler for internal worker threads that
2420     * terminate due to unrecoverable errors encountered while executing
2421     * tasks. For default value, use {@code null}.
2422     * @param asyncMode if true,
2423     * establishes local first-in-first-out scheduling mode for forked
2424     * tasks that are never joined. This mode may be more appropriate
2425     * than default locally stack-based mode in applications in which
2426     * worker threads only process event-style asynchronous tasks.
2427     * For default value, use {@code false}.
2428     * @throws IllegalArgumentException if parallelism less than or
2429     * equal to zero, or greater than implementation limit
2430     * @throws NullPointerException if the factory is null
2431     * @throws SecurityException if a security manager exists and
2432     * the caller is not permitted to modify threads
2433     * because it does not hold {@link
2434     * java.lang.RuntimePermission}{@code ("modifyThread")}
2435     */
2436     public ForkJoinPool(int parallelism,
2437     ForkJoinWorkerThreadFactory factory,
2438     Thread.UncaughtExceptionHandler handler,
2439     boolean asyncMode) {
2440     checkPermission();
2441     if (factory == null)
2442     throw new NullPointerException();
2443     if (parallelism <= 0 || parallelism > MAX_CAP)
2444     throw new IllegalArgumentException();
2445     this.parallelism = parallelism;
2446     this.factory = factory;
2447     this.ueh = handler;
2448     this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2449     long np = (long)(-parallelism); // offset ctl counts
2450     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 dl 1.12 int pn = nextPoolId();
2452 dl 1.1 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2453     sb.append(Integer.toString(pn));
2454     sb.append("-worker-");
2455     this.workerNamePrefix = sb.toString();
2456     }
2457    
2458 dl 1.7 /**
2459 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2460     * Basically the same as above, but uses smallest possible initial footprint.
2461     */
2462 dl 1.12 ForkJoinPool(int parallelism, long ctl,
2463 dl 1.8 ForkJoinWorkerThreadFactory factory,
2464     Thread.UncaughtExceptionHandler handler) {
2465 dl 1.12 this.parallelism = parallelism;
2466     this.ctl = ctl;
2467 dl 1.8 this.factory = factory;
2468     this.ueh = handler;
2469     this.localMode = LIFO_QUEUE;
2470     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2471     }
2472    
2473     /**
2474     * Returns the common pool instance.
2475 dl 1.7 *
2476     * @return the common pool instance
2477     */
2478     public static ForkJoinPool commonPool() {
2479 dl 1.12 return commonPool; // cannot be null (if so, a static init error)
2480 dl 1.7 }
2481    
2482 dl 1.1 // Execution methods
2483    
2484     /**
2485     * Performs the given task, returning its result upon completion.
2486     * If the computation encounters an unchecked Exception or Error,
2487     * it is rethrown as the outcome of this invocation. Rethrown
2488     * exceptions behave in the same way as regular exceptions, but,
2489     * when possible, contain stack traces (as displayed for example
2490     * using {@code ex.printStackTrace()}) of both the current thread
2491     * as well as the thread actually encountering the exception;
2492     * minimally only the latter.
2493     *
2494     * @param task the task
2495     * @return the task's result
2496     * @throws NullPointerException if the task is null
2497     * @throws RejectedExecutionException if the task cannot be
2498     * scheduled for execution
2499     */
2500     public <T> T invoke(ForkJoinTask<T> task) {
2501     if (task == null)
2502     throw new NullPointerException();
2503 dl 1.12 externalPush(task);
2504 dl 1.1 return task.join();
2505     }
2506    
2507     /**
2508     * Arranges for (asynchronous) execution of the given task.
2509     *
2510     * @param task the task
2511     * @throws NullPointerException if the task is null
2512     * @throws RejectedExecutionException if the task cannot be
2513     * scheduled for execution
2514     */
2515     public void execute(ForkJoinTask<?> task) {
2516     if (task == null)
2517     throw new NullPointerException();
2518 dl 1.12 externalPush(task);
2519 dl 1.1 }
2520    
2521     // AbstractExecutorService methods
2522    
2523     /**
2524     * @throws NullPointerException if the task is null
2525     * @throws RejectedExecutionException if the task cannot be
2526     * scheduled for execution
2527     */
2528     public void execute(Runnable task) {
2529     if (task == null)
2530     throw new NullPointerException();
2531     ForkJoinTask<?> job;
2532     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2533     job = (ForkJoinTask<?>) task;
2534     else
2535     job = new ForkJoinTask.AdaptedRunnableAction(task);
2536 dl 1.12 externalPush(job);
2537 dl 1.1 }
2538    
2539     /**
2540     * Submits a ForkJoinTask for execution.
