ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.20
Committed: Tue Nov 20 06:18:39 2012 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +0 -4 lines
Log Message:
resolve merge conflict for javadoc warning fix

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21    
22     /**
23     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24     * A {@code ForkJoinPool} provides the entry point for submissions
25     * from non-{@code ForkJoinTask} clients, as well as management and
26     * monitoring operations.
27     *
28     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31     * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39     *
40 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.12 * use).
46 dl 1.7 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54     * blocked IO or other unmanaged synchronization. The nested {@link
55     * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.1 * synchronization accommodated.
57     *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60     * {@link #getStealCount}) that are intended to aid in developing,
61     * tuning, and monitoring fork/join applications. Also, method
62     * {@link #toString} returns indications of pool state in a
63     * convenient form for informal monitoring.
64     *
65 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
66 dl 1.1 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76     *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84     * <td> <b>Arrange async execution</td>
85     * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99     *
100 dl 1.12 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102     * System#getProperty properties} with prefix {@code
103     * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107 jsr166 1.15 * java.lang.Thread.UncaughtExceptionHandler
108 dl 1.12 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113     * pools with greater than the maximum number result in
114     * {@code IllegalArgumentException}.
115     *
116     * <p>This implementation rejects submitted tasks (that is, by throwing
117     * {@link RejectedExecutionException}) only when the pool is shut down
118     * or internal resources have been exhausted.
119     *
120     * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126     * Implementation Overview
127     *
128     * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130     * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136     *
137     * WorkQueues
138     * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155     * The main differences ultimately stem from GC requirements that
156     * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177     * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181     *
182     * This approach also enables support of a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.12 * processing). Instead, we randomly associate submission queues
198 dl 1.1 * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202 dl 1.12 * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.1 *
216     * Management
217     * ==========
218     *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224     * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226     * consistency checks.
227     *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242 dl 1.18 * block when needed.
243 dl 1.1 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.8 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
252 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.1 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259     * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271     * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278     *
279     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280     * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284     * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296     * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298     * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304     * WorkQueues to reduce unnecessary calls to unpark. (This
305     * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313     *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.12 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319     * added or another worker adds a task to a queue that is
320     * apparently empty, they signal waiting workers (or trigger
321 dl 1.18 * creation of new ones if fewer than the given parallelism
322     * level). These primary signals are buttressed by signals
323     * whenever other threads scan for work or do not have a task to
324     * process (including the case of leaving a hint to unparked
325     * threads to help signal others upon wakeup). On most platforms,
326     * signalling (unpark) overhead time is noticeably long, and the
327     * time between signalling a thread and it actually making
328     * progress can be very noticeably long, so it is worth offloading
329     * these delays from critical paths as much as possible.
330 dl 1.1 *
331     * Trimming workers. To release resources after periods of lack of
332     * use, a worker starting to wait when the pool is quiescent will
333 dl 1.7 * time out and terminate if the pool has remained quiescent for a
334     * given period -- a short period if there are more threads than
335     * parallelism, longer as the number of threads decreases. This
336     * will slowly propagate, eventually terminating all workers after
337     * periods of non-use.
338 dl 1.1 *
339     * Shutdown and Termination. A call to shutdownNow atomically sets
340 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
341     * qlock status, cancels all unprocessed tasks, and wakes up
342 dl 1.1 * all waiting workers. Detecting whether termination should
343     * commence after a non-abrupt shutdown() call requires more work
344     * and bookkeeping. We need consensus about quiescence (i.e., that
345     * there is no more work). The active count provides a primary
346     * indication but non-abrupt shutdown still requires a rechecking
347     * scan for any workers that are inactive but not queued.
348     *
349     * Joining Tasks
350     * =============
351     *
352     * Any of several actions may be taken when one worker is waiting
353     * to join a task stolen (or always held) by another. Because we
354     * are multiplexing many tasks on to a pool of workers, we can't
355     * just let them block (as in Thread.join). We also cannot just
356     * reassign the joiner's run-time stack with another and replace
357     * it later, which would be a form of "continuation", that even if
358     * possible is not necessarily a good idea since we sometimes need
359     * both an unblocked task and its continuation to progress.
360     * Instead we combine two tactics:
361     *
362     * Helping: Arranging for the joiner to execute some task that it
363     * would be running if the steal had not occurred.
364     *
365     * Compensating: Unless there are already enough live threads,
366     * method tryCompensate() may create or re-activate a spare
367     * thread to compensate for blocked joiners until they unblock.
368     *
369 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
370     * helping a hypothetical compensator: If we can readily tell that
371     * a possible action of a compensator is to steal and execute the
372     * task being joined, the joining thread can do so directly,
373     * without the need for a compensation thread (although at the
374     * expense of larger run-time stacks, but the tradeoff is
375     * typically worthwhile).
376 dl 1.1 *
377     * The ManagedBlocker extension API can't use helping so relies
378     * only on compensation in method awaitBlocker.
379     *
380     * The algorithm in tryHelpStealer entails a form of "linear"
381     * helping: Each worker records (in field currentSteal) the most
382     * recent task it stole from some other worker. Plus, it records
383     * (in field currentJoin) the task it is currently actively
384     * joining. Method tryHelpStealer uses these markers to try to
385     * find a worker to help (i.e., steal back a task from and execute
386     * it) that could hasten completion of the actively joined task.
387     * In essence, the joiner executes a task that would be on its own
388     * local deque had the to-be-joined task not been stolen. This may
389     * be seen as a conservative variant of the approach in Wagner &
390     * Calder "Leapfrogging: a portable technique for implementing
391     * efficient futures" SIGPLAN Notices, 1993
392     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
393     * that: (1) We only maintain dependency links across workers upon
394     * steals, rather than use per-task bookkeeping. This sometimes
395     * requires a linear scan of workQueues array to locate stealers,
396     * but often doesn't because stealers leave hints (that may become
397 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
398     * because a worker might have had multiple steals and the hint
399     * records only one of them (usually the most current). Hinting
400     * isolates cost to when it is needed, rather than adding to
401     * per-task overhead. (2) It is "shallow", ignoring nesting and
402     * potentially cyclic mutual steals. (3) It is intentionally
403 dl 1.1 * racy: field currentJoin is updated only while actively joining,
404     * which means that we miss links in the chain during long-lived
405     * tasks, GC stalls etc (which is OK since blocking in such cases
406     * is usually a good idea). (4) We bound the number of attempts
407     * to find work (see MAX_HELP) and fall back to suspending the
408     * worker and if necessary replacing it with another.
409     *
410 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
411     * helpComplete can take and execute any task with the same root
412     * as the task being waited on. However, this still entails some
413     * traversal of completer chains, so is less efficient than using
414     * CountedCompleters without explicit joins.
415     *
416 dl 1.1 * It is impossible to keep exactly the target parallelism number
417     * of threads running at any given time. Determining the
418     * existence of conservatively safe helping targets, the
419     * availability of already-created spares, and the apparent need
420     * to create new spares are all racy, so we rely on multiple
421     * retries of each. Compensation in the apparent absence of
422     * helping opportunities is challenging to control on JVMs, where
423     * GC and other activities can stall progress of tasks that in
424     * turn stall out many other dependent tasks, without us being
425     * able to determine whether they will ever require compensation.
426     * Even though work-stealing otherwise encounters little
427     * degradation in the presence of more threads than cores,
428     * aggressively adding new threads in such cases entails risk of
429     * unwanted positive feedback control loops in which more threads
430     * cause more dependent stalls (as well as delayed progress of
431     * unblocked threads to the point that we know they are available)
432     * leading to more situations requiring more threads, and so
433     * on. This aspect of control can be seen as an (analytically
434     * intractable) game with an opponent that may choose the worst
435     * (for us) active thread to stall at any time. We take several
436     * precautions to bound losses (and thus bound gains), mainly in
437 dl 1.12 * methods tryCompensate and awaitJoin.
438     *
439     * Common Pool
440     * ===========
441     *
442     * The static commonPool always exists after static
443     * initialization. Since it (or any other created pool) need
444     * never be used, we minimize initial construction overhead and
445     * footprint to the setup of about a dozen fields, with no nested
446     * allocation. Most bootstrapping occurs within method
447     * fullExternalPush during the first submission to the pool.
448     *
449     * When external threads submit to the common pool, they can
450     * perform some subtask processing (see externalHelpJoin and
451     * related methods). We do not need to record whether these
452     * submissions are to the common pool -- if not, externalHelpJoin
453 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
454 dl 1.12 * workers). These submitters would otherwise be blocked waiting
455     * for completion, so the extra effort (with liberally sprinkled
456     * task status checks) in inapplicable cases amounts to an odd
457     * form of limited spin-wait before blocking in ForkJoinTask.join.
458     *
459     * Style notes
460     * ===========
461     *
462     * There is a lot of representation-level coupling among classes
463     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
464     * fields of WorkQueue maintain data structures managed by
465     * ForkJoinPool, so are directly accessed. There is little point
466     * trying to reduce this, since any associated future changes in
467     * representations will need to be accompanied by algorithmic
468     * changes anyway. Several methods intrinsically sprawl because
469     * they must accumulate sets of consistent reads of volatiles held
470     * in local variables. Methods signalWork() and scan() are the
471     * main bottlenecks, so are especially heavily
472 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
473     * (of form "while ((local = field) != 0)") which are usually the
474     * simplest way to ensure the required read orderings (which are
475     * sometimes critical). This leads to a "C"-like style of listing
476     * declarations of these locals at the heads of methods or blocks.
477     * There are several occurrences of the unusual "do {} while
478     * (!cas...)" which is the simplest way to force an update of a
479 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
480     * several unnecessary-looking hoisted null checks) that help
481 dl 1.1 * some methods perform reasonably even when interpreted (not
482     * compiled).
483     *
484     * The order of declarations in this file is:
485     * (1) Static utility functions
486     * (2) Nested (static) classes
487     * (3) Static fields
488     * (4) Fields, along with constants used when unpacking some of them
489     * (5) Internal control methods
490     * (6) Callbacks and other support for ForkJoinTask methods
491     * (7) Exported methods
492     * (8) Static block initializing statics in minimally dependent order
493     */
494    
495     // Static utilities
496    
497     /**
498     * If there is a security manager, makes sure caller has
499     * permission to modify threads.
500     */
501     private static void checkPermission() {
502     SecurityManager security = System.getSecurityManager();
503     if (security != null)
504     security.checkPermission(modifyThreadPermission);
505     }
506    
507     // Nested classes
508    
509     /**
510     * Factory for creating new {@link ForkJoinWorkerThread}s.
511     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
512     * for {@code ForkJoinWorkerThread} subclasses that extend base
513     * functionality or initialize threads with different contexts.
514     */
515     public static interface ForkJoinWorkerThreadFactory {
516     /**
517     * Returns a new worker thread operating in the given pool.
518     *
519     * @param pool the pool this thread works in
520     * @throws NullPointerException if the pool is null
521     */
522     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
523     }
524    
525     /**
526     * Default ForkJoinWorkerThreadFactory implementation; creates a
527     * new ForkJoinWorkerThread.
528     */
529 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
530 dl 1.1 implements ForkJoinWorkerThreadFactory {
531 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 dl 1.1 return new ForkJoinWorkerThread(pool);
533     }
534     }
535    
536     /**
537     * Class for artificial tasks that are used to replace the target
538     * of local joins if they are removed from an interior queue slot
539     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
540     * actually do anything beyond having a unique identity.
541     */
542     static final class EmptyTask extends ForkJoinTask<Void> {
543 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
544 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
545     public final Void getRawResult() { return null; }
546     public final void setRawResult(Void x) {}
547     public final boolean exec() { return true; }
548     }
549    
550     /**
551     * Queues supporting work-stealing as well as external task
552     * submission. See above for main rationale and algorithms.
553     * Implementation relies heavily on "Unsafe" intrinsics
554     * and selective use of "volatile":
555     *
556     * Field "base" is the index (mod array.length) of the least valid
557     * queue slot, which is always the next position to steal (poll)
558     * from if nonempty. Reads and writes require volatile orderings
559     * but not CAS, because updates are only performed after slot
560     * CASes.
561     *
562     * Field "top" is the index (mod array.length) of the next queue
563     * slot to push to or pop from. It is written only by owner thread
564 dl 1.12 * for push, or under lock for external/shared push, and accessed
565     * by other threads only after reading (volatile) base. Both top
566     * and base are allowed to wrap around on overflow, but (top -
567     * base) (or more commonly -(base - top) to force volatile read of
568     * base before top) still estimates size. The lock ("qlock") is
569     * forced to -1 on termination, causing all further lock attempts
570     * to fail. (Note: we don't need CAS for termination state because
571     * upon pool shutdown, all shared-queues will stop being used
572     * anyway.) Nearly all lock bodies are set up so that exceptions
573     * within lock bodies are "impossible" (modulo JVM errors that
574     * would cause failure anyway.)
575 dl 1.1 *
576     * The array slots are read and written using the emulation of
577     * volatiles/atomics provided by Unsafe. Insertions must in
578     * general use putOrderedObject as a form of releasing store to
579     * ensure that all writes to the task object are ordered before
580 dl 1.12 * its publication in the queue. All removals entail a CAS to
581     * null. The array is always a power of two. To ensure safety of
582     * Unsafe array operations, all accesses perform explicit null
583     * checks and implicit bounds checks via power-of-two masking.
584 dl 1.1 *
585     * In addition to basic queuing support, this class contains
586     * fields described elsewhere to control execution. It turns out
587 dl 1.12 * to work better memory-layout-wise to include them in this class
588     * rather than a separate class.
