ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.42
Committed: Wed Jan 2 14:10:37 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.41: +3 -3 lines
Log Message:
More consistent API

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.1 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21    
22     /**
23     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24     * A {@code ForkJoinPool} provides the entry point for submissions
25     * from non-{@code ForkJoinTask} clients, as well as management and
26     * monitoring operations.
27     *
28     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31     * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39     *
40 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.12 * use).
46 dl 1.7 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54 jsr166 1.25 * blocked I/O or other unmanaged synchronization. The nested {@link
55 dl 1.7 * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.1 * synchronization accommodated.
57     *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60     * {@link #getStealCount}) that are intended to aid in developing,
61     * tuning, and monitoring fork/join applications. Also, method
62     * {@link #toString} returns indications of pool state in a
63     * convenient form for informal monitoring.
64     *
65 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
66 dl 1.1 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76     *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84     * <td> <b>Arrange async execution</td>
85     * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99     *
100 dl 1.12 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102 jsr166 1.23 * System#getProperty system properties} with prefix {@code
103 dl 1.12 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107 jsr166 1.15 * java.lang.Thread.UncaughtExceptionHandler
108 dl 1.12 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113     * pools with greater than the maximum number result in
114     * {@code IllegalArgumentException}.
115     *
116     * <p>This implementation rejects submitted tasks (that is, by throwing
117     * {@link RejectedExecutionException}) only when the pool is shut down
118     * or internal resources have been exhausted.
119     *
120     * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126     * Implementation Overview
127     *
128     * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130     * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136     *
137     * WorkQueues
138     * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155     * The main differences ultimately stem from GC requirements that
156     * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177     * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181     *
182     * This approach also enables support of a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.12 * processing). Instead, we randomly associate submission queues
198 dl 1.1 * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202 dl 1.12 * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.1 *
216     * Management
217     * ==========
218     *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224     * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226     * consistency checks.
227     *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242 dl 1.18 * block when needed.
243 dl 1.1 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.8 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
252 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.1 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259     * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271     * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278     *
279     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280     * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284     * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296     * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298     * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304     * WorkQueues to reduce unnecessary calls to unpark. (This
305     * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313     *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.12 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319 dl 1.21 * added or another worker adds a task to a queue that has fewer
320     * than two tasks, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- signalWork), and may leave a hint to the unparked worker to
323     * help signal others upon wakeup). These primary signals are
324     * buttressed by others (see method helpSignal) whenever other
325     * threads scan for work or do not have a task to process. On
326     * most platforms, signalling (unpark) overhead time is noticeably
327     * long, and the time between signalling a thread and it actually
328     * making progress can be very noticeably long, so it is worth
329     * offloading these delays from critical paths as much as
330     * possible.
331 dl 1.1 *
332     * Trimming workers. To release resources after periods of lack of
333     * use, a worker starting to wait when the pool is quiescent will
334 dl 1.7 * time out and terminate if the pool has remained quiescent for a
335     * given period -- a short period if there are more threads than
336     * parallelism, longer as the number of threads decreases. This
337     * will slowly propagate, eventually terminating all workers after
338     * periods of non-use.
339 dl 1.1 *
340     * Shutdown and Termination. A call to shutdownNow atomically sets
341 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
342     * qlock status, cancels all unprocessed tasks, and wakes up
343 dl 1.1 * all waiting workers. Detecting whether termination should
344     * commence after a non-abrupt shutdown() call requires more work
345     * and bookkeeping. We need consensus about quiescence (i.e., that
346     * there is no more work). The active count provides a primary
347     * indication but non-abrupt shutdown still requires a rechecking
348     * scan for any workers that are inactive but not queued.
349     *
350     * Joining Tasks
351     * =============
352     *
353     * Any of several actions may be taken when one worker is waiting
354     * to join a task stolen (or always held) by another. Because we
355     * are multiplexing many tasks on to a pool of workers, we can't
356     * just let them block (as in Thread.join). We also cannot just
357     * reassign the joiner's run-time stack with another and replace
358     * it later, which would be a form of "continuation", that even if
359     * possible is not necessarily a good idea since we sometimes need
360     * both an unblocked task and its continuation to progress.
361     * Instead we combine two tactics:
362     *
363     * Helping: Arranging for the joiner to execute some task that it
364     * would be running if the steal had not occurred.
365     *
366     * Compensating: Unless there are already enough live threads,
367     * method tryCompensate() may create or re-activate a spare
368     * thread to compensate for blocked joiners until they unblock.
369     *
370 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
371     * helping a hypothetical compensator: If we can readily tell that
372     * a possible action of a compensator is to steal and execute the
373     * task being joined, the joining thread can do so directly,
374     * without the need for a compensation thread (although at the
375     * expense of larger run-time stacks, but the tradeoff is
376     * typically worthwhile).
377 dl 1.1 *
378     * The ManagedBlocker extension API can't use helping so relies
379     * only on compensation in method awaitBlocker.
380     *
381     * The algorithm in tryHelpStealer entails a form of "linear"
382     * helping: Each worker records (in field currentSteal) the most
383     * recent task it stole from some other worker. Plus, it records
384     * (in field currentJoin) the task it is currently actively
385     * joining. Method tryHelpStealer uses these markers to try to
386     * find a worker to help (i.e., steal back a task from and execute
387     * it) that could hasten completion of the actively joined task.
388     * In essence, the joiner executes a task that would be on its own
389     * local deque had the to-be-joined task not been stolen. This may
390     * be seen as a conservative variant of the approach in Wagner &
391     * Calder "Leapfrogging: a portable technique for implementing
392     * efficient futures" SIGPLAN Notices, 1993
393     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394     * that: (1) We only maintain dependency links across workers upon
395     * steals, rather than use per-task bookkeeping. This sometimes
396     * requires a linear scan of workQueues array to locate stealers,
397     * but often doesn't because stealers leave hints (that may become
398 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
399     * because a worker might have had multiple steals and the hint
400     * records only one of them (usually the most current). Hinting
401     * isolates cost to when it is needed, rather than adding to
402     * per-task overhead. (2) It is "shallow", ignoring nesting and
403     * potentially cyclic mutual steals. (3) It is intentionally
404 dl 1.1 * racy: field currentJoin is updated only while actively joining,
405     * which means that we miss links in the chain during long-lived
406     * tasks, GC stalls etc (which is OK since blocking in such cases
407     * is usually a good idea). (4) We bound the number of attempts
408     * to find work (see MAX_HELP) and fall back to suspending the
409     * worker and if necessary replacing it with another.
410     *
411 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
412     * helpComplete can take and execute any task with the same root
413     * as the task being waited on. However, this still entails some
414     * traversal of completer chains, so is less efficient than using
415     * CountedCompleters without explicit joins.
416     *
417 dl 1.1 * It is impossible to keep exactly the target parallelism number
418     * of threads running at any given time. Determining the
419     * existence of conservatively safe helping targets, the
420     * availability of already-created spares, and the apparent need
421     * to create new spares are all racy, so we rely on multiple
422     * retries of each. Compensation in the apparent absence of
423     * helping opportunities is challenging to control on JVMs, where
424     * GC and other activities can stall progress of tasks that in
425     * turn stall out many other dependent tasks, without us being
426     * able to determine whether they will ever require compensation.
427     * Even though work-stealing otherwise encounters little
428     * degradation in the presence of more threads than cores,
429     * aggressively adding new threads in such cases entails risk of
430     * unwanted positive feedback control loops in which more threads
431     * cause more dependent stalls (as well as delayed progress of
432     * unblocked threads to the point that we know they are available)
433     * leading to more situations requiring more threads, and so
434     * on. This aspect of control can be seen as an (analytically
435     * intractable) game with an opponent that may choose the worst
436     * (for us) active thread to stall at any time. We take several
437     * precautions to bound losses (and thus bound gains), mainly in
438 dl 1.12 * methods tryCompensate and awaitJoin.
439     *
440     * Common Pool
441     * ===========
442     *
443 dl 1.40 * The static common Pool always exists after static
444 dl 1.12 * initialization. Since it (or any other created pool) need
445     * never be used, we minimize initial construction overhead and
446     * footprint to the setup of about a dozen fields, with no nested
447     * allocation. Most bootstrapping occurs within method
448     * fullExternalPush during the first submission to the pool.
449     *
450     * When external threads submit to the common pool, they can
451     * perform some subtask processing (see externalHelpJoin and
452     * related methods). We do not need to record whether these
453     * submissions are to the common pool -- if not, externalHelpJoin
454 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
455 dl 1.12 * workers). These submitters would otherwise be blocked waiting
456     * for completion, so the extra effort (with liberally sprinkled
457     * task status checks) in inapplicable cases amounts to an odd
458     * form of limited spin-wait before blocking in ForkJoinTask.join.
459     *
460     * Style notes
461     * ===========
462     *
463     * There is a lot of representation-level coupling among classes
464     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465     * fields of WorkQueue maintain data structures managed by
466     * ForkJoinPool, so are directly accessed. There is little point
467     * trying to reduce this, since any associated future changes in
468     * representations will need to be accompanied by algorithmic
469     * changes anyway. Several methods intrinsically sprawl because
470     * they must accumulate sets of consistent reads of volatiles held
471     * in local variables. Methods signalWork() and scan() are the
472     * main bottlenecks, so are especially heavily
473 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
474     * (of form "while ((local = field) != 0)") which are usually the
475     * simplest way to ensure the required read orderings (which are
476     * sometimes critical). This leads to a "C"-like style of listing
477     * declarations of these locals at the heads of methods or blocks.
478     * There are several occurrences of the unusual "do {} while
479     * (!cas...)" which is the simplest way to force an update of a
480 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
481     * several unnecessary-looking hoisted null checks) that help
482 dl 1.1 * some methods perform reasonably even when interpreted (not
483     * compiled).
484     *
485     * The order of declarations in this file is:
486     * (1) Static utility functions
487     * (2) Nested (static) classes
488     * (3) Static fields
489     * (4) Fields, along with constants used when unpacking some of them
490     * (5) Internal control methods
491     * (6) Callbacks and other support for ForkJoinTask methods
492     * (7) Exported methods
493     * (8) Static block initializing statics in minimally dependent order
494     */
495    
496     // Static utilities
497    
498     /**
499     * If there is a security manager, makes sure caller has
500     * permission to modify threads.
501     */
502     private static void checkPermission() {
503     SecurityManager security = System.getSecurityManager();
504     if (security != null)
505     security.checkPermission(modifyThreadPermission);
506     }
507    
508     // Nested classes
509    
510     /**
511     * Factory for creating new {@link ForkJoinWorkerThread}s.
512     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513     * for {@code ForkJoinWorkerThread} subclasses that extend base
514     * functionality or initialize threads with different contexts.
515     */
516     public static interface ForkJoinWorkerThreadFactory {
517     /**
518     * Returns a new worker thread operating in the given pool.
519     *
520     * @param pool the pool this thread works in
521     * @throws NullPointerException if the pool is null
522     */
523     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525    
526     /**
527     * Default ForkJoinWorkerThreadFactory implementation; creates a
528     * new ForkJoinWorkerThread.
529     */
530 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
531 dl 1.1 implements ForkJoinWorkerThreadFactory {
532 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 dl 1.1 return new ForkJoinWorkerThread(pool);
534     }
535     }
536    
537     /**
538 dl 1.21 * Per-thread records for threads that submit to pools. Currently
539     * holds only pseudo-random seed / index that is used to choose
540     * submission queues in method externalPush. In the future, this may
541     * also incorporate a means to implement different task rejection
542     * and resubmission policies.
543     *
544     * Seeds for submitters and workers/workQueues work in basically
545     * the same way but are initialized and updated using slightly
546     * different mechanics. Both are initialized using the same
547     * approach as in class ThreadLocal, where successive values are
548     * unlikely to collide with previous values. Seeds are then
549     * randomly modified upon collisions using xorshifts, which
550     * requires a non-zero seed.
551     */
552     static final class Submitter {
553     int seed;
554     Submitter(int s) { seed = s; }
555     }
556    
557     /**
558 dl 1.1 * Class for artificial tasks that are used to replace the target
559     * of local joins if they are removed from an interior queue slot
560     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561     * actually do anything beyond having a unique identity.
562     */
563     static final class EmptyTask extends ForkJoinTask<Void> {
564 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
565 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566     public final Void getRawResult() { return null; }
567     public final void setRawResult(Void x) {}
568     public final boolean exec() { return true; }
569     }
570    
571     /**
572     * Queues supporting work-stealing as well as external task
573     * submission. See above for main rationale and algorithms.
574     * Implementation relies heavily on "Unsafe" intrinsics
575     * and selective use of "volatile":
576     *
577     * Field "base" is the index (mod array.length) of the least valid
578     * queue slot, which is always the next position to steal (poll)
579     * from if nonempty. Reads and writes require volatile orderings
580     * but not CAS, because updates are only performed after slot
581     * CASes.
582     *
583     * Field "top" is the index (mod array.length) of the next queue
584     * slot to push to or pop from. It is written only by owner thread
585 dl 1.12 * for push, or under lock for external/shared push, and accessed
586     * by other threads only after reading (volatile) base. Both top
587     * and base are allowed to wrap around on overflow, but (top -
588     * base) (or more commonly -(base - top) to force volatile read of
589     * base before top) still estimates size. The lock ("qlock") is
590     * forced to -1 on termination, causing all further lock attempts
591     * to fail. (Note: we don't need CAS for termination state because
592     * upon pool shutdown, all shared-queues will stop being used
593     * anyway.) Nearly all lock bodies are set up so that exceptions
594     * within lock bodies are "impossible" (modulo JVM errors that
595     * would cause failure anyway.)
596 dl 1.1 *
597     * The array slots are read and written using the emulation of
598     * volatiles/atomics provided by Unsafe. Insertions must in
599     * general use putOrderedObject as a form of releasing store to
600     * ensure that all writes to the task object are ordered before
601 dl 1.12 * its publication in the queue. All removals entail a CAS to
602     * null. The array is always a power of two. To ensure safety of
603     * Unsafe array operations, all accesses perform explicit null
604     * checks and implicit bounds checks via power-of-two masking.
605 dl 1.1 *
606     * In addition to basic queuing support, this class contains
607     * fields described elsewhere to control execution. It turns out
608 dl 1.12 * to work better memory-layout-wise to include them in this class
609     * rather than a separate class.
