ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.3
Committed: Tue Aug 14 06:00:55 2012 UTC (11 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +1 -0 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8     import java.util.ArrayList;
9     import java.util.Arrays;
10     import java.util.Collection;
11     import java.util.Collections;
12     import java.util.List;
13     import java.util.Random;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.atomic.AtomicInteger;
22     import java.util.concurrent.atomic.AtomicLong;
23     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24     import java.util.concurrent.locks.Condition;
25    
26     /**
27     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28     * A {@code ForkJoinPool} provides the entry point for submissions
29     * from non-{@code ForkJoinTask} clients, as well as management and
30     * monitoring operations.
31     *
32     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35     * execute tasks submitted to the pool and/or created by other active
36     * tasks (eventually blocking waiting for work if none exist). This
37     * enables efficient processing when most tasks spawn other subtasks
38     * (as do most {@code ForkJoinTask}s), as well as when many small
39     * tasks are submitted to the pool from external clients. Especially
40     * when setting <em>asyncMode</em> to true in constructors, {@code
41     * ForkJoinPool}s may also be appropriate for use with event-style
42     * tasks that are never joined.
43     *
44     * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46     * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53     *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56     * {@link #getStealCount}) that are intended to aid in developing,
57     * tuning, and monitoring fork/join applications. Also, method
58     * {@link #toString} returns indications of pool state in a
59     * convenient form for informal monitoring.
60     *
61     * <p> As is the case with other ExecutorServices, there are three
62     * main task execution methods summarized in the following table.
63     * These are designed to be used primarily by clients not already
64     * engaged in fork/join computations in the current pool. The main
65     * forms of these methods accept instances of {@code ForkJoinTask},
66     * but overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally instead
69     * use the within-computation forms listed in the table unless using
70     * async event-style tasks that are not usually joined, in which case
71     * there is little difference among choice of methods.
72     *
73     * <table BORDER CELLPADDING=3 CELLSPACING=1>
74     * <tr>
75     * <td></td>
76     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
77     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
78     * </tr>
79     * <tr>
80     * <td> <b>Arrange async execution</td>
81     * <td> {@link #execute(ForkJoinTask)}</td>
82     * <td> {@link ForkJoinTask#fork}</td>
83     * </tr>
84     * <tr>
85     * <td> <b>Await and obtain result</td>
86     * <td> {@link #invoke(ForkJoinTask)}</td>
87     * <td> {@link ForkJoinTask#invoke}</td>
88     * </tr>
89     * <tr>
90     * <td> <b>Arrange exec and obtain Future</td>
91     * <td> {@link #submit(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
93     * </tr>
94     * </table>
95     *
96     * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
97     * used for all parallel task execution in a program or subsystem.
98     * Otherwise, use would not usually outweigh the construction and
99     * bookkeeping overhead of creating a large set of threads. For
100     * example, a common pool could be used for the {@code SortTasks}
101     * illustrated in {@link RecursiveAction}. Because {@code
102     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
103     * daemon} mode, there is typically no need to explicitly {@link
104     * #shutdown} such a pool upon program exit.
105     *
106     * <pre> {@code
107     * static final ForkJoinPool mainPool = new ForkJoinPool();
108     * ...
109     * public void sort(long[] array) {
110     * mainPool.invoke(new SortTask(array, 0, array.length));
111     * }}</pre>
112     *
113     * <p><b>Implementation notes</b>: This implementation restricts the
114     * maximum number of running threads to 32767. Attempts to create
115     * pools with greater than the maximum number result in
116     * {@code IllegalArgumentException}.
117     *
118     * <p>This implementation rejects submitted tasks (that is, by throwing
119     * {@link RejectedExecutionException}) only when the pool is shut down
120     * or internal resources have been exhausted.
121     *
122     * @since 1.7
123     * @author Doug Lea
124     */
125     public class ForkJoinPool extends AbstractExecutorService {
126    
127     /*
128     * Implementation Overview
129     *
130     * This class and its nested classes provide the main
131     * functionality and control for a set of worker threads:
132     * Submissions from non-FJ threads enter into submission queues.
133     * Workers take these tasks and typically split them into subtasks
134     * that may be stolen by other workers. Preference rules give
135     * first priority to processing tasks from their own queues (LIFO
136     * or FIFO, depending on mode), then to randomized FIFO steals of
137     * tasks in other queues.
138     *
139     * WorkQueues
140     * ==========
141     *
142     * Most operations occur within work-stealing queues (in nested
143     * class WorkQueue). These are special forms of Deques that
144     * support only three of the four possible end-operations -- push,
145     * pop, and poll (aka steal), under the further constraints that
146     * push and pop are called only from the owning thread (or, as
147     * extended here, under a lock), while poll may be called from
148     * other threads. (If you are unfamiliar with them, you probably
149     * want to read Herlihy and Shavit's book "The Art of
150     * Multiprocessor programming", chapter 16 describing these in
151     * more detail before proceeding.) The main work-stealing queue
152     * design is roughly similar to those in the papers "Dynamic
153     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
154     * (http://research.sun.com/scalable/pubs/index.html) and
155     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
156     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
157     * The main differences ultimately stem from GC requirements that
158     * we null out taken slots as soon as we can, to maintain as small
159     * a footprint as possible even in programs generating huge
160     * numbers of tasks. To accomplish this, we shift the CAS
161     * arbitrating pop vs poll (steal) from being on the indices
162     * ("base" and "top") to the slots themselves. So, both a
163     * successful pop and poll mainly entail a CAS of a slot from
164     * non-null to null. Because we rely on CASes of references, we
165     * do not need tag bits on base or top. They are simple ints as
166     * used in any circular array-based queue (see for example
167     * ArrayDeque). Updates to the indices must still be ordered in a
168     * way that guarantees that top == base means the queue is empty,
169     * but otherwise may err on the side of possibly making the queue
170     * appear nonempty when a push, pop, or poll have not fully
171     * committed. Note that this means that the poll operation,
172     * considered individually, is not wait-free. One thief cannot
173     * successfully continue until another in-progress one (or, if
174     * previously empty, a push) completes. However, in the
175     * aggregate, we ensure at least probabilistic non-blockingness.
176     * If an attempted steal fails, a thief always chooses a different
177     * random victim target to try next. So, in order for one thief to
178     * progress, it suffices for any in-progress poll or new push on
179     * any empty queue to complete. (This is why we normally use
180     * method pollAt and its variants that try once at the apparent
181     * base index, else consider alternative actions, rather than
182     * method poll.)
183     *
184     * This approach also enables support of a user mode in which local
185     * task processing is in FIFO, not LIFO order, simply by using
186     * poll rather than pop. This can be useful in message-passing
187     * frameworks in which tasks are never joined. However neither
188     * mode considers affinities, loads, cache localities, etc, so
189     * rarely provide the best possible performance on a given
190     * machine, but portably provide good throughput by averaging over
191     * these factors. (Further, even if we did try to use such
192     * information, we do not usually have a basis for exploiting it.
193     * For example, some sets of tasks profit from cache affinities,
194     * but others are harmed by cache pollution effects.)
195     *
196     * WorkQueues are also used in a similar way for tasks submitted
197     * to the pool. We cannot mix these tasks in the same queues used
198     * for work-stealing (this would contaminate lifo/fifo
199     * processing). Instead, we loosely associate submission queues
200     * with submitting threads, using a form of hashing. The
201     * ThreadLocal Submitter class contains a value initially used as
202     * a hash code for choosing existing queues, but may be randomly
203     * repositioned upon contention with other submitters. In
204     * essence, submitters act like workers except that they never
205     * take tasks, and they are multiplexed on to a finite number of
206     * shared work queues. However, classes are set up so that future
207     * extensions could allow submitters to optionally help perform
208     * tasks as well. Insertion of tasks in shared mode requires a
209     * lock (mainly to protect in the case of resizing) but we use
210     * only a simple spinlock (using bits in field runState), because
211     * submitters encountering a busy queue move on to try or create
212     * other queues -- they block only when creating and registering
213     * new queues.
214     *
215     * Management
216     * ==========
217     *
218     * The main throughput advantages of work-stealing stem from
219     * decentralized control -- workers mostly take tasks from
220     * themselves or each other. We cannot negate this in the
221     * implementation of other management responsibilities. The main
222     * tactic for avoiding bottlenecks is packing nearly all
223     * essentially atomic control state into two volatile variables
224     * that are by far most often read (not written) as status and
225     * consistency checks.
226     *
227     * Field "ctl" contains 64 bits holding all the information needed
228     * to atomically decide to add, inactivate, enqueue (on an event
229     * queue), dequeue, and/or re-activate workers. To enable this
230     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231     * far in excess of normal operating range) to allow ids, counts,
232     * and their negations (used for thresholding) to fit into 16bit
233     * fields.
234     *
235     * Field "runState" contains 32 bits needed to register and
236     * deregister WorkQueues, as well as to enable shutdown. It is
237     * only modified under a lock (normally briefly held, but
238     * occasionally protecting allocations and resizings) but even
239     * when locked remains available to check consistency.
240     *
241     * Recording WorkQueues. WorkQueues are recorded in the
242     * "workQueues" array that is created upon pool construction and
243     * expanded if necessary. Updates to the array while recording
244     * new workers and unrecording terminated ones are protected from
245     * each other by a lock but the array is otherwise concurrently
246     * readable, and accessed directly. To simplify index-based
247     * operations, the array size is always a power of two, and all
248     * readers must tolerate null slots. Shared (submission) queues
249     * are at even indices, worker queues at odd indices. Grouping
250     * them together in this way simplifies and speeds up task
251     * scanning.
252     *
253     * All worker thread creation is on-demand, triggered by task
254     * submissions, replacement of terminated workers, and/or
255     * compensation for blocked workers. However, all other support
256     * code is set up to work with other policies. To ensure that we
257     * do not hold on to worker references that would prevent GC, ALL
258     * accesses to workQueues are via indices into the workQueues
259     * array (which is one source of some of the messy code
260     * constructions here). In essence, the workQueues array serves as
261     * a weak reference mechanism. Thus for example the wait queue
262     * field of ctl stores indices, not references. Access to the
263     * workQueues in associated methods (for example signalWork) must
264     * both index-check and null-check the IDs. All such accesses
265     * ignore bad IDs by returning out early from what they are doing,
266     * since this can only be associated with termination, in which
267     * case it is OK to give up. All uses of the workQueues array
268     * also check that it is non-null (even if previously
269     * non-null). This allows nulling during termination, which is
270     * currently not necessary, but remains an option for
271     * resource-revocation-based shutdown schemes. It also helps
272     * reduce JIT issuance of uncommon-trap code, which tends to
273     * unnecessarily complicate control flow in some methods.
274     *
275     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276     * let workers spin indefinitely scanning for tasks when none can
277     * be found immediately, and we cannot start/resume workers unless
278     * there appear to be tasks available. On the other hand, we must
279     * quickly prod them into action when new tasks are submitted or
280     * generated. In many usages, ramp-up time to activate workers is
281     * the main limiting factor in overall performance (this is
282     * compounded at program start-up by JIT compilation and
283     * allocation). So we try to streamline this as much as possible.
284     * We park/unpark workers after placing in an event wait queue
285     * when they cannot find work. This "queue" is actually a simple
286     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287     * counter value (that reflects the number of times a worker has
288     * been inactivated) to avoid ABA effects (we need only as many
289     * version numbers as worker threads). Successors are held in
290     * field WorkQueue.nextWait. Queuing deals with several intrinsic
291     * races, mainly that a task-producing thread can miss seeing (and
292     * signalling) another thread that gave up looking for work but
293     * has not yet entered the wait queue. We solve this by requiring
294     * a full sweep of all workers (via repeated calls to method
295     * scan()) both before and after a newly waiting worker is added
296     * to the wait queue. During a rescan, the worker might release
297     * some other queued worker rather than itself, which has the same
298     * net effect. Because enqueued workers may actually be rescanning
299     * rather than waiting, we set and clear the "parker" field of
300     * WorkQueues to reduce unnecessary calls to unpark. (This
301     * requires a secondary recheck to avoid missed signals.) Note
302     * the unusual conventions about Thread.interrupts surrounding
303     * parking and other blocking: Because interrupts are used solely
304     * to alert threads to check termination, which is checked anyway
305     * upon blocking, we clear status (using Thread.interrupted)
306     * before any call to park, so that park does not immediately
307     * return due to status being set via some other unrelated call to
308     * interrupt in user code.
309     *
310     * Signalling. We create or wake up workers only when there
311     * appears to be at least one task they might be able to find and
312     * execute. When a submission is added or another worker adds a
313     * task to a queue that previously had fewer than two tasks, they
314     * signal waiting workers (or trigger creation of new ones if
315     * fewer than the given parallelism level -- see signalWork).
