ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.2
Committed: Mon Aug 13 18:25:53 2012 UTC (11 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +1 -1 lines
Log Message:
typos

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8     import java.util.ArrayList;
9     import java.util.Arrays;
10     import java.util.Collection;
11     import java.util.Collections;
12     import java.util.List;
13     import java.util.Random;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.atomic.AtomicInteger;
22     import java.util.concurrent.atomic.AtomicLong;
23     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24     import java.util.concurrent.locks.Condition;
25    
26     /**
27     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28     * A {@code ForkJoinPool} provides the entry point for submissions
29     * from non-{@code ForkJoinTask} clients, as well as management and
30     * monitoring operations.
31     *
32     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35     * execute tasks submitted to the pool and/or created by other active
36     * tasks (eventually blocking waiting for work if none exist). This
37     * enables efficient processing when most tasks spawn other subtasks
38     * (as do most {@code ForkJoinTask}s), as well as when many small
39     * tasks are submitted to the pool from external clients. Especially
40     * when setting <em>asyncMode</em> to true in constructors, {@code
41     * ForkJoinPool}s may also be appropriate for use with event-style
42     * tasks that are never joined.
43     *
44     * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46     * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53     *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56     * {@link #getStealCount}) that are intended to aid in developing,
57     * tuning, and monitoring fork/join applications. Also, method
58     * {@link #toString} returns indications of pool state in a
59     * convenient form for informal monitoring.
60     *
61     * <p> As is the case with other ExecutorServices, there are three
62     * main task execution methods summarized in the following table.
63     * These are designed to be used primarily by clients not already
64     * engaged in fork/join computations in the current pool. The main
65     * forms of these methods accept instances of {@code ForkJoinTask},
66     * but overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally instead
69     * use the within-computation forms listed in the table unless using
70     * async event-style tasks that are not usually joined, in which case
71     * there is little difference among choice of methods.
72     *
73     * <table BORDER CELLPADDING=3 CELLSPACING=1>
74     * <tr>
75     * <td></td>
76     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
77     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
78     * </tr>
79     * <tr>
80     * <td> <b>Arrange async execution</td>
81     * <td> {@link #execute(ForkJoinTask)}</td>
82     * <td> {@link ForkJoinTask#fork}</td>
83     * </tr>
84     * <tr>
85     * <td> <b>Await and obtain result</td>
86     * <td> {@link #invoke(ForkJoinTask)}</td>
87     * <td> {@link ForkJoinTask#invoke}</td>
88     * </tr>
89     * <tr>
90     * <td> <b>Arrange exec and obtain Future</td>
91     * <td> {@link #submit(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
93     * </tr>
94     * </table>
95     *
96     * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
97     * used for all parallel task execution in a program or subsystem.
98     * Otherwise, use would not usually outweigh the construction and
99     * bookkeeping overhead of creating a large set of threads. For
100     * example, a common pool could be used for the {@code SortTasks}
101     * illustrated in {@link RecursiveAction}. Because {@code
102     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
103     * daemon} mode, there is typically no need to explicitly {@link
104     * #shutdown} such a pool upon program exit.
105     *
106     * <pre> {@code
107     * static final ForkJoinPool mainPool = new ForkJoinPool();
108     * ...
109     * public void sort(long[] array) {
110     * mainPool.invoke(new SortTask(array, 0, array.length));
111     * }}</pre>
112     *
113     * <p><b>Implementation notes</b>: This implementation restricts the
114     * maximum number of running threads to 32767. Attempts to create
115     * pools with greater than the maximum number result in
116     * {@code IllegalArgumentException}.
117     *
118     * <p>This implementation rejects submitted tasks (that is, by throwing
119     * {@link RejectedExecutionException}) only when the pool is shut down
120     * or internal resources have been exhausted.
121     *
122     * @since 1.7
123     * @author Doug Lea
124     */
125     public class ForkJoinPool extends AbstractExecutorService {
126    
127     /*
128     * Implementation Overview
129     *
130     * This class and its nested classes provide the main
131     * functionality and control for a set of worker threads:
132     * Submissions from non-FJ threads enter into submission queues.
133     * Workers take these tasks and typically split them into subtasks
134     * that may be stolen by other workers. Preference rules give
135     * first priority to processing tasks from their own queues (LIFO
136     * or FIFO, depending on mode), then to randomized FIFO steals of
137     * tasks in other queues.
138     *
139     * WorkQueues
140     * ==========
141     *
142     * Most operations occur within work-stealing queues (in nested
143     * class WorkQueue). These are special forms of Deques that
144     * support only three of the four possible end-operations -- push,
145     * pop, and poll (aka steal), under the further constraints that
146     * push and pop are called only from the owning thread (or, as
147     * extended here, under a lock), while poll may be called from
148     * other threads. (If you are unfamiliar with them, you probably
149     * want to read Herlihy and Shavit's book "The Art of
150     * Multiprocessor programming", chapter 16 describing these in
151     * more detail before proceeding.) The main work-stealing queue
152     * design is roughly similar to those in the papers "Dynamic
153     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
154     * (http://research.sun.com/scalable/pubs/index.html) and
155     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
156     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
157     * The main differences ultimately stem from GC requirements that
158     * we null out taken slots as soon as we can, to maintain as small
159     * a footprint as possible even in programs generating huge
160     * numbers of tasks. To accomplish this, we shift the CAS
161     * arbitrating pop vs poll (steal) from being on the indices
162     * ("base" and "top") to the slots themselves. So, both a
163     * successful pop and poll mainly entail a CAS of a slot from
164     * non-null to null. Because we rely on CASes of references, we
165     * do not need tag bits on base or top. They are simple ints as
166     * used in any circular array-based queue (see for example
167     * ArrayDeque). Updates to the indices must still be ordered in a
168     * way that guarantees that top == base means the queue is empty,
169     * but otherwise may err on the side of possibly making the queue
170     * appear nonempty when a push, pop, or poll have not fully
171     * committed. Note that this means that the poll operation,
172     * considered individually, is not wait-free. One thief cannot
173     * successfully continue until another in-progress one (or, if
174     * previously empty, a push) completes. However, in the
175     * aggregate, we ensure at least probabilistic non-blockingness.
176     * If an attempted steal fails, a thief always chooses a different
177     * random victim target to try next. So, in order for one thief to
178     * progress, it suffices for any in-progress poll or new push on
179     * any empty queue to complete. (This is why we normally use
180     * method pollAt and its variants that try once at the apparent
181     * base index, else consider alternative actions, rather than
182     * method poll.)
183     *
184     * This approach also enables support of a user mode in which local
185     * task processing is in FIFO, not LIFO order, simply by using
186     * poll rather than pop. This can be useful in message-passing
187     * frameworks in which tasks are never joined. However neither
188     * mode considers affinities, loads, cache localities, etc, so
189     * rarely provide the best possible performance on a given
190     * machine, but portably provide good throughput by averaging over
191     * these factors. (Further, even if we did try to use such
192     * information, we do not usually have a basis for exploiting it.
193     * For example, some sets of tasks profit from cache affinities,
194     * but others are harmed by cache pollution effects.)
195     *
196     * WorkQueues are also used in a similar way for tasks submitted
197     * to the pool. We cannot mix these tasks in the same queues used
198     * for work-stealing (this would contaminate lifo/fifo
199     * processing). Instead, we loosely associate submission queues
200     * with submitting threads, using a form of hashing. The
201     * ThreadLocal Submitter class contains a value initially used as
202     * a hash code for choosing existing queues, but may be randomly
203     * repositioned upon contention with other submitters. In
204     * essence, submitters act like workers except that they never
205     * take tasks, and they are multiplexed on to a finite number of
206     * shared work queues. However, classes are set up so that future
207     * extensions could allow submitters to optionally help perform
208     * tasks as well. Insertion of tasks in shared mode requires a
209     * lock (mainly to protect in the case of resizing) but we use
210     * only a simple spinlock (using bits in field runState), because
211     * submitters encountering a busy queue move on to try or create
212     * other queues -- they block only when creating and registering
213     * new queues.
214     *
215     * Management
216     * ==========
217     *
218     * The main throughput advantages of work-stealing stem from
219     * decentralized control -- workers mostly take tasks from
220     * themselves or each other. We cannot negate this in the
221     * implementation of other management responsibilities. The main
222     * tactic for avoiding bottlenecks is packing nearly all
223     * essentially atomic control state into two volatile variables
224     * that are by far most often read (not written) as status and
225     * consistency checks.
226     *
227     * Field "ctl" contains 64 bits holding all the information needed
228     * to atomically decide to add, inactivate, enqueue (on an event
229     * queue), dequeue, and/or re-activate workers. To enable this
230     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231     * far in excess of normal operating range) to allow ids, counts,
232     * and their negations (used for thresholding) to fit into 16bit
233     * fields.
234     *
235     * Field "runState" contains 32 bits needed to register and
236     * deregister WorkQueues, as well as to enable shutdown. It is
237     * only modified under a lock (normally briefly held, but
238     * occasionally protecting allocations and resizings) but even
239     * when locked remains available to check consistency.
240     *
241     * Recording WorkQueues. WorkQueues are recorded in the
242     * "workQueues" array that is created upon pool construction and
243     * expanded if necessary. Updates to the array while recording
244     * new workers and unrecording terminated ones are protected from
245     * each other by a lock but the array is otherwise concurrently
246     * readable, and accessed directly. To simplify index-based
247     * operations, the array size is always a power of two, and all
248     * readers must tolerate null slots. Shared (submission) queues
249     * are at even indices, worker queues at odd indices. Grouping
250     * them together in this way simplifies and speeds up task
251     * scanning.
252     *
253     * All worker thread creation is on-demand, triggered by task
254     * submissions, replacement of terminated workers, and/or
255     * compensation for blocked workers. However, all other support
256     * code is set up to work with other policies. To ensure that we
257     * do not hold on to worker references that would prevent GC, ALL
258     * accesses to workQueues are via indices into the workQueues
259     * array (which is one source of some of the messy code
260     * constructions here). In essence, the workQueues array serves as
261     * a weak reference mechanism. Thus for example the wait queue
262     * field of ctl stores indices, not references. Access to the
263     * workQueues in associated methods (for example signalWork) must
264     * both index-check and null-check the IDs. All such accesses
265     * ignore bad IDs by returning out early from what they are doing,
266     * since this can only be associated with termination, in which
267     * case it is OK to give up. All uses of the workQueues array
268     * also check that it is non-null (even if previously
269     * non-null). This allows nulling during termination, which is
270     * currently not necessary, but remains an option for
271     * resource-revocation-based shutdown schemes. It also helps
272     * reduce JIT issuance of uncommon-trap code, which tends to
273     * unnecessarily complicate control flow in some methods.
274     *
275     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276     * let workers spin indefinitely scanning for tasks when none can
277     * be found immediately, and we cannot start/resume workers unless
278     * there appear to be tasks available. On the other hand, we must
279     * quickly prod them into action when new tasks are submitted or
280     * generated. In many usages, ramp-up time to activate workers is
281     * the main limiting factor in overall performance (this is
282     * compounded at program start-up by JIT compilation and
283     * allocation). So we try to streamline this as much as possible.
284     * We park/unpark workers after placing in an event wait queue
285     * when they cannot find work. This "queue" is actually a simple
286     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287     * counter value (that reflects the number of times a worker has
288     * been inactivated) to avoid ABA effects (we need only as many
289     * version numbers as worker threads). Successors are held in
290     * field WorkQueue.nextWait. Queuing deals with several intrinsic
291     * races, mainly that a task-producing thread can miss seeing (and
292     * signalling) another thread that gave up looking for work but
293     * has not yet entered the wait queue. We solve this by requiring
294     * a full sweep of all workers (via repeated calls to method
295     * scan()) both before and after a newly waiting worker is added
296     * to the wait queue. During a rescan, the worker might release
297     * some other queued worker rather than itself, which has the same
298     * net effect. Because enqueued workers may actually be rescanning
299     * rather than waiting, we set and clear the "parker" field of
300     * WorkQueues to reduce unnecessary calls to unpark. (This
301     * requires a secondary recheck to avoid missed signals.) Note
302     * the unusual conventions about Thread.interrupts surrounding
303     * parking and other blocking: Because interrupts are used solely
304     * to alert threads to check termination, which is checked anyway
305     * upon blocking, we clear status (using Thread.interrupted)
306     * before any call to park, so that park does not immediately
307     * return due to status being set via some other unrelated call to
308     * interrupt in user code.
309     *
310     * Signalling. We create or wake up workers only when there
311     * appears to be at least one task they might be able to find and
312     * execute. When a submission is added or another worker adds a
313     * task to a queue that previously had fewer than two tasks, they
314     * signal waiting workers (or trigger creation of new ones if
315     * fewer than the given parallelism level -- see signalWork).
