ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.34
Committed: Mon Dec 17 16:31:08 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.33: +3 -1 lines
Log Message:
Improve javadoc

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21    
22     /**
23     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24     * A {@code ForkJoinPool} provides the entry point for submissions
25     * from non-{@code ForkJoinTask} clients, as well as management and
26     * monitoring operations.
27     *
28     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31     * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39     *
40 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.12 * use).
46 dl 1.7 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54 jsr166 1.25 * blocked I/O or other unmanaged synchronization. The nested {@link
55 dl 1.7 * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.1 * synchronization accommodated.
57     *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60     * {@link #getStealCount}) that are intended to aid in developing,
61     * tuning, and monitoring fork/join applications. Also, method
62     * {@link #toString} returns indications of pool state in a
63     * convenient form for informal monitoring.
64     *
65 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
66 dl 1.1 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76     *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84     * <td> <b>Arrange async execution</td>
85     * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99     *
100 dl 1.12 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102 jsr166 1.23 * System#getProperty system properties} with prefix {@code
103 dl 1.12 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107 jsr166 1.15 * java.lang.Thread.UncaughtExceptionHandler
108 dl 1.12 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113     * pools with greater than the maximum number result in
114     * {@code IllegalArgumentException}.
115     *
116     * <p>This implementation rejects submitted tasks (that is, by throwing
117     * {@link RejectedExecutionException}) only when the pool is shut down
118     * or internal resources have been exhausted.
119     *
120     * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126     * Implementation Overview
127     *
128     * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130     * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136     *
137     * WorkQueues
138     * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155     * The main differences ultimately stem from GC requirements that
156     * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177     * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181     *
182     * This approach also enables support of a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.12 * processing). Instead, we randomly associate submission queues
198 dl 1.1 * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202 dl 1.12 * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.1 *
216     * Management
217     * ==========
218     *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224     * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226     * consistency checks.
227     *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242 dl 1.18 * block when needed.
243 dl 1.1 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.8 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
252 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.1 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259     * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271     * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278     *
279     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280     * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284     * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296     * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298     * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304     * WorkQueues to reduce unnecessary calls to unpark. (This
305     * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313     *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.12 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319 dl 1.21 * added or another worker adds a task to a queue that has fewer
320     * than two tasks, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- signalWork), and may leave a hint to the unparked worker to
323     * help signal others upon wakeup). These primary signals are
324     * buttressed by others (see method helpSignal) whenever other
325     * threads scan for work or do not have a task to process. On
326     * most platforms, signalling (unpark) overhead time is noticeably
327     * long, and the time between signalling a thread and it actually
328     * making progress can be very noticeably long, so it is worth
329     * offloading these delays from critical paths as much as
330     * possible.
331 dl 1.1 *
332     * Trimming workers. To release resources after periods of lack of
333     * use, a worker starting to wait when the pool is quiescent will
334 dl 1.7 * time out and terminate if the pool has remained quiescent for a
335     * given period -- a short period if there are more threads than
336     * parallelism, longer as the number of threads decreases. This
337     * will slowly propagate, eventually terminating all workers after
338     * periods of non-use.
339 dl 1.1 *
340     * Shutdown and Termination. A call to shutdownNow atomically sets
341 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
342     * qlock status, cancels all unprocessed tasks, and wakes up
343 dl 1.1 * all waiting workers. Detecting whether termination should
344     * commence after a non-abrupt shutdown() call requires more work
345     * and bookkeeping. We need consensus about quiescence (i.e., that
346     * there is no more work). The active count provides a primary
347     * indication but non-abrupt shutdown still requires a rechecking
348     * scan for any workers that are inactive but not queued.
349     *
350     * Joining Tasks
351     * =============
352     *
353     * Any of several actions may be taken when one worker is waiting
354     * to join a task stolen (or always held) by another. Because we
355     * are multiplexing many tasks on to a pool of workers, we can't
356     * just let them block (as in Thread.join). We also cannot just
357     * reassign the joiner's run-time stack with another and replace
358     * it later, which would be a form of "continuation", that even if
359     * possible is not necessarily a good idea since we sometimes need
360     * both an unblocked task and its continuation to progress.
361     * Instead we combine two tactics:
362     *
363     * Helping: Arranging for the joiner to execute some task that it
364     * would be running if the steal had not occurred.
365     *
366     * Compensating: Unless there are already enough live threads,
367     * method tryCompensate() may create or re-activate a spare
368     * thread to compensate for blocked joiners until they unblock.
369     *
370 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
371     * helping a hypothetical compensator: If we can readily tell that
372     * a possible action of a compensator is to steal and execute the
373     * task being joined, the joining thread can do so directly,
374     * without the need for a compensation thread (although at the
375     * expense of larger run-time stacks, but the tradeoff is
376     * typically worthwhile).
377 dl 1.1 *
378     * The ManagedBlocker extension API can't use helping so relies
379     * only on compensation in method awaitBlocker.
380     *
381     * The algorithm in tryHelpStealer entails a form of "linear"
382     * helping: Each worker records (in field currentSteal) the most
383     * recent task it stole from some other worker. Plus, it records
384     * (in field currentJoin) the task it is currently actively
385     * joining. Method tryHelpStealer uses these markers to try to
386     * find a worker to help (i.e., steal back a task from and execute
387     * it) that could hasten completion of the actively joined task.
388     * In essence, the joiner executes a task that would be on its own
389     * local deque had the to-be-joined task not been stolen. This may
390     * be seen as a conservative variant of the approach in Wagner &
391     * Calder "Leapfrogging: a portable technique for implementing
392     * efficient futures" SIGPLAN Notices, 1993
393     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394     * that: (1) We only maintain dependency links across workers upon
395     * steals, rather than use per-task bookkeeping. This sometimes
396     * requires a linear scan of workQueues array to locate stealers,
397     * but often doesn't because stealers leave hints (that may become
398 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
399     * because a worker might have had multiple steals and the hint
400     * records only one of them (usually the most current). Hinting
401     * isolates cost to when it is needed, rather than adding to
402     * per-task overhead. (2) It is "shallow", ignoring nesting and
403     * potentially cyclic mutual steals. (3) It is intentionally
404 dl 1.1 * racy: field currentJoin is updated only while actively joining,
405     * which means that we miss links in the chain during long-lived
406     * tasks, GC stalls etc (which is OK since blocking in such cases
407     * is usually a good idea). (4) We bound the number of attempts
408     * to find work (see MAX_HELP) and fall back to suspending the
409     * worker and if necessary replacing it with another.
410     *
411 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
412     * helpComplete can take and execute any task with the same root
413     * as the task being waited on. However, this still entails some
414     * traversal of completer chains, so is less efficient than using
415     * CountedCompleters without explicit joins.
416     *
417 dl 1.1 * It is impossible to keep exactly the target parallelism number
418     * of threads running at any given time. Determining the
419     * existence of conservatively safe helping targets, the
420     * availability of already-created spares, and the apparent need
421     * to create new spares are all racy, so we rely on multiple
422     * retries of each. Compensation in the apparent absence of
423     * helping opportunities is challenging to control on JVMs, where
424     * GC and other activities can stall progress of tasks that in
425     * turn stall out many other dependent tasks, without us being
426     * able to determine whether they will ever require compensation.
427     * Even though work-stealing otherwise encounters little
428     * degradation in the presence of more threads than cores,
429     * aggressively adding new threads in such cases entails risk of
430     * unwanted positive feedback control loops in which more threads
431     * cause more dependent stalls (as well as delayed progress of
432     * unblocked threads to the point that we know they are available)
433     * leading to more situations requiring more threads, and so
434     * on. This aspect of control can be seen as an (analytically
435     * intractable) game with an opponent that may choose the worst
436     * (for us) active thread to stall at any time. We take several
437     * precautions to bound losses (and thus bound gains), mainly in
438 dl 1.12 * methods tryCompensate and awaitJoin.
439     *
440     * Common Pool
441     * ===========
442     *
443     * The static commonPool always exists after static
444     * initialization. Since it (or any other created pool) need
445     * never be used, we minimize initial construction overhead and
446     * footprint to the setup of about a dozen fields, with no nested
447     * allocation. Most bootstrapping occurs within method
448     * fullExternalPush during the first submission to the pool.
449     *
450     * When external threads submit to the common pool, they can
451     * perform some subtask processing (see externalHelpJoin and
452     * related methods). We do not need to record whether these
453     * submissions are to the common pool -- if not, externalHelpJoin
454 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
455 dl 1.12 * workers). These submitters would otherwise be blocked waiting
456     * for completion, so the extra effort (with liberally sprinkled
457     * task status checks) in inapplicable cases amounts to an odd
458     * form of limited spin-wait before blocking in ForkJoinTask.join.
459     *
460     * Style notes
461     * ===========
462     *
463     * There is a lot of representation-level coupling among classes
464     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465     * fields of WorkQueue maintain data structures managed by
466     * ForkJoinPool, so are directly accessed. There is little point
467     * trying to reduce this, since any associated future changes in
468     * representations will need to be accompanied by algorithmic
469     * changes anyway. Several methods intrinsically sprawl because
470     * they must accumulate sets of consistent reads of volatiles held
471     * in local variables. Methods signalWork() and scan() are the
472     * main bottlenecks, so are especially heavily
473 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
474     * (of form "while ((local = field) != 0)") which are usually the
475     * simplest way to ensure the required read orderings (which are
476     * sometimes critical). This leads to a "C"-like style of listing
477     * declarations of these locals at the heads of methods or blocks.
478     * There are several occurrences of the unusual "do {} while
479     * (!cas...)" which is the simplest way to force an update of a
480 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
481     * several unnecessary-looking hoisted null checks) that help
482 dl 1.1 * some methods perform reasonably even when interpreted (not
483     * compiled).
484     *
485     * The order of declarations in this file is:
486     * (1) Static utility functions
487     * (2) Nested (static) classes
488     * (3) Static fields
489     * (4) Fields, along with constants used when unpacking some of them
490     * (5) Internal control methods
491     * (6) Callbacks and other support for ForkJoinTask methods
492     * (7) Exported methods
493     * (8) Static block initializing statics in minimally dependent order
494     */
495    
496     // Static utilities
497    
498     /**
499     * If there is a security manager, makes sure caller has
500     * permission to modify threads.
501     */
502     private static void checkPermission() {
503     SecurityManager security = System.getSecurityManager();
504     if (security != null)
505     security.checkPermission(modifyThreadPermission);
506     }
507    
508     // Nested classes
509    
510     /**
511     * Factory for creating new {@link ForkJoinWorkerThread}s.
512     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513     * for {@code ForkJoinWorkerThread} subclasses that extend base
514     * functionality or initialize threads with different contexts.
515     */
516     public static interface ForkJoinWorkerThreadFactory {
517     /**
518     * Returns a new worker thread operating in the given pool.
519     *
520     * @param pool the pool this thread works in
521     * @throws NullPointerException if the pool is null
522     */
523     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525    
526     /**
527     * Default ForkJoinWorkerThreadFactory implementation; creates a
528     * new ForkJoinWorkerThread.
529     */
530 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
531 dl 1.1 implements ForkJoinWorkerThreadFactory {
532 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 dl 1.1 return new ForkJoinWorkerThread(pool);
534     }
535     }
536    
537     /**
538 dl 1.21 * Per-thread records for threads that submit to pools. Currently
539     * holds only pseudo-random seed / index that is used to choose
540     * submission queues in method externalPush. In the future, this may
541     * also incorporate a means to implement different task rejection
542     * and resubmission policies.
543     *
544     * Seeds for submitters and workers/workQueues work in basically
545     * the same way but are initialized and updated using slightly
546     * different mechanics. Both are initialized using the same
547     * approach as in class ThreadLocal, where successive values are
548     * unlikely to collide with previous values. Seeds are then
549     * randomly modified upon collisions using xorshifts, which
550     * requires a non-zero seed.
551     */
552     static final class Submitter {
553     int seed;
554     Submitter(int s) { seed = s; }
555     }
556    
557     /**
558 dl 1.1 * Class for artificial tasks that are used to replace the target
559     * of local joins if they are removed from an interior queue slot
560     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561     * actually do anything beyond having a unique identity.
562     */
563     static final class EmptyTask extends ForkJoinTask<Void> {
564 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
565 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566     public final Void getRawResult() { return null; }
567     public final void setRawResult(Void x) {}
568     public final boolean exec() { return true; }
569     }
570    
571     /**
572     * Queues supporting work-stealing as well as external task
573     * submission. See above for main rationale and algorithms.
574     * Implementation relies heavily on "Unsafe" intrinsics
575     * and selective use of "volatile":
576     *
577     * Field "base" is the index (mod array.length) of the least valid
578     * queue slot, which is always the next position to steal (poll)
579     * from if nonempty. Reads and writes require volatile orderings
580     * but not CAS, because updates are only performed after slot
581     * CASes.
582     *
583     * Field "top" is the index (mod array.length) of the next queue
584     * slot to push to or pop from. It is written only by owner thread
585 dl 1.12 * for push, or under lock for external/shared push, and accessed
586     * by other threads only after reading (volatile) base. Both top
587     * and base are allowed to wrap around on overflow, but (top -
588     * base) (or more commonly -(base - top) to force volatile read of
589     * base before top) still estimates size. The lock ("qlock") is
590     * forced to -1 on termination, causing all further lock attempts
591     * to fail. (Note: we don't need CAS for termination state because
592     * upon pool shutdown, all shared-queues will stop being used
593     * anyway.) Nearly all lock bodies are set up so that exceptions
594     * within lock bodies are "impossible" (modulo JVM errors that
595     * would cause failure anyway.)
596 dl 1.1 *
597     * The array slots are read and written using the emulation of
598     * volatiles/atomics provided by Unsafe. Insertions must in
599     * general use putOrderedObject as a form of releasing store to
600     * ensure that all writes to the task object are ordered before
601 dl 1.12 * its publication in the queue. All removals entail a CAS to
602     * null. The array is always a power of two. To ensure safety of
603     * Unsafe array operations, all accesses perform explicit null
604     * checks and implicit bounds checks via power-of-two masking.
