ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.59
Committed: Wed Jun 19 16:22:44 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.58: +6 -5 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.58 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15     import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21 dl 1.58 import java.util.concurrent.ThreadLocalRandom;
22 dl 1.1 import java.util.concurrent.TimeUnit;
23    
24     /**
25     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26     * A {@code ForkJoinPool} provides the entry point for submissions
27     * from non-{@code ForkJoinTask} clients, as well as management and
28     * monitoring operations.
29     *
30     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31     * ExecutorService} mainly by virtue of employing
32     * <em>work-stealing</em>: all threads in the pool attempt to find and
33     * execute tasks submitted to the pool and/or created by other active
34     * tasks (eventually blocking waiting for work if none exist). This
35     * enables efficient processing when most tasks spawn other subtasks
36     * (as do most {@code ForkJoinTask}s), as well as when many small
37     * tasks are submitted to the pool from external clients. Especially
38     * when setting <em>asyncMode</em> to true in constructors, {@code
39     * ForkJoinPool}s may also be appropriate for use with event-style
40     * tasks that are never joined.
41     *
42 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
43 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
44     * is not explicitly submitted to a specified pool. Using the common
45     * pool normally reduces resource usage (its threads are slowly
46     * reclaimed during periods of non-use, and reinstated upon subsequent
47 dl 1.12 * use).
48 dl 1.7 *
49     * <p>For applications that require separate or custom pools, a {@code
50     * ForkJoinPool} may be constructed with a given target parallelism
51     * level; by default, equal to the number of available processors. The
52     * pool attempts to maintain enough active (or available) threads by
53     * dynamically adding, suspending, or resuming internal worker
54 dl 1.58 * threads, even if some tasks are stalled waiting to join others.
55     * However, no such adjustments are guaranteed in the face of blocked
56     * I/O or other unmanaged synchronization. The nested {@link
57 dl 1.7 * ManagedBlocker} interface enables extension of the kinds of
58 dl 1.1 * synchronization accommodated.
59     *
60     * <p>In addition to execution and lifecycle control methods, this
61     * class provides status check methods (for example
62     * {@link #getStealCount}) that are intended to aid in developing,
63     * tuning, and monitoring fork/join applications. Also, method
64     * {@link #toString} returns indications of pool state in a
65     * convenient form for informal monitoring.
66     *
67 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
68 dl 1.1 * main task execution methods summarized in the following table.
69     * These are designed to be used primarily by clients not already
70     * engaged in fork/join computations in the current pool. The main
71     * forms of these methods accept instances of {@code ForkJoinTask},
72     * but overloaded forms also allow mixed execution of plain {@code
73     * Runnable}- or {@code Callable}- based activities as well. However,
74     * tasks that are already executing in a pool should normally instead
75     * use the within-computation forms listed in the table unless using
76     * async event-style tasks that are not usually joined, in which case
77     * there is little difference among choice of methods.
78     *
79     * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 dl 1.58 * <caption>Summary of task execution methods</caption>
81 dl 1.1 * <tr>
82     * <td></td>
83     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85     * </tr>
86     * <tr>
87 dl 1.58 * <td> <b>Arrange async execution</b></td>
88 dl 1.1 * <td> {@link #execute(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#fork}</td>
90     * </tr>
91     * <tr>
92 dl 1.58 * <td> <b>Await and obtain result</b></td>
93 dl 1.1 * <td> {@link #invoke(ForkJoinTask)}</td>
94     * <td> {@link ForkJoinTask#invoke}</td>
95     * </tr>
96     * <tr>
97 dl 1.58 * <td> <b>Arrange exec and obtain Future</b></td>
98 dl 1.1 * <td> {@link #submit(ForkJoinTask)}</td>
99     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100     * </tr>
101     * </table>
102     *
103 dl 1.12 * <p>The common pool is by default constructed with default
104 dl 1.58 * parameters, but these may be controlled by setting three
105     * {@linkplain System#getProperty system properties}:
106     * <ul>
107     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108     * - the parallelism level, a non-negative integer
109     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110     * - the class name of a {@link ForkJoinWorkerThreadFactory}
111     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112     * - the class name of a {@link UncaughtExceptionHandler}
113     * </ul>
114     * The system class loader is used to load these classes.
115     * Upon any error in establishing these settings, default parameters
116     * are used. It is possible to disable or limit the use of threads in
117     * the common pool by setting the parallelism property to zero, and/or
118     * using a factory that may return {@code null}.
119 dl 1.12 *
120 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
121     * maximum number of running threads to 32767. Attempts to create
122     * pools with greater than the maximum number result in
123     * {@code IllegalArgumentException}.
124     *
125     * <p>This implementation rejects submitted tasks (that is, by throwing
126     * {@link RejectedExecutionException}) only when the pool is shut down
127     * or internal resources have been exhausted.
128     *
129     * @since 1.7
130     * @author Doug Lea
131     */
132     public class ForkJoinPool extends AbstractExecutorService {
133    
134     /*
135     * Implementation Overview
136     *
137     * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139     * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers. Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145     *
146     * WorkQueues
147     * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue). These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads. (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.) The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 dl 1.58 * See also "Correct and Efficient Work-Stealing for Weak Memory
165     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167     * analysis of memory ordering (atomic, volatile etc) issues. The
168     * main differences ultimately stem from GC requirements that we
169     * null out taken slots as soon as we can, to maintain as small a
170     * footprint as possible even in programs generating huge numbers
171     * of tasks. To accomplish this, we shift the CAS arbitrating pop
172     * vs poll (steal) from being on the indices ("base" and "top") to
173     * the slots themselves. So, both a successful pop and poll
174     * mainly entail a CAS of a slot from non-null to null. Because
175     * we rely on CASes of references, we do not need tag bits on base
176     * or top. They are simple ints as used in any circular
177     * array-based queue (see for example ArrayDeque). Updates to the
178     * indices must still be ordered in a way that guarantees that top
179     * == base means the queue is empty, but otherwise may err on the
180     * side of possibly making the queue appear nonempty when a push,
181     * pop, or poll have not fully committed. Note that this means
182     * that the poll operation, considered individually, is not
183     * wait-free. One thief cannot successfully continue until another
184     * in-progress one (or, if previously empty, a push) completes.
185     * However, in the aggregate, we ensure at least probabilistic
186     * non-blockingness. If an attempted steal fails, a thief always
187     * chooses a different random victim target to try next. So, in
188     * order for one thief to progress, it suffices for any
189     * in-progress poll or new push on any empty queue to
190     * complete. (This is why we normally use method pollAt and its
191     * variants that try once at the apparent base index, else
192     * consider alternative actions, rather than method poll.)
193 dl 1.1 *
194     * This approach also enables support of a user mode in which local
195     * task processing is in FIFO, not LIFO order, simply by using
196     * poll rather than pop. This can be useful in message-passing
197     * frameworks in which tasks are never joined. However neither
198     * mode considers affinities, loads, cache localities, etc, so
199     * rarely provide the best possible performance on a given
200     * machine, but portably provide good throughput by averaging over
201     * these factors. (Further, even if we did try to use such
202     * information, we do not usually have a basis for exploiting it.
203     * For example, some sets of tasks profit from cache affinities,
204     * but others are harmed by cache pollution effects.)
205     *
206     * WorkQueues are also used in a similar way for tasks submitted
207     * to the pool. We cannot mix these tasks in the same queues used
208     * for work-stealing (this would contaminate lifo/fifo
209 dl 1.12 * processing). Instead, we randomly associate submission queues
210 dl 1.1 * with submitting threads, using a form of hashing. The
211 dl 1.58 * Submitter probe value serves as a hash code for
212     * choosing existing queues, and may be randomly repositioned upon
213     * contention with other submitters. In essence, submitters act
214     * like workers except that they are restricted to executing local
215     * tasks that they submitted (or in the case of CountedCompleters,
216     * others with the same root task). However, because most
217     * shared/external queue operations are more expensive than
218     * internal, and because, at steady state, external submitters
219     * will compete for CPU with workers, ForkJoinTask.join and
220     * related methods disable them from repeatedly helping to process
221     * tasks if all workers are active. Insertion of tasks in shared
222     * mode requires a lock (mainly to protect in the case of
223 dl 1.12 * resizing) but we use only a simple spinlock (using bits in
224     * field qlock), because submitters encountering a busy queue move
225     * on to try or create other queues -- they block only when
226     * creating and registering new queues.
227 dl 1.1 *
228     * Management
229     * ==========
230     *
231     * The main throughput advantages of work-stealing stem from
232     * decentralized control -- workers mostly take tasks from
233     * themselves or each other. We cannot negate this in the
234     * implementation of other management responsibilities. The main
235     * tactic for avoiding bottlenecks is packing nearly all
236     * essentially atomic control state into two volatile variables
237     * that are by far most often read (not written) as status and
238     * consistency checks.
239     *
240     * Field "ctl" contains 64 bits holding all the information needed
241     * to atomically decide to add, inactivate, enqueue (on an event
242     * queue), dequeue, and/or re-activate workers. To enable this
243     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244     * far in excess of normal operating range) to allow ids, counts,
245     * and their negations (used for thresholding) to fit into 16bit
246     * fields.
247     *
248 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
249     * shutdown bit (similarly for per-queue "qlocks"), mainly
250     * protecting updates to the workQueues array, as well as to
251     * enable shutdown. When used as a lock, it is normally only very
252     * briefly held, so is nearly always available after at most a
253     * brief spin, but we use a monitor-based backup strategy to
254 dl 1.18 * block when needed.
255 dl 1.1 *
256     * Recording WorkQueues. WorkQueues are recorded in the
257 dl 1.8 * "workQueues" array that is created upon first use and expanded
258     * if necessary. Updates to the array while recording new workers
259     * and unrecording terminated ones are protected from each other
260     * by a lock but the array is otherwise concurrently readable, and
261     * accessed directly. To simplify index-based operations, the
262     * array size is always a power of two, and all readers must
263 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
264 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
265     * slots, to limit growth even if array needs to expand to add
266     * more workers. Grouping them together in this way simplifies and
267     * speeds up task scanning.
268 dl 1.1 *
269     * All worker thread creation is on-demand, triggered by task
270     * submissions, replacement of terminated workers, and/or
271     * compensation for blocked workers. However, all other support
272     * code is set up to work with other policies. To ensure that we
273     * do not hold on to worker references that would prevent GC, ALL
274     * accesses to workQueues are via indices into the workQueues
275     * array (which is one source of some of the messy code
276     * constructions here). In essence, the workQueues array serves as
277     * a weak reference mechanism. Thus for example the wait queue
278     * field of ctl stores indices, not references. Access to the
279     * workQueues in associated methods (for example signalWork) must
280     * both index-check and null-check the IDs. All such accesses
281     * ignore bad IDs by returning out early from what they are doing,
282     * since this can only be associated with termination, in which
283     * case it is OK to give up. All uses of the workQueues array
284     * also check that it is non-null (even if previously
285     * non-null). This allows nulling during termination, which is
286     * currently not necessary, but remains an option for
287     * resource-revocation-based shutdown schemes. It also helps
288     * reduce JIT issuance of uncommon-trap code, which tends to
289     * unnecessarily complicate control flow in some methods.
290     *
291     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292     * let workers spin indefinitely scanning for tasks when none can
293     * be found immediately, and we cannot start/resume workers unless
294     * there appear to be tasks available. On the other hand, we must
295     * quickly prod them into action when new tasks are submitted or
296     * generated. In many usages, ramp-up time to activate workers is
297     * the main limiting factor in overall performance (this is
298     * compounded at program start-up by JIT compilation and
299     * allocation). So we try to streamline this as much as possible.
300     * We park/unpark workers after placing in an event wait queue
301     * when they cannot find work. This "queue" is actually a simple
302     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303     * counter value (that reflects the number of times a worker has
304     * been inactivated) to avoid ABA effects (we need only as many
305     * version numbers as worker threads). Successors are held in
306     * field WorkQueue.nextWait. Queuing deals with several intrinsic
307     * races, mainly that a task-producing thread can miss seeing (and
308     * signalling) another thread that gave up looking for work but
309     * has not yet entered the wait queue. We solve this by requiring
310     * a full sweep of all workers (via repeated calls to method
311     * scan()) both before and after a newly waiting worker is added
312 dl 1.58 * to the wait queue. Because enqueued workers may actually be
313     * rescanning rather than waiting, we set and clear the "parker"
314     * field of WorkQueues to reduce unnecessary calls to unpark.
315     * (This requires a secondary recheck to avoid missed signals.)
316     * Note the unusual conventions about Thread.interrupts
317     * surrounding parking and other blocking: Because interrupts are
318     * used solely to alert threads to check termination, which is
319     * checked anyway upon blocking, we clear status (using
320     * Thread.interrupted) before any call to park, so that park does
321     * not immediately return due to status being set via some other
322     * unrelated call to interrupt in user code.
323 dl 1.1 *
324     * Signalling. We create or wake up workers only when there
325     * appears to be at least one task they might be able to find and
326 dl 1.58 * execute. When a submission is added or another worker adds a
327     * task to a queue that has fewer than two tasks, they signal
328     * waiting workers (or trigger creation of new ones if fewer than
329     * the given parallelism level -- signalWork). These primary
330     * signals are buttressed by others whenever other threads remove
331     * a task from a queue and notice that there are other tasks there
332     * as well. So in general, pools will be over-signalled. On most
333     * platforms, signalling (unpark) overhead time is noticeably
334 dl 1.21 * long, and the time between signalling a thread and it actually
335     * making progress can be very noticeably long, so it is worth
336     * offloading these delays from critical paths as much as
337 dl 1.58 * possible. Additionally, workers spin-down gradually, by staying
338     * alive so long as they see the ctl state changing. Similar
339     * stability-sensing techniques are also used before blocking in
340     * awaitJoin and helpComplete.
341 dl 1.1 *
342     * Trimming workers. To release resources after periods of lack of
343     * use, a worker starting to wait when the pool is quiescent will
344 dl 1.7 * time out and terminate if the pool has remained quiescent for a
345     * given period -- a short period if there are more threads than
346     * parallelism, longer as the number of threads decreases. This
347     * will slowly propagate, eventually terminating all workers after
348     * periods of non-use.
349 dl 1.1 *
350     * Shutdown and Termination. A call to shutdownNow atomically sets
351 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
352     * qlock status, cancels all unprocessed tasks, and wakes up
353 dl 1.1 * all waiting workers. Detecting whether termination should
354     * commence after a non-abrupt shutdown() call requires more work
355     * and bookkeeping. We need consensus about quiescence (i.e., that
356     * there is no more work). The active count provides a primary
357     * indication but non-abrupt shutdown still requires a rechecking
358     * scan for any workers that are inactive but not queued.
359     *
360     * Joining Tasks
361     * =============
362     *
363     * Any of several actions may be taken when one worker is waiting
364     * to join a task stolen (or always held) by another. Because we
365     * are multiplexing many tasks on to a pool of workers, we can't
366     * just let them block (as in Thread.join). We also cannot just
367     * reassign the joiner's run-time stack with another and replace
368     * it later, which would be a form of "continuation", that even if
369     * possible is not necessarily a good idea since we sometimes need
370     * both an unblocked task and its continuation to progress.
371     * Instead we combine two tactics:
372     *
373     * Helping: Arranging for the joiner to execute some task that it
374     * would be running if the steal had not occurred.
375     *
376     * Compensating: Unless there are already enough live threads,
377     * method tryCompensate() may create or re-activate a spare
378     * thread to compensate for blocked joiners until they unblock.
