ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.61
Committed: Sun Jul 14 19:55:05 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.60: +0 -1 lines
Log Message:
backport jsr166e to run on jdk6; backport all applicable tck tests from tck to tck-jsr166e

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.7
9 dl 1.58 import java.lang.Thread.UncaughtExceptionHandler;
10 dl 1.1 import java.util.ArrayList;
11     import java.util.Arrays;
12     import java.util.Collection;
13     import java.util.Collections;
14     import java.util.List;
15     import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22    
23     /**
24     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25     * A {@code ForkJoinPool} provides the entry point for submissions
26     * from non-{@code ForkJoinTask} clients, as well as management and
27     * monitoring operations.
28     *
29     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30     * ExecutorService} mainly by virtue of employing
31     * <em>work-stealing</em>: all threads in the pool attempt to find and
32     * execute tasks submitted to the pool and/or created by other active
33     * tasks (eventually blocking waiting for work if none exist). This
34     * enables efficient processing when most tasks spawn other subtasks
35     * (as do most {@code ForkJoinTask}s), as well as when many small
36     * tasks are submitted to the pool from external clients. Especially
37     * when setting <em>asyncMode</em> to true in constructors, {@code
38     * ForkJoinPool}s may also be appropriate for use with event-style
39     * tasks that are never joined.
40     *
41 dl 1.18 * <p>A static {@link #commonPool()} is available and appropriate for
42 dl 1.8 * most applications. The common pool is used by any ForkJoinTask that
43     * is not explicitly submitted to a specified pool. Using the common
44     * pool normally reduces resource usage (its threads are slowly
45     * reclaimed during periods of non-use, and reinstated upon subsequent
46 dl 1.12 * use).
47 dl 1.7 *
48     * <p>For applications that require separate or custom pools, a {@code
49     * ForkJoinPool} may be constructed with a given target parallelism
50     * level; by default, equal to the number of available processors. The
51     * pool attempts to maintain enough active (or available) threads by
52     * dynamically adding, suspending, or resuming internal worker
53 dl 1.58 * threads, even if some tasks are stalled waiting to join others.
54     * However, no such adjustments are guaranteed in the face of blocked
55     * I/O or other unmanaged synchronization. The nested {@link
56 dl 1.7 * ManagedBlocker} interface enables extension of the kinds of
57 dl 1.1 * synchronization accommodated.
58     *
59     * <p>In addition to execution and lifecycle control methods, this
60     * class provides status check methods (for example
61     * {@link #getStealCount}) that are intended to aid in developing,
62     * tuning, and monitoring fork/join applications. Also, method
63     * {@link #toString} returns indications of pool state in a
64     * convenient form for informal monitoring.
65     *
66 jsr166 1.16 * <p>As is the case with other ExecutorServices, there are three
67 dl 1.1 * main task execution methods summarized in the following table.
68     * These are designed to be used primarily by clients not already
69     * engaged in fork/join computations in the current pool. The main
70     * forms of these methods accept instances of {@code ForkJoinTask},
71     * but overloaded forms also allow mixed execution of plain {@code
72     * Runnable}- or {@code Callable}- based activities as well. However,
73     * tasks that are already executing in a pool should normally instead
74     * use the within-computation forms listed in the table unless using
75     * async event-style tasks that are not usually joined, in which case
76     * there is little difference among choice of methods.
77     *
78     * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 dl 1.58 * <caption>Summary of task execution methods</caption>
80 dl 1.1 * <tr>
81     * <td></td>
82     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84     * </tr>
85     * <tr>
86 dl 1.58 * <td> <b>Arrange async execution</b></td>
87 dl 1.1 * <td> {@link #execute(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#fork}</td>
89     * </tr>
90     * <tr>
91 dl 1.58 * <td> <b>Await and obtain result</b></td>
92 dl 1.1 * <td> {@link #invoke(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#invoke}</td>
94     * </tr>
95     * <tr>
96 dl 1.58 * <td> <b>Arrange exec and obtain Future</b></td>
97 dl 1.1 * <td> {@link #submit(ForkJoinTask)}</td>
98     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99     * </tr>
100     * </table>
101     *
102 dl 1.12 * <p>The common pool is by default constructed with default
103 dl 1.58 * parameters, but these may be controlled by setting three
104     * {@linkplain System#getProperty system properties}:
105     * <ul>
106     * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107     * - the parallelism level, a non-negative integer
108     * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109     * - the class name of a {@link ForkJoinWorkerThreadFactory}
110     * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111     * - the class name of a {@link UncaughtExceptionHandler}
112     * </ul>
113     * The system class loader is used to load these classes.
114     * Upon any error in establishing these settings, default parameters
115     * are used. It is possible to disable or limit the use of threads in
116     * the common pool by setting the parallelism property to zero, and/or
117     * using a factory that may return {@code null}.
118 dl 1.12 *
119 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
120     * maximum number of running threads to 32767. Attempts to create
121     * pools with greater than the maximum number result in
122     * {@code IllegalArgumentException}.
123     *
124     * <p>This implementation rejects submitted tasks (that is, by throwing
125     * {@link RejectedExecutionException}) only when the pool is shut down
126     * or internal resources have been exhausted.
127     *
128     * @since 1.7
129     * @author Doug Lea
130     */
131     public class ForkJoinPool extends AbstractExecutorService {
132    
133     /*
134     * Implementation Overview
135     *
136     * This class and its nested classes provide the main
137     * functionality and control for a set of worker threads:
138     * Submissions from non-FJ threads enter into submission queues.
139     * Workers take these tasks and typically split them into subtasks
140     * that may be stolen by other workers. Preference rules give
141     * first priority to processing tasks from their own queues (LIFO
142     * or FIFO, depending on mode), then to randomized FIFO steals of
143     * tasks in other queues.
144     *
145     * WorkQueues
146     * ==========
147     *
148     * Most operations occur within work-stealing queues (in nested
149     * class WorkQueue). These are special forms of Deques that
150     * support only three of the four possible end-operations -- push,
151     * pop, and poll (aka steal), under the further constraints that
152     * push and pop are called only from the owning thread (or, as
153     * extended here, under a lock), while poll may be called from
154     * other threads. (If you are unfamiliar with them, you probably
155     * want to read Herlihy and Shavit's book "The Art of
156     * Multiprocessor programming", chapter 16 describing these in
157     * more detail before proceeding.) The main work-stealing queue
158     * design is roughly similar to those in the papers "Dynamic
159     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
160     * (http://research.sun.com/scalable/pubs/index.html) and
161     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
162     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
163 dl 1.58 * See also "Correct and Efficient Work-Stealing for Weak Memory
164     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
165     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
166     * analysis of memory ordering (atomic, volatile etc) issues. The
167     * main differences ultimately stem from GC requirements that we
168     * null out taken slots as soon as we can, to maintain as small a
169     * footprint as possible even in programs generating huge numbers
170     * of tasks. To accomplish this, we shift the CAS arbitrating pop
171     * vs poll (steal) from being on the indices ("base" and "top") to
172     * the slots themselves. So, both a successful pop and poll
173     * mainly entail a CAS of a slot from non-null to null. Because
174     * we rely on CASes of references, we do not need tag bits on base
175     * or top. They are simple ints as used in any circular
176     * array-based queue (see for example ArrayDeque). Updates to the
177     * indices must still be ordered in a way that guarantees that top
178     * == base means the queue is empty, but otherwise may err on the
179     * side of possibly making the queue appear nonempty when a push,
180     * pop, or poll have not fully committed. Note that this means
181     * that the poll operation, considered individually, is not
182     * wait-free. One thief cannot successfully continue until another
183     * in-progress one (or, if previously empty, a push) completes.
184     * However, in the aggregate, we ensure at least probabilistic
185     * non-blockingness. If an attempted steal fails, a thief always
186     * chooses a different random victim target to try next. So, in
187     * order for one thief to progress, it suffices for any
188     * in-progress poll or new push on any empty queue to
189     * complete. (This is why we normally use method pollAt and its
190     * variants that try once at the apparent base index, else
191     * consider alternative actions, rather than method poll.)
192 dl 1.1 *
193     * This approach also enables support of a user mode in which local
194     * task processing is in FIFO, not LIFO order, simply by using
195     * poll rather than pop. This can be useful in message-passing
196     * frameworks in which tasks are never joined. However neither
197     * mode considers affinities, loads, cache localities, etc, so
198     * rarely provide the best possible performance on a given
199     * machine, but portably provide good throughput by averaging over
200     * these factors. (Further, even if we did try to use such
201     * information, we do not usually have a basis for exploiting it.
202     * For example, some sets of tasks profit from cache affinities,
203     * but others are harmed by cache pollution effects.)
204     *
205     * WorkQueues are also used in a similar way for tasks submitted
206     * to the pool. We cannot mix these tasks in the same queues used
207     * for work-stealing (this would contaminate lifo/fifo
208 dl 1.12 * processing). Instead, we randomly associate submission queues
209 dl 1.1 * with submitting threads, using a form of hashing. The
210 dl 1.58 * Submitter probe value serves as a hash code for
211     * choosing existing queues, and may be randomly repositioned upon
212     * contention with other submitters. In essence, submitters act
213     * like workers except that they are restricted to executing local
214     * tasks that they submitted (or in the case of CountedCompleters,
215     * others with the same root task). However, because most
216     * shared/external queue operations are more expensive than
217     * internal, and because, at steady state, external submitters
218     * will compete for CPU with workers, ForkJoinTask.join and
219     * related methods disable them from repeatedly helping to process
220     * tasks if all workers are active. Insertion of tasks in shared
221     * mode requires a lock (mainly to protect in the case of
222 dl 1.12 * resizing) but we use only a simple spinlock (using bits in
223     * field qlock), because submitters encountering a busy queue move
224     * on to try or create other queues -- they block only when
225     * creating and registering new queues.
226 dl 1.1 *
227     * Management
228     * ==========
229     *
230     * The main throughput advantages of work-stealing stem from
231     * decentralized control -- workers mostly take tasks from
232     * themselves or each other. We cannot negate this in the
233     * implementation of other management responsibilities. The main
234     * tactic for avoiding bottlenecks is packing nearly all
235     * essentially atomic control state into two volatile variables
236     * that are by far most often read (not written) as status and
237     * consistency checks.
238     *
239     * Field "ctl" contains 64 bits holding all the information needed
240     * to atomically decide to add, inactivate, enqueue (on an event
241     * queue), dequeue, and/or re-activate workers. To enable this
242     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
243     * far in excess of normal operating range) to allow ids, counts,
244     * and their negations (used for thresholding) to fit into 16bit
245     * fields.
246     *
247 dl 1.12 * Field "plock" is a form of sequence lock with a saturating
248     * shutdown bit (similarly for per-queue "qlocks"), mainly
249     * protecting updates to the workQueues array, as well as to
250     * enable shutdown. When used as a lock, it is normally only very
251     * briefly held, so is nearly always available after at most a
252     * brief spin, but we use a monitor-based backup strategy to
253 dl 1.18 * block when needed.
254 dl 1.1 *
255     * Recording WorkQueues. WorkQueues are recorded in the
256 dl 1.8 * "workQueues" array that is created upon first use and expanded
257     * if necessary. Updates to the array while recording new workers
258     * and unrecording terminated ones are protected from each other
259     * by a lock but the array is otherwise concurrently readable, and
260     * accessed directly. To simplify index-based operations, the
261     * array size is always a power of two, and all readers must
262 dl 1.18 * tolerate null slots. Worker queues are at odd indices. Shared
263 dl 1.12 * (submission) queues are at even indices, up to a maximum of 64
264     * slots, to limit growth even if array needs to expand to add
265     * more workers. Grouping them together in this way simplifies and
266     * speeds up task scanning.
267 dl 1.1 *
268     * All worker thread creation is on-demand, triggered by task
269     * submissions, replacement of terminated workers, and/or
270     * compensation for blocked workers. However, all other support
271     * code is set up to work with other policies. To ensure that we
272     * do not hold on to worker references that would prevent GC, ALL
273     * accesses to workQueues are via indices into the workQueues
274     * array (which is one source of some of the messy code
275     * constructions here). In essence, the workQueues array serves as
276     * a weak reference mechanism. Thus for example the wait queue
277     * field of ctl stores indices, not references. Access to the
278     * workQueues in associated methods (for example signalWork) must
279     * both index-check and null-check the IDs. All such accesses
280     * ignore bad IDs by returning out early from what they are doing,
281     * since this can only be associated with termination, in which
282     * case it is OK to give up. All uses of the workQueues array
283     * also check that it is non-null (even if previously
284     * non-null). This allows nulling during termination, which is
285     * currently not necessary, but remains an option for
286     * resource-revocation-based shutdown schemes. It also helps
287     * reduce JIT issuance of uncommon-trap code, which tends to
288     * unnecessarily complicate control flow in some methods.
289     *
290     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
291     * let workers spin indefinitely scanning for tasks when none can
292     * be found immediately, and we cannot start/resume workers unless
293     * there appear to be tasks available. On the other hand, we must
294     * quickly prod them into action when new tasks are submitted or
295     * generated. In many usages, ramp-up time to activate workers is
296     * the main limiting factor in overall performance (this is
297     * compounded at program start-up by JIT compilation and
298     * allocation). So we try to streamline this as much as possible.