589 dl 1.1 *
590     * Performance on most platforms is very sensitive to placement of
591     * instances of both WorkQueues and their arrays -- we absolutely
592     * do not want multiple WorkQueue instances or multiple queue
593     * arrays sharing cache lines. (It would be best for queue objects
594     * and their arrays to share, but there is nothing available to
595     * help arrange that). Unfortunately, because they are recorded
596     * in a common array, WorkQueue instances are often moved to be
597     * adjacent by garbage collectors. To reduce impact, we use field
598     * padding that works OK on common platforms; this effectively
599     * trades off slightly slower average field access for the sake of
600     * avoiding really bad worst-case access. (Until better JVM
601     * support is in place, this padding is dependent on transient
602 dl 1.18 * properties of JVM field layout rules.)
603 dl 1.1 */
604     static final class WorkQueue {
605     /**
606     * Capacity of work-stealing queue array upon initialization.
607     * Must be a power of two; at least 4, but should be larger to
608     * reduce or eliminate cacheline sharing among queues.
609     * Currently, it is much larger, as a partial workaround for
610     * the fact that JVMs often place arrays in locations that
611     * share GC bookkeeping (especially cardmarks) such that
612     * per-write accesses encounter serious memory contention.
613     */
614     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
615    
616     /**
617     * Maximum size for queue arrays. Must be a power of two less
618     * than or equal to 1 << (31 - width of array entry) to ensure
619     * lack of wraparound of index calculations, but defined to a
620     * value a bit less than this to help users trap runaway
621     * programs before saturating systems.
622     */
623     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
624    
625     int seed; // for random scanning; initialize nonzero
626     volatile int eventCount; // encoded inactivation count; < 0 if inactive
627     int nextWait; // encoded record of next event waiter
628 dl 1.18 int hint; // steal or signal hint (index)
629 dl 1.1 int poolIndex; // index of this queue in pool (or 0)
630 dl 1.18 final int mode; // 0: lifo, > 0: fifo, < 0: shared
631     int nsteals; // number of steals
632 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
633 dl 1.1 volatile int base; // index of next slot for poll
634     int top; // index of next slot for push
635     ForkJoinTask<?>[] array; // the elements (initially unallocated)
636     final ForkJoinPool pool; // the containing pool (may be null)
637     final ForkJoinWorkerThread owner; // owning thread or null if shared
638     volatile Thread parker; // == owner during call to park; else null
639     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
640     ForkJoinTask<?> currentSteal; // current non-local task being executed
641 dl 1.18
642 dl 1.1 // Heuristic padding to ameliorate unfortunate memory placements
643     Object p00, p01, p02, p03, p04, p05, p06, p07;
644 dl 1.18 Object p08, p09, p0a, p0b, p0c;
645 dl 1.1
646 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
647     int seed) {
648     this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
649 dl 1.1 this.pool = pool;
650     this.owner = owner;
651 dl 1.18 this.mode = mode;
652     this.seed = seed;
653     // Place indices in the center of array
654 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
655     }
656    
657     /**
658     * Pushes a task. Call only by owner in unshared queues.
659 jsr166 1.14 * Cases needing resizing or rejection are relayed to fullPush
660 dl 1.12 * (that also handles shared queues).
661 dl 1.1 *
662     * @param task the task. Caller must ensure non-null.
663     * @throw RejectedExecutionException if array cannot be resized
664     */
665     final void push(ForkJoinTask<?> task) {
666 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
667     int s = top, m, n;
668     if ((a = array) != null) { // ignore if queue removed
669 dl 1.1 U.putOrderedObject
670 dl 1.18 (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
671     if ((n = (top = s + 1) - base) <= 1) {
672     if ((p = pool) != null)
673     p.signalWork(this, 0);
674     }
675     else if (n >= m)
676     growArray();
677 dl 1.1 }
678     }
679    
680     /**
681     * Pushes a task if lock is free and array is either big
682 dl 1.18 * enough or can be resized to be big enough.
683 dl 1.1 *
684     * @param task the task. Caller must ensure non-null.
685 dl 1.18 * @return true if submitted
686 dl 1.1 */
687 dl 1.18 final boolean trySharedPush(ForkJoinTask<?> task) {
688     boolean submitted = false;
689     if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
690     ForkJoinTask<?>[] a = array; ForkJoinPool p;
691     int s = top;
692     try {
693     if ((a != null && a.length > s + 1 - base) ||
694     (a = growArray()) != null) { // must presize
695     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
696     U.putOrderedObject(a, j, task);
697     top = s + 1;
698     submitted = true;
699     }
700     } finally {
701     qlock = 0; // unlock
702     }
703     if (submitted && (p = pool) != null)
704     p.signalWork(this, 0);
705     }
706     return submitted;
707     }
708    
709     /**
710     * Initializes or doubles the capacity of array. Call either
711     * by owner or with lock held -- it is OK for base, but not
712     * top, to move while resizings are in progress.
713     */
714     final ForkJoinTask<?>[] growArray() {
715     ForkJoinTask<?>[] oldA = array;
716     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717     if (size > MAXIMUM_QUEUE_CAPACITY)
718     throw new RejectedExecutionException("Queue capacity exceeded");
719     int oldMask, t, b;
720     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722     (t = top) - (b = base) > 0) {
723     int mask = size - 1;
724     do {
725     ForkJoinTask<?> x;
726     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727     int j = ((b & mask) << ASHIFT) + ABASE;
728     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729     if (x != null &&
730     U.compareAndSwapObject(oldA, oldj, x, null))
731     U.putObjectVolatile(a, j, x);
732     } while (++b != t);
733 dl 1.1 }
734 dl 1.18 return a;
735 dl 1.1 }
736    
737     /**
738     * Takes next task, if one exists, in LIFO order. Call only
739 dl 1.9 * by owner in unshared queues.
740 dl 1.1 */
741     final ForkJoinTask<?> pop() {
742     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743     if ((a = array) != null && (m = a.length - 1) >= 0) {
744     for (int s; (s = top - 1) - base >= 0;) {
745     long j = ((m & s) << ASHIFT) + ABASE;
746     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747     break;
748     if (U.compareAndSwapObject(a, j, t, null)) {
749     top = s;
750     return t;
751     }
752     }
753     }
754     return null;
755     }
756    
757     /**
758     * Takes a task in FIFO order if b is base of queue and a task
759     * can be claimed without contention. Specialized versions
760     * appear in ForkJoinPool methods scan and tryHelpStealer.
761     */
762     final ForkJoinTask<?> pollAt(int b) {
763     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764     if ((a = array) != null) {
765     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767     base == b &&
768     U.compareAndSwapObject(a, j, t, null)) {
769     base = b + 1;
770     return t;
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes next task, if one exists, in FIFO order.
778     */
779     final ForkJoinTask<?> poll() {
780     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781     while ((b = base) - top < 0 && (a = array) != null) {
782     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784     if (t != null) {
785     if (base == b &&
786     U.compareAndSwapObject(a, j, t, null)) {
787     base = b + 1;
788     return t;
789     }
790     }
791     else if (base == b) {
792     if (b + 1 == top)
793     break;
794 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
795 dl 1.1 }
796     }
797     return null;
798     }
799    
800     /**
801     * Takes next task, if one exists, in order specified by mode.
802     */
803     final ForkJoinTask<?> nextLocalTask() {
804     return mode == 0 ? pop() : poll();
805     }
806    
807     /**
808     * Returns next task, if one exists, in order specified by mode.
809     */
810     final ForkJoinTask<?> peek() {
811     ForkJoinTask<?>[] a = array; int m;
812     if (a == null || (m = a.length - 1) < 0)
813     return null;
814     int i = mode == 0 ? top - 1 : base;
815     int j = ((i & m) << ASHIFT) + ABASE;
816     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817     }
818    
819     /**
820     * Pops the given task only if it is at the current top.
821 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
822 dl 1.1 */
823     final boolean tryUnpush(ForkJoinTask<?> t) {
824     ForkJoinTask<?>[] a; int s;
825     if ((a = array) != null && (s = top) != base &&
826     U.compareAndSwapObject
827     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828     top = s;
829     return true;
830     }
831     return false;
832     }
833    
834     /**
835     * Removes and cancels all known tasks, ignoring any exceptions.
836     */
837     final void cancelAll() {
838     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840     for (ForkJoinTask<?> t; (t = poll()) != null; )
841     ForkJoinTask.cancelIgnoringExceptions(t);
842     }
843    
844     /**
845     * Computes next value for random probes. Scans don't require
846     * a very high quality generator, but also not a crummy one.
847     * Marsaglia xor-shift is cheap and works well enough. Note:
848     * This is manually inlined in its usages in ForkJoinPool to
849     * avoid writes inside busy scan loops.
850     */
851     final int nextSeed() {
852     int r = seed;
853     r ^= r << 13;
854     r ^= r >>> 17;
855     return seed = r ^= r << 5;
856     }
857    
858 dl 1.12 /**
859     * Provides a more accurate estimate of size than (top - base)
860     * by ordering reads and checking whether a near-empty queue
861     * has at least one unclaimed task.
862     */
863     final int queueSize() {
864     ForkJoinTask<?>[] a; int k, s, n;
865     return ((n = base - (s = top)) < 0 &&
866     (n != -1 ||
867     ((a = array) != null && (k = a.length) > 0 &&
868     U.getObject
869     (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
870     -n : 0;
871     }
872    
873 dl 1.11 // Specialized execution methods
874 dl 1.1
875     /**
876     * Pops and runs tasks until empty.
877     */
878     private void popAndExecAll() {
879     // A bit faster than repeated pop calls
880     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
881     while ((a = array) != null && (m = a.length - 1) >= 0 &&
882     (s = top - 1) - base >= 0 &&
883     (t = ((ForkJoinTask<?>)
884     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
885     != null) {
886     if (U.compareAndSwapObject(a, j, t, null)) {
887     top = s;
888     t.doExec();
889     }
890     }
891     }
892    
893     /**
894     * Polls and runs tasks until empty.
895     */
896     private void pollAndExecAll() {
897     for (ForkJoinTask<?> t; (t = poll()) != null;)
898     t.doExec();
899     }
900    
901     /**
902 dl 1.12 * If present, removes from queue and executes the given task,
903     * or any other cancelled task. Returns (true) on any CAS
904 dl 1.1 * or consistency check failure so caller can retry.
905     *
906 dl 1.12 * @return false if no progress can be made, else true;
907 dl 1.1 */
908 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
909     boolean stat = true, removed = false, empty = true;
910 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
911     if ((a = array) != null && (m = a.length - 1) >= 0 &&
912     (n = (s = top) - (b = base)) > 0) {
913     for (ForkJoinTask<?> t;;) { // traverse from s to b
914     int j = ((--s & m) << ASHIFT) + ABASE;
915     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
916     if (t == null) // inconsistent length
917     break;
918     else if (t == task) {
919     if (s + 1 == top) { // pop
920     if (!U.compareAndSwapObject(a, j, task, null))
921     break;
922     top = s;
923     removed = true;
924     }
925     else if (base == b) // replace with proxy
926     removed = U.compareAndSwapObject(a, j, task,
927     new EmptyTask());
928     break;
929     }
930     else if (t.status >= 0)
931     empty = false;
932     else if (s + 1 == top) { // pop and throw away
933     if (U.compareAndSwapObject(a, j, t, null))
934     top = s;
935     break;
936     }
937     if (--n == 0) {
938     if (!empty && base == b)
939 dl 1.12 stat = false;
940 dl 1.1 break;
941     }
942     }
943     }
944     if (removed)
945     task.doExec();
946     return stat;
947     }
948    
949     /**
950 dl 1.12 * Polls for and executes the given task or any other task in
951     * its CountedCompleter computation
952 dl 1.11 */
953 dl 1.12 final boolean pollAndExecCC(ForkJoinTask<?> root) {
954     ForkJoinTask<?>[] a; int b; Object o;
955     outer: while ((b = base) - top < 0 && (a = array) != null) {
956     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
957     if ((o = U.getObject(a, j)) == null ||
958     !(o instanceof CountedCompleter))
959     break;
960     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
961     if (r == root) {
962     if (base == b &&
963     U.compareAndSwapObject(a, j, t, null)) {
964     base = b + 1;
965     t.doExec();
966     return true;
967 dl 1.11 }
968 dl 1.12 else
969     break; // restart
970 dl 1.11 }
971 dl 1.12 if ((r = r.completer) == null)
972     break outer; // not part of root computation
973 dl 1.11 }
974     }
975 dl 1.12 return false;
976 dl 1.11 }
977    
978     /**
979 dl 1.1 * Executes a top-level task and any local tasks remaining
980     * after execution.
981     */
982     final void runTask(ForkJoinTask<?> t) {
983     if (t != null) {
984 dl 1.12 (currentSteal = t).doExec();
985     currentSteal = null;
986 dl 1.18 ++nsteals;
987 dl 1.1 if (top != base) { // process remaining local tasks
988     if (mode == 0)
989     popAndExecAll();
990     else
991     pollAndExecAll();
992     }
993     }
994     }
995    
996     /**
997     * Executes a non-top-level (stolen) task.
998     */
999     final void runSubtask(ForkJoinTask<?> t) {
1000     if (t != null) {
1001     ForkJoinTask<?> ps = currentSteal;
1002 dl 1.12 (currentSteal = t).doExec();
1003 dl 1.1 currentSteal = ps;
1004     }
1005     }
1006    
1007     /**
1008     * Returns true if owned and not known to be blocked.
1009     */
1010     final boolean isApparentlyUnblocked() {
1011     Thread wt; Thread.State s;
1012     return (eventCount >= 0 &&
1013     (wt = owner) != null &&
1014     (s = wt.getState()) != Thread.State.BLOCKED &&
1015     s != Thread.State.WAITING &&
1016     s != Thread.State.TIMED_WAITING);
1017     }
1018    
1019     /**
1020     * If this owned and is not already interrupted, try to
1021     * interrupt and/or unpark, ignoring exceptions.