2541     *
2542     * @param task the task to submit
2543     * @return the task
2544     * @throws NullPointerException if the task is null
2545     * @throws RejectedExecutionException if the task cannot be
2546     * scheduled for execution
2547     */
2548     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2549     if (task == null)
2550     throw new NullPointerException();
2551 dl 1.12 externalPush(task);
2552 dl 1.1 return task;
2553     }
2554    
2555     /**
2556     * @throws NullPointerException if the task is null
2557     * @throws RejectedExecutionException if the task cannot be
2558     * scheduled for execution
2559     */
2560     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2561     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2562 dl 1.12 externalPush(job);
2563 dl 1.1 return job;
2564     }
2565    
2566     /**
2567     * @throws NullPointerException if the task is null
2568     * @throws RejectedExecutionException if the task cannot be
2569     * scheduled for execution
2570     */
2571     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2572     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2573 dl 1.12 externalPush(job);
2574 dl 1.1 return job;
2575     }
2576    
2577     /**
2578     * @throws NullPointerException if the task is null
2579     * @throws RejectedExecutionException if the task cannot be
2580     * scheduled for execution
2581     */
2582     public ForkJoinTask<?> submit(Runnable task) {
2583     if (task == null)
2584     throw new NullPointerException();
2585     ForkJoinTask<?> job;
2586     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587     job = (ForkJoinTask<?>) task;
2588     else
2589     job = new ForkJoinTask.AdaptedRunnableAction(task);
2590 dl 1.12 externalPush(job);
2591 dl 1.1 return job;
2592     }
2593    
2594     /**
2595     * @throws NullPointerException {@inheritDoc}
2596     * @throws RejectedExecutionException {@inheritDoc}
2597     */
2598     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2599     // In previous versions of this class, this method constructed
2600     // a task to run ForkJoinTask.invokeAll, but now external
2601     // invocation of multiple tasks is at least as efficient.
2602     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2603     // Workaround needed because method wasn't declared with
2604     // wildcards in return type but should have been.
2605     @SuppressWarnings({"unchecked", "rawtypes"})
2606     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2607    
2608     boolean done = false;
2609     try {
2610     for (Callable<T> t : tasks) {
2611     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 dl 1.12 externalPush(f);
2613 dl 1.1 fs.add(f);
2614     }
2615     for (ForkJoinTask<T> f : fs)
2616     f.quietlyJoin();
2617     done = true;
2618     return futures;
2619     } finally {
2620     if (!done)
2621     for (ForkJoinTask<T> f : fs)
2622     f.cancel(false);
2623     }
2624     }
2625    
2626     /**
2627     * Returns the factory used for constructing new workers.
2628     *
2629     * @return the factory used for constructing new workers
2630     */
2631     public ForkJoinWorkerThreadFactory getFactory() {
2632     return factory;
2633     }
2634    
2635     /**
2636     * Returns the handler for internal worker threads that terminate
2637     * due to unrecoverable errors encountered while executing tasks.
2638     *
2639     * @return the handler, or {@code null} if none
2640     */
2641     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2642     return ueh;
2643     }
2644    
2645     /**
2646     * Returns the targeted parallelism level of this pool.
2647     *
2648     * @return the targeted parallelism level of this pool
2649     */
2650     public int getParallelism() {
2651     return parallelism;
2652     }
2653    
2654     /**
2655 dl 1.7 * Returns the targeted parallelism level of the common pool.
2656     *
2657     * @return the targeted parallelism level of the common pool
2658     */
2659     public static int getCommonPoolParallelism() {
2660     return commonPoolParallelism;
2661     }
2662    
2663     /**
2664 dl 1.1 * Returns the number of worker threads that have started but not
2665     * yet terminated. The result returned by this method may differ
2666     * from {@link #getParallelism} when threads are created to
2667     * maintain parallelism when others are cooperatively blocked.
2668     *
2669     * @return the number of worker threads
2670     */
2671     public int getPoolSize() {
2672     return parallelism + (short)(ctl >>> TC_SHIFT);
2673     }
2674    
2675     /**
2676     * Returns {@code true} if this pool uses local first-in-first-out
2677     * scheduling mode for forked tasks that are never joined.