299     * We park/unpark workers after placing in an event wait queue
300     * when they cannot find work. This "queue" is actually a simple
301     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
302     * counter value (that reflects the number of times a worker has
303     * been inactivated) to avoid ABA effects (we need only as many
304     * version numbers as worker threads). Successors are held in
305     * field WorkQueue.nextWait. Queuing deals with several intrinsic
306     * races, mainly that a task-producing thread can miss seeing (and
307     * signalling) another thread that gave up looking for work but
308     * has not yet entered the wait queue. We solve this by requiring
309     * a full sweep of all workers (via repeated calls to method
310     * scan()) both before and after a newly waiting worker is added
311 dl 1.58 * to the wait queue. Because enqueued workers may actually be
312     * rescanning rather than waiting, we set and clear the "parker"
313     * field of WorkQueues to reduce unnecessary calls to unpark.
314     * (This requires a secondary recheck to avoid missed signals.)
315     * Note the unusual conventions about Thread.interrupts
316     * surrounding parking and other blocking: Because interrupts are
317     * used solely to alert threads to check termination, which is
318     * checked anyway upon blocking, we clear status (using
319     * Thread.interrupted) before any call to park, so that park does
320     * not immediately return due to status being set via some other
321     * unrelated call to interrupt in user code.
322 dl 1.1 *
323     * Signalling. We create or wake up workers only when there
324     * appears to be at least one task they might be able to find and
325 dl 1.58 * execute. When a submission is added or another worker adds a
326     * task to a queue that has fewer than two tasks, they signal
327     * waiting workers (or trigger creation of new ones if fewer than
328     * the given parallelism level -- signalWork). These primary
329     * signals are buttressed by others whenever other threads remove
330     * a task from a queue and notice that there are other tasks there
331     * as well. So in general, pools will be over-signalled. On most
332     * platforms, signalling (unpark) overhead time is noticeably
333 dl 1.21 * long, and the time between signalling a thread and it actually
334     * making progress can be very noticeably long, so it is worth
335     * offloading these delays from critical paths as much as
336 dl 1.58 * possible. Additionally, workers spin-down gradually, by staying
337     * alive so long as they see the ctl state changing. Similar
338     * stability-sensing techniques are also used before blocking in
339     * awaitJoin and helpComplete.
340 dl 1.1 *
341     * Trimming workers. To release resources after periods of lack of
342     * use, a worker starting to wait when the pool is quiescent will
343 dl 1.7 * time out and terminate if the pool has remained quiescent for a
344     * given period -- a short period if there are more threads than
345     * parallelism, longer as the number of threads decreases. This
346     * will slowly propagate, eventually terminating all workers after
347     * periods of non-use.
348 dl 1.1 *
349     * Shutdown and Termination. A call to shutdownNow atomically sets
350 dl 1.12 * a plock bit and then (non-atomically) sets each worker's
351     * qlock status, cancels all unprocessed tasks, and wakes up
352 dl 1.1 * all waiting workers. Detecting whether termination should
353     * commence after a non-abrupt shutdown() call requires more work
354     * and bookkeeping. We need consensus about quiescence (i.e., that
355     * there is no more work). The active count provides a primary
356     * indication but non-abrupt shutdown still requires a rechecking
357     * scan for any workers that are inactive but not queued.
358     *
359     * Joining Tasks
360     * =============
361     *
362     * Any of several actions may be taken when one worker is waiting
363     * to join a task stolen (or always held) by another. Because we
364     * are multiplexing many tasks on to a pool of workers, we can't
365     * just let them block (as in Thread.join). We also cannot just
366     * reassign the joiner's run-time stack with another and replace
367     * it later, which would be a form of "continuation", that even if
368     * possible is not necessarily a good idea since we sometimes need
369     * both an unblocked task and its continuation to progress.
370     * Instead we combine two tactics:
371     *
372     * Helping: Arranging for the joiner to execute some task that it
373     * would be running if the steal had not occurred.
374     *
375     * Compensating: Unless there are already enough live threads,
376     * method tryCompensate() may create or re-activate a spare
377     * thread to compensate for blocked joiners until they unblock.
378     *
379 dl 1.12 * A third form (implemented in tryRemoveAndExec) amounts to
380     * helping a hypothetical compensator: If we can readily tell that
381     * a possible action of a compensator is to steal and execute the
382     * task being joined, the joining thread can do so directly,
383     * without the need for a compensation thread (although at the
384     * expense of larger run-time stacks, but the tradeoff is
385     * typically worthwhile).
386 dl 1.1 *
387     * The ManagedBlocker extension API can't use helping so relies
388     * only on compensation in method awaitBlocker.
389     *
390     * The algorithm in tryHelpStealer entails a form of "linear"
391     * helping: Each worker records (in field currentSteal) the most
392     * recent task it stole from some other worker. Plus, it records
393     * (in field currentJoin) the task it is currently actively
394     * joining. Method tryHelpStealer uses these markers to try to
395     * find a worker to help (i.e., steal back a task from and execute
396     * it) that could hasten completion of the actively joined task.
397     * In essence, the joiner executes a task that would be on its own
398     * local deque had the to-be-joined task not been stolen. This may
399     * be seen as a conservative variant of the approach in Wagner &
400     * Calder "Leapfrogging: a portable technique for implementing
401     * efficient futures" SIGPLAN Notices, 1993
402     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403     * that: (1) We only maintain dependency links across workers upon
404     * steals, rather than use per-task bookkeeping. This sometimes
405     * requires a linear scan of workQueues array to locate stealers,
406     * but often doesn't because stealers leave hints (that may become
407 dl 1.18 * stale/wrong) of where to locate them. It is only a hint
408     * because a worker might have had multiple steals and the hint
409     * records only one of them (usually the most current). Hinting
410     * isolates cost to when it is needed, rather than adding to
411     * per-task overhead. (2) It is "shallow", ignoring nesting and
412     * potentially cyclic mutual steals. (3) It is intentionally
413 dl 1.1 * racy: field currentJoin is updated only while actively joining,
414     * which means that we miss links in the chain during long-lived
415     * tasks, GC stalls etc (which is OK since blocking in such cases
416     * is usually a good idea). (4) We bound the number of attempts
417     * to find work (see MAX_HELP) and fall back to suspending the
418     * worker and if necessary replacing it with another.
419     *
420 dl 1.12 * Helping actions for CountedCompleters are much simpler: Method
421     * helpComplete can take and execute any task with the same root
422     * as the task being waited on. However, this still entails some
423     * traversal of completer chains, so is less efficient than using
424     * CountedCompleters without explicit joins.
425     *
426 dl 1.1 * It is impossible to keep exactly the target parallelism number
427     * of threads running at any given time. Determining the
428     * existence of conservatively safe helping targets, the
429     * availability of already-created spares, and the apparent need
430     * to create new spares are all racy, so we rely on multiple
431     * retries of each. Compensation in the apparent absence of
432     * helping opportunities is challenging to control on JVMs, where
433     * GC and other activities can stall progress of tasks that in
434     * turn stall out many other dependent tasks, without us being
435     * able to determine whether they will ever require compensation.
436     * Even though work-stealing otherwise encounters little
437     * degradation in the presence of more threads than cores,
438     * aggressively adding new threads in such cases entails risk of
439     * unwanted positive feedback control loops in which more threads
440     * cause more dependent stalls (as well as delayed progress of
441     * unblocked threads to the point that we know they are available)
442     * leading to more situations requiring more threads, and so
443     * on. This aspect of control can be seen as an (analytically
444     * intractable) game with an opponent that may choose the worst
445     * (for us) active thread to stall at any time. We take several
446     * precautions to bound losses (and thus bound gains), mainly in
447 dl 1.12 * methods tryCompensate and awaitJoin.
448     *
449     * Common Pool
450     * ===========
451     *
452 dl 1.58 * The static common pool always exists after static
453 dl 1.12 * initialization. Since it (or any other created pool) need
454     * never be used, we minimize initial construction overhead and
455     * footprint to the setup of about a dozen fields, with no nested
456     * allocation. Most bootstrapping occurs within method
457     * fullExternalPush during the first submission to the pool.
458     *
459     * When external threads submit to the common pool, they can
460 dl 1.58 * perform subtask processing (see externalHelpJoin and related
461     * methods). This caller-helps policy makes it sensible to set
462     * common pool parallelism level to one (or more) less than the
463     * total number of available cores, or even zero for pure
464     * caller-runs. We do not need to record whether external
465 dl 1.12 * submissions are to the common pool -- if not, externalHelpJoin
466 jsr166 1.14 * returns quickly (at the most helping to signal some common pool
467 dl 1.12 * workers). These submitters would otherwise be blocked waiting
468     * for completion, so the extra effort (with liberally sprinkled
469     * task status checks) in inapplicable cases amounts to an odd
470     * form of limited spin-wait before blocking in ForkJoinTask.join.
471     *
472     * Style notes
473     * ===========
474     *
475     * There is a lot of representation-level coupling among classes
476     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
477     * fields of WorkQueue maintain data structures managed by
478     * ForkJoinPool, so are directly accessed. There is little point
479     * trying to reduce this, since any associated future changes in
480     * representations will need to be accompanied by algorithmic
481     * changes anyway. Several methods intrinsically sprawl because
482     * they must accumulate sets of consistent reads of volatiles held
483     * in local variables. Methods signalWork() and scan() are the
484     * main bottlenecks, so are especially heavily
485 dl 1.1 * micro-optimized/mangled. There are lots of inline assignments
486     * (of form "while ((local = field) != 0)") which are usually the
487     * simplest way to ensure the required read orderings (which are
488     * sometimes critical). This leads to a "C"-like style of listing
489     * declarations of these locals at the heads of methods or blocks.
490     * There are several occurrences of the unusual "do {} while
491     * (!cas...)" which is the simplest way to force an update of a
492 dl 1.12 * CAS'ed variable. There are also other coding oddities (including
493     * several unnecessary-looking hoisted null checks) that help
494 dl 1.1 * some methods perform reasonably even when interpreted (not
495     * compiled).
496     *
497     * The order of declarations in this file is:
498     * (1) Static utility functions
499     * (2) Nested (static) classes
500     * (3) Static fields
501     * (4) Fields, along with constants used when unpacking some of them
502     * (5) Internal control methods
503     * (6) Callbacks and other support for ForkJoinTask methods
504     * (7) Exported methods
505     * (8) Static block initializing statics in minimally dependent order
506     */
507    
508     // Static utilities
509    
510     /**
511     * If there is a security manager, makes sure caller has
512     * permission to modify threads.
513     */
514     private static void checkPermission() {
515     SecurityManager security = System.getSecurityManager();
516     if (security != null)
517     security.checkPermission(modifyThreadPermission);
518     }
519    
520     // Nested classes
521    
522     /**
523     * Factory for creating new {@link ForkJoinWorkerThread}s.
524     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
525     * for {@code ForkJoinWorkerThread} subclasses that extend base
526     * functionality or initialize threads with different contexts.
527     */
528     public static interface ForkJoinWorkerThreadFactory {
529     /**
530     * Returns a new worker thread operating in the given pool.
531     *
532     * @param pool the pool this thread works in
533     * @throws NullPointerException if the pool is null
534 dl 1.58 * @return the new worker thread
535 dl 1.1 */
536     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
537     }
538    
539     /**
540     * Default ForkJoinWorkerThreadFactory implementation; creates a
541     * new ForkJoinWorkerThread.
542     */
543 dl 1.18 static final class DefaultForkJoinWorkerThreadFactory
544 dl 1.1 implements ForkJoinWorkerThreadFactory {
545 dl 1.18 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
546 dl 1.1 return new ForkJoinWorkerThread(pool);
547     }
548     }
549    
550     /**
551     * Class for artificial tasks that are used to replace the target
552     * of local joins if they are removed from an interior queue slot
553     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
554     * actually do anything beyond having a unique identity.
555     */
556     static final class EmptyTask extends ForkJoinTask<Void> {
557 dl 1.12 private static final long serialVersionUID = -7721805057305804111L;
558 dl 1.1 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
559     public final Void getRawResult() { return null; }
560     public final void setRawResult(Void x) {}
561     public final boolean exec() { return true; }
562     }
563    
564     /**
565     * Queues supporting work-stealing as well as external task
566     * submission. See above for main rationale and algorithms.
567     * Implementation relies heavily on "Unsafe" intrinsics
568     * and selective use of "volatile":
569     *
570     * Field "base" is the index (mod array.length) of the least valid
571     * queue slot, which is always the next position to steal (poll)
572     * from if nonempty. Reads and writes require volatile orderings
573     * but not CAS, because updates are only performed after slot
574     * CASes.
575     *
576     * Field "top" is the index (mod array.length) of the next queue
577     * slot to push to or pop from. It is written only by owner thread
578 dl 1.12 * for push, or under lock for external/shared push, and accessed
579     * by other threads only after reading (volatile) base. Both top
580     * and base are allowed to wrap around on overflow, but (top -
581     * base) (or more commonly -(base - top) to force volatile read of
582     * base before top) still estimates size. The lock ("qlock") is
583     * forced to -1 on termination, causing all further lock attempts
584     * to fail. (Note: we don't need CAS for termination state because
585     * upon pool shutdown, all shared-queues will stop being used
586     * anyway.) Nearly all lock bodies are set up so that exceptions
587     * within lock bodies are "impossible" (modulo JVM errors that
588     * would cause failure anyway.)
589 dl 1.1 *
590     * The array slots are read and written using the emulation of
591     * volatiles/atomics provided by Unsafe. Insertions must in
592     * general use putOrderedObject as a form of releasing store to
593     * ensure that all writes to the task object are ordered before
594 dl 1.12 * its publication in the queue. All removals entail a CAS to
595     * null. The array is always a power of two. To ensure safety of
596     * Unsafe array operations, all accesses perform explicit null
597     * checks and implicit bounds checks via power-of-two masking.