316     * These primary signals are buttressed by signals during rescans;
317     * together these cover the signals needed in cases when more
318     * tasks are pushed but untaken, and improve performance compared
319     * to having one thread wake up all workers.
320     *
321     * Trimming workers. To release resources after periods of lack of
322     * use, a worker starting to wait when the pool is quiescent will
323     * time out and terminate if the pool has remained quiescent for
324     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325     * terminating all workers after long periods of non-use.
326     *
327     * Shutdown and Termination. A call to shutdownNow atomically sets
328     * a runState bit and then (non-atomically) sets each worker's
329     * runState status, cancels all unprocessed tasks, and wakes up
330     * all waiting workers. Detecting whether termination should
331     * commence after a non-abrupt shutdown() call requires more work
332     * and bookkeeping. We need consensus about quiescence (i.e., that
333     * there is no more work). The active count provides a primary
334     * indication but non-abrupt shutdown still requires a rechecking
335     * scan for any workers that are inactive but not queued.
336     *
337     * Joining Tasks
338     * =============
339     *
340     * Any of several actions may be taken when one worker is waiting
341     * to join a task stolen (or always held) by another. Because we
342     * are multiplexing many tasks on to a pool of workers, we can't
343     * just let them block (as in Thread.join). We also cannot just
344     * reassign the joiner's run-time stack with another and replace
345     * it later, which would be a form of "continuation", that even if
346     * possible is not necessarily a good idea since we sometimes need
347     * both an unblocked task and its continuation to progress.
348     * Instead we combine two tactics:
349     *
350     * Helping: Arranging for the joiner to execute some task that it
351     * would be running if the steal had not occurred.
352     *
353     * Compensating: Unless there are already enough live threads,
354     * method tryCompensate() may create or re-activate a spare
355     * thread to compensate for blocked joiners until they unblock.
356     *
357     * A third form (implemented in tryRemoveAndExec and
358     * tryPollForAndExec) amounts to helping a hypothetical
359     * compensator: If we can readily tell that a possible action of a
360     * compensator is to steal and execute the task being joined, the
361     * joining thread can do so directly, without the need for a
362     * compensation thread (although at the expense of larger run-time
363     * stacks, but the tradeoff is typically worthwhile).
364     *
365     * The ManagedBlocker extension API can't use helping so relies
366     * only on compensation in method awaitBlocker.
367     *
368     * The algorithm in tryHelpStealer entails a form of "linear"
369     * helping: Each worker records (in field currentSteal) the most
370     * recent task it stole from some other worker. Plus, it records
371     * (in field currentJoin) the task it is currently actively
372     * joining. Method tryHelpStealer uses these markers to try to
373     * find a worker to help (i.e., steal back a task from and execute
374     * it) that could hasten completion of the actively joined task.
375     * In essence, the joiner executes a task that would be on its own
376     * local deque had the to-be-joined task not been stolen. This may
377     * be seen as a conservative variant of the approach in Wagner &
378     * Calder "Leapfrogging: a portable technique for implementing
379     * efficient futures" SIGPLAN Notices, 1993
380     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381     * that: (1) We only maintain dependency links across workers upon
382     * steals, rather than use per-task bookkeeping. This sometimes
383     * requires a linear scan of workQueues array to locate stealers,
384     * but often doesn't because stealers leave hints (that may become
385     * stale/wrong) of where to locate them. A stealHint is only a
386     * hint because a worker might have had multiple steals and the
387     * hint records only one of them (usually the most current).
388     * Hinting isolates cost to when it is needed, rather than adding
389     * to per-task overhead. (2) It is "shallow", ignoring nesting
390     * and potentially cyclic mutual steals. (3) It is intentionally
391     * racy: field currentJoin is updated only while actively joining,
392     * which means that we miss links in the chain during long-lived
393     * tasks, GC stalls etc (which is OK since blocking in such cases
394     * is usually a good idea). (4) We bound the number of attempts
395     * to find work (see MAX_HELP) and fall back to suspending the
396     * worker and if necessary replacing it with another.
397     *
398     * It is impossible to keep exactly the target parallelism number
399     * of threads running at any given time. Determining the
400     * existence of conservatively safe helping targets, the
401     * availability of already-created spares, and the apparent need
402     * to create new spares are all racy, so we rely on multiple
403     * retries of each. Compensation in the apparent absence of
404     * helping opportunities is challenging to control on JVMs, where
405     * GC and other activities can stall progress of tasks that in
406     * turn stall out many other dependent tasks, without us being
407     * able to determine whether they will ever require compensation.
408     * Even though work-stealing otherwise encounters little
409     * degradation in the presence of more threads than cores,
410     * aggressively adding new threads in such cases entails risk of
411     * unwanted positive feedback control loops in which more threads
412     * cause more dependent stalls (as well as delayed progress of
413     * unblocked threads to the point that we know they are available)
414     * leading to more situations requiring more threads, and so
415     * on. This aspect of control can be seen as an (analytically
416     * intractable) game with an opponent that may choose the worst
417     * (for us) active thread to stall at any time. We take several
418     * precautions to bound losses (and thus bound gains), mainly in
419     * methods tryCompensate and awaitJoin: (1) We only try
420     * compensation after attempting enough helping steps (measured
421     * via counting and timing) that we have already consumed the
422     * estimated cost of creating and activating a new thread. (2) We
423     * allow up to 50% of threads to be blocked before initially
424     * adding any others, and unless completely saturated, check that
425     * some work is available for a new worker before adding. Also, we
426     * create up to only 50% more threads until entering a mode that
427     * only adds a thread if all others are possibly blocked. All
428     * together, this means that we might be half as fast to react,
429     * and create half as many threads as possible in the ideal case,
430     * but present vastly fewer anomalies in all other cases compared
431     * to both more aggressive and more conservative alternatives.
432     *
433     * Style notes: There is a lot of representation-level coupling
434     * among classes ForkJoinPool, ForkJoinWorkerThread, and
435     * ForkJoinTask. The fields of WorkQueue maintain data structures
436     * managed by ForkJoinPool, so are directly accessed. There is
437     * little point trying to reduce this, since any associated future
438     * changes in representations will need to be accompanied by
439     * algorithmic changes anyway. Several methods intrinsically
440     * sprawl because they must accumulate sets of consistent reads of
441     * volatiles held in local variables. Methods signalWork() and
442     * scan() are the main bottlenecks, so are especially heavily
443     * micro-optimized/mangled. There are lots of inline assignments
444     * (of form "while ((local = field) != 0)") which are usually the
445     * simplest way to ensure the required read orderings (which are
446     * sometimes critical). This leads to a "C"-like style of listing
447     * declarations of these locals at the heads of methods or blocks.
448     * There are several occurrences of the unusual "do {} while
449     * (!cas...)" which is the simplest way to force an update of a
450     * CAS'ed variable. There are also other coding oddities that help
451     * some methods perform reasonably even when interpreted (not
452     * compiled).
453     *
454     * The order of declarations in this file is:
455     * (1) Static utility functions
456     * (2) Nested (static) classes
457     * (3) Static fields
458     * (4) Fields, along with constants used when unpacking some of them
459     * (5) Internal control methods
460     * (6) Callbacks and other support for ForkJoinTask methods
461     * (7) Exported methods
462     * (8) Static block initializing statics in minimally dependent order
463     */
464    
465     // Static utilities
466    
467     /**
468     * If there is a security manager, makes sure caller has
469     * permission to modify threads.
470     */
471     private static void checkPermission() {
472     SecurityManager security = System.getSecurityManager();
473     if (security != null)
474     security.checkPermission(modifyThreadPermission);
475     }
476    
477     // Nested classes
478    
479     /**
480     * Factory for creating new {@link ForkJoinWorkerThread}s.
481     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
482     * for {@code ForkJoinWorkerThread} subclasses that extend base
483     * functionality or initialize threads with different contexts.
484     */
485     public static interface ForkJoinWorkerThreadFactory {
486     /**
487     * Returns a new worker thread operating in the given pool.
488     *
489     * @param pool the pool this thread works in
490     * @throws NullPointerException if the pool is null
491     */
492     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
493     }
494    
495     /**
496     * Default ForkJoinWorkerThreadFactory implementation; creates a
497     * new ForkJoinWorkerThread.
498     */
499     static class DefaultForkJoinWorkerThreadFactory
500     implements ForkJoinWorkerThreadFactory {
501     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
502     return new ForkJoinWorkerThread(pool);
503     }
504     }
505    
506     /**
507     * A simple non-reentrant lock used for exclusion when managing
508     * queues and workers. We use a custom lock so that we can readily
509     * probe lock state in constructions that check among alternative
510     * actions. The lock is normally only very briefly held, and
511     * sometimes treated as a spinlock, but other usages block to
512     * reduce overall contention in those cases where locked code
513     * bodies perform allocation/resizing.
514     */
515     static final class Mutex extends AbstractQueuedSynchronizer {
516     public final boolean tryAcquire(int ignore) {
517     return compareAndSetState(0, 1);
518     }
519     public final boolean tryRelease(int ignore) {
520     setState(0);
521     return true;
522     }
523     public final void lock() { acquire(0); }
524     public final void unlock() { release(0); }
525     public final boolean isHeldExclusively() { return getState() == 1; }
526     public final Condition newCondition() { return new ConditionObject(); }
527     }
528    
529     /**
530     * Class for artificial tasks that are used to replace the target
531     * of local joins if they are removed from an interior queue slot
532     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
533     * actually do anything beyond having a unique identity.
534     */
535     static final class EmptyTask extends ForkJoinTask<Void> {
536     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
537     public final Void getRawResult() { return null; }
538     public final void setRawResult(Void x) {}
539     public final boolean exec() { return true; }
540     }
541    
542     /**
543     * Queues supporting work-stealing as well as external task
544     * submission. See above for main rationale and algorithms.
545     * Implementation relies heavily on "Unsafe" intrinsics
546     * and selective use of "volatile":
547     *
548     * Field "base" is the index (mod array.length) of the least valid
549     * queue slot, which is always the next position to steal (poll)
550     * from if nonempty. Reads and writes require volatile orderings
551     * but not CAS, because updates are only performed after slot
552     * CASes.
553     *
554     * Field "top" is the index (mod array.length) of the next queue
555     * slot to push to or pop from. It is written only by owner thread
556     * for push, or under lock for trySharedPush, and accessed by
557     * other threads only after reading (volatile) base. Both top and
558     * base are allowed to wrap around on overflow, but (top - base)
559     * (or more commonly -(base - top) to force volatile read of base
560     * before top) still estimates size.
561     *
562     * The array slots are read and written using the emulation of
563     * volatiles/atomics provided by Unsafe. Insertions must in
564     * general use putOrderedObject as a form of releasing store to
565     * ensure that all writes to the task object are ordered before
566     * its publication in the queue. (Although we can avoid one case
567     * of this when locked in trySharedPush.) All removals entail a
568     * CAS to null. The array is always a power of two. To ensure
569     * safety of Unsafe array operations, all accesses perform
570     * explicit null checks and implicit bounds checks via
571     * power-of-two masking.
572     *
573     * In addition to basic queuing support, this class contains
574     * fields described elsewhere to control execution. It turns out
575     * to work better memory-layout-wise to include them in this
576     * class rather than a separate class.
577     *
578     * Performance on most platforms is very sensitive to placement of
579     * instances of both WorkQueues and their arrays -- we absolutely
580     * do not want multiple WorkQueue instances or multiple queue
581     * arrays sharing cache lines. (It would be best for queue objects
582     * and their arrays to share, but there is nothing available to
583     * help arrange that). Unfortunately, because they are recorded
584     * in a common array, WorkQueue instances are often moved to be
585     * adjacent by garbage collectors. To reduce impact, we use field
586     * padding that works OK on common platforms; this effectively
587     * trades off slightly slower average field access for the sake of
588     * avoiding really bad worst-case access. (Until better JVM
589     * support is in place, this padding is dependent on transient
590     * properties of JVM field layout rules.) We also take care in
591     * allocating, sizing and resizing the array. Non-shared queue
592     * arrays are initialized (via method growArray) by workers before
593     * use. Others are allocated on first use.
594     */
595     static final class WorkQueue {
596     /**
597     * Capacity of work-stealing queue array upon initialization.
598     * Must be a power of two; at least 4, but should be larger to
599     * reduce or eliminate cacheline sharing among queues.
600     * Currently, it is much larger, as a partial workaround for
601     * the fact that JVMs often place arrays in locations that
602     * share GC bookkeeping (especially cardmarks) such that
603     * per-write accesses encounter serious memory contention.