2678     *
2679     * @return {@code true} if this pool uses async mode
2680     */
2681     public boolean getAsyncMode() {
2682     return localMode != 0;
2683     }
2684    
2685     /**
2686     * Returns an estimate of the number of worker threads that are
2687     * not blocked waiting to join tasks or for other managed
2688     * synchronization. This method may overestimate the
2689     * number of running threads.
2690     *
2691     * @return the number of worker threads
2692     */
2693     public int getRunningThreadCount() {
2694     int rc = 0;
2695     WorkQueue[] ws; WorkQueue w;
2696     if ((ws = workQueues) != null) {
2697     for (int i = 1; i < ws.length; i += 2) {
2698     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2699     ++rc;
2700     }
2701     }
2702     return rc;
2703     }
2704    
2705     /**
2706     * Returns an estimate of the number of threads that are currently
2707     * stealing or executing tasks. This method may overestimate the
2708     * number of active threads.
2709     *
2710     * @return the number of active threads
2711     */
2712     public int getActiveThreadCount() {
2713     int r = parallelism + (int)(ctl >> AC_SHIFT);
2714     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2715     }
2716    
2717     /**
2718     * Returns {@code true} if all worker threads are currently idle.
2719     * An idle worker is one that cannot obtain a task to execute
2720     * because none are available to steal from other threads, and
2721     * there are no pending submissions to the pool. This method is
2722     * conservative; it might not return {@code true} immediately upon
2723     * idleness of all threads, but will eventually become true if
2724     * threads remain inactive.
2725     *
2726     * @return {@code true} if all threads are currently idle
2727     */
2728     public boolean isQuiescent() {
2729     return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2730     }
2731    
2732     /**
2733     * Returns an estimate of the total number of tasks stolen from
2734     * one thread's work queue by another. The reported value
2735     * underestimates the actual total number of steals when the pool
2736     * is not quiescent. This value may be useful for monitoring and
2737     * tuning fork/join programs: in general, steal counts should be
2738     * high enough to keep threads busy, but low enough to avoid
2739     * overhead and contention across threads.
2740     *
2741     * @return the number of steals
2742     */
2743     public long getStealCount() {
2744 dl 1.8 long count = stealCount;
2745 dl 1.1 WorkQueue[] ws; WorkQueue w;
2746     if ((ws = workQueues) != null) {
2747     for (int i = 1; i < ws.length; i += 2) {
2748     if ((w = ws[i]) != null)
2749 dl 1.12 count += w.nsteals;
2750 dl 1.1 }
2751     }
2752     return count;
2753     }
2754    
2755     /**
2756     * Returns an estimate of the total number of tasks currently held
2757     * in queues by worker threads (but not including tasks submitted
2758     * to the pool that have not begun executing). This value is only
2759     * an approximation, obtained by iterating across all threads in
2760     * the pool. This method may be useful for tuning task
2761     * granularities.
2762     *
2763     * @return the number of queued tasks
2764     */
2765     public long getQueuedTaskCount() {
2766     long count = 0;
2767     WorkQueue[] ws; WorkQueue w;
2768     if ((ws = workQueues) != null) {
2769     for (int i = 1; i < ws.length; i += 2) {
2770     if ((w = ws[i]) != null)
2771     count += w.queueSize();
2772     }
2773     }
2774     return count;
2775     }
2776    
2777     /**
2778     * Returns an estimate of the number of tasks submitted to this
2779     * pool that have not yet begun executing. This method may take
2780     * time proportional to the number of submissions.
2781     *
2782     * @return the number of queued submissions
2783     */
2784     public int getQueuedSubmissionCount() {
2785     int count = 0;
2786     WorkQueue[] ws; WorkQueue w;
2787     if ((ws = workQueues) != null) {
2788     for (int i = 0; i < ws.length; i += 2) {
2789     if ((w = ws[i]) != null)
2790     count += w.queueSize();
2791     }
2792     }
2793     return count;
2794     }
2795    
2796     /**
2797     * Returns {@code true} if there are any tasks submitted to this
2798     * pool that have not yet begun executing.
