ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.19
Committed: Tue Nov 20 05:18:42 2012 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.18: +1 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21    
22     /**
23     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24     * A {@code ForkJoinPool} provides the entry point for submissions
25     * from non-{@code ForkJoinTask} clients, as well as management and
26     * monitoring operations.
27     *
28     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31     * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39     *
40 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.12 * use).
46 dl 1.7 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54     * blocked IO or other unmanaged synchronization. The nested {@link
55     * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.1 * synchronization accommodated.
57     *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60     * {@link #getStealCount}) that are intended to aid in developing,
61     * tuning, and monitoring fork/join applications. Also, method
62     * {@link #toString} returns indications of pool state in a
63     * convenient form for informal monitoring.
64     *
65 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
66 dl 1.1 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76     *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84     * <td> <b>Arrange async execution</td>
85     * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99     *
100 dl 1.12 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102     * System#getProperty properties} with prefix {@code
103     * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 dl 1.18 <<<<<<< ForkJoinPool.java
107     * exceptionHandler} -- the class name of a {@code
108     =======
109 dl 1.12 * exceptionHandler} -- the class name of a {@link
110 jsr166 1.15 * java.lang.Thread.UncaughtExceptionHandler
111 dl 1.18 >>>>>>> 1.111
112 dl 1.12 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
113     * these settings, default parameters are used.
114     *
115 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
116     * maximum number of running threads to 32767. Attempts to create
117     * pools with greater than the maximum number result in
118     * {@code IllegalArgumentException}.
119     *
120     * <p>This implementation rejects submitted tasks (that is, by throwing
121     * {@link RejectedExecutionException}) only when the pool is shut down
122     * or internal resources have been exhausted.
123     *
124     * @since 1.7
125     * @author Doug Lea
126     */
127     public class ForkJoinPool extends AbstractExecutorService {
128    
129     /*
130     * Implementation Overview
131     *
132     * This class and its nested classes provide the main
133     * functionality and control for a set of worker threads:
134     * Submissions from non-FJ threads enter into submission queues.
135     * Workers take these tasks and typically split them into subtasks
136     * that may be stolen by other workers. Preference rules give
137     * first priority to processing tasks from their own queues (LIFO
138     * or FIFO, depending on mode), then to randomized FIFO steals of
139     * tasks in other queues.
140     *
141     * WorkQueues
142     * ==========
143     *
144     * Most operations occur within work-stealing queues (in nested
145     * class WorkQueue). These are special forms of Deques that
146     * support only three of the four possible end-operations -- push,
147     * pop, and poll (aka steal), under the further constraints that
148     * push and pop are called only from the owning thread (or, as
149     * extended here, under a lock), while poll may be called from
150     * other threads. (If you are unfamiliar with them, you probably
151     * want to read Herlihy and Shavit's book "The Art of
152     * Multiprocessor programming", chapter 16 describing these in
153     * more detail before proceeding.) The main work-stealing queue
154     * design is roughly similar to those in the papers "Dynamic
155     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156     * (http://research.sun.com/scalable/pubs/index.html) and
157     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159     * The main differences ultimately stem from GC requirements that
160     * we null out taken slots as soon as we can, to maintain as small
161     * a footprint as possible even in programs generating huge
162     * numbers of tasks. To accomplish this, we shift the CAS
163     * arbitrating pop vs poll (steal) from being on the indices
164     * ("base" and "top") to the slots themselves. So, both a
165     * successful pop and poll mainly entail a CAS of a slot from
166     * non-null to null. Because we rely on CASes of references, we
167     * do not need tag bits on base or top. They are simple ints as
168     * used in any circular array-based queue (see for example
169     * ArrayDeque). Updates to the indices must still be ordered in a
170     * way that guarantees that top == base means the queue is empty,
171     * but otherwise may err on the side of possibly making the queue
172     * appear nonempty when a push, pop, or poll have not fully
173     * committed. Note that this means that the poll operation,
174     * considered individually, is not wait-free. One thief cannot
175     * successfully continue until another in-progress one (or, if
176     * previously empty, a push) completes. However, in the
177     * aggregate, we ensure at least probabilistic non-blockingness.
178     * If an attempted steal fails, a thief always chooses a different
179     * random victim target to try next. So, in order for one thief to
180     * progress, it suffices for any in-progress poll or new push on
181     * any empty queue to complete. (This is why we normally use
182     * method pollAt and its variants that try once at the apparent
183     * base index, else consider alternative actions, rather than
184     * method poll.)
185     *
186     * This approach also enables support of a user mode in which local
187     * task processing is in FIFO, not LIFO order, simply by using
188     * poll rather than pop. This can be useful in message-passing
189     * frameworks in which tasks are never joined. However neither
190     * mode considers affinities, loads, cache localities, etc, so
191     * rarely provide the best possible performance on a given
192     * machine, but portably provide good throughput by averaging over
193     * these factors. (Further, even if we did try to use such
194     * information, we do not usually have a basis for exploiting it.
195     * For example, some sets of tasks profit from cache affinities,
196     * but others are harmed by cache pollution effects.)
197     *
198     * WorkQueues are also used in a similar way for tasks submitted
199     * to the pool. We cannot mix these tasks in the same queues used
200     * for work-stealing (this would contaminate lifo/fifo
201 dl 1.12 * processing). Instead, we randomly associate submission queues
202 dl 1.1 * with submitting threads, using a form of hashing. The
203     * ThreadLocal Submitter class contains a value initially used as
204     * a hash code for choosing existing queues, but may be randomly
205     * repositioned upon contention with other submitters. In
206 dl 1.12 * essence, submitters act like workers except that they are
207     * restricted to executing local tasks that they submitted (or in
208     * the case of CountedCompleters, others with the same root task).
209     * However, because most shared/external queue operations are more
210     * expensive than internal, and because, at steady state, external
211     * submitters will compete for CPU with workers, ForkJoinTask.join
212     * and related methods disable them from repeatedly helping to
213     * process tasks if all workers are active. Insertion of tasks in
214     * shared mode requires a lock (mainly to protect in the case of
215     * resizing) but we use only a simple spinlock (using bits in
216     * field qlock), because submitters encountering a busy queue move
217     * on to try or create other queues -- they block only when
218     * creating and registering new queues.
219 dl 1.1 *
220     * Management
221     * ==========
222     *
223     * The main throughput advantages of work-stealing stem from
224     * decentralized control -- workers mostly take tasks from
225     * themselves or each other. We cannot negate this in the
226     * implementation of other management responsibilities. The main
227     * tactic for avoiding bottlenecks is packing nearly all
228     * essentially atomic control state into two volatile variables
229     * that are by far most often read (not written) as status and
230     * consistency checks.
231     *
232     * Field "ctl" contains 64 bits holding all the information needed
233     * to atomically decide to add, inactivate, enqueue (on an event
234     * queue), dequeue, and/or re-activate workers. To enable this
235     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
236     * far in excess of normal operating range) to allow ids, counts,
237     * and their negations (used for thresholding) to fit into 16bit
238     * fields.
239     *
240 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
241     * shutdown bit (similarly for per-queue "qlocks"), mainly
242     * protecting updates to the workQueues array, as well as to
243     * enable shutdown. When used as a lock, it is normally only very
244     * briefly held, so is nearly always available after at most a
245     * brief spin, but we use a monitor-based backup strategy to
246 dl 1.18 * block when needed.
247 dl 1.1 *
248     * Recording WorkQueues. WorkQueues are recorded in the
249 dl 1.8 * "workQueues" array that is created upon first use and expanded
250     * if necessary. Updates to the array while recording new workers
251     * and unrecording terminated ones are protected from each other
252     * by a lock but the array is otherwise concurrently readable, and
253     * accessed directly. To simplify index-based operations, the
254     * array size is always a power of two, and all readers must
255 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
256 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
257     * slots, to limit growth even if array needs to expand to add
258     * more workers. Grouping them together in this way simplifies and
259     * speeds up task scanning.
260 dl 1.1 *
261     * All worker thread creation is on-demand, triggered by task
262     * submissions, replacement of terminated workers, and/or
263     * compensation for blocked workers. However, all other support
264     * code is set up to work with other policies. To ensure that we
265     * do not hold on to worker references that would prevent GC, ALL
266     * accesses to workQueues are via indices into the workQueues
267     * array (which is one source of some of the messy code
268     * constructions here). In essence, the workQueues array serves as
269     * a weak reference mechanism. Thus for example the wait queue
270     * field of ctl stores indices, not references. Access to the
271     * workQueues in associated methods (for example signalWork) must
272     * both index-check and null-check the IDs. All such accesses
273     * ignore bad IDs by returning out early from what they are doing,
274     * since this can only be associated with termination, in which
275     * case it is OK to give up. All uses of the workQueues array
276     * also check that it is non-null (even if previously
277     * non-null). This allows nulling during termination, which is
278     * currently not necessary, but remains an option for
279     * resource-revocation-based shutdown schemes. It also helps
280     * reduce JIT issuance of uncommon-trap code, which tends to
281     * unnecessarily complicate control flow in some methods.
282     *
283     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
284     * let workers spin indefinitely scanning for tasks when none can
285     * be found immediately, and we cannot start/resume workers unless
286     * there appear to be tasks available. On the other hand, we must
287     * quickly prod them into action when new tasks are submitted or
288     * generated. In many usages, ramp-up time to activate workers is
289     * the main limiting factor in overall performance (this is
290     * compounded at program start-up by JIT compilation and
291     * allocation). So we try to streamline this as much as possible.
292     * We park/unpark workers after placing in an event wait queue
293     * when they cannot find work. This "queue" is actually a simple
294     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
295     * counter value (that reflects the number of times a worker has
296     * been inactivated) to avoid ABA effects (we need only as many
297     * version numbers as worker threads). Successors are held in
298     * field WorkQueue.nextWait. Queuing deals with several intrinsic
299     * races, mainly that a task-producing thread can miss seeing (and
300     * signalling) another thread that gave up looking for work but
301     * has not yet entered the wait queue. We solve this by requiring
302     * a full sweep of all workers (via repeated calls to method
303     * scan()) both before and after a newly waiting worker is added
304     * to the wait queue. During a rescan, the worker might release
305     * some other queued worker rather than itself, which has the same
306     * net effect. Because enqueued workers may actually be rescanning
307     * rather than waiting, we set and clear the "parker" field of
308     * WorkQueues to reduce unnecessary calls to unpark. (This
309     * requires a secondary recheck to avoid missed signals.) Note
310     * the unusual conventions about Thread.interrupts surrounding
311     * parking and other blocking: Because interrupts are used solely
312     * to alert threads to check termination, which is checked anyway
313     * upon blocking, we clear status (using Thread.interrupted)
314     * before any call to park, so that park does not immediately
315     * return due to status being set via some other unrelated call to
316     * interrupt in user code.
317     *
318     * Signalling. We create or wake up workers only when there
319     * appears to be at least one task they might be able to find and
320 dl 1.12 * execute. However, many other threads may notice the same task
321     * and each signal to wake up a thread that might take it. So in
322     * general, pools will be over-signalled. When a submission is
323     * added or another worker adds a task to a queue that is
324     * apparently empty, they signal waiting workers (or trigger
325 dl 1.18 * creation of new ones if fewer than the given parallelism
326     * level). These primary signals are buttressed by signals
327     * whenever other threads scan for work or do not have a task to
328     * process (including the case of leaving a hint to unparked
329     * threads to help signal others upon wakeup). On most platforms,
330     * signalling (unpark) overhead time is noticeably long, and the
331     * time between signalling a thread and it actually making
332     * progress can be very noticeably long, so it is worth offloading
333     * these delays from critical paths as much as possible.
334 dl 1.1 *
335     * Trimming workers. To release resources after periods of lack of
336     * use, a worker starting to wait when the pool is quiescent will
337 dl 1.7 * time out and terminate if the pool has remained quiescent for a
338     * given period -- a short period if there are more threads than
339     * parallelism, longer as the number of threads decreases. This
340     * will slowly propagate, eventually terminating all workers after
341     * periods of non-use.
342 dl 1.1 *
343     * Shutdown and Termination. A call to shutdownNow atomically sets
344 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
345     * qlock status, cancels all unprocessed tasks, and wakes up
346 dl 1.1 * all waiting workers. Detecting whether termination should
347     * commence after a non-abrupt shutdown() call requires more work
348     * and bookkeeping. We need consensus about quiescence (i.e., that
349     * there is no more work). The active count provides a primary
350     * indication but non-abrupt shutdown still requires a rechecking
351     * scan for any workers that are inactive but not queued.
352     *
353     * Joining Tasks
354     * =============
355     *
356     * Any of several actions may be taken when one worker is waiting
357     * to join a task stolen (or always held) by another. Because we
358     * are multiplexing many tasks on to a pool of workers, we can't
359     * just let them block (as in Thread.join). We also cannot just
360     * reassign the joiner's run-time stack with another and replace
361     * it later, which would be a form of "continuation", that even if
362     * possible is not necessarily a good idea since we sometimes need
363     * both an unblocked task and its continuation to progress.
364     * Instead we combine two tactics:
365     *
366     * Helping: Arranging for the joiner to execute some task that it
367     * would be running if the steal had not occurred.
368     *
369     * Compensating: Unless there are already enough live threads,
370     * method tryCompensate() may create or re-activate a spare
371     * thread to compensate for blocked joiners until they unblock.
372     *
373 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
374     * helping a hypothetical compensator: If we can readily tell that
375     * a possible action of a compensator is to steal and execute the
376     * task being joined, the joining thread can do so directly,
377     * without the need for a compensation thread (although at the
378     * expense of larger run-time stacks, but the tradeoff is
379     * typically worthwhile).
380 dl 1.1 *
381     * The ManagedBlocker extension API can't use helping so relies
382     * only on compensation in method awaitBlocker.
383     *
384     * The algorithm in tryHelpStealer entails a form of "linear"
385     * helping: Each worker records (in field currentSteal) the most
386     * recent task it stole from some other worker. Plus, it records
387     * (in field currentJoin) the task it is currently actively
388     * joining. Method tryHelpStealer uses these markers to try to
389     * find a worker to help (i.e., steal back a task from and execute
390     * it) that could hasten completion of the actively joined task.
391     * In essence, the joiner executes a task that would be on its own
392     * local deque had the to-be-joined task not been stolen. This may
393     * be seen as a conservative variant of the approach in Wagner &
394     * Calder "Leapfrogging: a portable technique for implementing
395     * efficient futures" SIGPLAN Notices, 1993
396     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
397     * that: (1) We only maintain dependency links across workers upon
398     * steals, rather than use per-task bookkeeping. This sometimes
399     * requires a linear scan of workQueues array to locate stealers,
400     * but often doesn't because stealers leave hints (that may become
401 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
402     * because a worker might have had multiple steals and the hint
403     * records only one of them (usually the most current). Hinting
404     * isolates cost to when it is needed, rather than adding to
405     * per-task overhead. (2) It is "shallow", ignoring nesting and
406     * potentially cyclic mutual steals. (3) It is intentionally
407 dl 1.1 * racy: field currentJoin is updated only while actively joining,
408     * which means that we miss links in the chain during long-lived
409     * tasks, GC stalls etc (which is OK since blocking in such cases
410     * is usually a good idea). (4) We bound the number of attempts
411     * to find work (see MAX_HELP) and fall back to suspending the
412     * worker and if necessary replacing it with another.