610 dl 1.1 *
611     * Performance on most platforms is very sensitive to placement of
612     * instances of both WorkQueues and their arrays -- we absolutely
613     * do not want multiple WorkQueue instances or multiple queue
614     * arrays sharing cache lines. (It would be best for queue objects
615     * and their arrays to share, but there is nothing available to
616     * help arrange that). Unfortunately, because they are recorded
617     * in a common array, WorkQueue instances are often moved to be
618     * adjacent by garbage collectors. To reduce impact, we use field
619     * padding that works OK on common platforms; this effectively
620     * trades off slightly slower average field access for the sake of
621     * avoiding really bad worst-case access. (Until better JVM
622     * support is in place, this padding is dependent on transient
623 dl 1.21 * properties of JVM field layout rules.) We also take care in
624     * allocating, sizing and resizing the array. Non-shared queue
625     * arrays are initialized by workers before use. Others are
626     * allocated on first use.
627 dl 1.1 */
628     static final class WorkQueue {
629     /**
630     * Capacity of work-stealing queue array upon initialization.
631     * Must be a power of two; at least 4, but should be larger to
632     * reduce or eliminate cacheline sharing among queues.
633     * Currently, it is much larger, as a partial workaround for
634     * the fact that JVMs often place arrays in locations that
635     * share GC bookkeeping (especially cardmarks) such that
636     * per-write accesses encounter serious memory contention.
637     */
638     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639    
640     /**
641     * Maximum size for queue arrays. Must be a power of two less
642     * than or equal to 1 << (31 - width of array entry) to ensure
643     * lack of wraparound of index calculations, but defined to a
644     * value a bit less than this to help users trap runaway
645     * programs before saturating systems.
646     */
647     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648    
649 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
650     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651    
652 dl 1.1 int seed; // for random scanning; initialize nonzero
653     volatile int eventCount; // encoded inactivation count; < 0 if inactive
654     int nextWait; // encoded record of next event waiter
655 dl 1.18 int hint; // steal or signal hint (index)
656 dl 1.1 int poolIndex; // index of this queue in pool (or 0)
657 dl 1.18 final int mode; // 0: lifo, > 0: fifo, < 0: shared
658     int nsteals; // number of steals
659 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
660 dl 1.1 volatile int base; // index of next slot for poll
661     int top; // index of next slot for push
662     ForkJoinTask<?>[] array; // the elements (initially unallocated)
663     final ForkJoinPool pool; // the containing pool (may be null)
664     final ForkJoinWorkerThread owner; // owning thread or null if shared
665     volatile Thread parker; // == owner during call to park; else null
666     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667     ForkJoinTask<?> currentSteal; // current non-local task being executed
668 dl 1.18
669 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 dl 1.1
672 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673     int seed) {
674 dl 1.1 this.pool = pool;
675     this.owner = owner;
676 dl 1.18 this.mode = mode;
677     this.seed = seed;
678 dl 1.21 // Place indices in the center of array (that is not yet allocated)
679 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680     }
681    
682     /**
683 dl 1.21 * Returns the approximate number of tasks in the queue.
684     */
685     final int queueSize() {
686     int n = base - top; // non-owner callers must read base first
687     return (n >= 0) ? 0 : -n; // ignore transient negative
688     }
689    
690     /**
691     * Provides a more accurate estimate of whether this queue has
692     * any tasks than does queueSize, by checking whether a
693     * near-empty queue has at least one unclaimed task.
694     */
695     final boolean isEmpty() {
696     ForkJoinTask<?>[] a; int m, s;
697     int n = base - (s = top);
698     return (n >= 0 ||
699     (n == -1 &&
700     ((a = array) == null ||
701     (m = a.length - 1) < 0 ||
702     U.getObject
703     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704     }
705    
706     /**
707     * Pushes a task. Call only by owner in unshared queues. (The
708     * shared-queue version is embedded in method externalPush.)
709 dl 1.1 *
710     * @param task the task. Caller must ensure non-null.
711     * @throw RejectedExecutionException if array cannot be resized
712     */
713     final void push(ForkJoinTask<?> task) {
714 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
715     int s = top, m, n;
716     if ((a = array) != null) { // ignore if queue removed
717 dl 1.21 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718     U.putOrderedObject(a, j, task);
719     if ((n = (top = s + 1) - base) <= 2) {
720 dl 1.18 if ((p = pool) != null)
721 dl 1.21 p.signalWork(this);
722 dl 1.18 }
723     else if (n >= m)
724     growArray();
725 dl 1.1 }
726     }
727    
728 dl 1.18 /**
729     * Initializes or doubles the capacity of array. Call either
730     * by owner or with lock held -- it is OK for base, but not
731     * top, to move while resizings are in progress.
732     */
733     final ForkJoinTask<?>[] growArray() {
734     ForkJoinTask<?>[] oldA = array;
735     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736     if (size > MAXIMUM_QUEUE_CAPACITY)
737     throw new RejectedExecutionException("Queue capacity exceeded");
738     int oldMask, t, b;
739     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741     (t = top) - (b = base) > 0) {
742     int mask = size - 1;
743     do {
744     ForkJoinTask<?> x;
745     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746     int j = ((b & mask) << ASHIFT) + ABASE;
747     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748     if (x != null &&
749     U.compareAndSwapObject(oldA, oldj, x, null))
750     U.putObjectVolatile(a, j, x);
751     } while (++b != t);
752 dl 1.1 }
753 dl 1.18 return a;
754 dl 1.1 }
755    
756     /**
757     * Takes next task, if one exists, in LIFO order. Call only
758 dl 1.9 * by owner in unshared queues.
759 dl 1.1 */
760     final ForkJoinTask<?> pop() {
761     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762     if ((a = array) != null && (m = a.length - 1) >= 0) {
763     for (int s; (s = top - 1) - base >= 0;) {
764     long j = ((m & s) << ASHIFT) + ABASE;
765     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766     break;
767     if (U.compareAndSwapObject(a, j, t, null)) {
768     top = s;
769     return t;
770     }
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes a task in FIFO order if b is base of queue and a task
778     * can be claimed without contention. Specialized versions
779     * appear in ForkJoinPool methods scan and tryHelpStealer.
780     */
781     final ForkJoinTask<?> pollAt(int b) {
782     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783     if ((a = array) != null) {
784     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786     base == b &&
787     U.compareAndSwapObject(a, j, t, null)) {
788     base = b + 1;
789     return t;
790     }
791     }
792     return null;
793     }
794    
795     /**
796     * Takes next task, if one exists, in FIFO order.
797     */
798     final ForkJoinTask<?> poll() {
799     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800     while ((b = base) - top < 0 && (a = array) != null) {
801     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803     if (t != null) {
804     if (base == b &&
805     U.compareAndSwapObject(a, j, t, null)) {
806     base = b + 1;
807     return t;
808     }
809     }
810     else if (base == b) {
811     if (b + 1 == top)
812     break;
813 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
814 dl 1.1 }
815     }
816     return null;
817     }
818    
819     /**
820     * Takes next task, if one exists, in order specified by mode.
821     */
822     final ForkJoinTask<?> nextLocalTask() {
823     return mode == 0 ? pop() : poll();
824     }
825    
826     /**
827     * Returns next task, if one exists, in order specified by mode.
828     */
829     final ForkJoinTask<?> peek() {
830     ForkJoinTask<?>[] a = array; int m;
831     if (a == null || (m = a.length - 1) < 0)
832     return null;
833     int i = mode == 0 ? top - 1 : base;
834     int j = ((i & m) << ASHIFT) + ABASE;
835     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836     }
837    
838     /**
839     * Pops the given task only if it is at the current top.
840 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
841 dl 1.1 */
842     final boolean tryUnpush(ForkJoinTask<?> t) {
843     ForkJoinTask<?>[] a; int s;
844     if ((a = array) != null && (s = top) != base &&
845     U.compareAndSwapObject
846     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847     top = s;
848     return true;
849     }
850     return false;
851     }
852    
853     /**
854     * Removes and cancels all known tasks, ignoring any exceptions.
855     */
856     final void cancelAll() {
857     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859     for (ForkJoinTask<?> t; (t = poll()) != null; )
860     ForkJoinTask.cancelIgnoringExceptions(t);
861     }
862    
863     /**
864     * Computes next value for random probes. Scans don't require
865     * a very high quality generator, but also not a crummy one.
866     * Marsaglia xor-shift is cheap and works well enough. Note:
867     * This is manually inlined in its usages in ForkJoinPool to
868     * avoid writes inside busy scan loops.
869     */
870     final int nextSeed() {
871     int r = seed;
872     r ^= r << 13;
873     r ^= r >>> 17;
874     return seed = r ^= r << 5;
875     }
876    
877 dl 1.11 // Specialized execution methods
878 dl 1.1
879     /**
880     * Pops and runs tasks until empty.
881     */
882     private void popAndExecAll() {
883     // A bit faster than repeated pop calls
884     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885     while ((a = array) != null && (m = a.length - 1) >= 0 &&
886     (s = top - 1) - base >= 0 &&
887     (t = ((ForkJoinTask<?>)
888     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889     != null) {
890     if (U.compareAndSwapObject(a, j, t, null)) {
891     top = s;
892     t.doExec();
893     }
894     }
895     }
896    
897     /**
898     * Polls and runs tasks until empty.
899     */
900     private void pollAndExecAll() {
901     for (ForkJoinTask<?> t; (t = poll()) != null;)
902     t.doExec();
903     }
904    
905     /**
906 dl 1.12 * If present, removes from queue and executes the given task,
907     * or any other cancelled task. Returns (true) on any CAS
908 dl 1.1 * or consistency check failure so caller can retry.
909     *
910 dl 1.12 * @return false if no progress can be made, else true;
911 dl 1.1 */
912 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913     boolean stat = true, removed = false, empty = true;
914 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
915     if ((a = array) != null && (m = a.length - 1) >= 0 &&
916     (n = (s = top) - (b = base)) > 0) {
917     for (ForkJoinTask<?> t;;) { // traverse from s to b
918     int j = ((--s & m) << ASHIFT) + ABASE;
919     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920     if (t == null) // inconsistent length
921     break;
922     else if (t == task) {
923     if (s + 1 == top) { // pop
924     if (!U.compareAndSwapObject(a, j, task, null))
925     break;
926     top = s;
927     removed = true;
928     }
929     else if (base == b) // replace with proxy
930     removed = U.compareAndSwapObject(a, j, task,
931     new EmptyTask());
932     break;
933     }
934     else if (t.status >= 0)
935     empty = false;
936     else if (s + 1 == top) { // pop and throw away
937     if (U.compareAndSwapObject(a, j, t, null))
938     top = s;
939     break;
940     }
941     if (--n == 0) {
942     if (!empty && base == b)
943 dl 1.12 stat = false;
944 dl 1.1 break;
945     }
946     }
947     }
948     if (removed)
949     task.doExec();
950     return stat;
951     }
952    
953     /**
954 dl 1.12 * Polls for and executes the given task or any other task in
955     * its CountedCompleter computation
956 dl 1.11 */
957 dl 1.12 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958     ForkJoinTask<?>[] a; int b; Object o;
959     outer: while ((b = base) - top < 0 && (a = array) != null) {
960     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961     if ((o = U.getObject(a, j)) == null ||
962     !(o instanceof CountedCompleter))
963     break;
964     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965     if (r == root) {
966     if (base == b &&
967     U.compareAndSwapObject(a, j, t, null)) {
968     base = b + 1;
969     t.doExec();
970     return true;
971 dl 1.11 }
972 dl 1.12 else
973     break; // restart
974 dl 1.11 }
975 dl 1.12 if ((r = r.completer) == null)
976     break outer; // not part of root computation
977 dl 1.11 }
978     }
979 dl 1.12 return false;
980 dl 1.11 }
981    
982     /**
983 dl 1.1 * Executes a top-level task and any local tasks remaining
984     * after execution.
985     */
986     final void runTask(ForkJoinTask<?> t) {
987     if (t != null) {
988 dl 1.12 (currentSteal = t).doExec();
989     currentSteal = null;
990 dl 1.32 ++nsteals;
991 dl 1.21 if (base - top < 0) { // process remaining local tasks
992 dl 1.1 if (mode == 0)
993     popAndExecAll();
994     else
995     pollAndExecAll();
996     }
997     }
998     }
999    
1000     /**
1001     * Executes a non-top-level (stolen) task.
1002     */
1003     final void runSubtask(ForkJoinTask<?> t) {
1004     if (t != null) {
1005     ForkJoinTask<?> ps = currentSteal;
1006 dl 1.12 (currentSteal = t).doExec();
1007 dl 1.1 currentSteal = ps;
1008     }
1009     }
1010    
1011     /**
1012     * Returns true if owned and not known to be blocked.
1013     */
1014     final boolean isApparentlyUnblocked() {
1015     Thread wt; Thread.State s;
1016     return (eventCount >= 0 &&
1017     (wt = owner) != null &&
1018     (s = wt.getState()) != Thread.State.BLOCKED &&
1019     s != Thread.State.WAITING &&
1020     s != Thread.State.TIMED_WAITING);
1021     }
1022    
1023     // Unsafe mechanics
1024     private static final sun.misc.Unsafe U;
1025 dl 1.12 private static final long QLOCK;
1026 dl 1.1 private static final int ABASE;
1027     private static final int ASHIFT;
1028     static {
1029     int s;
1030     try {
1031     U = getUnsafe();
1032     Class<?> k = WorkQueue.class;
1033     Class<?> ak = ForkJoinTask[].class;
1034 dl 1.12 QLOCK = U.objectFieldOffset
1035     (k.getDeclaredField("qlock"));
1036 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1037     s = U.arrayIndexScale(ak);
1038     } catch (Exception e) {
1039     throw new Error(e);
1040     }
1041     if ((s & (s-1)) != 0)
1042     throw new Error("data type scale not a power of two");
1043     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044     }
1045     }
1046 jsr166 1.3
1047 dl 1.18 // static fields (initialized in static initializer below)
1048    
1049     /**
1050     * Creates a new ForkJoinWorkerThread. This factory is used unless
1051     * overridden in ForkJoinPool constructors.