2799     *
2800     * @return {@code true} if there are any queued submissions
2801     */
2802     public boolean hasQueuedSubmissions() {
2803     WorkQueue[] ws; WorkQueue w;
2804     if ((ws = workQueues) != null) {
2805     for (int i = 0; i < ws.length; i += 2) {
2806 dl 1.12 if ((w = ws[i]) != null && w.queueSize() != 0)
2807 dl 1.1 return true;
2808     }
2809     }
2810     return false;
2811     }
2812    
2813     /**
2814     * Removes and returns the next unexecuted submission if one is
2815     * available. This method may be useful in extensions to this
2816     * class that re-assign work in systems with multiple pools.
2817     *
2818     * @return the next submission, or {@code null} if none
2819     */
2820     protected ForkJoinTask<?> pollSubmission() {
2821     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2822     if ((ws = workQueues) != null) {
2823     for (int i = 0; i < ws.length; i += 2) {
2824     if ((w = ws[i]) != null && (t = w.poll()) != null)
2825     return t;
2826     }
2827     }
2828     return null;
2829     }
2830    
2831     /**
2832     * Removes all available unexecuted submitted and forked tasks
2833     * from scheduling queues and adds them to the given collection,
2834     * without altering their execution status. These may include
2835     * artificially generated or wrapped tasks. This method is
2836     * designed to be invoked only when the pool is known to be
2837     * quiescent. Invocations at other times may not remove all
2838     * tasks. A failure encountered while attempting to add elements
2839     * to collection {@code c} may result in elements being in
2840     * neither, either or both collections when the associated
2841     * exception is thrown. The behavior of this operation is
2842     * undefined if the specified collection is modified while the
2843     * operation is in progress.
2844     *
2845     * @param c the collection to transfer elements into
2846     * @return the number of elements transferred
2847     */
2848     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2849     int count = 0;
2850     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2851     if ((ws = workQueues) != null) {
2852     for (int i = 0; i < ws.length; ++i) {
2853     if ((w = ws[i]) != null) {
2854     while ((t = w.poll()) != null) {
2855     c.add(t);
2856     ++count;
2857     }
2858     }
2859     }
2860     }
2861     return count;
2862     }
2863    
2864     /**
2865     * Returns a string identifying this pool, as well as its state,
2866     * including indications of run state, parallelism level, and
2867     * worker and task counts.
2868     *
2869     * @return a string identifying this pool, as well as its state
2870     */
2871     public String toString() {
2872     // Use a single pass through workQueues to collect counts
2873     long qt = 0L, qs = 0L; int rc = 0;
2874 dl 1.8 long st = stealCount;
2875 dl 1.1 long c = ctl;
2876     WorkQueue[] ws; WorkQueue w;
2877     if ((ws = workQueues) != null) {
2878     for (int i = 0; i < ws.length; ++i) {
2879     if ((w = ws[i]) != null) {
2880     int size = w.queueSize();
2881     if ((i & 1) == 0)
2882     qs += size;
2883     else {
2884     qt += size;
2885 dl 1.12 st += w.nsteals;
2886 dl 1.1 if (w.isApparentlyUnblocked())
2887     ++rc;
2888     }
2889     }
2890     }
2891     }
2892     int pc = parallelism;
2893     int tc = pc + (short)(c >>> TC_SHIFT);
2894     int ac = pc + (int)(c >> AC_SHIFT);
2895     if (ac < 0) // ignore transient negative
2896     ac = 0;
2897     String level;
2898     if ((c & STOP_BIT) != 0)
2899     level = (tc == 0) ? "Terminated" : "Terminating";
2900     else
2901 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2902 dl 1.1 return super.toString() +
2903     "[" + level +
2904     ", parallelism = " + pc +
2905     ", size = " + tc +
2906     ", active = " + ac +
2907     ", running = " + rc +
2908     ", steals = " + st +
2909     ", tasks = " + qt +
2910     ", submissions = " + qs +
2911     "]";
2912     }
2913    
2914     /**
2915 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2916     * submitted tasks are executed, but no new tasks will be
2917     * accepted. Invocation has no effect on execution state if this
2918     * is the {@link #commonPool}, and no additional effect if
2919     * already shut down. Tasks that are in the process of being
2920     * submitted concurrently during the course of this method may or
2921     * may not be rejected.