605 dl 1.1 *
606     * In addition to basic queuing support, this class contains
607     * fields described elsewhere to control execution. It turns out
608 dl 1.12 * to work better memory-layout-wise to include them in this class
609     * rather than a separate class.
610 dl 1.1 *
611     * Performance on most platforms is very sensitive to placement of
612     * instances of both WorkQueues and their arrays -- we absolutely
613     * do not want multiple WorkQueue instances or multiple queue
614     * arrays sharing cache lines. (It would be best for queue objects
615     * and their arrays to share, but there is nothing available to
616     * help arrange that). Unfortunately, because they are recorded
617     * in a common array, WorkQueue instances are often moved to be
618     * adjacent by garbage collectors. To reduce impact, we use field
619     * padding that works OK on common platforms; this effectively
620     * trades off slightly slower average field access for the sake of
621     * avoiding really bad worst-case access. (Until better JVM
622     * support is in place, this padding is dependent on transient
623 dl 1.21 * properties of JVM field layout rules.) We also take care in
624     * allocating, sizing and resizing the array. Non-shared queue
625     * arrays are initialized by workers before use. Others are
626     * allocated on first use.
627 dl 1.1 */
628     static final class WorkQueue {
629     /**
630     * Capacity of work-stealing queue array upon initialization.
631     * Must be a power of two; at least 4, but should be larger to
632     * reduce or eliminate cacheline sharing among queues.
633     * Currently, it is much larger, as a partial workaround for
634     * the fact that JVMs often place arrays in locations that
635     * share GC bookkeeping (especially cardmarks) such that
636     * per-write accesses encounter serious memory contention.
637     */
638     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639    
640     /**
641     * Maximum size for queue arrays. Must be a power of two less
642     * than or equal to 1 << (31 - width of array entry) to ensure
643     * lack of wraparound of index calculations, but defined to a
644     * value a bit less than this to help users trap runaway
645     * programs before saturating systems.
646     */
647     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648    
649 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
650     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651    
652 dl 1.1 int seed; // for random scanning; initialize nonzero
653     volatile int eventCount; // encoded inactivation count; < 0 if inactive
654     int nextWait; // encoded record of next event waiter
655 dl 1.18 int hint; // steal or signal hint (index)
656 dl 1.1 int poolIndex; // index of this queue in pool (or 0)
657 dl 1.18 final int mode; // 0: lifo, > 0: fifo, < 0: shared
658     int nsteals; // number of steals
659 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
660 dl 1.1 volatile int base; // index of next slot for poll
661     int top; // index of next slot for push
662     ForkJoinTask<?>[] array; // the elements (initially unallocated)
663     final ForkJoinPool pool; // the containing pool (may be null)
664     final ForkJoinWorkerThread owner; // owning thread or null if shared
665     volatile Thread parker; // == owner during call to park; else null
666     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667     ForkJoinTask<?> currentSteal; // current non-local task being executed
668 dl 1.18
669 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 dl 1.1
672 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673     int seed) {
674 dl 1.1 this.pool = pool;
675     this.owner = owner;
676 dl 1.18 this.mode = mode;
677     this.seed = seed;
678 dl 1.21 // Place indices in the center of array (that is not yet allocated)
679 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680     }
681    
682     /**
683 dl 1.21 * Returns the approximate number of tasks in the queue.
684     */
685     final int queueSize() {
686     int n = base - top; // non-owner callers must read base first
687     return (n >= 0) ? 0 : -n; // ignore transient negative
688     }
689    
690     /**
691     * Provides a more accurate estimate of whether this queue has
692     * any tasks than does queueSize, by checking whether a
693     * near-empty queue has at least one unclaimed task.
694     */
695     final boolean isEmpty() {
696     ForkJoinTask<?>[] a; int m, s;
697     int n = base - (s = top);
698     return (n >= 0 ||
699     (n == -1 &&
700     ((a = array) == null ||
701     (m = a.length - 1) < 0 ||
702     U.getObject
703     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704     }
705    
706     /**
707     * Pushes a task. Call only by owner in unshared queues. (The
708     * shared-queue version is embedded in method externalPush.)
709 dl 1.1 *
710     * @param task the task. Caller must ensure non-null.
711     * @throw RejectedExecutionException if array cannot be resized
712     */
713     final void push(ForkJoinTask<?> task) {
714 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
715     int s = top, m, n;
716     if ((a = array) != null) { // ignore if queue removed
717 dl 1.21 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718     U.putOrderedObject(a, j, task);
719     if ((n = (top = s + 1) - base) <= 2) {
720 dl 1.18 if ((p = pool) != null)
721 dl 1.21 p.signalWork(this);
722 dl 1.18 }
723     else if (n >= m)
724     growArray();
725 dl 1.1 }
726     }
727    
728 dl 1.18 /**
729     * Initializes or doubles the capacity of array. Call either
730     * by owner or with lock held -- it is OK for base, but not
731     * top, to move while resizings are in progress.
732     */
733     final ForkJoinTask<?>[] growArray() {
734     ForkJoinTask<?>[] oldA = array;
735     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736     if (size > MAXIMUM_QUEUE_CAPACITY)
737     throw new RejectedExecutionException("Queue capacity exceeded");
738     int oldMask, t, b;
739     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741     (t = top) - (b = base) > 0) {
742     int mask = size - 1;
743     do {
744     ForkJoinTask<?> x;
745     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746     int j = ((b & mask) << ASHIFT) + ABASE;
747     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748     if (x != null &&
749     U.compareAndSwapObject(oldA, oldj, x, null))
750     U.putObjectVolatile(a, j, x);
751     } while (++b != t);
752 dl 1.1 }
753 dl 1.18 return a;
754 dl 1.1 }
755    
756     /**
757     * Takes next task, if one exists, in LIFO order. Call only
758 dl 1.9 * by owner in unshared queues.
759 dl 1.1 */
760     final ForkJoinTask<?> pop() {
761     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762     if ((a = array) != null && (m = a.length - 1) >= 0) {
763     for (int s; (s = top - 1) - base >= 0;) {
764     long j = ((m & s) << ASHIFT) + ABASE;
765     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766     break;
767     if (U.compareAndSwapObject(a, j, t, null)) {
768     top = s;
769     return t;
770     }
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes a task in FIFO order if b is base of queue and a task
778     * can be claimed without contention. Specialized versions
779     * appear in ForkJoinPool methods scan and tryHelpStealer.
780     */
781     final ForkJoinTask<?> pollAt(int b) {
782     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783     if ((a = array) != null) {
784     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786     base == b &&
787     U.compareAndSwapObject(a, j, t, null)) {
788     base = b + 1;
789     return t;
790     }
791     }
792     return null;
793     }
794    
795     /**
796     * Takes next task, if one exists, in FIFO order.
797     */
798     final ForkJoinTask<?> poll() {
799     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800     while ((b = base) - top < 0 && (a = array) != null) {
801     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803     if (t != null) {
804     if (base == b &&
805     U.compareAndSwapObject(a, j, t, null)) {
806     base = b + 1;
807     return t;
808     }
809     }
810     else if (base == b) {
811     if (b + 1 == top)
812     break;
813 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
814 dl 1.1 }
815     }
816     return null;
817     }
818    
819     /**
820     * Takes next task, if one exists, in order specified by mode.
821     */
822     final ForkJoinTask<?> nextLocalTask() {
823     return mode == 0 ? pop() : poll();
824     }
825    
826     /**
827     * Returns next task, if one exists, in order specified by mode.
828     */
829     final ForkJoinTask<?> peek() {
830     ForkJoinTask<?>[] a = array; int m;
831     if (a == null || (m = a.length - 1) < 0)
832     return null;
833     int i = mode == 0 ? top - 1 : base;
834     int j = ((i & m) << ASHIFT) + ABASE;
835     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836     }
837    
838     /**
839     * Pops the given task only if it is at the current top.
840 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
841 dl 1.1 */
842     final boolean tryUnpush(ForkJoinTask<?> t) {
843     ForkJoinTask<?>[] a; int s;
844     if ((a = array) != null && (s = top) != base &&
845     U.compareAndSwapObject
846     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847     top = s;
848     return true;
849     }
850     return false;
851     }
852    
853     /**
854     * Removes and cancels all known tasks, ignoring any exceptions.
855     */
856     final void cancelAll() {
857     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859     for (ForkJoinTask<?> t; (t = poll()) != null; )
860     ForkJoinTask.cancelIgnoringExceptions(t);
861     }
862    
863     /**
864     * Computes next value for random probes. Scans don't require
865     * a very high quality generator, but also not a crummy one.
866     * Marsaglia xor-shift is cheap and works well enough. Note:
867     * This is manually inlined in its usages in ForkJoinPool to
868     * avoid writes inside busy scan loops.
869     */
870     final int nextSeed() {
871     int r = seed;
872     r ^= r << 13;
873     r ^= r >>> 17;
874     return seed = r ^= r << 5;
875     }
876    
877 dl 1.11 // Specialized execution methods
878 dl 1.1
879     /**
880     * Pops and runs tasks until empty.
881     */
882     private void popAndExecAll() {
883     // A bit faster than repeated pop calls
884     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885     while ((a = array) != null && (m = a.length - 1) >= 0 &&
886     (s = top - 1) - base >= 0 &&
887     (t = ((ForkJoinTask<?>)
888     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889     != null) {
890     if (U.compareAndSwapObject(a, j, t, null)) {
891     top = s;
892     t.doExec();
893     }
894     }
895     }
896    
897     /**
898     * Polls and runs tasks until empty.
899     */
900     private void pollAndExecAll() {
901     for (ForkJoinTask<?> t; (t = poll()) != null;)
902     t.doExec();
903     }
904    
905     /**
906 dl 1.12 * If present, removes from queue and executes the given task,
907     * or any other cancelled task. Returns (true) on any CAS
908 dl 1.1 * or consistency check failure so caller can retry.
909     *
910 dl 1.12 * @return false if no progress can be made, else true;
911 dl 1.1 */
912 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913     boolean stat = true, removed = false, empty = true;
914 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
915     if ((a = array) != null && (m = a.length - 1) >= 0 &&
916     (n = (s = top) - (b = base)) > 0) {
917     for (ForkJoinTask<?> t;;) { // traverse from s to b
918     int j = ((--s & m) << ASHIFT) + ABASE;
919     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920     if (t == null) // inconsistent length
921     break;
922     else if (t == task) {
923     if (s + 1 == top) { // pop
924     if (!U.compareAndSwapObject(a, j, task, null))
925     break;
926     top = s;
927     removed = true;
928     }
929     else if (base == b) // replace with proxy
930     removed = U.compareAndSwapObject(a, j, task,
931     new EmptyTask());
932     break;
933     }
934     else if (t.status >= 0)
935     empty = false;
936     else if (s + 1 == top) { // pop and throw away
937     if (U.compareAndSwapObject(a, j, t, null))
938     top = s;
939     break;
940     }
941     if (--n == 0) {
942     if (!empty && base == b)
943 dl 1.12 stat = false;
944 dl 1.1 break;
945     }
946     }
947     }
948     if (removed)
949     task.doExec();
950     return stat;
951     }
952    
953     /**
954 dl 1.12 * Polls for and executes the given task or any other task in
955     * its CountedCompleter computation
956 dl 1.11 */
957 dl 1.12 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958     ForkJoinTask<?>[] a; int b; Object o;
959     outer: while ((b = base) - top < 0 && (a = array) != null) {
960     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961     if ((o = U.getObject(a, j)) == null ||
962     !(o instanceof CountedCompleter))
963     break;
964     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965     if (r == root) {
966     if (base == b &&
967     U.compareAndSwapObject(a, j, t, null)) {
968     base = b + 1;
969     t.doExec();
970     return true;
971 dl 1.11 }
972 dl 1.12 else
973     break; // restart
974 dl 1.11 }
975 dl 1.12 if ((r = r.completer) == null)
976     break outer; // not part of root computation
977 dl 1.11 }
978     }
979 dl 1.12 return false;
980 dl 1.11 }
981    
982     /**
983 dl 1.1 * Executes a top-level task and any local tasks remaining
984     * after execution.
985     */
986     final void runTask(ForkJoinTask<?> t) {
987     if (t != null) {
988 dl 1.12 (currentSteal = t).doExec();
989     currentSteal = null;
990 dl 1.32 ++nsteals;
991 dl 1.21 if (base - top < 0) { // process remaining local tasks
992 dl 1.1 if (mode == 0)
993     popAndExecAll();
994     else
995     pollAndExecAll();
996     }
997     }
998     }
999    
1000     /**
1001     * Executes a non-top-level (stolen) task.
1002     */
1003     final void runSubtask(ForkJoinTask<?> t) {
1004     if (t != null) {
1005     ForkJoinTask<?> ps = currentSteal;
1006 dl 1.12 (currentSteal = t).doExec();
1007 dl 1.1 currentSteal = ps;
1008     }
1009     }
1010    
1011     /**
1012     * Returns true if owned and not known to be blocked.
1013     */
1014     final boolean isApparentlyUnblocked() {
1015     Thread wt; Thread.State s;
1016     return (eventCount >= 0 &&
1017     (wt = owner) != null &&
1018     (s = wt.getState()) != Thread.State.BLOCKED &&
1019     s != Thread.State.WAITING &&
1020     s != Thread.State.TIMED_WAITING);
1021     }
1022    
1023     // Unsafe mechanics
1024     private static final sun.misc.Unsafe U;
1025 dl 1.12 private static final long QLOCK;
1026 dl 1.1 private static final int ABASE;
1027     private static final int ASHIFT;
1028     static {
1029     int s;
1030     try {
1031     U = getUnsafe();
1032     Class<?> k = WorkQueue.class;
1033     Class<?> ak = ForkJoinTask[].class;
1034 dl 1.12 QLOCK = U.objectFieldOffset
1035     (k.getDeclaredField("qlock"));
1036 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1037     s = U.arrayIndexScale(ak);
1038     } catch (Exception e) {
1039     throw new Error(e);
1040     }
1041     if ((s & (s-1)) != 0)
1042     throw new Error("data type scale not a power of two");
1043     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044     }
1045     }
1046 jsr166 1.3
1047 dl 1.18 // static fields (initialized in static initializer below)
1048    
1049     /**
1050     * Creates a new ForkJoinWorkerThread. This factory is used unless
1051     * overridden in ForkJoinPool constructors.