604     */
605     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
606    
607     /**
608     * Maximum size for queue arrays. Must be a power of two less
609     * than or equal to 1 << (31 - width of array entry) to ensure
610     * lack of wraparound of index calculations, but defined to a
611     * value a bit less than this to help users trap runaway
612     * programs before saturating systems.
613     */
614     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
615    
616     volatile long totalSteals; // cumulative number of steals
617     int seed; // for random scanning; initialize nonzero
618     volatile int eventCount; // encoded inactivation count; < 0 if inactive
619     int nextWait; // encoded record of next event waiter
620     int rescans; // remaining scans until block
621     int nsteals; // top-level task executions since last idle
622     final int mode; // lifo, fifo, or shared
623     int poolIndex; // index of this queue in pool (or 0)
624     int stealHint; // index of most recent known stealer
625     volatile int runState; // 1: locked, -1: terminate; else 0
626     volatile int base; // index of next slot for poll
627     int top; // index of next slot for push
628     ForkJoinTask<?>[] array; // the elements (initially unallocated)
629     final ForkJoinPool pool; // the containing pool (may be null)
630     final ForkJoinWorkerThread owner; // owning thread or null if shared
631     volatile Thread parker; // == owner during call to park; else null
632     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
633     ForkJoinTask<?> currentSteal; // current non-local task being executed
634     // Heuristic padding to ameliorate unfortunate memory placements
635     Object p00, p01, p02, p03, p04, p05, p06, p07;
636     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
637    
638     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
639     this.mode = mode;
640     this.pool = pool;
641     this.owner = owner;
642     // Place indices in the center of array (that is not yet allocated)
643     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
644     }
645    
646     /**
647     * Returns the approximate number of tasks in the queue.
648     */
649     final int queueSize() {
650     int n = base - top; // non-owner callers must read base first
651     return (n >= 0) ? 0 : -n; // ignore transient negative
652     }
653    
654     /**
655     * Provides a more accurate estimate of whether this queue has
656     * any tasks than does queueSize, by checking whether a
657     * near-empty queue has at least one unclaimed task.
658     */
659     final boolean isEmpty() {
660     ForkJoinTask<?>[] a; int m, s;
661     int n = base - (s = top);
662     return (n >= 0 ||
663     (n == -1 &&
664     ((a = array) == null ||
665     (m = a.length - 1) < 0 ||
666     U.getObjectVolatile
667     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668     }
669    
670     /**
671     * Pushes a task. Call only by owner in unshared queues.
672     *
673     * @param task the task. Caller must ensure non-null.
674     * @throw RejectedExecutionException if array cannot be resized
675     */
676     final void push(ForkJoinTask<?> task) {
677     ForkJoinTask<?>[] a; ForkJoinPool p;
678     int s = top, m, n;
679     if ((a = array) != null) { // ignore if queue removed
680     U.putOrderedObject
681     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
682     if ((n = (top = s + 1) - base) <= 2) {
683     if ((p = pool) != null)
684     p.signalWork();
685     }
686     else if (n >= m)
687     growArray(true);
688     }
689     }
690    
691     /**
692     * Pushes a task if lock is free and array is either big
693     * enough or can be resized to be big enough.
694     *
695     * @param task the task. Caller must ensure non-null.
696     * @return true if submitted
697     */
698     final boolean trySharedPush(ForkJoinTask<?> task) {
699     boolean submitted = false;
700     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
701     ForkJoinTask<?>[] a = array;
702     int s = top;
703     try {
704     if ((a != null && a.length > s + 1 - base) ||
705     (a = growArray(false)) != null) { // must presize
706     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
707     U.putObject(a, (long)j, task); // don't need "ordered"
708     top = s + 1;
709     submitted = true;
710     }
711     } finally {
712     runState = 0; // unlock
713     }
714     }
715     return submitted;
716     }
717    
718     /**
719     * Takes next task, if one exists, in LIFO order. Call only
720     * by owner in unshared queues. (We do not have a shared
721     * version of this method because it is never needed.)
722     */
723     final ForkJoinTask<?> pop() {
724     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
725     if ((a = array) != null && (m = a.length - 1) >= 0) {
726     for (int s; (s = top - 1) - base >= 0;) {
727     long j = ((m & s) << ASHIFT) + ABASE;
728     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
729     break;
730     if (U.compareAndSwapObject(a, j, t, null)) {
731     top = s;
732     return t;
733     }
734     }
735     }
736     return null;
737     }
738    
739     /**
740     * Takes a task in FIFO order if b is base of queue and a task
741     * can be claimed without contention. Specialized versions
742     * appear in ForkJoinPool methods scan and tryHelpStealer.
743     */
744     final ForkJoinTask<?> pollAt(int b) {
745     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746     if ((a = array) != null) {
747     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749     base == b &&
750     U.compareAndSwapObject(a, j, t, null)) {
751     base = b + 1;
752     return t;
753     }
754     }
755     return null;
756     }
757    
758     /**
759     * Takes next task, if one exists, in FIFO order.
760     */
761     final ForkJoinTask<?> poll() {
762     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763     while ((b = base) - top < 0 && (a = array) != null) {
764     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766     if (t != null) {
767     if (base == b &&
768     U.compareAndSwapObject(a, j, t, null)) {
769     base = b + 1;
770     return t;
771     }
772     }
773     else if (base == b) {
774     if (b + 1 == top)
775     break;
776     Thread.yield(); // wait for lagging update
777     }
778     }
779     return null;
780     }
781    
782     /**
783     * Takes next task, if one exists, in order specified by mode.
784     */
785     final ForkJoinTask<?> nextLocalTask() {
786     return mode == 0 ? pop() : poll();
787     }
788    
789     /**
790     * Returns next task, if one exists, in order specified by mode.
791     */
792     final ForkJoinTask<?> peek() {
793     ForkJoinTask<?>[] a = array; int m;
794     if (a == null || (m = a.length - 1) < 0)
795     return null;
796     int i = mode == 0 ? top - 1 : base;
797     int j = ((i & m) << ASHIFT) + ABASE;
798     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799     }
800    
801     /**
802     * Pops the given task only if it is at the current top.
803     */
804     final boolean tryUnpush(ForkJoinTask<?> t) {
805     ForkJoinTask<?>[] a; int s;
806     if ((a = array) != null && (s = top) != base &&
807     U.compareAndSwapObject
808     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809     top = s;
810     return true;
811     }
812     return false;
813     }
814    
815     /**
816     * Polls the given task only if it is at the current base.
817     */
818     final boolean pollFor(ForkJoinTask<?> task) {
819     ForkJoinTask<?>[] a; int b;
820     if ((b = base) - top < 0 && (a = array) != null) {
821     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822     if (U.getObjectVolatile(a, j) == task && base == b &&
823     U.compareAndSwapObject(a, j, task, null)) {
824     base = b + 1;
825     return true;
826     }
827     }
828     return false;
829     }
830    
831     /**
832     * Initializes or doubles the capacity of array. Call either
833     * by owner or with lock held -- it is OK for base, but not
834     * top, to move while resizings are in progress.
835     *
836     * @param rejectOnFailure if true, throw exception if capacity
837     * exceeded (relayed ultimately to user); else return null.
838     */
839     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
840     ForkJoinTask<?>[] oldA = array;
841     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
842     if (size <= MAXIMUM_QUEUE_CAPACITY) {
843     int oldMask, t, b;
844     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
846     (t = top) - (b = base) > 0) {
847     int mask = size - 1;
848     do {
849     ForkJoinTask<?> x;
850     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
851     int j = ((b & mask) << ASHIFT) + ABASE;
852     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
853     if (x != null &&
854     U.compareAndSwapObject(oldA, oldj, x, null))
855     U.putObjectVolatile(a, j, x);
856     } while (++b != t);
857     }
858     return a;
859     }
860     else if (!rejectOnFailure)
861     return null;
862     else
863     throw new RejectedExecutionException("Queue capacity exceeded");
864     }
865    
866     /**
867     * Removes and cancels all known tasks, ignoring any exceptions.
868     */
869     final void cancelAll() {
870     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
871     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
872     for (ForkJoinTask<?> t; (t = poll()) != null; )
873     ForkJoinTask.cancelIgnoringExceptions(t);
874     }
875    
876     /**
877     * Computes next value for random probes. Scans don't require
878     * a very high quality generator, but also not a crummy one.
879     * Marsaglia xor-shift is cheap and works well enough. Note:
880     * This is manually inlined in its usages in ForkJoinPool to
881     * avoid writes inside busy scan loops.
882     */
883     final int nextSeed() {
884     int r = seed;
885     r ^= r << 13;
886     r ^= r >>> 17;
887     return seed = r ^= r << 5;
888     }
889    
890     // Execution methods
891    
892     /**
893     * Pops and runs tasks until empty.
894     */
895     private void popAndExecAll() {
896     // A bit faster than repeated pop calls
897     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
898     while ((a = array) != null && (m = a.length - 1) >= 0 &&
899     (s = top - 1) - base >= 0 &&
900     (t = ((ForkJoinTask<?>)
901     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
902     != null) {
903     if (U.compareAndSwapObject(a, j, t, null)) {
904     top = s;
905     t.doExec();
906     }
907     }
908     }
909    
910     /**
911     * Polls and runs tasks until empty.
912     */
913     private void pollAndExecAll() {
914     for (ForkJoinTask<?> t; (t = poll()) != null;)
915     t.doExec();
916     }
917    
918     /**
919     * If present, removes from queue and executes the given task, or
920     * any other cancelled task. Returns (true) immediately on any CAS
921     * or consistency check failure so caller can retry.
922     *
923     * @return 0 if no progress can be made, else positive
924     * (this unusual convention simplifies use with tryHelpStealer.)
925     */
926     final int tryRemoveAndExec(ForkJoinTask<?> task) {
927     int stat = 1;
928     boolean removed = false, empty = true;
929     ForkJoinTask<?>[] a; int m, s, b, n;
930     if ((a = array) != null && (m = a.length - 1) >= 0 &&
931     (n = (s = top) - (b = base)) > 0) {
932     for (ForkJoinTask<?> t;;) { // traverse from s to b
933     int j = ((--s & m) << ASHIFT) + ABASE;
934     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
935     if (t == null) // inconsistent length
936     break;
937     else if (t == task) {
938     if (s + 1 == top) { // pop
939     if (!U.compareAndSwapObject(a, j, task, null))
940     break;
941     top = s;
942     removed = true;
943     }
944     else if (base == b) // replace with proxy
945     removed = U.compareAndSwapObject(a, j, task,
946     new EmptyTask());
947     break;
948     }
949     else if (t.status >= 0)
950     empty = false;
951     else if (s + 1 == top) { // pop and throw away
952     if (U.compareAndSwapObject(a, j, t, null))
953     top = s;
954     break;
955     }
956     if (--n == 0) {
957     if (!empty && base == b)
958     stat = 0;
959     break;
960     }
961     }
962     }
963     if (removed)
964     task.doExec();
965     return stat;
966     }
967    
968     /**
969     * Executes a top-level task and any local tasks remaining
970     * after execution.
971     */
972     final void runTask(ForkJoinTask<?> t) {
973     if (t != null) {
974     currentSteal = t;
975     t.doExec();
976     if (top != base) { // process remaining local tasks
977     if (mode == 0)
978     popAndExecAll();
979     else
980     pollAndExecAll();
981     }
982     ++nsteals;
983     currentSteal = null;
984     }
985     }
986    
987     /**
988     * Executes a non-top-level (stolen) task.
989     */
990     final void runSubtask(ForkJoinTask<?> t) {
991     if (t != null) {
992     ForkJoinTask<?> ps = currentSteal;
993     currentSteal = t;
994     t.doExec();
995     currentSteal = ps;
996     }
997     }
998    
999     /**
1000     * Returns true if owned and not known to be blocked.
1001     */
1002     final boolean isApparentlyUnblocked() {
1003     Thread wt; Thread.State s;
1004     return (eventCount >= 0 &&
1005     (wt = owner) != null &&
1006     (s = wt.getState()) != Thread.State.BLOCKED &&
1007     s != Thread.State.WAITING &&
1008     s != Thread.State.TIMED_WAITING);
1009     }
1010    
1011     /**
1012     * If this owned and is not already interrupted, try to
1013     * interrupt and/or unpark, ignoring exceptions.