379     *
380 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
381     * helping a hypothetical compensator: If we can readily tell that
382     * a possible action of a compensator is to steal and execute the
383     * task being joined, the joining thread can do so directly,
384     * without the need for a compensation thread (although at the
385     * expense of larger run-time stacks, but the tradeoff is
386     * typically worthwhile).
387 dl 1.1 *
388     * The ManagedBlocker extension API can't use helping so relies
389     * only on compensation in method awaitBlocker.
390     *
391     * The algorithm in tryHelpStealer entails a form of "linear"
392     * helping: Each worker records (in field currentSteal) the most
393     * recent task it stole from some other worker. Plus, it records
394     * (in field currentJoin) the task it is currently actively
395     * joining. Method tryHelpStealer uses these markers to try to
396     * find a worker to help (i.e., steal back a task from and execute
397     * it) that could hasten completion of the actively joined task.
398     * In essence, the joiner executes a task that would be on its own
399     * local deque had the to-be-joined task not been stolen. This may
400     * be seen as a conservative variant of the approach in Wagner &
401     * Calder "Leapfrogging: a portable technique for implementing
402     * efficient futures" SIGPLAN Notices, 1993
403     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
404     * that: (1) We only maintain dependency links across workers upon
405     * steals, rather than use per-task bookkeeping. This sometimes
406     * requires a linear scan of workQueues array to locate stealers,
407     * but often doesn't because stealers leave hints (that may become
408 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
409     * because a worker might have had multiple steals and the hint
410     * records only one of them (usually the most current). Hinting
411     * isolates cost to when it is needed, rather than adding to
412     * per-task overhead. (2) It is "shallow", ignoring nesting and
413     * potentially cyclic mutual steals. (3) It is intentionally
414 dl 1.1 * racy: field currentJoin is updated only while actively joining,
415     * which means that we miss links in the chain during long-lived
416     * tasks, GC stalls etc (which is OK since blocking in such cases
417     * is usually a good idea). (4) We bound the number of attempts
418     * to find work (see MAX_HELP) and fall back to suspending the
419     * worker and if necessary replacing it with another.
420     *
421 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
422     * helpComplete can take and execute any task with the same root
423     * as the task being waited on. However, this still entails some
424     * traversal of completer chains, so is less efficient than using
425     * CountedCompleters without explicit joins.
426     *
427 dl 1.1 * It is impossible to keep exactly the target parallelism number
428     * of threads running at any given time. Determining the
429     * existence of conservatively safe helping targets, the
430     * availability of already-created spares, and the apparent need
431     * to create new spares are all racy, so we rely on multiple
432     * retries of each. Compensation in the apparent absence of
433     * helping opportunities is challenging to control on JVMs, where
434     * GC and other activities can stall progress of tasks that in
435     * turn stall out many other dependent tasks, without us being
436     * able to determine whether they will ever require compensation.
437     * Even though work-stealing otherwise encounters little
438     * degradation in the presence of more threads than cores,
439     * aggressively adding new threads in such cases entails risk of
440     * unwanted positive feedback control loops in which more threads
441     * cause more dependent stalls (as well as delayed progress of
442     * unblocked threads to the point that we know they are available)
443     * leading to more situations requiring more threads, and so
444     * on. This aspect of control can be seen as an (analytically
445     * intractable) game with an opponent that may choose the worst
446     * (for us) active thread to stall at any time. We take several
447     * precautions to bound losses (and thus bound gains), mainly in
448 dl 1.12 * methods tryCompensate and awaitJoin.
449     *
450     * Common Pool
451     * ===========
452     *
453 dl 1.58 * The static common pool always exists after static
454 dl 1.12 * initialization. Since it (or any other created pool) need
455     * never be used, we minimize initial construction overhead and
456     * footprint to the setup of about a dozen fields, with no nested
457     * allocation. Most bootstrapping occurs within method
458     * fullExternalPush during the first submission to the pool.
459     *
460     * When external threads submit to the common pool, they can
461 dl 1.58 * perform subtask processing (see externalHelpJoin and related
462     * methods). This caller-helps policy makes it sensible to set
463     * common pool parallelism level to one (or more) less than the
464     * total number of available cores, or even zero for pure
465     * caller-runs. We do not need to record whether external
466 dl 1.12 * submissions are to the common pool -- if not, externalHelpJoin
467 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
468 dl 1.12 * workers). These submitters would otherwise be blocked waiting
469     * for completion, so the extra effort (with liberally sprinkled
470     * task status checks) in inapplicable cases amounts to an odd
471     * form of limited spin-wait before blocking in ForkJoinTask.join.
472     *
473     * Style notes
474     * ===========
475     *
476     * There is a lot of representation-level coupling among classes
477     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
478     * fields of WorkQueue maintain data structures managed by
479     * ForkJoinPool, so are directly accessed. There is little point
480     * trying to reduce this, since any associated future changes in
481     * representations will need to be accompanied by algorithmic
482     * changes anyway. Several methods intrinsically sprawl because
483     * they must accumulate sets of consistent reads of volatiles held
484     * in local variables. Methods signalWork() and scan() are the
485     * main bottlenecks, so are especially heavily
486 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
487     * (of form "while ((local = field) != 0)") which are usually the
488     * simplest way to ensure the required read orderings (which are
489     * sometimes critical). This leads to a "C"-like style of listing
490     * declarations of these locals at the heads of methods or blocks.
491     * There are several occurrences of the unusual "do {} while
492     * (!cas...)" which is the simplest way to force an update of a
493 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
494     * several unnecessary-looking hoisted null checks) that help
495 dl 1.1 * some methods perform reasonably even when interpreted (not
496     * compiled).
497     *
498     * The order of declarations in this file is:
499     * (1) Static utility functions
500     * (2) Nested (static) classes
501     * (3) Static fields
502     * (4) Fields, along with constants used when unpacking some of them
503     * (5) Internal control methods
504     * (6) Callbacks and other support for ForkJoinTask methods
505     * (7) Exported methods
506     * (8) Static block initializing statics in minimally dependent order
507     */
508    
509     // Static utilities
510    
511     /**
512     * If there is a security manager, makes sure caller has
513     * permission to modify threads.
514     */
515     private static void checkPermission() {
516     SecurityManager security = System.getSecurityManager();
517     if (security != null)
518     security.checkPermission(modifyThreadPermission);
519     }
520    
521     // Nested classes
522    
523     /**
524     * Factory for creating new {@link ForkJoinWorkerThread}s.
525     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
526     * for {@code ForkJoinWorkerThread} subclasses that extend base
527     * functionality or initialize threads with different contexts.
528     */
529     public static interface ForkJoinWorkerThreadFactory {
530     /**
531     * Returns a new worker thread operating in the given pool.
532     *
533     * @param pool the pool this thread works in
534     * @throws NullPointerException if the pool is null
535 dl 1.58 * @return the new worker thread
536 dl 1.1 */
537     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
538     }
539    
540     /**
541     * Default ForkJoinWorkerThreadFactory implementation; creates a
542     * new ForkJoinWorkerThread.
543     */
544 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
545 dl 1.1 implements ForkJoinWorkerThreadFactory {
546 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
547 dl 1.1 return new ForkJoinWorkerThread(pool);
548     }
549     }
550    
551     /**
552     * Class for artificial tasks that are used to replace the target
553     * of local joins if they are removed from an interior queue slot
554     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
555     * actually do anything beyond having a unique identity.
556     */
557     static final class EmptyTask extends ForkJoinTask<Void> {
558 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
559 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
560     public final Void getRawResult() { return null; }
561     public final void setRawResult(Void x) {}
562     public final boolean exec() { return true; }
563     }
564    
565     /**
566     * Queues supporting work-stealing as well as external task
567     * submission. See above for main rationale and algorithms.
568     * Implementation relies heavily on "Unsafe" intrinsics
569     * and selective use of "volatile":
570     *
571     * Field "base" is the index (mod array.length) of the least valid
572     * queue slot, which is always the next position to steal (poll)
573     * from if nonempty. Reads and writes require volatile orderings
574     * but not CAS, because updates are only performed after slot
575     * CASes.
576     *
577     * Field "top" is the index (mod array.length) of the next queue
578     * slot to push to or pop from. It is written only by owner thread
579 dl 1.12 * for push, or under lock for external/shared push, and accessed
580     * by other threads only after reading (volatile) base. Both top
581     * and base are allowed to wrap around on overflow, but (top -
582     * base) (or more commonly -(base - top) to force volatile read of
583     * base before top) still estimates size. The lock ("qlock") is
584     * forced to -1 on termination, causing all further lock attempts
585     * to fail. (Note: we don't need CAS for termination state because
586     * upon pool shutdown, all shared-queues will stop being used
587     * anyway.) Nearly all lock bodies are set up so that exceptions
588     * within lock bodies are "impossible" (modulo JVM errors that
589     * would cause failure anyway.)
590 dl 1.1 *
591     * The array slots are read and written using the emulation of
592     * volatiles/atomics provided by Unsafe. Insertions must in
593     * general use putOrderedObject as a form of releasing store to
594     * ensure that all writes to the task object are ordered before
595 dl 1.12 * its publication in the queue. All removals entail a CAS to
596     * null. The array is always a power of two. To ensure safety of
597     * Unsafe array operations, all accesses perform explicit null
598     * checks and implicit bounds checks via power-of-two masking.
599 dl 1.1 *
600     * In addition to basic queuing support, this class contains
601     * fields described elsewhere to control execution. It turns out
602 dl 1.12 * to work better memory-layout-wise to include them in this class
603     * rather than a separate class.
604 dl 1.1 *
605     * Performance on most platforms is very sensitive to placement of
606     * instances of both WorkQueues and their arrays -- we absolutely
607     * do not want multiple WorkQueue instances or multiple queue
608     * arrays sharing cache lines. (It would be best for queue objects
609     * and their arrays to share, but there is nothing available to
610 dl 1.58 * help arrange that). The @Contended annotation alerts JVMs to
611     * try to keep instances apart.
612 dl 1.1 */
613     static final class WorkQueue {
614     /**
615     * Capacity of work-stealing queue array upon initialization.
616     * Must be a power of two; at least 4, but should be larger to
617     * reduce or eliminate cacheline sharing among queues.
618     * Currently, it is much larger, as a partial workaround for
619     * the fact that JVMs often place arrays in locations that
620     * share GC bookkeeping (especially cardmarks) such that
621     * per-write accesses encounter serious memory contention.
622     */
623     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
624    
625     /**
626     * Maximum size for queue arrays. Must be a power of two less
627     * than or equal to 1 << (31 - width of array entry) to ensure
628     * lack of wraparound of index calculations, but defined to a
629     * value a bit less than this to help users trap runaway
630     * programs before saturating systems.
631     */
632     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
633    
634 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
635     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
636    
637 dl 1.1 volatile int eventCount; // encoded inactivation count; < 0 if inactive
638     int nextWait; // encoded record of next event waiter
639 dl 1.18 int nsteals; // number of steals
640 dl 1.58 int hint; // steal index hint
641     short poolIndex; // index of this queue in pool
642     final short mode; // 0: lifo, > 0: fifo, < 0: shared
643 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
644 dl 1.1 volatile int base; // index of next slot for poll
645     int top; // index of next slot for push
646     ForkJoinTask<?>[] array; // the elements (initially unallocated)
647     final ForkJoinPool pool; // the containing pool (may be null)
648     final ForkJoinWorkerThread owner; // owning thread or null if shared
649     volatile Thread parker; // == owner during call to park; else null
650     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
651     ForkJoinTask<?> currentSteal; // current non-local task being executed
652 dl 1.18
653 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
654     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
655 dl 1.1
656 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
657     int seed) {
658 dl 1.1 this.pool = pool;
659     this.owner = owner;
660 dl 1.58 this.mode = (short)mode;
661     this.hint = seed; // store initial seed for runWorker
662 dl 1.21 // Place indices in the center of array (that is not yet allocated)
663 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
664     }
665    
666     /**
667 dl 1.21 * Returns the approximate number of tasks in the queue.
668     */
669     final int queueSize() {
670     int n = base - top; // non-owner callers must read base first
671     return (n >= 0) ? 0 : -n; // ignore transient negative
672     }
673    
674 dl 1.58 /**
675 dl 1.21 * Provides a more accurate estimate of whether this queue has
676     * any tasks than does queueSize, by checking whether a
677     * near-empty queue has at least one unclaimed task.
678     */
679     final boolean isEmpty() {
680     ForkJoinTask<?>[] a; int m, s;
681     int n = base - (s = top);
682     return (n >= 0 ||
683     (n == -1 &&
684     ((a = array) == null ||
685     (m = a.length - 1) < 0 ||
686     U.getObject
687     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
688     }
689    
690     /**
691     * Pushes a task. Call only by owner in unshared queues. (The
692     * shared-queue version is embedded in method externalPush.)
693 dl 1.1 *
694     * @param task the task. Caller must ensure non-null.
695 jsr166 1.51 * @throws RejectedExecutionException if array cannot be resized
696 dl 1.1 */
697     final void push(ForkJoinTask<?> task) {
698 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
699 dl 1.58 int s = top, n;
700 dl 1.18 if ((a = array) != null) { // ignore if queue removed
701 dl 1.58 int m = a.length - 1;
702     U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
703     if ((n = (top = s + 1) - base) <= 2)
704     (p = pool).signalWork(p.workQueues, this);
705 dl 1.18 else if (n >= m)
706     growArray();
707 dl 1.1 }
708     }
709    
710 dl 1.58 /**
711 dl 1.18 * Initializes or doubles the capacity of array. Call either
712     * by owner or with lock held -- it is OK for base, but not
713     * top, to move while resizings are in progress.
714     */
715     final ForkJoinTask<?>[] growArray() {
716     ForkJoinTask<?>[] oldA = array;
717     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
718     if (size > MAXIMUM_QUEUE_CAPACITY)
719     throw new RejectedExecutionException("Queue capacity exceeded");
720     int oldMask, t, b;
721     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
722     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
723     (t = top) - (b = base) > 0) {
724     int mask = size - 1;
725     do {
726     ForkJoinTask<?> x;
727     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
728     int j = ((b & mask) << ASHIFT) + ABASE;
729     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
730     if (x != null &&
731     U.compareAndSwapObject(oldA, oldj, x, null))
732     U.putObjectVolatile(a, j, x);
733     } while (++b != t);
734 dl 1.1 }
735 dl 1.18 return a;
736 dl 1.1 }
737    
738     /**
739     * Takes next task, if one exists, in LIFO order. Call only
740 dl 1.9 * by owner in unshared queues.
741 dl 1.1 */
742     final ForkJoinTask<?> pop() {
743     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
744     if ((a = array) != null && (m = a.length - 1) >= 0) {
745     for (int s; (s = top - 1) - base >= 0;) {
746     long j = ((m & s) << ASHIFT) + ABASE;
747     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
748     break;
749     if (U.compareAndSwapObject(a, j, t, null)) {
750     top = s;
751     return t;
752     }
753     }
754     }
755     return null;
756     }
757    
758     /**
759     * Takes a task in FIFO order if b is base of queue and a task
760     * can be claimed without contention. Specialized versions
761     * appear in ForkJoinPool methods scan and tryHelpStealer.
762     */
763     final ForkJoinTask<?> pollAt(int b) {
764     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
765     if ((a = array) != null) {
766     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
767     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
768 dl 1.58 base == b && U.compareAndSwapObject(a, j, t, null)) {
769     U.putOrderedInt(this, QBASE, b + 1);
770 dl 1.1 return t;
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes next task, if one exists, in FIFO order.