413     *
414 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
415     * helpComplete can take and execute any task with the same root
416     * as the task being waited on. However, this still entails some
417     * traversal of completer chains, so is less efficient than using
418     * CountedCompleters without explicit joins.
419     *
420 dl 1.1 * It is impossible to keep exactly the target parallelism number
421     * of threads running at any given time. Determining the
422     * existence of conservatively safe helping targets, the
423     * availability of already-created spares, and the apparent need
424     * to create new spares are all racy, so we rely on multiple
425     * retries of each. Compensation in the apparent absence of
426     * helping opportunities is challenging to control on JVMs, where
427     * GC and other activities can stall progress of tasks that in
428     * turn stall out many other dependent tasks, without us being
429     * able to determine whether they will ever require compensation.
430     * Even though work-stealing otherwise encounters little
431     * degradation in the presence of more threads than cores,
432     * aggressively adding new threads in such cases entails risk of
433     * unwanted positive feedback control loops in which more threads
434     * cause more dependent stalls (as well as delayed progress of
435     * unblocked threads to the point that we know they are available)
436     * leading to more situations requiring more threads, and so
437     * on. This aspect of control can be seen as an (analytically
438     * intractable) game with an opponent that may choose the worst
439     * (for us) active thread to stall at any time. We take several
440     * precautions to bound losses (and thus bound gains), mainly in
441 dl 1.12 * methods tryCompensate and awaitJoin.
442     *
443     * Common Pool
444     * ===========
445     *
446     * The static commonPool always exists after static
447     * initialization. Since it (or any other created pool) need
448     * never be used, we minimize initial construction overhead and
449     * footprint to the setup of about a dozen fields, with no nested
450     * allocation. Most bootstrapping occurs within method
451     * fullExternalPush during the first submission to the pool.
452     *
453     * When external threads submit to the common pool, they can
454     * perform some subtask processing (see externalHelpJoin and
455     * related methods). We do not need to record whether these
456     * submissions are to the common pool -- if not, externalHelpJoin
457 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
458 dl 1.12 * workers). These submitters would otherwise be blocked waiting
459     * for completion, so the extra effort (with liberally sprinkled
460     * task status checks) in inapplicable cases amounts to an odd
461     * form of limited spin-wait before blocking in ForkJoinTask.join.
462     *
463     * Style notes
464     * ===========
465     *
466     * There is a lot of representation-level coupling among classes
467     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
468     * fields of WorkQueue maintain data structures managed by
469     * ForkJoinPool, so are directly accessed. There is little point
470     * trying to reduce this, since any associated future changes in
471     * representations will need to be accompanied by algorithmic
472     * changes anyway. Several methods intrinsically sprawl because
473     * they must accumulate sets of consistent reads of volatiles held
474     * in local variables. Methods signalWork() and scan() are the
475     * main bottlenecks, so are especially heavily
476 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
477     * (of form "while ((local = field) != 0)") which are usually the
478     * simplest way to ensure the required read orderings (which are
479     * sometimes critical). This leads to a "C"-like style of listing
480     * declarations of these locals at the heads of methods or blocks.
481     * There are several occurrences of the unusual "do {} while
482     * (!cas...)" which is the simplest way to force an update of a
483 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
484     * several unnecessary-looking hoisted null checks) that help
485 dl 1.1 * some methods perform reasonably even when interpreted (not
486     * compiled).
487     *
488     * The order of declarations in this file is:
489     * (1) Static utility functions
490     * (2) Nested (static) classes
491     * (3) Static fields
492     * (4) Fields, along with constants used when unpacking some of them
493     * (5) Internal control methods
494     * (6) Callbacks and other support for ForkJoinTask methods
495     * (7) Exported methods
496     * (8) Static block initializing statics in minimally dependent order
497     */
498    
499     // Static utilities
500    
501     /**
502     * If there is a security manager, makes sure caller has
503     * permission to modify threads.
504     */
505     private static void checkPermission() {
506     SecurityManager security = System.getSecurityManager();
507     if (security != null)
508     security.checkPermission(modifyThreadPermission);
509     }
510    
511     // Nested classes
512    
513     /**
514     * Factory for creating new {@link ForkJoinWorkerThread}s.
515     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
516     * for {@code ForkJoinWorkerThread} subclasses that extend base
517     * functionality or initialize threads with different contexts.
518     */
519     public static interface ForkJoinWorkerThreadFactory {
520     /**
521     * Returns a new worker thread operating in the given pool.
522     *
523     * @param pool the pool this thread works in
524     * @throws NullPointerException if the pool is null
525     */
526     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
527     }
528    
529     /**
530     * Default ForkJoinWorkerThreadFactory implementation; creates a
531     * new ForkJoinWorkerThread.
532     */
533 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
534 dl 1.1 implements ForkJoinWorkerThreadFactory {
535 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
536 dl 1.1 return new ForkJoinWorkerThread(pool);
537     }
538     }
539    
540     /**
541     * Class for artificial tasks that are used to replace the target
542     * of local joins if they are removed from an interior queue slot
543     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
544     * actually do anything beyond having a unique identity.
545     */
546     static final class EmptyTask extends ForkJoinTask<Void> {
547 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
548 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
549     public final Void getRawResult() { return null; }
550     public final void setRawResult(Void x) {}
551     public final boolean exec() { return true; }
552     }
553    
554     /**
555     * Queues supporting work-stealing as well as external task
556     * submission. See above for main rationale and algorithms.
557     * Implementation relies heavily on "Unsafe" intrinsics
558     * and selective use of "volatile":
559     *
560     * Field "base" is the index (mod array.length) of the least valid
561     * queue slot, which is always the next position to steal (poll)
562     * from if nonempty. Reads and writes require volatile orderings
563     * but not CAS, because updates are only performed after slot
564     * CASes.
565     *
566     * Field "top" is the index (mod array.length) of the next queue
567     * slot to push to or pop from. It is written only by owner thread
568 dl 1.12 * for push, or under lock for external/shared push, and accessed
569     * by other threads only after reading (volatile) base. Both top
570     * and base are allowed to wrap around on overflow, but (top -
571     * base) (or more commonly -(base - top) to force volatile read of
572     * base before top) still estimates size. The lock ("qlock") is
573     * forced to -1 on termination, causing all further lock attempts
574     * to fail. (Note: we don't need CAS for termination state because
575     * upon pool shutdown, all shared-queues will stop being used
576     * anyway.) Nearly all lock bodies are set up so that exceptions
577     * within lock bodies are "impossible" (modulo JVM errors that
578     * would cause failure anyway.)
579 dl 1.1 *
580     * The array slots are read and written using the emulation of
581     * volatiles/atomics provided by Unsafe. Insertions must in
582     * general use putOrderedObject as a form of releasing store to
583     * ensure that all writes to the task object are ordered before
584 dl 1.12 * its publication in the queue. All removals entail a CAS to
585     * null. The array is always a power of two. To ensure safety of
586     * Unsafe array operations, all accesses perform explicit null
587     * checks and implicit bounds checks via power-of-two masking.
588 dl 1.1 *
589     * In addition to basic queuing support, this class contains
590     * fields described elsewhere to control execution. It turns out
591 dl 1.12 * to work better memory-layout-wise to include them in this class
592     * rather than a separate class.
593 dl 1.1 *
594     * Performance on most platforms is very sensitive to placement of
595     * instances of both WorkQueues and their arrays -- we absolutely
596     * do not want multiple WorkQueue instances or multiple queue
597     * arrays sharing cache lines. (It would be best for queue objects
598     * and their arrays to share, but there is nothing available to
599     * help arrange that). Unfortunately, because they are recorded
600     * in a common array, WorkQueue instances are often moved to be
601     * adjacent by garbage collectors. To reduce impact, we use field
602     * padding that works OK on common platforms; this effectively
603     * trades off slightly slower average field access for the sake of
604     * avoiding really bad worst-case access. (Until better JVM
605     * support is in place, this padding is dependent on transient
606 dl 1.18 * properties of JVM field layout rules.)
607 dl 1.1 */
608     static final class WorkQueue {
609     /**
610     * Capacity of work-stealing queue array upon initialization.
611     * Must be a power of two; at least 4, but should be larger to
612     * reduce or eliminate cacheline sharing among queues.
613     * Currently, it is much larger, as a partial workaround for
614     * the fact that JVMs often place arrays in locations that
615     * share GC bookkeeping (especially cardmarks) such that
616     * per-write accesses encounter serious memory contention.
617     */
618     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
619    
620     /**
621     * Maximum size for queue arrays. Must be a power of two less
622     * than or equal to 1 << (31 - width of array entry) to ensure
623     * lack of wraparound of index calculations, but defined to a
624     * value a bit less than this to help users trap runaway
625     * programs before saturating systems.
626     */
627     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628    
629     int seed; // for random scanning; initialize nonzero
630     volatile int eventCount; // encoded inactivation count; < 0 if inactive
631     int nextWait; // encoded record of next event waiter
632 dl 1.18 int hint; // steal or signal hint (index)
633 dl 1.1 int poolIndex; // index of this queue in pool (or 0)
634 dl 1.18 final int mode; // 0: lifo, > 0: fifo, < 0: shared
635     int nsteals; // number of steals
636 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
637 dl 1.1 volatile int base; // index of next slot for poll
638     int top; // index of next slot for push
639     ForkJoinTask<?>[] array; // the elements (initially unallocated)
640     final ForkJoinPool pool; // the containing pool (may be null)
641     final ForkJoinWorkerThread owner; // owning thread or null if shared
642     volatile Thread parker; // == owner during call to park; else null
643     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
644     ForkJoinTask<?> currentSteal; // current non-local task being executed
645 dl 1.18
646 dl 1.1 // Heuristic padding to ameliorate unfortunate memory placements
647     Object p00, p01, p02, p03, p04, p05, p06, p07;
648 dl 1.18 Object p08, p09, p0a, p0b, p0c;
649 dl 1.1
650 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
651     int seed) {
652     this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
653 dl 1.1 this.pool = pool;
654     this.owner = owner;
655 dl 1.18 this.mode = mode;
656     this.seed = seed;
657     // Place indices in the center of array
658 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
659     }
660    
661     /**
662     * Pushes a task. Call only by owner in unshared queues.
663 jsr166 1.14 * Cases needing resizing or rejection are relayed to fullPush
664 dl 1.12 * (that also handles shared queues).
665 dl 1.1 *
666     * @param task the task. Caller must ensure non-null.
667     * @throw RejectedExecutionException if array cannot be resized
668     */
669     final void push(ForkJoinTask<?> task) {
670 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
671     int s = top, m, n;
672     if ((a = array) != null) { // ignore if queue removed
673 dl 1.1 U.putOrderedObject
674 dl 1.18 (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
675     if ((n = (top = s + 1) - base) <= 1) {
676     if ((p = pool) != null)
677     p.signalWork(this, 0);
678     }
679     else if (n >= m)
680     growArray();
681 dl 1.1 }
682     }
683    
684     /**
685     * Pushes a task if lock is free and array is either big
686 dl 1.18 * enough or can be resized to be big enough.
687 dl 1.1 *
688     * @param task the task. Caller must ensure non-null.
689 dl 1.18 * @return true if submitted
690 dl 1.1 */
691 dl 1.18 final boolean trySharedPush(ForkJoinTask<?> task) {
692     boolean submitted = false;
693     if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
694     ForkJoinTask<?>[] a = array; ForkJoinPool p;
695     int s = top;
696     try {
697     if ((a != null && a.length > s + 1 - base) ||
698     (a = growArray()) != null) { // must presize
699     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
700     U.putOrderedObject(a, j, task);
701     top = s + 1;
702     submitted = true;
703     }
704     } finally {
705     qlock = 0; // unlock
706     }
707     if (submitted && (p = pool) != null)
708     p.signalWork(this, 0);
709     }
710     return submitted;
711     }
712    
713     /**
714     * Initializes or doubles the capacity of array. Call either
715     * by owner or with lock held -- it is OK for base, but not
716     * top, to move while resizings are in progress.
717     */
718     final ForkJoinTask<?>[] growArray() {
719     ForkJoinTask<?>[] oldA = array;
720     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
721     if (size > MAXIMUM_QUEUE_CAPACITY)
722     throw new RejectedExecutionException("Queue capacity exceeded");
723     int oldMask, t, b;
724     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
725     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
726     (t = top) - (b = base) > 0) {
727     int mask = size - 1;
728     do {
729     ForkJoinTask<?> x;
730     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
731     int j = ((b & mask) << ASHIFT) + ABASE;
732     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
733     if (x != null &&
734     U.compareAndSwapObject(oldA, oldj, x, null))
735     U.putObjectVolatile(a, j, x);
736     } while (++b != t);
737 dl 1.1 }
738 dl 1.18 return a;
739 dl 1.1 }
740    
741     /**
742     * Takes next task, if one exists, in LIFO order. Call only
743 dl 1.9 * by owner in unshared queues.
744 dl 1.1 */
745     final ForkJoinTask<?> pop() {
746     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
747     if ((a = array) != null && (m = a.length - 1) >= 0) {
748     for (int s; (s = top - 1) - base >= 0;) {
749     long j = ((m & s) << ASHIFT) + ABASE;
750     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
751     break;
752     if (U.compareAndSwapObject(a, j, t, null)) {
753     top = s;
754     return t;
755     }
756     }
757     }
758     return null;
759     }
760    
761     /**
762     * Takes a task in FIFO order if b is base of queue and a task
763     * can be claimed without contention. Specialized versions
764     * appear in ForkJoinPool methods scan and tryHelpStealer.
765     */
766     final ForkJoinTask<?> pollAt(int b) {
767     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
768     if ((a = array) != null) {
769     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
770     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
771     base == b &&
772     U.compareAndSwapObject(a, j, t, null)) {
773     base = b + 1;
774     return t;
775     }
776     }
777     return null;
778     }
779    
780     /**
781     * Takes next task, if one exists, in FIFO order.
782     */
783     final ForkJoinTask<?> poll() {
784     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
785     while ((b = base) - top < 0 && (a = array) != null) {
786     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
787     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
788     if (t != null) {
789     if (base == b &&
790     U.compareAndSwapObject(a, j, t, null)) {
791     base = b + 1;
792     return t;
793     }
794     }
795     else if (base == b) {
796     if (b + 1 == top)
797     break;
798 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
799 dl 1.1 }
800     }
801     return null;
802     }
803    
804     /**
805     * Takes next task, if one exists, in order specified by mode.