1052     */
1053     public static final ForkJoinWorkerThreadFactory
1054     defaultForkJoinWorkerThreadFactory;
1055    
1056 dl 1.1 /**
1057 dl 1.18 * Per-thread submission bookkeeping. Shared across all pools
1058     * to reduce ThreadLocal pollution and because random motion
1059     * to avoid contention in one pool is likely to hold for others.
1060     * Lazily initialized on first submission (but null-checked
1061     * in other contexts to avoid unnecessary initialization).
1062 dl 1.1 */
1063 dl 1.18 static final ThreadLocal<Submitter> submitters;
1064 dl 1.1
1065 dl 1.8 /**
1066 dl 1.21 * Permission required for callers of methods that may start or
1067     * kill threads.
1068     */
1069     private static final RuntimePermission modifyThreadPermission;
1070    
1071     /**
1072 dl 1.8 * Common (static) pool. Non-null for public use unless a static
1073 dl 1.12 * construction exception, but internal usages null-check on use
1074     * to paranoically avoid potential initialization circularities
1075     * as well as to simplify generated code.
1076 dl 1.8 */
1077     static final ForkJoinPool commonPool;
1078    
1079     /**
1080 dl 1.12 * Common pool parallelism. Must equal commonPool.parallelism.
1081 dl 1.1 */
1082 dl 1.12 static final int commonPoolParallelism;
1083 dl 1.1
1084     /**
1085 dl 1.12 * Sequence number for creating workerNamePrefix.
1086 dl 1.1 */
1087 dl 1.12 private static int poolNumberSequence;
1088 dl 1.1
1089     /**
1090 dl 1.12 * Return the next sequence number. We don't expect this to
1091     * ever contend so use simple builtin sync.
1092 dl 1.1 */
1093 dl 1.12 private static final synchronized int nextPoolId() {
1094     return ++poolNumberSequence;
1095     }
1096 dl 1.1
1097     // static constants
1098    
1099     /**
1100 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1101     * triggering quiescence to park waiting for new work. On timeout,
1102     * the thread will instead try to shrink the number of
1103     * workers. The value should be large enough to avoid overly
1104     * aggressive shrinkage during most transient stalls (long GCs
1105     * etc).
1106 dl 1.1 */
1107 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1108 dl 1.1
1109     /**
1110 dl 1.7 * Timeout value when there are more threads than parallelism level
1111 dl 1.1 */
1112 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1113 dl 1.1
1114     /**
1115 dl 1.26 * Tolerance for idle timeouts, to cope with timer undershoots
1116     */
1117 dl 1.33 private static final long TIMEOUT_SLOP = 2000000L;
1118 dl 1.26
1119     /**
1120 dl 1.1 * The maximum stolen->joining link depth allowed in method
1121 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1122 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1123     * (otherwise unchecked) cycles and to bound staleness of
1124     * traversal parameters at the expense of sometimes blocking when
1125     * we could be helping.
1126     */
1127     private static final int MAX_HELP = 64;
1128    
1129     /**
1130     * Increment for seed generators. See class ThreadLocal for
1131     * explanation.
1132     */
1133     private static final int SEED_INCREMENT = 0x61c88647;
1134    
1135     /**
1136     * Bits and masks for control variables
1137     *
1138     * Field ctl is a long packed with:
1139     * AC: Number of active running workers minus target parallelism (16 bits)
1140     * TC: Number of total workers minus target parallelism (16 bits)
1141     * ST: true if pool is terminating (1 bit)
1142     * EC: the wait count of top waiting thread (15 bits)
1143     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144     *
1145     * When convenient, we can extract the upper 32 bits of counts and
1146     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147     * (int)ctl. The ec field is never accessed alone, but always
1148     * together with id and st. The offsets of counts by the target
1149     * parallelism and the positionings of fields makes it possible to
1150     * perform the most common checks via sign tests of fields: When
1151     * ac is negative, there are not enough active workers, when tc is
1152     * negative, there are not enough total workers, and when e is
1153     * negative, the pool is terminating. To deal with these possibly
1154     * negative fields, we use casts in and out of "short" and/or
1155     * signed shifts to maintain signedness.
1156     *
1157     * When a thread is queued (inactivated), its eventCount field is
1158     * set negative, which is the only way to tell if a worker is
1159     * prevented from executing tasks, even though it must continue to
1160     * scan for them to avoid queuing races. Note however that
1161     * eventCount updates lag releases so usage requires care.
1162     *
1163 dl 1.12 * Field plock is an int packed with:
1164 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 dl 1.1 *
1168     * The sequence number enables simple consistency checks:
1169     * Staleness of read-only operations on the workQueues array can
1170 dl 1.12 * be checked by comparing plock before vs after the reads.
1171 dl 1.1 */
1172    
1173     // bit positions/shifts for fields
1174     private static final int AC_SHIFT = 48;
1175     private static final int TC_SHIFT = 32;
1176     private static final int ST_SHIFT = 31;
1177     private static final int EC_SHIFT = 16;
1178    
1179     // bounds
1180     private static final int SMASK = 0xffff; // short bits
1181     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1182 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1183     private static final int SQMASK = 0x007e; // max 64 (even) slots
1184 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1185     private static final int INT_SIGN = 1 << 31;
1186    
1187     // masks
1188     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1189     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1190     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1191    
1192     // units for incrementing and decrementing
1193     private static final long TC_UNIT = 1L << TC_SHIFT;
1194     private static final long AC_UNIT = 1L << AC_SHIFT;
1195    
1196     // masks and units for dealing with u = (int)(ctl >>> 32)
1197     private static final int UAC_SHIFT = AC_SHIFT - 32;
1198     private static final int UTC_SHIFT = TC_SHIFT - 32;
1199     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1200     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1201     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1202     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1203    
1204     // masks and units for dealing with e = (int)ctl
1205     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1206     private static final int E_SEQ = 1 << EC_SHIFT;
1207    
1208 dl 1.12 // plock bits
1209 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1210 dl 1.12 private static final int PL_LOCK = 2;
1211     private static final int PL_SIGNAL = 1;
1212     private static final int PL_SPINS = 1 << 8;
1213 dl 1.1
1214     // access mode for WorkQueue
1215     static final int LIFO_QUEUE = 0;
1216     static final int FIFO_QUEUE = 1;
1217     static final int SHARED_QUEUE = -1;
1218    
1219 dl 1.18 // bounds for #steps in scan loop -- must be power 2 minus 1
1220     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1221     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1222    
1223 dl 1.1 // Instance fields
1224    
1225     /*
1226 dl 1.18 * Field layout of this class tends to matter more than one would
1227     * like. Runtime layout order is only loosely related to
1228 dl 1.1 * declaration order and may differ across JVMs, but the following
1229     * empirically works OK on current JVMs.
1230     */
1231 dl 1.21
1232     // Heuristic padding to ameliorate unfortunate memory placements
1233     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234    
1235 dl 1.8 volatile long stealCount; // collects worker counts
1236 dl 1.1 volatile long ctl; // main pool control
1237 dl 1.18 volatile int plock; // shutdown status and seqLock
1238 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1239 dl 1.18 final int config; // mode and parallelism level
1240 dl 1.1 WorkQueue[] workQueues; // main registry
1241 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1242 dl 1.1 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 dl 1.8 final String workerNamePrefix; // to create worker name string
1244    
1245 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246     volatile Object pad18, pad19, pad1a, pad1b;
1247    
1248 dl 1.8 /*
1249 dl 1.12 * Acquires the plock lock to protect worker array and related
1250     * updates. This method is called only if an initial CAS on plock
1251     * fails. This acts as a spinLock for normal cases, but falls back
1252     * to builtin monitor to block when (rarely) needed. This would be
1253     * a terrible idea for a highly contended lock, but works fine as
1254 dl 1.32 * a more conservative alternative to a pure spinlock.
1255 dl 1.12 */
1256     private int acquirePlock() {
1257     int spins = PL_SPINS, r = 0, ps, nps;
1258     for (;;) {
1259     if (((ps = plock) & PL_LOCK) == 0 &&
1260     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261     return nps;
1262 dl 1.18 else if (r == 0) { // randomize spins if possible
1263     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264     if ((t instanceof ForkJoinWorkerThread) &&
1265     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266     r = w.seed;
1267     else if ((z = submitters.get()) != null)
1268     r = z.seed;
1269     else
1270     r = 1;
1271     }
1272 dl 1.8 else if (spins >= 0) {
1273     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274     if (r >= 0)
1275     --spins;
1276     }
1277 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 jsr166 1.13 synchronized (this) {
1279 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1280 dl 1.8 try {
1281     wait();
1282     } catch (InterruptedException ie) {
1283 dl 1.11 try {
1284     Thread.currentThread().interrupt();
1285     } catch (SecurityException ignore) {
1286     }
1287 dl 1.8 }
1288     }
1289     else
1290 dl 1.12 notifyAll();
1291 dl 1.8 }
1292     }
1293     }
1294     }
1295 dl 1.1
1296     /**
1297 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1298     * when CAS of seq value for unlock fails.
1299 dl 1.1 */
1300 dl 1.12 private void releasePlock(int ps) {
1301     plock = ps;
1302 jsr166 1.13 synchronized (this) { notifyAll(); }
1303 dl 1.1 }
1304    
1305 dl 1.18 /**
1306     * Performs secondary initialization, called when plock is zero.
1307     * Creates workQueue array and sets plock to a valid value. The
1308     * lock body must be exception-free (so no try/finally) so we
1309     * optimistically allocate new array outside the lock and throw
1310     * away if (very rarely) not needed. (A similar tactic is used in
1311     * fullExternalPush.) Because the plock seq value can eventually
1312     * wrap around zero, this method harmlessly fails to reinitialize
1313     * if workQueues exists, while still advancing plock.
1314 dl 1.21 *
1315 jsr166 1.24 * Additionally tries to create the first worker.
1316 dl 1.18 */
1317 dl 1.21 private void initWorkers() {
1318     WorkQueue[] ws, nws; int ps;
1319 dl 1.18 int p = config & SMASK; // find power of two table size
1320     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1321     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1322 dl 1.21 n = (n + 1) << 1;
1323     if ((ws = workQueues) == null || ws.length == 0)
1324     nws = new WorkQueue[n];
1325     else
1326     nws = null;
1327 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1328     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1329     ps = acquirePlock();
1330 dl 1.21 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1331 dl 1.18 workQueues = nws;
1332 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1333 dl 1.18 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1334     releasePlock(nps);
1335 dl 1.21 tryAddWorker();
1336     }
1337    
1338     /**
1339 dl 1.26 * Tries to create and start one worker if fewer than target
1340     * parallelism level exist. Adjusts counts etc on failure.
1341 dl 1.21 */
1342     private void tryAddWorker() {
1343 dl 1.18 long c; int u;
1344 dl 1.21 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1345     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1346 dl 1.18 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1347     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1348 dl 1.21 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1349     ForkJoinWorkerThreadFactory fac;
1350     Throwable ex = null;
1351     ForkJoinWorkerThread wt = null;
1352     try {
1353     if ((fac = factory) != null &&
1354     (wt = fac.newThread(this)) != null) {
1355     wt.start();
1356     break;
1357     }
1358     } catch (Throwable e) {
1359     ex = e;
1360     }
1361     deregisterWorker(wt, ex);
1362     break;
1363     }
1364 dl 1.18 }
1365     }
1366    
1367     // Registering and deregistering workers
1368    
1369     /**
1370     * Callback from ForkJoinWorkerThread to establish and record its
1371     * WorkQueue. To avoid scanning bias due to packing entries in
1372     * front of the workQueues array, we treat the array as a simple
1373     * power-of-two hash table using per-thread seed as hash,
1374     * expanding as needed.
1375     *
1376     * @param wt the worker thread
1377 dl 1.21 * @return the worker's queue
1378 dl 1.18 */
1379 dl 1.21 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1380     Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1381     wt.setDaemon(true);
1382     if ((handler = ueh) != null)
1383     wt.setUncaughtExceptionHandler(handler);
1384     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1385     s += SEED_INCREMENT) ||
1386     s == 0); // skip 0
1387     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1388     if (((ps = plock) & PL_LOCK) != 0 ||
1389     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1390     ps = acquirePlock();
1391     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1392     try {
1393     if ((ws = workQueues) != null) { // skip if shutting down
1394     int n = ws.length, m = n - 1;
1395     int r = (s << 1) | 1; // use odd-numbered indices
1396     if (ws[r &= m] != null) { // collision
1397     int probes = 0; // step by approx half size
1398     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1399     while (ws[r = (r + step) & m] != null) {
1400     if (++probes >= n) {
1401     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1402     m = n - 1;
1403     probes = 0;
1404 dl 1.1 }
1405     }
1406     }
1407 dl 1.21 w.eventCount = w.poolIndex = r; // volatile write orders
1408     ws[r] = w;
1409 dl 1.1 }
1410 dl 1.21 } finally {
1411     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412     releasePlock(nps);
1413 dl 1.1 }
1414 dl 1.21 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1415     return w;
1416 dl 1.1 }
1417    
1418     /**
1419     * Final callback from terminating worker, as well as upon failure
1420 dl 1.12 * to construct or start a worker. Removes record of worker from
1421     * array, and adjusts counts. If pool is shutting down, tries to
1422     * complete termination.