598 dl 1.1 *
599     * In addition to basic queuing support, this class contains
600     * fields described elsewhere to control execution. It turns out
601 dl 1.12 * to work better memory-layout-wise to include them in this class
602     * rather than a separate class.
603 dl 1.1 *
604     * Performance on most platforms is very sensitive to placement of
605     * instances of both WorkQueues and their arrays -- we absolutely
606     * do not want multiple WorkQueue instances or multiple queue
607     * arrays sharing cache lines. (It would be best for queue objects
608     * and their arrays to share, but there is nothing available to
609 dl 1.58 * help arrange that). The @Contended annotation alerts JVMs to
610     * try to keep instances apart.
611 dl 1.1 */
612     static final class WorkQueue {
613     /**
614     * Capacity of work-stealing queue array upon initialization.
615     * Must be a power of two; at least 4, but should be larger to
616     * reduce or eliminate cacheline sharing among queues.
617     * Currently, it is much larger, as a partial workaround for
618     * the fact that JVMs often place arrays in locations that
619     * share GC bookkeeping (especially cardmarks) such that
620     * per-write accesses encounter serious memory contention.
621     */
622     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
623    
624     /**
625     * Maximum size for queue arrays. Must be a power of two less
626     * than or equal to 1 << (31 - width of array entry) to ensure
627     * lack of wraparound of index calculations, but defined to a
628     * value a bit less than this to help users trap runaway
629     * programs before saturating systems.
630     */
631     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
632    
633 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
634     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
635    
636 dl 1.1 volatile int eventCount; // encoded inactivation count; < 0 if inactive
637     int nextWait; // encoded record of next event waiter
638 dl 1.18 int nsteals; // number of steals
639 dl 1.58 int hint; // steal index hint
640     short poolIndex; // index of this queue in pool
641     final short mode; // 0: lifo, > 0: fifo, < 0: shared
642 dl 1.12 volatile int qlock; // 1: locked, -1: terminate; else 0
643 dl 1.1 volatile int base; // index of next slot for poll
644     int top; // index of next slot for push
645     ForkJoinTask<?>[] array; // the elements (initially unallocated)
646     final ForkJoinPool pool; // the containing pool (may be null)
647     final ForkJoinWorkerThread owner; // owning thread or null if shared
648     volatile Thread parker; // == owner during call to park; else null
649     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
650     ForkJoinTask<?> currentSteal; // current non-local task being executed
651 dl 1.18
652 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
653     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
654 dl 1.1
655 dl 1.18 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
656     int seed) {
657 dl 1.1 this.pool = pool;
658     this.owner = owner;
659 dl 1.58 this.mode = (short)mode;
660     this.hint = seed; // store initial seed for runWorker
661 dl 1.21 // Place indices in the center of array (that is not yet allocated)
662 dl 1.1 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
663     }
664    
665     /**
666 dl 1.21 * Returns the approximate number of tasks in the queue.
667     */
668     final int queueSize() {
669     int n = base - top; // non-owner callers must read base first
670     return (n >= 0) ? 0 : -n; // ignore transient negative
671     }
672    
673 dl 1.58 /**
674 dl 1.21 * Provides a more accurate estimate of whether this queue has
675     * any tasks than does queueSize, by checking whether a
676     * near-empty queue has at least one unclaimed task.
677     */
678     final boolean isEmpty() {
679     ForkJoinTask<?>[] a; int m, s;
680     int n = base - (s = top);
681     return (n >= 0 ||
682     (n == -1 &&
683     ((a = array) == null ||
684     (m = a.length - 1) < 0 ||
685     U.getObject
686     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
687     }
688    
689     /**
690     * Pushes a task. Call only by owner in unshared queues. (The
691     * shared-queue version is embedded in method externalPush.)
692 dl 1.1 *
693     * @param task the task. Caller must ensure non-null.
694 jsr166 1.51 * @throws RejectedExecutionException if array cannot be resized
695 dl 1.1 */
696     final void push(ForkJoinTask<?> task) {
697 dl 1.18 ForkJoinTask<?>[] a; ForkJoinPool p;
698 dl 1.58 int s = top, n;
699 dl 1.18 if ((a = array) != null) { // ignore if queue removed
700 dl 1.58 int m = a.length - 1;
701     U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
702     if ((n = (top = s + 1) - base) <= 2)
703     (p = pool).signalWork(p.workQueues, this);
704 dl 1.18 else if (n >= m)
705     growArray();
706 dl 1.1 }
707     }
708    
709 dl 1.58 /**
710 dl 1.18 * Initializes or doubles the capacity of array. Call either
711     * by owner or with lock held -- it is OK for base, but not
712     * top, to move while resizings are in progress.
713     */
714     final ForkJoinTask<?>[] growArray() {
715     ForkJoinTask<?>[] oldA = array;
716     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717     if (size > MAXIMUM_QUEUE_CAPACITY)
718     throw new RejectedExecutionException("Queue capacity exceeded");
719     int oldMask, t, b;
720     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722     (t = top) - (b = base) > 0) {
723     int mask = size - 1;
724     do {
725     ForkJoinTask<?> x;
726     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727     int j = ((b & mask) << ASHIFT) + ABASE;
728     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729     if (x != null &&
730     U.compareAndSwapObject(oldA, oldj, x, null))
731     U.putObjectVolatile(a, j, x);
732     } while (++b != t);
733 dl 1.1 }
734 dl 1.18 return a;
735 dl 1.1 }
736    
737     /**
738     * Takes next task, if one exists, in LIFO order. Call only
739 dl 1.9 * by owner in unshared queues.
740 dl 1.1 */
741     final ForkJoinTask<?> pop() {
742     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743     if ((a = array) != null && (m = a.length - 1) >= 0) {
744     for (int s; (s = top - 1) - base >= 0;) {
745     long j = ((m & s) << ASHIFT) + ABASE;
746     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747     break;
748     if (U.compareAndSwapObject(a, j, t, null)) {
749     top = s;
750     return t;
751     }
752     }
753     }
754     return null;
755     }
756    
757     /**
758     * Takes a task in FIFO order if b is base of queue and a task
759     * can be claimed without contention. Specialized versions
760     * appear in ForkJoinPool methods scan and tryHelpStealer.
761     */
762     final ForkJoinTask<?> pollAt(int b) {
763     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764     if ((a = array) != null) {
765     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 dl 1.58 base == b && U.compareAndSwapObject(a, j, t, null)) {
768     U.putOrderedInt(this, QBASE, b + 1);
769 dl 1.1 return t;
770     }
771     }
772     return null;
773     }
774    
775     /**
776     * Takes next task, if one exists, in FIFO order.
777     */
778     final ForkJoinTask<?> poll() {
779     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
780     while ((b = base) - top < 0 && (a = array) != null) {
781     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783     if (t != null) {
784 dl 1.58 if (U.compareAndSwapObject(a, j, t, null)) {
785     U.putOrderedInt(this, QBASE, b + 1);
786 dl 1.1 return t;
787     }
788     }
789     else if (base == b) {
790     if (b + 1 == top)
791     break;
792 dl 1.12 Thread.yield(); // wait for lagging update (very rare)
793 dl 1.1 }
794     }
795     return null;
796     }
797    
798     /**
799     * Takes next task, if one exists, in order specified by mode.
800     */
801     final ForkJoinTask<?> nextLocalTask() {
802     return mode == 0 ? pop() : poll();
803     }
804    
805     /**
806     * Returns next task, if one exists, in order specified by mode.
807     */
808     final ForkJoinTask<?> peek() {
809     ForkJoinTask<?>[] a = array; int m;
810     if (a == null || (m = a.length - 1) < 0)
811     return null;
812     int i = mode == 0 ? top - 1 : base;
813     int j = ((i & m) << ASHIFT) + ABASE;
814     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
815     }
816    
817     /**
818     * Pops the given task only if it is at the current top.
819 dl 1.12 * (A shared version is available only via FJP.tryExternalUnpush)
820 dl 1.1 */
821     final boolean tryUnpush(ForkJoinTask<?> t) {
822     ForkJoinTask<?>[] a; int s;
823     if ((a = array) != null && (s = top) != base &&
824     U.compareAndSwapObject
825     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
826     top = s;
827     return true;
828     }
829     return false;
830     }
831    
832     /**
833     * Removes and cancels all known tasks, ignoring any exceptions.
834     */
835     final void cancelAll() {
836     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
837     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
838     for (ForkJoinTask<?> t; (t = poll()) != null; )
839     ForkJoinTask.cancelIgnoringExceptions(t);
840     }
841    
842 dl 1.11 // Specialized execution methods
843 dl 1.1
844     /**
845 dl 1.58 * Polls and runs tasks until empty.
846 dl 1.1 */
847 dl 1.58 final void pollAndExecAll() {
848     for (ForkJoinTask<?> t; (t = poll()) != null;)
849     t.doExec();
850 dl 1.1 }
851    
852     /**
853 dl 1.58 * Executes a top-level task and any local tasks remaining
854     * after execution.
855 dl 1.1 */
856 dl 1.58 final void runTask(ForkJoinTask<?> task) {
857     if ((currentSteal = task) != null) {
858     task.doExec();
859     ForkJoinTask<?>[] a = array;
860     int md = mode;
861     ++nsteals;
862     currentSteal = null;
863     if (md != 0)
864     pollAndExecAll();
865     else if (a != null) {
866     int s, m = a.length - 1;
867     while ((s = top - 1) - base >= 0) {
868     long i = ((m & s) << ASHIFT) + ABASE;
869     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
870     if (t == null)
871     break;
872     if (U.compareAndSwapObject(a, i, t, null)) {
873     top = s;
874     t.doExec();
875     }
876     }
877     }
878     }
879 dl 1.1 }
880 jsr166 1.59
881 dl 1.1 /**
882 dl 1.12 * If present, removes from queue and executes the given task,
883     * or any other cancelled task. Returns (true) on any CAS
884 dl 1.1 * or consistency check failure so caller can retry.
885     *
886 jsr166 1.55 * @return false if no progress can be made, else true
887 dl 1.1 */
888 dl 1.12 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
889 dl 1.58 boolean stat;
890 dl 1.1 ForkJoinTask<?>[] a; int m, s, b, n;
891 dl 1.58 if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
892 dl 1.1 (n = (s = top) - (b = base)) > 0) {
893 dl 1.58 boolean removed = false, empty = true;
894     stat = true;
895 dl 1.1 for (ForkJoinTask<?> t;;) { // traverse from s to b
896 dl 1.58 long j = ((--s & m) << ASHIFT) + ABASE;
897     t = (ForkJoinTask<?>)U.getObject(a, j);
898 dl 1.1 if (t == null) // inconsistent length
899     break;
900     else if (t == task) {
901     if (s + 1 == top) { // pop
902     if (!U.compareAndSwapObject(a, j, task, null))
903     break;
904     top = s;
905     removed = true;
906     }
907     else if (base == b) // replace with proxy
908     removed = U.compareAndSwapObject(a, j, task,
909     new EmptyTask());
910     break;
911     }
912     else if (t.status >= 0)
913     empty = false;
914     else if (s + 1 == top) { // pop and throw away
915     if (U.compareAndSwapObject(a, j, t, null))
916     top = s;
917     break;
918     }
919     if (--n == 0) {
920     if (!empty && base == b)
921 dl 1.12 stat = false;
922 dl 1.1 break;
923     }
924     }
925 dl 1.58 if (removed)
926     task.doExec();
927 dl 1.1 }
928 dl 1.58 else
929     stat = false;
930 dl 1.1 return stat;
931     }
932    
933     /**
934 dl 1.58 * Tries to poll for and execute the given task or any other
935     * task in its CountedCompleter computation.
936 dl 1.11 */
937 dl 1.58 final boolean pollAndExecCC(CountedCompleter<?> root) {
938     ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
939     if ((b = base) - top < 0 && (a = array) != null) {
940 dl 1.12 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 dl 1.58 if ((o = U.getObjectVolatile(a, j)) == null)
942     return true; // retry
943     if (o instanceof CountedCompleter) {
944     for (t = (CountedCompleter<?>)o, r = t;;) {
945     if (r == root) {
946     if (base == b &&
947     U.compareAndSwapObject(a, j, t, null)) {
948     U.putOrderedInt(this, QBASE, b + 1);
949     t.doExec();
950     }
951 dl 1.12 return true;
952 dl 1.11 }
953 dl 1.58 else if ((r = r.completer) == null)
954     break; // not part of root computation
955 dl 1.11 }
956     }
957     }
958 dl 1.12 return false;
959 dl 1.11 }
960    
961     /**
962 dl 1.58 * Tries to pop and execute the given task or any other task
963     * in its CountedCompleter computation.
964 dl 1.1 */
965 dl 1.58 final boolean externalPopAndExecCC(CountedCompleter<?> root) {
966     ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
967     if (base - (s = top) < 0 && (a = array) != null) {
968     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
969     if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
970     for (t = (CountedCompleter<?>)o, r = t;;) {
971     if (r == root) {
972     if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
973     if (top == s && array == a &&
974     U.compareAndSwapObject(a, j, t, null)) {
975     top = s - 1;
976     qlock = 0;
977     t.doExec();
978     }
979     else
980     qlock = 0;
981     }
982     return true;
983     }
984     else if ((r = r.completer) == null)
985     break;
986     }
987 dl 1.1 }
988     }
989 dl 1.58 return false;
990 dl 1.1 }
991    
992     /**
993 dl 1.58 * Internal version
994 dl 1.1 */
995 dl 1.58 final boolean internalPopAndExecCC(CountedCompleter<?> root) {
996     ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
997     if (base - (s = top) < 0 && (a = array) != null) {
998     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
999     if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1000     for (t = (CountedCompleter<?>)o, r = t;;) {
1001     if (r == root) {
1002     if (U.compareAndSwapObject(a, j, t, null)) {
1003     top = s - 1;
1004     t.doExec();
1005     }
1006     return true;
1007     }
1008     else if ((r = r.completer) == null)
1009     break;
1010     }
1011     }
1012 dl 1.1 }
1013 dl 1.58 return false;
1014 dl 1.1 }
1015    
1016     /**
1017     * Returns true if owned and not known to be blocked.