806     */
807     final ForkJoinTask<?> nextLocalTask() {
808     return mode == 0 ? pop() : poll();
809     }
810    
811     /**
812     * Returns next task, if one exists, in order specified by mode.
813     */
814     final ForkJoinTask<?> peek() {
815     ForkJoinTask<?>[] a = array; int m;
816     if (a == null || (m = a.length - 1) < 0)
817     return null;
818     int i = mode == 0 ? top - 1 : base;
819     int j = ((i & m) << ASHIFT) + ABASE;
820     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
821     }
822    
823     /**
824     * Pops the given task only if it is at the current top.
825 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
826 dl 1.1 */
827     final boolean tryUnpush(ForkJoinTask<?> t) {
828     ForkJoinTask<?>[] a; int s;
829     if ((a = array) != null && (s = top) != base &&
830     U.compareAndSwapObject
831     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
832     top = s;
833     return true;
834     }
835     return false;
836     }
837    
838     /**
839     * Removes and cancels all known tasks, ignoring any exceptions.
840     */
841     final void cancelAll() {
842     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
843     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
844     for (ForkJoinTask<?> t; (t = poll()) != null; )
845     ForkJoinTask.cancelIgnoringExceptions(t);
846     }
847    
848     /**
849     * Computes next value for random probes. Scans don't require
850     * a very high quality generator, but also not a crummy one.
851     * Marsaglia xor-shift is cheap and works well enough. Note:
852     * This is manually inlined in its usages in ForkJoinPool to
853     * avoid writes inside busy scan loops.
854     */
855     final int nextSeed() {
856     int r = seed;
857     r ^= r << 13;
858     r ^= r >>> 17;
859     return seed = r ^= r << 5;
860     }
861    
862 dl 1.12 /**
863     * Provides a more accurate estimate of size than (top - base)
864     * by ordering reads and checking whether a near-empty queue
865     * has at least one unclaimed task.
866     */
867     final int queueSize() {
868     ForkJoinTask<?>[] a; int k, s, n;
869     return ((n = base - (s = top)) < 0 &&
870     (n != -1 ||
871     ((a = array) != null && (k = a.length) > 0 &&
872     U.getObject
873     (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
874     -n : 0;
875     }
876    
877 dl 1.11 // Specialized execution methods
878 dl 1.1
879     /**
880     * Pops and runs tasks until empty.
881     */
882     private void popAndExecAll() {
883     // A bit faster than repeated pop calls
884     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885     while ((a = array) != null && (m = a.length - 1) >= 0 &&
886     (s = top - 1) - base >= 0 &&
887     (t = ((ForkJoinTask<?>)
888     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889     != null) {
890     if (U.compareAndSwapObject(a, j, t, null)) {
891     top = s;
892     t.doExec();
893     }
894     }
895     }
896    
897     /**
898     * Polls and runs tasks until empty.
899     */
900     private void pollAndExecAll() {
901     for (ForkJoinTask<?> t; (t = poll()) != null;)
902     t.doExec();
903     }
904    
905     /**
906 dl 1.12 * If present, removes from queue and executes the given task,
907     * or any other cancelled task. Returns (true) on any CAS
908 dl 1.1 * or consistency check failure so caller can retry.
909     *
910 dl 1.12 * @return false if no progress can be made, else true;
911 dl 1.1 */
912 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913     boolean stat = true, removed = false, empty = true;
914 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
915     if ((a = array) != null && (m = a.length - 1) >= 0 &&
916     (n = (s = top) - (b = base)) > 0) {
917     for (ForkJoinTask<?> t;;) { // traverse from s to b
918     int j = ((--s & m) << ASHIFT) + ABASE;
919     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920     if (t == null) // inconsistent length
921     break;
922     else if (t == task) {
923     if (s + 1 == top) { // pop
924     if (!U.compareAndSwapObject(a, j, task, null))
925     break;
926     top = s;
927     removed = true;
928     }
929     else if (base == b) // replace with proxy
930     removed = U.compareAndSwapObject(a, j, task,
931     new EmptyTask());
932     break;
933     }
934     else if (t.status >= 0)
935     empty = false;
936     else if (s + 1 == top) { // pop and throw away
937     if (U.compareAndSwapObject(a, j, t, null))
938     top = s;
939     break;
940     }
941     if (--n == 0) {
942     if (!empty && base == b)
943 dl 1.12 stat = false;
944 dl 1.1 break;
945     }
946     }
947     }
948     if (removed)
949     task.doExec();
950     return stat;
951     }
952    
953     /**
954 dl 1.12 * Polls for and executes the given task or any other task in
955     * its CountedCompleter computation
956 dl 1.11 */
957 dl 1.12 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958     ForkJoinTask<?>[] a; int b; Object o;
959     outer: while ((b = base) - top < 0 && (a = array) != null) {
960     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961     if ((o = U.getObject(a, j)) == null ||
962     !(o instanceof CountedCompleter))
963     break;
964     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965     if (r == root) {
966     if (base == b &&
967     U.compareAndSwapObject(a, j, t, null)) {
968     base = b + 1;
969     t.doExec();
970     return true;
971 dl 1.11 }
972 dl 1.12 else
973     break; // restart
974 dl 1.11 }
975 dl 1.12 if ((r = r.completer) == null)
976     break outer; // not part of root computation
977 dl 1.11 }
978     }
979 dl 1.12 return false;
980 dl 1.11 }
981    
982     /**
983 dl 1.1 * Executes a top-level task and any local tasks remaining
984     * after execution.
985     */
986     final void runTask(ForkJoinTask<?> t) {
987     if (t != null) {
988 dl 1.12 (currentSteal = t).doExec();
989     currentSteal = null;
990 dl 1.18 ++nsteals;
991 dl 1.1 if (top != base) { // process remaining local tasks
992     if (mode == 0)
993     popAndExecAll();
994     else
995     pollAndExecAll();
996     }
997     }
998     }
999    
1000     /**
1001     * Executes a non-top-level (stolen) task.
1002     */
1003     final void runSubtask(ForkJoinTask<?> t) {
1004     if (t != null) {
1005     ForkJoinTask<?> ps = currentSteal;
1006 dl 1.12 (currentSteal = t).doExec();
1007 dl 1.1 currentSteal = ps;
1008     }
1009     }
1010    
1011     /**
1012     * Returns true if owned and not known to be blocked.
1013     */
1014     final boolean isApparentlyUnblocked() {
1015     Thread wt; Thread.State s;
1016     return (eventCount >= 0 &&
1017     (wt = owner) != null &&
1018     (s = wt.getState()) != Thread.State.BLOCKED &&
1019     s != Thread.State.WAITING &&
1020     s != Thread.State.TIMED_WAITING);
1021     }
1022    
1023     /**
1024     * If this owned and is not already interrupted, try to
1025     * interrupt and/or unpark, ignoring exceptions.
1026     */
1027     final void interruptOwner() {
1028     Thread wt, p;
1029     if ((wt = owner) != null && !wt.isInterrupted()) {
1030     try {
1031     wt.interrupt();
1032     } catch (SecurityException ignore) {
1033     }
1034     }
1035     if ((p = parker) != null)
1036     U.unpark(p);
1037     }
1038    
1039     // Unsafe mechanics
1040     private static final sun.misc.Unsafe U;
1041 dl 1.12 private static final long QLOCK;
1042 dl 1.1 private static final int ABASE;
1043     private static final int ASHIFT;
1044     static {
1045     int s;
1046     try {
1047     U = getUnsafe();
1048     Class<?> k = WorkQueue.class;
1049     Class<?> ak = ForkJoinTask[].class;
1050 dl 1.12 QLOCK = U.objectFieldOffset
1051     (k.getDeclaredField("qlock"));
1052 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1053     s = U.arrayIndexScale(ak);
1054     } catch (Exception e) {
1055     throw new Error(e);
1056     }
1057     if ((s & (s-1)) != 0)
1058     throw new Error("data type scale not a power of two");
1059     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1060     }
1061     }
1062 jsr166 1.3
1063 dl 1.18 // static fields (initialized in static initializer below)
1064    
1065     /**
1066     * Creates a new ForkJoinWorkerThread. This factory is used unless
1067     * overridden in ForkJoinPool constructors.
1068     */
1069     public static final ForkJoinWorkerThreadFactory
1070     defaultForkJoinWorkerThreadFactory;
1071    
1072 dl 1.1 /**
1073     * Per-thread records for threads that submit to pools. Currently
1074     * holds only pseudo-random seed / index that is used to choose
1075 dl 1.12 * submission queues in method externalPush. In the future, this may
1076 dl 1.1 * also incorporate a means to implement different task rejection
1077     * and resubmission policies.
1078     *
1079     * Seeds for submitters and workers/workQueues work in basically
1080     * the same way but are initialized and updated using slightly
1081     * different mechanics. Both are initialized using the same
1082     * approach as in class ThreadLocal, where successive values are
1083 dl 1.12 * unlikely to collide with previous values. Seeds are then
1084     * randomly modified upon collisions using xorshifts, which
1085     * requires a non-zero seed.
1086 dl 1.1 */
1087     static final class Submitter {
1088     int seed;
1089 dl 1.12 Submitter(int s) { seed = s; }
1090 dl 1.1 }
1091    
1092     /**
1093 dl 1.18 * Per-thread submission bookkeeping. Shared across all pools
1094     * to reduce ThreadLocal pollution and because random motion
1095     * to avoid contention in one pool is likely to hold for others.
1096     * Lazily initialized on first submission (but null-checked
1097     * in other contexts to avoid unnecessary initialization).
1098 dl 1.1 */
1099 dl 1.18 static final ThreadLocal<Submitter> submitters;
1100 dl 1.1
1101 dl 1.8 /**
1102     * Common (static) pool. Non-null for public use unless a static
1103 dl 1.12 * construction exception, but internal usages null-check on use
1104     * to paranoically avoid potential initialization circularities
1105     * as well as to simplify generated code.
1106 dl 1.8 */
1107     static final ForkJoinPool commonPool;
1108    
1109     /**
1110 dl 1.12 * Permission required for callers of methods that may start or
1111     * kill threads.
1112 dl 1.8 */
1113 dl 1.12 private static final RuntimePermission modifyThreadPermission;
1114 dl 1.8
1115 dl 1.1 /**
1116 dl 1.12 * Common pool parallelism. Must equal commonPool.parallelism.
1117 dl 1.1 */
1118 dl 1.12 static final int commonPoolParallelism;
1119 dl 1.1
1120     /**
1121 dl 1.12 * Sequence number for creating workerNamePrefix.
1122 dl 1.1 */
1123 dl 1.12 private static int poolNumberSequence;
1124 dl 1.1
1125     /**
1126 dl 1.12 * Return the next sequence number. We don't expect this to
1127     * ever contend so use simple builtin sync.
1128 dl 1.1 */
1129 dl 1.12 private static final synchronized int nextPoolId() {
1130     return ++poolNumberSequence;
1131     }
1132 dl 1.1
1133     // static constants
1134    
1135     /**
1136 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1137     * triggering quiescence to park waiting for new work. On timeout,
1138     * the thread will instead try to shrink the number of
1139     * workers. The value should be large enough to avoid overly
1140     * aggressive shrinkage during most transient stalls (long GCs
1141     * etc).
1142 dl 1.1 */
1143 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1144 dl 1.1
1145     /**
1146 dl 1.7 * Timeout value when there are more threads than parallelism level
1147 dl 1.1 */
1148 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1149 dl 1.1
1150     /**
1151     * The maximum stolen->joining link depth allowed in method
1152 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1153 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1154     * (otherwise unchecked) cycles and to bound staleness of
1155     * traversal parameters at the expense of sometimes blocking when
1156     * we could be helping.
1157     */
1158     private static final int MAX_HELP = 64;
1159    
1160     /**
1161     * Increment for seed generators. See class ThreadLocal for
1162     * explanation.
1163     */
1164     private static final int SEED_INCREMENT = 0x61c88647;
1165    
1166     /**
1167     * Bits and masks for control variables
1168     *
1169     * Field ctl is a long packed with:
1170     * AC: Number of active running workers minus target parallelism (16 bits)
1171     * TC: Number of total workers minus target parallelism (16 bits)
1172     * ST: true if pool is terminating (1 bit)
1173     * EC: the wait count of top waiting thread (15 bits)
1174     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1175     *
1176     * When convenient, we can extract the upper 32 bits of counts and
1177     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1178     * (int)ctl. The ec field is never accessed alone, but always
1179     * together with id and st. The offsets of counts by the target
1180     * parallelism and the positionings of fields makes it possible to
1181     * perform the most common checks via sign tests of fields: When
1182     * ac is negative, there are not enough active workers, when tc is
1183     * negative, there are not enough total workers, and when e is
1184     * negative, the pool is terminating. To deal with these possibly
1185     * negative fields, we use casts in and out of "short" and/or
1186     * signed shifts to maintain signedness.
1187     *
1188     * When a thread is queued (inactivated), its eventCount field is
1189     * set negative, which is the only way to tell if a worker is
1190     * prevented from executing tasks, even though it must continue to
1191     * scan for them to avoid queuing races. Note however that
1192     * eventCount updates lag releases so usage requires care.
1193     *
1194 dl 1.12 * Field plock is an int packed with:
1195 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198 dl 1.1 *
1199     * The sequence number enables simple consistency checks:
1200     * Staleness of read-only operations on the workQueues array can
1201 dl 1.12 * be checked by comparing plock before vs after the reads.
1202 dl 1.1 */
1203    
1204     // bit positions/shifts for fields
1205     private static final int AC_SHIFT = 48;
1206     private static final int TC_SHIFT = 32;
1207     private static final int ST_SHIFT = 31;
1208     private static final int EC_SHIFT = 16;
1209    
1210     // bounds
1211     private static final int SMASK = 0xffff; // short bits
1212     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1213 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1214     private static final int SQMASK = 0x007e; // max 64 (even) slots
1215 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1216     private static final int INT_SIGN = 1 << 31;
1217    
1218     // masks
1219     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1220     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1221     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1222    
1223     // units for incrementing and decrementing
1224     private static final long TC_UNIT = 1L << TC_SHIFT;
1225     private static final long AC_UNIT = 1L << AC_SHIFT;
1226    
1227     // masks and units for dealing with u = (int)(ctl >>> 32)
1228     private static final int UAC_SHIFT = AC_SHIFT - 32;
1229     private static final int UTC_SHIFT = TC_SHIFT - 32;
1230     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1231     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1232     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1233     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1234    
1235     // masks and units for dealing with e = (int)ctl
1236     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1237     private static final int E_SEQ = 1 << EC_SHIFT;
1238    
1239 dl 1.12 // plock bits
1240 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1241 dl 1.12 private static final int PL_LOCK = 2;
1242     private static final int PL_SIGNAL = 1;
1243     private static final int PL_SPINS = 1 << 8;
1244 dl 1.1
1245     // access mode for WorkQueue
1246     static final int LIFO_QUEUE = 0;
1247     static final int FIFO_QUEUE = 1;
1248     static final int SHARED_QUEUE = -1;
1249    
1250 dl 1.18 // bounds for #steps in scan loop -- must be power 2 minus 1
1251     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1252     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1253    
1254 dl 1.1 // Instance fields
1255    
1256     /*
1257 dl 1.18 * Field layout of this class tends to matter more than one would
1258     * like. Runtime layout order is only loosely related to
1259 dl 1.1 * declaration order and may differ across JVMs, but the following
1260     * empirically works OK on current JVMs.