1014     */
1015     final void interruptOwner() {
1016     Thread wt, p;
1017     if ((wt = owner) != null && !wt.isInterrupted()) {
1018     try {
1019     wt.interrupt();
1020     } catch (SecurityException ignore) {
1021     }
1022     }
1023     if ((p = parker) != null)
1024     U.unpark(p);
1025     }
1026    
1027     // Unsafe mechanics
1028     private static final sun.misc.Unsafe U;
1029     private static final long RUNSTATE;
1030     private static final int ABASE;
1031     private static final int ASHIFT;
1032     static {
1033     int s;
1034     try {
1035     U = getUnsafe();
1036     Class<?> k = WorkQueue.class;
1037     Class<?> ak = ForkJoinTask[].class;
1038     RUNSTATE = U.objectFieldOffset
1039     (k.getDeclaredField("runState"));
1040     ABASE = U.arrayBaseOffset(ak);
1041     s = U.arrayIndexScale(ak);
1042     } catch (Exception e) {
1043     throw new Error(e);
1044     }
1045     if ((s & (s-1)) != 0)
1046     throw new Error("data type scale not a power of two");
1047     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1048     }
1049     }
1050     /**
1051     * Per-thread records for threads that submit to pools. Currently
1052     * holds only pseudo-random seed / index that is used to choose
1053     * submission queues in method doSubmit. In the future, this may
1054     * also incorporate a means to implement different task rejection
1055     * and resubmission policies.
1056     *
1057     * Seeds for submitters and workers/workQueues work in basically
1058     * the same way but are initialized and updated using slightly
1059     * different mechanics. Both are initialized using the same
1060     * approach as in class ThreadLocal, where successive values are
1061     * unlikely to collide with previous values. This is done during
1062     * registration for workers, but requires a separate AtomicInteger
1063     * for submitters. Seeds are then randomly modified upon
1064     * collisions using xorshifts, which requires a non-zero seed.
1065     */
1066     static final class Submitter {
1067     int seed;
1068     Submitter() {
1069     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1070     seed = (s == 0) ? 1 : s; // ensure non-zero
1071     }
1072     }
1073    
1074     /** ThreadLocal class for Submitters */
1075     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1076     public Submitter initialValue() { return new Submitter(); }
1077     }
1078    
1079     // static fields (initialized in static initializer below)
1080    
1081     /**
1082     * Creates a new ForkJoinWorkerThread. This factory is used unless
1083     * overridden in ForkJoinPool constructors.
1084     */
1085     public static final ForkJoinWorkerThreadFactory
1086     defaultForkJoinWorkerThreadFactory;
1087    
1088     /**
1089     * Generator for assigning sequence numbers as pool names.
1090     */
1091     private static final AtomicInteger poolNumberGenerator;
1092    
1093     /**
1094     * Generator for initial hashes/seeds for submitters. Accessed by
1095     * Submitter class constructor.
1096     */
1097     static final AtomicInteger nextSubmitterSeed;
1098    
1099     /**
1100     * Permission required for callers of methods that may start or
1101     * kill threads.
1102     */
1103     private static final RuntimePermission modifyThreadPermission;
1104    
1105     /**
1106 jsr166 1.2 * Per-thread submission bookkeeping. Shared across all pools
1107 dl 1.1 * to reduce ThreadLocal pollution and because random motion
1108     * to avoid contention in one pool is likely to hold for others.
1109     */
1110     private static final ThreadSubmitter submitters;
1111    
1112     // static constants
1113    
1114     /**
1115     * The wakeup interval (in nanoseconds) for a worker waiting for a
1116     * task when the pool is quiescent to instead try to shrink the
1117     * number of workers. The exact value does not matter too
1118     * much. It must be short enough to release resources during
1119     * sustained periods of idleness, but not so short that threads
1120     * are continually re-created.
1121     */
1122     private static final long SHRINK_RATE =
1123     4L * 1000L * 1000L * 1000L; // 4 seconds
1124    
1125     /**
1126     * The timeout value for attempted shrinkage, includes
1127     * some slop to cope with system timer imprecision.
1128     */
1129     private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1130    
1131     /**
1132     * The maximum stolen->joining link depth allowed in method
1133     * tryHelpStealer. Must be a power of two. This value also
1134     * controls the maximum number of times to try to help join a task
1135     * without any apparent progress or change in pool state before
1136     * giving up and blocking (see awaitJoin). Depths for legitimate
1137     * chains are unbounded, but we use a fixed constant to avoid
1138     * (otherwise unchecked) cycles and to bound staleness of
1139     * traversal parameters at the expense of sometimes blocking when
1140     * we could be helping.
1141     */
1142     private static final int MAX_HELP = 64;
1143    
1144     /**
1145     * Secondary time-based bound (in nanosecs) for helping attempts
1146     * before trying compensated blocking in awaitJoin. Used in
1147     * conjunction with MAX_HELP to reduce variance due to different
1148     * polling rates associated with different helping options. The
1149     * value should roughly approximate the time required to create
1150     * and/or activate a worker thread.
1151     */
1152     private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1153    
1154     /**
1155     * Increment for seed generators. See class ThreadLocal for
1156     * explanation.
1157     */
1158     private static final int SEED_INCREMENT = 0x61c88647;
1159    
1160     /**
1161     * Bits and masks for control variables
1162     *
1163     * Field ctl is a long packed with:
1164     * AC: Number of active running workers minus target parallelism (16 bits)
1165     * TC: Number of total workers minus target parallelism (16 bits)
1166     * ST: true if pool is terminating (1 bit)
1167     * EC: the wait count of top waiting thread (15 bits)
1168     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1169     *
1170     * When convenient, we can extract the upper 32 bits of counts and
1171     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1172     * (int)ctl. The ec field is never accessed alone, but always
1173     * together with id and st. The offsets of counts by the target
1174     * parallelism and the positionings of fields makes it possible to
1175     * perform the most common checks via sign tests of fields: When
1176     * ac is negative, there are not enough active workers, when tc is
1177     * negative, there are not enough total workers, and when e is
1178     * negative, the pool is terminating. To deal with these possibly
1179     * negative fields, we use casts in and out of "short" and/or
1180     * signed shifts to maintain signedness.
1181     *
1182     * When a thread is queued (inactivated), its eventCount field is
1183     * set negative, which is the only way to tell if a worker is
1184     * prevented from executing tasks, even though it must continue to
1185     * scan for them to avoid queuing races. Note however that
1186     * eventCount updates lag releases so usage requires care.
1187     *
1188     * Field runState is an int packed with:
1189     * SHUTDOWN: true if shutdown is enabled (1 bit)
1190     * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1191     * INIT: set true after workQueues array construction (1 bit)
1192     *
1193     * The sequence number enables simple consistency checks:
1194     * Staleness of read-only operations on the workQueues array can
1195     * be checked by comparing runState before vs after the reads.
1196     */
1197    
1198     // bit positions/shifts for fields
1199     private static final int AC_SHIFT = 48;
1200     private static final int TC_SHIFT = 32;
1201     private static final int ST_SHIFT = 31;
1202     private static final int EC_SHIFT = 16;
1203    
1204     // bounds
1205     private static final int SMASK = 0xffff; // short bits
1206     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1207     private static final int SQMASK = 0xfffe; // even short bits
1208     private static final int SHORT_SIGN = 1 << 15;
1209     private static final int INT_SIGN = 1 << 31;
1210    
1211     // masks
1212     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1213     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1214     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1215    
1216     // units for incrementing and decrementing
1217     private static final long TC_UNIT = 1L << TC_SHIFT;
1218     private static final long AC_UNIT = 1L << AC_SHIFT;
1219    
1220     // masks and units for dealing with u = (int)(ctl >>> 32)
1221     private static final int UAC_SHIFT = AC_SHIFT - 32;
1222     private static final int UTC_SHIFT = TC_SHIFT - 32;
1223     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1224     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1225     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1226     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1227    
1228     // masks and units for dealing with e = (int)ctl
1229     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1230     private static final int E_SEQ = 1 << EC_SHIFT;
1231    
1232     // runState bits
1233     private static final int SHUTDOWN = 1 << 31;
1234    
1235     // access mode for WorkQueue
1236     static final int LIFO_QUEUE = 0;
1237     static final int FIFO_QUEUE = 1;
1238     static final int SHARED_QUEUE = -1;
1239    
1240     // Instance fields
1241    
1242     /*
1243     * Field layout order in this class tends to matter more than one
1244     * would like. Runtime layout order is only loosely related to
1245     * declaration order and may differ across JVMs, but the following
1246     * empirically works OK on current JVMs.
1247     */
1248    
1249     volatile long ctl; // main pool control
1250     final int parallelism; // parallelism level
1251     final int localMode; // per-worker scheduling mode
1252     final int submitMask; // submit queue index bound
1253     int nextSeed; // for initializing worker seeds
1254     volatile int runState; // shutdown status and seq
1255     WorkQueue[] workQueues; // main registry
1256     final Mutex lock; // for registration
1257     final Condition termination; // for awaitTermination
1258     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1259     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1260     final AtomicLong stealCount; // collect counts when terminated
1261     final AtomicInteger nextWorkerNumber; // to create worker name string
1262     final String workerNamePrefix; // to create worker name string
1263    
1264     // Creating, registering, and deregistering workers
1265    
1266     /**
1267     * Tries to create and start a worker
1268     */
1269     private void addWorker() {
1270     Throwable ex = null;
1271     ForkJoinWorkerThread wt = null;
1272     try {
1273     if ((wt = factory.newThread(this)) != null) {
1274     wt.start();
1275     return;
1276     }
1277     } catch (Throwable e) {
1278     ex = e;
1279     }
1280     deregisterWorker(wt, ex); // adjust counts etc on failure
1281     }
1282    
1283     /**
1284     * Callback from ForkJoinWorkerThread constructor to assign a
1285     * public name. This must be separate from registerWorker because
1286     * it is called during the "super" constructor call in
1287     * ForkJoinWorkerThread.
1288     */
1289     final String nextWorkerName() {
1290     return workerNamePrefix.concat
1291     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1292     }
1293    
1294     /**
1295     * Callback from ForkJoinWorkerThread constructor to establish its
1296     * poolIndex and record its WorkQueue. To avoid scanning bias due
1297     * to packing entries in front of the workQueues array, we treat
1298     * the array as a simple power-of-two hash table using per-thread
1299     * seed as hash, expanding as needed.
1300     *
1301     * @param w the worker's queue
1302     */
1303    
1304     final void registerWorker(WorkQueue w) {
1305     Mutex lock = this.lock;
1306     lock.lock();
1307     try {
1308     WorkQueue[] ws = workQueues;
1309     if (w != null && ws != null) { // skip on shutdown/failure
1310     int rs, n = ws.length, m = n - 1;
1311     int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1312     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1313     int r = (s << 1) | 1; // use odd-numbered indices
1314     if (ws[r &= m] != null) { // collision
1315     int probes = 0; // step by approx half size
1316     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1317     while (ws[r = (r + step) & m] != null) {
1318     if (++probes >= n) {
1319     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1320     m = n - 1;
1321     probes = 0;
1322     }
1323     }
1324     }
1325     w.eventCount = w.poolIndex = r; // establish before recording
1326     ws[r] = w; // also update seq
1327     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1328     }
1329     } finally {
1330     lock.unlock();
1331     }
1332     }
1333    
1334     /**
1335     * Final callback from terminating worker, as well as upon failure
1336     * to construct or start a worker in addWorker. Removes record of
1337     * worker from array, and adjusts counts. If pool is shutting
1338     * down, tries to complete termination.
1339     *
1340     * @param wt the worker thread or null if addWorker failed
1341     * @param ex the exception causing failure, or null if none
1342     */
1343     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1344     Mutex lock = this.lock;
1345     WorkQueue w = null;
1346     if (wt != null && (w = wt.workQueue) != null) {
1347     w.runState = -1; // ensure runState is set
1348     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1349     int idx = w.poolIndex;
1350     lock.lock();
1351     try { // remove record from array
1352     WorkQueue[] ws = workQueues;
1353     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1354     ws[idx] = null;
1355     } finally {
1356     lock.unlock();
1357     }
1358     }
1359    
1360     long c; // adjust ctl counts
1361     do {} while (!U.compareAndSwapLong
1362     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1363     ((c - TC_UNIT) & TC_MASK) |
1364     (c & ~(AC_MASK|TC_MASK)))));
1365    
1366     if (!tryTerminate(false, false) && w != null) {
1367     w.cancelAll(); // cancel remaining tasks
1368     if (w.array != null) // suppress signal if never ran
1369     signalWork(); // wake up or create replacement
1370     if (ex == null) // help clean refs on way out
1371     ForkJoinTask.helpExpungeStaleExceptions();
1372     }
1373    
1374     if (ex != null) // rethrow
1375     U.throwException(ex);
1376     }
1377    
1378    
1379     // Submissions
1380    
1381     /**
1382     * Unless shutting down, adds the given task to a submission queue
1383     * at submitter's current queue index (modulo submission
1384     * range). If no queue exists at the index, one is created. If
1385     * the queue is busy, another index is randomly chosen. The
1386     * submitMask bounds the effective number of queues to the
1387     * (nearest power of two for) parallelism level.