1018     */
1019     final boolean isApparentlyUnblocked() {
1020     Thread wt; Thread.State s;
1021     return (eventCount >= 0 &&
1022     (wt = owner) != null &&
1023     (s = wt.getState()) != Thread.State.BLOCKED &&
1024     s != Thread.State.WAITING &&
1025     s != Thread.State.TIMED_WAITING);
1026     }
1027    
1028     // Unsafe mechanics
1029     private static final sun.misc.Unsafe U;
1030 dl 1.58 private static final long QBASE;
1031 dl 1.12 private static final long QLOCK;
1032 dl 1.1 private static final int ABASE;
1033     private static final int ASHIFT;
1034     static {
1035     try {
1036     U = getUnsafe();
1037     Class<?> k = WorkQueue.class;
1038     Class<?> ak = ForkJoinTask[].class;
1039 dl 1.58 QBASE = U.objectFieldOffset
1040     (k.getDeclaredField("base"));
1041 dl 1.12 QLOCK = U.objectFieldOffset
1042     (k.getDeclaredField("qlock"));
1043 dl 1.1 ABASE = U.arrayBaseOffset(ak);
1044 jsr166 1.47 int scale = U.arrayIndexScale(ak);
1045     if ((scale & (scale - 1)) != 0)
1046     throw new Error("data type scale not a power of two");
1047     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1048 dl 1.1 } catch (Exception e) {
1049     throw new Error(e);
1050     }
1051     }
1052     }
1053 jsr166 1.3
1054 dl 1.18 // static fields (initialized in static initializer below)
1055    
1056     /**
1057     * Per-thread submission bookkeeping. Shared across all pools
1058     * to reduce ThreadLocal pollution and because random motion
1059     * to avoid contention in one pool is likely to hold for others.
1060     * Lazily initialized on first submission (but null-checked
1061     * in other contexts to avoid unnecessary initialization).
1062 dl 1.1 */
1063 dl 1.18 static final ThreadLocal<Submitter> submitters;
1064 dl 1.1
1065 dl 1.8 /**
1066 dl 1.58 * Creates a new ForkJoinWorkerThread. This factory is used unless
1067     * overridden in ForkJoinPool constructors.
1068     */
1069     public static final ForkJoinWorkerThreadFactory
1070     defaultForkJoinWorkerThreadFactory;
1071    
1072     /**
1073 dl 1.21 * Permission required for callers of methods that may start or
1074     * kill threads.
1075     */
1076     private static final RuntimePermission modifyThreadPermission;
1077    
1078     /**
1079 dl 1.8 * Common (static) pool. Non-null for public use unless a static
1080 dl 1.12 * construction exception, but internal usages null-check on use
1081     * to paranoically avoid potential initialization circularities
1082     * as well as to simplify generated code.
1083 dl 1.8 */
1084 dl 1.40 static final ForkJoinPool common;
1085 dl 1.8
1086     /**
1087 dl 1.58 * Common pool parallelism. To allow simpler use and management
1088     * when common pool threads are disabled, we allow the underlying
1089     * common.parallelism field to be zero, but in that case still report
1090     * parallelism as 1 to reflect resulting caller-runs mechanics.
1091 dl 1.1 */
1092 dl 1.40 static final int commonParallelism;
1093 dl 1.1
1094     /**
1095 dl 1.12 * Sequence number for creating workerNamePrefix.
1096 dl 1.1 */
1097 dl 1.12 private static int poolNumberSequence;
1098 dl 1.1
1099     /**
1100 jsr166 1.38 * Returns the next sequence number. We don't expect this to
1101     * ever contend, so use simple builtin sync.
1102 dl 1.1 */
1103 dl 1.12 private static final synchronized int nextPoolId() {
1104     return ++poolNumberSequence;
1105     }
1106 dl 1.1
1107     // static constants
1108    
1109     /**
1110 dl 1.12 * Initial timeout value (in nanoseconds) for the thread
1111     * triggering quiescence to park waiting for new work. On timeout,
1112     * the thread will instead try to shrink the number of
1113     * workers. The value should be large enough to avoid overly
1114     * aggressive shrinkage during most transient stalls (long GCs
1115     * etc).
1116 dl 1.1 */
1117 dl 1.12 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1118 dl 1.1
1119     /**
1120 dl 1.7 * Timeout value when there are more threads than parallelism level
1121 dl 1.1 */
1122 dl 1.12 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1123 dl 1.1
1124     /**
1125 dl 1.26 * Tolerance for idle timeouts, to cope with timer undershoots
1126     */
1127 dl 1.33 private static final long TIMEOUT_SLOP = 2000000L;
1128 dl 1.26
1129     /**
1130 dl 1.1 * The maximum stolen->joining link depth allowed in method
1131 dl 1.12 * tryHelpStealer. Must be a power of two. Depths for legitimate
1132 dl 1.1 * chains are unbounded, but we use a fixed constant to avoid
1133     * (otherwise unchecked) cycles and to bound staleness of
1134     * traversal parameters at the expense of sometimes blocking when
1135     * we could be helping.
1136     */
1137     private static final int MAX_HELP = 64;
1138    
1139     /**
1140     * Increment for seed generators. See class ThreadLocal for
1141     * explanation.
1142     */
1143     private static final int SEED_INCREMENT = 0x61c88647;
1144    
1145 jsr166 1.57 /*
1146 dl 1.1 * Bits and masks for control variables
1147     *
1148     * Field ctl is a long packed with:
1149     * AC: Number of active running workers minus target parallelism (16 bits)
1150     * TC: Number of total workers minus target parallelism (16 bits)
1151     * ST: true if pool is terminating (1 bit)
1152     * EC: the wait count of top waiting thread (15 bits)
1153     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1154     *
1155     * When convenient, we can extract the upper 32 bits of counts and
1156     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1157     * (int)ctl. The ec field is never accessed alone, but always
1158     * together with id and st. The offsets of counts by the target
1159     * parallelism and the positionings of fields makes it possible to
1160     * perform the most common checks via sign tests of fields: When
1161     * ac is negative, there are not enough active workers, when tc is
1162     * negative, there are not enough total workers, and when e is
1163     * negative, the pool is terminating. To deal with these possibly
1164     * negative fields, we use casts in and out of "short" and/or
1165     * signed shifts to maintain signedness.
1166     *
1167     * When a thread is queued (inactivated), its eventCount field is
1168     * set negative, which is the only way to tell if a worker is
1169     * prevented from executing tasks, even though it must continue to
1170     * scan for them to avoid queuing races. Note however that
1171     * eventCount updates lag releases so usage requires care.
1172     *
1173 dl 1.12 * Field plock is an int packed with:
1174 dl 1.1 * SHUTDOWN: true if shutdown is enabled (1 bit)
1175 dl 1.12 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1176     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1177 dl 1.1 *
1178     * The sequence number enables simple consistency checks:
1179     * Staleness of read-only operations on the workQueues array can
1180 dl 1.12 * be checked by comparing plock before vs after the reads.
1181 dl 1.1 */
1182    
1183     // bit positions/shifts for fields
1184     private static final int AC_SHIFT = 48;
1185     private static final int TC_SHIFT = 32;
1186     private static final int ST_SHIFT = 31;
1187     private static final int EC_SHIFT = 16;
1188    
1189     // bounds
1190     private static final int SMASK = 0xffff; // short bits
1191     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1192 dl 1.12 private static final int EVENMASK = 0xfffe; // even short bits
1193     private static final int SQMASK = 0x007e; // max 64 (even) slots
1194 dl 1.1 private static final int SHORT_SIGN = 1 << 15;
1195     private static final int INT_SIGN = 1 << 31;
1196    
1197     // masks
1198     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1199     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1200     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1201    
1202     // units for incrementing and decrementing
1203     private static final long TC_UNIT = 1L << TC_SHIFT;
1204     private static final long AC_UNIT = 1L << AC_SHIFT;
1205    
1206     // masks and units for dealing with u = (int)(ctl >>> 32)
1207     private static final int UAC_SHIFT = AC_SHIFT - 32;
1208     private static final int UTC_SHIFT = TC_SHIFT - 32;
1209     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1210     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1211     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1212     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1213    
1214     // masks and units for dealing with e = (int)ctl
1215     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1216     private static final int E_SEQ = 1 << EC_SHIFT;
1217    
1218 dl 1.12 // plock bits
1219 dl 1.1 private static final int SHUTDOWN = 1 << 31;
1220 dl 1.12 private static final int PL_LOCK = 2;
1221     private static final int PL_SIGNAL = 1;
1222     private static final int PL_SPINS = 1 << 8;
1223 dl 1.1
1224     // access mode for WorkQueue
1225     static final int LIFO_QUEUE = 0;
1226     static final int FIFO_QUEUE = 1;
1227     static final int SHARED_QUEUE = -1;
1228    
1229 dl 1.21 // Heuristic padding to ameliorate unfortunate memory placements
1230     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1231    
1232 dl 1.58 // Instance fields
1233 dl 1.8 volatile long stealCount; // collects worker counts
1234 dl 1.1 volatile long ctl; // main pool control
1235 dl 1.18 volatile int plock; // shutdown status and seqLock
1236 dl 1.12 volatile int indexSeed; // worker/submitter index seed
1237 dl 1.58 final short parallelism; // parallelism level
1238     final short mode; // LIFO/FIFO
1239 dl 1.1 WorkQueue[] workQueues; // main registry
1240 dl 1.18 final ForkJoinWorkerThreadFactory factory;
1241 dl 1.58 final UncaughtExceptionHandler ueh; // per-worker UEH
1242 dl 1.8 final String workerNamePrefix; // to create worker name string
1243    
1244 dl 1.21 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245     volatile Object pad18, pad19, pad1a, pad1b;
1246    
1247 jsr166 1.50 /**
1248 dl 1.12 * Acquires the plock lock to protect worker array and related
1249     * updates. This method is called only if an initial CAS on plock
1250 jsr166 1.46 * fails. This acts as a spinlock for normal cases, but falls back
1251 dl 1.12 * to builtin monitor to block when (rarely) needed. This would be
1252     * a terrible idea for a highly contended lock, but works fine as
1253 dl 1.32 * a more conservative alternative to a pure spinlock.
1254 dl 1.12 */
1255     private int acquirePlock() {
1256 dl 1.58 int spins = PL_SPINS, ps, nps;
1257 dl 1.12 for (;;) {
1258     if (((ps = plock) & PL_LOCK) == 0 &&
1259     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260     return nps;
1261 dl 1.8 else if (spins >= 0) {
1262 dl 1.58 if (ThreadLocalRandom.current().nextInt() >= 0)
1263 dl 1.8 --spins;
1264     }
1265 dl 1.12 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1266 jsr166 1.13 synchronized (this) {
1267 dl 1.12 if ((plock & PL_SIGNAL) != 0) {
1268 dl 1.8 try {
1269     wait();
1270     } catch (InterruptedException ie) {
1271 dl 1.11 try {
1272     Thread.currentThread().interrupt();
1273     } catch (SecurityException ignore) {
1274     }
1275 dl 1.8 }
1276     }
1277     else
1278 dl 1.12 notifyAll();
1279 dl 1.8 }
1280     }
1281     }
1282     }
1283 dl 1.1
1284     /**
1285 dl 1.12 * Unlocks and signals any thread waiting for plock. Called only
1286     * when CAS of seq value for unlock fails.
1287 dl 1.1 */
1288 dl 1.12 private void releasePlock(int ps) {
1289     plock = ps;
1290 jsr166 1.13 synchronized (this) { notifyAll(); }
1291 dl 1.1 }
1292    
1293 dl 1.18 /**
1294 dl 1.26 * Tries to create and start one worker if fewer than target
1295     * parallelism level exist. Adjusts counts etc on failure.
1296 dl 1.21 */
1297     private void tryAddWorker() {
1298 dl 1.58 long c; int u, e;
1299 dl 1.21 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1300 dl 1.58 (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1301     long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1302     ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1303 dl 1.21 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1304     ForkJoinWorkerThreadFactory fac;
1305     Throwable ex = null;
1306     ForkJoinWorkerThread wt = null;
1307     try {
1308     if ((fac = factory) != null &&
1309     (wt = fac.newThread(this)) != null) {
1310     wt.start();
1311     break;
1312     }
1313 dl 1.58 } catch (Throwable rex) {
1314     ex = rex;
1315 dl 1.21 }
1316     deregisterWorker(wt, ex);
1317     break;
1318     }
1319 dl 1.18 }
1320     }
1321    
1322     // Registering and deregistering workers
1323    
1324     /**
1325     * Callback from ForkJoinWorkerThread to establish and record its
1326     * WorkQueue. To avoid scanning bias due to packing entries in
1327     * front of the workQueues array, we treat the array as a simple
1328     * power-of-two hash table using per-thread seed as hash,
1329     * expanding as needed.