778     */
779     final ForkJoinTask<?> poll() {
780     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781     while ((b = base) - top < 0 && (a = array) != null) {
782     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784     if (t != null) {
785 dl 1.58 if (U.compareAndSwapObject(a, j, t, null)) {
786     U.putOrderedInt(this, QBASE, b + 1);
787 dl 1.1 return t;
788     }
789     }
790     else if (base == b) {
791     if (b + 1 == top)
792     break;
793 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
794 dl 1.1 }
795     }
796     return null;
797     }
798    
799     /**
800     * Takes next task, if one exists, in order specified by mode.
801     */
802     final ForkJoinTask<?> nextLocalTask() {
803     return mode == 0 ? pop() : poll();
804     }
805    
806     /**
807     * Returns next task, if one exists, in order specified by mode.
808     */
809     final ForkJoinTask<?> peek() {
810     ForkJoinTask<?>[] a = array; int m;
811     if (a == null || (m = a.length - 1) < 0)
812     return null;
813     int i = mode == 0 ? top - 1 : base;
814     int j = ((i & m) << ASHIFT) + ABASE;
815     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
816     }
817    
818     /**
819     * Pops the given task only if it is at the current top.
820 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
821 dl 1.1 */
822     final boolean tryUnpush(ForkJoinTask<?> t) {
823     ForkJoinTask<?>[] a; int s;
824     if ((a = array) != null && (s = top) != base &&
825     U.compareAndSwapObject
826     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827     top = s;
828     return true;
829     }
830     return false;
831     }
832    
833     /**
834     * Removes and cancels all known tasks, ignoring any exceptions.
835     */
836     final void cancelAll() {
837     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
838     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
839     for (ForkJoinTask<?> t; (t = poll()) != null; )
840     ForkJoinTask.cancelIgnoringExceptions(t);
841     }
842    
843 dl 1.11 // Specialized execution methods
844 dl 1.1
845     /**
846 dl 1.58 * Polls and runs tasks until empty.
847 dl 1.1 */
848 dl 1.58 final void pollAndExecAll() {
849     for (ForkJoinTask<?> t; (t = poll()) != null;)
850     t.doExec();
851 dl 1.1 }
852    
853     /**
854 dl 1.58 * Executes a top-level task and any local tasks remaining
855     * after execution.
856 dl 1.1 */
857 dl 1.58 final void runTask(ForkJoinTask<?> task) {
858     if ((currentSteal = task) != null) {
859     task.doExec();
860     ForkJoinTask<?>[] a = array;
861     int md = mode;
862     ++nsteals;
863     currentSteal = null;
864     if (md != 0)
865     pollAndExecAll();
866     else if (a != null) {
867     int s, m = a.length - 1;
868     while ((s = top - 1) - base >= 0) {
869     long i = ((m & s) << ASHIFT) + ABASE;
870     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
871     if (t == null)
872     break;
873     if (U.compareAndSwapObject(a, i, t, null)) {
874     top = s;
875     t.doExec();
876     }
877     }
878     }
879     }
880 dl 1.1 }
881 jsr166 1.59
882 dl 1.1 /**
883 dl 1.12 * If present, removes from queue and executes the given task,
884     * or any other cancelled task. Returns (true) on any CAS
885 dl 1.1 * or consistency check failure so caller can retry.
886     *
887 jsr166 1.55 * @return false if no progress can be made, else true
888 dl 1.1 */
889 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
890 dl 1.58 boolean stat;
891 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
892 dl 1.58 if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
893 dl 1.1 (n = (s = top) - (b = base)) > 0) {
894 dl 1.58 boolean removed = false, empty = true;
895     stat = true;
896 dl 1.1 for (ForkJoinTask<?> t;;) { // traverse from s to b
897 dl 1.58 long j = ((--s & m) << ASHIFT) + ABASE;
898     t = (ForkJoinTask<?>)U.getObject(a, j);
899 dl 1.1 if (t == null) // inconsistent length
900     break;
901     else if (t == task) {
902     if (s + 1 == top) { // pop
903     if (!U.compareAndSwapObject(a, j, task, null))
904     break;
905     top = s;
906     removed = true;
907     }
908     else if (base == b) // replace with proxy
909     removed = U.compareAndSwapObject(a, j, task,
910     new EmptyTask());
911     break;
912     }
913     else if (t.status >= 0)
914     empty = false;
915     else if (s + 1 == top) { // pop and throw away
916     if (U.compareAndSwapObject(a, j, t, null))
917     top = s;
918     break;
919     }
920     if (--n == 0) {
921     if (!empty && base == b)
922 dl 1.12 stat = false;
923 dl 1.1 break;
924     }
925     }
926 dl 1.58 if (removed)
927     task.doExec();
928 dl 1.1 }
929 dl 1.58 else
930     stat = false;
931 dl 1.1 return stat;
932     }
933    
934     /**
935 dl 1.58 * Tries to poll for and execute the given task or any other
936     * task in its CountedCompleter computation.
937 dl 1.11 */
938 dl 1.58 final boolean pollAndExecCC(CountedCompleter<?> root) {
939     ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
940     if ((b = base) - top < 0 && (a = array) != null) {
941 dl 1.12 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
942 dl 1.58 if ((o = U.getObjectVolatile(a, j)) == null)
943     return true; // retry
944     if (o instanceof CountedCompleter) {
945     for (t = (CountedCompleter<?>)o, r = t;;) {
946     if (r == root) {
947     if (base == b &&
948     U.compareAndSwapObject(a, j, t, null)) {
949     U.putOrderedInt(this, QBASE, b + 1);
950     t.doExec();
951     }
952 dl 1.12 return true;
953 dl 1.11 }
954 dl 1.58 else if ((r = r.completer) == null)
955     break; // not part of root computation
956 dl 1.11 }
957     }
958     }
959 dl 1.12 return false;
960 dl 1.11 }
961    
962     /**
963 dl 1.58 * Tries to pop and execute the given task or any other task
964     * in its CountedCompleter computation.
965 dl 1.1 */
966 dl 1.58 final boolean externalPopAndExecCC(CountedCompleter<?> root) {
967     ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
968     if (base - (s = top) < 0 && (a = array) != null) {
969     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
970     if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
971     for (t = (CountedCompleter<?>)o, r = t;;) {
972     if (r == root) {
973     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
974     if (top == s && array == a &&
975     U.compareAndSwapObject(a, j, t, null)) {
976     top = s - 1;
977     qlock = 0;
978     t.doExec();
979     }
980     else
981     qlock = 0;
982     }
983     return true;
984     }
985     else if ((r = r.completer) == null)
986     break;
987     }
988 dl 1.1 }
989     }
990 dl 1.58 return false;
991 dl 1.1 }
992    
993     /**
994 dl 1.58 * Internal version
995 dl 1.1 */
996 dl 1.58 final boolean internalPopAndExecCC(CountedCompleter<?> root) {
997     ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
998     if (base - (s = top) < 0 && (a = array) != null) {
999     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1000     if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1001     for (t = (CountedCompleter<?>)o, r = t;;) {
1002     if (r == root) {
1003     if (U.compareAndSwapObject(a, j, t, null)) {
1004     top = s - 1;
1005     t.doExec();
1006     }
1007     return true;
1008     }
1009     else if ((r = r.completer) == null)
1010     break;
1011     }
1012     }
1013 dl 1.1 }
1014 dl 1.58 return false;
1015 dl 1.1 }
1016    
1017     /**
1018     * Returns true if owned and not known to be blocked.
1019     */
1020     final boolean isApparentlyUnblocked() {
1021     Thread wt; Thread.State s;
1022     return (eventCount >= 0 &&
1023     (wt = owner) != null &&
1024     (s = wt.getState()) != Thread.State.BLOCKED &&
1025     s != Thread.State.WAITING &&
1026     s != Thread.State.TIMED_WAITING);
1027     }
1028    
1029     // Unsafe mechanics
1030     private static final sun.misc.Unsafe U;
1031 dl 1.58 private static final long QBASE;
1032 dl 1.12 private static final long QLOCK;
1033 dl 1.1 private static final int ABASE;
1034     private static final int ASHIFT;
1035     static {
1036     try {
1037     U = getUnsafe();
1038     Class<?> k = WorkQueue.class;
1039     Class<?> ak = ForkJoinTask[].class;
1040 dl 1.58 QBASE = U.objectFieldOffset
1041     (k.getDeclaredField("base"));
1042 dl 1.12 QLOCK = U.objectFieldOffset
1043     (k.getDeclaredField("qlock"));
1044 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1045 jsr166 1.47 int scale = U.arrayIndexScale(ak);
1046     if ((scale & (scale - 1)) != 0)
1047     throw new Error("data type scale not a power of two");
1048     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1049 dl 1.1 } catch (Exception e) {
1050     throw new Error(e);
1051     }
1052     }
1053     }
1054 jsr166 1.3
1055 dl 1.18 // static fields (initialized in static initializer below)
1056    
1057     /**
1058     * Per-thread submission bookkeeping. Shared across all pools
1059     * to reduce ThreadLocal pollution and because random motion
1060     * to avoid contention in one pool is likely to hold for others.
1061     * Lazily initialized on first submission (but null-checked
1062     * in other contexts to avoid unnecessary initialization).
1063 dl 1.1 */
1064 dl 1.18 static final ThreadLocal<Submitter> submitters;
1065 dl 1.1
1066 dl 1.8 /**
1067 dl 1.58 * Creates a new ForkJoinWorkerThread. This factory is used unless
1068     * overridden in ForkJoinPool constructors.
1069     */
1070     public static final ForkJoinWorkerThreadFactory
1071     defaultForkJoinWorkerThreadFactory;
1072    
1073     /**
1074 dl 1.21 * Permission required for callers of methods that may start or
1075     * kill threads.
1076     */
1077     private static final RuntimePermission modifyThreadPermission;
1078    
1079     /**
1080 dl 1.8 * Common (static) pool. Non-null for public use unless a static
1081 dl 1.12 * construction exception, but internal usages null-check on use
1082     * to paranoically avoid potential initialization circularities
1083     * as well as to simplify generated code.
1084 dl 1.8 */
1085 dl 1.40 static final ForkJoinPool common;
1086 dl 1.8
1087     /**
1088 dl 1.58 * Common pool parallelism. To allow simpler use and management
1089     * when common pool threads are disabled, we allow the underlying
1090     * common.parallelism field to be zero, but in that case still report
1091     * parallelism as 1 to reflect resulting caller-runs mechanics.
1092 dl 1.1 */
1093 dl 1.40 static final int commonParallelism;
1094 dl 1.1
1095     /**
1096 dl 1.12 * Sequence number for creating workerNamePrefix.
1097 dl 1.1 */
1098 dl 1.12 private static int poolNumberSequence;
1099 dl 1.1
1100     /**
1101 jsr166 1.38 * Returns the next sequence number. We don't expect this to
1102     * ever contend, so use simple builtin sync.
1103 dl 1.1 */
1104 dl 1.12 private static final synchronized int nextPoolId() {
1105     return ++poolNumberSequence;
1106     }
1107 dl 1.1
1108     // static constants
1109    
1110     /**
1111 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1112     * triggering quiescence to park waiting for new work. On timeout,
1113     * the thread will instead try to shrink the number of
1114     * workers. The value should be large enough to avoid overly
1115     * aggressive shrinkage during most transient stalls (long GCs
1116     * etc).
1117 dl 1.1 */
1118 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1119 dl 1.1
1120     /**
1121 dl 1.7 * Timeout value when there are more threads than parallelism level
1122 dl 1.1 */
1123 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1124 dl 1.1
1125     /**
1126 dl 1.26 * Tolerance for idle timeouts, to cope with timer undershoots
1127     */
1128 dl 1.33 private static final long TIMEOUT_SLOP = 2000000L;
1129 dl 1.26
1130     /**
1131 dl 1.1 * The maximum stolen->joining link depth allowed in method
1132 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1133 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1134     * (otherwise unchecked) cycles and to bound staleness of
1135     * traversal parameters at the expense of sometimes blocking when
1136     * we could be helping.
1137     */
1138     private static final int MAX_HELP = 64;
1139    
1140     /**
1141     * Increment for seed generators. See class ThreadLocal for
1142     * explanation.
1143     */
1144     private static final int SEED_INCREMENT = 0x61c88647;
1145    
1146 jsr166 1.57 /*
1147 dl 1.1 * Bits and masks for control variables
1148     *
1149     * Field ctl is a long packed with:
1150     * AC: Number of active running workers minus target parallelism (16 bits)
1151     * TC: Number of total workers minus target parallelism (16 bits)
1152     * ST: true if pool is terminating (1 bit)
1153     * EC: the wait count of top waiting thread (15 bits)
1154     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1155     *
1156     * When convenient, we can extract the upper 32 bits of counts and
1157     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1158     * (int)ctl. The ec field is never accessed alone, but always
1159     * together with id and st. The offsets of counts by the target
1160     * parallelism and the positionings of fields makes it possible to
1161     * perform the most common checks via sign tests of fields: When
1162     * ac is negative, there are not enough active workers, when tc is
1163     * negative, there are not enough total workers, and when e is
1164     * negative, the pool is terminating. To deal with these possibly
1165     * negative fields, we use casts in and out of "short" and/or
1166     * signed shifts to maintain signedness.
1167     *
1168     * When a thread is queued (inactivated), its eventCount field is
1169     * set negative, which is the only way to tell if a worker is
1170     * prevented from executing tasks, even though it must continue to
1171     * scan for them to avoid queuing races. Note however that
1172     * eventCount updates lag releases so usage requires care.
1173     *
1174 dl 1.12 * Field plock is an int packed with:
1175 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1176 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1177     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1178 dl 1.1 *
1179     * The sequence number enables simple consistency checks:
1180     * Staleness of read-only operations on the workQueues array can
1181 dl 1.12 * be checked by comparing plock before vs after the reads.
1182 dl 1.1 */
1183    
1184     // bit positions/shifts for fields
1185     private static final int AC_SHIFT = 48;
1186     private static final int TC_SHIFT = 32;
1187     private static final int ST_SHIFT = 31;
1188     private static final int EC_SHIFT = 16;
1189    
1190     // bounds
1191     private static final int SMASK = 0xffff; // short bits
1192     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1193 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1194     private static final int SQMASK = 0x007e; // max 64 (even) slots
1195 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1196     private static final int INT_SIGN = 1 << 31;
1197    
1198     // masks
1199     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1200     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1201     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1202    
1203     // units for incrementing and decrementing
1204     private static final long TC_UNIT = 1L << TC_SHIFT;
1205     private static final long AC_UNIT = 1L << AC_SHIFT;
1206    
1207     // masks and units for dealing with u = (int)(ctl >>> 32)
1208     private static final int UAC_SHIFT = AC_SHIFT - 32;
1209     private static final int UTC_SHIFT = TC_SHIFT - 32;
1210     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1211     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1212     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1213     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1214    
1215     // masks and units for dealing with e = (int)ctl
1216     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1217     private static final int E_SEQ = 1 << EC_SHIFT;
1218    
1219 dl 1.12 // plock bits
1220 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1221 dl 1.12 private static final int PL_LOCK = 2;
1222     private static final int PL_SIGNAL = 1;
1223     private static final int PL_SPINS = 1 << 8;
1224 dl 1.1
1225     // access mode for WorkQueue
1226     static final int LIFO_QUEUE = 0;
1227     static final int FIFO_QUEUE = 1;
1228     static final int SHARED_QUEUE = -1;
1229    
1230 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
1231     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1232    
1233 dl 1.58 // Instance fields
1234 dl 1.8 volatile long stealCount; // collects worker counts
1235 dl 1.1 volatile long ctl; // main pool control
1236 dl 1.18 volatile int plock; // shutdown status and seqLock
1237 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1238 dl 1.58 final short parallelism; // parallelism level
1239     final short mode; // LIFO/FIFO
1240 dl 1.1 WorkQueue[] workQueues; // main registry
1241 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1242 dl 1.58 final UncaughtExceptionHandler ueh; // per-worker UEH
1243 dl 1.8 final String workerNamePrefix; // to create worker name string
1244    
1245 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246     volatile Object pad18, pad19, pad1a, pad1b;
1247    
1248 jsr166 1.50 /**
1249 dl 1.12 * Acquires the plock lock to protect worker array and related
1250     * updates. This method is called only if an initial CAS on plock
1251 jsr166 1.46 * fails. This acts as a spinlock for normal cases, but falls back
1252 dl 1.12 * to builtin monitor to block when (rarely) needed. This would be
1253     * a terrible idea for a highly contended lock, but works fine as
1254 dl 1.32 * a more conservative alternative to a pure spinlock.