1388     *
1389     * @param task the task. Caller must ensure non-null.
1390     */
1391     private void doSubmit(ForkJoinTask<?> task) {
1392     Submitter s = submitters.get();
1393     for (int r = s.seed, m = submitMask;;) {
1394     WorkQueue[] ws; WorkQueue q;
1395     int k = r & m & SQMASK; // use only even indices
1396     if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1397     throw new RejectedExecutionException(); // shutting down
1398     else if ((q = ws[k]) == null) { // create new queue
1399     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1400     Mutex lock = this.lock; // construct outside lock
1401     lock.lock();
1402     try { // recheck under lock
1403     int rs = runState; // to update seq
1404     if (ws == workQueues && ws[k] == null) {
1405     ws[k] = nq;
1406     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1407     }
1408     } finally {
1409     lock.unlock();
1410     }
1411     }
1412     else if (q.trySharedPush(task)) {
1413     signalWork();
1414     return;
1415     }
1416     else if (m > 1) { // move to a different index
1417     r ^= r << 13; // same xorshift as WorkQueues
1418     r ^= r >>> 17;
1419     s.seed = r ^= r << 5;
1420     }
1421     else
1422     Thread.yield(); // yield if no alternatives
1423     }
1424     }
1425    
1426     // Maintaining ctl counts
1427    
1428     /**
1429     * Increments active count; mainly called upon return from blocking.
1430     */
1431     final void incrementActiveCount() {
1432     long c;
1433     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1434     }
1435    
1436     /**
1437     * Tries to activate or create a worker if too few are active.
1438     */
1439     final void signalWork() {
1440     long c; int u;
1441     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1442     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1443     if ((e = (int)c) > 0) { // at least one waiting
1444     if (ws != null && (i = e & SMASK) < ws.length &&
1445     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1446     long nc = (((long)(w.nextWait & E_MASK)) |
1447     ((long)(u + UAC_UNIT) << 32));
1448     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1449     w.eventCount = (e + E_SEQ) & E_MASK;
1450     if ((p = w.parker) != null)
1451     U.unpark(p); // activate and release
1452     break;
1453     }
1454     }
1455     else
1456     break;
1457     }
1458     else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1459     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1460     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1461     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1462     addWorker();
1463     break;
1464     }
1465     }
1466     else
1467     break;
1468     }
1469     }
1470    
1471     // Scanning for tasks
1472    
1473     /**
1474     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1475     */
1476     final void runWorker(WorkQueue w) {
1477     w.growArray(false); // initialize queue array in this thread
1478     do { w.runTask(scan(w)); } while (w.runState >= 0);
1479     }
1480    
1481     /**
1482     * Scans for and, if found, returns one task, else possibly
1483     * inactivates the worker. This method operates on single reads of
1484     * volatile state and is designed to be re-invoked continuously,
1485     * in part because it returns upon detecting inconsistencies,
1486     * contention, or state changes that indicate possible success on
1487     * re-invocation.
1488     *
1489     * The scan searches for tasks across a random permutation of
1490     * queues (starting at a random index and stepping by a random
1491     * relative prime, checking each at least once). The scan
1492     * terminates upon either finding a non-empty queue, or completing
1493     * the sweep. If the worker is not inactivated, it takes and
1494     * returns a task from this queue. On failure to find a task, we
1495     * take one of the following actions, after which the caller will
1496     * retry calling this method unless terminated.
1497     *
1498     * * If pool is terminating, terminate the worker.
1499     *
1500     * * If not a complete sweep, try to release a waiting worker. If
1501     * the scan terminated because the worker is inactivated, then the
1502     * released worker will often be the calling worker, and it can
1503     * succeed obtaining a task on the next call. Or maybe it is
1504     * another worker, but with same net effect. Releasing in other
1505     * cases as well ensures that we have enough workers running.
1506     *
1507     * * If not already enqueued, try to inactivate and enqueue the
1508     * worker on wait queue. Or, if inactivating has caused the pool
1509     * to be quiescent, relay to idleAwaitWork to check for
1510     * termination and possibly shrink pool.
1511     *
1512     * * If already inactive, and the caller has run a task since the
1513     * last empty scan, return (to allow rescan) unless others are
1514     * also inactivated. Field WorkQueue.rescans counts down on each
1515     * scan to ensure eventual inactivation and blocking.
1516     *
1517     * * If already enqueued and none of the above apply, park
1518     * awaiting signal,
1519     *
1520     * @param w the worker (via its WorkQueue)
1521     * @return a task or null of none found
1522     */
1523     private final ForkJoinTask<?> scan(WorkQueue w) {
1524     WorkQueue[] ws; // first update random seed
1525     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1526     int rs = runState, m; // volatile read order matters
1527     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1528     int ec = w.eventCount; // ec is negative if inactive
1529     int step = (r >>> 16) | 1; // relative prime
1530     for (int j = (m + 1) << 2; ; r += step) {
1531     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1532     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1533     (a = q.array) != null) { // probably nonempty
1534     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1535     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1536     if (q.base == b && ec >= 0 && t != null &&
1537     U.compareAndSwapObject(a, i, t, null)) {
1538     if (q.top - (q.base = b + 1) > 1)
1539     signalWork(); // help pushes signal
1540     return t;
1541     }
1542     else if (ec < 0 || j <= m) {
1543     rs = 0; // mark scan as imcomplete
1544     break; // caller can retry after release
1545     }
1546     }
1547     if (--j < 0)
1548     break;
1549     }
1550    
1551     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1552     if (e < 0) // decode ctl on empty scan
1553     w.runState = -1; // pool is terminating
1554     else if (rs == 0 || rs != runState) { // incomplete scan
1555     WorkQueue v; Thread p; // try to release a waiter
1556     if (e > 0 && a < 0 && w.eventCount == ec &&
1557     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1558     long nc = ((long)(v.nextWait & E_MASK) |
1559     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1560     if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1561     v.eventCount = (e + E_SEQ) & E_MASK;
1562     if ((p = v.parker) != null)
1563     U.unpark(p);
1564     }
1565     }
1566     }
1567     else if (ec >= 0) { // try to enqueue/inactivate
1568     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1569     w.nextWait = e;
1570     w.eventCount = ec | INT_SIGN; // mark as inactive
1571     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1572     w.eventCount = ec; // unmark on CAS failure
1573     else {
1574     if ((ns = w.nsteals) != 0) {
1575     w.nsteals = 0; // set rescans if ran task
1576     w.rescans = (a > 0) ? 0 : a + parallelism;
1577     w.totalSteals += ns;
1578     }
1579     if (a == 1 - parallelism) // quiescent
1580     idleAwaitWork(w, nc, c);
1581     }
1582     }
1583     else if (w.eventCount < 0) { // already queued
1584     if ((nr = w.rescans) > 0) { // continue rescanning
1585     int ac = a + parallelism;
1586     if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1587     Thread.yield(); // yield before block
1588     }
1589     else {
1590     Thread.interrupted(); // clear status
1591     Thread wt = Thread.currentThread();
1592     U.putObject(wt, PARKBLOCKER, this);
1593     w.parker = wt; // emulate LockSupport.park
1594     if (w.eventCount < 0) // recheck
1595     U.park(false, 0L);
1596     w.parker = null;
1597     U.putObject(wt, PARKBLOCKER, null);
1598     }
1599     }
1600     }
1601     return null;
1602     }
1603    
1604     /**
1605     * If inactivating worker w has caused the pool to become
1606     * quiescent, checks for pool termination, and, so long as this is
1607     * not the only worker, waits for event for up to SHRINK_RATE
1608     * nanosecs. On timeout, if ctl has not changed, terminates the
1609     * worker, which will in turn wake up another worker to possibly
1610     * repeat this process.
1611     *
1612     * @param w the calling worker
1613     * @param currentCtl the ctl value triggering possible quiescence
1614     * @param prevCtl the ctl value to restore if thread is terminated
1615     */
1616     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1617     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1618     (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1619     Thread wt = Thread.currentThread();
1620     Thread.yield(); // yield before block
1621     while (ctl == currentCtl) {
1622     long startTime = System.nanoTime();
1623     Thread.interrupted(); // timed variant of version in scan()
1624     U.putObject(wt, PARKBLOCKER, this);
1625     w.parker = wt;
1626     if (ctl == currentCtl)
1627     U.park(false, SHRINK_RATE);
1628     w.parker = null;
1629     U.putObject(wt, PARKBLOCKER, null);
1630     if (ctl != currentCtl)
1631     break;
1632     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1633     U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1634     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1635     w.runState = -1; // shrink
1636     break;
1637     }
1638     }
1639     }
1640     }
1641    
1642     /**
1643     * Tries to locate and execute tasks for a stealer of the given
1644     * task, or in turn one of its stealers, Traces currentSteal ->
1645     * currentJoin links looking for a thread working on a descendant
1646     * of the given task and with a non-empty queue to steal back and
1647     * execute tasks from. The first call to this method upon a
1648     * waiting join will often entail scanning/search, (which is OK
1649     * because the joiner has nothing better to do), but this method
1650     * leaves hints in workers to speed up subsequent calls. The
1651     * implementation is very branchy to cope with potential
1652     * inconsistencies or loops encountering chains that are stale,
1653     * unknown, or so long that they are likely cyclic.
1654     *
1655     * @param joiner the joining worker
1656     * @param task the task to join
1657     * @return 0 if no progress can be made, negative if task
1658     * known complete, else positive
1659     */
1660     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1661     int stat = 0, steps = 0; // bound to avoid cycles
1662     if (joiner != null && task != null) { // hoist null checks
1663     restart: for (;;) {
1664     ForkJoinTask<?> subtask = task; // current target
1665     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1666     WorkQueue[] ws; int m, s, h;
1667     if ((s = task.status) < 0) {
1668     stat = s;
1669     break restart;
1670     }
1671     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1672     break restart; // shutting down
1673     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1674     v.currentSteal != subtask) {
1675     for (int origin = h;;) { // find stealer
1676     if (((h = (h + 2) & m) & 15) == 1 &&
1677     (subtask.status < 0 || j.currentJoin != subtask))
1678     continue restart; // occasional staleness check
1679     if ((v = ws[h]) != null &&
1680     v.currentSteal == subtask) {
1681     j.stealHint = h; // save hint
1682     break;
1683     }
1684     if (h == origin)
1685     break restart; // cannot find stealer
1686     }
1687     }
1688     for (;;) { // help stealer or descend to its stealer
1689     ForkJoinTask[] a; int b;
1690     if (subtask.status < 0) // surround probes with
1691     continue restart; // consistency checks
1692     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1693     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1694     ForkJoinTask<?> t =
1695     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1696     if (subtask.status < 0 || j.currentJoin != subtask ||
1697     v.currentSteal != subtask)
1698     continue restart; // stale
1699     stat = 1; // apparent progress
1700     if (t != null && v.base == b &&
1701     U.compareAndSwapObject(a, i, t, null)) {
1702     v.base = b + 1; // help stealer
1703     joiner.runSubtask(t);
1704     }
1705     else if (v.base == b && ++steps == MAX_HELP)
1706     break restart; // v apparently stalled
1707     }
1708     else { // empty -- try to descend
1709     ForkJoinTask<?> next = v.currentJoin;
1710     if (subtask.status < 0 || j.currentJoin != subtask ||
1711     v.currentSteal != subtask)
1712     continue restart; // stale
1713     else if (next == null || ++steps == MAX_HELP)
1714     break restart; // dead-end or maybe cyclic
1715     else {
1716     subtask = next;
1717     j = v;
1718     break;
1719     }
1720     }
1721     }
1722     }
1723     }
1724     }
1725     return stat;
1726     }
1727    
1728     /**
1729     * If task is at base of some steal queue, steals and executes it.
1730     *
1731     * @param joiner the joining worker
1732     * @param task the task
1733     */
1734     private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1735     WorkQueue[] ws;
1736     if ((ws = workQueues) != null) {
1737     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1738     WorkQueue q = ws[j];
1739     if (q != null && q.pollFor(task)) {
1740     joiner.runSubtask(task);
1741     break;
1742     }
1743     }
1744     }
1745     }
1746    
1747     /**
1748     * Tries to decrement active count (sometimes implicitly) and
1749     * possibly release or create a compensating worker in preparation
1750     * for blocking. Fails on contention or termination. Otherwise,
1751     * adds a new thread if no idle workers are available and either
1752     * pool would become completely starved or: (at least half
1753     * starved, and fewer than 50% spares exist, and there is at least
1754     * one task apparently available). Even though the availability
1755     * check requires a full scan, it is worthwhile in reducing false
1756     * alarms.