1052     */
1053     public static final ForkJoinWorkerThreadFactory
1054     defaultForkJoinWorkerThreadFactory;
1055    
1056 dl 1.1 /**
1057 dl 1.18 * Per-thread submission bookkeeping. Shared across all pools
1058     * to reduce ThreadLocal pollution and because random motion
1059     * to avoid contention in one pool is likely to hold for others.
1060     * Lazily initialized on first submission (but null-checked
1061     * in other contexts to avoid unnecessary initialization).
1062 dl 1.1 */
1063 dl 1.18 static final ThreadLocal<Submitter> submitters;
1064 dl 1.1
1065 dl 1.8 /**
1066 dl 1.21 * Permission required for callers of methods that may start or
1067     * kill threads.
1068     */
1069     private static final RuntimePermission modifyThreadPermission;
1070    
1071     /**
1072 dl 1.8 * Common (static) pool. Non-null for public use unless a static
1073 dl 1.12 * construction exception, but internal usages null-check on use
1074     * to paranoically avoid potential initialization circularities
1075     * as well as to simplify generated code.
1076 dl 1.8 */
1077 dl 1.40 static final ForkJoinPool common;
1078 dl 1.8
1079     /**
1080 dl 1.40 * Common pool parallelism. Must equal common.parallelism.
1081 dl 1.1 */
1082 dl 1.40 static final int commonParallelism;
1083 dl 1.1
1084     /**
1085 dl 1.12 * Sequence number for creating workerNamePrefix.
1086 dl 1.1 */
1087 dl 1.12 private static int poolNumberSequence;
1088 dl 1.1
1089     /**
1090 jsr166 1.38 * Returns the next sequence number. We don't expect this to
1091     * ever contend, so use simple builtin sync.
1092 dl 1.1 */
1093 dl 1.12 private static final synchronized int nextPoolId() {
1094     return ++poolNumberSequence;
1095     }
1096 dl 1.1
1097     // static constants
1098    
1099     /**
1100 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1101     * triggering quiescence to park waiting for new work. On timeout,
1102     * the thread will instead try to shrink the number of
1103     * workers. The value should be large enough to avoid overly
1104     * aggressive shrinkage during most transient stalls (long GCs
1105     * etc).
1106 dl 1.1 */
1107 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1108 dl 1.1
1109     /**
1110 dl 1.7 * Timeout value when there are more threads than parallelism level
1111 dl 1.1 */
1112 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1113 dl 1.1
1114     /**
1115 dl 1.26 * Tolerance for idle timeouts, to cope with timer undershoots
1116     */
1117 dl 1.33 private static final long TIMEOUT_SLOP = 2000000L;
1118 dl 1.26
1119     /**
1120 dl 1.1 * The maximum stolen->joining link depth allowed in method
1121 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1122 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1123     * (otherwise unchecked) cycles and to bound staleness of
1124     * traversal parameters at the expense of sometimes blocking when
1125     * we could be helping.
1126     */
1127     private static final int MAX_HELP = 64;
1128    
1129     /**
1130     * Increment for seed generators. See class ThreadLocal for
1131     * explanation.
1132     */
1133     private static final int SEED_INCREMENT = 0x61c88647;
1134    
1135     /**
1136     * Bits and masks for control variables
1137     *
1138     * Field ctl is a long packed with:
1139     * AC: Number of active running workers minus target parallelism (16 bits)
1140     * TC: Number of total workers minus target parallelism (16 bits)
1141     * ST: true if pool is terminating (1 bit)
1142     * EC: the wait count of top waiting thread (15 bits)
1143     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144     *
1145     * When convenient, we can extract the upper 32 bits of counts and
1146     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147     * (int)ctl. The ec field is never accessed alone, but always
1148     * together with id and st. The offsets of counts by the target
1149     * parallelism and the positionings of fields makes it possible to
1150     * perform the most common checks via sign tests of fields: When
1151     * ac is negative, there are not enough active workers, when tc is
1152     * negative, there are not enough total workers, and when e is
1153     * negative, the pool is terminating. To deal with these possibly
1154     * negative fields, we use casts in and out of "short" and/or
1155     * signed shifts to maintain signedness.
1156     *
1157     * When a thread is queued (inactivated), its eventCount field is
1158     * set negative, which is the only way to tell if a worker is
1159     * prevented from executing tasks, even though it must continue to
1160     * scan for them to avoid queuing races. Note however that
1161     * eventCount updates lag releases so usage requires care.
1162     *
1163 dl 1.12 * Field plock is an int packed with:
1164 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 dl 1.1 *
1168     * The sequence number enables simple consistency checks:
1169     * Staleness of read-only operations on the workQueues array can
1170 dl 1.12 * be checked by comparing plock before vs after the reads.
1171 dl 1.1 */
1172    
1173     // bit positions/shifts for fields
1174     private static final int AC_SHIFT = 48;
1175     private static final int TC_SHIFT = 32;
1176     private static final int ST_SHIFT = 31;
1177     private static final int EC_SHIFT = 16;
1178    
1179     // bounds
1180     private static final int SMASK = 0xffff; // short bits
1181     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1182 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1183     private static final int SQMASK = 0x007e; // max 64 (even) slots
1184 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1185     private static final int INT_SIGN = 1 << 31;
1186    
1187     // masks
1188     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1189     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1190     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1191    
1192     // units for incrementing and decrementing
1193     private static final long TC_UNIT = 1L << TC_SHIFT;
1194     private static final long AC_UNIT = 1L << AC_SHIFT;
1195    
1196     // masks and units for dealing with u = (int)(ctl >>> 32)
1197     private static final int UAC_SHIFT = AC_SHIFT - 32;
1198     private static final int UTC_SHIFT = TC_SHIFT - 32;
1199     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1200     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1201     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1202     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1203    
1204     // masks and units for dealing with e = (int)ctl
1205     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1206     private static final int E_SEQ = 1 << EC_SHIFT;
1207    
1208 dl 1.12 // plock bits
1209 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1210 dl 1.12 private static final int PL_LOCK = 2;
1211     private static final int PL_SIGNAL = 1;
1212     private static final int PL_SPINS = 1 << 8;
1213 dl 1.1
1214     // access mode for WorkQueue
1215     static final int LIFO_QUEUE = 0;
1216     static final int FIFO_QUEUE = 1;
1217     static final int SHARED_QUEUE = -1;
1218    
1219 dl 1.18 // bounds for #steps in scan loop -- must be power 2 minus 1
1220     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1221     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1222    
1223 dl 1.1 // Instance fields
1224    
1225     /*
1226 dl 1.18 * Field layout of this class tends to matter more than one would
1227     * like. Runtime layout order is only loosely related to
1228 dl 1.1 * declaration order and may differ across JVMs, but the following
1229     * empirically works OK on current JVMs.
1230     */
1231 dl 1.21
1232     // Heuristic padding to ameliorate unfortunate memory placements
1233     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234    
1235 dl 1.8 volatile long stealCount; // collects worker counts
1236 dl 1.1 volatile long ctl; // main pool control
1237 dl 1.18 volatile int plock; // shutdown status and seqLock
1238 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1239 dl 1.18 final int config; // mode and parallelism level
1240 dl 1.1 WorkQueue[] workQueues; // main registry
1241 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1242 dl 1.1 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 dl 1.8 final String workerNamePrefix; // to create worker name string
1244    
1245 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246     volatile Object pad18, pad19, pad1a, pad1b;
1247    
1248 dl 1.8 /*
1249 dl 1.12 * Acquires the plock lock to protect worker array and related
1250     * updates. This method is called only if an initial CAS on plock
1251     * fails. This acts as a spinLock for normal cases, but falls back
1252     * to builtin monitor to block when (rarely) needed. This would be
1253     * a terrible idea for a highly contended lock, but works fine as
1254 dl 1.32 * a more conservative alternative to a pure spinlock.
1255 dl 1.12 */
1256     private int acquirePlock() {
1257     int spins = PL_SPINS, r = 0, ps, nps;
1258     for (;;) {
1259     if (((ps = plock) & PL_LOCK) == 0 &&
1260     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261     return nps;
1262 dl 1.18 else if (r == 0) { // randomize spins if possible
1263     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264     if ((t instanceof ForkJoinWorkerThread) &&
1265     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266     r = w.seed;
1267     else if ((z = submitters.get()) != null)
1268     r = z.seed;
1269     else
1270     r = 1;
1271     }
1272 dl 1.8 else if (spins >= 0) {
1273     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274     if (r >= 0)
1275     --spins;
1276     }
1277 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 jsr166 1.13 synchronized (this) {
1279 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1280 dl 1.8 try {
1281     wait();
1282     } catch (InterruptedException ie) {
1283 dl 1.11 try {
1284     Thread.currentThread().interrupt();
1285     } catch (SecurityException ignore) {
1286     }
1287 dl 1.8 }
1288     }
1289     else
1290 dl 1.12 notifyAll();
1291 dl 1.8 }
1292     }
1293     }
1294     }
1295 dl 1.1
1296     /**
1297 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1298     * when CAS of seq value for unlock fails.
1299 dl 1.1 */
1300 dl 1.12 private void releasePlock(int ps) {
1301     plock = ps;
1302 jsr166 1.13 synchronized (this) { notifyAll(); }
1303 dl 1.1 }
1304    
1305 dl 1.18 /**
1306 dl 1.26 * Tries to create and start one worker if fewer than target
1307     * parallelism level exist. Adjusts counts etc on failure.
1308 dl 1.21 */
1309     private void tryAddWorker() {
1310 dl 1.18 long c; int u;
1311 dl 1.21 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1312     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1313 dl 1.18 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1314     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1315 dl 1.21 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1316     ForkJoinWorkerThreadFactory fac;
1317     Throwable ex = null;
1318     ForkJoinWorkerThread wt = null;
1319     try {
1320     if ((fac = factory) != null &&
1321     (wt = fac.newThread(this)) != null) {
1322     wt.start();
1323     break;
1324     }
1325     } catch (Throwable e) {
1326     ex = e;
1327     }
1328     deregisterWorker(wt, ex);
1329     break;
1330     }
1331 dl 1.18 }
1332     }
1333    
1334     // Registering and deregistering workers
1335    
1336     /**
1337     * Callback from ForkJoinWorkerThread to establish and record its
1338     * WorkQueue. To avoid scanning bias due to packing entries in
1339     * front of the workQueues array, we treat the array as a simple
1340     * power-of-two hash table using per-thread seed as hash,
1341     * expanding as needed.
1342     *
1343     * @param wt the worker thread
1344 dl 1.21 * @return the worker's queue
1345 dl 1.18 */
1346 dl 1.21 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1347     Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1348     wt.setDaemon(true);
1349     if ((handler = ueh) != null)
1350     wt.setUncaughtExceptionHandler(handler);
1351     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1352     s += SEED_INCREMENT) ||
1353     s == 0); // skip 0
1354     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1355     if (((ps = plock) & PL_LOCK) != 0 ||
1356     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357     ps = acquirePlock();
1358     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1359     try {
1360     if ((ws = workQueues) != null) { // skip if shutting down
1361     int n = ws.length, m = n - 1;
1362     int r = (s << 1) | 1; // use odd-numbered indices
1363     if (ws[r &= m] != null) { // collision
1364     int probes = 0; // step by approx half size
1365     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1366     while (ws[r = (r + step) & m] != null) {
1367     if (++probes >= n) {
1368     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369     m = n - 1;
1370     probes = 0;
1371 dl 1.1 }
1372     }
1373     }
1374 dl 1.21 w.eventCount = w.poolIndex = r; // volatile write orders
1375     ws[r] = w;
1376 dl 1.1 }
1377 dl 1.21 } finally {
1378     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379     releasePlock(nps);
1380 dl 1.1 }
1381 dl 1.21 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1382     return w;
1383 dl 1.1 }
1384    
1385     /**
1386     * Final callback from terminating worker, as well as upon failure
1387 dl 1.12 * to construct or start a worker. Removes record of worker from
1388     * array, and adjusts counts. If pool is shutting down, tries to
1389     * complete termination.
1390 dl 1.1 *
1391 dl 1.12 * @param wt the worker thread or null if construction failed
1392 dl 1.1 * @param ex the exception causing failure, or null if none
1393     */
1394     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1395     WorkQueue w = null;
1396     if (wt != null && (w = wt.workQueue) != null) {
1397 dl 1.12 int ps;
1398     w.qlock = -1; // ensure set
1399 dl 1.18 long ns = w.nsteals, sc; // collect steal count
1400     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1401     sc = stealCount, sc + ns));
1402 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1403     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404     ps = acquirePlock();
1405     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406 dl 1.8 try {
1407 dl 1.12 int idx = w.poolIndex;
1408 dl 1.1 WorkQueue[] ws = workQueues;
1409     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1410     ws[idx] = null;
1411     } finally {
1412 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1413     releasePlock(nps);
1414 dl 1.1 }
1415     }
1416    
1417 dl 1.32 long c; // adjust ctl counts
1418 dl 1.1 do {} while (!U.compareAndSwapLong
1419     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1420     ((c - TC_UNIT) & TC_MASK) |
1421     (c & ~(AC_MASK|TC_MASK)))));
1422    
1423 dl 1.26 if (!tryTerminate(false, false) && w != null && w.array != null) {
1424 dl 1.32 w.cancelAll(); // cancel remaining tasks
1425     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1426     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1427     if (e > 0) { // activate or create replacement
1428     if ((ws = workQueues) == null ||
1429     (i = e & SMASK) >= ws.length ||
1430 dl 1.36 (v = ws[i]) == null)
1431 dl 1.32 break;
1432     long nc = (((long)(v.nextWait & E_MASK)) |
1433     ((long)(u + UAC_UNIT) << 32));
1434     if (v.eventCount != (e | INT_SIGN))
1435     break;
1436     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1437     v.eventCount = (e + E_SEQ) & E_MASK;
1438     if ((p = v.parker) != null)
1439     U.unpark(p);
1440     break;
1441 dl 1.26 }
1442     }
1443     else {
1444     if ((short)u < 0)
1445     tryAddWorker();
1446     break;
1447     }
1448     }
1449 dl 1.1 }
1450 dl 1.26 if (ex == null) // help clean refs on way out
1451     ForkJoinTask.helpExpungeStaleExceptions();
1452     else // rethrow
1453 dl 1.11 ForkJoinTask.rethrow(ex);
1454 dl 1.1 }
1455    
1456     // Submissions
1457    
1458     /**
1459     * Unless shutting down, adds the given task to a submission queue
1460     * at submitter's current queue index (modulo submission
1461 dl 1.12 * range). Only the most common path is directly handled in this
1462     * method. All others are relayed to fullExternalPush.