1255 dl 1.12 */
1256     private int acquirePlock() {
1257 dl 1.58 int spins = PL_SPINS, ps, nps;
1258 dl 1.12 for (;;) {
1259     if (((ps = plock) & PL_LOCK) == 0 &&
1260     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261     return nps;
1262 dl 1.8 else if (spins >= 0) {
1263 dl 1.58 if (ThreadLocalRandom.current().nextInt() >= 0)
1264 dl 1.8 --spins;
1265     }
1266 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1267 jsr166 1.13 synchronized (this) {
1268 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1269 dl 1.8 try {
1270     wait();
1271     } catch (InterruptedException ie) {
1272 dl 1.11 try {
1273     Thread.currentThread().interrupt();
1274     } catch (SecurityException ignore) {
1275     }
1276 dl 1.8 }
1277     }
1278     else
1279 dl 1.12 notifyAll();
1280 dl 1.8 }
1281     }
1282     }
1283     }
1284 dl 1.1
1285     /**
1286 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1287     * when CAS of seq value for unlock fails.
1288 dl 1.1 */
1289 dl 1.12 private void releasePlock(int ps) {
1290     plock = ps;
1291 jsr166 1.13 synchronized (this) { notifyAll(); }
1292 dl 1.1 }
1293    
1294 dl 1.18 /**
1295 dl 1.26 * Tries to create and start one worker if fewer than target
1296     * parallelism level exist. Adjusts counts etc on failure.
1297 dl 1.21 */
1298     private void tryAddWorker() {
1299 dl 1.58 long c; int u, e;
1300 dl 1.21 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1301 dl 1.58 (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1302     long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1303     ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1304 dl 1.21 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1305     ForkJoinWorkerThreadFactory fac;
1306     Throwable ex = null;
1307     ForkJoinWorkerThread wt = null;
1308     try {
1309     if ((fac = factory) != null &&
1310     (wt = fac.newThread(this)) != null) {
1311     wt.start();
1312     break;
1313     }
1314 dl 1.58 } catch (Throwable rex) {
1315     ex = rex;
1316 dl 1.21 }
1317     deregisterWorker(wt, ex);
1318     break;
1319     }
1320 dl 1.18 }
1321     }
1322    
1323     // Registering and deregistering workers
1324    
1325     /**
1326     * Callback from ForkJoinWorkerThread to establish and record its
1327     * WorkQueue. To avoid scanning bias due to packing entries in
1328     * front of the workQueues array, we treat the array as a simple
1329     * power-of-two hash table using per-thread seed as hash,
1330     * expanding as needed.
1331     *
1332     * @param wt the worker thread
1333 dl 1.21 * @return the worker's queue
1334 dl 1.18 */
1335 dl 1.21 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1336 dl 1.58 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1337 dl 1.21 wt.setDaemon(true);
1338     if ((handler = ueh) != null)
1339     wt.setUncaughtExceptionHandler(handler);
1340     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1341     s += SEED_INCREMENT) ||
1342     s == 0); // skip 0
1343 dl 1.58 WorkQueue w = new WorkQueue(this, wt, mode, s);
1344 dl 1.21 if (((ps = plock) & PL_LOCK) != 0 ||
1345     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1346     ps = acquirePlock();
1347     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1348     try {
1349     if ((ws = workQueues) != null) { // skip if shutting down
1350     int n = ws.length, m = n - 1;
1351     int r = (s << 1) | 1; // use odd-numbered indices
1352     if (ws[r &= m] != null) { // collision
1353     int probes = 0; // step by approx half size
1354     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1355     while (ws[r = (r + step) & m] != null) {
1356     if (++probes >= n) {
1357     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1358     m = n - 1;
1359     probes = 0;
1360 dl 1.1 }
1361     }
1362     }
1363 dl 1.58 w.poolIndex = (short)r;
1364     w.eventCount = r; // volatile write orders
1365 dl 1.21 ws[r] = w;
1366 dl 1.1 }
1367 dl 1.21 } finally {
1368     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1369     releasePlock(nps);
1370 dl 1.1 }
1371 dl 1.58 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1372 dl 1.21 return w;
1373 dl 1.1 }
1374    
1375     /**
1376     * Final callback from terminating worker, as well as upon failure
1377 dl 1.12 * to construct or start a worker. Removes record of worker from
1378     * array, and adjusts counts. If pool is shutting down, tries to
1379     * complete termination.
1380 dl 1.1 *
1381 dl 1.58 * @param wt the worker thread, or null if construction failed
1382 dl 1.1 * @param ex the exception causing failure, or null if none
1383     */
1384     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1385     WorkQueue w = null;
1386     if (wt != null && (w = wt.workQueue) != null) {
1387 dl 1.58 int ps; long sc;
1388 dl 1.12 w.qlock = -1; // ensure set
1389 jsr166 1.59 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1390     sc = stealCount,
1391     sc + w.nsteals));
1392 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1393     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1394     ps = acquirePlock();
1395     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1396 dl 1.8 try {
1397 dl 1.12 int idx = w.poolIndex;
1398 dl 1.1 WorkQueue[] ws = workQueues;
1399     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1400     ws[idx] = null;
1401     } finally {
1402 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1403     releasePlock(nps);
1404 dl 1.1 }
1405     }
1406    
1407 dl 1.32 long c; // adjust ctl counts
1408 dl 1.1 do {} while (!U.compareAndSwapLong
1409     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1410     ((c - TC_UNIT) & TC_MASK) |
1411     (c & ~(AC_MASK|TC_MASK)))));
1412    
1413 dl 1.26 if (!tryTerminate(false, false) && w != null && w.array != null) {
1414 dl 1.32 w.cancelAll(); // cancel remaining tasks
1415     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1416     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1417     if (e > 0) { // activate or create replacement
1418     if ((ws = workQueues) == null ||
1419     (i = e & SMASK) >= ws.length ||
1420 dl 1.36 (v = ws[i]) == null)
1421 dl 1.32 break;
1422     long nc = (((long)(v.nextWait & E_MASK)) |
1423     ((long)(u + UAC_UNIT) << 32));
1424     if (v.eventCount != (e | INT_SIGN))
1425     break;
1426     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1427     v.eventCount = (e + E_SEQ) & E_MASK;
1428     if ((p = v.parker) != null)
1429     U.unpark(p);
1430     break;
1431 dl 1.26 }
1432     }
1433     else {
1434     if ((short)u < 0)
1435     tryAddWorker();
1436     break;
1437     }
1438     }
1439 dl 1.1 }
1440 dl 1.26 if (ex == null) // help clean refs on way out
1441     ForkJoinTask.helpExpungeStaleExceptions();
1442     else // rethrow
1443 dl 1.11 ForkJoinTask.rethrow(ex);
1444 dl 1.1 }
1445    
1446     // Submissions
1447    
1448     /**
1449 dl 1.58 * Per-thread records for threads that submit to pools. Currently
1450     * holds only pseudo-random seed / index that is used to choose
1451     * submission queues in method externalPush. In the future, this may
1452     * also incorporate a means to implement different task rejection
1453     * and resubmission policies.
1454     *
1455     * Seeds for submitters and workers/workQueues work in basically
1456     * the same way but are initialized and updated using slightly
1457     * different mechanics. Both are initialized using the same
1458     * approach as in class ThreadLocal, where successive values are
1459     * unlikely to collide with previous values. Seeds are then
1460     * randomly modified upon collisions using xorshifts, which
1461     * requires a non-zero seed.
1462     */
1463     static final class Submitter {
1464     int seed;
1465     Submitter(int s) { seed = s; }
1466     }
1467    
1468     /**
1469 dl 1.1 * Unless shutting down, adds the given task to a submission queue
1470     * at submitter's current queue index (modulo submission
1471 dl 1.12 * range). Only the most common path is directly handled in this
1472     * method. All others are relayed to fullExternalPush.
1473 dl 1.1 *
1474     * @param task the task. Caller must ensure non-null.
1475     */
1476 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1477 dl 1.58 Submitter z = submitters.get();
1478     WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1479     int ps = plock;
1480     WorkQueue[] ws = workQueues;
1481     if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1482     (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1483 dl 1.12 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1484 dl 1.58 if ((a = q.array) != null &&
1485     (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1486     int j = ((am & s) << ASHIFT) + ABASE;
1487 dl 1.21 U.putOrderedObject(a, j, task);
1488 dl 1.12 q.top = s + 1; // push on to deque
1489     q.qlock = 0;
1490 dl 1.58 if (n <= 1)
1491     signalWork(ws, q);
1492 dl 1.1 return;
1493     }
1494 dl 1.12 q.qlock = 0;
1495 dl 1.1 }
1496 dl 1.12 fullExternalPush(task);
1497 dl 1.1 }
1498    
1499 dl 1.7 /**
1500 dl 1.12 * Full version of externalPush. This method is called, among
1501     * other times, upon the first submission of the first task to the
1502 dl 1.37 * pool, so must perform secondary initialization. It also
1503     * detects first submission by an external thread by looking up
1504     * its ThreadLocal, and creates a new shared queue if the one at
1505     * index if empty or contended. The plock lock body must be
1506     * exception-free (so no try/finally) so we optimistically
1507     * allocate new queues outside the lock and throw them away if
1508     * (very rarely) not needed.
1509     *
1510     * Secondary initialization occurs when plock is zero, to create
1511     * workQueue array and set plock to a valid value. This lock body
1512     * must also be exception-free. Because the plock seq value can
1513     * eventually wrap around zero, this method harmlessly fails to
1514     * reinitialize if workQueues exists, while still advancing plock.
1515 dl 1.12 */
1516     private void fullExternalPush(ForkJoinTask<?> task) {
1517 dl 1.21 int r = 0; // random index seed
1518 dl 1.18 for (Submitter z = submitters.get();;) {
1519     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1520     if (z == null) {
1521     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1522     r += SEED_INCREMENT) && r != 0)
1523     submitters.set(z = new Submitter(r));
1524     }
1525 dl 1.37 else if (r == 0) { // move to a different index
1526 dl 1.18 r = z.seed;
1527 dl 1.37 r ^= r << 13; // same xorshift as WorkQueues
1528 dl 1.18 r ^= r >>> 17;
1529 dl 1.58 z.seed = r ^= (r << 5);
1530 dl 1.18 }
1531 dl 1.58 if ((ps = plock) < 0)
1532 dl 1.12 throw new RejectedExecutionException();
1533 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1534 dl 1.37 (m = ws.length - 1) < 0) { // initialize workQueues
1535 dl 1.58 int p = parallelism; // find power of two table size
1536 dl 1.37 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1537     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1538     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1539     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1540     new WorkQueue[n] : null);
1541     if (((ps = plock) & PL_LOCK) != 0 ||
1542     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1543     ps = acquirePlock();
1544     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1545     workQueues = nws;
1546     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1547     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1548     releasePlock(nps);
1549     }
1550 dl 1.18 else if ((q = ws[k = r & m & SQMASK]) != null) {
1551 dl 1.21 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1552     ForkJoinTask<?>[] a = q.array;
1553     int s = q.top;
1554     boolean submitted = false;
1555     try { // locked version of push
1556     if ((a != null && a.length > s + 1 - q.base) ||
1557     (a = q.growArray()) != null) { // must presize
1558     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1559     U.putOrderedObject(a, j, task);
1560     q.top = s + 1;
1561     submitted = true;
1562     }
1563     } finally {
1564     q.qlock = 0; // unlock
1565     }
1566     if (submitted) {
1567 dl 1.58 signalWork(ws, q);
1568 dl 1.21 return;
1569     }
1570     }
1571     r = 0; // move on failure
1572 dl 1.18 }
1573     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1574     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1575 dl 1.58 q.poolIndex = (short)k;
1576 dl 1.18 if (((ps = plock) & PL_LOCK) != 0 ||
1577 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1578     ps = acquirePlock();
1579 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1580     ws[k] = q;
1581 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1582     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1583     releasePlock(nps);
1584     }
1585 dl 1.18 else
1586 dl 1.58 r = 0;
1587 dl 1.11 }
1588 dl 1.9 }
1589    
1590 dl 1.1 // Maintaining ctl counts
1591    
1592     /**
1593     * Increments active count; mainly called upon return from blocking.
1594     */
1595     final void incrementActiveCount() {
1596     long c;
1597 dl 1.58 do {} while (!U.compareAndSwapLong
1598     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1599     ((c & AC_MASK) + AC_UNIT))));
1600 dl 1.1 }
1601    
1602     /**
1603 dl 1.21 * Tries to create or activate a worker if too few are active.
1604     *
1605 dl 1.58 * @param ws the worker array to use to find signallees
1606     * @param q if non-null, the queue holding tasks to be processed
1607 dl 1.12 */
1608 dl 1.58 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1609     for (;;) {
1610     long c; int e, u, i; WorkQueue w; Thread p;
1611     if ((u = (int)((c = ctl) >>> 32)) >= 0)
1612     break;
1613     if ((e = (int)c) <= 0) {
1614 dl 1.21 if ((short)u < 0)
1615     tryAddWorker();
1616     break;
1617 dl 1.1 }
1618 dl 1.58 if (ws == null || ws.length <= (i = e & SMASK) ||
1619     (w = ws[i]) == null)
1620     break;
1621     long nc = (((long)(w.nextWait & E_MASK)) |
1622     ((long)(u + UAC_UNIT)) << 32);
1623     int ne = (e + E_SEQ) & E_MASK;
1624     if (w.eventCount == (e | INT_SIGN) &&
1625     U.compareAndSwapLong(this, CTL, c, nc)) {
1626     w.eventCount = ne;
1627     if ((p = w.parker) != null)
1628     U.unpark(p);
1629     break;
1630     }
1631     if (q != null && q.base >= q.top)
1632     break;
1633 dl 1.1 }
1634     }
1635    
1636     // Scanning for tasks
1637    
1638     /**
1639     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1640     */
1641     final void runWorker(WorkQueue w) {
1642 dl 1.21 w.growArray(); // allocate queue
1643 dl 1.58 for (int r = w.hint; scan(w, r) == 0; ) {
1644     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1645     }
1646 dl 1.1 }
1647    
1648     /**
1649 dl 1.58 * Scans for and, if found, runs one task, else possibly
1650 dl 1.1 * inactivates the worker. This method operates on single reads of
1651     * volatile state and is designed to be re-invoked continuously,
1652     * in part because it returns upon detecting inconsistencies,
1653     * contention, or state changes that indicate possible success on
1654     * re-invocation.