1757     *
1758     * @param task if non-null, a task being waited for
1759     * @param blocker if non-null, a blocker being waited for
1760     * @return true if the caller can block, else should recheck and retry
1761     */
1762     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1763     int pc = parallelism, e;
1764     long c = ctl;
1765     WorkQueue[] ws = workQueues;
1766     if ((e = (int)c) >= 0 && ws != null) {
1767     int u, a, ac, hc;
1768     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1769     boolean replace = false;
1770     if ((a = u >> UAC_SHIFT) <= 0) {
1771     if ((ac = a + pc) <= 1)
1772     replace = true;
1773     else if ((e > 0 || (task != null &&
1774     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1775     WorkQueue w;
1776     for (int j = 0; j < ws.length; ++j) {
1777     if ((w = ws[j]) != null && !w.isEmpty()) {
1778     replace = true;
1779     break; // in compensation range and tasks available
1780     }
1781     }
1782     }
1783     }
1784     if ((task == null || task.status >= 0) && // recheck need to block
1785     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1786     if (!replace) { // no compensation
1787     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1788     if (U.compareAndSwapLong(this, CTL, c, nc))
1789     return true;
1790     }
1791     else if (e != 0) { // release an idle worker
1792     WorkQueue w; Thread p; int i;
1793     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1794     long nc = ((long)(w.nextWait & E_MASK) |
1795     (c & (AC_MASK|TC_MASK)));
1796     if (w.eventCount == (e | INT_SIGN) &&
1797     U.compareAndSwapLong(this, CTL, c, nc)) {
1798     w.eventCount = (e + E_SEQ) & E_MASK;
1799     if ((p = w.parker) != null)
1800     U.unpark(p);
1801     return true;
1802     }
1803     }
1804     }
1805     else if (tc < MAX_CAP) { // create replacement
1806     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1807     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1808     addWorker();
1809     return true;
1810     }
1811     }
1812     }
1813     }
1814     return false;
1815     }
1816    
1817     /**
1818     * Helps and/or blocks until the given task is done.
1819     *
1820     * @param joiner the joining worker
1821     * @param task the task
1822     * @return task status on exit
1823     */
1824     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1825     int s;
1826     if ((s = task.status) >= 0) {
1827     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1828     joiner.currentJoin = task;
1829     long startTime = 0L;
1830     for (int k = 0;;) {
1831     if ((s = (joiner.isEmpty() ? // try to help
1832     tryHelpStealer(joiner, task) :
1833     joiner.tryRemoveAndExec(task))) == 0 &&
1834     (s = task.status) >= 0) {
1835     if (k == 0) {
1836     startTime = System.nanoTime();
1837     tryPollForAndExec(joiner, task); // check uncommon case
1838     }
1839     else if ((k & (MAX_HELP - 1)) == 0 &&
1840     System.nanoTime() - startTime >=
1841     COMPENSATION_DELAY &&
1842     tryCompensate(task, null)) {
1843     if (task.trySetSignal()) {
1844     synchronized (task) {
1845     if (task.status >= 0) {
1846     try { // see ForkJoinTask
1847     task.wait(); // for explanation
1848     } catch (InterruptedException ie) {
1849     }
1850     }
1851     else
1852     task.notifyAll();
1853     }
1854     }
1855     long c; // re-activate
1856     do {} while (!U.compareAndSwapLong
1857     (this, CTL, c = ctl, c + AC_UNIT));
1858     }
1859     }
1860     if (s < 0 || (s = task.status) < 0) {
1861     joiner.currentJoin = prevJoin;
1862     break;
1863     }
1864     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1865     Thread.yield(); // for politeness
1866     }
1867     }
1868     return s;
1869     }
1870    
1871     /**
1872     * Stripped-down variant of awaitJoin used by timed joins. Tries
1873     * to help join only while there is continuous progress. (Caller
1874     * will then enter a timed wait.)
1875     *
1876     * @param joiner the joining worker
1877     * @param task the task
1878     * @return task status on exit
1879     */
1880     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1881     int s;
1882     while ((s = task.status) >= 0 &&
1883     (joiner.isEmpty() ?
1884     tryHelpStealer(joiner, task) :
1885     joiner.tryRemoveAndExec(task)) != 0)
1886     ;
1887     return s;
1888     }
1889    
1890     /**
1891     * Returns a (probably) non-empty steal queue, if one is found
1892     * during a random, then cyclic scan, else null. This method must
1893     * be retried by caller if, by the time it tries to use the queue,
1894     * it is empty.
1895     */
1896     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1897     // Similar to loop in scan(), but ignoring submissions
1898     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1899     int step = (r >>> 16) | 1;
1900     for (WorkQueue[] ws;;) {
1901     int rs = runState, m;
1902     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1903     return null;
1904     for (int j = (m + 1) << 2; ; r += step) {
1905     WorkQueue q = ws[((r << 1) | 1) & m];
1906     if (q != null && !q.isEmpty())
1907     return q;
1908     else if (--j < 0) {
1909     if (runState == rs)
1910     return null;
1911     break;
1912     }
1913     }
1914     }
1915     }
1916    
1917    
1918     /**
1919     * Runs tasks until {@code isQuiescent()}. We piggyback on
1920     * active count ctl maintenance, but rather than blocking
1921     * when tasks cannot be found, we rescan until all others cannot
1922     * find tasks either.
1923     */
1924     final void helpQuiescePool(WorkQueue w) {
1925     for (boolean active = true;;) {
1926     ForkJoinTask<?> localTask; // exhaust local queue
1927     while ((localTask = w.nextLocalTask()) != null)
1928     localTask.doExec();
1929     WorkQueue q = findNonEmptyStealQueue(w);
1930     if (q != null) {
1931     ForkJoinTask<?> t; int b;
1932     if (!active) { // re-establish active count
1933     long c;
1934     active = true;
1935     do {} while (!U.compareAndSwapLong
1936     (this, CTL, c = ctl, c + AC_UNIT));
1937     }
1938     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1939     w.runSubtask(t);
1940     }
1941     else {
1942     long c;
1943     if (active) { // decrement active count without queuing
1944     active = false;
1945     do {} while (!U.compareAndSwapLong
1946     (this, CTL, c = ctl, c -= AC_UNIT));
1947     }
1948     else
1949     c = ctl; // re-increment on exit
1950     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1951     do {} while (!U.compareAndSwapLong
1952     (this, CTL, c = ctl, c + AC_UNIT));
1953     break;
1954     }
1955     }
1956     }
1957     }
1958    
1959     /**
1960     * Gets and removes a local or stolen task for the given worker.
1961     *
1962     * @return a task, if available
1963     */
1964     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1965     for (ForkJoinTask<?> t;;) {
1966     WorkQueue q; int b;
1967     if ((t = w.nextLocalTask()) != null)
1968     return t;
1969     if ((q = findNonEmptyStealQueue(w)) == null)
1970     return null;
1971     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1972     return t;
1973     }
1974     }
1975    
1976     /**
1977     * Returns the approximate (non-atomic) number of idle threads per
1978     * active thread to offset steal queue size for method
1979     * ForkJoinTask.getSurplusQueuedTaskCount().
1980     */
1981     final int idlePerActive() {
1982     // Approximate at powers of two for small values, saturate past 4
1983     int p = parallelism;
1984     int a = p + (int)(ctl >> AC_SHIFT);
1985     return (a > (p >>>= 1) ? 0 :
1986     a > (p >>>= 1) ? 1 :
1987     a > (p >>>= 1) ? 2 :
1988     a > (p >>>= 1) ? 4 :
1989     8);
1990     }
1991    
1992     // Termination
1993    
1994     /**
1995     * Possibly initiates and/or completes termination. The caller
1996     * triggering termination runs three passes through workQueues:
1997     * (0) Setting termination status, followed by wakeups of queued
1998     * workers; (1) cancelling all tasks; (2) interrupting lagging
1999     * threads (likely in external tasks, but possibly also blocked in
2000     * joins). Each pass repeats previous steps because of potential
2001     * lagging thread creation.
2002     *
2003     * @param now if true, unconditionally terminate, else only
2004     * if no work and no active workers
2005     * @param enable if true, enable shutdown when next possible
2006     * @return true if now terminating or terminated
2007     */
2008     private boolean tryTerminate(boolean now, boolean enable) {
2009     Mutex lock = this.lock;
2010     for (long c;;) {
2011     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2012     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2013     lock.lock(); // don't need try/finally
2014     termination.signalAll(); // signal when 0 workers
2015     lock.unlock();
2016     }
2017     return true;
2018     }
2019     if (runState >= 0) { // not yet enabled
2020     if (!enable)
2021     return false;
2022     lock.lock();
2023     runState |= SHUTDOWN;
2024     lock.unlock();
2025     }
2026     if (!now) { // check if idle & no tasks
2027     if ((int)(c >> AC_SHIFT) != -parallelism ||
2028     hasQueuedSubmissions())
2029     return false;
2030     // Check for unqueued inactive workers. One pass suffices.
2031     WorkQueue[] ws = workQueues; WorkQueue w;
2032     if (ws != null) {
2033     for (int i = 1; i < ws.length; i += 2) {
2034     if ((w = ws[i]) != null && w.eventCount >= 0)
2035     return false;
2036     }
2037     }
2038     }
2039     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2040     for (int pass = 0; pass < 3; ++pass) {
2041     WorkQueue[] ws = workQueues;
2042     if (ws != null) {
2043     WorkQueue w;
2044     int n = ws.length;
2045     for (int i = 0; i < n; ++i) {
2046     if ((w = ws[i]) != null) {
2047     w.runState = -1;
2048     if (pass > 0) {
2049     w.cancelAll();
2050     if (pass > 1)
2051     w.interruptOwner();
2052     }
2053     }
2054     }
2055     // Wake up workers parked on event queue
2056     int i, e; long cc; Thread p;
2057     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2058     (i = e & SMASK) < n &&
2059     (w = ws[i]) != null) {
2060     long nc = ((long)(w.nextWait & E_MASK) |
2061     ((cc + AC_UNIT) & AC_MASK) |
2062     (cc & (TC_MASK|STOP_BIT)));
2063     if (w.eventCount == (e | INT_SIGN) &&
2064     U.compareAndSwapLong(this, CTL, cc, nc)) {
2065     w.eventCount = (e + E_SEQ) & E_MASK;
2066     w.runState = -1;
2067     if ((p = w.parker) != null)
2068     U.unpark(p);
2069     }
2070     }
2071     }
2072     }
2073     }
2074     }
2075     }
2076    
2077     // Exported methods
2078    
2079     // Constructors
2080    
2081     /**
2082     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2083     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2084     * #defaultForkJoinWorkerThreadFactory default thread factory},
2085     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2086     *
2087     * @throws SecurityException if a security manager exists and
2088     * the caller is not permitted to modify threads
2089     * because it does not hold {@link
2090     * java.lang.RuntimePermission}{@code ("modifyThread")}
2091     */
2092     public ForkJoinPool() {
2093     this(Runtime.getRuntime().availableProcessors(),
2094     defaultForkJoinWorkerThreadFactory, null, false);
2095     }
2096    
2097     /**
2098     * Creates a {@code ForkJoinPool} with the indicated parallelism
2099     * level, the {@linkplain
2100     * #defaultForkJoinWorkerThreadFactory default thread factory},
2101     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2102     *
2103     * @param parallelism the parallelism level
2104     * @throws IllegalArgumentException if parallelism less than or
2105     * equal to zero, or greater than implementation limit
2106     * @throws SecurityException if a security manager exists and
2107     * the caller is not permitted to modify threads
2108     * because it does not hold {@link
2109     * java.lang.RuntimePermission}{@code ("modifyThread")}
2110     */
2111     public ForkJoinPool(int parallelism) {
2112     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2113     }
2114    
2115     /**
2116     * Creates a {@code ForkJoinPool} with the given parameters.
2117     *
2118     * @param parallelism the parallelism level. For default value,
2119     * use {@link java.lang.Runtime#availableProcessors}.
2120     * @param factory the factory for creating new threads. For default value,
2121     * use {@link #defaultForkJoinWorkerThreadFactory}.
2122     * @param handler the handler for internal worker threads that
2123     * terminate due to unrecoverable errors encountered while executing
2124     * tasks. For default value, use {@code null}.
2125     * @param asyncMode if true,
2126     * establishes local first-in-first-out scheduling mode for forked
2127     * tasks that are never joined. This mode may be more appropriate
2128     * than default locally stack-based mode in applications in which
2129     * worker threads only process event-style asynchronous tasks.
2130     * For default value, use {@code false}.