316     * These primary signals are buttressed by signals during rescans;
317     * together these cover the signals needed in cases when more
318     * tasks are pushed but untaken, and improve performance compared
319     * to having one thread wake up all workers.
320     *
321     * Trimming workers. To release resources after periods of lack of
322     * use, a worker starting to wait when the pool is quiescent will
323     * time out and terminate if the pool has remained quiescent for
324     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325     * terminating all workers after long periods of non-use.
326     *
327     * Shutdown and Termination. A call to shutdownNow atomically sets
328     * a runState bit and then (non-atomically) sets each worker's
329     * runState status, cancels all unprocessed tasks, and wakes up
330     * all waiting workers. Detecting whether termination should
331     * commence after a non-abrupt shutdown() call requires more work
332     * and bookkeeping. We need consensus about quiescence (i.e., that
333     * there is no more work). The active count provides a primary
334     * indication but non-abrupt shutdown still requires a rechecking
335     * scan for any workers that are inactive but not queued.
336     *
337     * Joining Tasks
338     * =============
339     *
340     * Any of several actions may be taken when one worker is waiting
341     * to join a task stolen (or always held) by another. Because we
342     * are multiplexing many tasks on to a pool of workers, we can't
343     * just let them block (as in Thread.join). We also cannot just
344     * reassign the joiner's run-time stack with another and replace
345     * it later, which would be a form of "continuation", that even if
346     * possible is not necessarily a good idea since we sometimes need
347     * both an unblocked task and its continuation to progress.
348     * Instead we combine two tactics:
349     *
350     * Helping: Arranging for the joiner to execute some task that it
351     * would be running if the steal had not occurred.
352     *
353     * Compensating: Unless there are already enough live threads,
354     * method tryCompensate() may create or re-activate a spare
355     * thread to compensate for blocked joiners until they unblock.
356     *
357     * A third form (implemented in tryRemoveAndExec and
358     * tryPollForAndExec) amounts to helping a hypothetical
359     * compensator: If we can readily tell that a possible action of a
360     * compensator is to steal and execute the task being joined, the
361     * joining thread can do so directly, without the need for a
362     * compensation thread (although at the expense of larger run-time
363     * stacks, but the tradeoff is typically worthwhile).
364     *
365     * The ManagedBlocker extension API can't use helping so relies
366     * only on compensation in method awaitBlocker.
367     *
368     * The algorithm in tryHelpStealer entails a form of "linear"
369     * helping: Each worker records (in field currentSteal) the most
370     * recent task it stole from some other worker. Plus, it records
371     * (in field currentJoin) the task it is currently actively
372     * joining. Method tryHelpStealer uses these markers to try to
373     * find a worker to help (i.e., steal back a task from and execute
374     * it) that could hasten completion of the actively joined task.
375     * In essence, the joiner executes a task that would be on its own
376     * local deque had the to-be-joined task not been stolen. This may
377     * be seen as a conservative variant of the approach in Wagner &
378     * Calder "Leapfrogging: a portable technique for implementing
379     * efficient futures" SIGPLAN Notices, 1993
380     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381     * that: (1) We only maintain dependency links across workers upon
382     * steals, rather than use per-task bookkeeping. This sometimes
383     * requires a linear scan of workQueues array to locate stealers,
384     * but often doesn't because stealers leave hints (that may become
385     * stale/wrong) of where to locate them. A stealHint is only a
386     * hint because a worker might have had multiple steals and the
387     * hint records only one of them (usually the most current).
388     * Hinting isolates cost to when it is needed, rather than adding
389     * to per-task overhead. (2) It is "shallow", ignoring nesting
390     * and potentially cyclic mutual steals. (3) It is intentionally
391     * racy: field currentJoin is updated only while actively joining,
392     * which means that we miss links in the chain during long-lived
393     * tasks, GC stalls etc (which is OK since blocking in such cases
394     * is usually a good idea). (4) We bound the number of attempts
395     * to find work (see MAX_HELP) and fall back to suspending the
396     * worker and if necessary replacing it with another.
397     *
398     * It is impossible to keep exactly the target parallelism number
399     * of threads running at any given time. Determining the
400     * existence of conservatively safe helping targets, the
401     * availability of already-created spares, and the apparent need
402     * to create new spares are all racy, so we rely on multiple
403     * retries of each. Compensation in the apparent absence of
404     * helping opportunities is challenging to control on JVMs, where
405     * GC and other activities can stall progress of tasks that in
406     * turn stall out many other dependent tasks, without us being
407     * able to determine whether they will ever require compensation.
408     * Even though work-stealing otherwise encounters little
409     * degradation in the presence of more threads than cores,
410     * aggressively adding new threads in such cases entails risk of
411     * unwanted positive feedback control loops in which more threads
412     * cause more dependent stalls (as well as delayed progress of
413     * unblocked threads to the point that we know they are available)
414     * leading to more situations requiring more threads, and so
415     * on. This aspect of control can be seen as an (analytically
416     * intractable) game with an opponent that may choose the worst
417     * (for us) active thread to stall at any time. We take several
418     * precautions to bound losses (and thus bound gains), mainly in
419     * methods tryCompensate and awaitJoin: (1) We only try
420     * compensation after attempting enough helping steps (measured
421     * via counting and timing) that we have already consumed the
422     * estimated cost of creating and activating a new thread. (2) We
423     * allow up to 50% of threads to be blocked before initially
424     * adding any others, and unless completely saturated, check that
425     * some work is available for a new worker before adding. Also, we
426     * create up to only 50% more threads until entering a mode that
427     * only adds a thread if all others are possibly blocked. All
428     * together, this means that we might be half as fast to react,
429     * and create half as many threads as possible in the ideal case,
430     * but present vastly fewer anomalies in all other cases compared
431     * to both more aggressive and more conservative alternatives.
432     *
433     * Style notes: There is a lot of representation-level coupling
434     * among classes ForkJoinPool, ForkJoinWorkerThread, and
435     * ForkJoinTask. The fields of WorkQueue maintain data structures
436     * managed by ForkJoinPool, so are directly accessed. There is
437     * little point trying to reduce this, since any associated future
438     * changes in representations will need to be accompanied by
439     * algorithmic changes anyway. Several methods intrinsically
440     * sprawl because they must accumulate sets of consistent reads of
441     * volatiles held in local variables. Methods signalWork() and
442     * scan() are the main bottlenecks, so are especially heavily
443     * micro-optimized/mangled. There are lots of inline assignments
444     * (of form "while ((local = field) != 0)") which are usually the
445     * simplest way to ensure the required read orderings (which are
446     * sometimes critical). This leads to a "C"-like style of listing
447     * declarations of these locals at the heads of methods or blocks.
448     * There are several occurrences of the unusual "do {} while
449     * (!cas...)" which is the simplest way to force an update of a
450     * CAS'ed variable. There are also other coding oddities that help
451     * some methods perform reasonably even when interpreted (not
452     * compiled).
453     *
454     * The order of declarations in this file is:
455     * (1) Static utility functions
456     * (2) Nested (static) classes
457     * (3) Static fields
458     * (4) Fields, along with constants used when unpacking some of them
459     * (5) Internal control methods
460     * (6) Callbacks and other support for ForkJoinTask methods
461     * (7) Exported methods
462     * (8) Static block initializing statics in minimally dependent order
463     */
464    
465     // Static utilities
466    
467     /**
468     * If there is a security manager, makes sure caller has
469     * permission to modify threads.
470     */
471     private static void checkPermission() {
472     SecurityManager security = System.getSecurityManager();
473     if (security != null)
474     security.checkPermission(modifyThreadPermission);
475     }
476    
477     // Nested classes
478    
479     /**
480     * Factory for creating new {@link ForkJoinWorkerThread}s.
481     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
482     * for {@code ForkJoinWorkerThread} subclasses that extend base
483     * functionality or initialize threads with different contexts.
484     */
485     public static interface ForkJoinWorkerThreadFactory {
486     /**
487     * Returns a new worker thread operating in the given pool.
488     *
489     * @param pool the pool this thread works in
490     * @throws NullPointerException if the pool is null
491     */
492     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
493     }
494    
495     /**
496     * Default ForkJoinWorkerThreadFactory implementation; creates a
497     * new ForkJoinWorkerThread.
498     */
499     static class DefaultForkJoinWorkerThreadFactory
500     implements ForkJoinWorkerThreadFactory {
501     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
502     return new ForkJoinWorkerThread(pool);
503     }
504     }
505    
506     /**
507     * A simple non-reentrant lock used for exclusion when managing
508     * queues and workers. We use a custom lock so that we can readily
509     * probe lock state in constructions that check among alternative
510     * actions. The lock is normally only very briefly held, and
511     * sometimes treated as a spinlock, but other usages block to
512     * reduce overall contention in those cases where locked code
513     * bodies perform allocation/resizing.
514     */
515     static final class Mutex extends AbstractQueuedSynchronizer {
516     public final boolean tryAcquire(int ignore) {
517     return compareAndSetState(0, 1);
518     }
519     public final boolean tryRelease(int ignore) {
520     setState(0);
521     return true;
522     }
523     public final void lock() { acquire(0); }
524     public final void unlock() { release(0); }
525     public final boolean isHeldExclusively() { return getState() == 1; }
526     public final Condition newCondition() { return new ConditionObject(); }
527     }
528    
529     /**
530     * Class for artificial tasks that are used to replace the target
531     * of local joins if they are removed from an interior queue slot
532     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
533     * actually do anything beyond having a unique identity.
534     */
535     static final class EmptyTask extends ForkJoinTask<Void> {
536     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
537     public final Void getRawResult() { return null; }
538     public final void setRawResult(Void x) {}
539     public final boolean exec() { return true; }
540     }
541    
542     /**
543     * Queues supporting work-stealing as well as external task
544     * submission. See above for main rationale and algorithms.
545     * Implementation relies heavily on "Unsafe" intrinsics
546     * and selective use of "volatile":
547     *
548     * Field "base" is the index (mod array.length) of the least valid
549     * queue slot, which is always the next position to steal (poll)
550     * from if nonempty. Reads and writes require volatile orderings
551     * but not CAS, because updates are only performed after slot
552     * CASes.
553     *
554     * Field "top" is the index (mod array.length) of the next queue
555     * slot to push to or pop from. It is written only by owner thread
556     * for push, or under lock for trySharedPush, and accessed by
557     * other threads only after reading (volatile) base. Both top and
558     * base are allowed to wrap around on overflow, but (top - base)
559     * (or more commonly -(base - top) to force volatile read of base
560     * before top) still estimates size.
561     *
562     * The array slots are read and written using the emulation of
563     * volatiles/atomics provided by Unsafe. Insertions must in
564     * general use putOrderedObject as a form of releasing store to
565     * ensure that all writes to the task object are ordered before
566     * its publication in the queue. (Although we can avoid one case
567     * of this when locked in trySharedPush.) All removals entail a
568     * CAS to null. The array is always a power of two. To ensure
569     * safety of Unsafe array operations, all accesses perform
570     * explicit null checks and implicit bounds checks via
571     * power-of-two masking.
572     *
573     * In addition to basic queuing support, this class contains
574     * fields described elsewhere to control execution. It turns out
575     * to work better memory-layout-wise to include them in this
576     * class rather than a separate class.
577     *
578     * Performance on most platforms is very sensitive to placement of
579     * instances of both WorkQueues and their arrays -- we absolutely
580     * do not want multiple WorkQueue instances or multiple queue
581     * arrays sharing cache lines. (It would be best for queue objects
582     * and their arrays to share, but there is nothing available to
583     * help arrange that). Unfortunately, because they are recorded
584     * in a common array, WorkQueue instances are often moved to be
585     * adjacent by garbage collectors. To reduce impact, we use field
586     * padding that works OK on common platforms; this effectively
587     * trades off slightly slower average field access for the sake of
588     * avoiding really bad worst-case access. (Until better JVM
589     * support is in place, this padding is dependent on transient
590     * properties of JVM field layout rules.) We also take care in
591     * allocating, sizing and resizing the array. Non-shared queue
592     * arrays are initialized (via method growArray) by workers before
593     * use. Others are allocated on first use.
594     */
595     static final class WorkQueue {
596     /**
597     * Capacity of work-stealing queue array upon initialization.
598     * Must be a power of two; at least 4, but should be larger to
599     * reduce or eliminate cacheline sharing among queues.
600     * Currently, it is much larger, as a partial workaround for
601     * the fact that JVMs often place arrays in locations that
602     * share GC bookkeeping (especially cardmarks) such that
603     * per-write accesses encounter serious memory contention.