1330     *
1331     * @param wt the worker thread
1332 dl 1.21 * @return the worker's queue
1333 dl 1.18 */
1334 dl 1.21 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1335 dl 1.58 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1336 dl 1.21 wt.setDaemon(true);
1337     if ((handler = ueh) != null)
1338     wt.setUncaughtExceptionHandler(handler);
1339     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1340     s += SEED_INCREMENT) ||
1341     s == 0); // skip 0
1342 dl 1.58 WorkQueue w = new WorkQueue(this, wt, mode, s);
1343 dl 1.21 if (((ps = plock) & PL_LOCK) != 0 ||
1344     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1345     ps = acquirePlock();
1346     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1347     try {
1348     if ((ws = workQueues) != null) { // skip if shutting down
1349     int n = ws.length, m = n - 1;
1350     int r = (s << 1) | 1; // use odd-numbered indices
1351     if (ws[r &= m] != null) { // collision
1352     int probes = 0; // step by approx half size
1353     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1354     while (ws[r = (r + step) & m] != null) {
1355     if (++probes >= n) {
1356     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1357     m = n - 1;
1358     probes = 0;
1359 dl 1.1 }
1360     }
1361     }
1362 dl 1.58 w.poolIndex = (short)r;
1363     w.eventCount = r; // volatile write orders
1364 dl 1.21 ws[r] = w;
1365 dl 1.1 }
1366 dl 1.21 } finally {
1367     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1368     releasePlock(nps);
1369 dl 1.1 }
1370 dl 1.58 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1371 dl 1.21 return w;
1372 dl 1.1 }
1373    
1374     /**
1375     * Final callback from terminating worker, as well as upon failure
1376 dl 1.12 * to construct or start a worker. Removes record of worker from
1377     * array, and adjusts counts. If pool is shutting down, tries to
1378     * complete termination.
1379 dl 1.1 *
1380 dl 1.58 * @param wt the worker thread, or null if construction failed
1381 dl 1.1 * @param ex the exception causing failure, or null if none
1382     */
1383     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1384     WorkQueue w = null;
1385     if (wt != null && (w = wt.workQueue) != null) {
1386 dl 1.58 int ps; long sc;
1387 dl 1.12 w.qlock = -1; // ensure set
1388 jsr166 1.59 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1389     sc = stealCount,
1390     sc + w.nsteals));
1391 dl 1.12 if (((ps = plock) & PL_LOCK) != 0 ||
1392     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393     ps = acquirePlock();
1394     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395 dl 1.8 try {
1396 dl 1.12 int idx = w.poolIndex;
1397 dl 1.1 WorkQueue[] ws = workQueues;
1398     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1399     ws[idx] = null;
1400     } finally {
1401 dl 1.12 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1402     releasePlock(nps);
1403 dl 1.1 }
1404     }
1405    
1406 dl 1.32 long c; // adjust ctl counts
1407 dl 1.1 do {} while (!U.compareAndSwapLong
1408     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1409     ((c - TC_UNIT) & TC_MASK) |
1410     (c & ~(AC_MASK|TC_MASK)))));
1411    
1412 dl 1.26 if (!tryTerminate(false, false) && w != null && w.array != null) {
1413 dl 1.32 w.cancelAll(); // cancel remaining tasks
1414     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1415     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1416     if (e > 0) { // activate or create replacement
1417     if ((ws = workQueues) == null ||
1418     (i = e & SMASK) >= ws.length ||
1419 dl 1.36 (v = ws[i]) == null)
1420 dl 1.32 break;
1421     long nc = (((long)(v.nextWait & E_MASK)) |
1422     ((long)(u + UAC_UNIT) << 32));
1423     if (v.eventCount != (e | INT_SIGN))
1424     break;
1425     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1426     v.eventCount = (e + E_SEQ) & E_MASK;
1427     if ((p = v.parker) != null)
1428     U.unpark(p);
1429     break;
1430 dl 1.26 }
1431     }
1432     else {
1433     if ((short)u < 0)
1434     tryAddWorker();
1435     break;
1436     }
1437     }
1438 dl 1.1 }
1439 dl 1.26 if (ex == null) // help clean refs on way out
1440     ForkJoinTask.helpExpungeStaleExceptions();
1441     else // rethrow
1442 dl 1.11 ForkJoinTask.rethrow(ex);
1443 dl 1.1 }
1444    
1445     // Submissions
1446    
1447     /**
1448 dl 1.58 * Per-thread records for threads that submit to pools. Currently
1449     * holds only pseudo-random seed / index that is used to choose
1450     * submission queues in method externalPush. In the future, this may
1451     * also incorporate a means to implement different task rejection
1452     * and resubmission policies.
1453     *
1454     * Seeds for submitters and workers/workQueues work in basically
1455     * the same way but are initialized and updated using slightly
1456     * different mechanics. Both are initialized using the same
1457     * approach as in class ThreadLocal, where successive values are
1458     * unlikely to collide with previous values. Seeds are then
1459     * randomly modified upon collisions using xorshifts, which
1460     * requires a non-zero seed.
1461     */
1462     static final class Submitter {
1463     int seed;
1464     Submitter(int s) { seed = s; }
1465     }
1466    
1467     /**
1468 dl 1.1 * Unless shutting down, adds the given task to a submission queue
1469     * at submitter's current queue index (modulo submission
1470 dl 1.12 * range). Only the most common path is directly handled in this
1471     * method. All others are relayed to fullExternalPush.
1472 dl 1.1 *
1473     * @param task the task. Caller must ensure non-null.
1474     */
1475 dl 1.12 final void externalPush(ForkJoinTask<?> task) {
1476 dl 1.58 Submitter z = submitters.get();
1477     WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1478     int ps = plock;
1479     WorkQueue[] ws = workQueues;
1480     if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1481     (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1482 dl 1.12 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1483 dl 1.58 if ((a = q.array) != null &&
1484     (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1485     int j = ((am & s) << ASHIFT) + ABASE;
1486 dl 1.21 U.putOrderedObject(a, j, task);
1487 dl 1.12 q.top = s + 1; // push on to deque
1488     q.qlock = 0;
1489 dl 1.58 if (n <= 1)
1490     signalWork(ws, q);
1491 dl 1.1 return;
1492     }
1493 dl 1.12 q.qlock = 0;
1494 dl 1.1 }
1495 dl 1.12 fullExternalPush(task);
1496 dl 1.1 }
1497    
1498 dl 1.7 /**
1499 dl 1.12 * Full version of externalPush. This method is called, among
1500     * other times, upon the first submission of the first task to the
1501 dl 1.37 * pool, so must perform secondary initialization. It also
1502     * detects first submission by an external thread by looking up
1503     * its ThreadLocal, and creates a new shared queue if the one at
1504     * index if empty or contended. The plock lock body must be
1505     * exception-free (so no try/finally) so we optimistically
1506     * allocate new queues outside the lock and throw them away if
1507     * (very rarely) not needed.
1508     *
1509     * Secondary initialization occurs when plock is zero, to create
1510     * workQueue array and set plock to a valid value. This lock body
1511     * must also be exception-free. Because the plock seq value can
1512     * eventually wrap around zero, this method harmlessly fails to
1513     * reinitialize if workQueues exists, while still advancing plock.
1514 dl 1.12 */
1515     private void fullExternalPush(ForkJoinTask<?> task) {
1516 dl 1.21 int r = 0; // random index seed
1517 dl 1.18 for (Submitter z = submitters.get();;) {
1518     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1519     if (z == null) {
1520     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1521     r += SEED_INCREMENT) && r != 0)
1522     submitters.set(z = new Submitter(r));
1523     }
1524 dl 1.37 else if (r == 0) { // move to a different index
1525 dl 1.18 r = z.seed;
1526 dl 1.37 r ^= r << 13; // same xorshift as WorkQueues
1527 dl 1.18 r ^= r >>> 17;
1528 dl 1.58 z.seed = r ^= (r << 5);
1529 dl 1.18 }
1530 dl 1.58 if ((ps = plock) < 0)
1531 dl 1.12 throw new RejectedExecutionException();
1532 dl 1.18 else if (ps == 0 || (ws = workQueues) == null ||
1533 dl 1.37 (m = ws.length - 1) < 0) { // initialize workQueues
1534 dl 1.58 int p = parallelism; // find power of two table size
1535 dl 1.37 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1536     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1537     n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1538     WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1539     new WorkQueue[n] : null);
1540     if (((ps = plock) & PL_LOCK) != 0 ||
1541     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1542     ps = acquirePlock();
1543     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1544     workQueues = nws;
1545     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1546     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1547     releasePlock(nps);
1548     }
1549 dl 1.18 else if ((q = ws[k = r & m & SQMASK]) != null) {
1550 dl 1.21 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1551     ForkJoinTask<?>[] a = q.array;
1552     int s = q.top;
1553     boolean submitted = false;
1554     try { // locked version of push
1555     if ((a != null && a.length > s + 1 - q.base) ||
1556     (a = q.growArray()) != null) { // must presize
1557     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1558     U.putOrderedObject(a, j, task);
1559     q.top = s + 1;
1560     submitted = true;
1561     }
1562     } finally {
1563     q.qlock = 0; // unlock
1564     }
1565     if (submitted) {
1566 dl 1.58 signalWork(ws, q);
1567 dl 1.21 return;
1568     }
1569     }
1570     r = 0; // move on failure
1571 dl 1.18 }
1572     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1573     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1574 dl 1.58 q.poolIndex = (short)k;
1575 dl 1.18 if (((ps = plock) & PL_LOCK) != 0 ||
1576 dl 1.12 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1577     ps = acquirePlock();
1578 dl 1.18 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1579     ws[k] = q;
1580 dl 1.12 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1581     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1582     releasePlock(nps);
1583     }
1584 dl 1.18 else
1585 dl 1.58 r = 0;
1586 dl 1.11 }
1587 dl 1.9 }
1588    
1589 dl 1.1 // Maintaining ctl counts
1590    
1591     /**
1592     * Increments active count; mainly called upon return from blocking.
1593     */
1594     final void incrementActiveCount() {
1595     long c;
1596 dl 1.58 do {} while (!U.compareAndSwapLong
1597     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1598     ((c & AC_MASK) + AC_UNIT))));
1599 dl 1.1 }
1600    
1601     /**
1602 dl 1.21 * Tries to create or activate a worker if too few are active.
1603     *
1604 dl 1.58 * @param ws the worker array to use to find signallees
1605     * @param q if non-null, the queue holding tasks to be processed
1606 dl 1.12 */
1607 dl 1.58 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1608     for (;;) {
1609     long c; int e, u, i; WorkQueue w; Thread p;
1610     if ((u = (int)((c = ctl) >>> 32)) >= 0)
1611     break;
1612     if ((e = (int)c) <= 0) {
1613 dl 1.21 if ((short)u < 0)
1614     tryAddWorker();
1615     break;
1616 dl 1.1 }
1617 dl 1.58 if (ws == null || ws.length <= (i = e & SMASK) ||
1618     (w = ws[i]) == null)
1619     break;
1620     long nc = (((long)(w.nextWait & E_MASK)) |
1621     ((long)(u + UAC_UNIT)) << 32);
1622     int ne = (e + E_SEQ) & E_MASK;
1623     if (w.eventCount == (e | INT_SIGN) &&
1624     U.compareAndSwapLong(this, CTL, c, nc)) {
1625     w.eventCount = ne;
1626     if ((p = w.parker) != null)
1627     U.unpark(p);
1628     break;
1629     }
1630     if (q != null && q.base >= q.top)
1631     break;
1632 dl 1.1 }
1633     }
1634    
1635     // Scanning for tasks
1636    
1637     /**
1638     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1639     */
1640     final void runWorker(WorkQueue w) {
1641 dl 1.21 w.growArray(); // allocate queue
1642 dl 1.58 for (int r = w.hint; scan(w, r) == 0; ) {
1643     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1644     }
1645 dl 1.1 }
1646    
1647     /**
1648 dl 1.58 * Scans for and, if found, runs one task, else possibly
1649 dl 1.1 * inactivates the worker. This method operates on single reads of
1650     * volatile state and is designed to be re-invoked continuously,
1651     * in part because it returns upon detecting inconsistencies,
1652     * contention, or state changes that indicate possible success on
1653     * re-invocation.
1654     *
1655 dl 1.58 * The scan searches for tasks across queues starting at a random
1656     * index, checking each at least twice. The scan terminates upon
1657     * either finding a non-empty queue, or completing the sweep. If
1658     * the worker is not inactivated, it takes and runs a task from
1659     * this queue. Otherwise, if not activated, it tries to activate
1660     * itself or some other worker by signalling. On failure to find a
1661     * task, returns (for retry) if pool state may have changed during
1662     * an empty scan, or tries to inactivate if active, else possibly
1663     * blocks or terminates via method awaitWork.