2131     * @throws IllegalArgumentException if parallelism less than or
2132     * equal to zero, or greater than implementation limit
2133     * @throws NullPointerException if the factory is null
2134     * @throws SecurityException if a security manager exists and
2135     * the caller is not permitted to modify threads
2136     * because it does not hold {@link
2137     * java.lang.RuntimePermission}{@code ("modifyThread")}
2138     */
2139     public ForkJoinPool(int parallelism,
2140     ForkJoinWorkerThreadFactory factory,
2141     Thread.UncaughtExceptionHandler handler,
2142     boolean asyncMode) {
2143     checkPermission();
2144     if (factory == null)
2145     throw new NullPointerException();
2146     if (parallelism <= 0 || parallelism > MAX_CAP)
2147     throw new IllegalArgumentException();
2148     this.parallelism = parallelism;
2149     this.factory = factory;
2150     this.ueh = handler;
2151     this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2152     long np = (long)(-parallelism); // offset ctl counts
2153     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2154     // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2155     int n = parallelism - 1;
2156     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2157     int size = (n + 1) << 1; // #slots = 2*#workers
2158     this.submitMask = size - 1; // room for max # of submit queues
2159     this.workQueues = new WorkQueue[size];
2160     this.termination = (this.lock = new Mutex()).newCondition();
2161     this.stealCount = new AtomicLong();
2162     this.nextWorkerNumber = new AtomicInteger();
2163     int pn = poolNumberGenerator.incrementAndGet();
2164     StringBuilder sb = new StringBuilder("ForkJoinPool-");
2165     sb.append(Integer.toString(pn));
2166     sb.append("-worker-");
2167     this.workerNamePrefix = sb.toString();
2168     lock.lock();
2169     this.runState = 1; // set init flag
2170     lock.unlock();
2171     }
2172    
2173     // Execution methods
2174    
2175     /**
2176     * Performs the given task, returning its result upon completion.
2177     * If the computation encounters an unchecked Exception or Error,
2178     * it is rethrown as the outcome of this invocation. Rethrown
2179     * exceptions behave in the same way as regular exceptions, but,
2180     * when possible, contain stack traces (as displayed for example
2181     * using {@code ex.printStackTrace()}) of both the current thread
2182     * as well as the thread actually encountering the exception;
2183     * minimally only the latter.
2184     *
2185     * @param task the task
2186     * @return the task's result
2187     * @throws NullPointerException if the task is null
2188     * @throws RejectedExecutionException if the task cannot be
2189     * scheduled for execution
2190     */
2191     public <T> T invoke(ForkJoinTask<T> task) {
2192     if (task == null)
2193     throw new NullPointerException();
2194     doSubmit(task);
2195     return task.join();
2196     }
2197    
2198     /**
2199     * Arranges for (asynchronous) execution of the given task.
2200     *
2201     * @param task the task
2202     * @throws NullPointerException if the task is null
2203     * @throws RejectedExecutionException if the task cannot be
2204     * scheduled for execution
2205     */
2206     public void execute(ForkJoinTask<?> task) {
2207     if (task == null)
2208     throw new NullPointerException();
2209     doSubmit(task);
2210     }
2211    
2212     // AbstractExecutorService methods
2213    
2214     /**
2215     * @throws NullPointerException if the task is null
2216     * @throws RejectedExecutionException if the task cannot be
2217     * scheduled for execution
2218     */
2219     public void execute(Runnable task) {
2220     if (task == null)
2221     throw new NullPointerException();
2222     ForkJoinTask<?> job;
2223     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2224     job = (ForkJoinTask<?>) task;
2225     else
2226     job = new ForkJoinTask.AdaptedRunnableAction(task);
2227     doSubmit(job);
2228     }
2229    
2230     /**
2231     * Submits a ForkJoinTask for execution.
2232     *
2233     * @param task the task to submit
2234     * @return the task
2235     * @throws NullPointerException if the task is null
2236     * @throws RejectedExecutionException if the task cannot be
2237     * scheduled for execution
2238     */
2239     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2240     if (task == null)
2241     throw new NullPointerException();
2242     doSubmit(task);
2243     return task;
2244     }
2245    
2246     /**
2247     * @throws NullPointerException if the task is null
2248     * @throws RejectedExecutionException if the task cannot be
2249     * scheduled for execution
2250     */
2251     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2252     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2253     doSubmit(job);
2254     return job;
2255     }
2256    
2257     /**
2258     * @throws NullPointerException if the task is null
2259     * @throws RejectedExecutionException if the task cannot be
2260     * scheduled for execution
2261     */
2262     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2263     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2264     doSubmit(job);
2265     return job;
2266     }
2267    
2268     /**
2269     * @throws NullPointerException if the task is null
2270     * @throws RejectedExecutionException if the task cannot be
2271     * scheduled for execution
2272     */
2273     public ForkJoinTask<?> submit(Runnable task) {
2274     if (task == null)
2275     throw new NullPointerException();
2276     ForkJoinTask<?> job;
2277     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2278     job = (ForkJoinTask<?>) task;
2279     else
2280     job = new ForkJoinTask.AdaptedRunnableAction(task);
2281     doSubmit(job);
2282     return job;
2283     }
2284    
2285     /**
2286     * @throws NullPointerException {@inheritDoc}
2287     * @throws RejectedExecutionException {@inheritDoc}
2288     */
2289     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2290     // In previous versions of this class, this method constructed
2291     // a task to run ForkJoinTask.invokeAll, but now external
2292     // invocation of multiple tasks is at least as efficient.
2293     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2294     // Workaround needed because method wasn't declared with
2295     // wildcards in return type but should have been.
2296     @SuppressWarnings({"unchecked", "rawtypes"})
2297     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2298    
2299     boolean done = false;
2300     try {
2301     for (Callable<T> t : tasks) {
2302     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2303     doSubmit(f);
2304     fs.add(f);
2305     }
2306     for (ForkJoinTask<T> f : fs)
2307     f.quietlyJoin();
2308     done = true;
2309     return futures;
2310     } finally {
2311     if (!done)
2312     for (ForkJoinTask<T> f : fs)
2313     f.cancel(false);
2314     }
2315     }
2316    
2317     /**
2318     * Returns the factory used for constructing new workers.
2319     *
2320     * @return the factory used for constructing new workers
2321     */
2322     public ForkJoinWorkerThreadFactory getFactory() {
2323     return factory;
2324     }
2325    
2326     /**
2327     * Returns the handler for internal worker threads that terminate
2328     * due to unrecoverable errors encountered while executing tasks.
2329     *
2330     * @return the handler, or {@code null} if none
2331     */
2332     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2333     return ueh;
2334     }
2335    
2336     /**
2337     * Returns the targeted parallelism level of this pool.
2338     *
2339     * @return the targeted parallelism level of this pool
2340     */
2341     public int getParallelism() {
2342     return parallelism;
2343     }
2344    
2345     /**
2346     * Returns the number of worker threads that have started but not
2347     * yet terminated. The result returned by this method may differ
2348     * from {@link #getParallelism} when threads are created to
2349     * maintain parallelism when others are cooperatively blocked.
2350     *
2351     * @return the number of worker threads
2352     */
2353     public int getPoolSize() {
2354     return parallelism + (short)(ctl >>> TC_SHIFT);
2355     }
2356    
2357     /**
2358     * Returns {@code true} if this pool uses local first-in-first-out
2359     * scheduling mode for forked tasks that are never joined.
2360     *
2361     * @return {@code true} if this pool uses async mode
2362     */
2363     public boolean getAsyncMode() {
2364     return localMode != 0;
2365     }
2366    
2367     /**
2368     * Returns an estimate of the number of worker threads that are
2369     * not blocked waiting to join tasks or for other managed
2370     * synchronization. This method may overestimate the
2371     * number of running threads.
2372     *
2373     * @return the number of worker threads
2374     */
2375     public int getRunningThreadCount() {
2376     int rc = 0;
2377     WorkQueue[] ws; WorkQueue w;
2378     if ((ws = workQueues) != null) {
2379     for (int i = 1; i < ws.length; i += 2) {
2380     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2381     ++rc;
2382     }
2383     }
2384     return rc;
2385     }
2386    
2387     /**
2388     * Returns an estimate of the number of threads that are currently
2389     * stealing or executing tasks. This method may overestimate the
2390     * number of active threads.
2391     *
2392     * @return the number of active threads
2393     */
2394     public int getActiveThreadCount() {
2395     int r = parallelism + (int)(ctl >> AC_SHIFT);
2396     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2397     }
2398    
2399     /**
2400     * Returns {@code true} if all worker threads are currently idle.
2401     * An idle worker is one that cannot obtain a task to execute
2402     * because none are available to steal from other threads, and
2403     * there are no pending submissions to the pool. This method is
2404     * conservative; it might not return {@code true} immediately upon
2405     * idleness of all threads, but will eventually become true if
2406     * threads remain inactive.
2407     *
2408     * @return {@code true} if all threads are currently idle
2409     */
2410     public boolean isQuiescent() {
2411     return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2412     }
2413    
2414     /**
2415     * Returns an estimate of the total number of tasks stolen from
2416     * one thread's work queue by another. The reported value
2417     * underestimates the actual total number of steals when the pool
2418     * is not quiescent. This value may be useful for monitoring and
2419     * tuning fork/join programs: in general, steal counts should be
2420     * high enough to keep threads busy, but low enough to avoid
2421     * overhead and contention across threads.
2422     *
2423     * @return the number of steals
2424     */
2425     public long getStealCount() {
2426     long count = stealCount.get();
2427     WorkQueue[] ws; WorkQueue w;
2428     if ((ws = workQueues) != null) {
2429     for (int i = 1; i < ws.length; i += 2) {
2430     if ((w = ws[i]) != null)
2431     count += w.totalSteals;
2432     }
2433     }
2434     return count;
2435     }
2436    
2437     /**
2438     * Returns an estimate of the total number of tasks currently held
2439     * in queues by worker threads (but not including tasks submitted
2440     * to the pool that have not begun executing). This value is only
2441     * an approximation, obtained by iterating across all threads in
2442     * the pool. This method may be useful for tuning task
2443     * granularities.
2444     *
2445     * @return the number of queued tasks
2446     */
2447     public long getQueuedTaskCount() {
2448     long count = 0;
2449     WorkQueue[] ws; WorkQueue w;
2450     if ((ws = workQueues) != null) {
2451     for (int i = 1; i < ws.length; i += 2) {
2452     if ((w = ws[i]) != null)
2453     count += w.queueSize();
2454     }
2455     }
2456     return count;
2457     }
2458    
2459     /**
2460     * Returns an estimate of the number of tasks submitted to this
2461     * pool that have not yet begun executing. This method may take
2462     * time proportional to the number of submissions.
2463     *
2464     * @return the number of queued submissions
2465     */
2466     public int getQueuedSubmissionCount() {
2467     int count = 0;
2468     WorkQueue[] ws; WorkQueue w;
2469     if ((ws = workQueues) != null) {
2470     for (int i = 0; i < ws.length; i += 2) {
2471     if ((w = ws[i]) != null)
2472     count += w.queueSize();
2473     }
2474     }
2475     return count;
2476     }
2477    
2478     /**
2479     * Returns {@code true} if there are any tasks submitted to this
2480     * pool that have not yet begun executing.
2481     *
2482     * @return {@code true} if there are any queued submissions
2483     */
2484     public boolean hasQueuedSubmissions() {
2485     WorkQueue[] ws; WorkQueue w;
2486     if ((ws = workQueues) != null) {
2487     for (int i = 0; i < ws.length; i += 2) {
2488     if ((w = ws[i]) != null && !w.isEmpty())
2489     return true;
2490     }
2491     }
2492     return false;
2493     }
2494    
2495     /**
2496     * Removes and returns the next unexecuted submission if one is
2497     * available. This method may be useful in extensions to this
2498     * class that re-assign work in systems with multiple pools.
2499     *
2500     * @return the next submission, or {@code null} if none
2501     */
2502     protected ForkJoinTask<?> pollSubmission() {
2503     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2504     if ((ws = workQueues) != null) {
2505     for (int i = 0; i < ws.length; i += 2) {
2506     if ((w = ws[i]) != null && (t = w.poll()) != null)
2507     return t;
2508     }
2509     }
2510     return null;
2511     }
2512    
2513     /**
2514     * Removes all available unexecuted submitted and forked tasks
2515     * from scheduling queues and adds them to the given collection,
2516     * without altering their execution status. These may include
2517     * artificially generated or wrapped tasks. This method is
2518     * designed to be invoked only when the pool is known to be
2519     * quiescent. Invocations at other times may not remove all
2520     * tasks. A failure encountered while attempting to add elements
2521     * to collection {@code c} may result in elements being in
2522     * neither, either or both collections when the associated
2523     * exception is thrown. The behavior of this operation is
2524     * undefined if the specified collection is modified while the
2525     * operation is in progress.