604     */
605     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
606    
607     /**
608     * Maximum size for queue arrays. Must be a power of two less
609     * than or equal to 1 << (31 - width of array entry) to ensure
610     * lack of wraparound of index calculations, but defined to a
611     * value a bit less than this to help users trap runaway
612     * programs before saturating systems.
613     */
614     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
615    
616     volatile long totalSteals; // cumulative number of steals
617     int seed; // for random scanning; initialize nonzero
618     volatile int eventCount; // encoded inactivation count; < 0 if inactive
619     int nextWait; // encoded record of next event waiter
620     int rescans; // remaining scans until block
621     int nsteals; // top-level task executions since last idle
622     final int mode; // lifo, fifo, or shared
623     int poolIndex; // index of this queue in pool (or 0)
624     int stealHint; // index of most recent known stealer
625     volatile int runState; // 1: locked, -1: terminate; else 0
626     volatile int base; // index of next slot for poll
627     int top; // index of next slot for push
628     ForkJoinTask<?>[] array; // the elements (initially unallocated)
629     final ForkJoinPool pool; // the containing pool (may be null)
630     final ForkJoinWorkerThread owner; // owning thread or null if shared
631     volatile Thread parker; // == owner during call to park; else null
632     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
633     ForkJoinTask<?> currentSteal; // current non-local task being executed
634     // Heuristic padding to ameliorate unfortunate memory placements
635     Object p00, p01, p02, p03, p04, p05, p06, p07;
636     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
637    
638     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
639     this.mode = mode;
640     this.pool = pool;
641     this.owner = owner;
642     // Place indices in the center of array (that is not yet allocated)
643     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
644     }
645    
646     /**
647     * Returns the approximate number of tasks in the queue.
648     */
649     final int queueSize() {
650     int n = base - top; // non-owner callers must read base first
651     return (n >= 0) ? 0 : -n; // ignore transient negative
652     }
653    
654     /**
655     * Provides a more accurate estimate of whether this queue has
656     * any tasks than does queueSize, by checking whether a
657     * near-empty queue has at least one unclaimed task.
658     */
659     final boolean isEmpty() {
660     ForkJoinTask<?>[] a; int m, s;
661     int n = base - (s = top);
662     return (n >= 0 ||
663     (n == -1 &&
664     ((a = array) == null ||
665     (m = a.length - 1) < 0 ||
666     U.getObjectVolatile
667     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668     }
669    
670     /**
671     * Pushes a task. Call only by owner in unshared queues.
672     *
673     * @param task the task. Caller must ensure non-null.
674     * @throw RejectedExecutionException if array cannot be resized
675     */
676     final void push(ForkJoinTask<?> task) {
677     ForkJoinTask<?>[] a; ForkJoinPool p;
678     int s = top, m, n;
679     if ((a = array) != null) { // ignore if queue removed
680     U.putOrderedObject
681     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
682     if ((n = (top = s + 1) - base) <= 2) {
683     if ((p = pool) != null)
684     p.signalWork();
685     }
686     else if (n >= m)
687     growArray(true);
688     }
689     }
690    
691     /**
692     * Pushes a task if lock is free and array is either big
693     * enough or can be resized to be big enough.
694     *
695     * @param task the task. Caller must ensure non-null.
696     * @return true if submitted
697     */
698     final boolean trySharedPush(ForkJoinTask<?> task) {
699     boolean submitted = false;
700     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
701     ForkJoinTask<?>[] a = array;
702     int s = top;
703     try {
704     if ((a != null && a.length > s + 1 - base) ||
705     (a = growArray(false)) != null) { // must presize
706     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
707     U.putObject(a, (long)j, task); // don't need "ordered"
708     top = s + 1;
709     submitted = true;
710     }
711     } finally {
712     runState = 0; // unlock
713     }
714     }
715     return submitted;
716     }
717    
718     /**
719     * Takes next task, if one exists, in LIFO order. Call only
720     * by owner in unshared queues. (We do not have a shared
721     * version of this method because it is never needed.)
722     */
723     final ForkJoinTask<?> pop() {
724     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
725     if ((a = array) != null && (m = a.length - 1) >= 0) {
726     for (int s; (s = top - 1) - base >= 0;) {
727     long j = ((m & s) << ASHIFT) + ABASE;
728     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
729     break;
730     if (U.compareAndSwapObject(a, j, t, null)) {
731     top = s;
732     return t;
733     }
734     }
735     }
736     return null;
737     }
738    
739     /**
740     * Takes a task in FIFO order if b is base of queue and a task
741     * can be claimed without contention. Specialized versions
742     * appear in ForkJoinPool methods scan and tryHelpStealer.
743     */
744     final ForkJoinTask<?> pollAt(int b) {
745     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746     if ((a = array) != null) {
747     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749     base == b &&
750     U.compareAndSwapObject(a, j, t, null)) {
751     base = b + 1;
752     return t;
753     }
754     }
755     return null;
756     }
757    
758     /**
759     * Takes next task, if one exists, in FIFO order.
760     */
761     final ForkJoinTask<?> poll() {
762     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763     while ((b = base) - top < 0 && (a = array) != null) {
764     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766     if (t != null) {
767     if (base == b &&
768     U.compareAndSwapObject(a, j, t, null)) {
769     base = b + 1;
770     return t;
771     }
772     }
773     else if (base == b) {
774     if (b + 1 == top)
775     break;
776     Thread.yield(); // wait for lagging update
777     }
778     }
779     return null;
780     }
781    
782     /**
783     * Takes next task, if one exists, in order specified by mode.
784     */
785     final ForkJoinTask<?> nextLocalTask() {
786     return mode == 0 ? pop() : poll();
787     }
788    
789     /**
790     * Returns next task, if one exists, in order specified by mode.
791     */
792     final ForkJoinTask<?> peek() {
793     ForkJoinTask<?>[] a = array; int m;
794     if (a == null || (m = a.length - 1) < 0)
795     return null;
796     int i = mode == 0 ? top - 1 : base;
797     int j = ((i & m) << ASHIFT) + ABASE;
798     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799     }
800    
801     /**
802     * Pops the given task only if it is at the current top.
803     */
804     final boolean tryUnpush(ForkJoinTask<?> t) {
805     ForkJoinTask<?>[] a; int s;
806     if ((a = array) != null && (s = top) != base &&
807     U.compareAndSwapObject
808     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809     top = s;
810     return true;
811     }
812     return false;
813     }
814    
815     /**
816     * Polls the given task only if it is at the current base.
817     */
818     final boolean pollFor(ForkJoinTask<?> task) {
819     ForkJoinTask<?>[] a; int b;
820     if ((b = base) - top < 0 && (a = array) != null) {
821     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822     if (U.getObjectVolatile(a, j) == task && base == b &&
823     U.compareAndSwapObject(a, j, task, null)) {
824     base = b + 1;
825     return true;
826     }
827     }
828     return false;
829     }
830    
831     /**
832     * Initializes or doubles the capacity of array. Call either
833     * by owner or with lock held -- it is OK for base, but not
834     * top, to move while resizings are in progress.
835     *
836     * @param rejectOnFailure if true, throw exception if capacity
837     * exceeded (relayed ultimately to user); else return null.
838     */
839     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
840     ForkJoinTask<?>[] oldA = array;
841     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
842     if (size <= MAXIMUM_QUEUE_CAPACITY) {
843     int oldMask, t, b;
844     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
846     (t = top) - (b = base) > 0) {
847     int mask = size - 1;
848     do {
849     ForkJoinTask<?> x;
850     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
851     int j = ((b & mask) << ASHIFT) + ABASE;
852     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
853     if (x != null &&
854     U.compareAndSwapObject(oldA, oldj, x, null))
855     U.putObjectVolatile(a, j, x);
856     } while (++b != t);
857     }
858     return a;
859     }
860     else if (!rejectOnFailure)
861     return null;
862     else
863     throw new RejectedExecutionException("Queue capacity exceeded");
864     }
865    
866     /**
867     * Removes and cancels all known tasks, ignoring any exceptions.
868     */
869     final void cancelAll() {
870     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
871     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
872     for (ForkJoinTask<?> t; (t = poll()) != null; )
873     ForkJoinTask.cancelIgnoringExceptions(t);
874     }
875    
876     /**
877     * Computes next value for random probes. Scans don't require
878     * a very high quality generator, but also not a crummy one.
879     * Marsaglia xor-shift is cheap and works well enough. Note:
880     * This is manually inlined in its usages in ForkJoinPool to
881     * avoid writes inside busy scan loops.
882     */
883     final int nextSeed() {
884     int r = seed;
885     r ^= r << 13;
886     r ^= r >>> 17;
887     return seed = r ^= r << 5;
888     }
889    
890     // Execution methods
891    
892     /**
893     * Pops and runs tasks until empty.
894     */
895     private void popAndExecAll() {
896     // A bit faster than repeated pop calls
897     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
898     while ((a = array) != null && (m = a.length - 1) >= 0 &&
899     (s = top - 1) - base >= 0 &&
900     (t = ((ForkJoinTask<?>)
901     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
902     != null) {
903     if (U.compareAndSwapObject(a, j, t, null)) {
904     top = s;
905     t.doExec();
906     }
907     }
908     }
909    
910     /**
911     * Polls and runs tasks until empty.
912     */
913     private void pollAndExecAll() {
914     for (ForkJoinTask<?> t; (t = poll()) != null;)
915     t.doExec();
916     }
917    
918     /**
919     * If present, removes from queue and executes the given task, or
920     * any other cancelled task. Returns (true) immediately on any CAS
921     * or consistency check failure so caller can retry.
922     *
923     * @return 0 if no progress can be made, else positive
924     * (this unusual convention simplifies use with tryHelpStealer.)
925     */
926     final int tryRemoveAndExec(ForkJoinTask<?> task) {
927     int stat = 1;
928     boolean removed = false, empty = true;
929     ForkJoinTask<?>[] a; int m, s, b, n;
930     if ((a = array) != null && (m = a.length - 1) >= 0 &&
931     (n = (s = top) - (b = base)) > 0) {
932     for (ForkJoinTask<?> t;;) { // traverse from s to b
933     int j = ((--s & m) << ASHIFT) + ABASE;
934     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
935     if (t == null) // inconsistent length
936     break;
937     else if (t == task) {
938     if (s + 1 == top) { // pop
939     if (!U.compareAndSwapObject(a, j, task, null))
940     break;
941     top = s;
942     removed = true;
943     }
944     else if (base == b) // replace with proxy
945     removed = U.compareAndSwapObject(a, j, task,
946     new EmptyTask());
947     break;
948     }
949     else if (t.status >= 0)
950     empty = false;
951     else if (s + 1 == top) { // pop and throw away
952     if (U.compareAndSwapObject(a, j, t, null))
953     top = s;
954     break;
955     }
956     if (--n == 0) {
957     if (!empty && base == b)
958     stat = 0;
959     break;
960     }
961     }
962     }
963     if (removed)
964     task.doExec();
965     return stat;
966     }
967    
968     /**
969     * Executes a top-level task and any local tasks remaining
970     * after execution.
971     */
972     final void runTask(ForkJoinTask<?> t) {
973     if (t != null) {
974     currentSteal = t;
975     t.doExec();
976     if (top != base) { // process remaining local tasks
977     if (mode == 0)
978     popAndExecAll();
979     else
980     pollAndExecAll();
981     }
982     ++nsteals;
983     currentSteal = null;
984     }
985     }
986    
987     /**
988     * Executes a non-top-level (stolen) task.
989     */
990     final void runSubtask(ForkJoinTask<?> t) {
991     if (t != null) {
992     ForkJoinTask<?> ps = currentSteal;
993     currentSteal = t;
994     t.doExec();
995     currentSteal = ps;
996     }
997     }
998    
999     /**
1000     * Returns true if owned and not known to be blocked.
1001     */
1002     final boolean isApparentlyUnblocked() {
1003     Thread wt; Thread.State s;
1004     return (eventCount >= 0 &&
1005     (wt = owner) != null &&
1006     (s = wt.getState()) != Thread.State.BLOCKED &&
1007     s != Thread.State.WAITING &&
1008     s != Thread.State.TIMED_WAITING);
1009     }
1010    
1011     /**
1012     * If this owned and is not already interrupted, try to
1013     * interrupt and/or unpark, ignoring exceptions.