1261     */
1262 dl 1.8 volatile long stealCount; // collects worker counts
1263 dl 1.1 volatile long ctl; // main pool control
1264 dl 1.18 volatile int plock; // shutdown status and seqLock
1265 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1266 dl 1.18 final int config; // mode and parallelism level
1267 dl 1.1 WorkQueue[] workQueues; // main registry
1268 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1269 dl 1.1 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1270 dl 1.8 final String workerNamePrefix; // to create worker name string
1271    
1272     /*
1273 dl 1.12 * Acquires the plock lock to protect worker array and related
1274     * updates. This method is called only if an initial CAS on plock
1275     * fails. This acts as a spinLock for normal cases, but falls back
1276     * to builtin monitor to block when (rarely) needed. This would be
1277     * a terrible idea for a highly contended lock, but works fine as
1278     * a more conservative alternative to a pure spinlock. See
1279     * internal ConcurrentHashMap documentation for further
1280     * explanation of nearly the same construction.
1281     */
1282     private int acquirePlock() {
1283     int spins = PL_SPINS, r = 0, ps, nps;
1284     for (;;) {
1285     if (((ps = plock) & PL_LOCK) == 0 &&
1286     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1287     return nps;
1288 dl 1.18 else if (r == 0) { // randomize spins if possible
1289     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1290     if ((t instanceof ForkJoinWorkerThread) &&
1291     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1292     r = w.seed;
1293     else if ((z = submitters.get()) != null)
1294     r = z.seed;
1295     else
1296     r = 1;
1297     }
1298 dl 1.8 else if (spins >= 0) {
1299     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1300     if (r >= 0)
1301     --spins;
1302     }
1303 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1304 jsr166 1.13 synchronized (this) {
1305 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1306 dl 1.8 try {
1307     wait();
1308     } catch (InterruptedException ie) {
1309 dl 1.11 try {
1310     Thread.currentThread().interrupt();
1311     } catch (SecurityException ignore) {
1312     }
1313 dl 1.8 }
1314     }
1315     else
1316 dl 1.12 notifyAll();
1317 dl 1.8 }
1318     }
1319     }
1320     }
1321 dl 1.1
1322     /**
1323 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1324     * when CAS of seq value for unlock fails.
1325 dl 1.1 */
1326 dl 1.12 private void releasePlock(int ps) {
1327     plock = ps;
1328 jsr166 1.13 synchronized (this) { notifyAll(); }
1329 dl 1.1 }
1330    
1331 dl 1.18 /**
1332     * Tries to create and start a worker; adjusts counts etc on failure
1333     */
1334     private void addWorker() {
1335     ForkJoinWorkerThread wt = null;
1336     try {
1337     (wt = factory.newThread(this)).start();
1338     } catch (Throwable ex) {
1339     deregisterWorker(wt, ex); // adjust on failure
1340     }
1341     }
1342 dl 1.1
1343     /**
1344 dl 1.18 * Performs secondary initialization, called when plock is zero.
1345     * Creates workQueue array and sets plock to a valid value. The
1346     * lock body must be exception-free (so no try/finally) so we
1347     * optimistically allocate new array outside the lock and throw
1348     * away if (very rarely) not needed. (A similar tactic is used in
1349     * fullExternalPush.) Because the plock seq value can eventually
1350     * wrap around zero, this method harmlessly fails to reinitialize
1351     * if workQueues exists, while still advancing plock.
1352     */
1353     private void initWorkQueuesArray() {
1354     WorkQueue[] ws; int ps;
1355     int p = config & SMASK; // find power of two table size
1356     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1357     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1358     WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1359 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1360     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1361     ps = acquirePlock();
1362 dl 1.18 if ((ws = workQueues) == null || ws.length == 0)
1363     workQueues = nws;
1364 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1365 dl 1.18 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1366     releasePlock(nps);
1367     long c; int u;
1368     if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1369     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1370     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1371     if (U.compareAndSwapLong(this, CTL, c, nc))
1372     addWorker();
1373     }
1374    
1375     }
1376    
1377     // Registering and deregistering workers
1378    
1379     /**
1380     * Callback from ForkJoinWorkerThread to establish and record its
1381     * WorkQueue. To avoid scanning bias due to packing entries in
1382     * front of the workQueues array, we treat the array as a simple
1383     * power-of-two hash table using per-thread seed as hash,
1384     * expanding as needed.
1385     *
1386     * @param wt the worker thread
1387     */
1388     final void registerWorker(ForkJoinWorkerThread wt) {
1389     if (wt != null && wt.workQueue == null) {
1390     int s, ps; // generate a rarely colliding candidate index seed
1391     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1392     s += SEED_INCREMENT) ||
1393     s == 0); // skip 0
1394     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1395     if (((ps = plock) & PL_LOCK) != 0 ||
1396     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1397     ps = acquirePlock();
1398     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1399     try {
1400     WorkQueue[] ws;
1401     if ((ws = workQueues) != null && wt.workQueue == null) {
1402     int n = ws.length, m = n - 1;
1403     int r = (s << 1) | 1; // use odd-numbered indices
1404     if (ws[r &= m] != null) { // collision
1405     int probes = 0; // step by approx half size
1406     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1407     while (ws[r = (r + step) & m] != null) {
1408     if (++probes >= n) {
1409     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1410     m = n - 1;
1411     probes = 0;
1412     }
1413 dl 1.1 }
1414     }
1415 dl 1.18 w.eventCount = w.poolIndex = r; // volatile write orders
1416     wt.workQueue = ws[r] = w;
1417 dl 1.1 }
1418 dl 1.18 } finally {
1419     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1420     releasePlock(nps);
1421 dl 1.1 }
1422     }
1423     }
1424    
1425     /**
1426     * Final callback from terminating worker, as well as upon failure
1427 dl 1.12 * to construct or start a worker. Removes record of worker from
1428     * array, and adjusts counts. If pool is shutting down, tries to
1429     * complete termination.
1430 dl 1.1 *
1431 dl 1.12 * @param wt the worker thread or null if construction failed
1432 dl 1.1 * @param ex the exception causing failure, or null if none
1433     */
1434     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1435     WorkQueue w = null;
1436     if (wt != null && (w = wt.workQueue) != null) {
1437 dl 1.12 int ps;
1438     w.qlock = -1; // ensure set
1439 dl 1.18 long ns = w.nsteals, sc; // collect steal count
1440     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1441     sc = stealCount, sc + ns));
1442 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1443     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1444     ps = acquirePlock();
1445     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1446 dl 1.8 try {
1447 dl 1.12 int idx = w.poolIndex;
1448 dl 1.1 WorkQueue[] ws = workQueues;
1449     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1450     ws[idx] = null;
1451     } finally {
1452 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1453     releasePlock(nps);
1454 dl 1.1 }
1455     }
1456    
1457     long c; // adjust ctl counts
1458     do {} while (!U.compareAndSwapLong
1459     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1460     ((c - TC_UNIT) & TC_MASK) |
1461     (c & ~(AC_MASK|TC_MASK)))));
1462    
1463     if (!tryTerminate(false, false) && w != null) {
1464     w.cancelAll(); // cancel remaining tasks
1465     if (w.array != null) // suppress signal if never ran
1466 dl 1.18 helpSignal(null, 0); // wake up or create replacement
1467 dl 1.1 if (ex == null) // help clean refs on way out
1468     ForkJoinTask.helpExpungeStaleExceptions();
1469     }
1470    
1471     if (ex != null) // rethrow
1472 dl 1.11 ForkJoinTask.rethrow(ex);
1473 dl 1.1 }
1474    
1475     // Submissions
1476    
1477     /**
1478     * Unless shutting down, adds the given task to a submission queue
1479     * at submitter's current queue index (modulo submission
1480 dl 1.12 * range). Only the most common path is directly handled in this
1481     * method. All others are relayed to fullExternalPush.
1482 dl 1.1 *
1483     * @param task the task. Caller must ensure non-null.
1484     */
1485 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1486     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1487     if ((z = submitters.get()) != null && plock > 0 &&
1488     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1489     (q = ws[m & z.seed & SQMASK]) != null &&
1490     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1491 dl 1.18 int b = q.base, s = q.top, n, an;
1492     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1493     U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1494 dl 1.12 q.top = s + 1; // push on to deque
1495     q.qlock = 0;
1496 dl 1.18 if (n <= 2)
1497     signalWork(q, 0);
1498 dl 1.1 return;
1499     }
1500 dl 1.12 q.qlock = 0;
1501 dl 1.1 }
1502 dl 1.12 fullExternalPush(task);
1503 dl 1.1 }
1504    
1505 dl 1.7 /**
1506 dl 1.12 * Full version of externalPush. This method is called, among
1507     * other times, upon the first submission of the first task to the
1508 dl 1.18 * pool, so must perform secondary initialization (via
1509     * initWorkQueuesArray). It also detects first submission by an
1510     * external thread by looking up its ThreadLocal, and creates a
1511     * new shared queue if the one at index if empty or contended. The
1512     * lock body must be exception-free (so no try/finally) so we
1513     * optimistically allocate new queues outside the lock and throw
1514     * them away if (very rarely) not needed.
1515 dl 1.12 */
1516     private void fullExternalPush(ForkJoinTask<?> task) {
1517 dl 1.18 int r = 0;
1518     for (Submitter z = submitters.get();;) {
1519     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1520     if (z == null) {
1521     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1522     r += SEED_INCREMENT) && r != 0)
1523     submitters.set(z = new Submitter(r));
1524     }
1525     else if (r == 0) { // move to a different index
1526     r = z.seed;
1527     r ^= r << 13; // same xorshift as WorkQueues
1528     r ^= r >>> 17;
1529     z.seed = r ^ (r << 5);
1530     }
1531     else if ((ps = plock) < 0)
1532 dl 1.12 throw new RejectedExecutionException();
1533 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1534     (m = ws.length - 1) < 0)
1535     initWorkQueuesArray();
1536     else if ((q = ws[k = r & m & SQMASK]) != null) {
1537     if (q.trySharedPush(task))
1538     return;
1539     else
1540     r = 0; // move on contention
1541     }
1542     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1543     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1544     if (((ps = plock) & PL_LOCK) != 0 ||
1545 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1546     ps = acquirePlock();
1547 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1548     ws[k] = q;
1549 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1550     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1551     releasePlock(nps);
1552     }
1553 dl 1.18 else
1554     r = 0; // try elsewhere while lock held
1555 dl 1.11 }
1556 dl 1.9 }
1557    
1558 dl 1.1 // Maintaining ctl counts
1559    
1560     /**
1561     * Increments active count; mainly called upon return from blocking.
1562     */
1563     final void incrementActiveCount() {
1564     long c;
1565     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1566     }
1567    
1568     /**
1569 dl 1.12 * Tries to create (at most one) or activate (possibly several)
1570     * workers if too few are active. On contention failure, continues
1571     * until at least one worker is signalled or the given queue is
1572     * empty or all workers are active.
1573     *
1574     * @param q if non-null, the queue holding tasks to be signalled
1575 dl 1.18 * @param signals the target number of signals (at least one --
1576     * if argument is zero also sets signallee hint if parked).
1577 dl 1.12 */
1578     final void signalWork(WorkQueue q, int signals) {
1579 dl 1.18 long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1580 dl 1.12 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1581     if ((e = (int)c) > 0) {
1582     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1583 dl 1.1 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1584     long nc = (((long)(w.nextWait & E_MASK)) |
1585     ((long)(u + UAC_UNIT) << 32));
1586     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1587     w.eventCount = (e + E_SEQ) & E_MASK;
1588 dl 1.18 if ((p = w.parker) != null) {
1589     if (q != null && signals == 0)
1590     w.hint = q.poolIndex;
1591 dl 1.12 U.unpark(p);
1592 dl 1.18 }
1593 dl 1.12 if (--signals <= 0)
1594     break;
1595     }
1596 dl 1.18 if (q != null && (s = q.queueSize()) <= signals &&
1597     (signals = s) <= 0)
1598 dl 1.1 break;
1599     }
1600     else
1601     break;
1602     }
1603 dl 1.12 else if (e == 0 && (u & SHORT_SIGN) != 0) {
1604 dl 1.1 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1605     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1606     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1607 dl 1.18 addWorker();
1608 dl 1.1 break;
1609     }
1610     }
1611     else
1612     break;
1613     }
1614     }
1615    
1616     // Scanning for tasks
1617    
1618     /**
1619     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1620     */
1621     final void runWorker(WorkQueue w) {
1622 dl 1.18 if (w != null) // skip on initialization failure
1623     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1624 dl 1.1 }
1625    
1626     /**
1627     * Scans for and, if found, returns one task, else possibly
1628     * inactivates the worker. This method operates on single reads of
1629     * volatile state and is designed to be re-invoked continuously,
1630     * in part because it returns upon detecting inconsistencies,
1631     * contention, or state changes that indicate possible success on
1632     * re-invocation.
1633     *
1634 dl 1.18 * The scan searches for tasks across queues (starting at a random
1635     * index, and relying on registerWorker to irregularly scatter
1636     * them within array to avoid bias), checking each at least twice.
1637     * The scan terminates upon either finding a non-empty queue, or
1638     * completing the sweep. If the worker is not inactivated, it
1639     * takes and returns a task from this queue. Otherwise, if not
1640     * activated, it signals workers (that may include itself) and
1641     * returns so caller can retry. Also returns for true if the
1642     * worker array may have changed during an empty scan. On failure
1643     * to find a task, we take one of the following actions, after
1644     * which the caller will retry calling this method unless
1645     * terminated.
1646 dl 1.1 *
1647     * * If pool is terminating, terminate the worker.
1648     *
1649     * * If not already enqueued, try to inactivate and enqueue the
1650     * worker on wait queue. Or, if inactivating has caused the pool
1651     * to be quiescent, relay to idleAwaitWork to check for
1652     * termination and possibly shrink pool.