1655     *
1656 dl 1.58 * The scan searches for tasks across queues starting at a random
1657     * index, checking each at least twice. The scan terminates upon
1658     * either finding a non-empty queue, or completing the sweep. If
1659     * the worker is not inactivated, it takes and runs a task from
1660     * this queue. Otherwise, if not activated, it tries to activate
1661     * itself or some other worker by signalling. On failure to find a
1662     * task, returns (for retry) if pool state may have changed during
1663     * an empty scan, or tries to inactivate if active, else possibly
1664     * blocks or terminates via method awaitWork.
1665 dl 1.1 *
1666     * @param w the worker (via its WorkQueue)
1667 dl 1.58 * @param r a random seed
1668     * @return worker qlock status if would have waited, else 0
1669 dl 1.1 */
1670 dl 1.58 private final int scan(WorkQueue w, int r) {
1671 dl 1.21 WorkQueue[] ws; int m;
1672 dl 1.58 long c = ctl; // for consistency check
1673     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1674     for (int j = m + m + 1, ec = w.eventCount;;) {
1675     WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1676     if ((q = ws[(r - j) & m]) != null &&
1677     (b = q.base) - q.top < 0 && (a = q.array) != null) {
1678     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1679     if ((t = ((ForkJoinTask<?>)
1680     U.getObjectVolatile(a, i))) != null) {
1681     if (ec < 0)
1682     helpRelease(c, ws, w, q, b);
1683     else if (q.base == b &&
1684     U.compareAndSwapObject(a, i, t, null)) {
1685     U.putOrderedInt(q, QBASE, b + 1);
1686     if ((b + 1) - q.top < 0)
1687     signalWork(ws, q);
1688     w.runTask(t);
1689     }
1690     }
1691     break;
1692     }
1693     else if (--j < 0) {
1694     if ((ec | (e = (int)c)) < 0) // inactive or terminating
1695     return awaitWork(w, c, ec);
1696     else if (ctl == c) { // try to inactivate and enqueue
1697     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1698     w.nextWait = e;
1699 dl 1.32 w.eventCount = ec | INT_SIGN;
1700 dl 1.58 if (!U.compareAndSwapLong(this, CTL, c, nc))
1701     w.eventCount = ec; // back out
1702 dl 1.32 }
1703 dl 1.58 break;
1704 dl 1.21 }
1705     }
1706 dl 1.1 }
1707 dl 1.58 return 0;
1708 dl 1.1 }
1709    
1710     /**
1711 dl 1.58 * A continuation of scan(), possibly blocking or terminating
1712     * worker w. Returns without blocking if pool state has apparently
1713     * changed since last invocation. Also, if inactivating w has
1714     * caused the pool to become quiescent, checks for pool
1715     * termination, and, so long as this is not the only worker, waits
1716     * for event for up to a given duration. On timeout, if ctl has
1717     * not changed, terminates the worker, which will in turn wake up
1718     * another worker to possibly repeat this process.
1719 dl 1.1 *
1720     * @param w the calling worker
1721 dl 1.58 * @param c the ctl value on entry to scan
1722     * @param ec the worker's eventCount on entry to scan
1723 dl 1.1 */
1724 dl 1.58 private final int awaitWork(WorkQueue w, long c, int ec) {
1725     int stat, ns; long parkTime, deadline;
1726     if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1727     !Thread.interrupted()) {
1728     int e = (int)c;
1729     int u = (int)(c >>> 32);
1730     int d = (u >> UAC_SHIFT) + parallelism; // active count
1731    
1732     if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1733     stat = w.qlock = -1; // pool is terminating
1734     else if ((ns = w.nsteals) != 0) { // collect steals and retry
1735     long sc;
1736     w.nsteals = 0;
1737 jsr166 1.59 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1738     sc = stealCount, sc + ns));
1739 dl 1.58 }
1740     else {
1741     long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1742     ((long)(w.nextWait & E_MASK)) | // ctl to restore
1743     ((long)(u + UAC_UNIT)) << 32);
1744     if (pc != 0L) { // timed wait if last waiter
1745     int dc = -(short)(c >>> TC_SHIFT);
1746     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1747     (dc + 1) * IDLE_TIMEOUT);
1748     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1749     }
1750     else
1751     parkTime = deadline = 0L;
1752     if (w.eventCount == ec && ctl == c) {
1753     Thread wt = Thread.currentThread();
1754     U.putObject(wt, PARKBLOCKER, this);
1755     w.parker = wt; // emulate LockSupport.park
1756     if (w.eventCount == ec && ctl == c)
1757     U.park(false, parkTime); // must recheck before park
1758     w.parker = null;
1759     U.putObject(wt, PARKBLOCKER, null);
1760     if (parkTime != 0L && ctl == c &&
1761     deadline - System.nanoTime() <= 0L &&
1762     U.compareAndSwapLong(this, CTL, c, pc))
1763     stat = w.qlock = -1; // shrink pool
1764 dl 1.1 }
1765     }
1766     }
1767 dl 1.58 return stat;
1768 dl 1.1 }
1769    
1770     /**
1771 dl 1.58 * Possibly releases (signals) a worker. Called only from scan()
1772     * when a worker with apparently inactive status finds a non-empty
1773     * queue. This requires revalidating all of the associated state
1774     * from caller.
1775     */
1776     private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1777     WorkQueue q, int b) {
1778     WorkQueue v; int e, i; Thread p;
1779     if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1780     ws != null && ws.length > (i = e & SMASK) &&
1781     (v = ws[i]) != null && ctl == c) {
1782     long nc = (((long)(v.nextWait & E_MASK)) |
1783     ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1784     int ne = (e + E_SEQ) & E_MASK;
1785     if (q != null && q.base == b && w.eventCount < 0 &&
1786     v.eventCount == (e | INT_SIGN) &&
1787     U.compareAndSwapLong(this, CTL, c, nc)) {
1788     v.eventCount = ne;
1789     if ((p = v.parker) != null)
1790     U.unpark(p);
1791 dl 1.26 }
1792     }
1793     }
1794    
1795     /**
1796 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1797     * task, or in turn one of its stealers, Traces currentSteal ->
1798     * currentJoin links looking for a thread working on a descendant
1799     * of the given task and with a non-empty queue to steal back and
1800     * execute tasks from. The first call to this method upon a
1801     * waiting join will often entail scanning/search, (which is OK
1802     * because the joiner has nothing better to do), but this method
1803     * leaves hints in workers to speed up subsequent calls. The
1804     * implementation is very branchy to cope with potential
1805     * inconsistencies or loops encountering chains that are stale,
1806     * unknown, or so long that they are likely cyclic.
1807     *
1808     * @param joiner the joining worker
1809     * @param task the task to join
1810     * @return 0 if no progress can be made, negative if task
1811     * known complete, else positive
1812     */
1813     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1814     int stat = 0, steps = 0; // bound to avoid cycles
1815 dl 1.58 if (task != null && joiner != null &&
1816     joiner.base - joiner.top >= 0) { // hoist checks
1817 dl 1.1 restart: for (;;) {
1818     ForkJoinTask<?> subtask = task; // current target
1819     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1820     WorkQueue[] ws; int m, s, h;
1821     if ((s = task.status) < 0) {
1822     stat = s;
1823     break restart;
1824     }
1825     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1826     break restart; // shutting down
1827 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1828 dl 1.1 v.currentSteal != subtask) {
1829     for (int origin = h;;) { // find stealer
1830     if (((h = (h + 2) & m) & 15) == 1 &&
1831     (subtask.status < 0 || j.currentJoin != subtask))
1832     continue restart; // occasional staleness check
1833     if ((v = ws[h]) != null &&
1834     v.currentSteal == subtask) {
1835 dl 1.18 j.hint = h; // save hint
1836 dl 1.1 break;
1837     }
1838     if (h == origin)
1839     break restart; // cannot find stealer
1840     }
1841     }
1842     for (;;) { // help stealer or descend to its stealer
1843 dl 1.58 ForkJoinTask[] a; int b;
1844 dl 1.1 if (subtask.status < 0) // surround probes with
1845     continue restart; // consistency checks
1846     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1847     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1848     ForkJoinTask<?> t =
1849     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1850     if (subtask.status < 0 || j.currentJoin != subtask ||
1851     v.currentSteal != subtask)
1852     continue restart; // stale
1853     stat = 1; // apparent progress
1854 dl 1.58 if (v.base == b) {
1855     if (t == null)
1856     break restart;
1857     if (U.compareAndSwapObject(a, i, t, null)) {
1858     U.putOrderedInt(v, QBASE, b + 1);
1859     ForkJoinTask<?> ps = joiner.currentSteal;
1860     int jt = joiner.top;
1861     do {
1862     joiner.currentSteal = t;
1863     t.doExec(); // clear local tasks too
1864     } while (task.status >= 0 &&
1865     joiner.top != jt &&
1866     (t = joiner.pop()) != null);
1867     joiner.currentSteal = ps;
1868     break restart;
1869     }
1870 dl 1.1 }
1871     }
1872     else { // empty -- try to descend
1873     ForkJoinTask<?> next = v.currentJoin;
1874     if (subtask.status < 0 || j.currentJoin != subtask ||
1875     v.currentSteal != subtask)
1876     continue restart; // stale
1877     else if (next == null || ++steps == MAX_HELP)
1878     break restart; // dead-end or maybe cyclic
1879     else {
1880     subtask = next;
1881     j = v;
1882     break;
1883     }
1884     }
1885     }
1886     }
1887     }
1888     }
1889     return stat;
1890     }
1891    
1892     /**
1893 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1894 jsr166 1.17 * and run tasks within the target's computation.
1895 dl 1.12 *
1896     * @param task the task to join
1897 dl 1.1 */
1898 dl 1.58 private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1899     WorkQueue[] ws; int m;
1900     int s = 0;
1901     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1902     joiner != null && task != null) {
1903     int j = joiner.poolIndex;
1904     int scans = m + m + 1;
1905     long c = 0L; // for stability check
1906     for (int k = scans; ; j += 2) {
1907     WorkQueue q;
1908 dl 1.12 if ((s = task.status) < 0)
1909 dl 1.58 break;
1910     else if (joiner.internalPopAndExecCC(task))
1911     k = scans;
1912     else if ((s = task.status) < 0)
1913     break;
1914     else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1915     k = scans;
1916     else if (--k < 0) {
1917     if (c == (c = ctl))
1918 dl 1.12 break;
1919 dl 1.58 k = scans;
1920 dl 1.12 }
1921 dl 1.1 }
1922     }
1923 dl 1.58 return s;
1924 dl 1.1 }
1925    
1926     /**
1927     * Tries to decrement active count (sometimes implicitly) and
1928     * possibly release or create a compensating worker in preparation
1929     * for blocking. Fails on contention or termination. Otherwise,
1930 dl 1.12 * adds a new thread if no idle workers are available and pool
1931     * may become starved.
1932 dl 1.58 *
1933     * @param c the assumed ctl value
1934 dl 1.1 */
1935 dl 1.58 final boolean tryCompensate(long c) {
1936     WorkQueue[] ws = workQueues;
1937     int pc = parallelism, e = (int)c, m, tc;
1938     if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1939     WorkQueue w = ws[e & m];
1940     if (e != 0 && w != null) {
1941     Thread p;
1942 dl 1.12 long nc = ((long)(w.nextWait & E_MASK) |
1943     (c & (AC_MASK|TC_MASK)));
1944 dl 1.58 int ne = (e + E_SEQ) & E_MASK;
1945     if (w.eventCount == (e | INT_SIGN) &&
1946     U.compareAndSwapLong(this, CTL, c, nc)) {
1947     w.eventCount = ne;
1948 dl 1.12 if ((p = w.parker) != null)
1949     U.unpark(p);
1950     return true; // replace with idle worker
1951 dl 1.1 }
1952     }
1953 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1954     (int)(c >> AC_SHIFT) + pc > 1) {
1955 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1956     if (U.compareAndSwapLong(this, CTL, c, nc))
1957 dl 1.18 return true; // no compensation
1958 dl 1.12 }
1959 dl 1.18 else if (tc + pc < MAX_CAP) {
1960 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1961     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1962 dl 1.21 ForkJoinWorkerThreadFactory fac;
1963     Throwable ex = null;
1964     ForkJoinWorkerThread wt = null;
1965     try {
1966     if ((fac = factory) != null &&
1967     (wt = fac.newThread(this)) != null) {
1968     wt.start();
1969     return true;
1970     }
1971     } catch (Throwable rex) {
1972     ex = rex;
1973     }
1974     deregisterWorker(wt, ex); // clean up and return false
1975 dl 1.1 }
1976     }
1977     }
1978     return false;
1979     }
1980    
1981     /**
1982     * Helps and/or blocks until the given task is done.
1983     *
1984     * @param joiner the joining worker
1985     * @param task the task
1986     * @return task status on exit
1987     */
1988     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1989 dl 1.12 int s = 0;
1990 dl 1.58 if (task != null && (s = task.status) >= 0 && joiner != null) {
1991 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1992     joiner.currentJoin = task;
1993 dl 1.58 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1994     (s = task.status) >= 0);
1995     if (s >= 0 && (task instanceof CountedCompleter))
1996     s = helpComplete(joiner, (CountedCompleter<?>)task);
1997     long cc = 0; // for stability checks
1998 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
1999 dl 1.58 if ((s = tryHelpStealer(joiner, task)) == 0 &&
2000 dl 1.18 (s = task.status) >= 0) {
2001 dl 1.58 if (!tryCompensate(cc))
2002     cc = ctl;
2003     else {
2004 dl 1.18 if (task.trySetSignal() && (s = task.status) >= 0) {
2005     synchronized (task) {
2006     if (task.status >= 0) {
2007     try { // see ForkJoinTask
2008     task.wait(); // for explanation
2009     } catch (InterruptedException ie) {
2010     }
2011 dl 1.1 }
2012 dl 1.18 else
2013     task.notifyAll();
2014 dl 1.1 }
2015     }
2016 dl 1.58 long c; // reactivate
2017 dl 1.18 do {} while (!U.compareAndSwapLong
2018 dl 1.58 (this, CTL, c = ctl,
2019     ((c & ~AC_MASK) |
2020     ((c & AC_MASK) + AC_UNIT))));
2021 dl 1.1 }
2022     }
2023     }
2024 dl 1.12 joiner.currentJoin = prevJoin;
2025 dl 1.1 }
2026     return s;
2027     }
2028    
2029     /**
2030     * Stripped-down variant of awaitJoin used by timed joins. Tries
2031     * to help join only while there is continuous progress. (Caller
2032     * will then enter a timed wait.)
2033     *
2034     * @param joiner the joining worker
2035     * @param task the task
2036     */
2037 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2038 dl 1.1 int s;
2039 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2040     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2041     joiner.currentJoin = task;
2042 dl 1.58 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2043     (s = task.status) >= 0);
2044     if (s >= 0) {
2045     if (task instanceof CountedCompleter)
2046     helpComplete(joiner, (CountedCompleter<?>)task);
2047 dl 1.12 do {} while (task.status >= 0 &&
2048     tryHelpStealer(joiner, task) > 0);
2049     }
2050     joiner.currentJoin = prevJoin;
2051     }
2052 dl 1.1 }
2053    
2054     /**
2055     * Returns a (probably) non-empty steal queue, if one is found
2056 dl 1.37 * during a scan, else null. This method must be retried by
2057     * caller if, by the time it tries to use the queue, it is empty.