1664 dl 1.1 *
1665     * @param w the worker (via its WorkQueue)
1666 dl 1.58 * @param r a random seed
1667     * @return worker qlock status if would have waited, else 0
1668 dl 1.1 */
1669 dl 1.58 private final int scan(WorkQueue w, int r) {
1670 dl 1.21 WorkQueue[] ws; int m;
1671 dl 1.58 long c = ctl; // for consistency check
1672     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1673     for (int j = m + m + 1, ec = w.eventCount;;) {
1674     WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1675     if ((q = ws[(r - j) & m]) != null &&
1676     (b = q.base) - q.top < 0 && (a = q.array) != null) {
1677     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1678     if ((t = ((ForkJoinTask<?>)
1679     U.getObjectVolatile(a, i))) != null) {
1680     if (ec < 0)
1681     helpRelease(c, ws, w, q, b);
1682     else if (q.base == b &&
1683     U.compareAndSwapObject(a, i, t, null)) {
1684     U.putOrderedInt(q, QBASE, b + 1);
1685     if ((b + 1) - q.top < 0)
1686     signalWork(ws, q);
1687     w.runTask(t);
1688     }
1689     }
1690     break;
1691     }
1692     else if (--j < 0) {
1693     if ((ec | (e = (int)c)) < 0) // inactive or terminating
1694     return awaitWork(w, c, ec);
1695     else if (ctl == c) { // try to inactivate and enqueue
1696     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1697     w.nextWait = e;
1698 dl 1.32 w.eventCount = ec | INT_SIGN;
1699 dl 1.58 if (!U.compareAndSwapLong(this, CTL, c, nc))
1700     w.eventCount = ec; // back out
1701 dl 1.32 }
1702 dl 1.58 break;
1703 dl 1.21 }
1704     }
1705 dl 1.1 }
1706 dl 1.58 return 0;
1707 dl 1.1 }
1708    
1709     /**
1710 dl 1.58 * A continuation of scan(), possibly blocking or terminating
1711     * worker w. Returns without blocking if pool state has apparently
1712     * changed since last invocation. Also, if inactivating w has
1713     * caused the pool to become quiescent, checks for pool
1714     * termination, and, so long as this is not the only worker, waits
1715     * for event for up to a given duration. On timeout, if ctl has
1716     * not changed, terminates the worker, which will in turn wake up
1717     * another worker to possibly repeat this process.
1718 dl 1.1 *
1719     * @param w the calling worker
1720 dl 1.58 * @param c the ctl value on entry to scan
1721     * @param ec the worker's eventCount on entry to scan
1722 dl 1.1 */
1723 dl 1.58 private final int awaitWork(WorkQueue w, long c, int ec) {
1724     int stat, ns; long parkTime, deadline;
1725     if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1726     !Thread.interrupted()) {
1727     int e = (int)c;
1728     int u = (int)(c >>> 32);
1729     int d = (u >> UAC_SHIFT) + parallelism; // active count
1730    
1731     if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1732     stat = w.qlock = -1; // pool is terminating
1733     else if ((ns = w.nsteals) != 0) { // collect steals and retry
1734     long sc;
1735     w.nsteals = 0;
1736 jsr166 1.59 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1737     sc = stealCount, sc + ns));
1738 dl 1.58 }
1739     else {
1740     long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1741     ((long)(w.nextWait & E_MASK)) | // ctl to restore
1742     ((long)(u + UAC_UNIT)) << 32);
1743     if (pc != 0L) { // timed wait if last waiter
1744     int dc = -(short)(c >>> TC_SHIFT);
1745     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1746     (dc + 1) * IDLE_TIMEOUT);
1747     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1748     }
1749     else
1750     parkTime = deadline = 0L;
1751     if (w.eventCount == ec && ctl == c) {
1752     Thread wt = Thread.currentThread();
1753     U.putObject(wt, PARKBLOCKER, this);
1754     w.parker = wt; // emulate LockSupport.park
1755     if (w.eventCount == ec && ctl == c)
1756     U.park(false, parkTime); // must recheck before park
1757     w.parker = null;
1758     U.putObject(wt, PARKBLOCKER, null);
1759     if (parkTime != 0L && ctl == c &&
1760     deadline - System.nanoTime() <= 0L &&
1761     U.compareAndSwapLong(this, CTL, c, pc))
1762     stat = w.qlock = -1; // shrink pool
1763 dl 1.1 }
1764     }
1765     }
1766 dl 1.58 return stat;
1767 dl 1.1 }
1768    
1769     /**
1770 dl 1.58 * Possibly releases (signals) a worker. Called only from scan()
1771     * when a worker with apparently inactive status finds a non-empty
1772     * queue. This requires revalidating all of the associated state
1773     * from caller.
1774     */
1775     private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1776     WorkQueue q, int b) {
1777     WorkQueue v; int e, i; Thread p;
1778     if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1779     ws != null && ws.length > (i = e & SMASK) &&
1780     (v = ws[i]) != null && ctl == c) {
1781     long nc = (((long)(v.nextWait & E_MASK)) |
1782     ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1783     int ne = (e + E_SEQ) & E_MASK;
1784     if (q != null && q.base == b && w.eventCount < 0 &&
1785     v.eventCount == (e | INT_SIGN) &&
1786     U.compareAndSwapLong(this, CTL, c, nc)) {
1787     v.eventCount = ne;
1788     if ((p = v.parker) != null)
1789     U.unpark(p);
1790 dl 1.26 }
1791     }
1792     }
1793    
1794     /**
1795 dl 1.1 * Tries to locate and execute tasks for a stealer of the given
1796     * task, or in turn one of its stealers, Traces currentSteal ->
1797     * currentJoin links looking for a thread working on a descendant
1798     * of the given task and with a non-empty queue to steal back and
1799     * execute tasks from. The first call to this method upon a
1800     * waiting join will often entail scanning/search, (which is OK
1801     * because the joiner has nothing better to do), but this method
1802     * leaves hints in workers to speed up subsequent calls. The
1803     * implementation is very branchy to cope with potential
1804     * inconsistencies or loops encountering chains that are stale,
1805     * unknown, or so long that they are likely cyclic.
1806     *
1807     * @param joiner the joining worker
1808     * @param task the task to join
1809     * @return 0 if no progress can be made, negative if task
1810     * known complete, else positive
1811     */
1812     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1813     int stat = 0, steps = 0; // bound to avoid cycles
1814 dl 1.58 if (task != null && joiner != null &&
1815     joiner.base - joiner.top >= 0) { // hoist checks
1816 dl 1.1 restart: for (;;) {
1817     ForkJoinTask<?> subtask = task; // current target
1818     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1819     WorkQueue[] ws; int m, s, h;
1820     if ((s = task.status) < 0) {
1821     stat = s;
1822     break restart;
1823     }
1824     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1825     break restart; // shutting down
1826 dl 1.18 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1827 dl 1.1 v.currentSteal != subtask) {
1828     for (int origin = h;;) { // find stealer
1829     if (((h = (h + 2) & m) & 15) == 1 &&
1830     (subtask.status < 0 || j.currentJoin != subtask))
1831     continue restart; // occasional staleness check
1832     if ((v = ws[h]) != null &&
1833     v.currentSteal == subtask) {
1834 dl 1.18 j.hint = h; // save hint
1835 dl 1.1 break;
1836     }
1837     if (h == origin)
1838     break restart; // cannot find stealer
1839     }
1840     }
1841     for (;;) { // help stealer or descend to its stealer
1842 dl 1.58 ForkJoinTask[] a; int b;
1843 dl 1.1 if (subtask.status < 0) // surround probes with
1844     continue restart; // consistency checks
1845     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1846     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1847     ForkJoinTask<?> t =
1848     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1849     if (subtask.status < 0 || j.currentJoin != subtask ||
1850     v.currentSteal != subtask)
1851     continue restart; // stale
1852     stat = 1; // apparent progress
1853 dl 1.58 if (v.base == b) {
1854     if (t == null)
1855     break restart;
1856     if (U.compareAndSwapObject(a, i, t, null)) {
1857     U.putOrderedInt(v, QBASE, b + 1);
1858     ForkJoinTask<?> ps = joiner.currentSteal;
1859     int jt = joiner.top;
1860     do {
1861     joiner.currentSteal = t;
1862     t.doExec(); // clear local tasks too
1863     } while (task.status >= 0 &&
1864     joiner.top != jt &&
1865     (t = joiner.pop()) != null);
1866     joiner.currentSteal = ps;
1867     break restart;
1868     }
1869 dl 1.1 }
1870     }
1871     else { // empty -- try to descend
1872     ForkJoinTask<?> next = v.currentJoin;
1873     if (subtask.status < 0 || j.currentJoin != subtask ||
1874     v.currentSteal != subtask)
1875     continue restart; // stale
1876     else if (next == null || ++steps == MAX_HELP)
1877     break restart; // dead-end or maybe cyclic
1878     else {
1879     subtask = next;
1880     j = v;
1881     break;
1882     }
1883     }
1884     }
1885     }
1886     }
1887     }
1888     return stat;
1889     }
1890    
1891     /**
1892 dl 1.12 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1893 jsr166 1.17 * and run tasks within the target's computation.
1894 dl 1.12 *
1895     * @param task the task to join
1896 dl 1.1 */
1897 dl 1.58 private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1898     WorkQueue[] ws; int m;
1899     int s = 0;
1900     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1901     joiner != null && task != null) {
1902     int j = joiner.poolIndex;
1903     int scans = m + m + 1;
1904     long c = 0L; // for stability check
1905     for (int k = scans; ; j += 2) {
1906     WorkQueue q;
1907 dl 1.12 if ((s = task.status) < 0)
1908 dl 1.58 break;
1909     else if (joiner.internalPopAndExecCC(task))
1910     k = scans;
1911     else if ((s = task.status) < 0)
1912     break;
1913     else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1914     k = scans;
1915     else if (--k < 0) {
1916     if (c == (c = ctl))
1917 dl 1.12 break;
1918 dl 1.58 k = scans;
1919 dl 1.12 }
1920 dl 1.1 }
1921     }
1922 dl 1.58 return s;
1923 dl 1.1 }
1924    
1925     /**
1926     * Tries to decrement active count (sometimes implicitly) and
1927     * possibly release or create a compensating worker in preparation
1928     * for blocking. Fails on contention or termination. Otherwise,
1929 dl 1.12 * adds a new thread if no idle workers are available and pool
1930     * may become starved.
1931 dl 1.58 *
1932     * @param c the assumed ctl value
1933 dl 1.1 */
1934 dl 1.58 final boolean tryCompensate(long c) {
1935     WorkQueue[] ws = workQueues;
1936     int pc = parallelism, e = (int)c, m, tc;
1937     if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1938     WorkQueue w = ws[e & m];
1939     if (e != 0 && w != null) {
1940     Thread p;
1941 dl 1.12 long nc = ((long)(w.nextWait & E_MASK) |
1942     (c & (AC_MASK|TC_MASK)));
1943 dl 1.58 int ne = (e + E_SEQ) & E_MASK;
1944     if (w.eventCount == (e | INT_SIGN) &&
1945     U.compareAndSwapLong(this, CTL, c, nc)) {
1946     w.eventCount = ne;
1947 dl 1.12 if ((p = w.parker) != null)
1948     U.unpark(p);
1949     return true; // replace with idle worker
1950 dl 1.1 }
1951     }
1952 dl 1.18 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1953     (int)(c >> AC_SHIFT) + pc > 1) {
1954 dl 1.12 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1955     if (U.compareAndSwapLong(this, CTL, c, nc))
1956 dl 1.18 return true; // no compensation
1957 dl 1.12 }
1958 dl 1.18 else if (tc + pc < MAX_CAP) {
1959 dl 1.12 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1960     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1961 dl 1.21 ForkJoinWorkerThreadFactory fac;
1962     Throwable ex = null;
1963     ForkJoinWorkerThread wt = null;
1964     try {
1965     if ((fac = factory) != null &&
1966     (wt = fac.newThread(this)) != null) {
1967     wt.start();
1968     return true;
1969     }
1970     } catch (Throwable rex) {
1971     ex = rex;
1972     }
1973     deregisterWorker(wt, ex); // clean up and return false
1974 dl 1.1 }
1975     }
1976     }
1977     return false;
1978     }
1979    
1980     /**
1981     * Helps and/or blocks until the given task is done.
1982     *
1983     * @param joiner the joining worker
1984     * @param task the task
1985     * @return task status on exit
1986     */
1987     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1988 dl 1.12 int s = 0;
1989 dl 1.58 if (task != null && (s = task.status) >= 0 && joiner != null) {
1990 dl 1.1 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1991     joiner.currentJoin = task;
1992 dl 1.58 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1993     (s = task.status) >= 0);
1994     if (s >= 0 && (task instanceof CountedCompleter))
1995     s = helpComplete(joiner, (CountedCompleter<?>)task);
1996     long cc = 0; // for stability checks
1997 dl 1.12 while (s >= 0 && (s = task.status) >= 0) {
1998 dl 1.58 if ((s = tryHelpStealer(joiner, task)) == 0 &&
1999 dl 1.18 (s = task.status) >= 0) {
2000 dl 1.58 if (!tryCompensate(cc))
2001     cc = ctl;
2002     else {
2003 dl 1.18 if (task.trySetSignal() && (s = task.status) >= 0) {
2004     synchronized (task) {
2005     if (task.status >= 0) {
2006     try { // see ForkJoinTask
2007     task.wait(); // for explanation
2008     } catch (InterruptedException ie) {
2009     }
2010 dl 1.1 }
2011 dl 1.18 else
2012     task.notifyAll();
2013 dl 1.1 }
2014     }
2015 dl 1.58 long c; // reactivate
2016 dl 1.18 do {} while (!U.compareAndSwapLong
2017 dl 1.58 (this, CTL, c = ctl,
2018     ((c & ~AC_MASK) |
2019     ((c & AC_MASK) + AC_UNIT))));
2020 dl 1.1 }
2021     }
2022     }
2023 dl 1.12 joiner.currentJoin = prevJoin;
2024 dl 1.1 }
2025     return s;
2026     }
2027    
2028     /**
2029     * Stripped-down variant of awaitJoin used by timed joins. Tries
2030     * to help join only while there is continuous progress. (Caller
2031     * will then enter a timed wait.)