1022     */
1023     final void interruptOwner() {
1024     Thread wt, p;
1025     if ((wt = owner) != null && !wt.isInterrupted()) {
1026     try {
1027     wt.interrupt();
1028     } catch (SecurityException ignore) {
1029     }
1030     }
1031     if ((p = parker) != null)
1032     U.unpark(p);
1033     }
1034    
1035     // Unsafe mechanics
1036     private static final sun.misc.Unsafe U;
1037 dl 1.12 private static final long QLOCK;
1038 dl 1.1 private static final int ABASE;
1039     private static final int ASHIFT;
1040     static {
1041     int s;
1042     try {
1043     U = getUnsafe();
1044     Class<?> k = WorkQueue.class;
1045     Class<?> ak = ForkJoinTask[].class;
1046 dl 1.12 QLOCK = U.objectFieldOffset
1047     (k.getDeclaredField("qlock"));
1048 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1049     s = U.arrayIndexScale(ak);
1050     } catch (Exception e) {
1051     throw new Error(e);
1052     }
1053     if ((s & (s-1)) != 0)
1054     throw new Error("data type scale not a power of two");
1055     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1056     }
1057     }
1058 jsr166 1.3
1059 dl 1.18 // static fields (initialized in static initializer below)
1060    
1061     /**
1062     * Creates a new ForkJoinWorkerThread. This factory is used unless
1063     * overridden in ForkJoinPool constructors.
1064     */
1065     public static final ForkJoinWorkerThreadFactory
1066     defaultForkJoinWorkerThreadFactory;
1067    
1068 dl 1.1 /**
1069     * Per-thread records for threads that submit to pools. Currently
1070     * holds only pseudo-random seed / index that is used to choose
1071 dl 1.12 * submission queues in method externalPush. In the future, this may
1072 dl 1.1 * also incorporate a means to implement different task rejection
1073     * and resubmission policies.
1074     *
1075     * Seeds for submitters and workers/workQueues work in basically
1076     * the same way but are initialized and updated using slightly
1077     * different mechanics. Both are initialized using the same
1078     * approach as in class ThreadLocal, where successive values are
1079 dl 1.12 * unlikely to collide with previous values. Seeds are then
1080     * randomly modified upon collisions using xorshifts, which
1081     * requires a non-zero seed.
1082 dl 1.1 */
1083     static final class Submitter {
1084     int seed;
1085 dl 1.12 Submitter(int s) { seed = s; }
1086 dl 1.1 }
1087    
1088     /**
1089 dl 1.18 * Per-thread submission bookkeeping. Shared across all pools
1090     * to reduce ThreadLocal pollution and because random motion
1091     * to avoid contention in one pool is likely to hold for others.
1092     * Lazily initialized on first submission (but null-checked
1093     * in other contexts to avoid unnecessary initialization).
1094 dl 1.1 */
1095 dl 1.18 static final ThreadLocal<Submitter> submitters;
1096 dl 1.1
1097 dl 1.8 /**
1098     * Common (static) pool. Non-null for public use unless a static
1099 dl 1.12 * construction exception, but internal usages null-check on use
1100     * to paranoically avoid potential initialization circularities
1101     * as well as to simplify generated code.
1102 dl 1.8 */
1103     static final ForkJoinPool commonPool;
1104    
1105     /**
1106 dl 1.12 * Permission required for callers of methods that may start or
1107     * kill threads.
1108 dl 1.8 */
1109 dl 1.12 private static final RuntimePermission modifyThreadPermission;
1110 dl 1.8
1111 dl 1.1 /**
1112 dl 1.12 * Common pool parallelism. Must equal commonPool.parallelism.
1113 dl 1.1 */
1114 dl 1.12 static final int commonPoolParallelism;
1115 dl 1.1
1116     /**
1117 dl 1.12 * Sequence number for creating workerNamePrefix.
1118 dl 1.1 */
1119 dl 1.12 private static int poolNumberSequence;
1120 dl 1.1
1121     /**
1122 dl 1.12 * Return the next sequence number. We don't expect this to
1123     * ever contend so use simple builtin sync.
1124 dl 1.1 */
1125 dl 1.12 private static final synchronized int nextPoolId() {
1126     return ++poolNumberSequence;
1127     }
1128 dl 1.1
1129     // static constants
1130    
1131     /**
1132 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1133     * triggering quiescence to park waiting for new work. On timeout,
1134     * the thread will instead try to shrink the number of
1135     * workers. The value should be large enough to avoid overly
1136     * aggressive shrinkage during most transient stalls (long GCs
1137     * etc).
1138 dl 1.1 */
1139 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1140 dl 1.1
1141     /**
1142 dl 1.7 * Timeout value when there are more threads than parallelism level
1143 dl 1.1 */
1144 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1145 dl 1.1
1146     /**
1147     * The maximum stolen->joining link depth allowed in method
1148 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1149 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1150     * (otherwise unchecked) cycles and to bound staleness of
1151     * traversal parameters at the expense of sometimes blocking when
1152     * we could be helping.
1153     */
1154     private static final int MAX_HELP = 64;
1155    
1156     /**
1157     * Increment for seed generators. See class ThreadLocal for
1158     * explanation.
1159     */
1160     private static final int SEED_INCREMENT = 0x61c88647;
1161    
1162     /**
1163     * Bits and masks for control variables
1164     *
1165     * Field ctl is a long packed with:
1166     * AC: Number of active running workers minus target parallelism (16 bits)
1167     * TC: Number of total workers minus target parallelism (16 bits)
1168     * ST: true if pool is terminating (1 bit)
1169     * EC: the wait count of top waiting thread (15 bits)
1170     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1171     *
1172     * When convenient, we can extract the upper 32 bits of counts and
1173     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1174     * (int)ctl. The ec field is never accessed alone, but always
1175     * together with id and st. The offsets of counts by the target
1176     * parallelism and the positionings of fields makes it possible to
1177     * perform the most common checks via sign tests of fields: When
1178     * ac is negative, there are not enough active workers, when tc is
1179     * negative, there are not enough total workers, and when e is
1180     * negative, the pool is terminating. To deal with these possibly
1181     * negative fields, we use casts in and out of "short" and/or
1182     * signed shifts to maintain signedness.
1183     *
1184     * When a thread is queued (inactivated), its eventCount field is
1185     * set negative, which is the only way to tell if a worker is
1186     * prevented from executing tasks, even though it must continue to
1187     * scan for them to avoid queuing races. Note however that
1188     * eventCount updates lag releases so usage requires care.
1189     *
1190 dl 1.12 * Field plock is an int packed with:
1191 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1192 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1193     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1194 dl 1.1 *
1195     * The sequence number enables simple consistency checks:
1196     * Staleness of read-only operations on the workQueues array can
1197 dl 1.12 * be checked by comparing plock before vs after the reads.
1198 dl 1.1 */
1199    
1200     // bit positions/shifts for fields
1201     private static final int AC_SHIFT = 48;
1202     private static final int TC_SHIFT = 32;
1203     private static final int ST_SHIFT = 31;
1204     private static final int EC_SHIFT = 16;
1205    
1206     // bounds
1207     private static final int SMASK = 0xffff; // short bits
1208     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1209 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1210     private static final int SQMASK = 0x007e; // max 64 (even) slots
1211 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1212     private static final int INT_SIGN = 1 << 31;
1213    
1214     // masks
1215     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1216     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1217     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1218    
1219     // units for incrementing and decrementing
1220     private static final long TC_UNIT = 1L << TC_SHIFT;
1221     private static final long AC_UNIT = 1L << AC_SHIFT;
1222    
1223     // masks and units for dealing with u = (int)(ctl >>> 32)
1224     private static final int UAC_SHIFT = AC_SHIFT - 32;
1225     private static final int UTC_SHIFT = TC_SHIFT - 32;
1226     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1227     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1228     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1229     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1230    
1231     // masks and units for dealing with e = (int)ctl
1232     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1233     private static final int E_SEQ = 1 << EC_SHIFT;
1234    
1235 dl 1.12 // plock bits
1236 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1237 dl 1.12 private static final int PL_LOCK = 2;
1238     private static final int PL_SIGNAL = 1;
1239     private static final int PL_SPINS = 1 << 8;
1240 dl 1.1
1241     // access mode for WorkQueue
1242     static final int LIFO_QUEUE = 0;
1243     static final int FIFO_QUEUE = 1;
1244     static final int SHARED_QUEUE = -1;
1245    
1246 dl 1.18 // bounds for #steps in scan loop -- must be power 2 minus 1
1247     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1248     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1249    
1250 dl 1.1 // Instance fields
1251    
1252     /*
1253 dl 1.18 * Field layout of this class tends to matter more than one would
1254     * like. Runtime layout order is only loosely related to
1255 dl 1.1 * declaration order and may differ across JVMs, but the following
1256     * empirically works OK on current JVMs.
1257     */
1258 dl 1.8 volatile long stealCount; // collects worker counts
1259 dl 1.1 volatile long ctl; // main pool control
1260 dl 1.18 volatile int plock; // shutdown status and seqLock
1261 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1262 dl 1.18 final int config; // mode and parallelism level
1263 dl 1.1 WorkQueue[] workQueues; // main registry
1264 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1265 dl 1.1 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1266 dl 1.8 final String workerNamePrefix; // to create worker name string
1267    
1268     /*
1269 dl 1.12 * Acquires the plock lock to protect worker array and related
1270     * updates. This method is called only if an initial CAS on plock
1271     * fails. This acts as a spinLock for normal cases, but falls back
1272     * to builtin monitor to block when (rarely) needed. This would be
1273     * a terrible idea for a highly contended lock, but works fine as
1274     * a more conservative alternative to a pure spinlock. See
1275     * internal ConcurrentHashMap documentation for further
1276     * explanation of nearly the same construction.
1277     */
1278     private int acquirePlock() {
1279     int spins = PL_SPINS, r = 0, ps, nps;
1280     for (;;) {
1281     if (((ps = plock) & PL_LOCK) == 0 &&
1282     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1283     return nps;
1284 dl 1.18 else if (r == 0) { // randomize spins if possible
1285     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1286     if ((t instanceof ForkJoinWorkerThread) &&
1287     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1288     r = w.seed;
1289     else if ((z = submitters.get()) != null)
1290     r = z.seed;
1291     else
1292     r = 1;
1293     }
1294 dl 1.8 else if (spins >= 0) {
1295     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1296     if (r >= 0)
1297     --spins;
1298     }
1299 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1300 jsr166 1.13 synchronized (this) {
1301 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1302 dl 1.8 try {
1303     wait();
1304     } catch (InterruptedException ie) {
1305 dl 1.11 try {
1306     Thread.currentThread().interrupt();
1307     } catch (SecurityException ignore) {
1308     }
1309 dl 1.8 }
1310     }
1311     else
1312 dl 1.12 notifyAll();
1313 dl 1.8 }
1314     }
1315     }
1316     }
1317 dl 1.1
1318     /**
1319 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1320     * when CAS of seq value for unlock fails.
1321 dl 1.1 */
1322 dl 1.12 private void releasePlock(int ps) {
1323     plock = ps;
1324 jsr166 1.13 synchronized (this) { notifyAll(); }
1325 dl 1.1 }
1326    
1327 dl 1.18 /**
1328     * Tries to create and start a worker; adjusts counts etc on failure
1329     */
1330     private void addWorker() {
1331     ForkJoinWorkerThread wt = null;
1332     try {
1333     (wt = factory.newThread(this)).start();
1334     } catch (Throwable ex) {
1335     deregisterWorker(wt, ex); // adjust on failure
1336     }
1337     }
1338 dl 1.1
1339     /**
1340 dl 1.18 * Performs secondary initialization, called when plock is zero.
1341     * Creates workQueue array and sets plock to a valid value. The
1342     * lock body must be exception-free (so no try/finally) so we
1343     * optimistically allocate new array outside the lock and throw
1344     * away if (very rarely) not needed. (A similar tactic is used in
1345     * fullExternalPush.) Because the plock seq value can eventually
1346     * wrap around zero, this method harmlessly fails to reinitialize
1347     * if workQueues exists, while still advancing plock.
1348     */
1349     private void initWorkQueuesArray() {
1350     WorkQueue[] ws; int ps;
1351     int p = config & SMASK; // find power of two table size
1352     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1353     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1354     WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1355 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1356     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357     ps = acquirePlock();
1358 dl 1.18 if ((ws = workQueues) == null || ws.length == 0)
1359     workQueues = nws;
1360 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1361 dl 1.18 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362     releasePlock(nps);
1363     long c; int u;
1364     if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1365     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367     if (U.compareAndSwapLong(this, CTL, c, nc))
1368     addWorker();
1369     }
1370    
1371     }
1372    
1373     // Registering and deregistering workers
1374    
1375     /**
1376     * Callback from ForkJoinWorkerThread to establish and record its
1377     * WorkQueue. To avoid scanning bias due to packing entries in
1378     * front of the workQueues array, we treat the array as a simple
1379     * power-of-two hash table using per-thread seed as hash,
1380     * expanding as needed.