1463 dl 1.1 *
1464     * @param task the task. Caller must ensure non-null.
1465     */
1466 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1467     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1468     if ((z = submitters.get()) != null && plock > 0 &&
1469     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1470     (q = ws[m & z.seed & SQMASK]) != null &&
1471     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1472 dl 1.18 int b = q.base, s = q.top, n, an;
1473     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1474 dl 1.21 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1475     U.putOrderedObject(a, j, task);
1476 dl 1.12 q.top = s + 1; // push on to deque
1477     q.qlock = 0;
1478 dl 1.18 if (n <= 2)
1479 dl 1.21 signalWork(q);
1480 dl 1.1 return;
1481     }
1482 dl 1.12 q.qlock = 0;
1483 dl 1.1 }
1484 dl 1.12 fullExternalPush(task);
1485 dl 1.1 }
1486    
1487 dl 1.7 /**
1488 dl 1.12 * Full version of externalPush. This method is called, among
1489     * other times, upon the first submission of the first task to the
1490 dl 1.37 * pool, so must perform secondary initialization. It also
1491     * detects first submission by an external thread by looking up
1492     * its ThreadLocal, and creates a new shared queue if the one at
1493     * index if empty or contended. The plock lock body must be
1494     * exception-free (so no try/finally) so we optimistically
1495     * allocate new queues outside the lock and throw them away if
1496     * (very rarely) not needed.
1497     *
1498     * Secondary initialization occurs when plock is zero, to create
1499     * workQueue array and set plock to a valid value. This lock body
1500     * must also be exception-free. Because the plock seq value can
1501     * eventually wrap around zero, this method harmlessly fails to
1502     * reinitialize if workQueues exists, while still advancing plock.
1503 dl 1.12 */
1504     private void fullExternalPush(ForkJoinTask<?> task) {
1505 dl 1.21 int r = 0; // random index seed
1506 dl 1.18 for (Submitter z = submitters.get();;) {
1507     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1508     if (z == null) {
1509     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1510     r += SEED_INCREMENT) && r != 0)
1511     submitters.set(z = new Submitter(r));
1512     }
1513 dl 1.37 else if (r == 0) { // move to a different index
1514 dl 1.18 r = z.seed;
1515 dl 1.37 r ^= r << 13; // same xorshift as WorkQueues
1516 dl 1.18 r ^= r >>> 17;
1517     z.seed = r ^ (r << 5);
1518     }
1519     else if ((ps = plock) < 0)
1520 dl 1.12 throw new RejectedExecutionException();
1521 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1522 dl 1.37 (m = ws.length - 1) < 0) { // initialize workQueues
1523     int p = config & SMASK; // find power of two table size
1524     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1525     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1526     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1527     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1528     new WorkQueue[n] : null);
1529     if (((ps = plock) & PL_LOCK) != 0 ||
1530     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1531     ps = acquirePlock();
1532     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1533     workQueues = nws;
1534     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1535     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1536     releasePlock(nps);
1537     }
1538 dl 1.18 else if ((q = ws[k = r & m & SQMASK]) != null) {
1539 dl 1.21 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1540     ForkJoinTask<?>[] a = q.array;
1541     int s = q.top;
1542     boolean submitted = false;
1543     try { // locked version of push
1544     if ((a != null && a.length > s + 1 - q.base) ||
1545     (a = q.growArray()) != null) { // must presize
1546     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1547     U.putOrderedObject(a, j, task);
1548     q.top = s + 1;
1549     submitted = true;
1550     }
1551     } finally {
1552     q.qlock = 0; // unlock
1553     }
1554     if (submitted) {
1555     signalWork(q);
1556     return;
1557     }
1558     }
1559     r = 0; // move on failure
1560 dl 1.18 }
1561     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1562     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1563     if (((ps = plock) & PL_LOCK) != 0 ||
1564 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1565     ps = acquirePlock();
1566 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1567     ws[k] = q;
1568 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1569     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1570     releasePlock(nps);
1571     }
1572 dl 1.18 else
1573     r = 0; // try elsewhere while lock held
1574 dl 1.11 }
1575 dl 1.9 }
1576    
1577 dl 1.1 // Maintaining ctl counts
1578    
1579     /**
1580     * Increments active count; mainly called upon return from blocking.
1581     */
1582     final void incrementActiveCount() {
1583     long c;
1584     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1585     }
1586    
1587     /**
1588 dl 1.21 * Tries to create or activate a worker if too few are active.
1589     *
1590     * @param q the (non-null) queue holding tasks to be signalled
1591 dl 1.12 */
1592 dl 1.21 final void signalWork(WorkQueue q) {
1593     int hint = q.poolIndex;
1594     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1595 dl 1.12 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1596     if ((e = (int)c) > 0) {
1597     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1598 dl 1.1 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1599     long nc = (((long)(w.nextWait & E_MASK)) |
1600     ((long)(u + UAC_UNIT) << 32));
1601     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1602 dl 1.21 w.hint = hint;
1603 dl 1.1 w.eventCount = (e + E_SEQ) & E_MASK;
1604 dl 1.21 if ((p = w.parker) != null)
1605 dl 1.12 U.unpark(p);
1606 dl 1.21 break;
1607 dl 1.12 }
1608 dl 1.21 if (q.top - q.base <= 0)
1609 dl 1.1 break;
1610     }
1611     else
1612     break;
1613     }
1614 dl 1.21 else {
1615     if ((short)u < 0)
1616     tryAddWorker();
1617     break;
1618 dl 1.1 }
1619     }
1620     }
1621    
1622     // Scanning for tasks
1623    
1624     /**
1625     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626     */
1627     final void runWorker(WorkQueue w) {
1628 dl 1.21 w.growArray(); // allocate queue
1629     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1630 dl 1.1 }
1631    
1632     /**
1633     * Scans for and, if found, returns one task, else possibly
1634     * inactivates the worker. This method operates on single reads of
1635     * volatile state and is designed to be re-invoked continuously,
1636     * in part because it returns upon detecting inconsistencies,
1637     * contention, or state changes that indicate possible success on
1638     * re-invocation.
1639     *
1640 dl 1.18 * The scan searches for tasks across queues (starting at a random
1641     * index, and relying on registerWorker to irregularly scatter
1642     * them within array to avoid bias), checking each at least twice.
1643     * The scan terminates upon either finding a non-empty queue, or
1644     * completing the sweep. If the worker is not inactivated, it
1645     * takes and returns a task from this queue. Otherwise, if not
1646     * activated, it signals workers (that may include itself) and
1647     * returns so caller can retry. Also returns for true if the
1648     * worker array may have changed during an empty scan. On failure
1649     * to find a task, we take one of the following actions, after
1650     * which the caller will retry calling this method unless
1651     * terminated.
1652 dl 1.1 *
1653     * * If pool is terminating, terminate the worker.
1654     *
1655     * * If not already enqueued, try to inactivate and enqueue the
1656     * worker on wait queue. Or, if inactivating has caused the pool
1657 dl 1.32 * to be quiescent, relay to idleAwaitWork to possibly shrink
1658     * pool.
1659 dl 1.1 *
1660 dl 1.12 * * If already enqueued and none of the above apply, possibly
1661 dl 1.32 * park awaiting signal, else lingering to help scan and signal.
1662     *
1663     * * If a non-empty queue discovered or left as a hint,
1664 jsr166 1.39 * help wake up other workers before return.
1665 dl 1.1 *
1666     * @param w the worker (via its WorkQueue)
1667 jsr166 1.5 * @return a task or null if none found
1668 dl 1.1 */
1669     private final ForkJoinTask<?> scan(WorkQueue w) {
1670 dl 1.21 WorkQueue[] ws; int m;
1671 dl 1.18 int ps = plock; // read plock before ws
1672     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1673     int ec = w.eventCount; // ec is negative if inactive
1674     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 dl 1.32 w.hint = -1; // update seed and clear hint
1676 dl 1.21 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1677     do {
1678 dl 1.18 WorkQueue q; ForkJoinTask<?>[] a; int b;
1679     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1680     (a = q.array) != null) { // probably nonempty
1681 dl 1.1 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 dl 1.18 ForkJoinTask<?> t = (ForkJoinTask<?>)
1683     U.getObjectVolatile(a, i);
1684 dl 1.1 if (q.base == b && ec >= 0 && t != null &&
1685     U.compareAndSwapObject(a, i, t, null)) {
1686 dl 1.18 if ((q.base = b + 1) - q.top < 0)
1687 dl 1.21 signalWork(q);
1688 dl 1.18 return t; // taken
1689     }
1690 dl 1.21 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1691     w.hint = (r + j) & m; // help signal below
1692     break; // cannot take
1693     }
1694     }
1695     } while (--j >= 0);
1696    
1697 dl 1.32 int h, e, ns; long c, sc; WorkQueue q;
1698     if ((ns = w.nsteals) != 0) {
1699     if (U.compareAndSwapLong(this, STEALCOUNT,
1700     sc = stealCount, sc + ns))
1701     w.nsteals = 0; // collect steals and rescan
1702     }
1703     else if (plock != ps) // consistency check
1704     ; // skip
1705     else if ((e = (int)(c = ctl)) < 0)
1706     w.qlock = -1; // pool is terminating
1707     else {
1708     if ((h = w.hint) < 0) {
1709     if (ec >= 0) { // try to enqueue/inactivate
1710     long nc = (((long)ec |
1711     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1712     w.nextWait = e; // link and mark inactive
1713     w.eventCount = ec | INT_SIGN;
1714     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1715     w.eventCount = ec; // unmark on CAS failure
1716     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1717     idleAwaitWork(w, nc, c);
1718     }
1719 dl 1.37 else if (w.eventCount < 0 && ctl == c) {
1720 dl 1.32 Thread wt = Thread.currentThread();
1721     Thread.interrupted(); // clear status
1722     U.putObject(wt, PARKBLOCKER, this);
1723     w.parker = wt; // emulate LockSupport.park
1724     if (w.eventCount < 0) // recheck
1725 dl 1.37 U.park(false, 0L); // block
1726 dl 1.32 w.parker = null;
1727     U.putObject(wt, PARKBLOCKER, null);
1728     }
1729     }
1730     if ((h >= 0 || (h = w.hint) >= 0) &&
1731     (ws = workQueues) != null && h < ws.length &&
1732     (q = ws[h]) != null) { // signal others before retry
1733     WorkQueue v; Thread p; int u, i, s;
1734 dl 1.37 for (int n = (config & SMASK) - 1;;) {
1735 dl 1.32 int idleCount = (w.eventCount < 0) ? 0 : -1;
1736     if (((s = idleCount - q.base + q.top) <= n &&
1737     (n = s) <= 0) ||
1738     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1739     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1740     (v = ws[i]) == null)
1741     break;
1742     long nc = (((long)(v.nextWait & E_MASK)) |
1743     ((long)(u + UAC_UNIT) << 32));
1744     if (v.eventCount != (e | INT_SIGN) ||
1745     !U.compareAndSwapLong(this, CTL, c, nc))
1746     break;
1747     v.hint = h;
1748     v.eventCount = (e + E_SEQ) & E_MASK;
1749     if ((p = v.parker) != null)
1750     U.unpark(p);
1751     if (--n <= 0)
1752     break;
1753     }
1754 dl 1.21 }
1755     }
1756 dl 1.1 }
1757     return null;
1758     }
1759    
1760     /**
1761     * If inactivating worker w has caused the pool to become
1762     * quiescent, checks for pool termination, and, so long as this is
1763 dl 1.7 * not the only worker, waits for event for up to a given
1764     * duration. On timeout, if ctl has not changed, terminates the
1765 dl 1.1 * worker, which will in turn wake up another worker to possibly
1766     * repeat this process.
1767     *
1768     * @param w the calling worker
1769     * @param currentCtl the ctl value triggering possible quiescence
1770     * @param prevCtl the ctl value to restore if thread is terminated
1771     */
1772     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1773 dl 1.18 if (w != null && w.eventCount < 0 &&
1774 dl 1.37 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1775     ctl == currentCtl) {
1776 dl 1.7 int dc = -(short)(currentCtl >>> TC_SHIFT);
1777     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1778 dl 1.26 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1779 dl 1.1 Thread wt = Thread.currentThread();
1780     while (ctl == currentCtl) {
1781     Thread.interrupted(); // timed variant of version in scan()
1782     U.putObject(wt, PARKBLOCKER, this);
1783     w.parker = wt;
1784     if (ctl == currentCtl)
1785 dl 1.7 U.park(false, parkTime);
1786 dl 1.1 w.parker = null;
1787     U.putObject(wt, PARKBLOCKER, null);
1788     if (ctl != currentCtl)
1789     break;
1790 dl 1.7 if (deadline - System.nanoTime() <= 0L &&
1791 dl 1.1 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1792     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1793 dl 1.37 w.hint = -1;
1794 dl 1.12 w.qlock = -1; // shrink
1795 dl 1.1 break;
1796     }
1797     }
1798     }
1799     }
1800    
1801     /**
1802 dl 1.26 * Scans through queues looking for work while joining a task; if
1803     * any present, signals. May return early if more signalling is
1804     * detectably unneeded.
1805 dl 1.12 *
1806 dl 1.26 * @param task return early if done
1807 dl 1.12 * @param origin an index to start scan
1808     */
1809 dl 1.26 private void helpSignal(ForkJoinTask<?> task, int origin) {
1810 dl 1.21 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1811 dl 1.26 if (task != null && task.status >= 0 &&
1812     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1813 dl 1.21 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1814 dl 1.26 outer: for (int k = origin, j = m; j >= 0; --j) {
1815 dl 1.21 WorkQueue q = ws[k++ & m];
1816     for (int n = m;;) { // limit to at most m signals
1817 dl 1.26 if (task.status < 0)
1818 dl 1.21 break outer;
1819     if (q == null ||
1820 dl 1.26 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1821 dl 1.12 break;
1822 dl 1.21 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1823     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1824     (w = ws[i]) == null)
1825     break outer;
1826     long nc = (((long)(w.nextWait & E_MASK)) |
1827     ((long)(u + UAC_UNIT) << 32));
1828 dl 1.32 if (w.eventCount != (e | INT_SIGN))
1829     break outer;
1830     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1831 dl 1.28 w.eventCount = (e + E_SEQ) & E_MASK;
1832     if ((p = w.parker) != null)
1833     U.unpark(p);
1834     if (--n <= 0)
1835     break;
1836     }
1837 dl 1.26 }
1838     }
1839     }
1840     }
1841    
1842     /**
1843 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1844     * task, or in turn one of its stealers, Traces currentSteal ->
1845     * currentJoin links looking for a thread working on a descendant
1846     * of the given task and with a non-empty queue to steal back and
1847     * execute tasks from. The first call to this method upon a
1848     * waiting join will often entail scanning/search, (which is OK
1849     * because the joiner has nothing better to do), but this method
1850     * leaves hints in workers to speed up subsequent calls. The
1851     * implementation is very branchy to cope with potential
1852     * inconsistencies or loops encountering chains that are stale,
1853     * unknown, or so long that they are likely cyclic.