1014     */
1015     final void interruptOwner() {
1016     Thread wt, p;
1017     if ((wt = owner) != null && !wt.isInterrupted()) {
1018     try {
1019     wt.interrupt();
1020     } catch (SecurityException ignore) {
1021     }
1022     }
1023     if ((p = parker) != null)
1024     U.unpark(p);
1025     }
1026    
1027     // Unsafe mechanics
1028     private static final sun.misc.Unsafe U;
1029     private static final long RUNSTATE;
1030     private static final int ABASE;
1031     private static final int ASHIFT;
1032     static {
1033     int s;
1034     try {
1035     U = getUnsafe();
1036     Class<?> k = WorkQueue.class;
1037     Class<?> ak = ForkJoinTask[].class;
1038     RUNSTATE = U.objectFieldOffset
1039     (k.getDeclaredField("runState"));
1040     ABASE = U.arrayBaseOffset(ak);
1041     s = U.arrayIndexScale(ak);
1042     } catch (Exception e) {
1043     throw new Error(e);
1044     }
1045     if ((s & (s-1)) != 0)
1046     throw new Error("data type scale not a power of two");
1047     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1048     }
1049     }
1050 jsr166 1.3
1051 dl 1.1 /**
1052     * Per-thread records for threads that submit to pools. Currently
1053     * holds only pseudo-random seed / index that is used to choose
1054     * submission queues in method doSubmit. In the future, this may
1055     * also incorporate a means to implement different task rejection
1056     * and resubmission policies.
1057     *
1058     * Seeds for submitters and workers/workQueues work in basically
1059     * the same way but are initialized and updated using slightly
1060     * different mechanics. Both are initialized using the same
1061     * approach as in class ThreadLocal, where successive values are
1062     * unlikely to collide with previous values. This is done during
1063     * registration for workers, but requires a separate AtomicInteger
1064     * for submitters. Seeds are then randomly modified upon
1065     * collisions using xorshifts, which requires a non-zero seed.
1066     */
1067     static final class Submitter {
1068     int seed;
1069     Submitter() {
1070     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1071     seed = (s == 0) ? 1 : s; // ensure non-zero
1072     }
1073     }
1074    
1075     /** ThreadLocal class for Submitters */
1076     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1077     public Submitter initialValue() { return new Submitter(); }
1078     }
1079    
1080     // static fields (initialized in static initializer below)
1081    
1082     /**
1083     * Creates a new ForkJoinWorkerThread. This factory is used unless
1084     * overridden in ForkJoinPool constructors.
1085     */
1086     public static final ForkJoinWorkerThreadFactory
1087     defaultForkJoinWorkerThreadFactory;
1088    
1089     /**
1090     * Generator for assigning sequence numbers as pool names.
1091     */
1092     private static final AtomicInteger poolNumberGenerator;
1093    
1094     /**
1095     * Generator for initial hashes/seeds for submitters. Accessed by
1096     * Submitter class constructor.
1097     */
1098     static final AtomicInteger nextSubmitterSeed;
1099    
1100     /**
1101     * Permission required for callers of methods that may start or
1102     * kill threads.
1103     */
1104     private static final RuntimePermission modifyThreadPermission;
1105    
1106     /**
1107 jsr166 1.2 * Per-thread submission bookkeeping. Shared across all pools
1108 dl 1.1 * to reduce ThreadLocal pollution and because random motion
1109     * to avoid contention in one pool is likely to hold for others.
1110     */
1111     private static final ThreadSubmitter submitters;
1112    
1113     // static constants
1114    
1115     /**
1116     * The wakeup interval (in nanoseconds) for a worker waiting for a
1117     * task when the pool is quiescent to instead try to shrink the
1118     * number of workers. The exact value does not matter too
1119     * much. It must be short enough to release resources during
1120     * sustained periods of idleness, but not so short that threads
1121     * are continually re-created.
1122     */
1123     private static final long SHRINK_RATE =
1124     4L * 1000L * 1000L * 1000L; // 4 seconds
1125    
1126     /**
1127     * The timeout value for attempted shrinkage, includes
1128     * some slop to cope with system timer imprecision.
1129     */
1130     private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1131    
1132     /**
1133     * The maximum stolen->joining link depth allowed in method
1134     * tryHelpStealer. Must be a power of two. This value also
1135     * controls the maximum number of times to try to help join a task
1136     * without any apparent progress or change in pool state before
1137     * giving up and blocking (see awaitJoin). Depths for legitimate
1138     * chains are unbounded, but we use a fixed constant to avoid
1139     * (otherwise unchecked) cycles and to bound staleness of
1140     * traversal parameters at the expense of sometimes blocking when
1141     * we could be helping.
1142     */
1143     private static final int MAX_HELP = 64;
1144    
1145     /**
1146     * Secondary time-based bound (in nanosecs) for helping attempts
1147     * before trying compensated blocking in awaitJoin. Used in
1148     * conjunction with MAX_HELP to reduce variance due to different
1149     * polling rates associated with different helping options. The
1150     * value should roughly approximate the time required to create
1151     * and/or activate a worker thread.
1152     */
1153     private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1154    
1155     /**
1156     * Increment for seed generators. See class ThreadLocal for
1157     * explanation.
1158     */
1159     private static final int SEED_INCREMENT = 0x61c88647;
1160    
1161     /**
1162     * Bits and masks for control variables
1163     *
1164     * Field ctl is a long packed with:
1165     * AC: Number of active running workers minus target parallelism (16 bits)
1166     * TC: Number of total workers minus target parallelism (16 bits)
1167     * ST: true if pool is terminating (1 bit)
1168     * EC: the wait count of top waiting thread (15 bits)
1169     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1170     *
1171     * When convenient, we can extract the upper 32 bits of counts and
1172     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1173     * (int)ctl. The ec field is never accessed alone, but always
1174     * together with id and st. The offsets of counts by the target
1175     * parallelism and the positionings of fields makes it possible to
1176     * perform the most common checks via sign tests of fields: When
1177     * ac is negative, there are not enough active workers, when tc is
1178     * negative, there are not enough total workers, and when e is
1179     * negative, the pool is terminating. To deal with these possibly
1180     * negative fields, we use casts in and out of "short" and/or
1181     * signed shifts to maintain signedness.
1182     *
1183     * When a thread is queued (inactivated), its eventCount field is
1184     * set negative, which is the only way to tell if a worker is
1185     * prevented from executing tasks, even though it must continue to
1186     * scan for them to avoid queuing races. Note however that
1187     * eventCount updates lag releases so usage requires care.
1188     *
1189     * Field runState is an int packed with:
1190     * SHUTDOWN: true if shutdown is enabled (1 bit)
1191     * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1192     * INIT: set true after workQueues array construction (1 bit)
1193     *
1194     * The sequence number enables simple consistency checks:
1195     * Staleness of read-only operations on the workQueues array can
1196     * be checked by comparing runState before vs after the reads.
1197     */
1198    
1199     // bit positions/shifts for fields
1200     private static final int AC_SHIFT = 48;
1201     private static final int TC_SHIFT = 32;
1202     private static final int ST_SHIFT = 31;
1203     private static final int EC_SHIFT = 16;
1204    
1205     // bounds
1206     private static final int SMASK = 0xffff; // short bits
1207     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1208     private static final int SQMASK = 0xfffe; // even short bits
1209     private static final int SHORT_SIGN = 1 << 15;
1210     private static final int INT_SIGN = 1 << 31;
1211    
1212     // masks
1213     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1214     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1215     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1216    
1217     // units for incrementing and decrementing
1218     private static final long TC_UNIT = 1L << TC_SHIFT;
1219     private static final long AC_UNIT = 1L << AC_SHIFT;
1220    
1221     // masks and units for dealing with u = (int)(ctl >>> 32)
1222     private static final int UAC_SHIFT = AC_SHIFT - 32;
1223     private static final int UTC_SHIFT = TC_SHIFT - 32;
1224     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1225     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1226     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1227     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1228    
1229     // masks and units for dealing with e = (int)ctl
1230     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1231     private static final int E_SEQ = 1 << EC_SHIFT;
1232    
1233     // runState bits
1234     private static final int SHUTDOWN = 1 << 31;
1235    
1236     // access mode for WorkQueue
1237     static final int LIFO_QUEUE = 0;
1238     static final int FIFO_QUEUE = 1;
1239     static final int SHARED_QUEUE = -1;
1240    
1241     // Instance fields
1242    
1243     /*
1244     * Field layout order in this class tends to matter more than one
1245     * would like. Runtime layout order is only loosely related to
1246     * declaration order and may differ across JVMs, but the following
1247     * empirically works OK on current JVMs.
1248     */
1249    
1250     volatile long ctl; // main pool control
1251     final int parallelism; // parallelism level
1252     final int localMode; // per-worker scheduling mode
1253     final int submitMask; // submit queue index bound
1254     int nextSeed; // for initializing worker seeds
1255     volatile int runState; // shutdown status and seq
1256     WorkQueue[] workQueues; // main registry
1257     final Mutex lock; // for registration
1258     final Condition termination; // for awaitTermination
1259     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1260     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1261     final AtomicLong stealCount; // collect counts when terminated
1262     final AtomicInteger nextWorkerNumber; // to create worker name string
1263     final String workerNamePrefix; // to create worker name string
1264    
1265     // Creating, registering, and deregistering workers
1266    
1267     /**
1268     * Tries to create and start a worker
1269     */
1270     private void addWorker() {
1271     Throwable ex = null;
1272     ForkJoinWorkerThread wt = null;
1273     try {
1274     if ((wt = factory.newThread(this)) != null) {
1275     wt.start();
1276     return;
1277     }
1278     } catch (Throwable e) {
1279     ex = e;
1280     }
1281     deregisterWorker(wt, ex); // adjust counts etc on failure
1282     }
1283    
1284     /**
1285     * Callback from ForkJoinWorkerThread constructor to assign a
1286     * public name. This must be separate from registerWorker because
1287     * it is called during the "super" constructor call in
1288     * ForkJoinWorkerThread.
1289     */
1290     final String nextWorkerName() {
1291     return workerNamePrefix.concat
1292     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1293     }
1294    
1295     /**
1296     * Callback from ForkJoinWorkerThread constructor to establish its
1297     * poolIndex and record its WorkQueue. To avoid scanning bias due
1298     * to packing entries in front of the workQueues array, we treat
1299     * the array as a simple power-of-two hash table using per-thread
1300     * seed as hash, expanding as needed.
1301     *
1302     * @param w the worker's queue
1303     */
1304    
1305     final void registerWorker(WorkQueue w) {
1306     Mutex lock = this.lock;
1307     lock.lock();
1308     try {
1309     WorkQueue[] ws = workQueues;
1310     if (w != null && ws != null) { // skip on shutdown/failure
1311     int rs, n = ws.length, m = n - 1;
1312     int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1313     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1314     int r = (s << 1) | 1; // use odd-numbered indices
1315     if (ws[r &= m] != null) { // collision
1316     int probes = 0; // step by approx half size
1317     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1318     while (ws[r = (r + step) & m] != null) {
1319     if (++probes >= n) {
1320     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1321     m = n - 1;
1322     probes = 0;
1323     }
1324     }
1325     }
1326     w.eventCount = w.poolIndex = r; // establish before recording
1327     ws[r] = w; // also update seq
1328     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1329     }
1330     } finally {
1331     lock.unlock();
1332     }
1333     }
1334    
1335     /**
1336     * Final callback from terminating worker, as well as upon failure
1337     * to construct or start a worker in addWorker. Removes record of
1338     * worker from array, and adjusts counts. If pool is shutting
1339     * down, tries to complete termination.
1340     *
1341     * @param wt the worker thread or null if addWorker failed
1342     * @param ex the exception causing failure, or null if none
1343     */
1344     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1345     Mutex lock = this.lock;
1346     WorkQueue w = null;
1347     if (wt != null && (w = wt.workQueue) != null) {
1348     w.runState = -1; // ensure runState is set
1349     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1350     int idx = w.poolIndex;
1351     lock.lock();
1352     try { // remove record from array
1353     WorkQueue[] ws = workQueues;
1354     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1355     ws[idx] = null;
1356     } finally {
1357     lock.unlock();
1358     }
1359     }
1360    
1361     long c; // adjust ctl counts
1362     do {} while (!U.compareAndSwapLong
1363     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1364     ((c - TC_UNIT) & TC_MASK) |
1365     (c & ~(AC_MASK|TC_MASK)))));
1366    
1367     if (!tryTerminate(false, false) && w != null) {
1368     w.cancelAll(); // cancel remaining tasks
1369     if (w.array != null) // suppress signal if never ran
1370     signalWork(); // wake up or create replacement
1371     if (ex == null) // help clean refs on way out
1372     ForkJoinTask.helpExpungeStaleExceptions();
1373     }
1374    
1375     if (ex != null) // rethrow
1376     U.throwException(ex);
1377     }
1378    
1379    
1380     // Submissions
1381    
1382     /**
1383     * Unless shutting down, adds the given task to a submission queue
1384     * at submitter's current queue index (modulo submission
1385     * range). If no queue exists at the index, one is created. If
1386     * the queue is busy, another index is randomly chosen. The
1387     * submitMask bounds the effective number of queues to the
1388     * (nearest power of two for) parallelism level.