1653     *
1654 dl 1.12 * * If already enqueued and none of the above apply, possibly
1655 jsr166 1.14 * (with 1/2 probability) park awaiting signal, else lingering to
1656 dl 1.12 * help scan and signal.
1657 dl 1.1 *
1658     * @param w the worker (via its WorkQueue)
1659 jsr166 1.5 * @return a task or null if none found
1660 dl 1.1 */
1661     private final ForkJoinTask<?> scan(WorkQueue w) {
1662 dl 1.18 WorkQueue[] ws; int m, hint;
1663     int ps = plock; // read plock before ws
1664     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1665     int ec = w.eventCount; // ec is negative if inactive
1666     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1667     for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1668     WorkQueue q; ForkJoinTask<?>[] a; int b;
1669     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1670     (a = q.array) != null) { // probably nonempty
1671 dl 1.1 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1672 dl 1.18 ForkJoinTask<?> t = (ForkJoinTask<?>)
1673     U.getObjectVolatile(a, i);
1674 dl 1.1 if (q.base == b && ec >= 0 && t != null &&
1675     U.compareAndSwapObject(a, i, t, null)) {
1676 dl 1.18 if ((q.base = b + 1) - q.top < 0)
1677     signalWork(q, 0);
1678     return t; // taken
1679     }
1680     else if (ec < 0 || j < m) { // cannot take or cannot rescan
1681     w.hint = q.poolIndex; // use hint below
1682     break; // let caller retry after signal
1683     }
1684     }
1685     else if (j < 0) { // end of scan; in loop to simplify code
1686     long c, sc; int e, ns;
1687     if ((ns = w.nsteals) != 0) {
1688     if (U.compareAndSwapLong(this, STEALCOUNT,
1689     sc = stealCount, sc + ns))
1690     w.nsteals = 0; // collect steals
1691 dl 1.1 }
1692 dl 1.18 else if (plock != ps) // ws may have changed
1693 dl 1.12 break;
1694 dl 1.18 else if ((e = (int)(c = ctl)) < 0)
1695     w.qlock = -1; // pool is terminating
1696     else if (ec >= 0) { // try to enqueue/inactivate
1697 dl 1.12 long nc = ((long)ec |
1698     ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1699 dl 1.18 w.nextWait = e; // link and mark inactive
1700     w.hint = -1; // use hint if set while parked
1701     w.eventCount = ec | INT_SIGN;
1702 dl 1.12 if (ctl != c ||
1703     !U.compareAndSwapLong(this, CTL, c, nc))
1704 dl 1.18 w.eventCount = ec; // unmark on CAS failure
1705     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1706     idleAwaitWork(w, nc, c);
1707 dl 1.12 }
1708 dl 1.18 else if (w.eventCount < 0) { // block
1709 dl 1.12 Thread wt = Thread.currentThread();
1710 dl 1.18 Thread.interrupted(); // clear status
1711 dl 1.12 U.putObject(wt, PARKBLOCKER, this);
1712 dl 1.18 w.parker = wt; // emulate LockSupport.park
1713     if (w.eventCount < 0) // recheck
1714 dl 1.12 U.park(false, 0L);
1715     w.parker = null;
1716     U.putObject(wt, PARKBLOCKER, null);
1717 dl 1.1 }
1718     break;
1719     }
1720     }
1721 dl 1.18 if ((hint = w.hint) >= 0) { // help signal
1722     WorkQueue[] vs; WorkQueue v; int k;
1723     w.hint = -1; // suppress resignal
1724     if ((vs = workQueues) != null && hint < vs.length &&
1725     (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1726     signalWork(v, 1 - k);
1727     }
1728 dl 1.1 }
1729     return null;
1730     }
1731    
1732     /**
1733     * If inactivating worker w has caused the pool to become
1734     * quiescent, checks for pool termination, and, so long as this is
1735 dl 1.7 * not the only worker, waits for event for up to a given
1736     * duration. On timeout, if ctl has not changed, terminates the
1737 dl 1.1 * worker, which will in turn wake up another worker to possibly
1738     * repeat this process.
1739     *
1740     * @param w the calling worker
1741     * @param currentCtl the ctl value triggering possible quiescence
1742     * @param prevCtl the ctl value to restore if thread is terminated
1743     */
1744     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1745 dl 1.18 if (w != null && w.eventCount < 0 &&
1746     !tryTerminate(false, false) && (int)prevCtl != 0) {
1747 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1748     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1749     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1750 dl 1.1 Thread wt = Thread.currentThread();
1751     while (ctl == currentCtl) {
1752     Thread.interrupted(); // timed variant of version in scan()
1753     U.putObject(wt, PARKBLOCKER, this);
1754     w.parker = wt;
1755     if (ctl == currentCtl)
1756 dl 1.7 U.park(false, parkTime);
1757 dl 1.1 w.parker = null;
1758     U.putObject(wt, PARKBLOCKER, null);
1759     if (ctl != currentCtl)
1760     break;
1761 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1762 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1763     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1764 dl 1.12 w.qlock = -1; // shrink
1765 dl 1.18 w.hint = -1; // suppress helping
1766 dl 1.1 break;
1767     }
1768     }
1769     }
1770     }
1771    
1772     /**
1773 dl 1.18 * Scans through queues looking for work (optionally, while
1774     * joining a task); if any are present, signals. May return early
1775     * if more signalling is detectably unneeded.
1776 dl 1.12 *
1777 dl 1.18 * @param task if non-null, return early if done
1778 dl 1.12 * @param origin an index to start scan
1779     */
1780     final int helpSignal(ForkJoinTask<?> task, int origin) {
1781 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1782     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1783 dl 1.12 for (int i = 0; i <= m; ++i) {
1784 dl 1.18 if (task != null && (s = task.status) < 0)
1785 dl 1.12 return s;
1786     if ((q = ws[(i + origin) & m]) != null &&
1787     (n = q.queueSize()) > 0) {
1788     signalWork(q, n);
1789 dl 1.18 if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1790 dl 1.12 break;
1791     }
1792     }
1793     }
1794     return 0;
1795     }
1796    
1797     /**
1798 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1799     * task, or in turn one of its stealers, Traces currentSteal ->
1800     * currentJoin links looking for a thread working on a descendant
1801     * of the given task and with a non-empty queue to steal back and
1802     * execute tasks from. The first call to this method upon a
1803     * waiting join will often entail scanning/search, (which is OK
1804     * because the joiner has nothing better to do), but this method
1805     * leaves hints in workers to speed up subsequent calls. The
1806     * implementation is very branchy to cope with potential
1807     * inconsistencies or loops encountering chains that are stale,
1808     * unknown, or so long that they are likely cyclic.
1809     *
1810     * @param joiner the joining worker
1811     * @param task the task to join
1812     * @return 0 if no progress can be made, negative if task
1813     * known complete, else positive
1814     */
1815     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816     int stat = 0, steps = 0; // bound to avoid cycles
1817     if (joiner != null && task != null) { // hoist null checks
1818     restart: for (;;) {
1819     ForkJoinTask<?> subtask = task; // current target
1820     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1821     WorkQueue[] ws; int m, s, h;
1822     if ((s = task.status) < 0) {
1823     stat = s;
1824     break restart;
1825     }
1826     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827     break restart; // shutting down
1828 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829 dl 1.1 v.currentSteal != subtask) {
1830     for (int origin = h;;) { // find stealer
1831     if (((h = (h + 2) & m) & 15) == 1 &&
1832     (subtask.status < 0 || j.currentJoin != subtask))
1833     continue restart; // occasional staleness check
1834     if ((v = ws[h]) != null &&
1835     v.currentSteal == subtask) {
1836 dl 1.18 j.hint = h; // save hint
1837 dl 1.1 break;
1838     }
1839     if (h == origin)
1840     break restart; // cannot find stealer
1841     }
1842     }
1843     for (;;) { // help stealer or descend to its stealer
1844     ForkJoinTask[] a; int b;
1845     if (subtask.status < 0) // surround probes with
1846     continue restart; // consistency checks
1847     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849     ForkJoinTask<?> t =
1850     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851     if (subtask.status < 0 || j.currentJoin != subtask ||
1852     v.currentSteal != subtask)
1853     continue restart; // stale
1854     stat = 1; // apparent progress
1855     if (t != null && v.base == b &&
1856     U.compareAndSwapObject(a, i, t, null)) {
1857     v.base = b + 1; // help stealer
1858     joiner.runSubtask(t);
1859     }
1860     else if (v.base == b && ++steps == MAX_HELP)
1861     break restart; // v apparently stalled
1862     }
1863     else { // empty -- try to descend
1864     ForkJoinTask<?> next = v.currentJoin;
1865     if (subtask.status < 0 || j.currentJoin != subtask ||
1866     v.currentSteal != subtask)
1867     continue restart; // stale
1868     else if (next == null || ++steps == MAX_HELP)
1869     break restart; // dead-end or maybe cyclic
1870     else {
1871     subtask = next;
1872     j = v;
1873     break;
1874     }
1875     }
1876     }
1877     }
1878     }
1879     }
1880     return stat;
1881     }
1882    
1883     /**
1884 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1885 jsr166 1.17 * and run tasks within the target's computation.
1886 dl 1.12 *
1887     * @param task the task to join
1888     * @param mode if shared, exit upon completing any task
1889     * if all workers are active
1890 dl 1.1 *
1891     */
1892 dl 1.12 private int helpComplete(ForkJoinTask<?> task, int mode) {
1893 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1894 dl 1.12 if (task != null && (ws = workQueues) != null &&
1895     (m = ws.length - 1) >= 0) {
1896     for (int j = 1, origin = j;;) {
1897     if ((s = task.status) < 0)
1898     return s;
1899     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1900     origin = j;
1901 dl 1.18 if (mode == SHARED_QUEUE &&
1902     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1903 dl 1.12 break;
1904     }
1905     else if ((j = (j + 2) & m) == origin)
1906 dl 1.1 break;
1907     }
1908     }
1909 dl 1.12 return 0;
1910 dl 1.1 }
1911    
1912     /**
1913     * Tries to decrement active count (sometimes implicitly) and
1914     * possibly release or create a compensating worker in preparation
1915     * for blocking. Fails on contention or termination. Otherwise,
1916 dl 1.12 * adds a new thread if no idle workers are available and pool
1917     * may become starved.
1918 dl 1.1 */
1919 dl 1.12 final boolean tryCompensate() {
1920 dl 1.18 int pc = config & SMASK, e, i, tc; long c;
1921 dl 1.12 WorkQueue[] ws; WorkQueue w; Thread p;
1922 dl 1.18 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1923 dl 1.12 if (e != 0 && (i = e & SMASK) < ws.length &&
1924     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1925     long nc = ((long)(w.nextWait & E_MASK) |
1926     (c & (AC_MASK|TC_MASK)));
1927     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1928     w.eventCount = (e + E_SEQ) & E_MASK;
1929     if ((p = w.parker) != null)
1930     U.unpark(p);
1931     return true; // replace with idle worker
1932 dl 1.1 }
1933     }
1934 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1935     (int)(c >> AC_SHIFT) + pc > 1) {
1936 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1937     if (U.compareAndSwapLong(this, CTL, c, nc))
1938 dl 1.18 return true; // no compensation
1939 dl 1.12 }
1940 dl 1.18 else if (tc + pc < MAX_CAP) {
1941 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1942     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1943 dl 1.18 addWorker();
1944     return true;
1945 dl 1.1 }
1946     }
1947     }
1948     return false;
1949     }
1950    
1951     /**
1952     * Helps and/or blocks until the given task is done.
1953     *
1954     * @param joiner the joining worker
1955     * @param task the task
1956     * @return task status on exit
1957     */
1958     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1959 dl 1.12 int s = 0;
1960     if (joiner != null && task != null && (s = task.status) >= 0) {
1961 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1962     joiner.currentJoin = task;
1963 dl 1.12 do {} while ((s = task.status) >= 0 &&
1964     joiner.queueSize() > 0 &&
1965     joiner.tryRemoveAndExec(task)); // process local tasks
1966     if (s >= 0 && (s = task.status) >= 0 &&
1967     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1968     (task instanceof CountedCompleter))
1969     s = helpComplete(task, LIFO_QUEUE);
1970 dl 1.18 int k = 0; // to perform pre-block yield for politeness
1971 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
1972     if ((joiner.queueSize() > 0 || // try helping
1973     (s = tryHelpStealer(joiner, task)) == 0) &&
1974 dl 1.18 (s = task.status) >= 0) {
1975     if (k < 3) {
1976     if (++k < 3)
1977     s = helpSignal(task, joiner.poolIndex);
1978     else
1979     Thread.yield();
1980     }
1981     else if (!tryCompensate())
1982     k = 0;
1983     else {
1984     if (task.trySetSignal() && (s = task.status) >= 0) {
1985     synchronized (task) {
1986     if (task.status >= 0) {
1987     try { // see ForkJoinTask
1988     task.wait(); // for explanation
1989     } catch (InterruptedException ie) {
1990     }
1991 dl 1.1 }
1992 dl 1.18 else
1993     task.notifyAll();
1994 dl 1.1 }
1995     }
1996 dl 1.18 long c; // re-activate
1997     do {} while (!U.compareAndSwapLong
1998     (this, CTL, c = ctl, c + AC_UNIT));
1999 dl 1.1 }
2000     }
2001     }
2002 dl 1.12 joiner.currentJoin = prevJoin;
2003 dl 1.1 }
2004     return s;
2005     }
2006    
2007     /**
2008     * Stripped-down variant of awaitJoin used by timed joins. Tries
2009     * to help join only while there is continuous progress. (Caller
2010     * will then enter a timed wait.)
2011     *
2012     * @param joiner the joining worker
2013     * @param task the task
2014     */
2015 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2016 dl 1.1 int s;
2017 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2018     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2019     joiner.currentJoin = task;
2020     do {} while ((s = task.status) >= 0 &&
2021     joiner.queueSize() > 0 &&
2022     joiner.tryRemoveAndExec(task));
2023     if (s >= 0 && (s = task.status) >= 0 &&
2024     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2025     (task instanceof CountedCompleter))
2026     s = helpComplete(task, LIFO_QUEUE);
2027     if (s >= 0 && joiner.queueSize() == 0) {
2028     do {} while (task.status >= 0 &&
2029     tryHelpStealer(joiner, task) > 0);
2030     }
2031     joiner.currentJoin = prevJoin;
2032     }
2033 dl 1.1 }
2034    
2035     /**
2036     * Returns a (probably) non-empty steal queue, if one is found
2037     * during a random, then cyclic scan, else null. This method must
2038     * be retried by caller if, by the time it tries to use the queue,
2039     * it is empty.