1854     *
1855     * @param joiner the joining worker
1856     * @param task the task to join
1857     * @return 0 if no progress can be made, negative if task
1858     * known complete, else positive
1859     */
1860     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861     int stat = 0, steps = 0; // bound to avoid cycles
1862     if (joiner != null && task != null) { // hoist null checks
1863     restart: for (;;) {
1864     ForkJoinTask<?> subtask = task; // current target
1865     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1866     WorkQueue[] ws; int m, s, h;
1867     if ((s = task.status) < 0) {
1868     stat = s;
1869     break restart;
1870     }
1871     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1872     break restart; // shutting down
1873 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1874 dl 1.1 v.currentSteal != subtask) {
1875     for (int origin = h;;) { // find stealer
1876     if (((h = (h + 2) & m) & 15) == 1 &&
1877     (subtask.status < 0 || j.currentJoin != subtask))
1878     continue restart; // occasional staleness check
1879     if ((v = ws[h]) != null &&
1880     v.currentSteal == subtask) {
1881 dl 1.18 j.hint = h; // save hint
1882 dl 1.1 break;
1883     }
1884     if (h == origin)
1885     break restart; // cannot find stealer
1886     }
1887     }
1888     for (;;) { // help stealer or descend to its stealer
1889     ForkJoinTask[] a; int b;
1890     if (subtask.status < 0) // surround probes with
1891     continue restart; // consistency checks
1892     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1893     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1894     ForkJoinTask<?> t =
1895     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1896     if (subtask.status < 0 || j.currentJoin != subtask ||
1897     v.currentSteal != subtask)
1898     continue restart; // stale
1899     stat = 1; // apparent progress
1900     if (t != null && v.base == b &&
1901     U.compareAndSwapObject(a, i, t, null)) {
1902     v.base = b + 1; // help stealer
1903     joiner.runSubtask(t);
1904     }
1905     else if (v.base == b && ++steps == MAX_HELP)
1906     break restart; // v apparently stalled
1907     }
1908     else { // empty -- try to descend
1909     ForkJoinTask<?> next = v.currentJoin;
1910     if (subtask.status < 0 || j.currentJoin != subtask ||
1911     v.currentSteal != subtask)
1912     continue restart; // stale
1913     else if (next == null || ++steps == MAX_HELP)
1914     break restart; // dead-end or maybe cyclic
1915     else {
1916     subtask = next;
1917     j = v;
1918     break;
1919     }
1920     }
1921     }
1922     }
1923     }
1924     }
1925     return stat;
1926     }
1927    
1928     /**
1929 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1930 jsr166 1.17 * and run tasks within the target's computation.
1931 dl 1.12 *
1932     * @param task the task to join
1933     * @param mode if shared, exit upon completing any task
1934     * if all workers are active
1935 dl 1.1 */
1936 dl 1.12 private int helpComplete(ForkJoinTask<?> task, int mode) {
1937 dl 1.18 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1938 dl 1.12 if (task != null && (ws = workQueues) != null &&
1939     (m = ws.length - 1) >= 0) {
1940     for (int j = 1, origin = j;;) {
1941     if ((s = task.status) < 0)
1942     return s;
1943     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1944     origin = j;
1945 dl 1.18 if (mode == SHARED_QUEUE &&
1946     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1947 dl 1.12 break;
1948     }
1949     else if ((j = (j + 2) & m) == origin)
1950 dl 1.1 break;
1951     }
1952     }
1953 dl 1.12 return 0;
1954 dl 1.1 }
1955    
1956     /**
1957     * Tries to decrement active count (sometimes implicitly) and
1958     * possibly release or create a compensating worker in preparation
1959     * for blocking. Fails on contention or termination. Otherwise,
1960 dl 1.12 * adds a new thread if no idle workers are available and pool
1961     * may become starved.
1962 dl 1.1 */
1963 dl 1.12 final boolean tryCompensate() {
1964 dl 1.18 int pc = config & SMASK, e, i, tc; long c;
1965 dl 1.12 WorkQueue[] ws; WorkQueue w; Thread p;
1966 dl 1.18 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1967 dl 1.12 if (e != 0 && (i = e & SMASK) < ws.length &&
1968     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1969     long nc = ((long)(w.nextWait & E_MASK) |
1970     (c & (AC_MASK|TC_MASK)));
1971     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1972     w.eventCount = (e + E_SEQ) & E_MASK;
1973     if ((p = w.parker) != null)
1974     U.unpark(p);
1975     return true; // replace with idle worker
1976 dl 1.1 }
1977     }
1978 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1979     (int)(c >> AC_SHIFT) + pc > 1) {
1980 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1981     if (U.compareAndSwapLong(this, CTL, c, nc))
1982 dl 1.18 return true; // no compensation
1983 dl 1.12 }
1984 dl 1.18 else if (tc + pc < MAX_CAP) {
1985 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1986     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1987 dl 1.21 ForkJoinWorkerThreadFactory fac;
1988     Throwable ex = null;
1989     ForkJoinWorkerThread wt = null;
1990     try {
1991     if ((fac = factory) != null &&
1992     (wt = fac.newThread(this)) != null) {
1993     wt.start();
1994     return true;
1995     }
1996     } catch (Throwable rex) {
1997     ex = rex;
1998     }
1999     deregisterWorker(wt, ex); // clean up and return false
2000 dl 1.1 }
2001     }
2002     }
2003     return false;
2004     }
2005    
2006     /**
2007     * Helps and/or blocks until the given task is done.
2008     *
2009     * @param joiner the joining worker
2010     * @param task the task
2011     * @return task status on exit
2012     */
2013     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2014 dl 1.12 int s = 0;
2015     if (joiner != null && task != null && (s = task.status) >= 0) {
2016 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2017     joiner.currentJoin = task;
2018 dl 1.21 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2019 dl 1.12 joiner.tryRemoveAndExec(task)); // process local tasks
2020 dl 1.21 if (s >= 0 && (s = task.status) >= 0) {
2021 dl 1.26 helpSignal(task, joiner.poolIndex);
2022 dl 1.21 if ((s = task.status) >= 0 &&
2023     (task instanceof CountedCompleter))
2024     s = helpComplete(task, LIFO_QUEUE);
2025     }
2026 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
2027 dl 1.21 if ((!joiner.isEmpty() || // try helping
2028 dl 1.12 (s = tryHelpStealer(joiner, task)) == 0) &&
2029 dl 1.18 (s = task.status) >= 0) {
2030 dl 1.26 helpSignal(task, joiner.poolIndex);
2031 dl 1.21 if ((s = task.status) >= 0 && tryCompensate()) {
2032 dl 1.18 if (task.trySetSignal() && (s = task.status) >= 0) {
2033     synchronized (task) {
2034     if (task.status >= 0) {
2035     try { // see ForkJoinTask
2036     task.wait(); // for explanation
2037     } catch (InterruptedException ie) {
2038     }
2039 dl 1.1 }
2040 dl 1.18 else
2041     task.notifyAll();
2042 dl 1.1 }
2043     }
2044 dl 1.18 long c; // re-activate
2045     do {} while (!U.compareAndSwapLong
2046     (this, CTL, c = ctl, c + AC_UNIT));
2047 dl 1.1 }
2048     }
2049     }
2050 dl 1.12 joiner.currentJoin = prevJoin;
2051 dl 1.1 }
2052     return s;
2053     }
2054    
2055     /**
2056     * Stripped-down variant of awaitJoin used by timed joins. Tries
2057     * to help join only while there is continuous progress. (Caller
2058     * will then enter a timed wait.)
2059     *
2060     * @param joiner the joining worker
2061     * @param task the task
2062     */
2063 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2064 dl 1.1 int s;
2065 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2066     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2067     joiner.currentJoin = task;
2068 dl 1.21 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2069 dl 1.12 joiner.tryRemoveAndExec(task));
2070 dl 1.21 if (s >= 0 && (s = task.status) >= 0) {
2071 dl 1.26 helpSignal(task, joiner.poolIndex);
2072 dl 1.21 if ((s = task.status) >= 0 &&
2073     (task instanceof CountedCompleter))
2074     s = helpComplete(task, LIFO_QUEUE);
2075     }
2076     if (s >= 0 && joiner.isEmpty()) {
2077 dl 1.12 do {} while (task.status >= 0 &&
2078     tryHelpStealer(joiner, task) > 0);
2079     }
2080     joiner.currentJoin = prevJoin;
2081     }
2082 dl 1.1 }
2083    
2084     /**
2085     * Returns a (probably) non-empty steal queue, if one is found
2086 dl 1.37 * during a scan, else null. This method must be retried by
2087     * caller if, by the time it tries to use the queue, it is empty.
2088 dl 1.12 * @param r a (random) seed for scanning
2089 dl 1.1 */
2090 dl 1.12 private WorkQueue findNonEmptyStealQueue(int r) {
2091 dl 1.37 for (;;) {
2092     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2093     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2094     for (int j = (m + 1) << 2; j >= 0; --j) {
2095     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2096     q.base - q.top < 0)
2097     return q;
2098 dl 1.1 }
2099     }
2100 dl 1.37 if (plock == ps)
2101     return null;
2102 dl 1.1 }
2103     }
2104    
2105     /**
2106     * Runs tasks until {@code isQuiescent()}. We piggyback on
2107     * active count ctl maintenance, but rather than blocking
2108     * when tasks cannot be found, we rescan until all others cannot
2109     * find tasks either.
2110     */
2111     final void helpQuiescePool(WorkQueue w) {
2112     for (boolean active = true;;) {
2113 dl 1.37 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2114     while ((t = w.nextLocalTask()) != null) {
2115     if (w.base - w.top < 0)
2116     signalWork(w);
2117     t.doExec();
2118     }
2119     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2120 dl 1.1 if (!active) { // re-establish active count
2121     active = true;
2122     do {} while (!U.compareAndSwapLong
2123     (this, CTL, c = ctl, c + AC_UNIT));
2124     }
2125 dl 1.36 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2126     if (q.base - q.top < 0)
2127     signalWork(q);
2128 dl 1.1 w.runSubtask(t);
2129 dl 1.36 }
2130 dl 1.1 }
2131 dl 1.37 else if (active) { // decrement active count without queuing
2132     long nc = (c = ctl) - AC_UNIT;
2133     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2134     return; // bypass decrement-then-increment
2135     if (U.compareAndSwapLong(this, CTL, c, nc))
2136 dl 1.1 active = false;
2137     }
2138 dl 1.37 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2139     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2140     return;
2141 dl 1.1 }
2142     }
2143    
2144     /**
2145     * Gets and removes a local or stolen task for the given worker.
2146     *
2147     * @return a task, if available
2148     */
2149     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2150     for (ForkJoinTask<?> t;;) {
2151     WorkQueue q; int b;
2152     if ((t = w.nextLocalTask()) != null)
2153     return t;
2154 dl 1.12 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2155 dl 1.1 return null;
2156 dl 1.36 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2157     if (q.base - q.top < 0)
2158     signalWork(q);
2159 dl 1.1 return t;
2160 dl 1.36 }
2161 dl 1.1 }
2162     }
2163    
2164     /**
2165 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2166     * programmers, frameworks, tools, or languages have little or no
2167     * idea about task granularity. In essence by offering this
2168     * method, we ask users only about tradeoffs in overhead vs
2169     * expected throughput and its variance, rather than how finely to
2170     * partition tasks.
2171     *
2172     * In a steady state strict (tree-structured) computation, each
2173     * thread makes available for stealing enough tasks for other
2174     * threads to remain active. Inductively, if all threads play by
2175     * the same rules, each thread should make available only a
2176     * constant number of tasks.
2177     *
2178     * The minimum useful constant is just 1. But using a value of 1
2179     * would require immediate replenishment upon each steal to
2180     * maintain enough tasks, which is infeasible. Further,
2181     * partitionings/granularities of offered tasks should minimize
2182     * steal rates, which in general means that threads nearer the top
2183     * of computation tree should generate more than those nearer the
2184     * bottom. In perfect steady state, each thread is at
2185     * approximately the same level of computation tree. However,
2186     * producing extra tasks amortizes the uncertainty of progress and
2187     * diffusion assumptions.
2188     *
2189     * So, users will want to use values larger, but not much larger
2190     * than 1 to both smooth over transient shortages and hedge
2191     * against uneven progress; as traded off against the cost of
2192     * extra task overhead. We leave the user to pick a threshold
2193     * value to compare with the results of this call to guide
2194     * decisions, but recommend values such as 3.
2195     *
2196     * When all threads are active, it is on average OK to estimate
2197     * surplus strictly locally. In steady-state, if one thread is
2198     * maintaining say 2 surplus tasks, then so are others. So we can
2199     * just use estimated queue length. However, this strategy alone
2200     * leads to serious mis-estimates in some non-steady-state
2201     * conditions (ramp-up, ramp-down, other stalls). We can detect
2202     * many of these by further considering the number of "idle"
2203     * threads, that are known to have zero queued tasks, so
2204     * compensate by a factor of (#idle/#active) threads.
2205     *
2206     * Note: The approximation of #busy workers as #active workers is
2207     * not very good under current signalling scheme, and should be
2208     * improved.