1389     *
1390     * @param task the task. Caller must ensure non-null.
1391     */
1392     private void doSubmit(ForkJoinTask<?> task) {
1393     Submitter s = submitters.get();
1394     for (int r = s.seed, m = submitMask;;) {
1395     WorkQueue[] ws; WorkQueue q;
1396     int k = r & m & SQMASK; // use only even indices
1397     if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1398     throw new RejectedExecutionException(); // shutting down
1399     else if ((q = ws[k]) == null) { // create new queue
1400     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1401     Mutex lock = this.lock; // construct outside lock
1402     lock.lock();
1403     try { // recheck under lock
1404     int rs = runState; // to update seq
1405     if (ws == workQueues && ws[k] == null) {
1406     ws[k] = nq;
1407     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1408     }
1409     } finally {
1410     lock.unlock();
1411     }
1412     }
1413     else if (q.trySharedPush(task)) {
1414     signalWork();
1415     return;
1416     }
1417     else if (m > 1) { // move to a different index
1418     r ^= r << 13; // same xorshift as WorkQueues
1419     r ^= r >>> 17;
1420     s.seed = r ^= r << 5;
1421     }
1422     else
1423     Thread.yield(); // yield if no alternatives
1424     }
1425     }
1426    
1427     // Maintaining ctl counts
1428    
1429     /**
1430     * Increments active count; mainly called upon return from blocking.
1431     */
1432     final void incrementActiveCount() {
1433     long c;
1434     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1435     }
1436    
1437     /**
1438     * Tries to activate or create a worker if too few are active.
1439     */
1440     final void signalWork() {
1441     long c; int u;
1442     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1443     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1444     if ((e = (int)c) > 0) { // at least one waiting
1445     if (ws != null && (i = e & SMASK) < ws.length &&
1446     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1447     long nc = (((long)(w.nextWait & E_MASK)) |
1448     ((long)(u + UAC_UNIT) << 32));
1449     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1450     w.eventCount = (e + E_SEQ) & E_MASK;
1451     if ((p = w.parker) != null)
1452     U.unpark(p); // activate and release
1453     break;
1454     }
1455     }
1456     else
1457     break;
1458     }
1459     else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1460     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1461     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1462     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1463     addWorker();
1464     break;
1465     }
1466     }
1467     else
1468     break;
1469     }
1470     }
1471    
1472     // Scanning for tasks
1473    
1474     /**
1475     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1476     */
1477     final void runWorker(WorkQueue w) {
1478     w.growArray(false); // initialize queue array in this thread
1479     do { w.runTask(scan(w)); } while (w.runState >= 0);
1480     }
1481    
1482     /**
1483     * Scans for and, if found, returns one task, else possibly
1484     * inactivates the worker. This method operates on single reads of
1485     * volatile state and is designed to be re-invoked continuously,
1486     * in part because it returns upon detecting inconsistencies,
1487     * contention, or state changes that indicate possible success on
1488     * re-invocation.
1489     *
1490     * The scan searches for tasks across a random permutation of
1491     * queues (starting at a random index and stepping by a random
1492     * relative prime, checking each at least once). The scan
1493     * terminates upon either finding a non-empty queue, or completing
1494     * the sweep. If the worker is not inactivated, it takes and
1495     * returns a task from this queue. On failure to find a task, we
1496     * take one of the following actions, after which the caller will
1497     * retry calling this method unless terminated.
1498     *
1499     * * If pool is terminating, terminate the worker.
1500     *
1501     * * If not a complete sweep, try to release a waiting worker. If
1502     * the scan terminated because the worker is inactivated, then the
1503     * released worker will often be the calling worker, and it can
1504     * succeed obtaining a task on the next call. Or maybe it is
1505     * another worker, but with same net effect. Releasing in other
1506     * cases as well ensures that we have enough workers running.
1507     *
1508     * * If not already enqueued, try to inactivate and enqueue the
1509     * worker on wait queue. Or, if inactivating has caused the pool
1510     * to be quiescent, relay to idleAwaitWork to check for
1511     * termination and possibly shrink pool.
1512     *
1513     * * If already inactive, and the caller has run a task since the
1514     * last empty scan, return (to allow rescan) unless others are
1515     * also inactivated. Field WorkQueue.rescans counts down on each
1516     * scan to ensure eventual inactivation and blocking.
1517     *
1518     * * If already enqueued and none of the above apply, park
1519     * awaiting signal,
1520     *
1521     * @param w the worker (via its WorkQueue)
1522     * @return a task or null of none found
1523     */
1524     private final ForkJoinTask<?> scan(WorkQueue w) {
1525     WorkQueue[] ws; // first update random seed
1526     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1527     int rs = runState, m; // volatile read order matters
1528     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1529     int ec = w.eventCount; // ec is negative if inactive
1530     int step = (r >>> 16) | 1; // relative prime
1531     for (int j = (m + 1) << 2; ; r += step) {
1532     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1533     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1534     (a = q.array) != null) { // probably nonempty
1535     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1536     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1537     if (q.base == b && ec >= 0 && t != null &&
1538     U.compareAndSwapObject(a, i, t, null)) {
1539     if (q.top - (q.base = b + 1) > 1)
1540     signalWork(); // help pushes signal
1541     return t;
1542     }
1543     else if (ec < 0 || j <= m) {
1544     rs = 0; // mark scan as imcomplete
1545     break; // caller can retry after release
1546     }
1547     }
1548     if (--j < 0)
1549     break;
1550     }
1551    
1552     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1553     if (e < 0) // decode ctl on empty scan
1554     w.runState = -1; // pool is terminating
1555     else if (rs == 0 || rs != runState) { // incomplete scan
1556     WorkQueue v; Thread p; // try to release a waiter
1557     if (e > 0 && a < 0 && w.eventCount == ec &&
1558     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1559     long nc = ((long)(v.nextWait & E_MASK) |
1560     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1561     if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1562     v.eventCount = (e + E_SEQ) & E_MASK;
1563     if ((p = v.parker) != null)
1564     U.unpark(p);
1565     }
1566     }
1567     }
1568     else if (ec >= 0) { // try to enqueue/inactivate
1569     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1570     w.nextWait = e;
1571     w.eventCount = ec | INT_SIGN; // mark as inactive
1572     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1573     w.eventCount = ec; // unmark on CAS failure
1574     else {
1575     if ((ns = w.nsteals) != 0) {
1576     w.nsteals = 0; // set rescans if ran task
1577     w.rescans = (a > 0) ? 0 : a + parallelism;
1578     w.totalSteals += ns;
1579     }
1580     if (a == 1 - parallelism) // quiescent
1581     idleAwaitWork(w, nc, c);
1582     }
1583     }
1584     else if (w.eventCount < 0) { // already queued
1585     if ((nr = w.rescans) > 0) { // continue rescanning
1586     int ac = a + parallelism;
1587     if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1588     Thread.yield(); // yield before block
1589     }
1590     else {
1591     Thread.interrupted(); // clear status
1592     Thread wt = Thread.currentThread();
1593     U.putObject(wt, PARKBLOCKER, this);
1594     w.parker = wt; // emulate LockSupport.park
1595     if (w.eventCount < 0) // recheck
1596     U.park(false, 0L);
1597     w.parker = null;
1598     U.putObject(wt, PARKBLOCKER, null);
1599     }
1600     }
1601     }
1602     return null;
1603     }
1604    
1605     /**
1606     * If inactivating worker w has caused the pool to become
1607     * quiescent, checks for pool termination, and, so long as this is
1608     * not the only worker, waits for event for up to SHRINK_RATE
1609     * nanosecs. On timeout, if ctl has not changed, terminates the
1610     * worker, which will in turn wake up another worker to possibly
1611     * repeat this process.
1612     *
1613     * @param w the calling worker
1614     * @param currentCtl the ctl value triggering possible quiescence
1615     * @param prevCtl the ctl value to restore if thread is terminated
1616     */
1617     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1618     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1619     (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1620     Thread wt = Thread.currentThread();
1621     Thread.yield(); // yield before block
1622     while (ctl == currentCtl) {
1623     long startTime = System.nanoTime();
1624     Thread.interrupted(); // timed variant of version in scan()
1625     U.putObject(wt, PARKBLOCKER, this);
1626     w.parker = wt;
1627     if (ctl == currentCtl)
1628     U.park(false, SHRINK_RATE);
1629     w.parker = null;
1630     U.putObject(wt, PARKBLOCKER, null);
1631     if (ctl != currentCtl)
1632     break;
1633     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1634     U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1635     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1636     w.runState = -1; // shrink
1637     break;
1638     }
1639     }
1640     }
1641     }
1642    
1643     /**
1644     * Tries to locate and execute tasks for a stealer of the given
1645     * task, or in turn one of its stealers, Traces currentSteal ->
1646     * currentJoin links looking for a thread working on a descendant
1647     * of the given task and with a non-empty queue to steal back and
1648     * execute tasks from. The first call to this method upon a
1649     * waiting join will often entail scanning/search, (which is OK
1650     * because the joiner has nothing better to do), but this method
1651     * leaves hints in workers to speed up subsequent calls. The
1652     * implementation is very branchy to cope with potential
1653     * inconsistencies or loops encountering chains that are stale,
1654     * unknown, or so long that they are likely cyclic.
1655     *
1656     * @param joiner the joining worker
1657     * @param task the task to join
1658     * @return 0 if no progress can be made, negative if task
1659     * known complete, else positive
1660     */
1661     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1662     int stat = 0, steps = 0; // bound to avoid cycles
1663     if (joiner != null && task != null) { // hoist null checks
1664     restart: for (;;) {
1665     ForkJoinTask<?> subtask = task; // current target
1666     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1667     WorkQueue[] ws; int m, s, h;
1668     if ((s = task.status) < 0) {
1669     stat = s;
1670     break restart;
1671     }
1672     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1673     break restart; // shutting down
1674     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1675     v.currentSteal != subtask) {
1676     for (int origin = h;;) { // find stealer
1677     if (((h = (h + 2) & m) & 15) == 1 &&
1678     (subtask.status < 0 || j.currentJoin != subtask))
1679     continue restart; // occasional staleness check
1680     if ((v = ws[h]) != null &&
1681     v.currentSteal == subtask) {
1682     j.stealHint = h; // save hint
1683     break;
1684     }
1685     if (h == origin)
1686     break restart; // cannot find stealer
1687     }
1688     }
1689     for (;;) { // help stealer or descend to its stealer
1690     ForkJoinTask[] a; int b;
1691     if (subtask.status < 0) // surround probes with
1692     continue restart; // consistency checks
1693     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1694     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1695     ForkJoinTask<?> t =
1696     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1697     if (subtask.status < 0 || j.currentJoin != subtask ||
1698     v.currentSteal != subtask)
1699     continue restart; // stale
1700     stat = 1; // apparent progress
1701     if (t != null && v.base == b &&
1702     U.compareAndSwapObject(a, i, t, null)) {
1703     v.base = b + 1; // help stealer
1704     joiner.runSubtask(t);
1705     }
1706     else if (v.base == b && ++steps == MAX_HELP)
1707     break restart; // v apparently stalled
1708     }
1709     else { // empty -- try to descend
1710     ForkJoinTask<?> next = v.currentJoin;
1711     if (subtask.status < 0 || j.currentJoin != subtask ||
1712     v.currentSteal != subtask)
1713     continue restart; // stale
1714     else if (next == null || ++steps == MAX_HELP)
1715     break restart; // dead-end or maybe cyclic
1716     else {
1717     subtask = next;
1718     j = v;
1719     break;
1720     }
1721     }
1722     }
1723     }
1724     }
1725     }
1726     return stat;
1727     }
1728    
1729     /**
1730     * If task is at base of some steal queue, steals and executes it.
1731     *
1732     * @param joiner the joining worker
1733     * @param task the task
1734     */
1735     private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1736     WorkQueue[] ws;
1737     if ((ws = workQueues) != null) {
1738     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1739     WorkQueue q = ws[j];
1740     if (q != null && q.pollFor(task)) {
1741     joiner.runSubtask(task);
1742     break;
1743     }
1744     }
1745     }
1746     }
1747    
1748     /**
1749     * Tries to decrement active count (sometimes implicitly) and
1750     * possibly release or create a compensating worker in preparation
1751     * for blocking. Fails on contention or termination. Otherwise,
1752     * adds a new thread if no idle workers are available and either
1753     * pool would become completely starved or: (at least half
1754     * starved, and fewer than 50% spares exist, and there is at least
1755     * one task apparently available). Even though the availability
1756     * check requires a full scan, it is worthwhile in reducing false
1757     * alarms.