1381     *
1382     * @param wt the worker thread
1383     */
1384     final void registerWorker(ForkJoinWorkerThread wt) {
1385     if (wt != null && wt.workQueue == null) {
1386     int s, ps; // generate a rarely colliding candidate index seed
1387     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1388     s += SEED_INCREMENT) ||
1389     s == 0); // skip 0
1390     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1391     if (((ps = plock) & PL_LOCK) != 0 ||
1392     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393     ps = acquirePlock();
1394     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395     try {
1396     WorkQueue[] ws;
1397     if ((ws = workQueues) != null && wt.workQueue == null) {
1398     int n = ws.length, m = n - 1;
1399     int r = (s << 1) | 1; // use odd-numbered indices
1400     if (ws[r &= m] != null) { // collision
1401     int probes = 0; // step by approx half size
1402     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1403     while (ws[r = (r + step) & m] != null) {
1404     if (++probes >= n) {
1405     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1406     m = n - 1;
1407     probes = 0;
1408     }
1409 dl 1.1 }
1410     }
1411 dl 1.18 w.eventCount = w.poolIndex = r; // volatile write orders
1412     wt.workQueue = ws[r] = w;
1413 dl 1.1 }
1414 dl 1.18 } finally {
1415     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1416     releasePlock(nps);
1417 dl 1.1 }
1418     }
1419     }
1420    
1421     /**
1422     * Final callback from terminating worker, as well as upon failure
1423 dl 1.12 * to construct or start a worker. Removes record of worker from
1424     * array, and adjusts counts. If pool is shutting down, tries to
1425     * complete termination.
1426 dl 1.1 *
1427 dl 1.12 * @param wt the worker thread or null if construction failed
1428 dl 1.1 * @param ex the exception causing failure, or null if none
1429     */
1430     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1431     WorkQueue w = null;
1432     if (wt != null && (w = wt.workQueue) != null) {
1433 dl 1.12 int ps;
1434     w.qlock = -1; // ensure set
1435 dl 1.18 long ns = w.nsteals, sc; // collect steal count
1436     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1437     sc = stealCount, sc + ns));
1438 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1439     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1440     ps = acquirePlock();
1441     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1442 dl 1.8 try {
1443 dl 1.12 int idx = w.poolIndex;
1444 dl 1.1 WorkQueue[] ws = workQueues;
1445     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1446     ws[idx] = null;
1447     } finally {
1448 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1449     releasePlock(nps);
1450 dl 1.1 }
1451     }
1452    
1453     long c; // adjust ctl counts
1454     do {} while (!U.compareAndSwapLong
1455     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1456     ((c - TC_UNIT) & TC_MASK) |
1457     (c & ~(AC_MASK|TC_MASK)))));
1458    
1459     if (!tryTerminate(false, false) && w != null) {
1460     w.cancelAll(); // cancel remaining tasks
1461     if (w.array != null) // suppress signal if never ran
1462 dl 1.18 helpSignal(null, 0); // wake up or create replacement
1463 dl 1.1 if (ex == null) // help clean refs on way out
1464     ForkJoinTask.helpExpungeStaleExceptions();
1465     }
1466    
1467     if (ex != null) // rethrow
1468 dl 1.11 ForkJoinTask.rethrow(ex);
1469 dl 1.1 }
1470    
1471     // Submissions
1472    
1473     /**
1474     * Unless shutting down, adds the given task to a submission queue
1475     * at submitter's current queue index (modulo submission
1476 dl 1.12 * range). Only the most common path is directly handled in this
1477     * method. All others are relayed to fullExternalPush.
1478 dl 1.1 *
1479     * @param task the task. Caller must ensure non-null.
1480     */
1481 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1482     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1483     if ((z = submitters.get()) != null && plock > 0 &&
1484     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1485     (q = ws[m & z.seed & SQMASK]) != null &&
1486     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1487 dl 1.18 int b = q.base, s = q.top, n, an;
1488     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1489     U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1490 dl 1.12 q.top = s + 1; // push on to deque
1491     q.qlock = 0;
1492 dl 1.18 if (n <= 2)
1493     signalWork(q, 0);
1494 dl 1.1 return;
1495     }
1496 dl 1.12 q.qlock = 0;
1497 dl 1.1 }
1498 dl 1.12 fullExternalPush(task);
1499 dl 1.1 }
1500    
1501 dl 1.7 /**
1502 dl 1.12 * Full version of externalPush. This method is called, among
1503     * other times, upon the first submission of the first task to the
1504 dl 1.18 * pool, so must perform secondary initialization (via
1505     * initWorkQueuesArray). It also detects first submission by an
1506     * external thread by looking up its ThreadLocal, and creates a
1507     * new shared queue if the one at index if empty or contended. The
1508     * lock body must be exception-free (so no try/finally) so we
1509     * optimistically allocate new queues outside the lock and throw
1510     * them away if (very rarely) not needed.
1511 dl 1.12 */
1512     private void fullExternalPush(ForkJoinTask<?> task) {
1513 dl 1.18 int r = 0;
1514     for (Submitter z = submitters.get();;) {
1515     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1516     if (z == null) {
1517     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1518     r += SEED_INCREMENT) && r != 0)
1519     submitters.set(z = new Submitter(r));
1520     }
1521     else if (r == 0) { // move to a different index
1522     r = z.seed;
1523     r ^= r << 13; // same xorshift as WorkQueues
1524     r ^= r >>> 17;
1525     z.seed = r ^ (r << 5);
1526     }
1527     else if ((ps = plock) < 0)
1528 dl 1.12 throw new RejectedExecutionException();
1529 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1530     (m = ws.length - 1) < 0)
1531     initWorkQueuesArray();
1532     else if ((q = ws[k = r & m & SQMASK]) != null) {
1533     if (q.trySharedPush(task))
1534     return;
1535     else
1536     r = 0; // move on contention
1537     }
1538     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1539     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1540     if (((ps = plock) & PL_LOCK) != 0 ||
1541 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1542     ps = acquirePlock();
1543 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1544     ws[k] = q;
1545 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1546     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1547     releasePlock(nps);
1548     }
1549 dl 1.18 else
1550     r = 0; // try elsewhere while lock held
1551 dl 1.11 }
1552 dl 1.9 }
1553    
1554 dl 1.1 // Maintaining ctl counts
1555    
1556     /**
1557     * Increments active count; mainly called upon return from blocking.
1558     */
1559     final void incrementActiveCount() {
1560     long c;
1561     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1562     }
1563    
1564     /**
1565 dl 1.12 * Tries to create (at most one) or activate (possibly several)
1566     * workers if too few are active. On contention failure, continues
1567     * until at least one worker is signalled or the given queue is
1568     * empty or all workers are active.
1569     *
1570     * @param q if non-null, the queue holding tasks to be signalled
1571 dl 1.18 * @param signals the target number of signals (at least one --
1572     * if argument is zero also sets signallee hint if parked).
1573 dl 1.12 */
1574     final void signalWork(WorkQueue q, int signals) {
1575 dl 1.18 long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1576 dl 1.12 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1577     if ((e = (int)c) > 0) {
1578     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1579 dl 1.1 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1580     long nc = (((long)(w.nextWait & E_MASK)) |
1581     ((long)(u + UAC_UNIT) << 32));
1582     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1583     w.eventCount = (e + E_SEQ) & E_MASK;
1584 dl 1.18 if ((p = w.parker) != null) {
1585     if (q != null && signals == 0)
1586     w.hint = q.poolIndex;
1587 dl 1.12 U.unpark(p);
1588 dl 1.18 }
1589 dl 1.12 if (--signals <= 0)
1590     break;
1591     }
1592 dl 1.18 if (q != null && (s = q.queueSize()) <= signals &&
1593     (signals = s) <= 0)
1594 dl 1.1 break;
1595     }
1596     else
1597     break;
1598     }
1599 dl 1.12 else if (e == 0 && (u & SHORT_SIGN) != 0) {
1600 dl 1.1 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1601     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1602     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1603 dl 1.18 addWorker();
1604 dl 1.1 break;
1605     }
1606     }
1607     else
1608     break;
1609     }
1610     }
1611    
1612     // Scanning for tasks
1613    
1614     /**
1615     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1616     */
1617     final void runWorker(WorkQueue w) {
1618 dl 1.18 if (w != null) // skip on initialization failure
1619     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1620 dl 1.1 }
1621    
1622     /**
1623     * Scans for and, if found, returns one task, else possibly
1624     * inactivates the worker. This method operates on single reads of
1625     * volatile state and is designed to be re-invoked continuously,
1626     * in part because it returns upon detecting inconsistencies,
1627     * contention, or state changes that indicate possible success on
1628     * re-invocation.
1629     *
1630 dl 1.18 * The scan searches for tasks across queues (starting at a random
1631     * index, and relying on registerWorker to irregularly scatter
1632     * them within array to avoid bias), checking each at least twice.
1633     * The scan terminates upon either finding a non-empty queue, or
1634     * completing the sweep. If the worker is not inactivated, it
1635     * takes and returns a task from this queue. Otherwise, if not
1636     * activated, it signals workers (that may include itself) and
1637     * returns so caller can retry. Also returns for true if the
1638     * worker array may have changed during an empty scan. On failure
1639     * to find a task, we take one of the following actions, after
1640     * which the caller will retry calling this method unless
1641     * terminated.
1642 dl 1.1 *
1643     * * If pool is terminating, terminate the worker.
1644     *
1645     * * If not already enqueued, try to inactivate and enqueue the
1646     * worker on wait queue. Or, if inactivating has caused the pool
1647     * to be quiescent, relay to idleAwaitWork to check for
1648     * termination and possibly shrink pool.
1649     *
1650 dl 1.12 * * If already enqueued and none of the above apply, possibly
1651 jsr166 1.14 * (with 1/2 probability) park awaiting signal, else lingering to
1652 dl 1.12 * help scan and signal.
1653 dl 1.1 *
1654     * @param w the worker (via its WorkQueue)
1655 jsr166 1.5 * @return a task or null if none found
1656 dl 1.1 */
1657     private final ForkJoinTask<?> scan(WorkQueue w) {
1658 dl 1.18 WorkQueue[] ws; int m, hint;
1659     int ps = plock; // read plock before ws
1660     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1661     int ec = w.eventCount; // ec is negative if inactive
1662     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1663     for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1664     WorkQueue q; ForkJoinTask<?>[] a; int b;
1665     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1666     (a = q.array) != null) { // probably nonempty
1667 dl 1.1 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1668 dl 1.18 ForkJoinTask<?> t = (ForkJoinTask<?>)
1669     U.getObjectVolatile(a, i);
1670 dl 1.1 if (q.base == b && ec >= 0 && t != null &&
1671     U.compareAndSwapObject(a, i, t, null)) {
1672 dl 1.18 if ((q.base = b + 1) - q.top < 0)
1673     signalWork(q, 0);
1674     return t; // taken
1675     }
1676     else if (ec < 0 || j < m) { // cannot take or cannot rescan
1677     w.hint = q.poolIndex; // use hint below
1678     break; // let caller retry after signal
1679     }
1680     }
1681     else if (j < 0) { // end of scan; in loop to simplify code
1682     long c, sc; int e, ns;
1683     if ((ns = w.nsteals) != 0) {
1684     if (U.compareAndSwapLong(this, STEALCOUNT,
1685     sc = stealCount, sc + ns))
1686     w.nsteals = 0; // collect steals
1687 dl 1.1 }
1688 dl 1.18 else if (plock != ps) // ws may have changed
1689 dl 1.12 break;
1690 dl 1.18 else if ((e = (int)(c = ctl)) < 0)
1691     w.qlock = -1; // pool is terminating
1692     else if (ec >= 0) { // try to enqueue/inactivate
1693 dl 1.12 long nc = ((long)ec |
1694     ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1695 dl 1.18 w.nextWait = e; // link and mark inactive
1696     w.hint = -1; // use hint if set while parked
1697     w.eventCount = ec | INT_SIGN;
1698 dl 1.12 if (ctl != c ||
1699     !U.compareAndSwapLong(this, CTL, c, nc))
1700 dl 1.18 w.eventCount = ec; // unmark on CAS failure
1701     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1702     idleAwaitWork(w, nc, c);
1703 dl 1.12 }
1704 dl 1.18 else if (w.eventCount < 0) { // block
1705 dl 1.12 Thread wt = Thread.currentThread();
1706 dl 1.18 Thread.interrupted(); // clear status
1707 dl 1.12 U.putObject(wt, PARKBLOCKER, this);
1708 dl 1.18 w.parker = wt; // emulate LockSupport.park
1709     if (w.eventCount < 0) // recheck
1710 dl 1.12 U.park(false, 0L);
1711     w.parker = null;
1712     U.putObject(wt, PARKBLOCKER, null);
1713 dl 1.1 }
1714     break;
1715     }
1716     }
1717 dl 1.18 if ((hint = w.hint) >= 0) { // help signal
1718     WorkQueue[] vs; WorkQueue v; int k;
1719     w.hint = -1; // suppress resignal
1720     if ((vs = workQueues) != null && hint < vs.length &&
1721     (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1722     signalWork(v, 1 - k);
1723     }
1724 dl 1.1 }
1725     return null;
1726     }
1727    
1728     /**
1729     * If inactivating worker w has caused the pool to become
1730     * quiescent, checks for pool termination, and, so long as this is
1731 dl 1.7 * not the only worker, waits for event for up to a given
1732     * duration. On timeout, if ctl has not changed, terminates the
1733 dl 1.1 * worker, which will in turn wake up another worker to possibly
1734     * repeat this process.