1423 dl 1.1 *
1424 dl 1.12 * @param wt the worker thread or null if construction failed
1425 dl 1.1 * @param ex the exception causing failure, or null if none
1426     */
1427     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1428     WorkQueue w = null;
1429     if (wt != null && (w = wt.workQueue) != null) {
1430 dl 1.12 int ps;
1431     w.qlock = -1; // ensure set
1432 dl 1.18 long ns = w.nsteals, sc; // collect steal count
1433     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1434     sc = stealCount, sc + ns));
1435 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1436     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1437     ps = acquirePlock();
1438     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1439 dl 1.8 try {
1440 dl 1.12 int idx = w.poolIndex;
1441 dl 1.1 WorkQueue[] ws = workQueues;
1442     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1443     ws[idx] = null;
1444     } finally {
1445 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1446     releasePlock(nps);
1447 dl 1.1 }
1448     }
1449    
1450 dl 1.32 long c; // adjust ctl counts
1451 dl 1.1 do {} while (!U.compareAndSwapLong
1452     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1453     ((c - TC_UNIT) & TC_MASK) |
1454     (c & ~(AC_MASK|TC_MASK)))));
1455    
1456 dl 1.26 if (!tryTerminate(false, false) && w != null && w.array != null) {
1457 dl 1.32 w.cancelAll(); // cancel remaining tasks
1458     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1459     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1460     if (e > 0) { // activate or create replacement
1461     if ((ws = workQueues) == null ||
1462     (i = e & SMASK) >= ws.length ||
1463     (v = ws[i]) != null)
1464     break;
1465     long nc = (((long)(v.nextWait & E_MASK)) |
1466     ((long)(u + UAC_UNIT) << 32));
1467     if (v.eventCount != (e | INT_SIGN))
1468     break;
1469     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1470     v.eventCount = (e + E_SEQ) & E_MASK;
1471     if ((p = v.parker) != null)
1472     U.unpark(p);
1473     break;
1474 dl 1.26 }
1475     }
1476     else {
1477     if ((short)u < 0)
1478     tryAddWorker();
1479     break;
1480     }
1481     }
1482 dl 1.1 }
1483 dl 1.26 if (ex == null) // help clean refs on way out
1484     ForkJoinTask.helpExpungeStaleExceptions();
1485     else // rethrow
1486 dl 1.11 ForkJoinTask.rethrow(ex);
1487 dl 1.1 }
1488    
1489     // Submissions
1490    
1491     /**
1492     * Unless shutting down, adds the given task to a submission queue
1493     * at submitter's current queue index (modulo submission
1494 dl 1.12 * range). Only the most common path is directly handled in this
1495     * method. All others are relayed to fullExternalPush.
1496 dl 1.1 *
1497     * @param task the task. Caller must ensure non-null.
1498     */
1499 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1500     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1501     if ((z = submitters.get()) != null && plock > 0 &&
1502     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1503     (q = ws[m & z.seed & SQMASK]) != null &&
1504     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1505 dl 1.18 int b = q.base, s = q.top, n, an;
1506     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1507 dl 1.21 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1508     U.putOrderedObject(a, j, task);
1509 dl 1.12 q.top = s + 1; // push on to deque
1510     q.qlock = 0;
1511 dl 1.18 if (n <= 2)
1512 dl 1.21 signalWork(q);
1513 dl 1.1 return;
1514     }
1515 dl 1.12 q.qlock = 0;
1516 dl 1.1 }
1517 dl 1.12 fullExternalPush(task);
1518 dl 1.1 }
1519    
1520 dl 1.7 /**
1521 dl 1.12 * Full version of externalPush. This method is called, among
1522     * other times, upon the first submission of the first task to the
1523 dl 1.18 * pool, so must perform secondary initialization (via
1524 dl 1.21 * initWorkers). It also detects first submission by an external
1525     * thread by looking up its ThreadLocal, and creates a new shared
1526     * queue if the one at index if empty or contended. The plock lock
1527     * body must be exception-free (so no try/finally) so we
1528 dl 1.18 * optimistically allocate new queues outside the lock and throw
1529     * them away if (very rarely) not needed.
1530 dl 1.12 */
1531     private void fullExternalPush(ForkJoinTask<?> task) {
1532 dl 1.21 int r = 0; // random index seed
1533 dl 1.18 for (Submitter z = submitters.get();;) {
1534     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1535     if (z == null) {
1536     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1537     r += SEED_INCREMENT) && r != 0)
1538     submitters.set(z = new Submitter(r));
1539     }
1540     else if (r == 0) { // move to a different index
1541     r = z.seed;
1542     r ^= r << 13; // same xorshift as WorkQueues
1543     r ^= r >>> 17;
1544     z.seed = r ^ (r << 5);
1545     }
1546     else if ((ps = plock) < 0)
1547 dl 1.12 throw new RejectedExecutionException();
1548 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1549     (m = ws.length - 1) < 0)
1550 dl 1.21 initWorkers();
1551 dl 1.18 else if ((q = ws[k = r & m & SQMASK]) != null) {
1552 dl 1.21 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1553     ForkJoinTask<?>[] a = q.array;
1554     int s = q.top;
1555     boolean submitted = false;
1556     try { // locked version of push
1557     if ((a != null && a.length > s + 1 - q.base) ||
1558     (a = q.growArray()) != null) { // must presize
1559     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1560     U.putOrderedObject(a, j, task);
1561     q.top = s + 1;
1562     submitted = true;
1563     }
1564     } finally {
1565     q.qlock = 0; // unlock
1566     }
1567     if (submitted) {
1568     signalWork(q);
1569     return;
1570     }
1571     }
1572     r = 0; // move on failure
1573 dl 1.18 }
1574     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1575     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1576     if (((ps = plock) & PL_LOCK) != 0 ||
1577 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1578     ps = acquirePlock();
1579 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1580     ws[k] = q;
1581 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1582     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1583     releasePlock(nps);
1584     }
1585 dl 1.18 else
1586     r = 0; // try elsewhere while lock held
1587 dl 1.11 }
1588 dl 1.9 }
1589    
1590 dl 1.1 // Maintaining ctl counts
1591    
1592     /**
1593     * Increments active count; mainly called upon return from blocking.
1594     */
1595     final void incrementActiveCount() {
1596     long c;
1597     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1598     }
1599    
1600     /**
1601 dl 1.21 * Tries to create or activate a worker if too few are active.
1602     *
1603     * @param q the (non-null) queue holding tasks to be signalled
1604 dl 1.12 */
1605 dl 1.21 final void signalWork(WorkQueue q) {
1606     int hint = q.poolIndex;
1607     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1608 dl 1.12 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1609     if ((e = (int)c) > 0) {
1610     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1611 dl 1.1 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1612     long nc = (((long)(w.nextWait & E_MASK)) |
1613     ((long)(u + UAC_UNIT) << 32));
1614     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1615 dl 1.21 w.hint = hint;
1616 dl 1.1 w.eventCount = (e + E_SEQ) & E_MASK;
1617 dl 1.21 if ((p = w.parker) != null)
1618 dl 1.12 U.unpark(p);
1619 dl 1.21 break;
1620 dl 1.12 }
1621 dl 1.21 if (q.top - q.base <= 0)
1622 dl 1.1 break;
1623     }
1624     else
1625     break;
1626     }
1627 dl 1.21 else {
1628     if ((short)u < 0)
1629     tryAddWorker();
1630     break;
1631 dl 1.1 }
1632     }
1633     }
1634    
1635     // Scanning for tasks
1636    
1637     /**
1638     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1639     */
1640     final void runWorker(WorkQueue w) {
1641 dl 1.21 w.growArray(); // allocate queue
1642     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1643 dl 1.1 }
1644    
1645     /**
1646     * Scans for and, if found, returns one task, else possibly
1647     * inactivates the worker. This method operates on single reads of
1648     * volatile state and is designed to be re-invoked continuously,
1649     * in part because it returns upon detecting inconsistencies,
1650     * contention, or state changes that indicate possible success on
1651     * re-invocation.
1652     *
1653 dl 1.18 * The scan searches for tasks across queues (starting at a random
1654     * index, and relying on registerWorker to irregularly scatter
1655     * them within array to avoid bias), checking each at least twice.
1656     * The scan terminates upon either finding a non-empty queue, or
1657     * completing the sweep. If the worker is not inactivated, it
1658     * takes and returns a task from this queue. Otherwise, if not
1659     * activated, it signals workers (that may include itself) and
1660     * returns so caller can retry. Also returns for true if the
1661     * worker array may have changed during an empty scan. On failure
1662     * to find a task, we take one of the following actions, after
1663     * which the caller will retry calling this method unless
1664     * terminated.
1665 dl 1.1 *
1666     * * If pool is terminating, terminate the worker.
1667     *
1668     * * If not already enqueued, try to inactivate and enqueue the
1669     * worker on wait queue. Or, if inactivating has caused the pool
1670 dl 1.32 * to be quiescent, relay to idleAwaitWork to possibly shrink
1671     * pool.
1672 dl 1.1 *
1673 dl 1.12 * * If already enqueued and none of the above apply, possibly
1674 dl 1.32 * park awaiting signal, else lingering to help scan and signal.
1675     *
1676     * * If a non-empty queue discovered or left as a hint,
1677     * help wake up other workers before return
1678 dl 1.1 *
1679     * @param w the worker (via its WorkQueue)
1680 jsr166 1.5 * @return a task or null if none found
1681 dl 1.1 */
1682     private final ForkJoinTask<?> scan(WorkQueue w) {
1683 dl 1.21 WorkQueue[] ws; int m;
1684 dl 1.18 int ps = plock; // read plock before ws
1685     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1686     int ec = w.eventCount; // ec is negative if inactive
1687     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1688 dl 1.32 w.hint = -1; // update seed and clear hint
1689 dl 1.21 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1690     do {
1691 dl 1.18 WorkQueue q; ForkJoinTask<?>[] a; int b;
1692     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1693     (a = q.array) != null) { // probably nonempty
1694 dl 1.1 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1695 dl 1.18 ForkJoinTask<?> t = (ForkJoinTask<?>)
1696     U.getObjectVolatile(a, i);
1697 dl 1.1 if (q.base == b && ec >= 0 && t != null &&
1698     U.compareAndSwapObject(a, i, t, null)) {
1699 dl 1.18 if ((q.base = b + 1) - q.top < 0)
1700 dl 1.21 signalWork(q);
1701 dl 1.18 return t; // taken
1702     }
1703 dl 1.21 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1704     w.hint = (r + j) & m; // help signal below
1705     break; // cannot take
1706     }
1707     }
1708     } while (--j >= 0);
1709    
1710 dl 1.32 int h, e, ns; long c, sc; WorkQueue q;
1711     if ((ns = w.nsteals) != 0) {
1712     if (U.compareAndSwapLong(this, STEALCOUNT,
1713     sc = stealCount, sc + ns))
1714     w.nsteals = 0; // collect steals and rescan
1715     }
1716     else if (plock != ps) // consistency check
1717     ; // skip
1718     else if ((e = (int)(c = ctl)) < 0)
1719     w.qlock = -1; // pool is terminating
1720     else {
1721     if ((h = w.hint) < 0) {
1722     if (ec >= 0) { // try to enqueue/inactivate
1723     long nc = (((long)ec |
1724     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1725     w.nextWait = e; // link and mark inactive
1726     w.eventCount = ec | INT_SIGN;
1727     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1728     w.eventCount = ec; // unmark on CAS failure
1729     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1730     idleAwaitWork(w, nc, c);
1731     }
1732     else if (w.eventCount < 0 && !tryTerminate(false, false) &&
1733     ctl == c) { // block
1734     Thread wt = Thread.currentThread();
1735     Thread.interrupted(); // clear status
1736     U.putObject(wt, PARKBLOCKER, this);
1737     w.parker = wt; // emulate LockSupport.park
1738     if (w.eventCount < 0) // recheck
1739     U.park(false, 0L);
1740     w.parker = null;
1741     U.putObject(wt, PARKBLOCKER, null);
1742     }
1743     }
1744     if ((h >= 0 || (h = w.hint) >= 0) &&
1745     (ws = workQueues) != null && h < ws.length &&
1746     (q = ws[h]) != null) { // signal others before retry
1747     WorkQueue v; Thread p; int u, i, s;
1748     for (int n = (config & SMASK) >>> 1;;) {
1749     int idleCount = (w.eventCount < 0) ? 0 : -1;
1750     if (((s = idleCount - q.base + q.top) <= n &&
1751     (n = s) <= 0) ||
1752     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1753     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1754     (v = ws[i]) == null)
1755     break;
1756     long nc = (((long)(v.nextWait & E_MASK)) |
1757     ((long)(u + UAC_UNIT) << 32));
1758     if (v.eventCount != (e | INT_SIGN) ||
1759     !U.compareAndSwapLong(this, CTL, c, nc))
1760     break;
1761     v.hint = h;
1762     v.eventCount = (e + E_SEQ) & E_MASK;
1763     if ((p = v.parker) != null)
1764     U.unpark(p);
1765     if (--n <= 0)
1766     break;
1767     }
1768 dl 1.21 }
1769     }
1770 dl 1.1 }
1771     return null;
1772     }
1773    
1774     /**
1775     * If inactivating worker w has caused the pool to become
1776     * quiescent, checks for pool termination, and, so long as this is
1777 dl 1.7 * not the only worker, waits for event for up to a given
1778     * duration. On timeout, if ctl has not changed, terminates the
1779 dl 1.1 * worker, which will in turn wake up another worker to possibly
1780     * repeat this process.
1781     *
1782     * @param w the calling worker
1783     * @param currentCtl the ctl value triggering possible quiescence
1784     * @param prevCtl the ctl value to restore if thread is terminated
1785     */
1786     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1787 dl 1.18 if (w != null && w.eventCount < 0 &&
1788     !tryTerminate(false, false) && (int)prevCtl != 0) {
1789 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1790     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1791 dl 1.26 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1792 dl 1.1 Thread wt = Thread.currentThread();
1793     while (ctl == currentCtl) {
1794     Thread.interrupted(); // timed variant of version in scan()
1795     U.putObject(wt, PARKBLOCKER, this);
1796     w.parker = wt;
1797     if (ctl == currentCtl)
1798 dl 1.7 U.park(false, parkTime);
1799 dl 1.1 w.parker = null;
1800     U.putObject(wt, PARKBLOCKER, null);
1801     if (ctl != currentCtl)
1802     break;
1803 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1804 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1805     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1806 dl 1.12 w.qlock = -1; // shrink
1807 dl 1.1 break;
1808     }
1809     }
1810     }
1811     }
1812    
1813     /**
1814 dl 1.26 * Scans through queues looking for work while joining a task; if
1815     * any present, signals. May return early if more signalling is
1816     * detectably unneeded.