2526     *
2527     * @param c the collection to transfer elements into
2528     * @return the number of elements transferred
2529     */
2530     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2531     int count = 0;
2532     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2533     if ((ws = workQueues) != null) {
2534     for (int i = 0; i < ws.length; ++i) {
2535     if ((w = ws[i]) != null) {
2536     while ((t = w.poll()) != null) {
2537     c.add(t);
2538     ++count;
2539     }
2540     }
2541     }
2542     }
2543     return count;
2544     }
2545    
2546     /**
2547     * Returns a string identifying this pool, as well as its state,
2548     * including indications of run state, parallelism level, and
2549     * worker and task counts.
2550     *
2551     * @return a string identifying this pool, as well as its state
2552     */
2553     public String toString() {
2554     // Use a single pass through workQueues to collect counts
2555     long qt = 0L, qs = 0L; int rc = 0;
2556     long st = stealCount.get();
2557     long c = ctl;
2558     WorkQueue[] ws; WorkQueue w;
2559     if ((ws = workQueues) != null) {
2560     for (int i = 0; i < ws.length; ++i) {
2561     if ((w = ws[i]) != null) {
2562     int size = w.queueSize();
2563     if ((i & 1) == 0)
2564     qs += size;
2565     else {
2566     qt += size;
2567     st += w.totalSteals;
2568     if (w.isApparentlyUnblocked())
2569     ++rc;
2570     }
2571     }
2572     }
2573     }
2574     int pc = parallelism;
2575     int tc = pc + (short)(c >>> TC_SHIFT);
2576     int ac = pc + (int)(c >> AC_SHIFT);
2577     if (ac < 0) // ignore transient negative
2578     ac = 0;
2579     String level;
2580     if ((c & STOP_BIT) != 0)
2581     level = (tc == 0) ? "Terminated" : "Terminating";
2582     else
2583     level = runState < 0 ? "Shutting down" : "Running";
2584     return super.toString() +
2585     "[" + level +
2586     ", parallelism = " + pc +
2587     ", size = " + tc +
2588     ", active = " + ac +
2589     ", running = " + rc +
2590     ", steals = " + st +
2591     ", tasks = " + qt +
2592     ", submissions = " + qs +
2593     "]";
2594     }
2595    
2596     /**
2597     * Initiates an orderly shutdown in which previously submitted
2598     * tasks are executed, but no new tasks will be accepted.
2599     * Invocation has no additional effect if already shut down.
2600     * Tasks that are in the process of being submitted concurrently
2601     * during the course of this method may or may not be rejected.
2602     *
2603     * @throws SecurityException if a security manager exists and
2604     * the caller is not permitted to modify threads
2605     * because it does not hold {@link
2606     * java.lang.RuntimePermission}{@code ("modifyThread")}
2607     */
2608     public void shutdown() {
2609     checkPermission();
2610     tryTerminate(false, true);
2611     }
2612    
2613     /**
2614     * Attempts to cancel and/or stop all tasks, and reject all
2615     * subsequently submitted tasks. Tasks that are in the process of
2616     * being submitted or executed concurrently during the course of
2617     * this method may or may not be rejected. This method cancels
2618     * both existing and unexecuted tasks, in order to permit
2619     * termination in the presence of task dependencies. So the method
2620     * always returns an empty list (unlike the case for some other
2621     * Executors).
2622     *
2623     * @return an empty list
2624     * @throws SecurityException if a security manager exists and
2625     * the caller is not permitted to modify threads
2626     * because it does not hold {@link
2627     * java.lang.RuntimePermission}{@code ("modifyThread")}
2628     */
2629     public List<Runnable> shutdownNow() {
2630     checkPermission();
2631     tryTerminate(true, true);
2632     return Collections.emptyList();
2633     }
2634    
2635     /**
2636     * Returns {@code true} if all tasks have completed following shut down.
2637     *
2638     * @return {@code true} if all tasks have completed following shut down
2639     */
2640     public boolean isTerminated() {
2641     long c = ctl;
2642     return ((c & STOP_BIT) != 0L &&
2643     (short)(c >>> TC_SHIFT) == -parallelism);
2644     }
2645    
2646     /**
2647     * Returns {@code true} if the process of termination has
2648     * commenced but not yet completed. This method may be useful for
2649     * debugging. A return of {@code true} reported a sufficient
2650     * period after shutdown may indicate that submitted tasks have
2651     * ignored or suppressed interruption, or are waiting for IO,
2652     * causing this executor not to properly terminate. (See the
2653     * advisory notes for class {@link ForkJoinTask} stating that
2654     * tasks should not normally entail blocking operations. But if
2655     * they do, they must abort them on interrupt.)
2656     *
2657     * @return {@code true} if terminating but not yet terminated
2658     */
2659     public boolean isTerminating() {
2660     long c = ctl;
2661     return ((c & STOP_BIT) != 0L &&
2662     (short)(c >>> TC_SHIFT) != -parallelism);
2663     }
2664    
2665     /**
2666     * Returns {@code true} if this pool has been shut down.
2667     *
2668     * @return {@code true} if this pool has been shut down
2669     */
2670     public boolean isShutdown() {
2671     return runState < 0;
2672     }
2673    
2674     /**
2675     * Blocks until all tasks have completed execution after a shutdown
2676     * request, or the timeout occurs, or the current thread is
2677     * interrupted, whichever happens first.
2678     *
2679     * @param timeout the maximum time to wait
2680     * @param unit the time unit of the timeout argument
2681     * @return {@code true} if this executor terminated and
2682     * {@code false} if the timeout elapsed before termination
2683     * @throws InterruptedException if interrupted while waiting
2684     */
2685     public boolean awaitTermination(long timeout, TimeUnit unit)
2686     throws InterruptedException {
2687     long nanos = unit.toNanos(timeout);
2688     final Mutex lock = this.lock;
2689     lock.lock();
2690     try {
2691     for (;;) {
2692     if (isTerminated())
2693     return true;
2694     if (nanos <= 0)
2695     return false;
2696     nanos = termination.awaitNanos(nanos);
2697     }
2698     } finally {
2699     lock.unlock();
2700     }
2701     }
2702    
2703     /**
2704     * Interface for extending managed parallelism for tasks running
2705     * in {@link ForkJoinPool}s.
2706     *
2707     * <p>A {@code ManagedBlocker} provides two methods. Method
2708     * {@code isReleasable} must return {@code true} if blocking is
2709     * not necessary. Method {@code block} blocks the current thread
2710     * if necessary (perhaps internally invoking {@code isReleasable}
2711     * before actually blocking). These actions are performed by any
2712     * thread invoking {@link ForkJoinPool#managedBlock}. The
2713     * unusual methods in this API accommodate synchronizers that may,
2714     * but don't usually, block for long periods. Similarly, they
2715     * allow more efficient internal handling of cases in which
2716     * additional workers may be, but usually are not, needed to
2717     * ensure sufficient parallelism. Toward this end,
2718     * implementations of method {@code isReleasable} must be amenable
2719     * to repeated invocation.
2720     *
2721     * <p>For example, here is a ManagedBlocker based on a
2722     * ReentrantLock:
2723     * <pre> {@code
2724     * class ManagedLocker implements ManagedBlocker {
2725     * final ReentrantLock lock;
2726     * boolean hasLock = false;
2727     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2728     * public boolean block() {
2729     * if (!hasLock)
2730     * lock.lock();
2731     * return true;
2732     * }
2733     * public boolean isReleasable() {
2734     * return hasLock || (hasLock = lock.tryLock());
2735     * }
2736     * }}</pre>
2737     *
2738     * <p>Here is a class that possibly blocks waiting for an
2739     * item on a given queue:
2740     * <pre> {@code
2741     * class QueueTaker<E> implements ManagedBlocker {
2742     * final BlockingQueue<E> queue;
2743     * volatile E item = null;
2744     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2745     * public boolean block() throws InterruptedException {
2746     * if (item == null)
2747     * item = queue.take();
2748     * return true;
2749     * }
2750     * public boolean isReleasable() {
2751     * return item != null || (item = queue.poll()) != null;
2752     * }
2753     * public E getItem() { // call after pool.managedBlock completes
2754     * return item;
2755     * }
2756     * }}</pre>
2757     */
2758     public static interface ManagedBlocker {
2759     /**
2760     * Possibly blocks the current thread, for example waiting for
2761     * a lock or condition.
2762     *
2763     * @return {@code true} if no additional blocking is necessary
2764     * (i.e., if isReleasable would return true)
2765     * @throws InterruptedException if interrupted while waiting
2766     * (the method is not required to do so, but is allowed to)
2767     */
2768     boolean block() throws InterruptedException;
2769    
2770     /**
2771     * Returns {@code true} if blocking is unnecessary.
2772     */
2773     boolean isReleasable();
2774     }
2775    
2776     /**
2777     * Blocks in accord with the given blocker. If the current thread
2778     * is a {@link ForkJoinWorkerThread}, this method possibly
2779     * arranges for a spare thread to be activated if necessary to
2780     * ensure sufficient parallelism while the current thread is blocked.
2781     *
2782     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2783     * behaviorally equivalent to
2784     * <pre> {@code
2785     * while (!blocker.isReleasable())
2786     * if (blocker.block())
2787     * return;
2788     * }</pre>
2789     *
2790     * If the caller is a {@code ForkJoinTask}, then the pool may
2791     * first be expanded to ensure parallelism, and later adjusted.
2792     *
2793     * @param blocker the blocker
2794     * @throws InterruptedException if blocker.block did so
2795     */
2796     public static void managedBlock(ManagedBlocker blocker)
2797     throws InterruptedException {
2798     Thread t = Thread.currentThread();
2799     ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2800     ((ForkJoinWorkerThread)t).pool : null);
2801     while (!blocker.isReleasable()) {
2802     if (p == null || p.tryCompensate(null, blocker)) {
2803     try {
2804     do {} while (!blocker.isReleasable() && !blocker.block());
2805     } finally {
2806     if (p != null)
2807     p.incrementActiveCount();
2808     }
2809     break;
2810     }
2811     }
2812     }
2813    
2814     // AbstractExecutorService overrides. These rely on undocumented
2815     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2816     // implement RunnableFuture.
2817    
2818     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2819     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2820     }
2821    
2822     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2823     return new ForkJoinTask.AdaptedCallable<T>(callable);
2824     }
2825    
2826     // Unsafe mechanics
2827     private static final sun.misc.Unsafe U;
2828     private static final long CTL;
2829     private static final long PARKBLOCKER;
2830     private static final int ABASE;
2831     private static final int ASHIFT;
2832    
2833     static {
2834     poolNumberGenerator = new AtomicInteger();
2835     nextSubmitterSeed = new AtomicInteger(0x55555555);
2836     modifyThreadPermission = new RuntimePermission("modifyThread");
2837     defaultForkJoinWorkerThreadFactory =
2838     new DefaultForkJoinWorkerThreadFactory();
2839     submitters = new ThreadSubmitter();
2840     int s;
2841     try {
2842     U = getUnsafe();
2843     Class<?> k = ForkJoinPool.class;
2844     Class<?> ak = ForkJoinTask[].class;
2845     CTL = U.objectFieldOffset
2846     (k.getDeclaredField("ctl"));
2847     Class<?> tk = Thread.class;
2848     PARKBLOCKER = U.objectFieldOffset
2849     (tk.getDeclaredField("parkBlocker"));
2850     ABASE = U.arrayBaseOffset(ak);
2851     s = U.arrayIndexScale(ak);
2852     } catch (Exception e) {
2853     throw new Error(e);
2854     }
2855     if ((s & (s-1)) != 0)
2856     throw new Error("data type scale not a power of two");
2857     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2858     }
2859    
2860     /**
2861     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2862     * Replace with a simple call to Unsafe.getUnsafe when integrating
2863     * into a jdk.
2864     *
2865     * @return a sun.misc.Unsafe
2866     */
2867     private static sun.misc.Unsafe getUnsafe() {
2868     try {
2869     return sun.misc.Unsafe.getUnsafe();
2870     } catch (SecurityException se) {
2871     try {
2872     return java.security.AccessController.doPrivileged
2873     (new java.security
2874     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2875     public sun.misc.Unsafe run() throws Exception {
2876     java.lang.reflect.Field f = sun.misc
2877     .Unsafe.class.getDeclaredField("theUnsafe");
2878     f.setAccessible(true);
2879     return (sun.misc.Unsafe) f.get(null);
2880     }});
2881     } catch (java.security.PrivilegedActionException e) {
2882     throw new RuntimeException("Could not initialize intrinsics",
2883     e.getCause());
2884     }
2885     }
2886     }
2887    
2888     }