2040 dl 1.12 * @param r a (random) seed for scanning
2041 dl 1.1 */
2042 dl 1.12 private WorkQueue findNonEmptyStealQueue(int r) {
2043 dl 1.1 for (WorkQueue[] ws;;) {
2044 dl 1.18 int ps = plock, m, n;
2045 dl 1.1 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2046     return null;
2047 dl 1.18 for (int j = (m + 1) << 2; ;) {
2048     WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2049     if (q != null && (n = q.queueSize()) > 0) {
2050     if (n > 1)
2051     signalWork(q, 0);
2052 dl 1.1 return q;
2053 dl 1.18 }
2054 dl 1.1 else if (--j < 0) {
2055 dl 1.12 if (plock == ps)
2056 dl 1.1 return null;
2057     break;
2058     }
2059     }
2060     }
2061     }
2062    
2063     /**
2064     * Runs tasks until {@code isQuiescent()}. We piggyback on
2065     * active count ctl maintenance, but rather than blocking
2066     * when tasks cannot be found, we rescan until all others cannot
2067     * find tasks either.
2068     */
2069     final void helpQuiescePool(WorkQueue w) {
2070     for (boolean active = true;;) {
2071     ForkJoinTask<?> localTask; // exhaust local queue
2072     while ((localTask = w.nextLocalTask()) != null)
2073     localTask.doExec();
2074 dl 1.12 // Similar to loop in scan(), but ignoring submissions
2075     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2076 dl 1.1 if (q != null) {
2077     ForkJoinTask<?> t; int b;
2078     if (!active) { // re-establish active count
2079     long c;
2080     active = true;
2081     do {} while (!U.compareAndSwapLong
2082     (this, CTL, c = ctl, c + AC_UNIT));
2083     }
2084     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2085     w.runSubtask(t);
2086     }
2087     else {
2088     long c;
2089     if (active) { // decrement active count without queuing
2090     active = false;
2091     do {} while (!U.compareAndSwapLong
2092     (this, CTL, c = ctl, c -= AC_UNIT));
2093     }
2094     else
2095     c = ctl; // re-increment on exit
2096 dl 1.18 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2097 dl 1.1 do {} while (!U.compareAndSwapLong
2098     (this, CTL, c = ctl, c + AC_UNIT));
2099     break;
2100     }
2101     }
2102     }
2103     }
2104    
2105     /**
2106     * Gets and removes a local or stolen task for the given worker.
2107     *
2108     * @return a task, if available
2109     */
2110     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2111     for (ForkJoinTask<?> t;;) {
2112     WorkQueue q; int b;
2113     if ((t = w.nextLocalTask()) != null)
2114     return t;
2115 dl 1.12 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2116 dl 1.1 return null;
2117     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2118     return t;
2119     }
2120     }
2121    
2122     /**
2123 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2124     * programmers, frameworks, tools, or languages have little or no
2125     * idea about task granularity. In essence by offering this
2126     * method, we ask users only about tradeoffs in overhead vs
2127     * expected throughput and its variance, rather than how finely to
2128     * partition tasks.
2129     *
2130     * In a steady state strict (tree-structured) computation, each
2131     * thread makes available for stealing enough tasks for other
2132     * threads to remain active. Inductively, if all threads play by
2133     * the same rules, each thread should make available only a
2134     * constant number of tasks.
2135     *
2136     * The minimum useful constant is just 1. But using a value of 1
2137     * would require immediate replenishment upon each steal to
2138     * maintain enough tasks, which is infeasible. Further,
2139     * partitionings/granularities of offered tasks should minimize
2140     * steal rates, which in general means that threads nearer the top
2141     * of computation tree should generate more than those nearer the
2142     * bottom. In perfect steady state, each thread is at
2143     * approximately the same level of computation tree. However,
2144     * producing extra tasks amortizes the uncertainty of progress and
2145     * diffusion assumptions.
2146     *
2147     * So, users will want to use values larger, but not much larger
2148     * than 1 to both smooth over transient shortages and hedge
2149     * against uneven progress; as traded off against the cost of
2150     * extra task overhead. We leave the user to pick a threshold
2151     * value to compare with the results of this call to guide
2152     * decisions, but recommend values such as 3.
2153     *
2154     * When all threads are active, it is on average OK to estimate
2155     * surplus strictly locally. In steady-state, if one thread is
2156     * maintaining say 2 surplus tasks, then so are others. So we can
2157     * just use estimated queue length. However, this strategy alone
2158     * leads to serious mis-estimates in some non-steady-state
2159     * conditions (ramp-up, ramp-down, other stalls). We can detect
2160     * many of these by further considering the number of "idle"
2161     * threads, that are known to have zero queued tasks, so
2162     * compensate by a factor of (#idle/#active) threads.
2163     *
2164     * Note: The approximation of #busy workers as #active workers is
2165     * not very good under current signalling scheme, and should be
2166     * improved.
2167     */
2168     static int getSurplusQueuedTaskCount() {
2169     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2170     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2171 dl 1.18 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2172     int n = (q = wt.workQueue).top - q.base;
2173 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2174 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2175     a > (p >>>= 1) ? 1 :
2176     a > (p >>>= 1) ? 2 :
2177     a > (p >>>= 1) ? 4 :
2178     8);
2179 dl 1.12 }
2180     return 0;
2181 dl 1.7 }
2182    
2183 dl 1.1 // Termination
2184    
2185     /**
2186     * Possibly initiates and/or completes termination. The caller
2187     * triggering termination runs three passes through workQueues:
2188     * (0) Setting termination status, followed by wakeups of queued
2189     * workers; (1) cancelling all tasks; (2) interrupting lagging
2190     * threads (likely in external tasks, but possibly also blocked in
2191     * joins). Each pass repeats previous steps because of potential
2192     * lagging thread creation.
2193     *
2194     * @param now if true, unconditionally terminate, else only
2195     * if no work and no active workers
2196     * @param enable if true, enable shutdown when next possible
2197     * @return true if now terminating or terminated
2198     */
2199     private boolean tryTerminate(boolean now, boolean enable) {
2200 dl 1.12 if (this == commonPool) // cannot shut down
2201     return false;
2202 dl 1.1 for (long c;;) {
2203     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2204 dl 1.18 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2205 jsr166 1.10 synchronized (this) {
2206 dl 1.8 notifyAll(); // signal when 0 workers
2207     }
2208 dl 1.1 }
2209     return true;
2210     }
2211 dl 1.12 if (plock >= 0) { // not yet enabled
2212     int ps;
2213 dl 1.1 if (!enable)
2214     return false;
2215 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
2216     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2217     ps = acquirePlock();
2218     int nps = SHUTDOWN;
2219     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2220     releasePlock(nps);
2221 dl 1.1 }
2222     if (!now) { // check if idle & no tasks
2223 dl 1.18 if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2224 dl 1.1 hasQueuedSubmissions())
2225     return false;
2226     // Check for unqueued inactive workers. One pass suffices.
2227     WorkQueue[] ws = workQueues; WorkQueue w;
2228     if (ws != null) {
2229     for (int i = 1; i < ws.length; i += 2) {
2230     if ((w = ws[i]) != null && w.eventCount >= 0)
2231     return false;
2232     }
2233     }
2234     }
2235     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2236     for (int pass = 0; pass < 3; ++pass) {
2237     WorkQueue[] ws = workQueues;
2238     if (ws != null) {
2239     WorkQueue w;
2240     int n = ws.length;
2241     for (int i = 0; i < n; ++i) {
2242     if ((w = ws[i]) != null) {
2243 dl 1.12 w.qlock = -1;
2244 dl 1.1 if (pass > 0) {
2245     w.cancelAll();
2246     if (pass > 1)
2247     w.interruptOwner();
2248     }
2249     }
2250     }
2251     // Wake up workers parked on event queue
2252     int i, e; long cc; Thread p;
2253     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2254     (i = e & SMASK) < n &&
2255     (w = ws[i]) != null) {
2256     long nc = ((long)(w.nextWait & E_MASK) |
2257     ((cc + AC_UNIT) & AC_MASK) |
2258     (cc & (TC_MASK|STOP_BIT)));
2259     if (w.eventCount == (e | INT_SIGN) &&
2260     U.compareAndSwapLong(this, CTL, cc, nc)) {
2261     w.eventCount = (e + E_SEQ) & E_MASK;
2262 dl 1.12 w.qlock = -1;
2263 dl 1.1 if ((p = w.parker) != null)
2264     U.unpark(p);
2265     }
2266     }
2267     }
2268     }
2269     }
2270     }
2271     }
2272    
2273 dl 1.12 // external operations on common pool
2274    
2275     /**
2276     * Returns common pool queue for a thread that has submitted at
2277     * least one task.
2278     */
2279     static WorkQueue commonSubmitterQueue() {
2280     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2281     return ((z = submitters.get()) != null &&
2282     (p = commonPool) != null &&
2283     (ws = p.workQueues) != null &&
2284     (m = ws.length - 1) >= 0) ?
2285     ws[m & z.seed & SQMASK] : null;
2286     }
2287    
2288     /**
2289     * Tries to pop the given task from submitter's queue in common pool.
2290     */
2291     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2292     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2293     ForkJoinTask<?>[] a; int m, s; long j;
2294     if ((z = submitters.get()) != null &&
2295     (p = commonPool) != null &&
2296     (ws = p.workQueues) != null &&
2297     (m = ws.length - 1) >= 0 &&
2298     (q = ws[m & z.seed & SQMASK]) != null &&
2299     (s = q.top) != q.base &&
2300     (a = q.array) != null &&
2301     U.getObjectVolatile
2302     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2303     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2304     if (q.array == a && q.top == s && // recheck
2305     U.compareAndSwapObject(a, j, t, null)) {
2306     q.top = s - 1;
2307     q.qlock = 0;
2308     return true;
2309     }
2310     q.qlock = 0;
2311     }
2312     return false;
2313     }
2314    
2315     /**
2316     * Tries to pop and run local tasks within the same computation
2317     * as the given root. On failure, tries to help complete from
2318     * other queues via helpComplete.
2319     */
2320     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2321     ForkJoinTask<?>[] a; int m;
2322     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2323     root != null && root.status >= 0) {
2324     for (;;) {
2325 dl 1.18 int s, u; Object o; CountedCompleter<?> task = null;
2326 dl 1.12 if ((s = q.top) - q.base > 0) {
2327     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2328     if ((o = U.getObject(a, j)) != null &&
2329     (o instanceof CountedCompleter)) {
2330     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2331     do {
2332     if (r == root) {
2333     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2334     if (q.array == a && q.top == s &&
2335     U.compareAndSwapObject(a, j, t, null)) {
2336     q.top = s - 1;
2337     task = t;
2338     }
2339     q.qlock = 0;
2340     }
2341     break;
2342     }
2343 jsr166 1.13 } while ((r = r.completer) != null);
2344 dl 1.12 }
2345     }
2346     if (task != null)
2347     task.doExec();
2348 dl 1.18 if (root.status < 0 ||
2349     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2350 dl 1.12 break;
2351     if (task == null) {
2352     if (helpSignal(root, q.poolIndex) >= 0)
2353     helpComplete(root, SHARED_QUEUE);
2354     break;
2355     }
2356     }
2357     }
2358     }
2359    
2360     /**
2361     * Tries to help execute or signal availability of the given task
2362     * from submitter's queue in common pool.
2363     */
2364     static void externalHelpJoin(ForkJoinTask<?> t) {
2365     // Some hard-to-avoid overlap with tryExternalUnpush
2366     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2367     ForkJoinTask<?>[] a; int m, s, n; long j;
2368 dl 1.18 if (t != null &&
2369 dl 1.12 (z = submitters.get()) != null &&
2370     (p = commonPool) != null &&
2371     (ws = p.workQueues) != null &&
2372     (m = ws.length - 1) >= 0 &&
2373     (q = ws[m & z.seed & SQMASK]) != null &&
2374 dl 1.18 (a = q.array) != null &&
2375     t.status >= 0) {
2376 dl 1.12 if ((s = q.top) != q.base &&
2377     U.getObjectVolatile
2378     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2379     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2380     if (q.array == a && q.top == s &&
2381     U.compareAndSwapObject(a, j, t, null)) {
2382     q.top = s - 1;
2383     q.qlock = 0;
2384     t.doExec();
2385     }
2386     else
2387     q.qlock = 0;
2388     }
2389     if (t.status >= 0) {
2390     if (t instanceof CountedCompleter)
2391     p.externalHelpComplete(q, t);
2392     else
2393     p.helpSignal(t, q.poolIndex);
2394     }
2395     }
2396     }
2397    
2398     /**
2399     * Restricted version of helpQuiescePool for external callers
2400     */
2401     static void externalHelpQuiescePool() {
2402     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2403     if ((p = commonPool) != null &&
2404 dl 1.18 (q = p.findNonEmptyStealQueue(1)) != null &&
2405 dl 1.12 (b = q.base) - q.top < 0 &&
2406     (t = q.pollAt(b)) != null)
2407     t.doExec();
2408     }
2409    
2410 dl 1.1 // Exported methods
2411    
2412     // Constructors
2413    
2414     /**
2415     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2416     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2417     * #defaultForkJoinWorkerThreadFactory default thread factory},
2418     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2419     *
2420     * @throws SecurityException if a security manager exists and
2421     * the caller is not permitted to modify threads
2422     * because it does not hold {@link
2423     * java.lang.RuntimePermission}{@code ("modifyThread")}
2424     */
2425     public ForkJoinPool() {
2426     this(Runtime.getRuntime().availableProcessors(),
2427     defaultForkJoinWorkerThreadFactory, null, false);
2428     }
2429    
2430     /**
2431     * Creates a {@code ForkJoinPool} with the indicated parallelism
2432     * level, the {@linkplain
2433     * #defaultForkJoinWorkerThreadFactory default thread factory},
2434     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2435     *
2436     * @param parallelism the parallelism level
2437     * @throws IllegalArgumentException if parallelism less than or
2438     * equal to zero, or greater than implementation limit
2439     * @throws SecurityException if a security manager exists and
2440     * the caller is not permitted to modify threads
2441     * because it does not hold {@link
2442     * java.lang.RuntimePermission}{@code ("modifyThread")}
2443     */
2444     public ForkJoinPool(int parallelism) {
2445     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2446     }
2447    
2448     /**
2449     * Creates a {@code ForkJoinPool} with the given parameters.
2450     *
2451     * @param parallelism the parallelism level. For default value,
2452     * use {@link java.lang.Runtime#availableProcessors}.
2453     * @param factory the factory for creating new threads. For default value,
2454     * use {@link #defaultForkJoinWorkerThreadFactory}.
2455     * @param handler the handler for internal worker threads that
2456     * terminate due to unrecoverable errors encountered while executing
2457     * tasks. For default value, use {@code null}.
2458     * @param asyncMode if true,
2459     * establishes local first-in-first-out scheduling mode for forked
2460     * tasks that are never joined. This mode may be more appropriate
2461     * than default locally stack-based mode in applications in which
2462     * worker threads only process event-style asynchronous tasks.