1817 dl 1.12 *
1818 dl 1.26 * @param task return early if done
1819 dl 1.12 * @param origin an index to start scan
1820     */
1821 dl 1.26 private void helpSignal(ForkJoinTask<?> task, int origin) {
1822 dl 1.21 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1823 dl 1.26 if (task != null && task.status >= 0 &&
1824     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1825 dl 1.21 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1826 dl 1.26 outer: for (int k = origin, j = m; j >= 0; --j) {
1827 dl 1.21 WorkQueue q = ws[k++ & m];
1828     for (int n = m;;) { // limit to at most m signals
1829 dl 1.26 if (task.status < 0)
1830 dl 1.21 break outer;
1831     if (q == null ||
1832 dl 1.26 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1833 dl 1.12 break;
1834 dl 1.21 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1835     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1836     (w = ws[i]) == null)
1837     break outer;
1838     long nc = (((long)(w.nextWait & E_MASK)) |
1839     ((long)(u + UAC_UNIT) << 32));
1840 dl 1.32 if (w.eventCount != (e | INT_SIGN))
1841     break outer;
1842     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1843 dl 1.28 w.eventCount = (e + E_SEQ) & E_MASK;
1844     if ((p = w.parker) != null)
1845     U.unpark(p);
1846     if (--n <= 0)
1847     break;
1848     }
1849 dl 1.26 }
1850     }
1851     }
1852     }
1853    
1854     /**
1855 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1856     * task, or in turn one of its stealers, Traces currentSteal ->
1857     * currentJoin links looking for a thread working on a descendant
1858     * of the given task and with a non-empty queue to steal back and
1859     * execute tasks from. The first call to this method upon a
1860     * waiting join will often entail scanning/search, (which is OK
1861     * because the joiner has nothing better to do), but this method
1862     * leaves hints in workers to speed up subsequent calls. The
1863     * implementation is very branchy to cope with potential
1864     * inconsistencies or loops encountering chains that are stale,
1865     * unknown, or so long that they are likely cyclic.
1866     *
1867     * @param joiner the joining worker
1868     * @param task the task to join
1869     * @return 0 if no progress can be made, negative if task
1870     * known complete, else positive
1871     */
1872     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873     int stat = 0, steps = 0; // bound to avoid cycles
1874     if (joiner != null && task != null) { // hoist null checks
1875     restart: for (;;) {
1876     ForkJoinTask<?> subtask = task; // current target
1877     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1878     WorkQueue[] ws; int m, s, h;
1879     if ((s = task.status) < 0) {
1880     stat = s;
1881     break restart;
1882     }
1883     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884     break restart; // shutting down
1885 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1886 dl 1.1 v.currentSteal != subtask) {
1887     for (int origin = h;;) { // find stealer
1888     if (((h = (h + 2) & m) & 15) == 1 &&
1889     (subtask.status < 0 || j.currentJoin != subtask))
1890     continue restart; // occasional staleness check
1891     if ((v = ws[h]) != null &&
1892     v.currentSteal == subtask) {
1893 dl 1.18 j.hint = h; // save hint
1894 dl 1.1 break;
1895     }
1896     if (h == origin)
1897     break restart; // cannot find stealer
1898     }
1899     }
1900     for (;;) { // help stealer or descend to its stealer
1901     ForkJoinTask[] a; int b;
1902     if (subtask.status < 0) // surround probes with
1903     continue restart; // consistency checks
1904     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906     ForkJoinTask<?> t =
1907     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908     if (subtask.status < 0 || j.currentJoin != subtask ||
1909     v.currentSteal != subtask)
1910     continue restart; // stale
1911     stat = 1; // apparent progress
1912     if (t != null && v.base == b &&
1913     U.compareAndSwapObject(a, i, t, null)) {
1914     v.base = b + 1; // help stealer
1915     joiner.runSubtask(t);
1916     }
1917     else if (v.base == b && ++steps == MAX_HELP)
1918     break restart; // v apparently stalled
1919     }
1920     else { // empty -- try to descend
1921     ForkJoinTask<?> next = v.currentJoin;
1922     if (subtask.status < 0 || j.currentJoin != subtask ||
1923     v.currentSteal != subtask)
1924     continue restart; // stale
1925     else if (next == null || ++steps == MAX_HELP)
1926     break restart; // dead-end or maybe cyclic
1927     else {
1928     subtask = next;
1929     j = v;
1930     break;
1931     }
1932     }
1933     }
1934     }
1935     }
1936     }
1937     return stat;
1938     }
1939    
1940     /**
1941 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1942 jsr166 1.17 * and run tasks within the target's computation.
1943 dl 1.12 *
1944     * @param task the task to join
1945     * @param mode if shared, exit upon completing any task
1946     * if all workers are active
1947 dl 1.1 *
1948     */
1949 dl 1.12 private int helpComplete(ForkJoinTask<?> task, int mode) {
1950 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1951 dl 1.12 if (task != null && (ws = workQueues) != null &&
1952     (m = ws.length - 1) >= 0) {
1953     for (int j = 1, origin = j;;) {
1954     if ((s = task.status) < 0)
1955     return s;
1956     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1957     origin = j;
1958 dl 1.18 if (mode == SHARED_QUEUE &&
1959     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1960 dl 1.12 break;
1961     }
1962     else if ((j = (j + 2) & m) == origin)
1963 dl 1.1 break;
1964     }
1965     }
1966 dl 1.12 return 0;
1967 dl 1.1 }
1968    
1969     /**
1970     * Tries to decrement active count (sometimes implicitly) and
1971     * possibly release or create a compensating worker in preparation
1972     * for blocking. Fails on contention or termination. Otherwise,
1973 dl 1.12 * adds a new thread if no idle workers are available and pool
1974     * may become starved.
1975 dl 1.1 */
1976 dl 1.12 final boolean tryCompensate() {
1977 dl 1.18 int pc = config & SMASK, e, i, tc; long c;
1978 dl 1.12 WorkQueue[] ws; WorkQueue w; Thread p;
1979 dl 1.18 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1980 dl 1.12 if (e != 0 && (i = e & SMASK) < ws.length &&
1981     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1982     long nc = ((long)(w.nextWait & E_MASK) |
1983     (c & (AC_MASK|TC_MASK)));
1984     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1985     w.eventCount = (e + E_SEQ) & E_MASK;
1986     if ((p = w.parker) != null)
1987     U.unpark(p);
1988     return true; // replace with idle worker
1989 dl 1.1 }
1990     }
1991 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1992     (int)(c >> AC_SHIFT) + pc > 1) {
1993 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1994     if (U.compareAndSwapLong(this, CTL, c, nc))
1995 dl 1.18 return true; // no compensation
1996 dl 1.12 }
1997 dl 1.18 else if (tc + pc < MAX_CAP) {
1998 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1999     if (U.compareAndSwapLong(this, CTL, c, nc)) {
2000 dl 1.21 ForkJoinWorkerThreadFactory fac;
2001     Throwable ex = null;
2002     ForkJoinWorkerThread wt = null;
2003     try {
2004     if ((fac = factory) != null &&
2005     (wt = fac.newThread(this)) != null) {
2006     wt.start();
2007     return true;
2008     }
2009     } catch (Throwable rex) {
2010     ex = rex;
2011     }
2012     deregisterWorker(wt, ex); // clean up and return false
2013 dl 1.1 }
2014     }
2015     }
2016     return false;
2017     }
2018    
2019     /**
2020     * Helps and/or blocks until the given task is done.
2021     *
2022     * @param joiner the joining worker
2023     * @param task the task
2024     * @return task status on exit
2025     */
2026     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2027 dl 1.12 int s = 0;
2028     if (joiner != null && task != null && (s = task.status) >= 0) {
2029 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2030     joiner.currentJoin = task;
2031 dl 1.21 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2032 dl 1.12 joiner.tryRemoveAndExec(task)); // process local tasks
2033 dl 1.21 if (s >= 0 && (s = task.status) >= 0) {
2034 dl 1.26 helpSignal(task, joiner.poolIndex);
2035 dl 1.21 if ((s = task.status) >= 0 &&
2036     (task instanceof CountedCompleter))
2037     s = helpComplete(task, LIFO_QUEUE);
2038     }
2039 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
2040 dl 1.21 if ((!joiner.isEmpty() || // try helping
2041 dl 1.12 (s = tryHelpStealer(joiner, task)) == 0) &&
2042 dl 1.18 (s = task.status) >= 0) {
2043 dl 1.26 helpSignal(task, joiner.poolIndex);
2044 dl 1.21 if ((s = task.status) >= 0 && tryCompensate()) {
2045 dl 1.18 if (task.trySetSignal() && (s = task.status) >= 0) {
2046     synchronized (task) {
2047     if (task.status >= 0) {
2048     try { // see ForkJoinTask
2049     task.wait(); // for explanation
2050     } catch (InterruptedException ie) {
2051     }
2052 dl 1.1 }
2053 dl 1.18 else
2054     task.notifyAll();
2055 dl 1.1 }
2056     }
2057 dl 1.18 long c; // re-activate
2058     do {} while (!U.compareAndSwapLong
2059     (this, CTL, c = ctl, c + AC_UNIT));
2060 dl 1.1 }
2061     }
2062     }
2063 dl 1.12 joiner.currentJoin = prevJoin;
2064 dl 1.1 }
2065     return s;
2066     }
2067    
2068     /**
2069     * Stripped-down variant of awaitJoin used by timed joins. Tries
2070     * to help join only while there is continuous progress. (Caller
2071     * will then enter a timed wait.)
2072     *
2073     * @param joiner the joining worker
2074     * @param task the task
2075     */
2076 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2077 dl 1.1 int s;
2078 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2079     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2080     joiner.currentJoin = task;
2081 dl 1.21 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2082 dl 1.12 joiner.tryRemoveAndExec(task));
2083 dl 1.21 if (s >= 0 && (s = task.status) >= 0) {
2084 dl 1.26 helpSignal(task, joiner.poolIndex);
2085 dl 1.21 if ((s = task.status) >= 0 &&
2086     (task instanceof CountedCompleter))
2087     s = helpComplete(task, LIFO_QUEUE);
2088     }
2089     if (s >= 0 && joiner.isEmpty()) {
2090 dl 1.12 do {} while (task.status >= 0 &&
2091     tryHelpStealer(joiner, task) > 0);
2092     }
2093     joiner.currentJoin = prevJoin;
2094     }
2095 dl 1.1 }
2096    
2097     /**
2098     * Returns a (probably) non-empty steal queue, if one is found
2099     * during a random, then cyclic scan, else null. This method must
2100     * be retried by caller if, by the time it tries to use the queue,
2101     * it is empty.
2102 dl 1.12 * @param r a (random) seed for scanning
2103 dl 1.1 */
2104 dl 1.12 private WorkQueue findNonEmptyStealQueue(int r) {
2105 dl 1.1 for (WorkQueue[] ws;;) {
2106 dl 1.18 int ps = plock, m, n;
2107 dl 1.1 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2108     return null;
2109 dl 1.18 for (int j = (m + 1) << 2; ;) {
2110     WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2111 dl 1.21 if (q != null && (n = q.base - q.top) < 0) {
2112     if (n < -1)
2113     signalWork(q);
2114 dl 1.1 return q;
2115 dl 1.18 }
2116 dl 1.1 else if (--j < 0) {
2117 dl 1.12 if (plock == ps)
2118 dl 1.1 return null;
2119     break;
2120     }
2121     }
2122     }
2123     }
2124    
2125     /**
2126     * Runs tasks until {@code isQuiescent()}. We piggyback on
2127     * active count ctl maintenance, but rather than blocking
2128     * when tasks cannot be found, we rescan until all others cannot
2129     * find tasks either.
2130     */
2131     final void helpQuiescePool(WorkQueue w) {
2132     for (boolean active = true;;) {
2133     ForkJoinTask<?> localTask; // exhaust local queue
2134     while ((localTask = w.nextLocalTask()) != null)
2135     localTask.doExec();
2136 dl 1.12 // Similar to loop in scan(), but ignoring submissions
2137     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2138 dl 1.1 if (q != null) {
2139     ForkJoinTask<?> t; int b;
2140     if (!active) { // re-establish active count
2141     long c;
2142     active = true;
2143     do {} while (!U.compareAndSwapLong
2144     (this, CTL, c = ctl, c + AC_UNIT));
2145     }
2146     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2147     w.runSubtask(t);
2148     }
2149     else {
2150     long c;
2151     if (active) { // decrement active count without queuing
2152     active = false;
2153     do {} while (!U.compareAndSwapLong
2154     (this, CTL, c = ctl, c -= AC_UNIT));
2155     }
2156     else
2157     c = ctl; // re-increment on exit
2158 dl 1.18 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2159 dl 1.1 do {} while (!U.compareAndSwapLong
2160     (this, CTL, c = ctl, c + AC_UNIT));
2161     break;
2162     }
2163     }
2164     }
2165     }
2166    
2167     /**
2168     * Gets and removes a local or stolen task for the given worker.
2169     *
2170     * @return a task, if available
2171     */
2172     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2173     for (ForkJoinTask<?> t;;) {
2174     WorkQueue q; int b;
2175     if ((t = w.nextLocalTask()) != null)
2176     return t;
2177 dl 1.12 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2178 dl 1.1 return null;
2179     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2180     return t;
2181     }
2182     }
2183    
2184     /**
2185 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2186     * programmers, frameworks, tools, or languages have little or no
2187     * idea about task granularity. In essence by offering this
2188     * method, we ask users only about tradeoffs in overhead vs
2189     * expected throughput and its variance, rather than how finely to
2190     * partition tasks.
2191     *
2192     * In a steady state strict (tree-structured) computation, each
2193     * thread makes available for stealing enough tasks for other
2194     * threads to remain active. Inductively, if all threads play by
2195     * the same rules, each thread should make available only a
2196     * constant number of tasks.