2058 dl 1.1 */
2059 dl 1.58 private WorkQueue findNonEmptyStealQueue() {
2060     int r = ThreadLocalRandom.current().nextInt();
2061 dl 1.37 for (;;) {
2062     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2063     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2064     for (int j = (m + 1) << 2; j >= 0; --j) {
2065 dl 1.58 if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2066 dl 1.37 q.base - q.top < 0)
2067     return q;
2068 dl 1.1 }
2069     }
2070 dl 1.37 if (plock == ps)
2071     return null;
2072 dl 1.1 }
2073     }
2074    
2075     /**
2076     * Runs tasks until {@code isQuiescent()}. We piggyback on
2077     * active count ctl maintenance, but rather than blocking
2078     * when tasks cannot be found, we rescan until all others cannot
2079     * find tasks either.
2080     */
2081     final void helpQuiescePool(WorkQueue w) {
2082 dl 1.58 ForkJoinTask<?> ps = w.currentSteal;
2083 dl 1.1 for (boolean active = true;;) {
2084 dl 1.37 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2085 dl 1.58 while ((t = w.nextLocalTask()) != null)
2086 dl 1.37 t.doExec();
2087 dl 1.58 if ((q = findNonEmptyStealQueue()) != null) {
2088 dl 1.1 if (!active) { // re-establish active count
2089     active = true;
2090     do {} while (!U.compareAndSwapLong
2091 dl 1.58 (this, CTL, c = ctl,
2092     ((c & ~AC_MASK) |
2093     ((c & AC_MASK) + AC_UNIT))));
2094 dl 1.1 }
2095 dl 1.36 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2096 dl 1.58 (w.currentSteal = t).doExec();
2097     w.currentSteal = ps;
2098 dl 1.36 }
2099 dl 1.1 }
2100 dl 1.37 else if (active) { // decrement active count without queuing
2101 dl 1.58 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2102     if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2103     break; // bypass decrement-then-increment
2104 dl 1.37 if (U.compareAndSwapLong(this, CTL, c, nc))
2105 dl 1.1 active = false;
2106     }
2107 dl 1.58 else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2108     U.compareAndSwapLong
2109     (this, CTL, c, ((c & ~AC_MASK) |
2110     ((c & AC_MASK) + AC_UNIT))))
2111     break;
2112 dl 1.1 }
2113     }
2114    
2115     /**
2116     * Gets and removes a local or stolen task for the given worker.
2117     *
2118     * @return a task, if available
2119     */
2120     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2121     for (ForkJoinTask<?> t;;) {
2122     WorkQueue q; int b;
2123     if ((t = w.nextLocalTask()) != null)
2124     return t;
2125 dl 1.58 if ((q = findNonEmptyStealQueue()) == null)
2126 dl 1.1 return null;
2127 dl 1.58 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2128 dl 1.1 return t;
2129     }
2130     }
2131    
2132     /**
2133 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2134     * programmers, frameworks, tools, or languages have little or no
2135     * idea about task granularity. In essence by offering this
2136     * method, we ask users only about tradeoffs in overhead vs
2137     * expected throughput and its variance, rather than how finely to
2138     * partition tasks.
2139     *
2140     * In a steady state strict (tree-structured) computation, each
2141     * thread makes available for stealing enough tasks for other
2142     * threads to remain active. Inductively, if all threads play by
2143     * the same rules, each thread should make available only a
2144     * constant number of tasks.
2145     *
2146     * The minimum useful constant is just 1. But using a value of 1
2147     * would require immediate replenishment upon each steal to
2148     * maintain enough tasks, which is infeasible. Further,
2149     * partitionings/granularities of offered tasks should minimize
2150     * steal rates, which in general means that threads nearer the top
2151     * of computation tree should generate more than those nearer the
2152     * bottom. In perfect steady state, each thread is at
2153     * approximately the same level of computation tree. However,
2154     * producing extra tasks amortizes the uncertainty of progress and
2155     * diffusion assumptions.
2156     *
2157 jsr166 1.56 * So, users will want to use values larger (but not much larger)
2158 dl 1.12 * than 1 to both smooth over transient shortages and hedge
2159     * against uneven progress; as traded off against the cost of
2160     * extra task overhead. We leave the user to pick a threshold
2161     * value to compare with the results of this call to guide
2162     * decisions, but recommend values such as 3.
2163     *
2164     * When all threads are active, it is on average OK to estimate
2165     * surplus strictly locally. In steady-state, if one thread is
2166     * maintaining say 2 surplus tasks, then so are others. So we can
2167     * just use estimated queue length. However, this strategy alone
2168     * leads to serious mis-estimates in some non-steady-state
2169     * conditions (ramp-up, ramp-down, other stalls). We can detect
2170     * many of these by further considering the number of "idle"
2171     * threads, that are known to have zero queued tasks, so
2172     * compensate by a factor of (#idle/#active) threads.
2173     *
2174     * Note: The approximation of #busy workers as #active workers is
2175     * not very good under current signalling scheme, and should be
2176     * improved.
2177     */
2178     static int getSurplusQueuedTaskCount() {
2179     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2180     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2181 dl 1.58 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2182 dl 1.18 int n = (q = wt.workQueue).top - q.base;
2183 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2184 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2185     a > (p >>>= 1) ? 1 :
2186     a > (p >>>= 1) ? 2 :
2187     a > (p >>>= 1) ? 4 :
2188     8);
2189 dl 1.12 }
2190     return 0;
2191 dl 1.7 }
2192    
2193 dl 1.1 // Termination
2194    
2195     /**
2196     * Possibly initiates and/or completes termination. The caller
2197     * triggering termination runs three passes through workQueues:
2198     * (0) Setting termination status, followed by wakeups of queued
2199     * workers; (1) cancelling all tasks; (2) interrupting lagging
2200     * threads (likely in external tasks, but possibly also blocked in
2201     * joins). Each pass repeats previous steps because of potential
2202     * lagging thread creation.
2203     *
2204     * @param now if true, unconditionally terminate, else only
2205     * if no work and no active workers
2206     * @param enable if true, enable shutdown when next possible
2207     * @return true if now terminating or terminated
2208     */
2209     private boolean tryTerminate(boolean now, boolean enable) {
2210 dl 1.37 int ps;
2211 dl 1.58 if (this == common) // cannot shut down
2212 dl 1.12 return false;
2213 dl 1.37 if ((ps = plock) >= 0) { // enable by setting plock
2214     if (!enable)
2215     return false;
2216     if ((ps & PL_LOCK) != 0 ||
2217     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2218     ps = acquirePlock();
2219     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2220     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2221     releasePlock(nps);
2222     }
2223 dl 1.1 for (long c;;) {
2224 dl 1.37 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2225 dl 1.58 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2226 jsr166 1.10 synchronized (this) {
2227 dl 1.37 notifyAll(); // signal when 0 workers
2228 dl 1.8 }
2229 dl 1.1 }
2230     return true;
2231     }
2232 dl 1.37 if (!now) { // check if idle & no tasks
2233     WorkQueue[] ws; WorkQueue w;
2234 dl 1.58 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2235 dl 1.1 return false;
2236 dl 1.37 if ((ws = workQueues) != null) {
2237     for (int i = 0; i < ws.length; ++i) {
2238 dl 1.58 if ((w = ws[i]) != null &&
2239     (!w.isEmpty() ||
2240     ((i & 1) != 0 && w.eventCount >= 0))) {
2241     signalWork(ws, w);
2242     return false;
2243 dl 1.37 }
2244 dl 1.1 }
2245     }
2246     }
2247     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2248     for (int pass = 0; pass < 3; ++pass) {
2249 dl 1.37 WorkQueue[] ws; WorkQueue w; Thread wt;
2250     if ((ws = workQueues) != null) {
2251 dl 1.1 int n = ws.length;
2252     for (int i = 0; i < n; ++i) {
2253     if ((w = ws[i]) != null) {
2254 dl 1.12 w.qlock = -1;
2255 dl 1.1 if (pass > 0) {
2256     w.cancelAll();
2257 dl 1.32 if (pass > 1 && (wt = w.owner) != null) {
2258     if (!wt.isInterrupted()) {
2259     try {
2260     wt.interrupt();
2261 dl 1.37 } catch (Throwable ignore) {
2262 dl 1.32 }
2263     }
2264     U.unpark(wt);
2265     }
2266 dl 1.1 }
2267     }
2268     }
2269     // Wake up workers parked on event queue
2270     int i, e; long cc; Thread p;
2271     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2272 dl 1.37 (i = e & SMASK) < n && i >= 0 &&
2273 dl 1.1 (w = ws[i]) != null) {
2274     long nc = ((long)(w.nextWait & E_MASK) |
2275     ((cc + AC_UNIT) & AC_MASK) |
2276     (cc & (TC_MASK|STOP_BIT)));
2277     if (w.eventCount == (e | INT_SIGN) &&
2278     U.compareAndSwapLong(this, CTL, cc, nc)) {
2279     w.eventCount = (e + E_SEQ) & E_MASK;
2280 dl 1.12 w.qlock = -1;
2281 dl 1.1 if ((p = w.parker) != null)
2282     U.unpark(p);
2283     }
2284     }
2285     }
2286     }
2287     }
2288     }
2289     }
2290    
2291 dl 1.12 // external operations on common pool
2292    
2293     /**
2294     * Returns common pool queue for a thread that has submitted at
2295     * least one task.
2296     */
2297     static WorkQueue commonSubmitterQueue() {
2298 dl 1.58 Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2299 dl 1.12 return ((z = submitters.get()) != null &&
2300 dl 1.40 (p = common) != null &&
2301 dl 1.12 (ws = p.workQueues) != null &&
2302     (m = ws.length - 1) >= 0) ?
2303     ws[m & z.seed & SQMASK] : null;
2304     }
2305    
2306     /**
2307     * Tries to pop the given task from submitter's queue in common pool.
2308     */
2309 dl 1.58 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2310     WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2311     Submitter z = submitters.get();
2312     WorkQueue[] ws = workQueues;
2313     boolean popped = false;
2314     if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2315     (joiner = ws[z.seed & m & SQMASK]) != null &&
2316     joiner.base != (s = joiner.top) &&
2317     (a = joiner.array) != null) {
2318 dl 1.21 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319 dl 1.58 if (U.getObject(a, j) == task &&
2320     U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2321     if (joiner.top == s && joiner.array == a &&
2322     U.compareAndSwapObject(a, j, task, null)) {
2323     joiner.top = s - 1;
2324     popped = true;
2325 dl 1.21 }
2326 dl 1.58 joiner.qlock = 0;
2327 dl 1.12 }
2328     }
2329 dl 1.58 return popped;
2330 dl 1.12 }
2331    
2332 dl 1.58 final int externalHelpComplete(CountedCompleter<?> task) {
2333     WorkQueue joiner; int m, j;
2334     Submitter z = submitters.get();
2335     WorkQueue[] ws = workQueues;
2336     int s = 0;
2337     if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2338     (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2339     int scans = m + m + 1;
2340     long c = 0L; // for stability check
2341     j |= 1; // poll odd queues
2342     for (int k = scans; ; j += 2) {
2343     WorkQueue q;
2344     if ((s = task.status) < 0)
2345 dl 1.12 break;
2346 dl 1.58 else if (joiner.externalPopAndExecCC(task))
2347     k = scans;
2348     else if ((s = task.status) < 0)
2349 dl 1.12 break;
2350 dl 1.58 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2351     k = scans;
2352     else if (--k < 0) {
2353     if (c == (c = ctl))
2354     break;
2355     k = scans;
2356 dl 1.12 }
2357     }
2358     }
2359 dl 1.58 return s;
2360 dl 1.12 }
2361    
2362 dl 1.1 // Exported methods
2363    
2364     // Constructors
2365    
2366     /**
2367     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2368     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2369     * #defaultForkJoinWorkerThreadFactory default thread factory},
2370     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2371     *
2372     * @throws SecurityException if a security manager exists and
2373     * the caller is not permitted to modify threads
2374     * because it does not hold {@link
2375     * java.lang.RuntimePermission}{@code ("modifyThread")}
2376     */
2377     public ForkJoinPool() {
2378 jsr166 1.52 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2379 dl 1.1 defaultForkJoinWorkerThreadFactory, null, false);
2380     }
2381    
2382     /**
2383     * Creates a {@code ForkJoinPool} with the indicated parallelism
2384     * level, the {@linkplain
2385     * #defaultForkJoinWorkerThreadFactory default thread factory},
2386     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2387     *
2388     * @param parallelism the parallelism level
2389     * @throws IllegalArgumentException if parallelism less than or
2390     * equal to zero, or greater than implementation limit
2391     * @throws SecurityException if a security manager exists and
2392     * the caller is not permitted to modify threads
2393     * because it does not hold {@link
2394     * java.lang.RuntimePermission}{@code ("modifyThread")}
2395     */
2396     public ForkJoinPool(int parallelism) {
2397     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2398     }
2399    
2400     /**
2401     * Creates a {@code ForkJoinPool} with the given parameters.
2402     *
2403     * @param parallelism the parallelism level. For default value,
2404     * use {@link java.lang.Runtime#availableProcessors}.
2405     * @param factory the factory for creating new threads. For default value,
2406     * use {@link #defaultForkJoinWorkerThreadFactory}.
2407     * @param handler the handler for internal worker threads that
2408     * terminate due to unrecoverable errors encountered while executing
2409     * tasks. For default value, use {@code null}.
2410     * @param asyncMode if true,
2411     * establishes local first-in-first-out scheduling mode for forked
2412     * tasks that are never joined. This mode may be more appropriate
2413     * than default locally stack-based mode in applications in which
2414     * worker threads only process event-style asynchronous tasks.
2415     * For default value, use {@code false}.
2416     * @throws IllegalArgumentException if parallelism less than or
2417     * equal to zero, or greater than implementation limit
2418     * @throws NullPointerException if the factory is null
2419     * @throws SecurityException if a security manager exists and
2420     * the caller is not permitted to modify threads
2421     * because it does not hold {@link
2422     * java.lang.RuntimePermission}{@code ("modifyThread")}
2423     */
2424     public ForkJoinPool(int parallelism,
2425     ForkJoinWorkerThreadFactory factory,
2426 dl 1.58 UncaughtExceptionHandler handler,
2427 dl 1.1 boolean asyncMode) {
2428 dl 1.58 this(checkParallelism(parallelism),
2429     checkFactory(factory),
2430     handler,
2431     (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2432     "ForkJoinPool-" + nextPoolId() + "-worker-");
2433 dl 1.1 checkPermission();
2434 dl 1.58 }
2435    
2436     private static int checkParallelism(int parallelism) {
2437     if (parallelism <= 0 || parallelism > MAX_CAP)
2438     throw new IllegalArgumentException();
2439     return parallelism;
2440     }
2441    
2442     private static ForkJoinWorkerThreadFactory checkFactory
2443     (ForkJoinWorkerThreadFactory factory) {
2444 dl 1.1 if (factory == null)
2445     throw new NullPointerException();
2446 dl 1.58 return factory;
2447 dl 1.1 }
2448    
2449 dl 1.7 /**
2450 dl 1.58 * Creates a {@code ForkJoinPool} with the given parameters, without
2451     * any security checks or parameter validation. Invoked directly by
2452     * makeCommonPool.
2453     */
2454     private ForkJoinPool(int parallelism,
2455     ForkJoinWorkerThreadFactory factory,
2456     UncaughtExceptionHandler handler,
2457     int mode,
2458     String workerNamePrefix) {
2459     this.workerNamePrefix = workerNamePrefix;
2460 dl 1.8 this.factory = factory;
2461     this.ueh = handler;
2462 dl 1.58 this.mode = (short)mode;
2463     this.parallelism = (short)parallelism;
2464     long np = (long)(-parallelism); // offset ctl counts
2465     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2466 dl 1.8 }
2467    
2468     /**
2469 dl 1.34 * Returns the common pool instance. This pool is statically
2470 dl 1.40 * constructed; its run state is unaffected by attempts to {@link
2471     * #shutdown} or {@link #shutdownNow}. However this pool and any
2472     * ongoing processing are automatically terminated upon program
2473     * {@link System#exit}. Any program that relies on asynchronous
2474     * task processing to complete before program termination should
2475 dl 1.58 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2476     * before exit.