2463     * For default value, use {@code false}.
2464     * @throws IllegalArgumentException if parallelism less than or
2465     * equal to zero, or greater than implementation limit
2466     * @throws NullPointerException if the factory is null
2467     * @throws SecurityException if a security manager exists and
2468     * the caller is not permitted to modify threads
2469     * because it does not hold {@link
2470     * java.lang.RuntimePermission}{@code ("modifyThread")}
2471     */
2472     public ForkJoinPool(int parallelism,
2473     ForkJoinWorkerThreadFactory factory,
2474     Thread.UncaughtExceptionHandler handler,
2475     boolean asyncMode) {
2476     checkPermission();
2477     if (factory == null)
2478     throw new NullPointerException();
2479     if (parallelism <= 0 || parallelism > MAX_CAP)
2480     throw new IllegalArgumentException();
2481     this.factory = factory;
2482     this.ueh = handler;
2483 jsr166 1.19 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2484 dl 1.1 long np = (long)(-parallelism); // offset ctl counts
2485     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2486 dl 1.12 int pn = nextPoolId();
2487 dl 1.1 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2488     sb.append(Integer.toString(pn));
2489     sb.append("-worker-");
2490     this.workerNamePrefix = sb.toString();
2491     }
2492    
2493 dl 1.7 /**
2494 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2495     * Basically the same as above, but uses smallest possible initial footprint.
2496     */
2497 dl 1.12 ForkJoinPool(int parallelism, long ctl,
2498 dl 1.8 ForkJoinWorkerThreadFactory factory,
2499     Thread.UncaughtExceptionHandler handler) {
2500 dl 1.18 this.config = parallelism;
2501 dl 1.12 this.ctl = ctl;
2502 dl 1.8 this.factory = factory;
2503     this.ueh = handler;
2504     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2505     }
2506    
2507     /**
2508     * Returns the common pool instance.
2509 dl 1.7 *
2510     * @return the common pool instance
2511     */
2512     public static ForkJoinPool commonPool() {
2513 dl 1.18 // assert commonPool != null : "static init error";
2514     return commonPool;
2515 dl 1.7 }
2516    
2517 dl 1.1 // Execution methods
2518    
2519     /**
2520     * Performs the given task, returning its result upon completion.
2521     * If the computation encounters an unchecked Exception or Error,
2522     * it is rethrown as the outcome of this invocation. Rethrown
2523     * exceptions behave in the same way as regular exceptions, but,
2524     * when possible, contain stack traces (as displayed for example
2525     * using {@code ex.printStackTrace()}) of both the current thread
2526     * as well as the thread actually encountering the exception;
2527     * minimally only the latter.
2528     *
2529     * @param task the task
2530     * @return the task's result
2531     * @throws NullPointerException if the task is null
2532     * @throws RejectedExecutionException if the task cannot be
2533     * scheduled for execution
2534     */
2535     public <T> T invoke(ForkJoinTask<T> task) {
2536     if (task == null)
2537     throw new NullPointerException();
2538 dl 1.12 externalPush(task);
2539 dl 1.1 return task.join();
2540     }
2541    
2542     /**
2543     * Arranges for (asynchronous) execution of the given task.
2544     *
2545     * @param task the task
2546     * @throws NullPointerException if the task is null
2547     * @throws RejectedExecutionException if the task cannot be
2548     * scheduled for execution
2549     */
2550     public void execute(ForkJoinTask<?> task) {
2551     if (task == null)
2552     throw new NullPointerException();
2553 dl 1.12 externalPush(task);
2554 dl 1.1 }
2555    
2556     // AbstractExecutorService methods
2557    
2558     /**
2559     * @throws NullPointerException if the task is null
2560     * @throws RejectedExecutionException if the task cannot be
2561     * scheduled for execution
2562     */
2563     public void execute(Runnable task) {
2564     if (task == null)
2565     throw new NullPointerException();
2566     ForkJoinTask<?> job;
2567     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2568     job = (ForkJoinTask<?>) task;
2569     else
2570     job = new ForkJoinTask.AdaptedRunnableAction(task);
2571 dl 1.12 externalPush(job);
2572 dl 1.1 }
2573    
2574     /**
2575     * Submits a ForkJoinTask for execution.
2576     *
2577     * @param task the task to submit
2578     * @return the task
2579     * @throws NullPointerException if the task is null
2580     * @throws RejectedExecutionException if the task cannot be
2581     * scheduled for execution
2582     */
2583     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2584     if (task == null)
2585     throw new NullPointerException();
2586 dl 1.12 externalPush(task);
2587 dl 1.1 return task;
2588     }
2589    
2590     /**
2591     * @throws NullPointerException if the task is null
2592     * @throws RejectedExecutionException if the task cannot be
2593     * scheduled for execution
2594     */
2595     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2596     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2597 dl 1.12 externalPush(job);
2598 dl 1.1 return job;
2599     }
2600    
2601     /**
2602     * @throws NullPointerException if the task is null
2603     * @throws RejectedExecutionException if the task cannot be
2604     * scheduled for execution
2605     */
2606     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2607     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2608 dl 1.12 externalPush(job);
2609 dl 1.1 return job;
2610     }
2611    
2612     /**
2613     * @throws NullPointerException if the task is null
2614     * @throws RejectedExecutionException if the task cannot be
2615     * scheduled for execution
2616     */
2617     public ForkJoinTask<?> submit(Runnable task) {
2618     if (task == null)
2619     throw new NullPointerException();
2620     ForkJoinTask<?> job;
2621     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2622     job = (ForkJoinTask<?>) task;
2623     else
2624     job = new ForkJoinTask.AdaptedRunnableAction(task);
2625 dl 1.12 externalPush(job);
2626 dl 1.1 return job;
2627     }
2628    
2629     /**
2630     * @throws NullPointerException {@inheritDoc}
2631     * @throws RejectedExecutionException {@inheritDoc}
2632     */
2633     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2634     // In previous versions of this class, this method constructed
2635     // a task to run ForkJoinTask.invokeAll, but now external
2636     // invocation of multiple tasks is at least as efficient.
2637     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2638     // Workaround needed because method wasn't declared with
2639     // wildcards in return type but should have been.
2640     @SuppressWarnings({"unchecked", "rawtypes"})
2641     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2642    
2643     boolean done = false;
2644     try {
2645     for (Callable<T> t : tasks) {
2646     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2647 dl 1.12 externalPush(f);
2648 dl 1.1 fs.add(f);
2649     }
2650     for (ForkJoinTask<T> f : fs)
2651     f.quietlyJoin();
2652     done = true;
2653     return futures;
2654     } finally {
2655     if (!done)
2656     for (ForkJoinTask<T> f : fs)
2657     f.cancel(false);
2658     }
2659     }
2660    
2661     /**
2662     * Returns the factory used for constructing new workers.
2663     *
2664     * @return the factory used for constructing new workers
2665     */
2666     public ForkJoinWorkerThreadFactory getFactory() {
2667     return factory;
2668     }
2669    
2670     /**
2671     * Returns the handler for internal worker threads that terminate
2672     * due to unrecoverable errors encountered while executing tasks.
2673     *
2674     * @return the handler, or {@code null} if none
2675     */
2676     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2677     return ueh;
2678     }
2679    
2680     /**
2681     * Returns the targeted parallelism level of this pool.
2682     *
2683     * @return the targeted parallelism level of this pool
2684     */
2685     public int getParallelism() {
2686 dl 1.18 return config & SMASK;
2687 dl 1.1 }
2688    
2689     /**
2690 dl 1.7 * Returns the targeted parallelism level of the common pool.
2691     *
2692     * @return the targeted parallelism level of the common pool
2693     */
2694     public static int getCommonPoolParallelism() {
2695     return commonPoolParallelism;
2696     }
2697    
2698     /**
2699 dl 1.1 * Returns the number of worker threads that have started but not
2700     * yet terminated. The result returned by this method may differ
2701     * from {@link #getParallelism} when threads are created to
2702     * maintain parallelism when others are cooperatively blocked.
2703     *
2704     * @return the number of worker threads
2705     */
2706     public int getPoolSize() {
2707 dl 1.18 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2708 dl 1.1 }
2709    
2710     /**
2711     * Returns {@code true} if this pool uses local first-in-first-out
2712     * scheduling mode for forked tasks that are never joined.
2713     *
2714     * @return {@code true} if this pool uses async mode
2715     */
2716     public boolean getAsyncMode() {
2717 dl 1.18 return (config >>> 16) == FIFO_QUEUE;
2718 dl 1.1 }
2719    
2720     /**
2721     * Returns an estimate of the number of worker threads that are
2722     * not blocked waiting to join tasks or for other managed
2723     * synchronization. This method may overestimate the
2724     * number of running threads.
2725     *
2726     * @return the number of worker threads
2727     */
2728     public int getRunningThreadCount() {
2729     int rc = 0;
2730     WorkQueue[] ws; WorkQueue w;
2731     if ((ws = workQueues) != null) {
2732     for (int i = 1; i < ws.length; i += 2) {
2733     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2734     ++rc;
2735     }
2736     }
2737     return rc;
2738     }
2739    
2740     /**
2741     * Returns an estimate of the number of threads that are currently
2742     * stealing or executing tasks. This method may overestimate the
2743     * number of active threads.
2744     *
2745     * @return the number of active threads
2746     */
2747     public int getActiveThreadCount() {
2748 dl 1.18 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2749 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2750     }
2751    
2752     /**
2753     * Returns {@code true} if all worker threads are currently idle.
2754     * An idle worker is one that cannot obtain a task to execute
2755     * because none are available to steal from other threads, and
2756     * there are no pending submissions to the pool. This method is
2757     * conservative; it might not return {@code true} immediately upon
2758     * idleness of all threads, but will eventually become true if
2759     * threads remain inactive.
2760     *
2761     * @return {@code true} if all threads are currently idle
2762     */
2763     public boolean isQuiescent() {
2764 dl 1.18 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2765 dl 1.1 }
2766    
2767     /**
2768     * Returns an estimate of the total number of tasks stolen from
2769     * one thread's work queue by another. The reported value
2770     * underestimates the actual total number of steals when the pool
2771     * is not quiescent. This value may be useful for monitoring and
2772     * tuning fork/join programs: in general, steal counts should be
2773     * high enough to keep threads busy, but low enough to avoid
2774     * overhead and contention across threads.
2775     *
2776     * @return the number of steals
2777     */
2778     public long getStealCount() {
2779 dl 1.8 long count = stealCount;
2780 dl 1.1 WorkQueue[] ws; WorkQueue w;
2781     if ((ws = workQueues) != null) {
2782     for (int i = 1; i < ws.length; i += 2) {
2783     if ((w = ws[i]) != null)
2784 dl 1.12 count += w.nsteals;
2785 dl 1.1 }
2786     }
2787     return count;
2788     }
2789    
2790     /**
2791     * Returns an estimate of the total number of tasks currently held
2792     * in queues by worker threads (but not including tasks submitted
2793     * to the pool that have not begun executing). This value is only
2794     * an approximation, obtained by iterating across all threads in
2795     * the pool. This method may be useful for tuning task
2796     * granularities.
2797     *
2798     * @return the number of queued tasks
2799     */
2800     public long getQueuedTaskCount() {
2801     long count = 0;
2802     WorkQueue[] ws; WorkQueue w;
2803     if ((ws = workQueues) != null) {
2804     for (int i = 1; i < ws.length; i += 2) {
2805     if ((w = ws[i]) != null)
2806     count += w.queueSize();
2807     }
2808     }
2809     return count;
2810     }
2811    
2812     /**
2813     * Returns an estimate of the number of tasks submitted to this
2814     * pool that have not yet begun executing. This method may take
2815     * time proportional to the number of submissions.
2816     *
2817     * @return the number of queued submissions
2818     */
2819     public int getQueuedSubmissionCount() {
2820     int count = 0;
2821     WorkQueue[] ws; WorkQueue w;
2822     if ((ws = workQueues) != null) {
2823     for (int i = 0; i < ws.length; i += 2) {
2824     if ((w = ws[i]) != null)
2825     count += w.queueSize();
2826     }
2827     }
2828     return count;
2829     }
2830    
2831     /**
2832     * Returns {@code true} if there are any tasks submitted to this
2833     * pool that have not yet begun executing.
2834     *
2835     * @return {@code true} if there are any queued submissions
2836     */
2837     public boolean hasQueuedSubmissions() {
2838     WorkQueue[] ws; WorkQueue w;
2839     if ((ws = workQueues) != null) {
2840     for (int i = 0; i < ws.length; i += 2) {
2841 dl 1.12 if ((w = ws[i]) != null && w.queueSize() != 0)
2842 dl 1.1 return true;
2843     }
2844     }
2845     return false;
2846     }
2847    
2848     /**
2849     * Removes and returns the next unexecuted submission if one is
2850     * available. This method may be useful in extensions to this
2851     * class that re-assign work in systems with multiple pools.
2852     *
2853     * @return the next submission, or {@code null} if none
2854     */
2855     protected ForkJoinTask<?> pollSubmission() {
2856     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2857     if ((ws = workQueues) != null) {
2858     for (int i = 0; i < ws.length; i += 2) {
2859     if ((w = ws[i]) != null && (t = w.poll()) != null)
2860     return t;
2861     }
2862     }
2863     return null;
2864     }
2865    
2866     /**
2867     * Removes all available unexecuted submitted and forked tasks
2868     * from scheduling queues and adds them to the given collection,
2869     * without altering their execution status. These may include
2870     * artificially generated or wrapped tasks. This method is
2871     * designed to be invoked only when the pool is known to be
2872     * quiescent. Invocations at other times may not remove all
2873     * tasks. A failure encountered while attempting to add elements
2874     * to collection {@code c} may result in elements being in
2875     * neither, either or both collections when the associated
2876     * exception is thrown. The behavior of this operation is
2877     * undefined if the specified collection is modified while the
2878     * operation is in progress.
2879     *
2880     * @param c the collection to transfer elements into
2881     * @return the number of elements transferred
2882     */
2883     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2884     int count = 0;
2885     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2886     if ((ws = workQueues) != null) {
2887     for (int i = 0; i < ws.length; ++i) {
2888     if ((w = ws[i]) != null) {
2889     while ((t = w.poll()) != null) {
2890     c.add(t);
2891     ++count;
2892     }
2893     }
2894     }
2895     }
2896     return count;
2897     }
2898    
2899     /**
2900     * Returns a string identifying this pool, as well as its state,
2901     * including indications of run state, parallelism level, and
2902     * worker and task counts.