2197     *
2198     * The minimum useful constant is just 1. But using a value of 1
2199     * would require immediate replenishment upon each steal to
2200     * maintain enough tasks, which is infeasible. Further,
2201     * partitionings/granularities of offered tasks should minimize
2202     * steal rates, which in general means that threads nearer the top
2203     * of computation tree should generate more than those nearer the
2204     * bottom. In perfect steady state, each thread is at
2205     * approximately the same level of computation tree. However,
2206     * producing extra tasks amortizes the uncertainty of progress and
2207     * diffusion assumptions.
2208     *
2209     * So, users will want to use values larger, but not much larger
2210     * than 1 to both smooth over transient shortages and hedge
2211     * against uneven progress; as traded off against the cost of
2212     * extra task overhead. We leave the user to pick a threshold
2213     * value to compare with the results of this call to guide
2214     * decisions, but recommend values such as 3.
2215     *
2216     * When all threads are active, it is on average OK to estimate
2217     * surplus strictly locally. In steady-state, if one thread is
2218     * maintaining say 2 surplus tasks, then so are others. So we can
2219     * just use estimated queue length. However, this strategy alone
2220     * leads to serious mis-estimates in some non-steady-state
2221     * conditions (ramp-up, ramp-down, other stalls). We can detect
2222     * many of these by further considering the number of "idle"
2223     * threads, that are known to have zero queued tasks, so
2224     * compensate by a factor of (#idle/#active) threads.
2225     *
2226     * Note: The approximation of #busy workers as #active workers is
2227     * not very good under current signalling scheme, and should be
2228     * improved.
2229     */
2230     static int getSurplusQueuedTaskCount() {
2231     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2232     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2233 dl 1.18 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2234     int n = (q = wt.workQueue).top - q.base;
2235 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2236 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2237     a > (p >>>= 1) ? 1 :
2238     a > (p >>>= 1) ? 2 :
2239     a > (p >>>= 1) ? 4 :
2240     8);
2241 dl 1.12 }
2242     return 0;
2243 dl 1.7 }
2244    
2245 dl 1.1 // Termination
2246    
2247     /**
2248     * Possibly initiates and/or completes termination. The caller
2249     * triggering termination runs three passes through workQueues:
2250     * (0) Setting termination status, followed by wakeups of queued
2251     * workers; (1) cancelling all tasks; (2) interrupting lagging
2252     * threads (likely in external tasks, but possibly also blocked in
2253     * joins). Each pass repeats previous steps because of potential
2254     * lagging thread creation.
2255     *
2256     * @param now if true, unconditionally terminate, else only
2257     * if no work and no active workers
2258     * @param enable if true, enable shutdown when next possible
2259     * @return true if now terminating or terminated
2260     */
2261     private boolean tryTerminate(boolean now, boolean enable) {
2262 dl 1.12 if (this == commonPool) // cannot shut down
2263     return false;
2264 dl 1.1 for (long c;;) {
2265     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2266 dl 1.18 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2267 jsr166 1.10 synchronized (this) {
2268 dl 1.8 notifyAll(); // signal when 0 workers
2269     }
2270 dl 1.1 }
2271     return true;
2272     }
2273 dl 1.12 if (plock >= 0) { // not yet enabled
2274     int ps;
2275 dl 1.1 if (!enable)
2276     return false;
2277 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
2278     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2279     ps = acquirePlock();
2280 dl 1.32 if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN))
2281     releasePlock(SHUTDOWN);
2282 dl 1.1 }
2283     if (!now) { // check if idle & no tasks
2284 dl 1.18 if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2285 dl 1.1 hasQueuedSubmissions())
2286     return false;
2287     // Check for unqueued inactive workers. One pass suffices.
2288     WorkQueue[] ws = workQueues; WorkQueue w;
2289     if (ws != null) {
2290     for (int i = 1; i < ws.length; i += 2) {
2291     if ((w = ws[i]) != null && w.eventCount >= 0)
2292     return false;
2293     }
2294     }
2295     }
2296     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2297     for (int pass = 0; pass < 3; ++pass) {
2298     WorkQueue[] ws = workQueues;
2299     if (ws != null) {
2300 dl 1.32 WorkQueue w; Thread wt;
2301 dl 1.1 int n = ws.length;
2302     for (int i = 0; i < n; ++i) {
2303     if ((w = ws[i]) != null) {
2304 dl 1.12 w.qlock = -1;
2305 dl 1.1 if (pass > 0) {
2306     w.cancelAll();
2307 dl 1.32 if (pass > 1 && (wt = w.owner) != null) {
2308     if (!wt.isInterrupted()) {
2309     try {
2310     wt.interrupt();
2311     } catch (SecurityException ignore) {
2312     }
2313     }
2314     U.unpark(wt);
2315     }
2316 dl 1.1 }
2317     }
2318     }
2319     // Wake up workers parked on event queue
2320     int i, e; long cc; Thread p;
2321     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2322     (i = e & SMASK) < n &&
2323     (w = ws[i]) != null) {
2324     long nc = ((long)(w.nextWait & E_MASK) |
2325     ((cc + AC_UNIT) & AC_MASK) |
2326     (cc & (TC_MASK|STOP_BIT)));
2327     if (w.eventCount == (e | INT_SIGN) &&
2328     U.compareAndSwapLong(this, CTL, cc, nc)) {
2329     w.eventCount = (e + E_SEQ) & E_MASK;
2330 dl 1.12 w.qlock = -1;
2331 dl 1.1 if ((p = w.parker) != null)
2332     U.unpark(p);
2333     }
2334     }
2335     }
2336     }
2337     }
2338     }
2339     }
2340    
2341 dl 1.12 // external operations on common pool
2342    
2343     /**
2344     * Returns common pool queue for a thread that has submitted at
2345     * least one task.
2346     */
2347     static WorkQueue commonSubmitterQueue() {
2348     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2349     return ((z = submitters.get()) != null &&
2350     (p = commonPool) != null &&
2351     (ws = p.workQueues) != null &&
2352     (m = ws.length - 1) >= 0) ?
2353     ws[m & z.seed & SQMASK] : null;
2354     }
2355    
2356     /**
2357     * Tries to pop the given task from submitter's queue in common pool.
2358     */
2359     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2360     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2361 dl 1.21 ForkJoinTask<?>[] a; int m, s;
2362     if (t != null &&
2363     (z = submitters.get()) != null &&
2364 dl 1.12 (p = commonPool) != null &&
2365     (ws = p.workQueues) != null &&
2366     (m = ws.length - 1) >= 0 &&
2367     (q = ws[m & z.seed & SQMASK]) != null &&
2368     (s = q.top) != q.base &&
2369 dl 1.21 (a = q.array) != null) {
2370     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2371     if (U.getObject(a, j) == t &&
2372     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2373     if (q.array == a && q.top == s && // recheck
2374     U.compareAndSwapObject(a, j, t, null)) {
2375     q.top = s - 1;
2376     q.qlock = 0;
2377     return true;
2378     }
2379 dl 1.12 q.qlock = 0;
2380     }
2381     }
2382     return false;
2383     }
2384    
2385     /**
2386     * Tries to pop and run local tasks within the same computation
2387     * as the given root. On failure, tries to help complete from
2388     * other queues via helpComplete.
2389     */
2390     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2391     ForkJoinTask<?>[] a; int m;
2392     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2393     root != null && root.status >= 0) {
2394     for (;;) {
2395 dl 1.18 int s, u; Object o; CountedCompleter<?> task = null;
2396 dl 1.12 if ((s = q.top) - q.base > 0) {
2397     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2398     if ((o = U.getObject(a, j)) != null &&
2399     (o instanceof CountedCompleter)) {
2400     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2401     do {
2402     if (r == root) {
2403     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2404     if (q.array == a && q.top == s &&
2405     U.compareAndSwapObject(a, j, t, null)) {
2406     q.top = s - 1;
2407     task = t;
2408     }
2409     q.qlock = 0;
2410     }
2411     break;
2412     }
2413 jsr166 1.13 } while ((r = r.completer) != null);
2414 dl 1.12 }
2415     }
2416     if (task != null)
2417     task.doExec();
2418 dl 1.18 if (root.status < 0 ||
2419     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2420 dl 1.12 break;
2421     if (task == null) {
2422 dl 1.26 helpSignal(root, q.poolIndex);
2423 dl 1.21 if (root.status >= 0)
2424 dl 1.12 helpComplete(root, SHARED_QUEUE);
2425     break;
2426     }
2427     }
2428     }
2429     }
2430    
2431     /**
2432     * Tries to help execute or signal availability of the given task
2433     * from submitter's queue in common pool.
2434     */
2435     static void externalHelpJoin(ForkJoinTask<?> t) {
2436     // Some hard-to-avoid overlap with tryExternalUnpush
2437     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2438 dl 1.21 ForkJoinTask<?>[] a; int m, s, n;
2439 dl 1.18 if (t != null &&
2440 dl 1.12 (z = submitters.get()) != null &&
2441     (p = commonPool) != null &&
2442     (ws = p.workQueues) != null &&
2443     (m = ws.length - 1) >= 0 &&
2444     (q = ws[m & z.seed & SQMASK]) != null &&
2445 dl 1.21 (a = q.array) != null) {
2446     int am = a.length - 1;
2447     if ((s = q.top) != q.base) {
2448     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2449     if (U.getObject(a, j) == t &&
2450     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2451     if (q.array == a && q.top == s &&
2452     U.compareAndSwapObject(a, j, t, null)) {
2453     q.top = s - 1;
2454     q.qlock = 0;
2455     t.doExec();
2456     }
2457     else
2458     q.qlock = 0;
2459 dl 1.12 }
2460     }
2461     if (t.status >= 0) {
2462     if (t instanceof CountedCompleter)
2463     p.externalHelpComplete(q, t);
2464     else
2465 dl 1.26 p.helpSignal(t, q.poolIndex);
2466 dl 1.12 }
2467     }
2468     }
2469    
2470     /**
2471     * Restricted version of helpQuiescePool for external callers
2472     */
2473     static void externalHelpQuiescePool() {
2474     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2475     if ((p = commonPool) != null &&
2476 dl 1.18 (q = p.findNonEmptyStealQueue(1)) != null &&
2477 dl 1.12 (b = q.base) - q.top < 0 &&
2478     (t = q.pollAt(b)) != null)
2479     t.doExec();
2480     }
2481    
2482 dl 1.1 // Exported methods
2483    
2484     // Constructors
2485    
2486     /**
2487     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2488     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2489     * #defaultForkJoinWorkerThreadFactory default thread factory},
2490     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2491     *
2492     * @throws SecurityException if a security manager exists and
2493     * the caller is not permitted to modify threads
2494     * because it does not hold {@link
2495     * java.lang.RuntimePermission}{@code ("modifyThread")}
2496     */
2497     public ForkJoinPool() {
2498     this(Runtime.getRuntime().availableProcessors(),
2499     defaultForkJoinWorkerThreadFactory, null, false);
2500     }
2501    
2502     /**
2503     * Creates a {@code ForkJoinPool} with the indicated parallelism
2504     * level, the {@linkplain
2505     * #defaultForkJoinWorkerThreadFactory default thread factory},
2506     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2507     *
2508     * @param parallelism the parallelism level
2509     * @throws IllegalArgumentException if parallelism less than or
2510     * equal to zero, or greater than implementation limit
2511     * @throws SecurityException if a security manager exists and
2512     * the caller is not permitted to modify threads
2513     * because it does not hold {@link
2514     * java.lang.RuntimePermission}{@code ("modifyThread")}
2515     */
2516     public ForkJoinPool(int parallelism) {
2517     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2518     }
2519    
2520     /**
2521     * Creates a {@code ForkJoinPool} with the given parameters.
2522     *
2523     * @param parallelism the parallelism level. For default value,
2524     * use {@link java.lang.Runtime#availableProcessors}.
2525     * @param factory the factory for creating new threads. For default value,
2526     * use {@link #defaultForkJoinWorkerThreadFactory}.
2527     * @param handler the handler for internal worker threads that
2528     * terminate due to unrecoverable errors encountered while executing
2529     * tasks. For default value, use {@code null}.
2530     * @param asyncMode if true,
2531     * establishes local first-in-first-out scheduling mode for forked
2532     * tasks that are never joined. This mode may be more appropriate
2533     * than default locally stack-based mode in applications in which
2534     * worker threads only process event-style asynchronous tasks.
2535     * For default value, use {@code false}.
2536     * @throws IllegalArgumentException if parallelism less than or
2537     * equal to zero, or greater than implementation limit
2538     * @throws NullPointerException if the factory is null
2539     * @throws SecurityException if a security manager exists and
2540     * the caller is not permitted to modify threads
2541     * because it does not hold {@link
2542     * java.lang.RuntimePermission}{@code ("modifyThread")}
2543     */
2544     public ForkJoinPool(int parallelism,
2545     ForkJoinWorkerThreadFactory factory,
2546     Thread.UncaughtExceptionHandler handler,
2547     boolean asyncMode) {
2548     checkPermission();
2549     if (factory == null)
2550     throw new NullPointerException();
2551     if (parallelism <= 0 || parallelism > MAX_CAP)
2552     throw new IllegalArgumentException();
2553     this.factory = factory;
2554     this.ueh = handler;
2555 jsr166 1.19 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2556 dl 1.1 long np = (long)(-parallelism); // offset ctl counts
2557     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2558 dl 1.12 int pn = nextPoolId();
2559 dl 1.1 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2560     sb.append(Integer.toString(pn));
2561     sb.append("-worker-");
2562     this.workerNamePrefix = sb.toString();
2563     }
2564    
2565 dl 1.7 /**
2566 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2567     * Basically the same as above, but uses smallest possible initial footprint.
2568     */
2569 dl 1.12 ForkJoinPool(int parallelism, long ctl,
2570 dl 1.8 ForkJoinWorkerThreadFactory factory,
2571     Thread.UncaughtExceptionHandler handler) {
2572 dl 1.18 this.config = parallelism;
2573 dl 1.12 this.ctl = ctl;
2574 dl 1.8 this.factory = factory;
2575     this.ueh = handler;
2576     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2577     }
2578    
2579     /**
2580 dl 1.34 * Returns the common pool instance. This pool is statically
2581     * constructed; its run state is unaffected by attempts to
2582     * {@link @shutdown} or {@link #shutdownNow}.