1758     *
1759     * @param task if non-null, a task being waited for
1760     * @param blocker if non-null, a blocker being waited for
1761     * @return true if the caller can block, else should recheck and retry
1762     */
1763     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1764     int pc = parallelism, e;
1765     long c = ctl;
1766     WorkQueue[] ws = workQueues;
1767     if ((e = (int)c) >= 0 && ws != null) {
1768     int u, a, ac, hc;
1769     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1770     boolean replace = false;
1771     if ((a = u >> UAC_SHIFT) <= 0) {
1772     if ((ac = a + pc) <= 1)
1773     replace = true;
1774     else if ((e > 0 || (task != null &&
1775     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1776     WorkQueue w;
1777     for (int j = 0; j < ws.length; ++j) {
1778     if ((w = ws[j]) != null && !w.isEmpty()) {
1779     replace = true;
1780     break; // in compensation range and tasks available
1781     }
1782     }
1783     }
1784     }
1785     if ((task == null || task.status >= 0) && // recheck need to block
1786     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1787     if (!replace) { // no compensation
1788     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1789     if (U.compareAndSwapLong(this, CTL, c, nc))
1790     return true;
1791     }
1792     else if (e != 0) { // release an idle worker
1793     WorkQueue w; Thread p; int i;
1794     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1795     long nc = ((long)(w.nextWait & E_MASK) |
1796     (c & (AC_MASK|TC_MASK)));
1797     if (w.eventCount == (e | INT_SIGN) &&
1798     U.compareAndSwapLong(this, CTL, c, nc)) {
1799     w.eventCount = (e + E_SEQ) & E_MASK;
1800     if ((p = w.parker) != null)
1801     U.unpark(p);
1802     return true;
1803     }
1804     }
1805     }
1806     else if (tc < MAX_CAP) { // create replacement
1807     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1808     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1809     addWorker();
1810     return true;
1811     }
1812     }
1813     }
1814     }
1815     return false;
1816     }
1817    
1818     /**
1819     * Helps and/or blocks until the given task is done.
1820     *
1821     * @param joiner the joining worker
1822     * @param task the task
1823     * @return task status on exit
1824     */
1825     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1826     int s;
1827     if ((s = task.status) >= 0) {
1828     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1829     joiner.currentJoin = task;
1830     long startTime = 0L;
1831     for (int k = 0;;) {
1832     if ((s = (joiner.isEmpty() ? // try to help
1833     tryHelpStealer(joiner, task) :
1834     joiner.tryRemoveAndExec(task))) == 0 &&
1835     (s = task.status) >= 0) {
1836     if (k == 0) {
1837     startTime = System.nanoTime();
1838     tryPollForAndExec(joiner, task); // check uncommon case
1839     }
1840     else if ((k & (MAX_HELP - 1)) == 0 &&
1841     System.nanoTime() - startTime >=
1842     COMPENSATION_DELAY &&
1843     tryCompensate(task, null)) {
1844     if (task.trySetSignal()) {
1845     synchronized (task) {
1846     if (task.status >= 0) {
1847     try { // see ForkJoinTask
1848     task.wait(); // for explanation
1849     } catch (InterruptedException ie) {
1850     }
1851     }
1852     else
1853     task.notifyAll();
1854     }
1855     }
1856     long c; // re-activate
1857     do {} while (!U.compareAndSwapLong
1858     (this, CTL, c = ctl, c + AC_UNIT));
1859     }
1860     }
1861     if (s < 0 || (s = task.status) < 0) {
1862     joiner.currentJoin = prevJoin;
1863     break;
1864     }
1865     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1866     Thread.yield(); // for politeness
1867     }
1868     }
1869     return s;
1870     }
1871    
1872     /**
1873     * Stripped-down variant of awaitJoin used by timed joins. Tries
1874     * to help join only while there is continuous progress. (Caller
1875     * will then enter a timed wait.)
1876     *
1877     * @param joiner the joining worker
1878     * @param task the task
1879     * @return task status on exit
1880     */
1881     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1882     int s;
1883     while ((s = task.status) >= 0 &&
1884     (joiner.isEmpty() ?
1885     tryHelpStealer(joiner, task) :
1886     joiner.tryRemoveAndExec(task)) != 0)
1887     ;
1888     return s;
1889     }
1890    
1891     /**
1892     * Returns a (probably) non-empty steal queue, if one is found
1893     * during a random, then cyclic scan, else null. This method must
1894     * be retried by caller if, by the time it tries to use the queue,
1895     * it is empty.
1896     */
1897     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1898     // Similar to loop in scan(), but ignoring submissions
1899     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1900     int step = (r >>> 16) | 1;
1901     for (WorkQueue[] ws;;) {
1902     int rs = runState, m;
1903     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1904     return null;
1905     for (int j = (m + 1) << 2; ; r += step) {
1906     WorkQueue q = ws[((r << 1) | 1) & m];
1907     if (q != null && !q.isEmpty())
1908     return q;
1909     else if (--j < 0) {
1910     if (runState == rs)
1911     return null;
1912     break;
1913     }
1914     }
1915     }
1916     }
1917    
1918    
1919     /**
1920     * Runs tasks until {@code isQuiescent()}. We piggyback on
1921     * active count ctl maintenance, but rather than blocking
1922     * when tasks cannot be found, we rescan until all others cannot
1923     * find tasks either.
1924     */
1925     final void helpQuiescePool(WorkQueue w) {
1926     for (boolean active = true;;) {
1927     ForkJoinTask<?> localTask; // exhaust local queue
1928     while ((localTask = w.nextLocalTask()) != null)
1929     localTask.doExec();
1930     WorkQueue q = findNonEmptyStealQueue(w);
1931     if (q != null) {
1932     ForkJoinTask<?> t; int b;
1933     if (!active) { // re-establish active count
1934     long c;
1935     active = true;
1936     do {} while (!U.compareAndSwapLong
1937     (this, CTL, c = ctl, c + AC_UNIT));
1938     }
1939     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1940     w.runSubtask(t);
1941     }
1942     else {
1943     long c;
1944     if (active) { // decrement active count without queuing
1945     active = false;
1946     do {} while (!U.compareAndSwapLong
1947     (this, CTL, c = ctl, c -= AC_UNIT));
1948     }
1949     else
1950     c = ctl; // re-increment on exit
1951     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1952     do {} while (!U.compareAndSwapLong
1953     (this, CTL, c = ctl, c + AC_UNIT));
1954     break;
1955     }
1956     }
1957     }
1958     }
1959    
1960     /**
1961     * Gets and removes a local or stolen task for the given worker.
1962     *
1963     * @return a task, if available
1964     */
1965     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1966     for (ForkJoinTask<?> t;;) {
1967     WorkQueue q; int b;
1968     if ((t = w.nextLocalTask()) != null)
1969     return t;
1970     if ((q = findNonEmptyStealQueue(w)) == null)
1971     return null;
1972     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1973     return t;
1974     }
1975     }
1976    
1977     /**
1978     * Returns the approximate (non-atomic) number of idle threads per
1979     * active thread to offset steal queue size for method
1980     * ForkJoinTask.getSurplusQueuedTaskCount().
1981     */
1982     final int idlePerActive() {
1983     // Approximate at powers of two for small values, saturate past 4
1984     int p = parallelism;
1985     int a = p + (int)(ctl >> AC_SHIFT);
1986     return (a > (p >>>= 1) ? 0 :
1987     a > (p >>>= 1) ? 1 :
1988     a > (p >>>= 1) ? 2 :
1989     a > (p >>>= 1) ? 4 :
1990     8);
1991     }
1992    
1993     // Termination
1994    
1995     /**
1996     * Possibly initiates and/or completes termination. The caller
1997     * triggering termination runs three passes through workQueues:
1998     * (0) Setting termination status, followed by wakeups of queued
1999     * workers; (1) cancelling all tasks; (2) interrupting lagging
2000     * threads (likely in external tasks, but possibly also blocked in
2001     * joins). Each pass repeats previous steps because of potential
2002     * lagging thread creation.
2003     *
2004     * @param now if true, unconditionally terminate, else only
2005     * if no work and no active workers
2006     * @param enable if true, enable shutdown when next possible
2007     * @return true if now terminating or terminated
2008     */
2009     private boolean tryTerminate(boolean now, boolean enable) {
2010     Mutex lock = this.lock;
2011     for (long c;;) {
2012     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2013     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2014     lock.lock(); // don't need try/finally
2015     termination.signalAll(); // signal when 0 workers
2016     lock.unlock();
2017     }
2018     return true;
2019     }
2020     if (runState >= 0) { // not yet enabled
2021     if (!enable)
2022     return false;
2023     lock.lock();
2024     runState |= SHUTDOWN;
2025     lock.unlock();
2026     }
2027     if (!now) { // check if idle & no tasks
2028     if ((int)(c >> AC_SHIFT) != -parallelism ||
2029     hasQueuedSubmissions())
2030     return false;
2031     // Check for unqueued inactive workers. One pass suffices.
2032     WorkQueue[] ws = workQueues; WorkQueue w;
2033     if (ws != null) {
2034     for (int i = 1; i < ws.length; i += 2) {
2035     if ((w = ws[i]) != null && w.eventCount >= 0)
2036     return false;
2037     }
2038     }
2039     }
2040     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2041     for (int pass = 0; pass < 3; ++pass) {
2042     WorkQueue[] ws = workQueues;
2043     if (ws != null) {
2044     WorkQueue w;
2045     int n = ws.length;
2046     for (int i = 0; i < n; ++i) {
2047     if ((w = ws[i]) != null) {
2048     w.runState = -1;
2049     if (pass > 0) {
2050     w.cancelAll();
2051     if (pass > 1)
2052     w.interruptOwner();
2053     }
2054     }
2055     }
2056     // Wake up workers parked on event queue
2057     int i, e; long cc; Thread p;
2058     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2059     (i = e & SMASK) < n &&
2060     (w = ws[i]) != null) {
2061     long nc = ((long)(w.nextWait & E_MASK) |
2062     ((cc + AC_UNIT) & AC_MASK) |
2063     (cc & (TC_MASK|STOP_BIT)));
2064     if (w.eventCount == (e | INT_SIGN) &&
2065     U.compareAndSwapLong(this, CTL, cc, nc)) {
2066     w.eventCount = (e + E_SEQ) & E_MASK;
2067     w.runState = -1;
2068     if ((p = w.parker) != null)
2069     U.unpark(p);
2070     }
2071     }
2072     }
2073     }
2074     }
2075     }
2076     }
2077    
2078     // Exported methods
2079    
2080     // Constructors
2081    
2082     /**
2083     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2084     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2085     * #defaultForkJoinWorkerThreadFactory default thread factory},
2086     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2087     *
2088     * @throws SecurityException if a security manager exists and
2089     * the caller is not permitted to modify threads
2090     * because it does not hold {@link
2091     * java.lang.RuntimePermission}{@code ("modifyThread")}
2092     */
2093     public ForkJoinPool() {
2094     this(Runtime.getRuntime().availableProcessors(),
2095     defaultForkJoinWorkerThreadFactory, null, false);
2096     }
2097    
2098     /**
2099     * Creates a {@code ForkJoinPool} with the indicated parallelism
2100     * level, the {@linkplain
2101     * #defaultForkJoinWorkerThreadFactory default thread factory},
2102     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2103     *
2104     * @param parallelism the parallelism level
2105     * @throws IllegalArgumentException if parallelism less than or
2106     * equal to zero, or greater than implementation limit
2107     * @throws SecurityException if a security manager exists and
2108     * the caller is not permitted to modify threads
2109     * because it does not hold {@link
2110     * java.lang.RuntimePermission}{@code ("modifyThread")}
2111     */
2112     public ForkJoinPool(int parallelism) {
2113     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2114     }
2115    
2116     /**
2117     * Creates a {@code ForkJoinPool} with the given parameters.
2118     *
2119     * @param parallelism the parallelism level. For default value,
2120     * use {@link java.lang.Runtime#availableProcessors}.
2121     * @param factory the factory for creating new threads. For default value,
2122     * use {@link #defaultForkJoinWorkerThreadFactory}.
2123     * @param handler the handler for internal worker threads that
2124     * terminate due to unrecoverable errors encountered while executing
2125     * tasks. For default value, use {@code null}.
2126     * @param asyncMode if true,
2127     * establishes local first-in-first-out scheduling mode for forked
2128     * tasks that are never joined. This mode may be more appropriate
2129     * than default locally stack-based mode in applications in which
2130     * worker threads only process event-style asynchronous tasks.
2131     * For default value, use {@code false}.