2477 dl 1.7 *
2478     * @return the common pool instance
2479 jsr166 1.44 * @since 1.8
2480 dl 1.7 */
2481     public static ForkJoinPool commonPool() {
2482 dl 1.40 // assert common != null : "static init error";
2483     return common;
2484 dl 1.7 }
2485    
2486 dl 1.1 // Execution methods
2487    
2488     /**
2489     * Performs the given task, returning its result upon completion.
2490     * If the computation encounters an unchecked Exception or Error,
2491     * it is rethrown as the outcome of this invocation. Rethrown
2492     * exceptions behave in the same way as regular exceptions, but,
2493     * when possible, contain stack traces (as displayed for example
2494     * using {@code ex.printStackTrace()}) of both the current thread
2495     * as well as the thread actually encountering the exception;
2496     * minimally only the latter.
2497     *
2498     * @param task the task
2499     * @return the task's result
2500     * @throws NullPointerException if the task is null
2501     * @throws RejectedExecutionException if the task cannot be
2502     * scheduled for execution
2503     */
2504     public <T> T invoke(ForkJoinTask<T> task) {
2505     if (task == null)
2506     throw new NullPointerException();
2507 dl 1.12 externalPush(task);
2508 dl 1.1 return task.join();
2509     }
2510    
2511     /**
2512     * Arranges for (asynchronous) execution of the given task.
2513     *
2514     * @param task the task
2515     * @throws NullPointerException if the task is null
2516     * @throws RejectedExecutionException if the task cannot be
2517     * scheduled for execution
2518     */
2519     public void execute(ForkJoinTask<?> task) {
2520     if (task == null)
2521     throw new NullPointerException();
2522 dl 1.12 externalPush(task);
2523 dl 1.1 }
2524    
2525     // AbstractExecutorService methods
2526    
2527     /**
2528     * @throws NullPointerException if the task is null
2529     * @throws RejectedExecutionException if the task cannot be
2530     * scheduled for execution
2531     */
2532     public void execute(Runnable task) {
2533     if (task == null)
2534     throw new NullPointerException();
2535     ForkJoinTask<?> job;
2536     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2537     job = (ForkJoinTask<?>) task;
2538     else
2539 dl 1.58 job = new ForkJoinTask.RunnableExecuteAction(task);
2540 dl 1.12 externalPush(job);
2541 dl 1.1 }
2542    
2543     /**
2544     * Submits a ForkJoinTask for execution.
2545     *
2546     * @param task the task to submit
2547     * @return the task
2548     * @throws NullPointerException if the task is null
2549     * @throws RejectedExecutionException if the task cannot be
2550     * scheduled for execution
2551     */
2552     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2553     if (task == null)
2554     throw new NullPointerException();
2555 dl 1.12 externalPush(task);
2556 dl 1.1 return task;
2557     }
2558    
2559     /**
2560     * @throws NullPointerException if the task is null
2561     * @throws RejectedExecutionException if the task cannot be
2562     * scheduled for execution
2563     */
2564     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2565     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2566 dl 1.12 externalPush(job);
2567 dl 1.1 return job;
2568     }
2569    
2570     /**
2571     * @throws NullPointerException if the task is null
2572     * @throws RejectedExecutionException if the task cannot be
2573     * scheduled for execution
2574     */
2575     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2576     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2577 dl 1.12 externalPush(job);
2578 dl 1.1 return job;
2579     }
2580    
2581     /**
2582     * @throws NullPointerException if the task is null
2583     * @throws RejectedExecutionException if the task cannot be
2584     * scheduled for execution
2585     */
2586     public ForkJoinTask<?> submit(Runnable task) {
2587     if (task == null)
2588     throw new NullPointerException();
2589     ForkJoinTask<?> job;
2590     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2591     job = (ForkJoinTask<?>) task;
2592     else
2593     job = new ForkJoinTask.AdaptedRunnableAction(task);
2594 dl 1.12 externalPush(job);
2595 dl 1.1 return job;
2596     }
2597    
2598     /**
2599     * @throws NullPointerException {@inheritDoc}
2600     * @throws RejectedExecutionException {@inheritDoc}
2601     */
2602     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2603     // In previous versions of this class, this method constructed
2604     // a task to run ForkJoinTask.invokeAll, but now external
2605     // invocation of multiple tasks is at least as efficient.
2606 jsr166 1.48 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2607 dl 1.1
2608     boolean done = false;
2609     try {
2610     for (Callable<T> t : tasks) {
2611     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 jsr166 1.49 futures.add(f);
2613 dl 1.12 externalPush(f);
2614 dl 1.1 }
2615 jsr166 1.48 for (int i = 0, size = futures.size(); i < size; i++)
2616     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2617 dl 1.1 done = true;
2618     return futures;
2619     } finally {
2620     if (!done)
2621 jsr166 1.48 for (int i = 0, size = futures.size(); i < size; i++)
2622     futures.get(i).cancel(false);
2623 dl 1.1 }
2624     }
2625    
2626     /**
2627     * Returns the factory used for constructing new workers.
2628     *
2629     * @return the factory used for constructing new workers
2630     */
2631     public ForkJoinWorkerThreadFactory getFactory() {
2632     return factory;
2633     }
2634    
2635     /**
2636     * Returns the handler for internal worker threads that terminate
2637     * due to unrecoverable errors encountered while executing tasks.
2638     *
2639     * @return the handler, or {@code null} if none
2640     */
2641 dl 1.58 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2642 dl 1.1 return ueh;
2643     }
2644    
2645     /**
2646     * Returns the targeted parallelism level of this pool.
2647     *
2648     * @return the targeted parallelism level of this pool
2649     */
2650     public int getParallelism() {
2651 dl 1.58 int par;
2652     return ((par = parallelism) > 0) ? par : 1;
2653 dl 1.1 }
2654    
2655     /**
2656 dl 1.7 * Returns the targeted parallelism level of the common pool.
2657     *
2658     * @return the targeted parallelism level of the common pool
2659 jsr166 1.44 * @since 1.8
2660 dl 1.7 */
2661     public static int getCommonPoolParallelism() {
2662 dl 1.40 return commonParallelism;
2663 dl 1.7 }
2664    
2665     /**
2666 dl 1.1 * Returns the number of worker threads that have started but not
2667     * yet terminated. The result returned by this method may differ
2668     * from {@link #getParallelism} when threads are created to
2669     * maintain parallelism when others are cooperatively blocked.
2670     *
2671     * @return the number of worker threads
2672     */
2673     public int getPoolSize() {
2674 dl 1.58 return parallelism + (short)(ctl >>> TC_SHIFT);
2675 dl 1.1 }
2676    
2677     /**
2678     * Returns {@code true} if this pool uses local first-in-first-out
2679     * scheduling mode for forked tasks that are never joined.
2680     *
2681     * @return {@code true} if this pool uses async mode
2682     */
2683     public boolean getAsyncMode() {
2684 dl 1.58 return mode == FIFO_QUEUE;
2685 dl 1.1 }
2686    
2687     /**
2688     * Returns an estimate of the number of worker threads that are
2689     * not blocked waiting to join tasks or for other managed
2690     * synchronization. This method may overestimate the
2691     * number of running threads.
2692     *
2693     * @return the number of worker threads
2694     */
2695     public int getRunningThreadCount() {
2696     int rc = 0;
2697     WorkQueue[] ws; WorkQueue w;
2698     if ((ws = workQueues) != null) {
2699     for (int i = 1; i < ws.length; i += 2) {
2700     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2701     ++rc;
2702     }
2703     }
2704     return rc;
2705     }
2706    
2707     /**
2708     * Returns an estimate of the number of threads that are currently
2709     * stealing or executing tasks. This method may overestimate the
2710     * number of active threads.
2711     *
2712     * @return the number of active threads
2713     */
2714     public int getActiveThreadCount() {
2715 dl 1.58 int r = parallelism + (int)(ctl >> AC_SHIFT);
2716 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2717     }
2718    
2719     /**
2720     * Returns {@code true} if all worker threads are currently idle.
2721     * An idle worker is one that cannot obtain a task to execute
2722     * because none are available to steal from other threads, and
2723     * there are no pending submissions to the pool. This method is
2724     * conservative; it might not return {@code true} immediately upon
2725     * idleness of all threads, but will eventually become true if
2726     * threads remain inactive.
2727     *
2728     * @return {@code true} if all threads are currently idle
2729     */
2730     public boolean isQuiescent() {
2731 dl 1.58 return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2732 dl 1.1 }
2733    
2734     /**
2735     * Returns an estimate of the total number of tasks stolen from
2736     * one thread's work queue by another. The reported value
2737     * underestimates the actual total number of steals when the pool
2738     * is not quiescent. This value may be useful for monitoring and
2739     * tuning fork/join programs: in general, steal counts should be
2740     * high enough to keep threads busy, but low enough to avoid
2741     * overhead and contention across threads.
2742     *
2743     * @return the number of steals
2744     */
2745     public long getStealCount() {
2746 dl 1.8 long count = stealCount;
2747 dl 1.1 WorkQueue[] ws; WorkQueue w;
2748     if ((ws = workQueues) != null) {
2749     for (int i = 1; i < ws.length; i += 2) {
2750     if ((w = ws[i]) != null)
2751 dl 1.12 count += w.nsteals;
2752 dl 1.1 }
2753     }
2754     return count;
2755     }
2756    
2757     /**
2758     * Returns an estimate of the total number of tasks currently held
2759     * in queues by worker threads (but not including tasks submitted
2760     * to the pool that have not begun executing). This value is only
2761     * an approximation, obtained by iterating across all threads in
2762     * the pool. This method may be useful for tuning task
2763     * granularities.
2764     *
2765     * @return the number of queued tasks
2766     */
2767     public long getQueuedTaskCount() {
2768     long count = 0;
2769     WorkQueue[] ws; WorkQueue w;
2770     if ((ws = workQueues) != null) {
2771     for (int i = 1; i < ws.length; i += 2) {
2772     if ((w = ws[i]) != null)
2773     count += w.queueSize();
2774     }
2775     }
2776     return count;
2777     }
2778    
2779     /**
2780     * Returns an estimate of the number of tasks submitted to this
2781     * pool that have not yet begun executing. This method may take
2782     * time proportional to the number of submissions.
2783     *
2784     * @return the number of queued submissions
2785     */
2786     public int getQueuedSubmissionCount() {
2787     int count = 0;
2788     WorkQueue[] ws; WorkQueue w;
2789     if ((ws = workQueues) != null) {
2790     for (int i = 0; i < ws.length; i += 2) {
2791     if ((w = ws[i]) != null)
2792     count += w.queueSize();
2793     }
2794     }
2795     return count;
2796     }
2797    
2798     /**
2799     * Returns {@code true} if there are any tasks submitted to this
2800     * pool that have not yet begun executing.
2801     *
2802     * @return {@code true} if there are any queued submissions
2803     */
2804     public boolean hasQueuedSubmissions() {
2805     WorkQueue[] ws; WorkQueue w;
2806     if ((ws = workQueues) != null) {
2807     for (int i = 0; i < ws.length; i += 2) {
2808 dl 1.21 if ((w = ws[i]) != null && !w.isEmpty())
2809 dl 1.1 return true;
2810     }
2811     }
2812     return false;
2813     }
2814    
2815     /**
2816     * Removes and returns the next unexecuted submission if one is
2817     * available. This method may be useful in extensions to this
2818     * class that re-assign work in systems with multiple pools.
2819     *
2820     * @return the next submission, or {@code null} if none
2821     */
2822     protected ForkJoinTask<?> pollSubmission() {
2823     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2824     if ((ws = workQueues) != null) {
2825     for (int i = 0; i < ws.length; i += 2) {
2826     if ((w = ws[i]) != null && (t = w.poll()) != null)
2827     return t;
2828     }
2829     }
2830     return null;
2831     }
2832    
2833     /**
2834     * Removes all available unexecuted submitted and forked tasks
2835     * from scheduling queues and adds them to the given collection,
2836     * without altering their execution status. These may include
2837     * artificially generated or wrapped tasks. This method is
2838     * designed to be invoked only when the pool is known to be
2839     * quiescent. Invocations at other times may not remove all
2840     * tasks. A failure encountered while attempting to add elements
2841     * to collection {@code c} may result in elements being in
2842     * neither, either or both collections when the associated
2843     * exception is thrown. The behavior of this operation is
2844     * undefined if the specified collection is modified while the
2845     * operation is in progress.
2846     *
2847     * @param c the collection to transfer elements into
2848     * @return the number of elements transferred
2849     */
2850     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2851     int count = 0;
2852     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2853     if ((ws = workQueues) != null) {
2854     for (int i = 0; i < ws.length; ++i) {
2855     if ((w = ws[i]) != null) {
2856     while ((t = w.poll()) != null) {
2857     c.add(t);
2858     ++count;
2859     }
2860     }
2861     }
2862     }
2863     return count;
2864     }
2865    
2866     /**
2867     * Returns a string identifying this pool, as well as its state,
2868     * including indications of run state, parallelism level, and
2869     * worker and task counts.
2870     *
2871     * @return a string identifying this pool, as well as its state
2872     */
2873     public String toString() {
2874     // Use a single pass through workQueues to collect counts
2875     long qt = 0L, qs = 0L; int rc = 0;
2876 dl 1.8 long st = stealCount;
2877 dl 1.1 long c = ctl;
2878     WorkQueue[] ws; WorkQueue w;
2879     if ((ws = workQueues) != null) {
2880     for (int i = 0; i < ws.length; ++i) {
2881     if ((w = ws[i]) != null) {
2882     int size = w.queueSize();
2883     if ((i & 1) == 0)
2884     qs += size;
2885     else {
2886     qt += size;
2887 dl 1.12 st += w.nsteals;
2888 dl 1.1 if (w.isApparentlyUnblocked())
2889     ++rc;
2890     }
2891     }
2892     }
2893     }
2894 dl 1.58 int pc = parallelism;
2895 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
2896     int ac = pc + (int)(c >> AC_SHIFT);
2897     if (ac < 0) // ignore transient negative
2898     ac = 0;
2899     String level;
2900     if ((c & STOP_BIT) != 0)
2901     level = (tc == 0) ? "Terminated" : "Terminating";
2902     else
2903 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2904 dl 1.1 return super.toString() +
2905     "[" + level +
2906     ", parallelism = " + pc +
2907     ", size = " + tc +
2908     ", active = " + ac +
2909     ", running = " + rc +
2910     ", steals = " + st +
2911     ", tasks = " + qt +
2912     ", submissions = " + qs +
2913     "]";
2914     }
2915    
2916     /**
2917 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2918     * submitted tasks are executed, but no new tasks will be
2919     * accepted. Invocation has no effect on execution state if this
2920 jsr166 1.43 * is the {@link #commonPool()}, and no additional effect if
2921 dl 1.7 * already shut down. Tasks that are in the process of being
2922     * submitted concurrently during the course of this method may or
2923     * may not be rejected.