2209     */
2210     static int getSurplusQueuedTaskCount() {
2211     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2212     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2213 dl 1.18 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2214     int n = (q = wt.workQueue).top - q.base;
2215 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2216 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2217     a > (p >>>= 1) ? 1 :
2218     a > (p >>>= 1) ? 2 :
2219     a > (p >>>= 1) ? 4 :
2220     8);
2221 dl 1.12 }
2222     return 0;
2223 dl 1.7 }
2224    
2225 dl 1.1 // Termination
2226    
2227     /**
2228     * Possibly initiates and/or completes termination. The caller
2229     * triggering termination runs three passes through workQueues:
2230     * (0) Setting termination status, followed by wakeups of queued
2231     * workers; (1) cancelling all tasks; (2) interrupting lagging
2232     * threads (likely in external tasks, but possibly also blocked in
2233     * joins). Each pass repeats previous steps because of potential
2234     * lagging thread creation.
2235     *
2236     * @param now if true, unconditionally terminate, else only
2237     * if no work and no active workers
2238     * @param enable if true, enable shutdown when next possible
2239     * @return true if now terminating or terminated
2240     */
2241     private boolean tryTerminate(boolean now, boolean enable) {
2242 dl 1.37 int ps;
2243 dl 1.40 if (this == common) // cannot shut down
2244 dl 1.12 return false;
2245 dl 1.37 if ((ps = plock) >= 0) { // enable by setting plock
2246     if (!enable)
2247     return false;
2248     if ((ps & PL_LOCK) != 0 ||
2249     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2250     ps = acquirePlock();
2251     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2252     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2253     releasePlock(nps);
2254     }
2255 dl 1.1 for (long c;;) {
2256 dl 1.37 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2257 dl 1.18 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2258 jsr166 1.10 synchronized (this) {
2259 dl 1.37 notifyAll(); // signal when 0 workers
2260 dl 1.8 }
2261 dl 1.1 }
2262     return true;
2263     }
2264 dl 1.37 if (!now) { // check if idle & no tasks
2265     WorkQueue[] ws; WorkQueue w;
2266     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2267 dl 1.1 return false;
2268 dl 1.37 if ((ws = workQueues) != null) {
2269     for (int i = 0; i < ws.length; ++i) {
2270     if ((w = ws[i]) != null) {
2271     if (!w.isEmpty()) { // signal unprocessed tasks
2272     signalWork(w);
2273     return false;
2274     }
2275     if ((i & 1) != 0 && w.eventCount >= 0)
2276     return false; // unqueued inactive worker
2277     }
2278 dl 1.1 }
2279     }
2280     }
2281     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2282     for (int pass = 0; pass < 3; ++pass) {
2283 dl 1.37 WorkQueue[] ws; WorkQueue w; Thread wt;
2284     if ((ws = workQueues) != null) {
2285 dl 1.1 int n = ws.length;
2286     for (int i = 0; i < n; ++i) {
2287     if ((w = ws[i]) != null) {
2288 dl 1.12 w.qlock = -1;
2289 dl 1.1 if (pass > 0) {
2290     w.cancelAll();
2291 dl 1.32 if (pass > 1 && (wt = w.owner) != null) {
2292     if (!wt.isInterrupted()) {
2293     try {
2294     wt.interrupt();
2295 dl 1.37 } catch (Throwable ignore) {
2296 dl 1.32 }
2297     }
2298     U.unpark(wt);
2299     }
2300 dl 1.1 }
2301     }
2302     }
2303     // Wake up workers parked on event queue
2304     int i, e; long cc; Thread p;
2305     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2306 dl 1.37 (i = e & SMASK) < n && i >= 0 &&
2307 dl 1.1 (w = ws[i]) != null) {
2308     long nc = ((long)(w.nextWait & E_MASK) |
2309     ((cc + AC_UNIT) & AC_MASK) |
2310     (cc & (TC_MASK|STOP_BIT)));
2311     if (w.eventCount == (e | INT_SIGN) &&
2312     U.compareAndSwapLong(this, CTL, cc, nc)) {
2313     w.eventCount = (e + E_SEQ) & E_MASK;
2314 dl 1.12 w.qlock = -1;
2315 dl 1.1 if ((p = w.parker) != null)
2316     U.unpark(p);
2317     }
2318     }
2319     }
2320     }
2321     }
2322     }
2323     }
2324    
2325 dl 1.12 // external operations on common pool
2326    
2327     /**
2328     * Returns common pool queue for a thread that has submitted at
2329     * least one task.
2330     */
2331     static WorkQueue commonSubmitterQueue() {
2332     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2333     return ((z = submitters.get()) != null &&
2334 dl 1.40 (p = common) != null &&
2335 dl 1.12 (ws = p.workQueues) != null &&
2336     (m = ws.length - 1) >= 0) ?
2337     ws[m & z.seed & SQMASK] : null;
2338     }
2339    
2340     /**
2341     * Tries to pop the given task from submitter's queue in common pool.
2342     */
2343     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2344     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2345 dl 1.21 ForkJoinTask<?>[] a; int m, s;
2346     if (t != null &&
2347     (z = submitters.get()) != null &&
2348 dl 1.40 (p = common) != null &&
2349 dl 1.12 (ws = p.workQueues) != null &&
2350     (m = ws.length - 1) >= 0 &&
2351     (q = ws[m & z.seed & SQMASK]) != null &&
2352     (s = q.top) != q.base &&
2353 dl 1.21 (a = q.array) != null) {
2354     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2355     if (U.getObject(a, j) == t &&
2356     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2357     if (q.array == a && q.top == s && // recheck
2358     U.compareAndSwapObject(a, j, t, null)) {
2359     q.top = s - 1;
2360     q.qlock = 0;
2361     return true;
2362     }
2363 dl 1.12 q.qlock = 0;
2364     }
2365     }
2366     return false;
2367     }
2368    
2369     /**
2370     * Tries to pop and run local tasks within the same computation
2371     * as the given root. On failure, tries to help complete from
2372     * other queues via helpComplete.
2373     */
2374     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2375     ForkJoinTask<?>[] a; int m;
2376     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2377     root != null && root.status >= 0) {
2378     for (;;) {
2379 dl 1.18 int s, u; Object o; CountedCompleter<?> task = null;
2380 dl 1.12 if ((s = q.top) - q.base > 0) {
2381     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2382     if ((o = U.getObject(a, j)) != null &&
2383     (o instanceof CountedCompleter)) {
2384     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2385     do {
2386     if (r == root) {
2387     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2388     if (q.array == a && q.top == s &&
2389     U.compareAndSwapObject(a, j, t, null)) {
2390     q.top = s - 1;
2391     task = t;
2392     }
2393     q.qlock = 0;
2394     }
2395     break;
2396     }
2397 jsr166 1.13 } while ((r = r.completer) != null);
2398 dl 1.12 }
2399     }
2400     if (task != null)
2401     task.doExec();
2402 dl 1.18 if (root.status < 0 ||
2403     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2404 dl 1.12 break;
2405     if (task == null) {
2406 dl 1.26 helpSignal(root, q.poolIndex);
2407 dl 1.21 if (root.status >= 0)
2408 dl 1.12 helpComplete(root, SHARED_QUEUE);
2409     break;
2410     }
2411     }
2412     }
2413     }
2414    
2415     /**
2416     * Tries to help execute or signal availability of the given task
2417     * from submitter's queue in common pool.
2418     */
2419     static void externalHelpJoin(ForkJoinTask<?> t) {
2420     // Some hard-to-avoid overlap with tryExternalUnpush
2421     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2422 dl 1.21 ForkJoinTask<?>[] a; int m, s, n;
2423 dl 1.18 if (t != null &&
2424 dl 1.12 (z = submitters.get()) != null &&
2425 dl 1.40 (p = common) != null &&
2426 dl 1.12 (ws = p.workQueues) != null &&
2427     (m = ws.length - 1) >= 0 &&
2428     (q = ws[m & z.seed & SQMASK]) != null &&
2429 dl 1.21 (a = q.array) != null) {
2430     int am = a.length - 1;
2431     if ((s = q.top) != q.base) {
2432     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2433     if (U.getObject(a, j) == t &&
2434     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2435     if (q.array == a && q.top == s &&
2436     U.compareAndSwapObject(a, j, t, null)) {
2437     q.top = s - 1;
2438     q.qlock = 0;
2439     t.doExec();
2440     }
2441     else
2442     q.qlock = 0;
2443 dl 1.12 }
2444     }
2445     if (t.status >= 0) {
2446     if (t instanceof CountedCompleter)
2447     p.externalHelpComplete(q, t);
2448     else
2449 dl 1.26 p.helpSignal(t, q.poolIndex);
2450 dl 1.12 }
2451     }
2452     }
2453    
2454 dl 1.1 // Exported methods
2455    
2456     // Constructors
2457    
2458     /**
2459     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2460     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2461     * #defaultForkJoinWorkerThreadFactory default thread factory},
2462     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2463     *
2464     * @throws SecurityException if a security manager exists and
2465     * the caller is not permitted to modify threads
2466     * because it does not hold {@link
2467     * java.lang.RuntimePermission}{@code ("modifyThread")}
2468     */
2469     public ForkJoinPool() {
2470     this(Runtime.getRuntime().availableProcessors(),
2471     defaultForkJoinWorkerThreadFactory, null, false);
2472     }
2473    
2474     /**
2475     * Creates a {@code ForkJoinPool} with the indicated parallelism
2476     * level, the {@linkplain
2477     * #defaultForkJoinWorkerThreadFactory default thread factory},
2478     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2479     *
2480     * @param parallelism the parallelism level
2481     * @throws IllegalArgumentException if parallelism less than or
2482     * equal to zero, or greater than implementation limit
2483     * @throws SecurityException if a security manager exists and
2484     * the caller is not permitted to modify threads
2485     * because it does not hold {@link
2486     * java.lang.RuntimePermission}{@code ("modifyThread")}
2487     */
2488     public ForkJoinPool(int parallelism) {
2489     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2490     }
2491    
2492     /**
2493     * Creates a {@code ForkJoinPool} with the given parameters.
2494     *
2495     * @param parallelism the parallelism level. For default value,
2496     * use {@link java.lang.Runtime#availableProcessors}.
2497     * @param factory the factory for creating new threads. For default value,
2498     * use {@link #defaultForkJoinWorkerThreadFactory}.
2499     * @param handler the handler for internal worker threads that
2500     * terminate due to unrecoverable errors encountered while executing
2501     * tasks. For default value, use {@code null}.
2502     * @param asyncMode if true,
2503     * establishes local first-in-first-out scheduling mode for forked
2504     * tasks that are never joined. This mode may be more appropriate
2505     * than default locally stack-based mode in applications in which
2506     * worker threads only process event-style asynchronous tasks.
2507     * For default value, use {@code false}.
2508     * @throws IllegalArgumentException if parallelism less than or
2509     * equal to zero, or greater than implementation limit
2510     * @throws NullPointerException if the factory is null
2511     * @throws SecurityException if a security manager exists and
2512     * the caller is not permitted to modify threads
2513     * because it does not hold {@link
2514     * java.lang.RuntimePermission}{@code ("modifyThread")}
2515     */
2516     public ForkJoinPool(int parallelism,
2517     ForkJoinWorkerThreadFactory factory,
2518     Thread.UncaughtExceptionHandler handler,
2519     boolean asyncMode) {
2520     checkPermission();
2521     if (factory == null)
2522     throw new NullPointerException();
2523     if (parallelism <= 0 || parallelism > MAX_CAP)
2524     throw new IllegalArgumentException();
2525     this.factory = factory;
2526     this.ueh = handler;
2527 jsr166 1.19 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2528 dl 1.1 long np = (long)(-parallelism); // offset ctl counts
2529     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2530 dl 1.12 int pn = nextPoolId();
2531 dl 1.1 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2532     sb.append(Integer.toString(pn));
2533     sb.append("-worker-");
2534     this.workerNamePrefix = sb.toString();
2535     }
2536    
2537 dl 1.7 /**
2538 dl 1.8 * Constructor for common pool, suitable only for static initialization.
2539     * Basically the same as above, but uses smallest possible initial footprint.
2540     */
2541 dl 1.12 ForkJoinPool(int parallelism, long ctl,
2542 dl 1.8 ForkJoinWorkerThreadFactory factory,
2543     Thread.UncaughtExceptionHandler handler) {
2544 dl 1.18 this.config = parallelism;
2545 dl 1.12 this.ctl = ctl;
2546 dl 1.8 this.factory = factory;
2547     this.ueh = handler;
2548     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2549     }
2550    
2551     /**
2552 dl 1.34 * Returns the common pool instance. This pool is statically
2553 dl 1.40 * constructed; its run state is unaffected by attempts to {@link
2554     * #shutdown} or {@link #shutdownNow}. However this pool and any
2555     * ongoing processing are automatically terminated upon program
2556     * {@link System#exit}. Any program that relies on asynchronous
2557     * task processing to complete before program termination should
2558 dl 1.42 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2559     * exit.
2560 dl 1.7 *
2561     * @return the common pool instance
2562     */
2563     public static ForkJoinPool commonPool() {
2564 dl 1.40 // assert common != null : "static init error";
2565     return common;
2566 dl 1.7 }
2567    
2568 dl 1.1 // Execution methods
2569    
2570     /**
2571     * Performs the given task, returning its result upon completion.
2572     * If the computation encounters an unchecked Exception or Error,
2573     * it is rethrown as the outcome of this invocation. Rethrown
2574     * exceptions behave in the same way as regular exceptions, but,
2575     * when possible, contain stack traces (as displayed for example
2576     * using {@code ex.printStackTrace()}) of both the current thread
2577     * as well as the thread actually encountering the exception;
2578     * minimally only the latter.
2579     *
2580     * @param task the task
2581     * @return the task's result
2582     * @throws NullPointerException if the task is null
2583     * @throws RejectedExecutionException if the task cannot be
2584     * scheduled for execution
2585     */
2586     public <T> T invoke(ForkJoinTask<T> task) {
2587     if (task == null)
2588     throw new NullPointerException();
2589 dl 1.12 externalPush(task);
2590 dl 1.1 return task.join();
2591     }
2592    
2593     /**
2594     * Arranges for (asynchronous) execution of the given task.