1735     *
1736     * @param w the calling worker
1737     * @param currentCtl the ctl value triggering possible quiescence
1738     * @param prevCtl the ctl value to restore if thread is terminated
1739     */
1740     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1741 dl 1.18 if (w != null && w.eventCount < 0 &&
1742     !tryTerminate(false, false) && (int)prevCtl != 0) {
1743 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1744     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1745     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1746 dl 1.1 Thread wt = Thread.currentThread();
1747     while (ctl == currentCtl) {
1748     Thread.interrupted(); // timed variant of version in scan()
1749     U.putObject(wt, PARKBLOCKER, this);
1750     w.parker = wt;
1751     if (ctl == currentCtl)
1752 dl 1.7 U.park(false, parkTime);
1753 dl 1.1 w.parker = null;
1754     U.putObject(wt, PARKBLOCKER, null);
1755     if (ctl != currentCtl)
1756     break;
1757 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1758 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1759     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1760 dl 1.12 w.qlock = -1; // shrink
1761 dl 1.18 w.hint = -1; // suppress helping
1762 dl 1.1 break;
1763     }
1764     }
1765     }
1766     }
1767    
1768     /**
1769 dl 1.18 * Scans through queues looking for work (optionally, while
1770     * joining a task); if any are present, signals. May return early
1771     * if more signalling is detectably unneeded.
1772 dl 1.12 *
1773 dl 1.18 * @param task if non-null, return early if done
1774 dl 1.12 * @param origin an index to start scan
1775     */
1776     final int helpSignal(ForkJoinTask<?> task, int origin) {
1777 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1778     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1779 dl 1.12 for (int i = 0; i <= m; ++i) {
1780 dl 1.18 if (task != null && (s = task.status) < 0)
1781 dl 1.12 return s;
1782     if ((q = ws[(i + origin) & m]) != null &&
1783     (n = q.queueSize()) > 0) {
1784     signalWork(q, n);
1785 dl 1.18 if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1786 dl 1.12 break;
1787     }
1788     }
1789     }
1790     return 0;
1791     }
1792    
1793     /**
1794 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1795     * task, or in turn one of its stealers, Traces currentSteal ->
1796     * currentJoin links looking for a thread working on a descendant
1797     * of the given task and with a non-empty queue to steal back and
1798     * execute tasks from. The first call to this method upon a
1799     * waiting join will often entail scanning/search, (which is OK
1800     * because the joiner has nothing better to do), but this method
1801     * leaves hints in workers to speed up subsequent calls. The
1802     * implementation is very branchy to cope with potential
1803     * inconsistencies or loops encountering chains that are stale,
1804     * unknown, or so long that they are likely cyclic.
1805     *
1806     * @param joiner the joining worker
1807     * @param task the task to join
1808     * @return 0 if no progress can be made, negative if task
1809     * known complete, else positive
1810     */
1811     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1812     int stat = 0, steps = 0; // bound to avoid cycles
1813     if (joiner != null && task != null) { // hoist null checks
1814     restart: for (;;) {
1815     ForkJoinTask<?> subtask = task; // current target
1816     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1817     WorkQueue[] ws; int m, s, h;
1818     if ((s = task.status) < 0) {
1819     stat = s;
1820     break restart;
1821     }
1822     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1823     break restart; // shutting down
1824 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1825 dl 1.1 v.currentSteal != subtask) {
1826     for (int origin = h;;) { // find stealer
1827     if (((h = (h + 2) & m) & 15) == 1 &&
1828     (subtask.status < 0 || j.currentJoin != subtask))
1829     continue restart; // occasional staleness check
1830     if ((v = ws[h]) != null &&
1831     v.currentSteal == subtask) {
1832 dl 1.18 j.hint = h; // save hint
1833 dl 1.1 break;
1834     }
1835     if (h == origin)
1836     break restart; // cannot find stealer
1837     }
1838     }
1839     for (;;) { // help stealer or descend to its stealer
1840     ForkJoinTask[] a; int b;
1841     if (subtask.status < 0) // surround probes with
1842     continue restart; // consistency checks
1843     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1844     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1845     ForkJoinTask<?> t =
1846     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1847     if (subtask.status < 0 || j.currentJoin != subtask ||
1848     v.currentSteal != subtask)
1849     continue restart; // stale
1850     stat = 1; // apparent progress
1851     if (t != null && v.base == b &&
1852     U.compareAndSwapObject(a, i, t, null)) {
1853     v.base = b + 1; // help stealer
1854     joiner.runSubtask(t);
1855     }
1856     else if (v.base == b && ++steps == MAX_HELP)
1857     break restart; // v apparently stalled
1858     }
1859     else { // empty -- try to descend
1860     ForkJoinTask<?> next = v.currentJoin;
1861     if (subtask.status < 0 || j.currentJoin != subtask ||
1862     v.currentSteal != subtask)
1863     continue restart; // stale
1864     else if (next == null || ++steps == MAX_HELP)
1865     break restart; // dead-end or maybe cyclic
1866     else {
1867     subtask = next;
1868     j = v;
1869     break;
1870     }
1871     }
1872     }
1873     }
1874     }
1875     }
1876     return stat;
1877     }
1878    
1879     /**
1880 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1881 jsr166 1.17 * and run tasks within the target's computation.
1882 dl 1.12 *
1883     * @param task the task to join
1884     * @param mode if shared, exit upon completing any task
1885     * if all workers are active
1886 dl 1.1 *
1887     */
1888 dl 1.12 private int helpComplete(ForkJoinTask<?> task, int mode) {
1889 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1890 dl 1.12 if (task != null && (ws = workQueues) != null &&
1891     (m = ws.length - 1) >= 0) {
1892     for (int j = 1, origin = j;;) {
1893     if ((s = task.status) < 0)
1894     return s;
1895     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1896     origin = j;
1897 dl 1.18 if (mode == SHARED_QUEUE &&
1898     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1899 dl 1.12 break;
1900     }
1901     else if ((j = (j + 2) & m) == origin)
1902 dl 1.1 break;
1903     }
1904     }
1905 dl 1.12 return 0;
1906 dl 1.1 }
1907    
1908     /**
1909     * Tries to decrement active count (sometimes implicitly) and
1910     * possibly release or create a compensating worker in preparation
1911     * for blocking. Fails on contention or termination. Otherwise,
1912 dl 1.12 * adds a new thread if no idle workers are available and pool
1913     * may become starved.
1914 dl 1.1 */
1915 dl 1.12 final boolean tryCompensate() {
1916 dl 1.18 int pc = config & SMASK, e, i, tc; long c;
1917 dl 1.12 WorkQueue[] ws; WorkQueue w; Thread p;
1918 dl 1.18 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1919 dl 1.12 if (e != 0 && (i = e & SMASK) < ws.length &&
1920     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1921     long nc = ((long)(w.nextWait & E_MASK) |
1922     (c & (AC_MASK|TC_MASK)));
1923     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1924     w.eventCount = (e + E_SEQ) & E_MASK;
1925     if ((p = w.parker) != null)
1926     U.unpark(p);
1927     return true; // replace with idle worker
1928 dl 1.1 }
1929     }
1930 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1931     (int)(c >> AC_SHIFT) + pc > 1) {
1932 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1933     if (U.compareAndSwapLong(this, CTL, c, nc))
1934 dl 1.18 return true; // no compensation
1935 dl 1.12 }
1936 dl 1.18 else if (tc + pc < MAX_CAP) {
1937 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1938     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1939 dl 1.18 addWorker();
1940     return true;
1941 dl 1.1 }
1942     }
1943     }
1944     return false;
1945     }
1946    
1947     /**
1948     * Helps and/or blocks until the given task is done.
1949     *
1950     * @param joiner the joining worker
1951     * @param task the task
1952     * @return task status on exit
1953     */
1954     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1955 dl 1.12 int s = 0;
1956     if (joiner != null && task != null && (s = task.status) >= 0) {
1957 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1958     joiner.currentJoin = task;
1959 dl 1.12 do {} while ((s = task.status) >= 0 &&
1960     joiner.queueSize() > 0 &&
1961     joiner.tryRemoveAndExec(task)); // process local tasks
1962     if (s >= 0 && (s = task.status) >= 0 &&
1963     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1964     (task instanceof CountedCompleter))
1965     s = helpComplete(task, LIFO_QUEUE);
1966 dl 1.18 int k = 0; // to perform pre-block yield for politeness
1967 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
1968     if ((joiner.queueSize() > 0 || // try helping
1969     (s = tryHelpStealer(joiner, task)) == 0) &&
1970 dl 1.18 (s = task.status) >= 0) {
1971     if (k < 3) {
1972     if (++k < 3)
1973     s = helpSignal(task, joiner.poolIndex);
1974     else
1975     Thread.yield();
1976     }
1977     else if (!tryCompensate())
1978     k = 0;
1979     else {
1980     if (task.trySetSignal() && (s = task.status) >= 0) {
1981     synchronized (task) {
1982     if (task.status >= 0) {
1983     try { // see ForkJoinTask
1984     task.wait(); // for explanation
1985     } catch (InterruptedException ie) {
1986     }
1987 dl 1.1 }
1988 dl 1.18 else
1989     task.notifyAll();
1990 dl 1.1 }
1991     }
1992 dl 1.18 long c; // re-activate
1993     do {} while (!U.compareAndSwapLong
1994     (this, CTL, c = ctl, c + AC_UNIT));
1995 dl 1.1 }
1996     }
1997     }
1998 dl 1.12 joiner.currentJoin = prevJoin;
1999 dl 1.1 }
2000     return s;
2001     }
2002    
2003     /**
2004     * Stripped-down variant of awaitJoin used by timed joins. Tries
2005     * to help join only while there is continuous progress. (Caller
2006     * will then enter a timed wait.)
2007     *
2008     * @param joiner the joining worker
2009     * @param task the task
2010     */
2011 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2012 dl 1.1 int s;
2013 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2014     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2015     joiner.currentJoin = task;
2016     do {} while ((s = task.status) >= 0 &&
2017     joiner.queueSize() > 0 &&
2018     joiner.tryRemoveAndExec(task));
2019     if (s >= 0 && (s = task.status) >= 0 &&
2020     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2021     (task instanceof CountedCompleter))
2022     s = helpComplete(task, LIFO_QUEUE);
2023     if (s >= 0 && joiner.queueSize() == 0) {
2024     do {} while (task.status >= 0 &&
2025     tryHelpStealer(joiner, task) > 0);
2026     }
2027     joiner.currentJoin = prevJoin;
2028     }
2029 dl 1.1 }
2030    
2031     /**
2032     * Returns a (probably) non-empty steal queue, if one is found
2033     * during a random, then cyclic scan, else null. This method must
2034     * be retried by caller if, by the time it tries to use the queue,
2035     * it is empty.
2036 dl 1.12 * @param r a (random) seed for scanning
2037 dl 1.1 */
2038 dl 1.12 private WorkQueue findNonEmptyStealQueue(int r) {
2039 dl 1.1 for (WorkQueue[] ws;;) {
2040 dl 1.18 int ps = plock, m, n;
2041 dl 1.1 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2042     return null;
2043 dl 1.18 for (int j = (m + 1) << 2; ;) {
2044     WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2045     if (q != null && (n = q.queueSize()) > 0) {
2046     if (n > 1)
2047     signalWork(q, 0);
2048 dl 1.1 return q;
2049 dl 1.18 }
2050 dl 1.1 else if (--j < 0) {
2051 dl 1.12 if (plock == ps)
2052 dl 1.1 return null;
2053     break;
2054     }
2055     }
2056     }
2057     }
2058    
2059     /**
2060     * Runs tasks until {@code isQuiescent()}. We piggyback on
2061     * active count ctl maintenance, but rather than blocking
2062     * when tasks cannot be found, we rescan until all others cannot
2063     * find tasks either.
2064     */
2065     final void helpQuiescePool(WorkQueue w) {
2066     for (boolean active = true;;) {
2067     ForkJoinTask<?> localTask; // exhaust local queue
2068     while ((localTask = w.nextLocalTask()) != null)
2069     localTask.doExec();
2070 dl 1.12 // Similar to loop in scan(), but ignoring submissions
2071     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2072 dl 1.1 if (q != null) {
2073     ForkJoinTask<?> t; int b;
2074     if (!active) { // re-establish active count
2075     long c;
2076     active = true;
2077     do {} while (!U.compareAndSwapLong
2078     (this, CTL, c = ctl, c + AC_UNIT));
2079     }
2080     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2081     w.runSubtask(t);
2082     }
2083     else {
2084     long c;
2085     if (active) { // decrement active count without queuing
2086     active = false;
2087     do {} while (!U.compareAndSwapLong
2088     (this, CTL, c = ctl, c -= AC_UNIT));
2089     }
2090     else
2091     c = ctl; // re-increment on exit
2092 dl 1.18 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2093 dl 1.1 do {} while (!U.compareAndSwapLong
2094     (this, CTL, c = ctl, c + AC_UNIT));
2095     break;
2096     }
2097     }
2098     }
2099     }
2100    
2101     /**
2102     * Gets and removes a local or stolen task for the given worker.
2103     *
2104     * @return a task, if available
2105     */
2106     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2107     for (ForkJoinTask<?> t;;) {
2108     WorkQueue q; int b;
2109     if ((t = w.nextLocalTask()) != null)
2110     return t;
2111 dl 1.12 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2112 dl 1.1 return null;
2113     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2114     return t;
2115     }
2116     }
2117    
2118     /**
2119 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2120     * programmers, frameworks, tools, or languages have little or no
2121     * idea about task granularity. In essence by offering this
2122     * method, we ask users only about tradeoffs in overhead vs
2123     * expected throughput and its variance, rather than how finely to
2124     * partition tasks.
2125     *
2126     * In a steady state strict (tree-structured) computation, each
2127     * thread makes available for stealing enough tasks for other
2128     * threads to remain active. Inductively, if all threads play by
2129     * the same rules, each thread should make available only a
2130     * constant number of tasks.
2131     *
2132     * The minimum useful constant is just 1. But using a value of 1
2133     * would require immediate replenishment upon each steal to
2134     * maintain enough tasks, which is infeasible. Further,
2135     * partitionings/granularities of offered tasks should minimize
2136     * steal rates, which in general means that threads nearer the top
2137     * of computation tree should generate more than those nearer the
2138     * bottom. In perfect steady state, each thread is at
2139     * approximately the same level of computation tree. However,
2140     * producing extra tasks amortizes the uncertainty of progress and
2141     * diffusion assumptions.