2924 dl 1.1 *
2925     * @throws SecurityException if a security manager exists and
2926     * the caller is not permitted to modify threads
2927     * because it does not hold {@link
2928     * java.lang.RuntimePermission}{@code ("modifyThread")}
2929     */
2930     public void shutdown() {
2931     checkPermission();
2932 dl 1.12 tryTerminate(false, true);
2933 dl 1.1 }
2934    
2935     /**
2936 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2937     * all subsequently submitted tasks. Invocation has no effect on
2938 jsr166 1.43 * execution state if this is the {@link #commonPool()}, and no
2939 dl 1.7 * additional effect if already shut down. Otherwise, tasks that
2940     * are in the process of being submitted or executed concurrently
2941     * during the course of this method may or may not be
2942     * rejected. This method cancels both existing and unexecuted
2943     * tasks, in order to permit termination in the presence of task
2944     * dependencies. So the method always returns an empty list
2945     * (unlike the case for some other Executors).
2946 dl 1.1 *
2947     * @return an empty list
2948     * @throws SecurityException if a security manager exists and
2949     * the caller is not permitted to modify threads
2950     * because it does not hold {@link
2951     * java.lang.RuntimePermission}{@code ("modifyThread")}
2952     */
2953     public List<Runnable> shutdownNow() {
2954     checkPermission();
2955 dl 1.12 tryTerminate(true, true);
2956 dl 1.1 return Collections.emptyList();
2957     }
2958    
2959     /**
2960     * Returns {@code true} if all tasks have completed following shut down.
2961     *
2962     * @return {@code true} if all tasks have completed following shut down
2963     */
2964     public boolean isTerminated() {
2965     long c = ctl;
2966     return ((c & STOP_BIT) != 0L &&
2967 dl 1.58 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2968 dl 1.1 }
2969    
2970     /**
2971     * Returns {@code true} if the process of termination has
2972     * commenced but not yet completed. This method may be useful for
2973     * debugging. A return of {@code true} reported a sufficient
2974     * period after shutdown may indicate that submitted tasks have
2975 jsr166 1.25 * ignored or suppressed interruption, or are waiting for I/O,
2976 dl 1.1 * causing this executor not to properly terminate. (See the
2977     * advisory notes for class {@link ForkJoinTask} stating that
2978     * tasks should not normally entail blocking operations. But if
2979     * they do, they must abort them on interrupt.)
2980     *
2981     * @return {@code true} if terminating but not yet terminated
2982     */
2983     public boolean isTerminating() {
2984     long c = ctl;
2985     return ((c & STOP_BIT) != 0L &&
2986 dl 1.58 (short)(c >>> TC_SHIFT) + parallelism > 0);
2987 dl 1.1 }
2988    
2989     /**
2990     * Returns {@code true} if this pool has been shut down.
2991     *
2992     * @return {@code true} if this pool has been shut down
2993     */
2994     public boolean isShutdown() {
2995 dl 1.12 return plock < 0;
2996 dl 1.1 }
2997    
2998     /**
2999 dl 1.12 * Blocks until all tasks have completed execution after a
3000     * shutdown request, or the timeout occurs, or the current thread
3001 dl 1.40 * is interrupted, whichever happens first. Because the {@link
3002     * #commonPool()} never terminates until program shutdown, when
3003     * applied to the common pool, this method is equivalent to {@link
3004 dl 1.58 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3005 dl 1.1 *
3006     * @param timeout the maximum time to wait
3007     * @param unit the time unit of the timeout argument
3008     * @return {@code true} if this executor terminated and
3009     * {@code false} if the timeout elapsed before termination
3010     * @throws InterruptedException if interrupted while waiting
3011     */
3012     public boolean awaitTermination(long timeout, TimeUnit unit)
3013     throws InterruptedException {
3014 dl 1.40 if (Thread.interrupted())
3015     throw new InterruptedException();
3016     if (this == common) {
3017     awaitQuiescence(timeout, unit);
3018     return false;
3019     }
3020 dl 1.1 long nanos = unit.toNanos(timeout);
3021 dl 1.8 if (isTerminated())
3022     return true;
3023 dl 1.58 if (nanos <= 0L)
3024     return false;
3025     long deadline = System.nanoTime() + nanos;
3026 jsr166 1.10 synchronized (this) {
3027 dl 1.58 for (;;) {
3028     if (isTerminated())
3029     return true;
3030     if (nanos <= 0L)
3031     return false;
3032     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3033     wait(millis > 0L ? millis : 1L);
3034     nanos = deadline - System.nanoTime();
3035 dl 1.1 }
3036     }
3037     }
3038    
3039     /**
3040 dl 1.40 * If called by a ForkJoinTask operating in this pool, equivalent
3041     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3042     * waits and/or attempts to assist performing tasks until this
3043     * pool {@link #isQuiescent} or the indicated timeout elapses.
3044     *
3045     * @param timeout the maximum time to wait
3046     * @param unit the time unit of the timeout argument
3047     * @return {@code true} if quiescent; {@code false} if the
3048     * timeout elapsed.
3049     */
3050     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3051     long nanos = unit.toNanos(timeout);
3052     ForkJoinWorkerThread wt;
3053     Thread thread = Thread.currentThread();
3054     if ((thread instanceof ForkJoinWorkerThread) &&
3055     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3056     helpQuiescePool(wt.workQueue);
3057     return true;
3058     }
3059     long startTime = System.nanoTime();
3060     WorkQueue[] ws;
3061     int r = 0, m;
3062     boolean found = true;
3063     while (!isQuiescent() && (ws = workQueues) != null &&
3064     (m = ws.length - 1) >= 0) {
3065     if (!found) {
3066     if ((System.nanoTime() - startTime) > nanos)
3067     return false;
3068     Thread.yield(); // cannot block
3069     }
3070     found = false;
3071     for (int j = (m + 1) << 2; j >= 0; --j) {
3072     ForkJoinTask<?> t; WorkQueue q; int b;
3073     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3074     found = true;
3075 dl 1.58 if ((t = q.pollAt(b)) != null)
3076 dl 1.40 t.doExec();
3077     break;
3078     }
3079     }
3080     }
3081     return true;
3082     }
3083    
3084     /**
3085     * Waits and/or attempts to assist performing tasks indefinitely
3086 jsr166 1.54 * until the {@link #commonPool()} {@link #isQuiescent}.
3087 dl 1.40 */
3088 dl 1.42 static void quiesceCommonPool() {
3089 dl 1.40 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3090     }
3091    
3092     /**
3093 dl 1.1 * Interface for extending managed parallelism for tasks running
3094     * in {@link ForkJoinPool}s.
3095     *
3096     * <p>A {@code ManagedBlocker} provides two methods. Method
3097     * {@code isReleasable} must return {@code true} if blocking is
3098     * not necessary. Method {@code block} blocks the current thread
3099     * if necessary (perhaps internally invoking {@code isReleasable}
3100     * before actually blocking). These actions are performed by any
3101 dl 1.58 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3102     * The unusual methods in this API accommodate synchronizers that
3103     * may, but don't usually, block for long periods. Similarly, they
3104 dl 1.1 * allow more efficient internal handling of cases in which
3105     * additional workers may be, but usually are not, needed to
3106     * ensure sufficient parallelism. Toward this end,
3107     * implementations of method {@code isReleasable} must be amenable
3108     * to repeated invocation.
3109     *
3110     * <p>For example, here is a ManagedBlocker based on a
3111     * ReentrantLock:
3112     * <pre> {@code
3113     * class ManagedLocker implements ManagedBlocker {
3114     * final ReentrantLock lock;
3115     * boolean hasLock = false;
3116     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3117     * public boolean block() {
3118     * if (!hasLock)
3119     * lock.lock();
3120     * return true;
3121     * }
3122     * public boolean isReleasable() {
3123     * return hasLock || (hasLock = lock.tryLock());
3124     * }
3125     * }}</pre>
3126     *
3127     * <p>Here is a class that possibly blocks waiting for an
3128     * item on a given queue:
3129     * <pre> {@code
3130     * class QueueTaker<E> implements ManagedBlocker {
3131     * final BlockingQueue<E> queue;
3132     * volatile E item = null;
3133     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3134     * public boolean block() throws InterruptedException {
3135     * if (item == null)
3136     * item = queue.take();
3137     * return true;
3138     * }
3139     * public boolean isReleasable() {
3140     * return item != null || (item = queue.poll()) != null;
3141     * }
3142     * public E getItem() { // call after pool.managedBlock completes
3143     * return item;
3144     * }
3145     * }}</pre>
3146     */
3147     public static interface ManagedBlocker {
3148     /**
3149     * Possibly blocks the current thread, for example waiting for
3150     * a lock or condition.
3151     *
3152     * @return {@code true} if no additional blocking is necessary
3153     * (i.e., if isReleasable would return true)
3154     * @throws InterruptedException if interrupted while waiting
3155     * (the method is not required to do so, but is allowed to)
3156     */
3157     boolean block() throws InterruptedException;
3158    
3159     /**
3160     * Returns {@code true} if blocking is unnecessary.
3161 dl 1.58 * @return {@code true} if blocking is unnecessary
3162 dl 1.1 */
3163     boolean isReleasable();
3164     }
3165    
3166     /**
3167     * Blocks in accord with the given blocker. If the current thread
3168     * is a {@link ForkJoinWorkerThread}, this method possibly
3169     * arranges for a spare thread to be activated if necessary to
3170     * ensure sufficient parallelism while the current thread is blocked.
3171     *
3172     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3173     * behaviorally equivalent to
3174     * <pre> {@code
3175     * while (!blocker.isReleasable())
3176     * if (blocker.block())
3177     * return;
3178     * }</pre>
3179     *
3180     * If the caller is a {@code ForkJoinTask}, then the pool may
3181     * first be expanded to ensure parallelism, and later adjusted.
3182     *
3183     * @param blocker the blocker
3184     * @throws InterruptedException if blocker.block did so
3185     */
3186     public static void managedBlock(ManagedBlocker blocker)
3187     throws InterruptedException {
3188     Thread t = Thread.currentThread();
3189 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3190     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3191 dl 1.58 while (!blocker.isReleasable()) {
3192     if (p.tryCompensate(p.ctl)) {
3193 dl 1.12 try {
3194     do {} while (!blocker.isReleasable() &&
3195     !blocker.block());
3196     } finally {
3197 dl 1.1 p.incrementActiveCount();
3198 dl 1.12 }
3199     break;
3200 dl 1.1 }
3201     }
3202     }
3203 dl 1.12 else {
3204     do {} while (!blocker.isReleasable() &&
3205     !blocker.block());
3206     }
3207 dl 1.1 }
3208    
3209     // AbstractExecutorService overrides. These rely on undocumented
3210     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3211     // implement RunnableFuture.
3212    
3213     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3214     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3215     }
3216    
3217     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3218     return new ForkJoinTask.AdaptedCallable<T>(callable);
3219     }
3220    
3221     // Unsafe mechanics
3222     private static final sun.misc.Unsafe U;
3223     private static final long CTL;
3224     private static final long PARKBLOCKER;
3225     private static final int ABASE;
3226     private static final int ASHIFT;
3227 dl 1.8 private static final long STEALCOUNT;
3228 dl 1.12 private static final long PLOCK;
3229     private static final long INDEXSEED;
3230 dl 1.58 private static final long QBASE;
3231 dl 1.12 private static final long QLOCK;
3232 dl 1.1
3233     static {
3234 jsr166 1.47 // initialize field offsets for CAS etc
3235 dl 1.1 try {
3236     U = getUnsafe();
3237     Class<?> k = ForkJoinPool.class;
3238     CTL = U.objectFieldOffset
3239     (k.getDeclaredField("ctl"));
3240 dl 1.8 STEALCOUNT = U.objectFieldOffset
3241     (k.getDeclaredField("stealCount"));
3242 dl 1.12 PLOCK = U.objectFieldOffset
3243     (k.getDeclaredField("plock"));
3244     INDEXSEED = U.objectFieldOffset
3245     (k.getDeclaredField("indexSeed"));
3246 dl 1.1 Class<?> tk = Thread.class;
3247     PARKBLOCKER = U.objectFieldOffset
3248     (tk.getDeclaredField("parkBlocker"));
3249 dl 1.12 Class<?> wk = WorkQueue.class;
3250 dl 1.58 QBASE = U.objectFieldOffset
3251     (wk.getDeclaredField("base"));
3252 dl 1.12 QLOCK = U.objectFieldOffset
3253     (wk.getDeclaredField("qlock"));
3254     Class<?> ak = ForkJoinTask[].class;
3255 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3256 jsr166 1.47 int scale = U.arrayIndexScale(ak);
3257     if ((scale & (scale - 1)) != 0)
3258     throw new Error("data type scale not a power of two");
3259     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3260 dl 1.1 } catch (Exception e) {
3261     throw new Error(e);
3262     }
3263 dl 1.12
3264 dl 1.18 submitters = new ThreadLocal<Submitter>();
3265 dl 1.58 defaultForkJoinWorkerThreadFactory =
3266 dl 1.18 new DefaultForkJoinWorkerThreadFactory();
3267 dl 1.21 modifyThreadPermission = new RuntimePermission("modifyThread");
3268    
3269 dl 1.58 common = java.security.AccessController.doPrivileged
3270     (new java.security.PrivilegedAction<ForkJoinPool>() {
3271     public ForkJoinPool run() { return makeCommonPool(); }});
3272     int par = common.parallelism; // report 1 even if threads disabled
3273     commonParallelism = par > 0 ? par : 1;
3274     }
3275 dl 1.18
3276 dl 1.58 /**
3277     * Creates and returns the common pool, respecting user settings
3278     * specified via system properties.
3279     */
3280     private static ForkJoinPool makeCommonPool() {
3281     int parallelism = -1;
3282     ForkJoinWorkerThreadFactory factory
3283     = defaultForkJoinWorkerThreadFactory;
3284     UncaughtExceptionHandler handler = null;
3285     try { // ignore exceptions in accesing/parsing properties
3286 dl 1.18 String pp = System.getProperty
3287     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3288 dl 1.58 String fp = System.getProperty
3289     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3290 dl 1.18 String hp = System.getProperty
3291     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3292 dl 1.58 if (pp != null)
3293     parallelism = Integer.parseInt(pp);
3294 dl 1.18 if (fp != null)
3295 dl 1.58 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3296     getSystemClassLoader().loadClass(fp).newInstance());
3297 dl 1.18 if (hp != null)
3298 dl 1.58 handler = ((UncaughtExceptionHandler)ClassLoader.
3299 dl 1.18 getSystemClassLoader().loadClass(hp).newInstance());
3300     } catch (Exception ignore) {
3301     }
3302    
3303 dl 1.58 if (parallelism < 0 && // default 1 less than #cores
3304     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3305     parallelism = 0;
3306     if (parallelism > MAX_CAP)
3307     parallelism = MAX_CAP;
3308     return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3309     "ForkJoinPool.commonPool-worker-");
3310 dl 1.1 }
3311    
3312     /**
3313     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3314     * Replace with a simple call to Unsafe.getUnsafe when integrating
3315     * into a jdk.
3316     *
3317     * @return a sun.misc.Unsafe
3318     */
3319     private static sun.misc.Unsafe getUnsafe() {
3320     try {
3321     return sun.misc.Unsafe.getUnsafe();
3322 jsr166 1.45 } catch (SecurityException tryReflectionInstead) {}
3323     try {
3324     return java.security.AccessController.doPrivileged
3325     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3326     public sun.misc.Unsafe run() throws Exception {
3327     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3328     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3329     f.setAccessible(true);
3330     Object x = f.get(null);
3331     if (k.isInstance(x))
3332     return k.cast(x);
3333     }
3334     throw new NoSuchFieldError("the Unsafe");
3335     }});
3336     } catch (java.security.PrivilegedActionException e) {
3337     throw new RuntimeException("Could not initialize intrinsics",
3338     e.getCause());
3339 dl 1.1 }
3340     }
3341     }