2595     *
2596     * @param task the task
2597     * @throws NullPointerException if the task is null
2598     * @throws RejectedExecutionException if the task cannot be
2599     * scheduled for execution
2600     */
2601     public void execute(ForkJoinTask<?> task) {
2602     if (task == null)
2603     throw new NullPointerException();
2604 dl 1.12 externalPush(task);
2605 dl 1.1 }
2606    
2607     // AbstractExecutorService methods
2608    
2609     /**
2610     * @throws NullPointerException if the task is null
2611     * @throws RejectedExecutionException if the task cannot be
2612     * scheduled for execution
2613     */
2614     public void execute(Runnable task) {
2615     if (task == null)
2616     throw new NullPointerException();
2617     ForkJoinTask<?> job;
2618     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2619     job = (ForkJoinTask<?>) task;
2620     else
2621     job = new ForkJoinTask.AdaptedRunnableAction(task);
2622 dl 1.12 externalPush(job);
2623 dl 1.1 }
2624    
2625     /**
2626     * Submits a ForkJoinTask for execution.
2627     *
2628     * @param task the task to submit
2629     * @return the task
2630     * @throws NullPointerException if the task is null
2631     * @throws RejectedExecutionException if the task cannot be
2632     * scheduled for execution
2633     */
2634     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2635     if (task == null)
2636     throw new NullPointerException();
2637 dl 1.12 externalPush(task);
2638 dl 1.1 return task;
2639     }
2640    
2641     /**
2642     * @throws NullPointerException if the task is null
2643     * @throws RejectedExecutionException if the task cannot be
2644     * scheduled for execution
2645     */
2646     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2647     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2648 dl 1.12 externalPush(job);
2649 dl 1.1 return job;
2650     }
2651    
2652     /**
2653     * @throws NullPointerException if the task is null
2654     * @throws RejectedExecutionException if the task cannot be
2655     * scheduled for execution
2656     */
2657     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2658     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2659 dl 1.12 externalPush(job);
2660 dl 1.1 return job;
2661     }
2662    
2663     /**
2664     * @throws NullPointerException if the task is null
2665     * @throws RejectedExecutionException if the task cannot be
2666     * scheduled for execution
2667     */
2668     public ForkJoinTask<?> submit(Runnable task) {
2669     if (task == null)
2670     throw new NullPointerException();
2671     ForkJoinTask<?> job;
2672     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2673     job = (ForkJoinTask<?>) task;
2674     else
2675     job = new ForkJoinTask.AdaptedRunnableAction(task);
2676 dl 1.12 externalPush(job);
2677 dl 1.1 return job;
2678     }
2679    
2680     /**
2681     * @throws NullPointerException {@inheritDoc}
2682     * @throws RejectedExecutionException {@inheritDoc}
2683     */
2684     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2685     // In previous versions of this class, this method constructed
2686     // a task to run ForkJoinTask.invokeAll, but now external
2687     // invocation of multiple tasks is at least as efficient.
2688     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2689     // Workaround needed because method wasn't declared with
2690     // wildcards in return type but should have been.
2691     @SuppressWarnings({"unchecked", "rawtypes"})
2692     List<Future<T>> futures = (List<Future<T>>) (List) fs;
2693    
2694     boolean done = false;
2695     try {
2696     for (Callable<T> t : tasks) {
2697     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2698 dl 1.12 externalPush(f);
2699 dl 1.1 fs.add(f);
2700     }
2701     for (ForkJoinTask<T> f : fs)
2702     f.quietlyJoin();
2703     done = true;
2704     return futures;
2705     } finally {
2706     if (!done)
2707     for (ForkJoinTask<T> f : fs)
2708     f.cancel(false);
2709     }
2710     }
2711    
2712     /**
2713     * Returns the factory used for constructing new workers.
2714     *
2715     * @return the factory used for constructing new workers
2716     */
2717     public ForkJoinWorkerThreadFactory getFactory() {
2718     return factory;
2719     }
2720    
2721     /**
2722     * Returns the handler for internal worker threads that terminate
2723     * due to unrecoverable errors encountered while executing tasks.
2724     *
2725     * @return the handler, or {@code null} if none
2726     */
2727     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2728     return ueh;
2729     }
2730    
2731     /**
2732     * Returns the targeted parallelism level of this pool.
2733     *
2734     * @return the targeted parallelism level of this pool
2735     */
2736     public int getParallelism() {
2737 dl 1.18 return config & SMASK;
2738 dl 1.1 }
2739    
2740     /**
2741 dl 1.7 * Returns the targeted parallelism level of the common pool.
2742     *
2743     * @return the targeted parallelism level of the common pool
2744     */
2745     public static int getCommonPoolParallelism() {
2746 dl 1.40 return commonParallelism;
2747 dl 1.7 }
2748    
2749     /**
2750 dl 1.1 * Returns the number of worker threads that have started but not
2751     * yet terminated. The result returned by this method may differ
2752     * from {@link #getParallelism} when threads are created to
2753     * maintain parallelism when others are cooperatively blocked.
2754     *
2755     * @return the number of worker threads
2756     */
2757     public int getPoolSize() {
2758 dl 1.18 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2759 dl 1.1 }
2760    
2761     /**
2762     * Returns {@code true} if this pool uses local first-in-first-out
2763     * scheduling mode for forked tasks that are never joined.
2764     *
2765     * @return {@code true} if this pool uses async mode
2766     */
2767     public boolean getAsyncMode() {
2768 dl 1.18 return (config >>> 16) == FIFO_QUEUE;
2769 dl 1.1 }
2770    
2771     /**
2772     * Returns an estimate of the number of worker threads that are
2773     * not blocked waiting to join tasks or for other managed
2774     * synchronization. This method may overestimate the
2775     * number of running threads.
2776     *
2777     * @return the number of worker threads
2778     */
2779     public int getRunningThreadCount() {
2780     int rc = 0;
2781     WorkQueue[] ws; WorkQueue w;
2782     if ((ws = workQueues) != null) {
2783     for (int i = 1; i < ws.length; i += 2) {
2784     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2785     ++rc;
2786     }
2787     }
2788     return rc;
2789     }
2790    
2791     /**
2792     * Returns an estimate of the number of threads that are currently
2793     * stealing or executing tasks. This method may overestimate the
2794     * number of active threads.
2795     *
2796     * @return the number of active threads
2797     */
2798     public int getActiveThreadCount() {
2799 dl 1.18 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2800 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2801     }
2802    
2803     /**
2804     * Returns {@code true} if all worker threads are currently idle.
2805     * An idle worker is one that cannot obtain a task to execute
2806     * because none are available to steal from other threads, and
2807     * there are no pending submissions to the pool. This method is
2808     * conservative; it might not return {@code true} immediately upon
2809     * idleness of all threads, but will eventually become true if
2810     * threads remain inactive.
2811     *
2812     * @return {@code true} if all threads are currently idle
2813     */
2814     public boolean isQuiescent() {
2815 dl 1.18 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2816 dl 1.1 }
2817    
2818     /**
2819     * Returns an estimate of the total number of tasks stolen from
2820     * one thread's work queue by another. The reported value
2821     * underestimates the actual total number of steals when the pool
2822     * is not quiescent. This value may be useful for monitoring and
2823     * tuning fork/join programs: in general, steal counts should be
2824     * high enough to keep threads busy, but low enough to avoid
2825     * overhead and contention across threads.
2826     *
2827     * @return the number of steals
2828     */
2829     public long getStealCount() {
2830 dl 1.8 long count = stealCount;
2831 dl 1.1 WorkQueue[] ws; WorkQueue w;
2832     if ((ws = workQueues) != null) {
2833     for (int i = 1; i < ws.length; i += 2) {
2834     if ((w = ws[i]) != null)
2835 dl 1.12 count += w.nsteals;
2836 dl 1.1 }
2837     }
2838     return count;
2839     }
2840    
2841     /**
2842     * Returns an estimate of the total number of tasks currently held
2843     * in queues by worker threads (but not including tasks submitted
2844     * to the pool that have not begun executing). This value is only
2845     * an approximation, obtained by iterating across all threads in
2846     * the pool. This method may be useful for tuning task
2847     * granularities.
2848     *
2849     * @return the number of queued tasks
2850     */
2851     public long getQueuedTaskCount() {
2852     long count = 0;
2853     WorkQueue[] ws; WorkQueue w;
2854     if ((ws = workQueues) != null) {
2855     for (int i = 1; i < ws.length; i += 2) {
2856     if ((w = ws[i]) != null)
2857     count += w.queueSize();
2858     }
2859     }
2860     return count;
2861     }
2862    
2863     /**
2864     * Returns an estimate of the number of tasks submitted to this
2865     * pool that have not yet begun executing. This method may take
2866     * time proportional to the number of submissions.
2867     *
2868     * @return the number of queued submissions
2869     */
2870     public int getQueuedSubmissionCount() {
2871     int count = 0;
2872     WorkQueue[] ws; WorkQueue w;
2873     if ((ws = workQueues) != null) {
2874     for (int i = 0; i < ws.length; i += 2) {
2875     if ((w = ws[i]) != null)
2876     count += w.queueSize();
2877     }
2878     }
2879     return count;
2880     }
2881    
2882     /**
2883     * Returns {@code true} if there are any tasks submitted to this
2884     * pool that have not yet begun executing.
2885     *
2886     * @return {@code true} if there are any queued submissions
2887     */
2888     public boolean hasQueuedSubmissions() {
2889     WorkQueue[] ws; WorkQueue w;
2890     if ((ws = workQueues) != null) {
2891     for (int i = 0; i < ws.length; i += 2) {
2892 dl 1.21 if ((w = ws[i]) != null && !w.isEmpty())
2893 dl 1.1 return true;
2894     }
2895     }
2896     return false;
2897     }
2898    
2899     /**
2900     * Removes and returns the next unexecuted submission if one is
2901     * available. This method may be useful in extensions to this
2902     * class that re-assign work in systems with multiple pools.
2903     *
2904     * @return the next submission, or {@code null} if none
2905     */
2906     protected ForkJoinTask<?> pollSubmission() {
2907     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2908     if ((ws = workQueues) != null) {
2909     for (int i = 0; i < ws.length; i += 2) {
2910     if ((w = ws[i]) != null && (t = w.poll()) != null)
2911     return t;
2912     }
2913     }
2914     return null;
2915     }
2916    
2917     /**
2918     * Removes all available unexecuted submitted and forked tasks
2919     * from scheduling queues and adds them to the given collection,
2920     * without altering their execution status. These may include
2921     * artificially generated or wrapped tasks. This method is
2922     * designed to be invoked only when the pool is known to be
2923     * quiescent. Invocations at other times may not remove all
2924     * tasks. A failure encountered while attempting to add elements
2925     * to collection {@code c} may result in elements being in
2926     * neither, either or both collections when the associated
2927     * exception is thrown. The behavior of this operation is
2928     * undefined if the specified collection is modified while the
2929     * operation is in progress.
2930     *
2931     * @param c the collection to transfer elements into
2932     * @return the number of elements transferred
2933     */
2934     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2935     int count = 0;
2936     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2937     if ((ws = workQueues) != null) {
2938     for (int i = 0; i < ws.length; ++i) {
2939     if ((w = ws[i]) != null) {
2940     while ((t = w.poll()) != null) {
2941     c.add(t);
2942     ++count;
2943     }
2944     }
2945     }
2946     }
2947     return count;
2948     }
2949    
2950     /**
2951     * Returns a string identifying this pool, as well as its state,
2952     * including indications of run state, parallelism level, and
2953     * worker and task counts.
2954     *
2955     * @return a string identifying this pool, as well as its state
2956     */
2957     public String toString() {
2958     // Use a single pass through workQueues to collect counts
2959     long qt = 0L, qs = 0L; int rc = 0;
2960 dl 1.8 long st = stealCount;
2961 dl 1.1 long c = ctl;
2962     WorkQueue[] ws; WorkQueue w;
2963     if ((ws = workQueues) != null) {
2964     for (int i = 0; i < ws.length; ++i) {
2965     if ((w = ws[i]) != null) {
2966     int size = w.queueSize();
2967     if ((i & 1) == 0)
2968     qs += size;
2969     else {
2970     qt += size;
2971 dl 1.12 st += w.nsteals;
2972 dl 1.1 if (w.isApparentlyUnblocked())
2973     ++rc;
2974     }
2975     }
2976     }
2977     }
2978 dl 1.18 int pc = (config & SMASK);
2979 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
2980     int ac = pc + (int)(c >> AC_SHIFT);
2981     if (ac < 0) // ignore transient negative
2982     ac = 0;
2983     String level;
2984     if ((c & STOP_BIT) != 0)
2985     level = (tc == 0) ? "Terminated" : "Terminating";
2986     else
2987 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2988 dl 1.1 return super.toString() +
2989     "[" + level +
2990     ", parallelism = " + pc +
2991     ", size = " + tc +
2992     ", active = " + ac +
2993     ", running = " + rc +
2994     ", steals = " + st +
2995     ", tasks = " + qt +
2996     ", submissions = " + qs +
2997     "]";
2998     }
2999    
3000     /**
3001 dl 1.7 * Possibly initiates an orderly shutdown in which previously
3002     * submitted tasks are executed, but no new tasks will be
3003     * accepted. Invocation has no effect on execution state if this
3004     * is the {@link #commonPool}, and no additional effect if
3005     * already shut down. Tasks that are in the process of being
3006     * submitted concurrently during the course of this method may or
3007     * may not be rejected.
3008 dl 1.1 *
3009     * @throws SecurityException if a security manager exists and
3010     * the caller is not permitted to modify threads
3011     * because it does not hold {@link
3012     * java.lang.RuntimePermission}{@code ("modifyThread")}
3013     */
3014     public void shutdown() {
3015     checkPermission();
3016 dl 1.12 tryTerminate(false, true);
3017 dl 1.1 }
3018    
3019     /**
3020 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
3021     * all subsequently submitted tasks. Invocation has no effect on
3022     * execution state if this is the {@link #commonPool}, and no
3023     * additional effect if already shut down. Otherwise, tasks that
3024     * are in the process of being submitted or executed concurrently
3025     * during the course of this method may or may not be
3026     * rejected. This method cancels both existing and unexecuted
3027     * tasks, in order to permit termination in the presence of task
3028     * dependencies. So the method always returns an empty list
3029     * (unlike the case for some other Executors).
3030 dl 1.1 *
3031     * @return an empty list
3032     * @throws SecurityException if a security manager exists and
3033     * the caller is not permitted to modify threads
3034     * because it does not hold {@link
3035     * java.lang.RuntimePermission}{@code ("modifyThread")}
3036     */
3037     public List<Runnable> shutdownNow() {
3038     checkPermission();
3039 dl 1.12 tryTerminate(true, true);
3040 dl 1.1 return Collections.emptyList();
3041     }
3042    
3043     /**
3044     * Returns {@code true} if all tasks have completed following shut down.