2142     *
2143     * So, users will want to use values larger, but not much larger
2144     * than 1 to both smooth over transient shortages and hedge
2145     * against uneven progress; as traded off against the cost of
2146     * extra task overhead. We leave the user to pick a threshold
2147     * value to compare with the results of this call to guide
2148     * decisions, but recommend values such as 3.
2149     *
2150     * When all threads are active, it is on average OK to estimate
2151     * surplus strictly locally. In steady-state, if one thread is
2152     * maintaining say 2 surplus tasks, then so are others. So we can
2153     * just use estimated queue length. However, this strategy alone
2154     * leads to serious mis-estimates in some non-steady-state
2155     * conditions (ramp-up, ramp-down, other stalls). We can detect
2156     * many of these by further considering the number of "idle"
2157     * threads, that are known to have zero queued tasks, so
2158     * compensate by a factor of (#idle/#active) threads.
2159     *
2160     * Note: The approximation of #busy workers as #active workers is
2161     * not very good under current signalling scheme, and should be
2162     * improved.
2163     */
2164     static int getSurplusQueuedTaskCount() {
2165     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167 dl 1.18 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2168     int n = (q = wt.workQueue).top - q.base;
2169 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2170 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2171     a > (p >>>= 1) ? 1 :
2172     a > (p >>>= 1) ? 2 :
2173     a > (p >>>= 1) ? 4 :
2174     8);
2175 dl 1.12 }
2176     return 0;
2177 dl 1.7 }
2178    
2179 dl 1.1 // Termination
2180    
2181     /**
2182     * Possibly initiates and/or completes termination. The caller
2183     * triggering termination runs three passes through workQueues:
2184     * (0) Setting termination status, followed by wakeups of queued
2185     * workers; (1) cancelling all tasks; (2) interrupting lagging
2186     * threads (likely in external tasks, but possibly also blocked in
2187     * joins). Each pass repeats previous steps because of potential
2188     * lagging thread creation.
2189     *
2190     * @param now if true, unconditionally terminate, else only
2191     * if no work and no active workers
2192     * @param enable if true, enable shutdown when next possible
2193     * @return true if now terminating or terminated
2194     */
2195     private boolean tryTerminate(boolean now, boolean enable) {
2196 dl 1.12 if (this == commonPool) // cannot shut down
2197     return false;
2198 dl 1.1 for (long c;;) {
2199     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2200 dl 1.18 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2201 jsr166 1.10 synchronized (this) {
2202 dl 1.8 notifyAll(); // signal when 0 workers
2203     }
2204 dl 1.1 }
2205     return true;
2206     }
2207 dl 1.12 if (plock >= 0) { // not yet enabled
2208     int ps;
2209 dl 1.1 if (!enable)
2210     return false;
2211 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
2212     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2213     ps = acquirePlock();
2214     int nps = SHUTDOWN;
2215     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2216     releasePlock(nps);
2217 dl 1.1 }
2218     if (!now) { // check if idle & no tasks
2219 dl 1.18 if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2220 dl 1.1 hasQueuedSubmissions())
2221     return false;
2222     // Check for unqueued inactive workers. One pass suffices.
2223     WorkQueue[] ws = workQueues; WorkQueue w;
2224     if (ws != null) {
2225     for (int i = 1; i < ws.length; i += 2) {
2226     if ((w = ws[i]) != null && w.eventCount >= 0)
2227     return false;
2228     }
2229     }
2230     }
2231     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2232     for (int pass = 0; pass < 3; ++pass) {
2233     WorkQueue[] ws = workQueues;
2234     if (ws != null) {
2235     WorkQueue w;
2236     int n = ws.length;
2237     for (int i = 0; i < n; ++i) {
2238     if ((w = ws[i]) != null) {
2239 dl 1.12 w.qlock = -1;
2240 dl 1.1 if (pass > 0) {
2241     w.cancelAll();
2242     if (pass > 1)
2243     w.interruptOwner();
2244     }
2245     }
2246     }
2247     // Wake up workers parked on event queue
2248     int i, e; long cc; Thread p;
2249     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2250     (i = e & SMASK) < n &&
2251     (w = ws[i]) != null) {
2252     long nc = ((long)(w.nextWait & E_MASK) |
2253     ((cc + AC_UNIT) & AC_MASK) |
2254     (cc & (TC_MASK|STOP_BIT)));
2255     if (w.eventCount == (e | INT_SIGN) &&
2256     U.compareAndSwapLong(this, CTL, cc, nc)) {
2257     w.eventCount = (e + E_SEQ) & E_MASK;
2258 dl 1.12 w.qlock = -1;
2259 dl 1.1 if ((p = w.parker) != null)
2260     U.unpark(p);
2261     }
2262     }
2263     }
2264     }
2265     }
2266     }
2267     }
2268    
2269 dl 1.12 // external operations on common pool
2270    
2271     /**
2272     * Returns common pool queue for a thread that has submitted at
2273     * least one task.
2274     */
2275     static WorkQueue commonSubmitterQueue() {
2276     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2277     return ((z = submitters.get()) != null &&
2278     (p = commonPool) != null &&
2279     (ws = p.workQueues) != null &&
2280     (m = ws.length - 1) >= 0) ?
2281     ws[m & z.seed & SQMASK] : null;
2282     }
2283    
2284     /**
2285     * Tries to pop the given task from submitter's queue in common pool.
2286     */
2287     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2288     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2289     ForkJoinTask<?>[] a; int m, s; long j;
2290     if ((z = submitters.get()) != null &&
2291     (p = commonPool) != null &&
2292     (ws = p.workQueues) != null &&
2293     (m = ws.length - 1) >= 0 &&
2294     (q = ws[m & z.seed & SQMASK]) != null &&
2295     (s = q.top) != q.base &&
2296     (a = q.array) != null &&
2297     U.getObjectVolatile
2298     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2299     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2300     if (q.array == a && q.top == s && // recheck
2301     U.compareAndSwapObject(a, j, t, null)) {
2302     q.top = s - 1;
2303     q.qlock = 0;
2304     return true;
2305     }
2306     q.qlock = 0;
2307     }
2308     return false;
2309     }
2310    
2311     /**
2312     * Tries to pop and run local tasks within the same computation
2313     * as the given root. On failure, tries to help complete from
2314     * other queues via helpComplete.
2315     */
2316     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2317     ForkJoinTask<?>[] a; int m;
2318     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2319     root != null && root.status >= 0) {
2320     for (;;) {
2321 dl 1.18 int s, u; Object o; CountedCompleter<?> task = null;
2322 dl 1.12 if ((s = q.top) - q.base > 0) {
2323     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2324     if ((o = U.getObject(a, j)) != null &&
2325     (o instanceof CountedCompleter)) {
2326     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2327     do {
2328     if (r == root) {
2329     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2330     if (q.array == a && q.top == s &&
2331     U.compareAndSwapObject(a, j, t, null)) {
2332     q.top = s - 1;
2333     task = t;
2334     }
2335     q.qlock = 0;
2336     }
2337     break;
2338     }
2339 jsr166 1.13 } while ((r = r.completer) != null);
2340 dl 1.12 }
2341     }
2342     if (task != null)
2343     task.doExec();
2344 dl 1.18 if (root.status < 0 ||
2345     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2346 dl 1.12 break;
2347     if (task == null) {
2348     if (helpSignal(root, q.poolIndex) >= 0)
2349     helpComplete(root, SHARED_QUEUE);
2350     break;
2351     }
2352     }
2353     }
2354     }
2355    
2356     /**
2357     * Tries to help execute or signal availability of the given task
2358     * from submitter's queue in common pool.
2359     */
2360     static void externalHelpJoin(ForkJoinTask<?> t) {
2361     // Some hard-to-avoid overlap with tryExternalUnpush
2362     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2363     ForkJoinTask<?>[] a; int m, s, n; long j;
2364 dl 1.18 if (t != null &&
2365 dl 1.12 (z = submitters.get()) != null &&
2366     (p = commonPool) != null &&
2367     (ws = p.workQueues) != null &&
2368     (m = ws.length - 1) >= 0 &&
2369     (q = ws[m & z.seed & SQMASK]) != null &&
2370 dl 1.18 (a = q.array) != null &&
2371     t.status >= 0) {
2372 dl 1.12 if ((s = q.top) != q.base &&
2373     U.getObjectVolatile
2374     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2375     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2376     if (q.array == a && q.top == s &&
2377     U.compareAndSwapObject(a, j, t, null)) {
2378     q.top = s - 1;
2379     q.qlock = 0;
2380     t.doExec();
2381     }
2382     else
2383     q.qlock = 0;
2384     }
2385     if (t.status >= 0) {
2386     if (t instanceof CountedCompleter)
2387     p.externalHelpComplete(q, t);
2388     else
2389     p.helpSignal(t, q.poolIndex);
2390     }
2391     }
2392     }
2393    
2394     /**
2395     * Restricted version of helpQuiescePool for external callers
2396     */
2397     static void externalHelpQuiescePool() {
2398     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2399     if ((p = commonPool) != null &&
2400 dl 1.18 (q = p.findNonEmptyStealQueue(1)) != null &&
2401 dl 1.12 (b = q.base) - q.top < 0 &&
2402     (t = q.pollAt(b)) != null)
2403     t.doExec();
2404     }
2405    
2406 dl 1.1 // Exported methods
2407    
2408     // Constructors
2409    
2410     /**
2411     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2412     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2413     * #defaultForkJoinWorkerThreadFactory default thread factory},
2414     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2415     *
2416     * @throws SecurityException if a security manager exists and
2417     * the caller is not permitted to modify threads
2418     * because it does not hold {@link
2419     * java.lang.RuntimePermission}{@code ("modifyThread")}
2420     */
2421     public ForkJoinPool() {
2422     this(Runtime.getRuntime().availableProcessors(),
2423     defaultForkJoinWorkerThreadFactory, null, false);
2424     }
2425    
2426     /**
2427     * Creates a {@code ForkJoinPool} with the indicated parallelism
2428     * level, the {@linkplain
2429     * #defaultForkJoinWorkerThreadFactory default thread factory},
2430     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2431     *
2432     * @param parallelism the parallelism level
2433     * @throws IllegalArgumentException if parallelism less than or
2434     * equal to zero, or greater than implementation limit
2435     * @throws SecurityException if a security manager exists and
2436     * the caller is not permitted to modify threads
2437     * because it does not hold {@link
2438     * java.lang.RuntimePermission}{@code ("modifyThread")}
2439     */
2440     public ForkJoinPool(int parallelism) {
2441     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2442     }
2443    
2444     /**
2445     * Creates a {@code ForkJoinPool} with the given parameters.
2446     *
2447     * @param parallelism the parallelism level. For default value,
2448     * use {@link java.lang.Runtime#availableProcessors}.
2449     * @param factory the factory for creating new threads. For default value,
2450     * use {@link #defaultForkJoinWorkerThreadFactory}.
2451     * @param handler the handler for internal worker threads that
2452     * terminate due to unrecoverable errors encountered while executing
2453     * tasks. For default value, use {@code null}.
2454     * @param asyncMode if true,
2455     * establishes local first-in-first-out scheduling mode for forked
2456     * tasks that are never joined. This mode may be more appropriate
2457     * than default locally stack-based mode in applications in which
2458     * worker threads only process event-style asynchronous tasks.
2459     * For default value, use {@code false}.
2460     * @throws IllegalArgumentException if parallelism less than or
2461     * equal to zero, or greater than implementation limit
2462     * @throws NullPointerException if the factory is null
2463     * @throws SecurityException if a security manager exists and
2464     * the caller is not permitted to modify threads
2465     * because it does not hold {@link
2466     * java.lang.RuntimePermission}{@code ("modifyThread")}
2467     */
2468     public ForkJoinPool(int parallelism,
2469     ForkJoinWorkerThreadFactory factory,
2470     Thread.UncaughtExceptionHandler handler,
2471     boolean asyncMode) {
2472     checkPermission();
2473     if (factory == null)
2474     throw new NullPointerException();
2475     if (parallelism <= 0 || parallelism > MAX_CAP)
2476     throw new IllegalArgumentException();
2477     this.factory = factory;
2478     this.ueh = handler;
2479 jsr166 1.19 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2480 dl 1.1 long np = (long)(-parallelism); // offset ctl counts
2481     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2482 dl 1.12 int pn = nextPoolId();
2483 dl 1.1 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2484     sb.append(Integer.toString(pn));
2485     sb.append("-worker-");
2486     this.workerNamePrefix = sb.toString();
2487     }
2488    
2489 dl 1.7 /**
2490 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2491     * Basically the same as above, but uses smallest possible initial footprint.
2492     */
2493 dl 1.12 ForkJoinPool(int parallelism, long ctl,
2494 dl 1.8 ForkJoinWorkerThreadFactory factory,
2495     Thread.UncaughtExceptionHandler handler) {
2496 dl 1.18 this.config = parallelism;
2497 dl 1.12 this.ctl = ctl;
2498 dl 1.8 this.factory = factory;
2499     this.ueh = handler;
2500     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2501     }
2502    
2503     /**
2504     * Returns the common pool instance.
2505 dl 1.7 *
2506     * @return the common pool instance
2507     */
2508     public static ForkJoinPool commonPool() {
2509 dl 1.18 // assert commonPool != null : "static init error";
2510     return commonPool;
2511 dl 1.7 }
2512    
2513 dl 1.1 // Execution methods
2514    
2515     /**
2516     * Performs the given task, returning its result upon completion.