2922 dl 1.1 *
2923     * @throws SecurityException if a security manager exists and
2924     * the caller is not permitted to modify threads
2925     * because it does not hold {@link
2926     * java.lang.RuntimePermission}{@code ("modifyThread")}
2927     */
2928     public void shutdown() {
2929     checkPermission();
2930 dl 1.12 tryTerminate(false, true);
2931 dl 1.1 }
2932    
2933     /**
2934 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2935     * all subsequently submitted tasks. Invocation has no effect on
2936     * execution state if this is the {@link #commonPool}, and no
2937     * additional effect if already shut down. Otherwise, tasks that
2938     * are in the process of being submitted or executed concurrently
2939     * during the course of this method may or may not be
2940     * rejected. This method cancels both existing and unexecuted
2941     * tasks, in order to permit termination in the presence of task
2942     * dependencies. So the method always returns an empty list
2943     * (unlike the case for some other Executors).
2944 dl 1.1 *
2945     * @return an empty list
2946     * @throws SecurityException if a security manager exists and
2947     * the caller is not permitted to modify threads
2948     * because it does not hold {@link
2949     * java.lang.RuntimePermission}{@code ("modifyThread")}
2950     */
2951     public List<Runnable> shutdownNow() {
2952     checkPermission();
2953 dl 1.12 tryTerminate(true, true);
2954 dl 1.1 return Collections.emptyList();
2955     }
2956    
2957     /**
2958     * Returns {@code true} if all tasks have completed following shut down.
2959     *
2960     * @return {@code true} if all tasks have completed following shut down
2961     */
2962     public boolean isTerminated() {
2963     long c = ctl;
2964     return ((c & STOP_BIT) != 0L &&
2965     (short)(c >>> TC_SHIFT) == -parallelism);
2966     }
2967    
2968     /**
2969     * Returns {@code true} if the process of termination has
2970     * commenced but not yet completed. This method may be useful for
2971     * debugging. A return of {@code true} reported a sufficient
2972     * period after shutdown may indicate that submitted tasks have
2973     * ignored or suppressed interruption, or are waiting for IO,
2974     * causing this executor not to properly terminate. (See the
2975     * advisory notes for class {@link ForkJoinTask} stating that
2976     * tasks should not normally entail blocking operations. But if
2977     * they do, they must abort them on interrupt.)
2978     *
2979     * @return {@code true} if terminating but not yet terminated
2980     */
2981     public boolean isTerminating() {
2982     long c = ctl;
2983     return ((c & STOP_BIT) != 0L &&
2984     (short)(c >>> TC_SHIFT) != -parallelism);
2985     }
2986    
2987     /**
2988     * Returns {@code true} if this pool has been shut down.
2989     *
2990     * @return {@code true} if this pool has been shut down
2991     */
2992     public boolean isShutdown() {
2993 dl 1.12 return plock < 0;
2994 dl 1.1 }
2995    
2996     /**
2997 dl 1.12 * Blocks until all tasks have completed execution after a
2998     * shutdown request, or the timeout occurs, or the current thread
2999     * is interrupted, whichever happens first. Note that the {@link
3000     * #commonPool()} never terminates until program shutdown so
3001     * this method will always time out.
3002 dl 1.1 *
3003     * @param timeout the maximum time to wait
3004     * @param unit the time unit of the timeout argument
3005     * @return {@code true} if this executor terminated and
3006     * {@code false} if the timeout elapsed before termination
3007     * @throws InterruptedException if interrupted while waiting
3008     */
3009     public boolean awaitTermination(long timeout, TimeUnit unit)
3010     throws InterruptedException {
3011     long nanos = unit.toNanos(timeout);
3012 dl 1.8 if (isTerminated())
3013     return true;
3014     long startTime = System.nanoTime();
3015     boolean terminated = false;
3016 jsr166 1.10 synchronized (this) {
3017 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
3018     if (terminated = isTerminated() ||
3019     waitTime <= 0L ||
3020     (millis = unit.toMillis(waitTime)) <= 0L)
3021     break;
3022     wait(millis);
3023     waitTime = nanos - (System.nanoTime() - startTime);
3024 dl 1.1 }
3025     }
3026 dl 1.8 return terminated;
3027 dl 1.1 }
3028    
3029     /**
3030     * Interface for extending managed parallelism for tasks running
3031     * in {@link ForkJoinPool}s.
3032     *
3033     * <p>A {@code ManagedBlocker} provides two methods. Method
3034     * {@code isReleasable} must return {@code true} if blocking is
3035     * not necessary. Method {@code block} blocks the current thread
3036     * if necessary (perhaps internally invoking {@code isReleasable}
3037     * before actually blocking). These actions are performed by any
3038     * thread invoking {@link ForkJoinPool#managedBlock}. The
3039     * unusual methods in this API accommodate synchronizers that may,
3040     * but don't usually, block for long periods. Similarly, they
3041     * allow more efficient internal handling of cases in which
3042     * additional workers may be, but usually are not, needed to
3043     * ensure sufficient parallelism. Toward this end,
3044     * implementations of method {@code isReleasable} must be amenable
3045     * to repeated invocation.