2132     * @throws IllegalArgumentException if parallelism less than or
2133     * equal to zero, or greater than implementation limit
2134     * @throws NullPointerException if the factory is null
2135     * @throws SecurityException if a security manager exists and
2136     * the caller is not permitted to modify threads
2137     * because it does not hold {@link
2138     * java.lang.RuntimePermission}{@code ("modifyThread")}
2139     */
2140     public ForkJoinPool(int parallelism,
2141     ForkJoinWorkerThreadFactory factory,
2142     Thread.UncaughtExceptionHandler handler,
2143     boolean asyncMode) {
2144     checkPermission();
2145     if (factory == null)
2146     throw new NullPointerException();
2147     if (parallelism <= 0 || parallelism > MAX_CAP)
2148     throw new IllegalArgumentException();
2149     this.parallelism = parallelism;
2150     this.factory = factory;
2151     this.ueh = handler;
2152     this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2153     long np = (long)(-parallelism); // offset ctl counts
2154     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2155     // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2156     int n = parallelism - 1;
2157     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2158     int size = (n + 1) << 1; // #slots = 2*#workers
2159     this.submitMask = size - 1; // room for max # of submit queues
2160     this.workQueues = new WorkQueue[size];
2161     this.termination = (this.lock = new Mutex()).newCondition();
2162     this.stealCount = new AtomicLong();
2163     this.nextWorkerNumber = new AtomicInteger();
2164     int pn = poolNumberGenerator.incrementAndGet();
2165     StringBuilder sb = new StringBuilder("ForkJoinPool-");
2166     sb.append(Integer.toString(pn));
2167     sb.append("-worker-");
2168     this.workerNamePrefix = sb.toString();
2169     lock.lock();
2170     this.runState = 1; // set init flag
2171     lock.unlock();
2172     }
2173    
2174     // Execution methods
2175    
2176     /**
2177     * Performs the given task, returning its result upon completion.
2178     * If the computation encounters an unchecked Exception or Error,
2179     * it is rethrown as the outcome of this invocation. Rethrown
2180     * exceptions behave in the same way as regular exceptions, but,
2181     * when possible, contain stack traces (as displayed for example
2182     * using {@code ex.printStackTrace()}) of both the current thread
2183     * as well as the thread actually encountering the exception;
2184     * minimally only the latter.
2185     *
2186     * @param task the task
2187     * @return the task's result
2188     * @throws NullPointerException if the task is null
2189     * @throws RejectedExecutionException if the task cannot be
2190     * scheduled for execution
2191     */
2192     public <T> T invoke(ForkJoinTask<T> task) {
2193     if (task == null)
2194     throw new NullPointerException();
2195     doSubmit(task);
2196     return task.join();
2197     }
2198    
2199     /**
2200     * Arranges for (asynchronous) execution of the given task.
2201     *
2202     * @param task the task
2203     * @throws NullPointerException if the task is null
2204     * @throws RejectedExecutionException if the task cannot be
2205     * scheduled for execution
2206     */
2207     public void execute(ForkJoinTask<?> task) {
2208     if (task == null)
2209     throw new NullPointerException();
2210     doSubmit(task);
2211     }
2212    
2213     // AbstractExecutorService methods
2214    
2215     /**
2216     * @throws NullPointerException if the task is null
2217     * @throws RejectedExecutionException if the task cannot be
2218     * scheduled for execution
2219     */
2220     public void execute(Runnable task) {
2221     if (task == null)
2222     throw new NullPointerException();
2223     ForkJoinTask<?> job;
2224     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2225     job = (ForkJoinTask<?>) task;
2226     else
2227     job = new ForkJoinTask.AdaptedRunnableAction(task);
2228     doSubmit(job);
2229     }
2230    
2231     /**
2232     * Submits a ForkJoinTask for execution.
2233     *
2234     * @param task the task to submit
2235     * @return the task
2236     * @throws NullPointerException if the task is null
2237     * @throws RejectedExecutionException if the task cannot be
2238     * scheduled for execution
2239     */
2240     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2241     if (task == null)
2242     throw new NullPointerException();
2243     doSubmit(task);
2244     return task;
2245     }
2246    
2247     /**
2248     * @throws NullPointerException if the task is null
2249     * @throws RejectedExecutionException if the task cannot be
2250     * scheduled for execution
2251     */
2252     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2253     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2254     doSubmit(job);
2255     return job;
2256     }
2257    
2258     /**
2259     * @throws NullPointerException if the task is null
2260     * @throws RejectedExecutionException if the task cannot be
2261     * scheduled for execution
2262     */
2263     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2264     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2265     doSubmit(job);
2266     return job;
2267     }
2268    
2269     /**
2270     * @throws NullPointerException if the task is null
2271     * @throws RejectedExecutionException if the task cannot be
2272     * scheduled for execution
2273     */
2274     public ForkJoinTask<?> submit(Runnable task) {
2275     if (task == null)
2276     throw new NullPointerException();
2277     ForkJoinTask<?> job;
2278     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2279     job = (ForkJoinTask<?>) task;
2280     else
2281     job = new ForkJoinTask.AdaptedRunnableAction(task);
2282     doSubmit(job);
2283     return job;
2284     }
2285    
2286     /**
2287     * @throws NullPointerException {@inheritDoc}
2288     * @throws RejectedExecutionException {@inheritDoc}
2289     */
2290     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2291     // In previous versions of this class, this method constructed
2292     // a task to run ForkJoinTask.invokeAll, but now external
2293     // invocation of multiple tasks is at least as efficient.
2294     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2295     // Workaround needed because method wasn't declared with
2296     // wildcards in return type but should have been.
2297     @SuppressWarnings({"unchecked", "rawtypes"})
2298     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2299    
2300     boolean done = false;
2301     try {
2302     for (Callable<T> t : tasks) {
2303     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2304     doSubmit(f);
2305     fs.add(f);
2306     }
2307     for (ForkJoinTask<T> f : fs)
2308     f.quietlyJoin();
2309     done = true;
2310     return futures;
2311     } finally {
2312     if (!done)
2313     for (ForkJoinTask<T> f : fs)
2314     f.cancel(false);
2315     }
2316     }
2317    
2318     /**
2319     * Returns the factory used for constructing new workers.
2320     *
2321     * @return the factory used for constructing new workers
2322     */
2323     public ForkJoinWorkerThreadFactory getFactory() {
2324     return factory;
2325     }
2326    
2327     /**
2328     * Returns the handler for internal worker threads that terminate
2329     * due to unrecoverable errors encountered while executing tasks.
2330     *
2331     * @return the handler, or {@code null} if none
2332     */
2333     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2334     return ueh;
2335     }
2336    
2337     /**
2338     * Returns the targeted parallelism level of this pool.
2339     *
2340     * @return the targeted parallelism level of this pool
2341     */
2342     public int getParallelism() {
2343     return parallelism;
2344     }
2345    
2346     /**
2347     * Returns the number of worker threads that have started but not
2348     * yet terminated. The result returned by this method may differ
2349     * from {@link #getParallelism} when threads are created to
2350     * maintain parallelism when others are cooperatively blocked.
2351     *
2352     * @return the number of worker threads
2353     */
2354     public int getPoolSize() {
2355     return parallelism + (short)(ctl >>> TC_SHIFT);
2356     }
2357    
2358     /**
2359     * Returns {@code true} if this pool uses local first-in-first-out
2360     * scheduling mode for forked tasks that are never joined.
2361     *
2362     * @return {@code true} if this pool uses async mode
2363     */
2364     public boolean getAsyncMode() {
2365     return localMode != 0;
2366     }
2367    
2368     /**
2369     * Returns an estimate of the number of worker threads that are
2370     * not blocked waiting to join tasks or for other managed
2371     * synchronization. This method may overestimate the
2372     * number of running threads.
2373     *
2374     * @return the number of worker threads
2375     */
2376     public int getRunningThreadCount() {
2377     int rc = 0;
2378     WorkQueue[] ws; WorkQueue w;
2379     if ((ws = workQueues) != null) {
2380     for (int i = 1; i < ws.length; i += 2) {
2381     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2382     ++rc;
2383     }
2384     }
2385     return rc;
2386     }
2387    
2388     /**
2389     * Returns an estimate of the number of threads that are currently
2390     * stealing or executing tasks. This method may overestimate the
2391     * number of active threads.
2392     *
2393     * @return the number of active threads
2394     */
2395     public int getActiveThreadCount() {
2396     int r = parallelism + (int)(ctl >> AC_SHIFT);
2397     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2398     }
2399    
2400     /**
2401     * Returns {@code true} if all worker threads are currently idle.
2402     * An idle worker is one that cannot obtain a task to execute
2403     * because none are available to steal from other threads, and
2404     * there are no pending submissions to the pool. This method is
2405     * conservative; it might not return {@code true} immediately upon
2406     * idleness of all threads, but will eventually become true if
2407     * threads remain inactive.
2408     *
2409     * @return {@code true} if all threads are currently idle
2410     */
2411     public boolean isQuiescent() {
2412     return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2413     }
2414    
2415     /**
2416     * Returns an estimate of the total number of tasks stolen from
2417     * one thread's work queue by another. The reported value
2418     * underestimates the actual total number of steals when the pool
2419     * is not quiescent. This value may be useful for monitoring and
2420     * tuning fork/join programs: in general, steal counts should be
2421     * high enough to keep threads busy, but low enough to avoid
2422     * overhead and contention across threads.
2423     *
2424     * @return the number of steals
2425     */
2426     public long getStealCount() {
2427     long count = stealCount.get();
2428     WorkQueue[] ws; WorkQueue w;
2429     if ((ws = workQueues) != null) {
2430     for (int i = 1; i < ws.length; i += 2) {
2431     if ((w = ws[i]) != null)
2432     count += w.totalSteals;
2433     }
2434     }
2435     return count;
2436     }
2437    
2438     /**
2439     * Returns an estimate of the total number of tasks currently held
2440     * in queues by worker threads (but not including tasks submitted
2441     * to the pool that have not begun executing). This value is only
2442     * an approximation, obtained by iterating across all threads in
2443     * the pool. This method may be useful for tuning task
2444     * granularities.
2445     *
2446     * @return the number of queued tasks
2447     */
2448     public long getQueuedTaskCount() {
2449     long count = 0;
2450     WorkQueue[] ws; WorkQueue w;
2451     if ((ws = workQueues) != null) {
2452     for (int i = 1; i < ws.length; i += 2) {
2453     if ((w = ws[i]) != null)
2454     count += w.queueSize();
2455     }
2456     }
2457     return count;
2458     }
2459    
2460     /**
2461     * Returns an estimate of the number of tasks submitted to this
2462     * pool that have not yet begun executing. This method may take
2463     * time proportional to the number of submissions.
2464     *
2465     * @return the number of queued submissions
2466     */
2467     public int getQueuedSubmissionCount() {
2468     int count = 0;
2469     WorkQueue[] ws; WorkQueue w;
2470     if ((ws = workQueues) != null) {
2471     for (int i = 0; i < ws.length; i += 2) {
2472     if ((w = ws[i]) != null)
2473     count += w.queueSize();
2474     }
2475     }
2476     return count;
2477     }
2478    
2479     /**
2480     * Returns {@code true} if there are any tasks submitted to this
2481     * pool that have not yet begun executing.
2482     *
2483     * @return {@code true} if there are any queued submissions
2484     */
2485     public boolean hasQueuedSubmissions() {
2486     WorkQueue[] ws; WorkQueue w;
2487     if ((ws = workQueues) != null) {
2488     for (int i = 0; i < ws.length; i += 2) {
2489     if ((w = ws[i]) != null && !w.isEmpty())
2490     return true;
2491     }
2492     }
2493     return false;
2494     }
2495    
2496     /**
2497     * Removes and returns the next unexecuted submission if one is
2498     * available. This method may be useful in extensions to this
2499     * class that re-assign work in systems with multiple pools.
2500     *
2501     * @return the next submission, or {@code null} if none
2502     */
2503     protected ForkJoinTask<?> pollSubmission() {
2504     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2505     if ((ws = workQueues) != null) {
2506     for (int i = 0; i < ws.length; i += 2) {
2507     if ((w = ws[i]) != null && (t = w.poll()) != null)
2508     return t;
2509     }
2510     }
2511     return null;
2512     }
2513    
2514     /**
2515     * Removes all available unexecuted submitted and forked tasks
2516     * from scheduling queues and adds them to the given collection,
2517     * without altering their execution status. These may include
2518     * artificially generated or wrapped tasks. This method is
2519     * designed to be invoked only when the pool is known to be
2520     * quiescent. Invocations at other times may not remove all
2521     * tasks. A failure encountered while attempting to add elements
2522     * to collection {@code c} may result in elements being in
2523     * neither, either or both collections when the associated
2524     * exception is thrown. The behavior of this operation is
2525     * undefined if the specified collection is modified while the
2526     * operation is in progress.