2517     * If the computation encounters an unchecked Exception or Error,
2518     * it is rethrown as the outcome of this invocation. Rethrown
2519     * exceptions behave in the same way as regular exceptions, but,
2520     * when possible, contain stack traces (as displayed for example
2521     * using {@code ex.printStackTrace()}) of both the current thread
2522     * as well as the thread actually encountering the exception;
2523     * minimally only the latter.
2524     *
2525     * @param task the task
2526     * @return the task's result
2527     * @throws NullPointerException if the task is null
2528     * @throws RejectedExecutionException if the task cannot be
2529     * scheduled for execution
2530     */
2531     public <T> T invoke(ForkJoinTask<T> task) {
2532     if (task == null)
2533     throw new NullPointerException();
2534 dl 1.12 externalPush(task);
2535 dl 1.1 return task.join();
2536     }
2537    
2538     /**
2539     * Arranges for (asynchronous) execution of the given task.
2540     *
2541     * @param task the task
2542     * @throws NullPointerException if the task is null
2543     * @throws RejectedExecutionException if the task cannot be
2544     * scheduled for execution
2545     */
2546     public void execute(ForkJoinTask<?> task) {
2547     if (task == null)
2548     throw new NullPointerException();
2549 dl 1.12 externalPush(task);
2550 dl 1.1 }
2551    
2552     // AbstractExecutorService methods
2553    
2554     /**
2555     * @throws NullPointerException if the task is null
2556     * @throws RejectedExecutionException if the task cannot be
2557     * scheduled for execution
2558     */
2559     public void execute(Runnable task) {
2560     if (task == null)
2561     throw new NullPointerException();
2562     ForkJoinTask<?> job;
2563     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2564     job = (ForkJoinTask<?>) task;
2565     else
2566     job = new ForkJoinTask.AdaptedRunnableAction(task);
2567 dl 1.12 externalPush(job);
2568 dl 1.1 }
2569    
2570     /**
2571     * Submits a ForkJoinTask for execution.
2572     *
2573     * @param task the task to submit
2574     * @return the task
2575     * @throws NullPointerException if the task is null
2576     * @throws RejectedExecutionException if the task cannot be
2577     * scheduled for execution
2578     */
2579     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2580     if (task == null)
2581     throw new NullPointerException();
2582 dl 1.12 externalPush(task);
2583 dl 1.1 return task;
2584     }
2585    
2586     /**
2587     * @throws NullPointerException if the task is null
2588     * @throws RejectedExecutionException if the task cannot be
2589     * scheduled for execution
2590     */
2591     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2592     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2593 dl 1.12 externalPush(job);
2594 dl 1.1 return job;
2595     }
2596    
2597     /**
2598     * @throws NullPointerException if the task is null
2599     * @throws RejectedExecutionException if the task cannot be
2600     * scheduled for execution
2601     */
2602     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2603     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2604 dl 1.12 externalPush(job);
2605 dl 1.1 return job;
2606     }
2607    
2608     /**
2609     * @throws NullPointerException if the task is null
2610     * @throws RejectedExecutionException if the task cannot be
2611     * scheduled for execution
2612     */
2613     public ForkJoinTask<?> submit(Runnable task) {
2614     if (task == null)
2615     throw new NullPointerException();
2616     ForkJoinTask<?> job;
2617     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2618     job = (ForkJoinTask<?>) task;
2619     else
2620     job = new ForkJoinTask.AdaptedRunnableAction(task);
2621 dl 1.12 externalPush(job);
2622 dl 1.1 return job;
2623     }
2624    
2625     /**
2626     * @throws NullPointerException {@inheritDoc}
2627     * @throws RejectedExecutionException {@inheritDoc}
2628     */
2629     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2630     // In previous versions of this class, this method constructed
2631     // a task to run ForkJoinTask.invokeAll, but now external
2632     // invocation of multiple tasks is at least as efficient.
2633     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2634     // Workaround needed because method wasn't declared with
2635     // wildcards in return type but should have been.
2636     @SuppressWarnings({"unchecked", "rawtypes"})
2637     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2638    
2639     boolean done = false;
2640     try {
2641     for (Callable<T> t : tasks) {
2642     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2643 dl 1.12 externalPush(f);
2644 dl 1.1 fs.add(f);
2645     }
2646     for (ForkJoinTask<T> f : fs)
2647     f.quietlyJoin();
2648     done = true;
2649     return futures;
2650     } finally {
2651     if (!done)
2652     for (ForkJoinTask<T> f : fs)
2653     f.cancel(false);
2654     }
2655     }
2656    
2657     /**
2658     * Returns the factory used for constructing new workers.
2659     *
2660     * @return the factory used for constructing new workers
2661     */
2662     public ForkJoinWorkerThreadFactory getFactory() {
2663     return factory;
2664     }
2665    
2666     /**
2667     * Returns the handler for internal worker threads that terminate
2668     * due to unrecoverable errors encountered while executing tasks.
2669     *
2670     * @return the handler, or {@code null} if none
2671     */
2672     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2673     return ueh;
2674     }
2675    
2676     /**
2677     * Returns the targeted parallelism level of this pool.
2678     *
2679     * @return the targeted parallelism level of this pool
2680     */
2681     public int getParallelism() {
2682 dl 1.18 return config & SMASK;
2683 dl 1.1 }
2684    
2685     /**
2686 dl 1.7 * Returns the targeted parallelism level of the common pool.
2687     *
2688     * @return the targeted parallelism level of the common pool
2689     */
2690     public static int getCommonPoolParallelism() {
2691     return commonPoolParallelism;
2692     }
2693    
2694     /**
2695 dl 1.1 * Returns the number of worker threads that have started but not
2696     * yet terminated. The result returned by this method may differ
2697     * from {@link #getParallelism} when threads are created to
2698     * maintain parallelism when others are cooperatively blocked.
2699     *
2700     * @return the number of worker threads
2701     */
2702     public int getPoolSize() {
2703 dl 1.18 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2704 dl 1.1 }
2705    
2706     /**
2707     * Returns {@code true} if this pool uses local first-in-first-out
2708     * scheduling mode for forked tasks that are never joined.
2709     *
2710     * @return {@code true} if this pool uses async mode
2711     */
2712     public boolean getAsyncMode() {
2713 dl 1.18 return (config >>> 16) == FIFO_QUEUE;
2714 dl 1.1 }
2715    
2716     /**
2717     * Returns an estimate of the number of worker threads that are
2718     * not blocked waiting to join tasks or for other managed
2719     * synchronization. This method may overestimate the
2720     * number of running threads.
2721     *
2722     * @return the number of worker threads
2723     */
2724     public int getRunningThreadCount() {
2725     int rc = 0;
2726     WorkQueue[] ws; WorkQueue w;
2727     if ((ws = workQueues) != null) {
2728     for (int i = 1; i < ws.length; i += 2) {
2729     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2730     ++rc;
2731     }
2732     }
2733     return rc;
2734     }
2735    
2736     /**
2737     * Returns an estimate of the number of threads that are currently
2738     * stealing or executing tasks. This method may overestimate the
2739     * number of active threads.
2740     *
2741     * @return the number of active threads
2742     */
2743     public int getActiveThreadCount() {
2744 dl 1.18 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2745 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2746     }
2747    
2748     /**
2749     * Returns {@code true} if all worker threads are currently idle.
2750     * An idle worker is one that cannot obtain a task to execute
2751     * because none are available to steal from other threads, and
2752     * there are no pending submissions to the pool. This method is
2753     * conservative; it might not return {@code true} immediately upon
2754     * idleness of all threads, but will eventually become true if
2755     * threads remain inactive.
2756     *
2757     * @return {@code true} if all threads are currently idle
2758     */
2759     public boolean isQuiescent() {
2760 dl 1.18 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2761 dl 1.1 }
2762    
2763     /**
2764     * Returns an estimate of the total number of tasks stolen from
2765     * one thread's work queue by another. The reported value
2766     * underestimates the actual total number of steals when the pool
2767     * is not quiescent. This value may be useful for monitoring and
2768     * tuning fork/join programs: in general, steal counts should be
2769     * high enough to keep threads busy, but low enough to avoid
2770     * overhead and contention across threads.
2771     *
2772     * @return the number of steals
2773     */
2774     public long getStealCount() {
2775 dl 1.8 long count = stealCount;
2776 dl 1.1 WorkQueue[] ws; WorkQueue w;
2777     if ((ws = workQueues) != null) {
2778     for (int i = 1; i < ws.length; i += 2) {
2779     if ((w = ws[i]) != null)
2780 dl 1.12 count += w.nsteals;
2781 dl 1.1 }
2782     }
2783     return count;
2784     }
2785    
2786     /**
2787     * Returns an estimate of the total number of tasks currently held
2788     * in queues by worker threads (but not including tasks submitted
2789     * to the pool that have not begun executing). This value is only
2790     * an approximation, obtained by iterating across all threads in
2791     * the pool. This method may be useful for tuning task
2792     * granularities.
2793     *
2794     * @return the number of queued tasks
2795     */
2796     public long getQueuedTaskCount() {
2797     long count = 0;
2798     WorkQueue[] ws; WorkQueue w;
2799     if ((ws = workQueues) != null) {
2800     for (int i = 1; i < ws.length; i += 2) {
2801     if ((w = ws[i]) != null)
2802     count += w.queueSize();
2803     }
2804     }
2805     return count;
2806     }
2807    
2808     /**
2809     * Returns an estimate of the number of tasks submitted to this
2810     * pool that have not yet begun executing. This method may take
2811     * time proportional to the number of submissions.
2812     *
2813     * @return the number of queued submissions
2814     */
2815     public int getQueuedSubmissionCount() {
2816     int count = 0;
2817     WorkQueue[] ws; WorkQueue w;
2818     if ((ws = workQueues) != null) {
2819     for (int i = 0; i < ws.length; i += 2) {
2820     if ((w = ws[i]) != null)
2821     count += w.queueSize();
2822     }
2823     }
2824     return count;
2825     }
2826    
2827     /**
2828     * Returns {@code true} if there are any tasks submitted to this
2829     * pool that have not yet begun executing.
2830     *
2831     * @return {@code true} if there are any queued submissions
2832     */
2833     public boolean hasQueuedSubmissions() {
2834     WorkQueue[] ws; WorkQueue w;
2835     if ((ws = workQueues) != null) {
2836     for (int i = 0; i < ws.length; i += 2) {
2837 dl 1.12 if ((w = ws[i]) != null && w.queueSize() != 0)
2838 dl 1.1 return true;
2839     }
2840     }
2841     return false;
2842     }
2843    
2844     /**
2845     * Removes and returns the next unexecuted submission if one is
2846     * available. This method may be useful in extensions to this
2847     * class that re-assign work in systems with multiple pools.
2848     *
2849     * @return the next submission, or {@code null} if none
2850     */
2851     protected ForkJoinTask<?> pollSubmission() {
2852     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2853     if ((ws = workQueues) != null) {
2854     for (int i = 0; i < ws.length; i += 2) {
2855     if ((w = ws[i]) != null && (t = w.poll()) != null)
2856     return t;
2857     }
2858     }
2859     return null;
2860     }
2861    
2862     /**
2863     * Removes all available unexecuted submitted and forked tasks
2864     * from scheduling queues and adds them to the given collection,
2865     * without altering their execution status. These may include
2866     * artificially generated or wrapped tasks. This method is
2867     * designed to be invoked only when the pool is known to be
2868     * quiescent. Invocations at other times may not remove all
2869     * tasks. A failure encountered while attempting to add elements
2870     * to collection {@code c} may result in elements being in
2871     * neither, either or both collections when the associated
2872     * exception is thrown. The behavior of this operation is
2873     * undefined if the specified collection is modified while the
2874     * operation is in progress.
2875     *
2876     * @param c the collection to transfer elements into
2877     * @return the number of elements transferred
2878     */
2879     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2880     int count = 0;
2881     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2882     if ((ws = workQueues) != null) {
2883     for (int i = 0; i < ws.length; ++i) {
2884     if ((w = ws[i]) != null) {
2885     while ((t = w.poll()) != null) {
2886     c.add(t);
2887     ++count;
2888     }
2889     }
2890     }
2891     }
2892     return count;
2893     }
2894    
2895     /**
2896     * Returns a string identifying this pool, as well as its state,
2897     * including indications of run state, parallelism level, and
2898     * worker and task counts.
2899     *
2900     * @return a string identifying this pool, as well as its state
2901     */
2902     public String toString() {
2903     // Use a single pass through workQueues to collect counts
2904     long qt = 0L, qs = 0L; int rc = 0;
2905 dl 1.8 long st = stealCount;
2906 dl 1.1 long c = ctl;
2907     WorkQueue[] ws; WorkQueue w;
2908     if ((ws = workQueues) != null) {
2909     for (int i = 0; i < ws.length; ++i) {
2910     if ((w = ws[i]) != null) {
2911     int size = w.queueSize();
2912     if ((i & 1) == 0)
2913     qs += size;
2914     else {
2915     qt += size;
2916 dl 1.12 st += w.nsteals;
2917 dl 1.1 if (w.isApparentlyUnblocked())
2918     ++rc;
2919     }
2920     }
2921     }
2922     }
2923 dl 1.18 int pc = (config & SMASK);
2924 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
2925     int ac = pc + (int)(c >> AC_SHIFT);
2926     if (ac < 0) // ignore transient negative
2927     ac = 0;
2928     String level;
2929     if ((c & STOP_BIT) != 0)
2930     level = (tc == 0) ? "Terminated" : "Terminating";
2931     else
2932 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2933 dl 1.1 return super.toString() +
2934     "[" + level +
2935     ", parallelism = " + pc +
2936     ", size = " + tc +
2937     ", active = " + ac +
2938     ", running = " + rc +
2939     ", steals = " + st +
2940     ", tasks = " + qt +
2941     ", submissions = " + qs +
2942     "]";
2943     }
2944    
2945     /**
2946 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2947     * submitted tasks are executed, but no new tasks will be
2948     * accepted. Invocation has no effect on execution state if this
2949     * is the {@link #commonPool}, and no additional effect if
2950     * already shut down. Tasks that are in the process of being
2951     * submitted concurrently during the course of this method may or
2952     * may not be rejected.