2032     *
2033     * @param joiner the joining worker
2034     * @param task the task
2035     */
2036 dl 1.12 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2037 dl 1.1 int s;
2038 dl 1.12 if (joiner != null && task != null && (s = task.status) >= 0) {
2039     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2040     joiner.currentJoin = task;
2041 dl 1.58 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2042     (s = task.status) >= 0);
2043     if (s >= 0) {
2044     if (task instanceof CountedCompleter)
2045     helpComplete(joiner, (CountedCompleter<?>)task);
2046 dl 1.12 do {} while (task.status >= 0 &&
2047     tryHelpStealer(joiner, task) > 0);
2048     }
2049     joiner.currentJoin = prevJoin;
2050     }
2051 dl 1.1 }
2052    
2053     /**
2054     * Returns a (probably) non-empty steal queue, if one is found
2055 dl 1.37 * during a scan, else null. This method must be retried by
2056     * caller if, by the time it tries to use the queue, it is empty.
2057 dl 1.1 */
2058 dl 1.58 private WorkQueue findNonEmptyStealQueue() {
2059     int r = ThreadLocalRandom.current().nextInt();
2060 dl 1.37 for (;;) {
2061     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2062     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2063     for (int j = (m + 1) << 2; j >= 0; --j) {
2064 dl 1.58 if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2065 dl 1.37 q.base - q.top < 0)
2066     return q;
2067 dl 1.1 }
2068     }
2069 dl 1.37 if (plock == ps)
2070     return null;
2071 dl 1.1 }
2072     }
2073    
2074     /**
2075     * Runs tasks until {@code isQuiescent()}. We piggyback on
2076     * active count ctl maintenance, but rather than blocking
2077     * when tasks cannot be found, we rescan until all others cannot
2078     * find tasks either.
2079     */
2080     final void helpQuiescePool(WorkQueue w) {
2081 dl 1.58 ForkJoinTask<?> ps = w.currentSteal;
2082 dl 1.1 for (boolean active = true;;) {
2083 dl 1.37 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2084 dl 1.58 while ((t = w.nextLocalTask()) != null)
2085 dl 1.37 t.doExec();
2086 dl 1.58 if ((q = findNonEmptyStealQueue()) != null) {
2087 dl 1.1 if (!active) { // re-establish active count
2088     active = true;
2089     do {} while (!U.compareAndSwapLong
2090 dl 1.58 (this, CTL, c = ctl,
2091     ((c & ~AC_MASK) |
2092     ((c & AC_MASK) + AC_UNIT))));
2093 dl 1.1 }
2094 dl 1.36 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2095 dl 1.58 (w.currentSteal = t).doExec();
2096     w.currentSteal = ps;
2097 dl 1.36 }
2098 dl 1.1 }
2099 dl 1.37 else if (active) { // decrement active count without queuing
2100 dl 1.58 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2101     if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2102     break; // bypass decrement-then-increment
2103 dl 1.37 if (U.compareAndSwapLong(this, CTL, c, nc))
2104 dl 1.1 active = false;
2105     }
2106 dl 1.58 else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2107     U.compareAndSwapLong
2108     (this, CTL, c, ((c & ~AC_MASK) |
2109     ((c & AC_MASK) + AC_UNIT))))
2110     break;
2111 dl 1.1 }
2112     }
2113    
2114     /**
2115     * Gets and removes a local or stolen task for the given worker.
2116     *
2117     * @return a task, if available
2118     */
2119     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2120     for (ForkJoinTask<?> t;;) {
2121     WorkQueue q; int b;
2122     if ((t = w.nextLocalTask()) != null)
2123     return t;
2124 dl 1.58 if ((q = findNonEmptyStealQueue()) == null)
2125 dl 1.1 return null;
2126 dl 1.58 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2127 dl 1.1 return t;
2128     }
2129     }
2130    
2131     /**
2132 dl 1.12 * Returns a cheap heuristic guide for task partitioning when
2133     * programmers, frameworks, tools, or languages have little or no
2134     * idea about task granularity. In essence by offering this
2135     * method, we ask users only about tradeoffs in overhead vs
2136     * expected throughput and its variance, rather than how finely to
2137     * partition tasks.
2138     *
2139     * In a steady state strict (tree-structured) computation, each
2140     * thread makes available for stealing enough tasks for other
2141     * threads to remain active. Inductively, if all threads play by
2142     * the same rules, each thread should make available only a
2143     * constant number of tasks.
2144     *
2145     * The minimum useful constant is just 1. But using a value of 1
2146     * would require immediate replenishment upon each steal to
2147     * maintain enough tasks, which is infeasible. Further,
2148     * partitionings/granularities of offered tasks should minimize
2149     * steal rates, which in general means that threads nearer the top
2150     * of computation tree should generate more than those nearer the
2151     * bottom. In perfect steady state, each thread is at
2152     * approximately the same level of computation tree. However,
2153     * producing extra tasks amortizes the uncertainty of progress and
2154     * diffusion assumptions.
2155     *
2156 jsr166 1.56 * So, users will want to use values larger (but not much larger)
2157 dl 1.12 * than 1 to both smooth over transient shortages and hedge
2158     * against uneven progress; as traded off against the cost of
2159     * extra task overhead. We leave the user to pick a threshold
2160     * value to compare with the results of this call to guide
2161     * decisions, but recommend values such as 3.
2162     *
2163     * When all threads are active, it is on average OK to estimate
2164     * surplus strictly locally. In steady-state, if one thread is
2165     * maintaining say 2 surplus tasks, then so are others. So we can
2166     * just use estimated queue length. However, this strategy alone
2167     * leads to serious mis-estimates in some non-steady-state
2168     * conditions (ramp-up, ramp-down, other stalls). We can detect
2169     * many of these by further considering the number of "idle"
2170     * threads, that are known to have zero queued tasks, so
2171     * compensate by a factor of (#idle/#active) threads.
2172     *
2173     * Note: The approximation of #busy workers as #active workers is
2174     * not very good under current signalling scheme, and should be
2175     * improved.
2176     */
2177     static int getSurplusQueuedTaskCount() {
2178     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2179     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2180 dl 1.58 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2181 dl 1.18 int n = (q = wt.workQueue).top - q.base;
2182 dl 1.12 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2183 dl 1.18 return n - (a > (p >>>= 1) ? 0 :
2184     a > (p >>>= 1) ? 1 :
2185     a > (p >>>= 1) ? 2 :
2186     a > (p >>>= 1) ? 4 :
2187     8);
2188 dl 1.12 }
2189     return 0;
2190 dl 1.7 }
2191    
2192 dl 1.1 // Termination
2193    
2194     /**
2195     * Possibly initiates and/or completes termination. The caller
2196     * triggering termination runs three passes through workQueues:
2197     * (0) Setting termination status, followed by wakeups of queued
2198     * workers; (1) cancelling all tasks; (2) interrupting lagging
2199     * threads (likely in external tasks, but possibly also blocked in
2200     * joins). Each pass repeats previous steps because of potential
2201     * lagging thread creation.
2202     *
2203     * @param now if true, unconditionally terminate, else only
2204     * if no work and no active workers
2205     * @param enable if true, enable shutdown when next possible
2206     * @return true if now terminating or terminated
2207     */
2208     private boolean tryTerminate(boolean now, boolean enable) {
2209 dl 1.37 int ps;
2210 dl 1.58 if (this == common) // cannot shut down
2211 dl 1.12 return false;
2212 dl 1.37 if ((ps = plock) >= 0) { // enable by setting plock
2213     if (!enable)
2214     return false;
2215     if ((ps & PL_LOCK) != 0 ||
2216     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2217     ps = acquirePlock();
2218     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2219     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2220     releasePlock(nps);
2221     }
2222 dl 1.1 for (long c;;) {
2223 dl 1.37 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2224 dl 1.58 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2225 jsr166 1.10 synchronized (this) {
2226 dl 1.37 notifyAll(); // signal when 0 workers
2227 dl 1.8 }
2228 dl 1.1 }
2229     return true;
2230     }
2231 dl 1.37 if (!now) { // check if idle & no tasks
2232     WorkQueue[] ws; WorkQueue w;
2233 dl 1.58 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2234 dl 1.1 return false;
2235 dl 1.37 if ((ws = workQueues) != null) {
2236     for (int i = 0; i < ws.length; ++i) {
2237 dl 1.58 if ((w = ws[i]) != null &&
2238     (!w.isEmpty() ||
2239     ((i & 1) != 0 && w.eventCount >= 0))) {
2240     signalWork(ws, w);
2241     return false;
2242 dl 1.37 }
2243 dl 1.1 }
2244     }
2245     }
2246     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2247     for (int pass = 0; pass < 3; ++pass) {
2248 dl 1.37 WorkQueue[] ws; WorkQueue w; Thread wt;
2249     if ((ws = workQueues) != null) {
2250 dl 1.1 int n = ws.length;
2251     for (int i = 0; i < n; ++i) {
2252     if ((w = ws[i]) != null) {
2253 dl 1.12 w.qlock = -1;
2254 dl 1.1 if (pass > 0) {
2255     w.cancelAll();
2256 dl 1.32 if (pass > 1 && (wt = w.owner) != null) {
2257     if (!wt.isInterrupted()) {
2258     try {
2259     wt.interrupt();
2260 dl 1.37 } catch (Throwable ignore) {
2261 dl 1.32 }
2262     }
2263     U.unpark(wt);
2264     }
2265 dl 1.1 }
2266     }
2267     }
2268     // Wake up workers parked on event queue
2269     int i, e; long cc; Thread p;
2270     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2271 dl 1.37 (i = e & SMASK) < n && i >= 0 &&
2272 dl 1.1 (w = ws[i]) != null) {
2273     long nc = ((long)(w.nextWait & E_MASK) |
2274     ((cc + AC_UNIT) & AC_MASK) |
2275     (cc & (TC_MASK|STOP_BIT)));
2276     if (w.eventCount == (e | INT_SIGN) &&
2277     U.compareAndSwapLong(this, CTL, cc, nc)) {
2278     w.eventCount = (e + E_SEQ) & E_MASK;
2279 dl 1.12 w.qlock = -1;
2280 dl 1.1 if ((p = w.parker) != null)
2281     U.unpark(p);
2282     }
2283     }
2284     }
2285     }
2286     }
2287     }
2288     }
2289    
2290 dl 1.12 // external operations on common pool
2291    
2292     /**
2293     * Returns common pool queue for a thread that has submitted at
2294     * least one task.
2295     */
2296     static WorkQueue commonSubmitterQueue() {
2297 dl 1.58 Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2298 dl 1.12 return ((z = submitters.get()) != null &&
2299 dl 1.40 (p = common) != null &&
2300 dl 1.12 (ws = p.workQueues) != null &&
2301     (m = ws.length - 1) >= 0) ?
2302     ws[m & z.seed & SQMASK] : null;
2303     }
2304    
2305     /**
2306     * Tries to pop the given task from submitter's queue in common pool.
2307     */
2308 dl 1.58 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2309     WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2310     Submitter z = submitters.get();
2311     WorkQueue[] ws = workQueues;
2312     boolean popped = false;
2313     if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2314     (joiner = ws[z.seed & m & SQMASK]) != null &&
2315     joiner.base != (s = joiner.top) &&
2316     (a = joiner.array) != null) {
2317 dl 1.21 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2318 dl 1.58 if (U.getObject(a, j) == task &&
2319     U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2320     if (joiner.top == s && joiner.array == a &&
2321     U.compareAndSwapObject(a, j, task, null)) {
2322     joiner.top = s - 1;
2323     popped = true;
2324 dl 1.21 }
2325 dl 1.58 joiner.qlock = 0;
2326 dl 1.12 }
2327     }
2328 dl 1.58 return popped;
2329 dl 1.12 }
2330    
2331 dl 1.58 final int externalHelpComplete(CountedCompleter<?> task) {
2332     WorkQueue joiner; int m, j;
2333     Submitter z = submitters.get();
2334     WorkQueue[] ws = workQueues;
2335     int s = 0;
2336     if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2337     (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2338     int scans = m + m + 1;
2339     long c = 0L; // for stability check
2340     j |= 1; // poll odd queues
2341     for (int k = scans; ; j += 2) {
2342     WorkQueue q;
2343     if ((s = task.status) < 0)
2344 dl 1.12 break;
2345 dl 1.58 else if (joiner.externalPopAndExecCC(task))
2346     k = scans;
2347     else if ((s = task.status) < 0)
2348 dl 1.12 break;
2349 dl 1.58 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2350     k = scans;
2351     else if (--k < 0) {
2352     if (c == (c = ctl))
2353     break;
2354     k = scans;
2355 dl 1.12 }
2356     }
2357     }
2358 dl 1.58 return s;
2359 dl 1.12 }
2360    
2361 dl 1.1 // Exported methods
2362    
2363     // Constructors
2364    
2365     /**
2366     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2367     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2368     * #defaultForkJoinWorkerThreadFactory default thread factory},
2369     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2370     *
2371     * @throws SecurityException if a security manager exists and
2372     * the caller is not permitted to modify threads
2373     * because it does not hold {@link
2374     * java.lang.RuntimePermission}{@code ("modifyThread")}
2375     */
2376     public ForkJoinPool() {
2377 jsr166 1.52 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2378 dl 1.1 defaultForkJoinWorkerThreadFactory, null, false);
2379     }
2380    
2381     /**
2382     * Creates a {@code ForkJoinPool} with the indicated parallelism
2383     * level, the {@linkplain
2384     * #defaultForkJoinWorkerThreadFactory default thread factory},
2385     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2386     *
2387     * @param parallelism the parallelism level
2388     * @throws IllegalArgumentException if parallelism less than or
2389     * equal to zero, or greater than implementation limit
2390     * @throws SecurityException if a security manager exists and
2391     * the caller is not permitted to modify threads
2392     * because it does not hold {@link
2393     * java.lang.RuntimePermission}{@code ("modifyThread")}
2394     */
2395     public ForkJoinPool(int parallelism) {
2396     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2397     }
2398    
2399     /**
2400     * Creates a {@code ForkJoinPool} with the given parameters.