3046     *
3047     * <p>For example, here is a ManagedBlocker based on a
3048     * ReentrantLock:
3049     * <pre> {@code
3050     * class ManagedLocker implements ManagedBlocker {
3051     * final ReentrantLock lock;
3052     * boolean hasLock = false;
3053     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3054     * public boolean block() {
3055     * if (!hasLock)
3056     * lock.lock();
3057     * return true;
3058     * }
3059     * public boolean isReleasable() {
3060     * return hasLock || (hasLock = lock.tryLock());
3061     * }
3062     * }}</pre>
3063     *
3064     * <p>Here is a class that possibly blocks waiting for an
3065     * item on a given queue:
3066     * <pre> {@code
3067     * class QueueTaker<E> implements ManagedBlocker {
3068     * final BlockingQueue<E> queue;
3069     * volatile E item = null;
3070     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3071     * public boolean block() throws InterruptedException {
3072     * if (item == null)
3073     * item = queue.take();
3074     * return true;
3075     * }
3076     * public boolean isReleasable() {
3077     * return item != null || (item = queue.poll()) != null;
3078     * }
3079     * public E getItem() { // call after pool.managedBlock completes
3080     * return item;
3081     * }
3082     * }}</pre>
3083     */
3084     public static interface ManagedBlocker {
3085     /**
3086     * Possibly blocks the current thread, for example waiting for
3087     * a lock or condition.
3088     *
3089     * @return {@code true} if no additional blocking is necessary
3090     * (i.e., if isReleasable would return true)
3091     * @throws InterruptedException if interrupted while waiting
3092     * (the method is not required to do so, but is allowed to)
3093     */
3094     boolean block() throws InterruptedException;
3095    
3096     /**
3097     * Returns {@code true} if blocking is unnecessary.
3098     */
3099     boolean isReleasable();
3100     }
3101    
3102     /**
3103     * Blocks in accord with the given blocker. If the current thread
3104     * is a {@link ForkJoinWorkerThread}, this method possibly
3105     * arranges for a spare thread to be activated if necessary to
3106     * ensure sufficient parallelism while the current thread is blocked.
3107     *
3108     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3109     * behaviorally equivalent to
3110     * <pre> {@code
3111     * while (!blocker.isReleasable())
3112     * if (blocker.block())
3113     * return;
3114     * }</pre>
3115     *
3116     * If the caller is a {@code ForkJoinTask}, then the pool may
3117     * first be expanded to ensure parallelism, and later adjusted.
3118     *
3119     * @param blocker the blocker
3120     * @throws InterruptedException if blocker.block did so
3121     */
3122     public static void managedBlock(ManagedBlocker blocker)
3123     throws InterruptedException {
3124     Thread t = Thread.currentThread();
3125 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3126     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3127     while (!blocker.isReleasable()) { // variant of helpSignal
3128     WorkQueue[] ws; WorkQueue q; int m, n;
3129     if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3130     for (int i = 0; i <= m; ++i) {
3131     if (blocker.isReleasable())
3132     return;
3133     if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3134     p.signalWork(q, n);
3135     if ((int)(p.ctl >> AC_SHIFT) >= 0)
3136     break;
3137     }
3138     }
3139     }
3140     if (p.tryCompensate()) {
3141     try {
3142     do {} while (!blocker.isReleasable() &&
3143     !blocker.block());
3144     } finally {
3145 dl 1.1 p.incrementActiveCount();
3146 dl 1.12 }
3147     break;
3148 dl 1.1 }
3149     }
3150     }
3151 dl 1.12 else {
3152     do {} while (!blocker.isReleasable() &&
3153     !blocker.block());
3154     }
3155 dl 1.1 }
3156    
3157     // AbstractExecutorService overrides. These rely on undocumented
3158     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3159     // implement RunnableFuture.