3045     *
3046     * @return {@code true} if all tasks have completed following shut down
3047     */
3048     public boolean isTerminated() {
3049     long c = ctl;
3050     return ((c & STOP_BIT) != 0L &&
3051 dl 1.18 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3052 dl 1.1 }
3053    
3054     /**
3055     * Returns {@code true} if the process of termination has
3056     * commenced but not yet completed. This method may be useful for
3057     * debugging. A return of {@code true} reported a sufficient
3058     * period after shutdown may indicate that submitted tasks have
3059 jsr166 1.25 * ignored or suppressed interruption, or are waiting for I/O,
3060 dl 1.1 * causing this executor not to properly terminate. (See the
3061     * advisory notes for class {@link ForkJoinTask} stating that
3062     * tasks should not normally entail blocking operations. But if
3063     * they do, they must abort them on interrupt.)
3064     *
3065     * @return {@code true} if terminating but not yet terminated
3066     */
3067     public boolean isTerminating() {
3068     long c = ctl;
3069     return ((c & STOP_BIT) != 0L &&
3070 dl 1.18 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3071 dl 1.1 }
3072    
3073     /**
3074     * Returns {@code true} if this pool has been shut down.
3075     *
3076     * @return {@code true} if this pool has been shut down
3077     */
3078     public boolean isShutdown() {
3079 dl 1.12 return plock < 0;
3080 dl 1.1 }
3081    
3082     /**
3083 dl 1.12 * Blocks until all tasks have completed execution after a
3084     * shutdown request, or the timeout occurs, or the current thread
3085 dl 1.40 * is interrupted, whichever happens first. Because the {@link
3086     * #commonPool()} never terminates until program shutdown, when
3087     * applied to the common pool, this method is equivalent to {@link
3088     * #awaitQuiescence} but always returns {@code false}.
3089 dl 1.1 *
3090     * @param timeout the maximum time to wait
3091     * @param unit the time unit of the timeout argument
3092     * @return {@code true} if this executor terminated and
3093     * {@code false} if the timeout elapsed before termination
3094     * @throws InterruptedException if interrupted while waiting
3095     */
3096     public boolean awaitTermination(long timeout, TimeUnit unit)
3097     throws InterruptedException {
3098 dl 1.40 if (Thread.interrupted())
3099     throw new InterruptedException();
3100     if (this == common) {
3101     awaitQuiescence(timeout, unit);
3102     return false;
3103     }
3104 dl 1.1 long nanos = unit.toNanos(timeout);
3105 dl 1.8 if (isTerminated())
3106     return true;
3107     long startTime = System.nanoTime();
3108     boolean terminated = false;
3109 jsr166 1.10 synchronized (this) {
3110 dl 1.8 for (long waitTime = nanos, millis = 0L;;) {
3111     if (terminated = isTerminated() ||
3112     waitTime <= 0L ||
3113     (millis = unit.toMillis(waitTime)) <= 0L)
3114     break;
3115     wait(millis);
3116     waitTime = nanos - (System.nanoTime() - startTime);
3117 dl 1.1 }
3118     }
3119 dl 1.8 return terminated;
3120 dl 1.1 }
3121    
3122     /**
3123 dl 1.40 * If called by a ForkJoinTask operating in this pool, equivalent
3124     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3125     * waits and/or attempts to assist performing tasks until this
3126     * pool {@link #isQuiescent} or the indicated timeout elapses.
3127     *
3128     * @param timeout the maximum time to wait
3129     * @param unit the time unit of the timeout argument
3130     * @return {@code true} if quiescent; {@code false} if the
3131     * timeout elapsed.
3132     */
3133     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3134     long nanos = unit.toNanos(timeout);
3135     ForkJoinWorkerThread wt;
3136     Thread thread = Thread.currentThread();
3137     if ((thread instanceof ForkJoinWorkerThread) &&
3138     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3139     helpQuiescePool(wt.workQueue);
3140     return true;
3141     }
3142     long startTime = System.nanoTime();
3143     WorkQueue[] ws;
3144     int r = 0, m;
3145     boolean found = true;
3146     while (!isQuiescent() && (ws = workQueues) != null &&
3147     (m = ws.length - 1) >= 0) {
3148     if (!found) {
3149     if ((System.nanoTime() - startTime) > nanos)
3150     return false;
3151     Thread.yield(); // cannot block
3152     }
3153     found = false;
3154     for (int j = (m + 1) << 2; j >= 0; --j) {
3155     ForkJoinTask<?> t; WorkQueue q; int b;
3156     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3157     found = true;
3158     if ((t = q.pollAt(b)) != null) {
3159     if (q.base - q.top < 0)
3160     signalWork(q);
3161     t.doExec();
3162     }
3163     break;
3164     }
3165     }
3166     }
3167     return true;
3168     }
3169    
3170     /**
3171     * Waits and/or attempts to assist performing tasks indefinitely
3172     * until the {@link #commonPool()} {@link #isQuiescent}
3173     */
3174 dl 1.42 static void quiesceCommonPool() {
3175 dl 1.40 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3176     }
3177    
3178     /**
3179 dl 1.1 * Interface for extending managed parallelism for tasks running
3180     * in {@link ForkJoinPool}s.
3181     *
3182     * <p>A {@code ManagedBlocker} provides two methods. Method
3183     * {@code isReleasable} must return {@code true} if blocking is
3184     * not necessary. Method {@code block} blocks the current thread
3185     * if necessary (perhaps internally invoking {@code isReleasable}
3186     * before actually blocking). These actions are performed by any
3187     * thread invoking {@link ForkJoinPool#managedBlock}. The
3188     * unusual methods in this API accommodate synchronizers that may,
3189     * but don't usually, block for long periods. Similarly, they
3190     * allow more efficient internal handling of cases in which
3191     * additional workers may be, but usually are not, needed to
3192     * ensure sufficient parallelism. Toward this end,
3193     * implementations of method {@code isReleasable} must be amenable
3194     * to repeated invocation.
3195     *
3196     * <p>For example, here is a ManagedBlocker based on a
3197     * ReentrantLock:
3198     * <pre> {@code
3199     * class ManagedLocker implements ManagedBlocker {
3200     * final ReentrantLock lock;
3201     * boolean hasLock = false;
3202     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3203     * public boolean block() {
3204     * if (!hasLock)
3205     * lock.lock();
3206     * return true;
3207     * }
3208     * public boolean isReleasable() {
3209     * return hasLock || (hasLock = lock.tryLock());
3210     * }
3211     * }}</pre>
3212     *
3213     * <p>Here is a class that possibly blocks waiting for an
3214     * item on a given queue:
3215     * <pre> {@code
3216     * class QueueTaker<E> implements ManagedBlocker {
3217     * final BlockingQueue<E> queue;
3218     * volatile E item = null;
3219     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3220     * public boolean block() throws InterruptedException {
3221     * if (item == null)
3222     * item = queue.take();
3223     * return true;
3224     * }
3225     * public boolean isReleasable() {
3226     * return item != null || (item = queue.poll()) != null;
3227     * }
3228     * public E getItem() { // call after pool.managedBlock completes
3229     * return item;
3230     * }
3231     * }}</pre>
3232     */
3233     public static interface ManagedBlocker {
3234     /**
3235     * Possibly blocks the current thread, for example waiting for
3236     * a lock or condition.
3237     *
3238     * @return {@code true} if no additional blocking is necessary
3239     * (i.e., if isReleasable would return true)
3240     * @throws InterruptedException if interrupted while waiting
3241     * (the method is not required to do so, but is allowed to)
3242     */
3243     boolean block() throws InterruptedException;
3244    
3245     /**
3246     * Returns {@code true} if blocking is unnecessary.
3247     */
3248     boolean isReleasable();
3249     }
3250    
3251     /**
3252     * Blocks in accord with the given blocker. If the current thread
3253     * is a {@link ForkJoinWorkerThread}, this method possibly
3254     * arranges for a spare thread to be activated if necessary to
3255     * ensure sufficient parallelism while the current thread is blocked.
3256     *
3257     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3258     * behaviorally equivalent to
3259     * <pre> {@code
3260     * while (!blocker.isReleasable())
3261     * if (blocker.block())
3262     * return;
3263     * }</pre>
3264     *
3265     * If the caller is a {@code ForkJoinTask}, then the pool may
3266     * first be expanded to ensure parallelism, and later adjusted.
3267     *
3268     * @param blocker the blocker
3269     * @throws InterruptedException if blocker.block did so
3270     */
3271     public static void managedBlock(ManagedBlocker blocker)
3272     throws InterruptedException {
3273     Thread t = Thread.currentThread();
3274 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3275     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3276     while (!blocker.isReleasable()) { // variant of helpSignal
3277 dl 1.21 WorkQueue[] ws; WorkQueue q; int m, u;
3278 dl 1.12 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3279     for (int i = 0; i <= m; ++i) {
3280     if (blocker.isReleasable())
3281     return;
3282 dl 1.21 if ((q = ws[i]) != null && q.base - q.top < 0) {
3283     p.signalWork(q);
3284 dl 1.18 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3285     (u >> UAC_SHIFT) >= 0)
3286 dl 1.12 break;
3287     }
3288     }
3289     }
3290     if (p.tryCompensate()) {
3291     try {
3292     do {} while (!blocker.isReleasable() &&
3293     !blocker.block());
3294     } finally {
3295 dl 1.1 p.incrementActiveCount();
3296 dl 1.12 }
3297     break;
3298 dl 1.1 }
3299     }
3300     }
3301 dl 1.12 else {
3302     do {} while (!blocker.isReleasable() &&
3303     !blocker.block());
3304     }
3305 dl 1.1 }
3306    
3307     // AbstractExecutorService overrides. These rely on undocumented
3308     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3309     // implement RunnableFuture.
3310    
3311     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3312     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3313     }
3314    
3315     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3316     return new ForkJoinTask.AdaptedCallable<T>(callable);
3317     }
3318    
3319     // Unsafe mechanics
3320     private static final sun.misc.Unsafe U;
3321     private static final long CTL;
3322     private static final long PARKBLOCKER;
3323     private static final int ABASE;
3324     private static final int ASHIFT;
3325 dl 1.8 private static final long STEALCOUNT;
3326 dl 1.12 private static final long PLOCK;
3327     private static final long INDEXSEED;
3328     private static final long QLOCK;
3329 dl 1.1
3330     static {
3331 dl 1.12 int s; // initialize field offsets for CAS etc
3332 dl 1.1 try {
3333     U = getUnsafe();
3334     Class<?> k = ForkJoinPool.class;
3335     CTL = U.objectFieldOffset
3336     (k.getDeclaredField("ctl"));
3337 dl 1.8 STEALCOUNT = U.objectFieldOffset
3338     (k.getDeclaredField("stealCount"));
3339 dl 1.12 PLOCK = U.objectFieldOffset
3340     (k.getDeclaredField("plock"));
3341     INDEXSEED = U.objectFieldOffset
3342     (k.getDeclaredField("indexSeed"));
3343 dl 1.1 Class<?> tk = Thread.class;
3344     PARKBLOCKER = U.objectFieldOffset
3345     (tk.getDeclaredField("parkBlocker"));
3346 dl 1.12 Class<?> wk = WorkQueue.class;
3347     QLOCK = U.objectFieldOffset
3348     (wk.getDeclaredField("qlock"));
3349     Class<?> ak = ForkJoinTask[].class;
3350 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3351     s = U.arrayIndexScale(ak);
3352 dl 1.8 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3353 dl 1.1 } catch (Exception e) {
3354     throw new Error(e);
3355     }
3356     if ((s & (s-1)) != 0)
3357     throw new Error("data type scale not a power of two");
3358 dl 1.12
3359 dl 1.18 submitters = new ThreadLocal<Submitter>();
3360     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3361     new DefaultForkJoinWorkerThreadFactory();
3362 dl 1.21 modifyThreadPermission = new RuntimePermission("modifyThread");
3363    
3364 dl 1.12 /*
3365 dl 1.18 * Establish common pool parameters. For extra caution,
3366     * computations to set up common pool state are here; the
3367     * constructor just assigns these values to fields.
3368 dl 1.12 */
3369 dl 1.18
3370     int par = 0;
3371     Thread.UncaughtExceptionHandler handler = null;
3372     try { // TBD: limit or report ignored exceptions?
3373     String pp = System.getProperty
3374     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3375     String hp = System.getProperty
3376     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3377     String fp = System.getProperty
3378     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3379     if (fp != null)
3380     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3381     getSystemClassLoader().loadClass(fp).newInstance());
3382     if (hp != null)
3383     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3384     getSystemClassLoader().loadClass(hp).newInstance());
3385     if (pp != null)
3386     par = Integer.parseInt(pp);
3387     } catch (Exception ignore) {
3388     }
3389    
3390 dl 1.12 if (par <= 0)
3391     par = Runtime.getRuntime().availableProcessors();
3392     if (par > MAX_CAP)
3393     par = MAX_CAP;
3394 dl 1.40 commonParallelism = par;
3395 dl 1.12 long np = (long)(-par); // precompute initial ctl value
3396     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3397    
3398 dl 1.40 common = new ForkJoinPool(par, ct, fac, handler);
3399 dl 1.1 }
3400    
3401     /**
3402     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3403     * Replace with a simple call to Unsafe.getUnsafe when integrating
3404     * into a jdk.
3405     *
3406     * @return a sun.misc.Unsafe
3407     */
3408     private static sun.misc.Unsafe getUnsafe() {
3409     try {
3410     return sun.misc.Unsafe.getUnsafe();
3411     } catch (SecurityException se) {
3412     try {
3413     return java.security.AccessController.doPrivileged
3414     (new java.security
3415     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3416     public sun.misc.Unsafe run() throws Exception {
3417     java.lang.reflect.Field f = sun.misc
3418     .Unsafe.class.getDeclaredField("theUnsafe");
3419     f.setAccessible(true);
3420     return (sun.misc.Unsafe) f.get(null);
3421     }});
3422     } catch (java.security.PrivilegedActionException e) {
3423     throw new RuntimeException("Could not initialize intrinsics",
3424     e.getCause());
3425     }
3426     }
3427     }
3428    
3429     }