2527     *
2528     * @param c the collection to transfer elements into
2529     * @return the number of elements transferred
2530     */
2531     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2532     int count = 0;
2533     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2534     if ((ws = workQueues) != null) {
2535     for (int i = 0; i < ws.length; ++i) {
2536     if ((w = ws[i]) != null) {
2537     while ((t = w.poll()) != null) {
2538     c.add(t);
2539     ++count;
2540     }
2541     }
2542     }
2543     }
2544     return count;
2545     }
2546    
2547     /**
2548     * Returns a string identifying this pool, as well as its state,
2549     * including indications of run state, parallelism level, and
2550     * worker and task counts.
2551     *
2552     * @return a string identifying this pool, as well as its state
2553     */
2554     public String toString() {
2555     // Use a single pass through workQueues to collect counts
2556     long qt = 0L, qs = 0L; int rc = 0;
2557     long st = stealCount.get();
2558     long c = ctl;
2559     WorkQueue[] ws; WorkQueue w;
2560     if ((ws = workQueues) != null) {
2561     for (int i = 0; i < ws.length; ++i) {
2562     if ((w = ws[i]) != null) {
2563     int size = w.queueSize();
2564     if ((i & 1) == 0)
2565     qs += size;
2566     else {
2567     qt += size;
2568     st += w.totalSteals;
2569     if (w.isApparentlyUnblocked())
2570     ++rc;
2571     }
2572     }
2573     }
2574     }
2575     int pc = parallelism;
2576     int tc = pc + (short)(c >>> TC_SHIFT);
2577     int ac = pc + (int)(c >> AC_SHIFT);
2578     if (ac < 0) // ignore transient negative
2579     ac = 0;
2580     String level;
2581     if ((c & STOP_BIT) != 0)
2582     level = (tc == 0) ? "Terminated" : "Terminating";
2583     else
2584     level = runState < 0 ? "Shutting down" : "Running";
2585     return super.toString() +
2586     "[" + level +
2587     ", parallelism = " + pc +
2588     ", size = " + tc +
2589     ", active = " + ac +
2590     ", running = " + rc +
2591     ", steals = " + st +
2592     ", tasks = " + qt +
2593     ", submissions = " + qs +
2594     "]";
2595     }
2596    
2597     /**
2598     * Initiates an orderly shutdown in which previously submitted
2599     * tasks are executed, but no new tasks will be accepted.
2600     * Invocation has no additional effect if already shut down.
2601     * Tasks that are in the process of being submitted concurrently
2602     * during the course of this method may or may not be rejected.
2603     *
2604     * @throws SecurityException if a security manager exists and
2605     * the caller is not permitted to modify threads
2606     * because it does not hold {@link
2607     * java.lang.RuntimePermission}{@code ("modifyThread")}
2608     */
2609     public void shutdown() {
2610     checkPermission();
2611     tryTerminate(false, true);
2612     }
2613    
2614     /**
2615     * Attempts to cancel and/or stop all tasks, and reject all
2616     * subsequently submitted tasks. Tasks that are in the process of
2617     * being submitted or executed concurrently during the course of
2618     * this method may or may not be rejected. This method cancels
2619     * both existing and unexecuted tasks, in order to permit
2620     * termination in the presence of task dependencies. So the method
2621     * always returns an empty list (unlike the case for some other
2622     * Executors).
2623     *
2624     * @return an empty list
2625     * @throws SecurityException if a security manager exists and
2626     * the caller is not permitted to modify threads
2627     * because it does not hold {@link
2628     * java.lang.RuntimePermission}{@code ("modifyThread")}
2629     */
2630     public List<Runnable> shutdownNow() {
2631     checkPermission();
2632     tryTerminate(true, true);
2633     return Collections.emptyList();
2634     }
2635    
2636     /**
2637     * Returns {@code true} if all tasks have completed following shut down.
2638     *
2639     * @return {@code true} if all tasks have completed following shut down
2640     */
2641     public boolean isTerminated() {
2642     long c = ctl;
2643     return ((c & STOP_BIT) != 0L &&
2644     (short)(c >>> TC_SHIFT) == -parallelism);
2645     }
2646    
2647     /**
2648     * Returns {@code true} if the process of termination has
2649     * commenced but not yet completed. This method may be useful for
2650     * debugging. A return of {@code true} reported a sufficient
2651     * period after shutdown may indicate that submitted tasks have
2652     * ignored or suppressed interruption, or are waiting for IO,
2653     * causing this executor not to properly terminate. (See the
2654     * advisory notes for class {@link ForkJoinTask} stating that
2655     * tasks should not normally entail blocking operations. But if
2656     * they do, they must abort them on interrupt.)
2657     *
2658     * @return {@code true} if terminating but not yet terminated
2659     */
2660     public boolean isTerminating() {
2661     long c = ctl;
2662     return ((c & STOP_BIT) != 0L &&
2663     (short)(c >>> TC_SHIFT) != -parallelism);
2664     }
2665    
2666     /**
2667     * Returns {@code true} if this pool has been shut down.
2668     *
2669     * @return {@code true} if this pool has been shut down
2670     */
2671     public boolean isShutdown() {
2672     return runState < 0;
2673     }
2674    
2675     /**
2676     * Blocks until all tasks have completed execution after a shutdown
2677     * request, or the timeout occurs, or the current thread is
2678     * interrupted, whichever happens first.
2679     *
2680     * @param timeout the maximum time to wait
2681     * @param unit the time unit of the timeout argument
2682     * @return {@code true} if this executor terminated and
2683     * {@code false} if the timeout elapsed before termination
2684     * @throws InterruptedException if interrupted while waiting
2685     */
2686     public boolean awaitTermination(long timeout, TimeUnit unit)
2687     throws InterruptedException {
2688     long nanos = unit.toNanos(timeout);
2689     final Mutex lock = this.lock;
2690     lock.lock();
2691     try {
2692     for (;;) {
2693     if (isTerminated())
2694     return true;
2695     if (nanos <= 0)
2696     return false;
2697     nanos = termination.awaitNanos(nanos);
2698     }
2699     } finally {
2700     lock.unlock();
2701     }
2702     }
2703    
2704     /**
2705     * Interface for extending managed parallelism for tasks running
2706     * in {@link ForkJoinPool}s.
2707     *
2708     * <p>A {@code ManagedBlocker} provides two methods. Method
2709     * {@code isReleasable} must return {@code true} if blocking is
2710     * not necessary. Method {@code block} blocks the current thread
2711     * if necessary (perhaps internally invoking {@code isReleasable}
2712     * before actually blocking). These actions are performed by any
2713     * thread invoking {@link ForkJoinPool#managedBlock}. The
2714     * unusual methods in this API accommodate synchronizers that may,
2715     * but don't usually, block for long periods. Similarly, they
2716     * allow more efficient internal handling of cases in which
2717     * additional workers may be, but usually are not, needed to
2718     * ensure sufficient parallelism. Toward this end,
2719     * implementations of method {@code isReleasable} must be amenable
2720     * to repeated invocation.
2721     *
2722     * <p>For example, here is a ManagedBlocker based on a
2723     * ReentrantLock:
2724     * <pre> {@code
2725     * class ManagedLocker implements ManagedBlocker {
2726     * final ReentrantLock lock;
2727     * boolean hasLock = false;
2728     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2729     * public boolean block() {
2730     * if (!hasLock)
2731     * lock.lock();
2732     * return true;
2733     * }
2734     * public boolean isReleasable() {
2735     * return hasLock || (hasLock = lock.tryLock());
2736     * }
2737     * }}</pre>
2738     *
2739     * <p>Here is a class that possibly blocks waiting for an
2740     * item on a given queue:
2741     * <pre> {@code
2742     * class QueueTaker<E> implements ManagedBlocker {
2743     * final BlockingQueue<E> queue;
2744     * volatile E item = null;
2745     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2746     * public boolean block() throws InterruptedException {
2747     * if (item == null)
2748     * item = queue.take();
2749     * return true;
2750     * }
2751     * public boolean isReleasable() {
2752     * return item != null || (item = queue.poll()) != null;
2753     * }
2754     * public E getItem() { // call after pool.managedBlock completes
2755     * return item;
2756     * }
2757     * }}</pre>
2758     */
2759     public static interface ManagedBlocker {
2760     /**
2761     * Possibly blocks the current thread, for example waiting for
2762     * a lock or condition.
2763     *
2764     * @return {@code true} if no additional blocking is necessary
2765     * (i.e., if isReleasable would return true)
2766     * @throws InterruptedException if interrupted while waiting
2767     * (the method is not required to do so, but is allowed to)
2768     */
2769     boolean block() throws InterruptedException;
2770    
2771     /**
2772     * Returns {@code true} if blocking is unnecessary.
2773     */
2774     boolean isReleasable();
2775     }
2776    
2777     /**
2778     * Blocks in accord with the given blocker. If the current thread
2779     * is a {@link ForkJoinWorkerThread}, this method possibly
2780     * arranges for a spare thread to be activated if necessary to
2781     * ensure sufficient parallelism while the current thread is blocked.
2782     *
2783     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2784     * behaviorally equivalent to
2785     * <pre> {@code
2786     * while (!blocker.isReleasable())
2787     * if (blocker.block())
2788     * return;
2789     * }</pre>
2790     *
2791     * If the caller is a {@code ForkJoinTask}, then the pool may
2792     * first be expanded to ensure parallelism, and later adjusted.
2793     *
2794     * @param blocker the blocker
2795     * @throws InterruptedException if blocker.block did so
2796     */
2797     public static void managedBlock(ManagedBlocker blocker)
2798     throws InterruptedException {
2799     Thread t = Thread.currentThread();
2800     ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2801     ((ForkJoinWorkerThread)t).pool : null);
2802     while (!blocker.isReleasable()) {
2803     if (p == null || p.tryCompensate(null, blocker)) {
2804     try {
2805     do {} while (!blocker.isReleasable() && !blocker.block());
2806     } finally {
2807     if (p != null)
2808     p.incrementActiveCount();
2809     }
2810     break;
2811     }
2812     }
2813     }
2814    
2815     // AbstractExecutorService overrides. These rely on undocumented
2816     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2817     // implement RunnableFuture.
2818    
2819     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2820     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2821     }
2822    
2823     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2824     return new ForkJoinTask.AdaptedCallable<T>(callable);
2825     }
2826    
2827     // Unsafe mechanics
2828     private static final sun.misc.Unsafe U;
2829     private static final long CTL;
2830     private static final long PARKBLOCKER;
2831     private static final int ABASE;
2832     private static final int ASHIFT;
2833    
2834     static {
2835     poolNumberGenerator = new AtomicInteger();
2836     nextSubmitterSeed = new AtomicInteger(0x55555555);
2837     modifyThreadPermission = new RuntimePermission("modifyThread");
2838     defaultForkJoinWorkerThreadFactory =
2839     new DefaultForkJoinWorkerThreadFactory();
2840     submitters = new ThreadSubmitter();
2841     int s;
2842     try {
2843     U = getUnsafe();
2844     Class<?> k = ForkJoinPool.class;
2845     Class<?> ak = ForkJoinTask[].class;
2846     CTL = U.objectFieldOffset
2847     (k.getDeclaredField("ctl"));
2848     Class<?> tk = Thread.class;
2849     PARKBLOCKER = U.objectFieldOffset
2850     (tk.getDeclaredField("parkBlocker"));
2851     ABASE = U.arrayBaseOffset(ak);
2852     s = U.arrayIndexScale(ak);
2853     } catch (Exception e) {
2854     throw new Error(e);
2855     }
2856     if ((s & (s-1)) != 0)
2857     throw new Error("data type scale not a power of two");
2858     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2859     }
2860    
2861     /**
2862     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2863     * Replace with a simple call to Unsafe.getUnsafe when integrating
2864     * into a jdk.
2865     *
2866     * @return a sun.misc.Unsafe
2867     */
2868     private static sun.misc.Unsafe getUnsafe() {
2869     try {
2870     return sun.misc.Unsafe.getUnsafe();
2871     } catch (SecurityException se) {
2872     try {
2873     return java.security.AccessController.doPrivileged
2874     (new java.security
2875     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2876     public sun.misc.Unsafe run() throws Exception {
2877     java.lang.reflect.Field f = sun.misc
2878     .Unsafe.class.getDeclaredField("theUnsafe");
2879     f.setAccessible(true);
2880     return (sun.misc.Unsafe) f.get(null);
2881     }});
2882     } catch (java.security.PrivilegedActionException e) {
2883     throw new RuntimeException("Could not initialize intrinsics",
2884     e.getCause());
2885     }
2886     }
2887     }
2888    
2889     }