2583 dl 1.7 *
2584     * @return the common pool instance
2585     */
2586     public static ForkJoinPool commonPool() {
2587 dl 1.18 // assert commonPool != null : "static init error";
2588     return commonPool;
2589 dl 1.7 }
2590    
2591 dl 1.1 // Execution methods
2592    
2593     /**
2594     * Performs the given task, returning its result upon completion.
2595     * If the computation encounters an unchecked Exception or Error,
2596     * it is rethrown as the outcome of this invocation. Rethrown
2597     * exceptions behave in the same way as regular exceptions, but,
2598     * when possible, contain stack traces (as displayed for example
2599     * using {@code ex.printStackTrace()}) of both the current thread
2600     * as well as the thread actually encountering the exception;
2601     * minimally only the latter.
2602     *
2603     * @param task the task
2604     * @return the task's result
2605     * @throws NullPointerException if the task is null
2606     * @throws RejectedExecutionException if the task cannot be
2607     * scheduled for execution
2608     */
2609     public <T> T invoke(ForkJoinTask<T> task) {
2610     if (task == null)
2611     throw new NullPointerException();
2612 dl 1.12 externalPush(task);
2613 dl 1.1 return task.join();
2614     }
2615    
2616     /**
2617     * Arranges for (asynchronous) execution of the given task.
2618     *
2619     * @param task the task
2620     * @throws NullPointerException if the task is null
2621     * @throws RejectedExecutionException if the task cannot be
2622     * scheduled for execution
2623     */
2624     public void execute(ForkJoinTask<?> task) {
2625     if (task == null)
2626     throw new NullPointerException();
2627 dl 1.12 externalPush(task);
2628 dl 1.1 }
2629    
2630     // AbstractExecutorService methods
2631    
2632     /**
2633     * @throws NullPointerException if the task is null
2634     * @throws RejectedExecutionException if the task cannot be
2635     * scheduled for execution
2636     */
2637     public void execute(Runnable task) {
2638     if (task == null)
2639     throw new NullPointerException();
2640     ForkJoinTask<?> job;
2641     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2642     job = (ForkJoinTask<?>) task;
2643     else
2644     job = new ForkJoinTask.AdaptedRunnableAction(task);
2645 dl 1.12 externalPush(job);
2646 dl 1.1 }
2647    
2648     /**
2649     * Submits a ForkJoinTask for execution.
2650     *
2651     * @param task the task to submit
2652     * @return the task
2653     * @throws NullPointerException if the task is null
2654     * @throws RejectedExecutionException if the task cannot be
2655     * scheduled for execution
2656     */
2657     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2658     if (task == null)
2659     throw new NullPointerException();
2660 dl 1.12 externalPush(task);
2661 dl 1.1 return task;
2662     }
2663    
2664     /**
2665     * @throws NullPointerException if the task is null
2666     * @throws RejectedExecutionException if the task cannot be
2667     * scheduled for execution
2668     */
2669     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2670     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2671 dl 1.12 externalPush(job);
2672 dl 1.1 return job;
2673     }
2674    
2675     /**
2676     * @throws NullPointerException if the task is null
2677     * @throws RejectedExecutionException if the task cannot be
2678     * scheduled for execution
2679     */
2680     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2681     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2682 dl 1.12 externalPush(job);
2683 dl 1.1 return job;
2684     }
2685    
2686     /**
2687     * @throws NullPointerException if the task is null
2688     * @throws RejectedExecutionException if the task cannot be
2689     * scheduled for execution
2690     */
2691     public ForkJoinTask<?> submit(Runnable task) {
2692     if (task == null)
2693     throw new NullPointerException();
2694     ForkJoinTask<?> job;
2695     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2696     job = (ForkJoinTask<?>) task;
2697     else
2698     job = new ForkJoinTask.AdaptedRunnableAction(task);
2699 dl 1.12 externalPush(job);
2700 dl 1.1 return job;
2701     }
2702    
2703     /**
2704     * @throws NullPointerException {@inheritDoc}
2705     * @throws RejectedExecutionException {@inheritDoc}
2706     */
2707     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2708     // In previous versions of this class, this method constructed
2709     // a task to run ForkJoinTask.invokeAll, but now external
2710     // invocation of multiple tasks is at least as efficient.
2711     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2712     // Workaround needed because method wasn't declared with
2713     // wildcards in return type but should have been.
2714     @SuppressWarnings({"unchecked", "rawtypes"})
2715     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2716    
2717     boolean done = false;
2718     try {
2719     for (Callable<T> t : tasks) {
2720     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2721 dl 1.12 externalPush(f);
2722 dl 1.1 fs.add(f);
2723     }
2724     for (ForkJoinTask<T> f : fs)
2725     f.quietlyJoin();
2726     done = true;
2727     return futures;
2728     } finally {
2729     if (!done)
2730     for (ForkJoinTask<T> f : fs)
2731     f.cancel(false);
2732     }
2733     }
2734    
2735     /**
2736     * Returns the factory used for constructing new workers.
2737     *
2738     * @return the factory used for constructing new workers
2739     */
2740     public ForkJoinWorkerThreadFactory getFactory() {
2741     return factory;
2742     }
2743    
2744     /**
2745     * Returns the handler for internal worker threads that terminate
2746     * due to unrecoverable errors encountered while executing tasks.
2747     *
2748     * @return the handler, or {@code null} if none
2749     */
2750     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2751     return ueh;
2752     }
2753    
2754     /**
2755     * Returns the targeted parallelism level of this pool.
2756     *
2757     * @return the targeted parallelism level of this pool
2758     */
2759     public int getParallelism() {
2760 dl 1.18 return config & SMASK;
2761 dl 1.1 }
2762    
2763     /**
2764 dl 1.7 * Returns the targeted parallelism level of the common pool.
2765     *
2766     * @return the targeted parallelism level of the common pool
2767     */
2768     public static int getCommonPoolParallelism() {
2769     return commonPoolParallelism;
2770     }
2771    
2772     /**
2773 dl 1.1 * Returns the number of worker threads that have started but not
2774     * yet terminated. The result returned by this method may differ
2775     * from {@link #getParallelism} when threads are created to
2776     * maintain parallelism when others are cooperatively blocked.
2777     *
2778     * @return the number of worker threads
2779     */
2780     public int getPoolSize() {
2781 dl 1.18 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2782 dl 1.1 }
2783    
2784     /**
2785     * Returns {@code true} if this pool uses local first-in-first-out
2786     * scheduling mode for forked tasks that are never joined.
2787     *
2788     * @return {@code true} if this pool uses async mode
2789     */
2790     public boolean getAsyncMode() {
2791 dl 1.18 return (config >>> 16) == FIFO_QUEUE;
2792 dl 1.1 }
2793    
2794     /**
2795     * Returns an estimate of the number of worker threads that are
2796     * not blocked waiting to join tasks or for other managed
2797     * synchronization. This method may overestimate the
2798     * number of running threads.
2799     *
2800     * @return the number of worker threads
2801     */
2802     public int getRunningThreadCount() {
2803     int rc = 0;
2804     WorkQueue[] ws; WorkQueue w;
2805     if ((ws = workQueues) != null) {
2806     for (int i = 1; i < ws.length; i += 2) {
2807     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2808     ++rc;
2809     }
2810     }
2811     return rc;
2812     }
2813    
2814     /**
2815     * Returns an estimate of the number of threads that are currently
2816     * stealing or executing tasks. This method may overestimate the
2817     * number of active threads.
2818     *
2819     * @return the number of active threads
2820     */
2821     public int getActiveThreadCount() {
2822 dl 1.18 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2823 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2824     }
2825    
2826     /**
2827     * Returns {@code true} if all worker threads are currently idle.
2828     * An idle worker is one that cannot obtain a task to execute
2829     * because none are available to steal from other threads, and
2830     * there are no pending submissions to the pool. This method is
2831     * conservative; it might not return {@code true} immediately upon
2832     * idleness of all threads, but will eventually become true if
2833     * threads remain inactive.
2834     *
2835     * @return {@code true} if all threads are currently idle
2836     */
2837     public boolean isQuiescent() {
2838 dl 1.18 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2839 dl 1.1 }
2840    
2841     /**
2842     * Returns an estimate of the total number of tasks stolen from
2843     * one thread's work queue by another. The reported value
2844     * underestimates the actual total number of steals when the pool
2845     * is not quiescent. This value may be useful for monitoring and
2846     * tuning fork/join programs: in general, steal counts should be
2847     * high enough to keep threads busy, but low enough to avoid
2848     * overhead and contention across threads.
2849     *
2850     * @return the number of steals
2851     */
2852     public long getStealCount() {
2853 dl 1.8 long count = stealCount;
2854 dl 1.1 WorkQueue[] ws; WorkQueue w;
2855     if ((ws = workQueues) != null) {
2856     for (int i = 1; i < ws.length; i += 2) {
2857     if ((w = ws[i]) != null)
2858 dl 1.12 count += w.nsteals;
2859 dl 1.1 }
2860     }
2861     return count;
2862     }
2863    
2864     /**
2865     * Returns an estimate of the total number of tasks currently held
2866     * in queues by worker threads (but not including tasks submitted
2867     * to the pool that have not begun executing). This value is only
2868     * an approximation, obtained by iterating across all threads in
2869     * the pool. This method may be useful for tuning task
2870     * granularities.
2871     *
2872     * @return the number of queued tasks
2873     */
2874     public long getQueuedTaskCount() {
2875     long count = 0;
2876     WorkQueue[] ws; WorkQueue w;
2877     if ((ws = workQueues) != null) {
2878     for (int i = 1; i < ws.length; i += 2) {
2879     if ((w = ws[i]) != null)
2880     count += w.queueSize();
2881     }
2882     }
2883     return count;
2884     }
2885    
2886     /**
2887     * Returns an estimate of the number of tasks submitted to this
2888     * pool that have not yet begun executing. This method may take
2889     * time proportional to the number of submissions.
2890     *
2891     * @return the number of queued submissions
2892     */
2893     public int getQueuedSubmissionCount() {
2894     int count = 0;
2895     WorkQueue[] ws; WorkQueue w;
2896     if ((ws = workQueues) != null) {
2897     for (int i = 0; i < ws.length; i += 2) {
2898     if ((w = ws[i]) != null)
2899     count += w.queueSize();
2900     }
2901     }
2902     return count;
2903     }
2904    
2905     /**
2906     * Returns {@code true} if there are any tasks submitted to this
2907     * pool that have not yet begun executing.
2908     *
2909     * @return {@code true} if there are any queued submissions
2910     */
2911     public boolean hasQueuedSubmissions() {
2912     WorkQueue[] ws; WorkQueue w;
2913     if ((ws = workQueues) != null) {
2914     for (int i = 0; i < ws.length; i += 2) {
2915 dl 1.21 if ((w = ws[i]) != null && !w.isEmpty())
2916 dl 1.1 return true;
2917     }
2918     }
2919     return false;
2920     }
2921    
2922     /**
2923     * Removes and returns the next unexecuted submission if one is
2924     * available. This method may be useful in extensions to this
2925     * class that re-assign work in systems with multiple pools.
2926     *
2927     * @return the next submission, or {@code null} if none
2928     */
2929     protected ForkJoinTask<?> pollSubmission() {
2930     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2931     if ((ws = workQueues) != null) {
2932     for (int i = 0; i < ws.length; i += 2) {
2933     if ((w = ws[i]) != null && (t = w.poll()) != null)
2934     return t;
2935     }
2936     }
2937     return null;
2938     }
2939    
2940     /**
2941     * Removes all available unexecuted submitted and forked tasks
2942     * from scheduling queues and adds them to the given collection,
2943     * without altering their execution status. These may include
2944     * artificially generated or wrapped tasks. This method is
2945     * designed to be invoked only when the pool is known to be
2946     * quiescent. Invocations at other times may not remove all
2947     * tasks. A failure encountered while attempting to add elements
2948     * to collection {@code c} may result in elements being in
2949     * neither, either or both collections when the associated
2950     * exception is thrown. The behavior of this operation is
2951     * undefined if the specified collection is modified while the
2952     * operation is in progress.
2953     *
2954     * @param c the collection to transfer elements into
2955     * @return the number of elements transferred
2956     */
2957     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2958     int count = 0;
2959     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2960     if ((ws = workQueues) != null) {
2961     for (int i = 0; i < ws.length; ++i) {
2962     if ((w = ws[i]) != null) {
2963     while ((t = w.poll()) != null) {
2964     c.add(t);
2965     ++count;
2966     }
2967     }
2968     }
2969     }
2970     return count;
2971     }
2972    
2973     /**
2974     * Returns a string identifying this pool, as well as its state,
2975     * including indications of run state, parallelism level, and
2976     * worker and task counts.
2977     *
2978     * @return a string identifying this pool, as well as its state
2979     */
2980     public String toString() {
2981     // Use a single pass through workQueues to collect counts
2982     long qt = 0L, qs = 0L; int rc = 0;
2983 dl 1.8 long st = stealCount;
2984 dl 1.1 long c = ctl;
2985     WorkQueue[] ws; WorkQueue w;
2986     if ((ws = workQueues) != null) {
2987     for (int i = 0; i < ws.length; ++i) {
2988     if ((w = ws[i]) != null) {
2989     int size = w.queueSize();
2990     if ((i & 1) == 0)
2991     qs += size;
2992     else {
2993     qt += size;
2994 dl 1.12 st += w.nsteals;
2995 dl 1.1 if (w.isApparentlyUnblocked())
2996     ++rc;
2997     }
2998     }
2999     }
3000     }
3001 dl 1.18 int pc = (config & SMASK);
3002 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
3003     int ac = pc + (int)(c >> AC_SHIFT);
3004     if (ac < 0) // ignore transient negative
3005     ac = 0;
3006     String level;
3007     if ((c & STOP_BIT) != 0)
3008     level = (tc == 0) ? "Terminated" : "Terminating";
3009     else
3010 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
3011 dl 1.1 return super.toString() +
3012     "[" + level +
3013     ", parallelism = " + pc +
3014     ", size = " + tc +
3015     ", active = " + ac +
3016     ", running = " + rc +
3017     ", steals = " + st +
3018     ", tasks = " + qt +
3019     ", submissions = " + qs +
3020     "]";
3021     }
3022    
3023     /**
3024 dl 1.7 * Possibly initiates an orderly shutdown in which previously
3025     * submitted tasks are executed, but no new tasks will be
3026     * accepted. Invocation has no effect on execution state if this
3027     * is the {@link #commonPool}, and no additional effect if
3028     * already shut down. Tasks that are in the process of being
3029     * submitted concurrently during the course of this method may or
3030     * may not be rejected.