3160    
3161     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3162     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3163     }
3164    
3165     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3166     return new ForkJoinTask.AdaptedCallable<T>(callable);
3167     }
3168    
3169     // Unsafe mechanics
3170     private static final sun.misc.Unsafe U;
3171     private static final long CTL;
3172     private static final long PARKBLOCKER;
3173     private static final int ABASE;
3174     private static final int ASHIFT;
3175 dl 1.8 private static final long STEALCOUNT;
3176 dl 1.12 private static final long PLOCK;
3177     private static final long INDEXSEED;
3178     private static final long QLOCK;
3179 dl 1.1
3180     static {
3181 dl 1.12 // Establish common pool parameters
3182     // TBD: limit or report ignored exceptions?
3183    
3184     int par = 0;
3185     ForkJoinWorkerThreadFactory fac = null;
3186     Thread.UncaughtExceptionHandler handler = null;
3187     try {
3188     String pp = System.getProperty(propPrefix + "parallelism");
3189     String hp = System.getProperty(propPrefix + "exceptionHandler");
3190     String fp = System.getProperty(propPrefix + "threadFactory");
3191     if (fp != null)
3192     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3193     getSystemClassLoader().loadClass(fp).newInstance());
3194     if (hp != null)
3195     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3196     getSystemClassLoader().loadClass(hp).newInstance());
3197     if (pp != null)
3198     par = Integer.parseInt(pp);
3199 jsr166 1.13 } catch (Exception ignore) {
3200 dl 1.12 }
3201    
3202     int s; // initialize field offsets for CAS etc
3203 dl 1.1 try {
3204     U = getUnsafe();
3205     Class<?> k = ForkJoinPool.class;
3206     CTL = U.objectFieldOffset
3207     (k.getDeclaredField("ctl"));
3208 dl 1.8 STEALCOUNT = U.objectFieldOffset
3209     (k.getDeclaredField("stealCount"));
3210 dl 1.12 PLOCK = U.objectFieldOffset
3211     (k.getDeclaredField("plock"));
3212     INDEXSEED = U.objectFieldOffset
3213     (k.getDeclaredField("indexSeed"));
3214 dl 1.1 Class<?> tk = Thread.class;
3215     PARKBLOCKER = U.objectFieldOffset
3216     (tk.getDeclaredField("parkBlocker"));
3217 dl 1.12 Class<?> wk = WorkQueue.class;
3218     QLOCK = U.objectFieldOffset
3219     (wk.getDeclaredField("qlock"));
3220     Class<?> ak = ForkJoinTask[].class;
3221 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3222     s = U.arrayIndexScale(ak);
3223 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3224 dl 1.1 } catch (Exception e) {
3225     throw new Error(e);
3226     }
3227     if ((s & (s-1)) != 0)
3228     throw new Error("data type scale not a power of two");
3229 dl 1.12
3230     /*
3231     * For extra caution, computations to set up pool state are
3232     * here; the constructor just assigns these values to fields.
3233     */
3234     ForkJoinWorkerThreadFactory defaultFac =
3235     defaultForkJoinWorkerThreadFactory =
3236     new DefaultForkJoinWorkerThreadFactory();
3237     if (fac == null)
3238     fac = defaultFac;
3239     if (par <= 0)
3240     par = Runtime.getRuntime().availableProcessors();
3241     if (par > MAX_CAP)
3242     par = MAX_CAP;
3243     long np = (long)(-par); // precompute initial ctl value
3244     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3245    
3246     commonPoolParallelism = par;
3247     commonPool = new ForkJoinPool(par, ct, fac, handler);
3248     modifyThreadPermission = new RuntimePermission("modifyThread");
3249     submitters = new ThreadLocal<Submitter>();
3250 dl 1.1 }
3251    
3252     /**
3253     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3254     * Replace with a simple call to Unsafe.getUnsafe when integrating
3255     * into a jdk.
3256     *
3257     * @return a sun.misc.Unsafe
3258     */
3259     private static sun.misc.Unsafe getUnsafe() {
3260     try {
3261     return sun.misc.Unsafe.getUnsafe();
3262     } catch (SecurityException se) {
3263     try {
3264     return java.security.AccessController.doPrivileged
3265     (new java.security
3266     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3267     public sun.misc.Unsafe run() throws Exception {
3268     java.lang.reflect.Field f = sun.misc
3269     .Unsafe.class.getDeclaredField("theUnsafe");
3270     f.setAccessible(true);
3271     return (sun.misc.Unsafe) f.get(null);
3272     }});
3273     } catch (java.security.PrivilegedActionException e) {
3274     throw new RuntimeException("Could not initialize intrinsics",
3275     e.getCause());
3276     }
3277     }
3278     }
3279    
3280     }