2903     *
2904     * @return a string identifying this pool, as well as its state
2905     */
2906     public String toString() {
2907     // Use a single pass through workQueues to collect counts
2908     long qt = 0L, qs = 0L; int rc = 0;
2909 dl 1.8 long st = stealCount;
2910 dl 1.1 long c = ctl;
2911     WorkQueue[] ws; WorkQueue w;
2912     if ((ws = workQueues) != null) {
2913     for (int i = 0; i < ws.length; ++i) {
2914     if ((w = ws[i]) != null) {
2915     int size = w.queueSize();
2916     if ((i & 1) == 0)
2917     qs += size;
2918     else {
2919     qt += size;
2920 dl 1.12 st += w.nsteals;
2921 dl 1.1 if (w.isApparentlyUnblocked())
2922     ++rc;
2923     }
2924     }
2925     }
2926     }
2927 dl 1.18 int pc = (config & SMASK);
2928 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
2929     int ac = pc + (int)(c >> AC_SHIFT);
2930     if (ac < 0) // ignore transient negative
2931     ac = 0;
2932     String level;
2933     if ((c & STOP_BIT) != 0)
2934     level = (tc == 0) ? "Terminated" : "Terminating";
2935     else
2936 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2937 dl 1.1 return super.toString() +
2938     "[" + level +
2939     ", parallelism = " + pc +
2940     ", size = " + tc +
2941     ", active = " + ac +
2942     ", running = " + rc +
2943     ", steals = " + st +
2944     ", tasks = " + qt +
2945     ", submissions = " + qs +
2946     "]";
2947     }
2948    
2949     /**
2950 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2951     * submitted tasks are executed, but no new tasks will be
2952     * accepted. Invocation has no effect on execution state if this
2953     * is the {@link #commonPool}, and no additional effect if
2954     * already shut down. Tasks that are in the process of being
2955     * submitted concurrently during the course of this method may or
2956     * may not be rejected.
2957 dl 1.1 *
2958     * @throws SecurityException if a security manager exists and
2959     * the caller is not permitted to modify threads
2960     * because it does not hold {@link
2961     * java.lang.RuntimePermission}{@code ("modifyThread")}
2962     */
2963     public void shutdown() {
2964     checkPermission();
2965 dl 1.12 tryTerminate(false, true);
2966 dl 1.1 }
2967    
2968     /**
2969 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2970     * all subsequently submitted tasks. Invocation has no effect on
2971     * execution state if this is the {@link #commonPool}, and no
2972     * additional effect if already shut down. Otherwise, tasks that
2973     * are in the process of being submitted or executed concurrently
2974     * during the course of this method may or may not be
2975     * rejected. This method cancels both existing and unexecuted
2976     * tasks, in order to permit termination in the presence of task
2977     * dependencies. So the method always returns an empty list
2978     * (unlike the case for some other Executors).
2979 dl 1.1 *
2980     * @return an empty list
2981     * @throws SecurityException if a security manager exists and
2982     * the caller is not permitted to modify threads
2983     * because it does not hold {@link
2984     * java.lang.RuntimePermission}{@code ("modifyThread")}
2985     */
2986     public List<Runnable> shutdownNow() {
2987     checkPermission();
2988 dl 1.12 tryTerminate(true, true);
2989 dl 1.1 return Collections.emptyList();
2990     }
2991    
2992     /**
2993     * Returns {@code true} if all tasks have completed following shut down.
2994     *
2995     * @return {@code true} if all tasks have completed following shut down
2996     */
2997     public boolean isTerminated() {
2998     long c = ctl;
2999     return ((c & STOP_BIT) != 0L &&
3000 dl 1.18 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3001 dl 1.1 }
3002    
3003     /**
3004     * Returns {@code true} if the process of termination has
3005     * commenced but not yet completed. This method may be useful for
3006     * debugging. A return of {@code true} reported a sufficient
3007     * period after shutdown may indicate that submitted tasks have
3008     * ignored or suppressed interruption, or are waiting for IO,
3009     * causing this executor not to properly terminate. (See the
3010     * advisory notes for class {@link ForkJoinTask} stating that
3011     * tasks should not normally entail blocking operations. But if
3012     * they do, they must abort them on interrupt.)
3013     *
3014     * @return {@code true} if terminating but not yet terminated
3015     */
3016     public boolean isTerminating() {
3017     long c = ctl;
3018     return ((c & STOP_BIT) != 0L &&
3019 dl 1.18 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3020 dl 1.1 }
3021    
3022     /**
3023     * Returns {@code true} if this pool has been shut down.
3024     *
3025     * @return {@code true} if this pool has been shut down
3026     */
3027     public boolean isShutdown() {
3028 dl 1.12 return plock < 0;
3029 dl 1.1 }
3030    
3031     /**
3032 dl 1.12 * Blocks until all tasks have completed execution after a
3033     * shutdown request, or the timeout occurs, or the current thread
3034     * is interrupted, whichever happens first. Note that the {@link
3035     * #commonPool()} never terminates until program shutdown so
3036     * this method will always time out.
3037 dl 1.1 *
3038     * @param timeout the maximum time to wait
3039     * @param unit the time unit of the timeout argument
3040     * @return {@code true} if this executor terminated and
3041     * {@code false} if the timeout elapsed before termination
3042     * @throws InterruptedException if interrupted while waiting
3043     */
3044     public boolean awaitTermination(long timeout, TimeUnit unit)
3045     throws InterruptedException {
3046     long nanos = unit.toNanos(timeout);
3047 dl 1.8 if (isTerminated())
3048     return true;
3049     long startTime = System.nanoTime();
3050     boolean terminated = false;
3051 jsr166 1.10 synchronized (this) {
3052 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
3053     if (terminated = isTerminated() ||
3054     waitTime <= 0L ||
3055     (millis = unit.toMillis(waitTime)) <= 0L)
3056     break;
3057     wait(millis);
3058     waitTime = nanos - (System.nanoTime() - startTime);
3059 dl 1.1 }
3060     }
3061 dl 1.8 return terminated;
3062 dl 1.1 }
3063    
3064     /**
3065     * Interface for extending managed parallelism for tasks running
3066     * in {@link ForkJoinPool}s.
3067     *
3068     * <p>A {@code ManagedBlocker} provides two methods. Method
3069     * {@code isReleasable} must return {@code true} if blocking is
3070     * not necessary. Method {@code block} blocks the current thread
3071     * if necessary (perhaps internally invoking {@code isReleasable}
3072     * before actually blocking). These actions are performed by any
3073     * thread invoking {@link ForkJoinPool#managedBlock}. The
3074     * unusual methods in this API accommodate synchronizers that may,
3075     * but don't usually, block for long periods. Similarly, they
3076     * allow more efficient internal handling of cases in which
3077     * additional workers may be, but usually are not, needed to
3078     * ensure sufficient parallelism. Toward this end,
3079     * implementations of method {@code isReleasable} must be amenable
3080     * to repeated invocation.
3081     *
3082     * <p>For example, here is a ManagedBlocker based on a
3083     * ReentrantLock:
3084     * <pre> {@code
3085     * class ManagedLocker implements ManagedBlocker {
3086     * final ReentrantLock lock;
3087     * boolean hasLock = false;
3088     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3089     * public boolean block() {
3090     * if (!hasLock)
3091     * lock.lock();
3092     * return true;
3093     * }
3094     * public boolean isReleasable() {
3095     * return hasLock || (hasLock = lock.tryLock());
3096     * }
3097     * }}</pre>
3098     *
3099     * <p>Here is a class that possibly blocks waiting for an
3100     * item on a given queue:
3101     * <pre> {@code
3102     * class QueueTaker<E> implements ManagedBlocker {
3103     * final BlockingQueue<E> queue;
3104     * volatile E item = null;
3105     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3106     * public boolean block() throws InterruptedException {
3107     * if (item == null)
3108     * item = queue.take();
3109     * return true;
3110     * }
3111     * public boolean isReleasable() {
3112     * return item != null || (item = queue.poll()) != null;
3113     * }
3114     * public E getItem() { // call after pool.managedBlock completes
3115     * return item;
3116     * }
3117     * }}</pre>
3118     */
3119     public static interface ManagedBlocker {
3120     /**
3121     * Possibly blocks the current thread, for example waiting for
3122     * a lock or condition.
3123     *
3124     * @return {@code true} if no additional blocking is necessary
3125     * (i.e., if isReleasable would return true)
3126     * @throws InterruptedException if interrupted while waiting
3127     * (the method is not required to do so, but is allowed to)
3128     */
3129     boolean block() throws InterruptedException;
3130    
3131     /**
3132     * Returns {@code true} if blocking is unnecessary.
3133     */
3134     boolean isReleasable();
3135     }
3136    
3137     /**
3138     * Blocks in accord with the given blocker. If the current thread
3139     * is a {@link ForkJoinWorkerThread}, this method possibly
3140     * arranges for a spare thread to be activated if necessary to
3141     * ensure sufficient parallelism while the current thread is blocked.
3142     *
3143     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3144     * behaviorally equivalent to
3145     * <pre> {@code
3146     * while (!blocker.isReleasable())
3147     * if (blocker.block())
3148     * return;
3149     * }</pre>
3150     *
3151     * If the caller is a {@code ForkJoinTask}, then the pool may
3152     * first be expanded to ensure parallelism, and later adjusted.
3153     *
3154     * @param blocker the blocker
3155     * @throws InterruptedException if blocker.block did so
3156     */
3157     public static void managedBlock(ManagedBlocker blocker)
3158     throws InterruptedException {
3159     Thread t = Thread.currentThread();
3160 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3161     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3162     while (!blocker.isReleasable()) { // variant of helpSignal
3163 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, u;
3164 dl 1.12 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3165     for (int i = 0; i <= m; ++i) {
3166     if (blocker.isReleasable())
3167     return;
3168     if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3169     p.signalWork(q, n);
3170 dl 1.18 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3171     (u >> UAC_SHIFT) >= 0)
3172 dl 1.12 break;
3173     }
3174     }
3175     }
3176     if (p.tryCompensate()) {
3177     try {
3178     do {} while (!blocker.isReleasable() &&
3179     !blocker.block());
3180     } finally {
3181 dl 1.1 p.incrementActiveCount();
3182 dl 1.12 }
3183     break;
3184 dl 1.1 }
3185     }
3186     }
3187 dl 1.12 else {
3188     do {} while (!blocker.isReleasable() &&
3189     !blocker.block());
3190     }
3191 dl 1.1 }
3192    
3193     // AbstractExecutorService overrides. These rely on undocumented
3194     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3195     // implement RunnableFuture.
3196    
3197     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3198     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3199     }
3200    
3201     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3202     return new ForkJoinTask.AdaptedCallable<T>(callable);
3203     }
3204    
3205     // Unsafe mechanics
3206     private static final sun.misc.Unsafe U;
3207     private static final long CTL;
3208     private static final long PARKBLOCKER;
3209     private static final int ABASE;
3210     private static final int ASHIFT;
3211 dl 1.8 private static final long STEALCOUNT;
3212 dl 1.12 private static final long PLOCK;
3213     private static final long INDEXSEED;
3214     private static final long QLOCK;
3215 dl 1.1
3216     static {
3217 dl 1.12 int s; // initialize field offsets for CAS etc
3218 dl 1.1 try {
3219     U = getUnsafe();
3220     Class<?> k = ForkJoinPool.class;
3221     CTL = U.objectFieldOffset
3222     (k.getDeclaredField("ctl"));
3223 dl 1.8 STEALCOUNT = U.objectFieldOffset
3224     (k.getDeclaredField("stealCount"));
3225 dl 1.12 PLOCK = U.objectFieldOffset
3226     (k.getDeclaredField("plock"));
3227     INDEXSEED = U.objectFieldOffset
3228     (k.getDeclaredField("indexSeed"));
3229 dl 1.1 Class<?> tk = Thread.class;
3230     PARKBLOCKER = U.objectFieldOffset
3231     (tk.getDeclaredField("parkBlocker"));
3232 dl 1.12 Class<?> wk = WorkQueue.class;
3233     QLOCK = U.objectFieldOffset
3234     (wk.getDeclaredField("qlock"));
3235     Class<?> ak = ForkJoinTask[].class;
3236 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3237     s = U.arrayIndexScale(ak);
3238 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3239 dl 1.1 } catch (Exception e) {
3240     throw new Error(e);
3241     }
3242     if ((s & (s-1)) != 0)
3243     throw new Error("data type scale not a power of two");
3244 dl 1.12
3245 dl 1.18 submitters = new ThreadLocal<Submitter>();
3246     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3247     new DefaultForkJoinWorkerThreadFactory();
3248 dl 1.12 /*
3249 dl 1.18 * Establish common pool parameters. For extra caution,
3250     * computations to set up common pool state are here; the
3251     * constructor just assigns these values to fields.
3252 dl 1.12 */
3253 dl 1.18
3254     int par = 0;
3255     Thread.UncaughtExceptionHandler handler = null;
3256     try { // TBD: limit or report ignored exceptions?
3257     String pp = System.getProperty
3258     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3259     String hp = System.getProperty
3260     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3261     String fp = System.getProperty
3262     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3263     if (fp != null)
3264     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3265     getSystemClassLoader().loadClass(fp).newInstance());
3266     if (hp != null)
3267     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3268     getSystemClassLoader().loadClass(hp).newInstance());
3269     if (pp != null)
3270     par = Integer.parseInt(pp);
3271     } catch (Exception ignore) {
3272     }
3273    
3274 dl 1.12 if (par <= 0)
3275     par = Runtime.getRuntime().availableProcessors();
3276     if (par > MAX_CAP)
3277     par = MAX_CAP;
3278 dl 1.18 commonPoolParallelism = par;
3279 dl 1.12 long np = (long)(-par); // precompute initial ctl value
3280     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3281    
3282     commonPool = new ForkJoinPool(par, ct, fac, handler);
3283     modifyThreadPermission = new RuntimePermission("modifyThread");
3284 dl 1.1 }
3285    
3286     /**
3287     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3288     * Replace with a simple call to Unsafe.getUnsafe when integrating
3289     * into a jdk.
3290     *
3291     * @return a sun.misc.Unsafe
3292     */
3293     private static sun.misc.Unsafe getUnsafe() {
3294     try {
3295     return sun.misc.Unsafe.getUnsafe();
3296     } catch (SecurityException se) {
3297     try {
3298     return java.security.AccessController.doPrivileged
3299     (new java.security
3300     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3301     public sun.misc.Unsafe run() throws Exception {
3302     java.lang.reflect.Field f = sun.misc
3303     .Unsafe.class.getDeclaredField("theUnsafe");
3304     f.setAccessible(true);
3305     return (sun.misc.Unsafe) f.get(null);
3306     }});
3307     } catch (java.security.PrivilegedActionException e) {
3308     throw new RuntimeException("Could not initialize intrinsics",
3309     e.getCause());
3310     }
3311     }
3312     }
3313    
3314     }