3031 dl 1.1 *
3032     * @throws SecurityException if a security manager exists and
3033     * the caller is not permitted to modify threads
3034     * because it does not hold {@link
3035     * java.lang.RuntimePermission}{@code ("modifyThread")}
3036     */
3037     public void shutdown() {
3038     checkPermission();
3039 dl 1.12 tryTerminate(false, true);
3040 dl 1.1 }
3041    
3042     /**
3043 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
3044     * all subsequently submitted tasks. Invocation has no effect on
3045     * execution state if this is the {@link #commonPool}, and no
3046     * additional effect if already shut down. Otherwise, tasks that
3047     * are in the process of being submitted or executed concurrently
3048     * during the course of this method may or may not be
3049     * rejected. This method cancels both existing and unexecuted
3050     * tasks, in order to permit termination in the presence of task
3051     * dependencies. So the method always returns an empty list
3052     * (unlike the case for some other Executors).
3053 dl 1.1 *
3054     * @return an empty list
3055     * @throws SecurityException if a security manager exists and
3056     * the caller is not permitted to modify threads
3057     * because it does not hold {@link
3058     * java.lang.RuntimePermission}{@code ("modifyThread")}
3059     */
3060     public List<Runnable> shutdownNow() {
3061     checkPermission();
3062 dl 1.12 tryTerminate(true, true);
3063 dl 1.1 return Collections.emptyList();
3064     }
3065    
3066     /**
3067     * Returns {@code true} if all tasks have completed following shut down.
3068     *
3069     * @return {@code true} if all tasks have completed following shut down
3070     */
3071     public boolean isTerminated() {
3072     long c = ctl;
3073     return ((c & STOP_BIT) != 0L &&
3074 dl 1.18 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3075 dl 1.1 }
3076    
3077     /**
3078     * Returns {@code true} if the process of termination has
3079     * commenced but not yet completed. This method may be useful for
3080     * debugging. A return of {@code true} reported a sufficient
3081     * period after shutdown may indicate that submitted tasks have
3082 jsr166 1.25 * ignored or suppressed interruption, or are waiting for I/O,
3083 dl 1.1 * causing this executor not to properly terminate. (See the
3084     * advisory notes for class {@link ForkJoinTask} stating that
3085     * tasks should not normally entail blocking operations. But if
3086     * they do, they must abort them on interrupt.)
3087     *
3088     * @return {@code true} if terminating but not yet terminated
3089     */
3090     public boolean isTerminating() {
3091     long c = ctl;
3092     return ((c & STOP_BIT) != 0L &&
3093 dl 1.18 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3094 dl 1.1 }
3095    
3096     /**
3097     * Returns {@code true} if this pool has been shut down.
3098     *
3099     * @return {@code true} if this pool has been shut down
3100     */
3101     public boolean isShutdown() {
3102 dl 1.12 return plock < 0;
3103 dl 1.1 }
3104    
3105     /**
3106 dl 1.12 * Blocks until all tasks have completed execution after a
3107     * shutdown request, or the timeout occurs, or the current thread
3108     * is interrupted, whichever happens first. Note that the {@link
3109     * #commonPool()} never terminates until program shutdown so
3110     * this method will always time out.
3111 dl 1.1 *
3112     * @param timeout the maximum time to wait
3113     * @param unit the time unit of the timeout argument
3114     * @return {@code true} if this executor terminated and
3115     * {@code false} if the timeout elapsed before termination
3116     * @throws InterruptedException if interrupted while waiting
3117     */
3118     public boolean awaitTermination(long timeout, TimeUnit unit)
3119     throws InterruptedException {
3120     long nanos = unit.toNanos(timeout);
3121 dl 1.8 if (isTerminated())
3122     return true;
3123     long startTime = System.nanoTime();
3124     boolean terminated = false;
3125 jsr166 1.10 synchronized (this) {
3126 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
3127     if (terminated = isTerminated() ||
3128     waitTime <= 0L ||
3129     (millis = unit.toMillis(waitTime)) <= 0L)
3130     break;
3131     wait(millis);
3132     waitTime = nanos - (System.nanoTime() - startTime);
3133 dl 1.1 }
3134     }
3135 dl 1.8 return terminated;
3136 dl 1.1 }
3137    
3138     /**
3139     * Interface for extending managed parallelism for tasks running
3140     * in {@link ForkJoinPool}s.
3141     *
3142     * <p>A {@code ManagedBlocker} provides two methods. Method
3143     * {@code isReleasable} must return {@code true} if blocking is
3144     * not necessary. Method {@code block} blocks the current thread
3145     * if necessary (perhaps internally invoking {@code isReleasable}
3146     * before actually blocking). These actions are performed by any
3147     * thread invoking {@link ForkJoinPool#managedBlock}. The
3148     * unusual methods in this API accommodate synchronizers that may,
3149     * but don't usually, block for long periods. Similarly, they
3150     * allow more efficient internal handling of cases in which
3151     * additional workers may be, but usually are not, needed to
3152     * ensure sufficient parallelism. Toward this end,
3153     * implementations of method {@code isReleasable} must be amenable
3154     * to repeated invocation.
3155     *
3156     * <p>For example, here is a ManagedBlocker based on a
3157     * ReentrantLock:
3158     * <pre> {@code
3159     * class ManagedLocker implements ManagedBlocker {
3160     * final ReentrantLock lock;
3161     * boolean hasLock = false;
3162     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3163     * public boolean block() {
3164     * if (!hasLock)
3165     * lock.lock();
3166     * return true;
3167     * }
3168     * public boolean isReleasable() {
3169     * return hasLock || (hasLock = lock.tryLock());
3170     * }
3171     * }}</pre>
3172     *
3173     * <p>Here is a class that possibly blocks waiting for an
3174     * item on a given queue:
3175     * <pre> {@code
3176     * class QueueTaker<E> implements ManagedBlocker {
3177     * final BlockingQueue<E> queue;
3178     * volatile E item = null;
3179     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3180     * public boolean block() throws InterruptedException {
3181     * if (item == null)
3182     * item = queue.take();
3183     * return true;
3184     * }
3185     * public boolean isReleasable() {
3186     * return item != null || (item = queue.poll()) != null;
3187     * }
3188     * public E getItem() { // call after pool.managedBlock completes
3189     * return item;
3190     * }
3191     * }}</pre>
3192     */
3193     public static interface ManagedBlocker {
3194     /**
3195     * Possibly blocks the current thread, for example waiting for
3196     * a lock or condition.
3197     *
3198     * @return {@code true} if no additional blocking is necessary
3199     * (i.e., if isReleasable would return true)
3200     * @throws InterruptedException if interrupted while waiting
3201     * (the method is not required to do so, but is allowed to)
3202     */
3203     boolean block() throws InterruptedException;
3204    
3205     /**
3206     * Returns {@code true} if blocking is unnecessary.
3207     */
3208     boolean isReleasable();
3209     }
3210    
3211     /**
3212     * Blocks in accord with the given blocker. If the current thread
3213     * is a {@link ForkJoinWorkerThread}, this method possibly
3214     * arranges for a spare thread to be activated if necessary to
3215     * ensure sufficient parallelism while the current thread is blocked.
3216     *
3217     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3218     * behaviorally equivalent to
3219     * <pre> {@code
3220     * while (!blocker.isReleasable())
3221     * if (blocker.block())
3222     * return;
3223     * }</pre>
3224     *
3225     * If the caller is a {@code ForkJoinTask}, then the pool may
3226     * first be expanded to ensure parallelism, and later adjusted.
3227     *
3228     * @param blocker the blocker
3229     * @throws InterruptedException if blocker.block did so
3230     */
3231     public static void managedBlock(ManagedBlocker blocker)
3232     throws InterruptedException {
3233     Thread t = Thread.currentThread();
3234 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3235     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3236     while (!blocker.isReleasable()) { // variant of helpSignal
3237 dl 1.21 WorkQueue[] ws; WorkQueue q; int m, u;
3238 dl 1.12 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3239     for (int i = 0; i <= m; ++i) {
3240     if (blocker.isReleasable())
3241     return;
3242 dl 1.21 if ((q = ws[i]) != null && q.base - q.top < 0) {
3243     p.signalWork(q);
3244 dl 1.18 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3245     (u >> UAC_SHIFT) >= 0)
3246 dl 1.12 break;
3247     }
3248     }
3249     }
3250     if (p.tryCompensate()) {
3251     try {
3252     do {} while (!blocker.isReleasable() &&
3253     !blocker.block());
3254     } finally {
3255 dl 1.1 p.incrementActiveCount();
3256 dl 1.12 }
3257     break;
3258 dl 1.1 }
3259     }
3260     }
3261 dl 1.12 else {
3262     do {} while (!blocker.isReleasable() &&
3263     !blocker.block());
3264     }
3265 dl 1.1 }
3266    
3267     // AbstractExecutorService overrides. These rely on undocumented
3268     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3269     // implement RunnableFuture.
3270    
3271     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3272     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3273     }
3274    
3275     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3276     return new ForkJoinTask.AdaptedCallable<T>(callable);
3277     }
3278    
3279     // Unsafe mechanics
3280     private static final sun.misc.Unsafe U;
3281     private static final long CTL;
3282     private static final long PARKBLOCKER;
3283     private static final int ABASE;
3284     private static final int ASHIFT;
3285 dl 1.8 private static final long STEALCOUNT;
3286 dl 1.12 private static final long PLOCK;
3287     private static final long INDEXSEED;
3288     private static final long QLOCK;
3289 dl 1.1
3290     static {
3291 dl 1.12 int s; // initialize field offsets for CAS etc
3292 dl 1.1 try {
3293     U = getUnsafe();
3294     Class<?> k = ForkJoinPool.class;
3295     CTL = U.objectFieldOffset
3296     (k.getDeclaredField("ctl"));
3297 dl 1.8 STEALCOUNT = U.objectFieldOffset
3298     (k.getDeclaredField("stealCount"));
3299 dl 1.12 PLOCK = U.objectFieldOffset
3300     (k.getDeclaredField("plock"));
3301     INDEXSEED = U.objectFieldOffset
3302     (k.getDeclaredField("indexSeed"));
3303 dl 1.1 Class<?> tk = Thread.class;
3304     PARKBLOCKER = U.objectFieldOffset
3305     (tk.getDeclaredField("parkBlocker"));
3306 dl 1.12 Class<?> wk = WorkQueue.class;
3307     QLOCK = U.objectFieldOffset
3308     (wk.getDeclaredField("qlock"));
3309     Class<?> ak = ForkJoinTask[].class;
3310 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3311     s = U.arrayIndexScale(ak);
3312 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3313 dl 1.1 } catch (Exception e) {
3314     throw new Error(e);
3315     }
3316     if ((s & (s-1)) != 0)
3317     throw new Error("data type scale not a power of two");
3318 dl 1.12
3319 dl 1.18 submitters = new ThreadLocal<Submitter>();
3320     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3321     new DefaultForkJoinWorkerThreadFactory();
3322 dl 1.21 modifyThreadPermission = new RuntimePermission("modifyThread");
3323    
3324 dl 1.12 /*
3325 dl 1.18 * Establish common pool parameters. For extra caution,
3326     * computations to set up common pool state are here; the
3327     * constructor just assigns these values to fields.
3328 dl 1.12 */
3329 dl 1.18
3330     int par = 0;
3331     Thread.UncaughtExceptionHandler handler = null;
3332     try { // TBD: limit or report ignored exceptions?
3333     String pp = System.getProperty
3334     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3335     String hp = System.getProperty
3336     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3337     String fp = System.getProperty
3338     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3339     if (fp != null)
3340     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3341     getSystemClassLoader().loadClass(fp).newInstance());
3342     if (hp != null)
3343     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3344     getSystemClassLoader().loadClass(hp).newInstance());
3345     if (pp != null)
3346     par = Integer.parseInt(pp);
3347     } catch (Exception ignore) {
3348     }
3349    
3350 dl 1.12 if (par <= 0)
3351     par = Runtime.getRuntime().availableProcessors();
3352     if (par > MAX_CAP)
3353     par = MAX_CAP;
3354 dl 1.18 commonPoolParallelism = par;
3355 dl 1.12 long np = (long)(-par); // precompute initial ctl value
3356     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3357    
3358     commonPool = new ForkJoinPool(par, ct, fac, handler);
3359 dl 1.1 }
3360    
3361     /**
3362     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3363     * Replace with a simple call to Unsafe.getUnsafe when integrating
3364     * into a jdk.
3365     *
3366     * @return a sun.misc.Unsafe
3367     */
3368     private static sun.misc.Unsafe getUnsafe() {
3369     try {
3370     return sun.misc.Unsafe.getUnsafe();
3371     } catch (SecurityException se) {
3372     try {
3373     return java.security.AccessController.doPrivileged
3374     (new java.security
3375     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3376     public sun.misc.Unsafe run() throws Exception {
3377     java.lang.reflect.Field f = sun.misc
3378     .Unsafe.class.getDeclaredField("theUnsafe");
3379     f.setAccessible(true);
3380     return (sun.misc.Unsafe) f.get(null);
3381     }});
3382     } catch (java.security.PrivilegedActionException e) {
3383     throw new RuntimeException("Could not initialize intrinsics",
3384     e.getCause());
3385     }
3386     }
3387     }
3388    
3389     }