2953 dl 1.1 *
2954     * @throws SecurityException if a security manager exists and
2955     * the caller is not permitted to modify threads
2956     * because it does not hold {@link
2957     * java.lang.RuntimePermission}{@code ("modifyThread")}
2958     */
2959     public void shutdown() {
2960     checkPermission();
2961 dl 1.12 tryTerminate(false, true);
2962 dl 1.1 }
2963    
2964     /**
2965 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2966     * all subsequently submitted tasks. Invocation has no effect on
2967     * execution state if this is the {@link #commonPool}, and no
2968     * additional effect if already shut down. Otherwise, tasks that
2969     * are in the process of being submitted or executed concurrently
2970     * during the course of this method may or may not be
2971     * rejected. This method cancels both existing and unexecuted
2972     * tasks, in order to permit termination in the presence of task
2973     * dependencies. So the method always returns an empty list
2974     * (unlike the case for some other Executors).
2975 dl 1.1 *
2976     * @return an empty list
2977     * @throws SecurityException if a security manager exists and
2978     * the caller is not permitted to modify threads
2979     * because it does not hold {@link
2980     * java.lang.RuntimePermission}{@code ("modifyThread")}
2981     */
2982     public List<Runnable> shutdownNow() {
2983     checkPermission();
2984 dl 1.12 tryTerminate(true, true);
2985 dl 1.1 return Collections.emptyList();
2986     }
2987    
2988     /**
2989     * Returns {@code true} if all tasks have completed following shut down.
2990     *
2991     * @return {@code true} if all tasks have completed following shut down
2992     */
2993     public boolean isTerminated() {
2994     long c = ctl;
2995     return ((c & STOP_BIT) != 0L &&
2996 dl 1.18 (short)(c >>> TC_SHIFT) == -(config & SMASK));
2997 dl 1.1 }
2998    
2999     /**
3000     * Returns {@code true} if the process of termination has
3001     * commenced but not yet completed. This method may be useful for
3002     * debugging. A return of {@code true} reported a sufficient
3003     * period after shutdown may indicate that submitted tasks have
3004     * ignored or suppressed interruption, or are waiting for IO,
3005     * causing this executor not to properly terminate. (See the
3006     * advisory notes for class {@link ForkJoinTask} stating that
3007     * tasks should not normally entail blocking operations. But if
3008     * they do, they must abort them on interrupt.)
3009     *
3010     * @return {@code true} if terminating but not yet terminated
3011     */
3012     public boolean isTerminating() {
3013     long c = ctl;
3014     return ((c & STOP_BIT) != 0L &&
3015 dl 1.18 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3016 dl 1.1 }
3017    
3018     /**
3019     * Returns {@code true} if this pool has been shut down.
3020     *
3021     * @return {@code true} if this pool has been shut down
3022     */
3023     public boolean isShutdown() {
3024 dl 1.12 return plock < 0;
3025 dl 1.1 }
3026    
3027     /**
3028 dl 1.12 * Blocks until all tasks have completed execution after a
3029     * shutdown request, or the timeout occurs, or the current thread
3030     * is interrupted, whichever happens first. Note that the {@link
3031     * #commonPool()} never terminates until program shutdown so
3032     * this method will always time out.
3033 dl 1.1 *
3034     * @param timeout the maximum time to wait
3035     * @param unit the time unit of the timeout argument
3036     * @return {@code true} if this executor terminated and
3037     * {@code false} if the timeout elapsed before termination
3038     * @throws InterruptedException if interrupted while waiting
3039     */
3040     public boolean awaitTermination(long timeout, TimeUnit unit)
3041     throws InterruptedException {
3042     long nanos = unit.toNanos(timeout);
3043 dl 1.8 if (isTerminated())
3044     return true;
3045     long startTime = System.nanoTime();
3046     boolean terminated = false;
3047 jsr166 1.10 synchronized (this) {
3048 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
3049     if (terminated = isTerminated() ||
3050     waitTime <= 0L ||
3051     (millis = unit.toMillis(waitTime)) <= 0L)
3052     break;
3053     wait(millis);
3054     waitTime = nanos - (System.nanoTime() - startTime);
3055 dl 1.1 }
3056     }
3057 dl 1.8 return terminated;
3058 dl 1.1 }
3059    
3060     /**
3061     * Interface for extending managed parallelism for tasks running
3062     * in {@link ForkJoinPool}s.
3063     *
3064     * <p>A {@code ManagedBlocker} provides two methods. Method
3065     * {@code isReleasable} must return {@code true} if blocking is
3066     * not necessary. Method {@code block} blocks the current thread
3067     * if necessary (perhaps internally invoking {@code isReleasable}
3068     * before actually blocking). These actions are performed by any
3069     * thread invoking {@link ForkJoinPool#managedBlock}. The
3070     * unusual methods in this API accommodate synchronizers that may,
3071     * but don't usually, block for long periods. Similarly, they
3072     * allow more efficient internal handling of cases in which
3073     * additional workers may be, but usually are not, needed to
3074     * ensure sufficient parallelism. Toward this end,
3075     * implementations of method {@code isReleasable} must be amenable
3076     * to repeated invocation.
3077     *
3078     * <p>For example, here is a ManagedBlocker based on a
3079     * ReentrantLock:
3080     * <pre> {@code
3081     * class ManagedLocker implements ManagedBlocker {
3082     * final ReentrantLock lock;
3083     * boolean hasLock = false;
3084     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3085     * public boolean block() {
3086     * if (!hasLock)
3087     * lock.lock();
3088     * return true;
3089     * }
3090     * public boolean isReleasable() {
3091     * return hasLock || (hasLock = lock.tryLock());
3092     * }
3093     * }}</pre>
3094     *
3095     * <p>Here is a class that possibly blocks waiting for an
3096     * item on a given queue:
3097     * <pre> {@code
3098     * class QueueTaker<E> implements ManagedBlocker {
3099     * final BlockingQueue<E> queue;
3100     * volatile E item = null;
3101     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3102     * public boolean block() throws InterruptedException {
3103     * if (item == null)
3104     * item = queue.take();
3105     * return true;
3106     * }
3107     * public boolean isReleasable() {
3108     * return item != null || (item = queue.poll()) != null;
3109     * }
3110     * public E getItem() { // call after pool.managedBlock completes
3111     * return item;
3112     * }
3113     * }}</pre>
3114     */
3115     public static interface ManagedBlocker {
3116     /**
3117     * Possibly blocks the current thread, for example waiting for
3118     * a lock or condition.
3119     *
3120     * @return {@code true} if no additional blocking is necessary
3121     * (i.e., if isReleasable would return true)
3122     * @throws InterruptedException if interrupted while waiting
3123     * (the method is not required to do so, but is allowed to)
3124     */
3125     boolean block() throws InterruptedException;
3126    
3127     /**
3128     * Returns {@code true} if blocking is unnecessary.
3129     */
3130     boolean isReleasable();
3131     }
3132    
3133     /**
3134     * Blocks in accord with the given blocker. If the current thread
3135     * is a {@link ForkJoinWorkerThread}, this method possibly
3136     * arranges for a spare thread to be activated if necessary to
3137     * ensure sufficient parallelism while the current thread is blocked.
3138     *
3139     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3140     * behaviorally equivalent to
3141     * <pre> {@code
3142     * while (!blocker.isReleasable())
3143     * if (blocker.block())
3144     * return;
3145     * }</pre>
3146     *
3147     * If the caller is a {@code ForkJoinTask}, then the pool may
3148     * first be expanded to ensure parallelism, and later adjusted.
3149     *
3150     * @param blocker the blocker
3151     * @throws InterruptedException if blocker.block did so
3152     */
3153     public static void managedBlock(ManagedBlocker blocker)
3154     throws InterruptedException {
3155     Thread t = Thread.currentThread();
3156 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3157     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3158     while (!blocker.isReleasable()) { // variant of helpSignal
3159 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, u;
3160 dl 1.12 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3161     for (int i = 0; i <= m; ++i) {
3162     if (blocker.isReleasable())
3163     return;
3164     if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3165     p.signalWork(q, n);
3166 dl 1.18 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3167     (u >> UAC_SHIFT) >= 0)
3168 dl 1.12 break;
3169     }
3170     }
3171     }
3172     if (p.tryCompensate()) {
3173     try {
3174     do {} while (!blocker.isReleasable() &&
3175     !blocker.block());
3176     } finally {
3177 dl 1.1 p.incrementActiveCount();
3178 dl 1.12 }
3179     break;
3180 dl 1.1 }
3181     }
3182     }
3183 dl 1.12 else {
3184     do {} while (!blocker.isReleasable() &&
3185     !blocker.block());
3186     }
3187 dl 1.1 }
3188    
3189     // AbstractExecutorService overrides. These rely on undocumented
3190     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3191     // implement RunnableFuture.
3192    
3193     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3194     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3195     }
3196    
3197     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3198     return new ForkJoinTask.AdaptedCallable<T>(callable);
3199     }
3200    
3201     // Unsafe mechanics
3202     private static final sun.misc.Unsafe U;
3203     private static final long CTL;
3204     private static final long PARKBLOCKER;
3205     private static final int ABASE;
3206     private static final int ASHIFT;
3207 dl 1.8 private static final long STEALCOUNT;
3208 dl 1.12 private static final long PLOCK;
3209     private static final long INDEXSEED;
3210     private static final long QLOCK;
3211 dl 1.1
3212     static {
3213 dl 1.12 int s; // initialize field offsets for CAS etc
3214 dl 1.1 try {
3215     U = getUnsafe();
3216     Class<?> k = ForkJoinPool.class;
3217     CTL = U.objectFieldOffset
3218     (k.getDeclaredField("ctl"));
3219 dl 1.8 STEALCOUNT = U.objectFieldOffset
3220     (k.getDeclaredField("stealCount"));
3221 dl 1.12 PLOCK = U.objectFieldOffset
3222     (k.getDeclaredField("plock"));
3223     INDEXSEED = U.objectFieldOffset
3224     (k.getDeclaredField("indexSeed"));
3225 dl 1.1 Class<?> tk = Thread.class;
3226     PARKBLOCKER = U.objectFieldOffset
3227     (tk.getDeclaredField("parkBlocker"));
3228 dl 1.12 Class<?> wk = WorkQueue.class;
3229     QLOCK = U.objectFieldOffset
3230     (wk.getDeclaredField("qlock"));
3231     Class<?> ak = ForkJoinTask[].class;
3232 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3233     s = U.arrayIndexScale(ak);
3234 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3235 dl 1.1 } catch (Exception e) {
3236     throw new Error(e);
3237     }
3238     if ((s & (s-1)) != 0)
3239     throw new Error("data type scale not a power of two");
3240 dl 1.12
3241 dl 1.18 submitters = new ThreadLocal<Submitter>();
3242     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3243     new DefaultForkJoinWorkerThreadFactory();
3244 dl 1.12 /*
3245 dl 1.18 * Establish common pool parameters. For extra caution,
3246     * computations to set up common pool state are here; the
3247     * constructor just assigns these values to fields.
3248 dl 1.12 */
3249 dl 1.18
3250     int par = 0;
3251     Thread.UncaughtExceptionHandler handler = null;
3252     try { // TBD: limit or report ignored exceptions?
3253     String pp = System.getProperty
3254     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3255     String hp = System.getProperty
3256     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3257     String fp = System.getProperty
3258     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3259     if (fp != null)
3260     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3261     getSystemClassLoader().loadClass(fp).newInstance());
3262     if (hp != null)
3263     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3264     getSystemClassLoader().loadClass(hp).newInstance());
3265     if (pp != null)
3266     par = Integer.parseInt(pp);
3267     } catch (Exception ignore) {
3268     }
3269    
3270 dl 1.12 if (par <= 0)
3271     par = Runtime.getRuntime().availableProcessors();
3272     if (par > MAX_CAP)
3273     par = MAX_CAP;
3274 dl 1.18 commonPoolParallelism = par;
3275 dl 1.12 long np = (long)(-par); // precompute initial ctl value
3276     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3277    
3278     commonPool = new ForkJoinPool(par, ct, fac, handler);
3279     modifyThreadPermission = new RuntimePermission("modifyThread");
3280 dl 1.1 }
3281    
3282     /**
3283     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3284     * Replace with a simple call to Unsafe.getUnsafe when integrating
3285     * into a jdk.
3286     *
3287     * @return a sun.misc.Unsafe
3288     */
3289     private static sun.misc.Unsafe getUnsafe() {
3290     try {
3291     return sun.misc.Unsafe.getUnsafe();
3292     } catch (SecurityException se) {
3293     try {
3294     return java.security.AccessController.doPrivileged
3295     (new java.security
3296     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3297     public sun.misc.Unsafe run() throws Exception {
3298     java.lang.reflect.Field f = sun.misc
3299     .Unsafe.class.getDeclaredField("theUnsafe");
3300     f.setAccessible(true);
3301     return (sun.misc.Unsafe) f.get(null);
3302     }});
3303     } catch (java.security.PrivilegedActionException e) {
3304     throw new RuntimeException("Could not initialize intrinsics",
3305     e.getCause());
3306     }
3307     }
3308     }
3309    
3310     }