2401     *
2402     * @param parallelism the parallelism level. For default value,
2403     * use {@link java.lang.Runtime#availableProcessors}.
2404     * @param factory the factory for creating new threads. For default value,
2405     * use {@link #defaultForkJoinWorkerThreadFactory}.
2406     * @param handler the handler for internal worker threads that
2407     * terminate due to unrecoverable errors encountered while executing
2408     * tasks. For default value, use {@code null}.
2409     * @param asyncMode if true,
2410     * establishes local first-in-first-out scheduling mode for forked
2411     * tasks that are never joined. This mode may be more appropriate
2412     * than default locally stack-based mode in applications in which
2413     * worker threads only process event-style asynchronous tasks.
2414     * For default value, use {@code false}.
2415     * @throws IllegalArgumentException if parallelism less than or
2416     * equal to zero, or greater than implementation limit
2417     * @throws NullPointerException if the factory is null
2418     * @throws SecurityException if a security manager exists and
2419     * the caller is not permitted to modify threads
2420     * because it does not hold {@link
2421     * java.lang.RuntimePermission}{@code ("modifyThread")}
2422     */
2423     public ForkJoinPool(int parallelism,
2424     ForkJoinWorkerThreadFactory factory,
2425 dl 1.58 UncaughtExceptionHandler handler,
2426 dl 1.1 boolean asyncMode) {
2427 dl 1.58 this(checkParallelism(parallelism),
2428     checkFactory(factory),
2429     handler,
2430     (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2431     "ForkJoinPool-" + nextPoolId() + "-worker-");
2432 dl 1.1 checkPermission();
2433 dl 1.58 }
2434    
2435     private static int checkParallelism(int parallelism) {
2436     if (parallelism <= 0 || parallelism > MAX_CAP)
2437     throw new IllegalArgumentException();
2438     return parallelism;
2439     }
2440    
2441     private static ForkJoinWorkerThreadFactory checkFactory
2442     (ForkJoinWorkerThreadFactory factory) {
2443 dl 1.1 if (factory == null)
2444     throw new NullPointerException();
2445 dl 1.58 return factory;
2446 dl 1.1 }
2447    
2448 dl 1.7 /**
2449 dl 1.58 * Creates a {@code ForkJoinPool} with the given parameters, without
2450     * any security checks or parameter validation. Invoked directly by
2451     * makeCommonPool.
2452     */
2453     private ForkJoinPool(int parallelism,
2454     ForkJoinWorkerThreadFactory factory,
2455     UncaughtExceptionHandler handler,
2456     int mode,
2457     String workerNamePrefix) {
2458     this.workerNamePrefix = workerNamePrefix;
2459 dl 1.8 this.factory = factory;
2460     this.ueh = handler;
2461 dl 1.58 this.mode = (short)mode;
2462     this.parallelism = (short)parallelism;
2463     long np = (long)(-parallelism); // offset ctl counts
2464     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2465 dl 1.8 }
2466    
2467     /**
2468 dl 1.34 * Returns the common pool instance. This pool is statically
2469 dl 1.40 * constructed; its run state is unaffected by attempts to {@link
2470     * #shutdown} or {@link #shutdownNow}. However this pool and any
2471     * ongoing processing are automatically terminated upon program
2472     * {@link System#exit}. Any program that relies on asynchronous
2473     * task processing to complete before program termination should
2474 dl 1.58 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2475     * before exit.
2476 dl 1.7 *
2477     * @return the common pool instance
2478 jsr166 1.44 * @since 1.8
2479 dl 1.7 */
2480     public static ForkJoinPool commonPool() {
2481 dl 1.40 // assert common != null : "static init error";
2482     return common;
2483 dl 1.7 }
2484    
2485 dl 1.1 // Execution methods
2486    
2487     /**
2488     * Performs the given task, returning its result upon completion.
2489     * If the computation encounters an unchecked Exception or Error,
2490     * it is rethrown as the outcome of this invocation. Rethrown
2491     * exceptions behave in the same way as regular exceptions, but,
2492     * when possible, contain stack traces (as displayed for example
2493     * using {@code ex.printStackTrace()}) of both the current thread
2494     * as well as the thread actually encountering the exception;
2495     * minimally only the latter.
2496     *
2497     * @param task the task
2498     * @return the task's result
2499     * @throws NullPointerException if the task is null
2500     * @throws RejectedExecutionException if the task cannot be
2501     * scheduled for execution
2502     */
2503     public <T> T invoke(ForkJoinTask<T> task) {
2504     if (task == null)
2505     throw new NullPointerException();
2506 dl 1.12 externalPush(task);
2507 dl 1.1 return task.join();
2508     }
2509    
2510     /**
2511     * Arranges for (asynchronous) execution of the given task.
2512     *
2513     * @param task the task
2514     * @throws NullPointerException if the task is null
2515     * @throws RejectedExecutionException if the task cannot be
2516     * scheduled for execution
2517     */
2518     public void execute(ForkJoinTask<?> task) {
2519     if (task == null)
2520     throw new NullPointerException();
2521 dl 1.12 externalPush(task);
2522 dl 1.1 }
2523    
2524     // AbstractExecutorService methods
2525    
2526     /**
2527     * @throws NullPointerException if the task is null
2528     * @throws RejectedExecutionException if the task cannot be
2529     * scheduled for execution
2530     */
2531     public void execute(Runnable task) {
2532     if (task == null)
2533     throw new NullPointerException();
2534     ForkJoinTask<?> job;
2535     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2536     job = (ForkJoinTask<?>) task;
2537     else
2538 dl 1.58 job = new ForkJoinTask.RunnableExecuteAction(task);
2539 dl 1.12 externalPush(job);
2540 dl 1.1 }
2541    
2542     /**
2543     * Submits a ForkJoinTask for execution.
2544     *
2545     * @param task the task to submit
2546     * @return the task
2547     * @throws NullPointerException if the task is null
2548     * @throws RejectedExecutionException if the task cannot be
2549     * scheduled for execution
2550     */
2551     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2552     if (task == null)
2553     throw new NullPointerException();
2554 dl 1.12 externalPush(task);
2555 dl 1.1 return task;
2556     }
2557    
2558     /**
2559     * @throws NullPointerException if the task is null
2560     * @throws RejectedExecutionException if the task cannot be
2561     * scheduled for execution
2562     */
2563     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2564     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2565 dl 1.12 externalPush(job);
2566 dl 1.1 return job;
2567     }
2568    
2569     /**
2570     * @throws NullPointerException if the task is null
2571     * @throws RejectedExecutionException if the task cannot be
2572     * scheduled for execution
2573     */
2574     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2575     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2576 dl 1.12 externalPush(job);
2577 dl 1.1 return job;
2578     }
2579    
2580     /**
2581     * @throws NullPointerException if the task is null
2582     * @throws RejectedExecutionException if the task cannot be
2583     * scheduled for execution
2584     */
2585     public ForkJoinTask<?> submit(Runnable task) {
2586     if (task == null)
2587     throw new NullPointerException();
2588     ForkJoinTask<?> job;
2589     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2590     job = (ForkJoinTask<?>) task;
2591     else
2592     job = new ForkJoinTask.AdaptedRunnableAction(task);
2593 dl 1.12 externalPush(job);
2594 dl 1.1 return job;
2595     }
2596    
2597     /**
2598     * @throws NullPointerException {@inheritDoc}
2599     * @throws RejectedExecutionException {@inheritDoc}
2600     */
2601     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2602     // In previous versions of this class, this method constructed
2603     // a task to run ForkJoinTask.invokeAll, but now external
2604     // invocation of multiple tasks is at least as efficient.
2605 jsr166 1.48 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2606 dl 1.1
2607     boolean done = false;
2608     try {
2609     for (Callable<T> t : tasks) {
2610     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2611 jsr166 1.49 futures.add(f);
2612 dl 1.12 externalPush(f);
2613 dl 1.1 }
2614 jsr166 1.48 for (int i = 0, size = futures.size(); i < size; i++)
2615     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2616 dl 1.1 done = true;
2617     return futures;
2618     } finally {
2619     if (!done)
2620 jsr166 1.48 for (int i = 0, size = futures.size(); i < size; i++)
2621     futures.get(i).cancel(false);
2622 dl 1.1 }
2623     }
2624    
2625     /**
2626     * Returns the factory used for constructing new workers.
2627     *
2628     * @return the factory used for constructing new workers
2629     */
2630     public ForkJoinWorkerThreadFactory getFactory() {
2631     return factory;
2632     }
2633    
2634     /**
2635     * Returns the handler for internal worker threads that terminate
2636     * due to unrecoverable errors encountered while executing tasks.
2637     *
2638     * @return the handler, or {@code null} if none
2639     */
2640 dl 1.58 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2641 dl 1.1 return ueh;
2642     }
2643    
2644     /**
2645     * Returns the targeted parallelism level of this pool.
2646     *
2647     * @return the targeted parallelism level of this pool
2648     */
2649     public int getParallelism() {
2650 dl 1.58 int par;
2651     return ((par = parallelism) > 0) ? par : 1;
2652 dl 1.1 }
2653    
2654     /**
2655 dl 1.7 * Returns the targeted parallelism level of the common pool.
2656     *
2657     * @return the targeted parallelism level of the common pool
2658 jsr166 1.44 * @since 1.8
2659 dl 1.7 */
2660     public static int getCommonPoolParallelism() {
2661 dl 1.40 return commonParallelism;
2662 dl 1.7 }
2663    
2664     /**
2665 dl 1.1 * Returns the number of worker threads that have started but not
2666     * yet terminated. The result returned by this method may differ
2667     * from {@link #getParallelism} when threads are created to
2668     * maintain parallelism when others are cooperatively blocked.
2669     *
2670     * @return the number of worker threads
2671     */
2672     public int getPoolSize() {
2673 dl 1.58 return parallelism + (short)(ctl >>> TC_SHIFT);
2674 dl 1.1 }
2675    
2676     /**
2677     * Returns {@code true} if this pool uses local first-in-first-out
2678     * scheduling mode for forked tasks that are never joined.
2679     *
2680     * @return {@code true} if this pool uses async mode
2681     */
2682     public boolean getAsyncMode() {
2683 dl 1.58 return mode == FIFO_QUEUE;
2684 dl 1.1 }
2685    
2686     /**
2687     * Returns an estimate of the number of worker threads that are
2688     * not blocked waiting to join tasks or for other managed
2689     * synchronization. This method may overestimate the
2690     * number of running threads.
2691     *
2692     * @return the number of worker threads
2693     */
2694     public int getRunningThreadCount() {
2695     int rc = 0;
2696     WorkQueue[] ws; WorkQueue w;
2697     if ((ws = workQueues) != null) {
2698     for (int i = 1; i < ws.length; i += 2) {
2699     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2700     ++rc;
2701     }
2702     }
2703     return rc;
2704     }
2705    
2706     /**
2707     * Returns an estimate of the number of threads that are currently
2708     * stealing or executing tasks. This method may overestimate the
2709     * number of active threads.
2710     *
2711     * @return the number of active threads
2712     */
2713     public int getActiveThreadCount() {
2714 dl 1.58 int r = parallelism + (int)(ctl >> AC_SHIFT);
2715 dl 1.1 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2716     }
2717    
2718     /**
2719     * Returns {@code true} if all worker threads are currently idle.
2720     * An idle worker is one that cannot obtain a task to execute
2721     * because none are available to steal from other threads, and
2722     * there are no pending submissions to the pool. This method is
2723     * conservative; it might not return {@code true} immediately upon
2724     * idleness of all threads, but will eventually become true if
2725     * threads remain inactive.
2726     *
2727     * @return {@code true} if all threads are currently idle
2728     */
2729     public boolean isQuiescent() {
2730 dl 1.58 return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2731 dl 1.1 }
2732    
2733     /**
2734     * Returns an estimate of the total number of tasks stolen from
2735     * one thread's work queue by another. The reported value
2736     * underestimates the actual total number of steals when the pool
2737     * is not quiescent. This value may be useful for monitoring and
2738     * tuning fork/join programs: in general, steal counts should be
2739     * high enough to keep threads busy, but low enough to avoid
2740     * overhead and contention across threads.
2741     *
2742     * @return the number of steals
2743     */
2744     public long getStealCount() {
2745 dl 1.8 long count = stealCount;
2746 dl 1.1 WorkQueue[] ws; WorkQueue w;
2747     if ((ws = workQueues) != null) {
2748     for (int i = 1; i < ws.length; i += 2) {
2749     if ((w = ws[i]) != null)
2750 dl 1.12 count += w.nsteals;
2751 dl 1.1 }
2752     }
2753     return count;
2754     }
2755    
2756     /**
2757     * Returns an estimate of the total number of tasks currently held
2758     * in queues by worker threads (but not including tasks submitted
2759     * to the pool that have not begun executing). This value is only
2760     * an approximation, obtained by iterating across all threads in
2761     * the pool. This method may be useful for tuning task
2762     * granularities.
2763     *
2764     * @return the number of queued tasks
2765     */
2766     public long getQueuedTaskCount() {
2767     long count = 0;
2768     WorkQueue[] ws; WorkQueue w;
2769     if ((ws = workQueues) != null) {
2770     for (int i = 1; i < ws.length; i += 2) {
2771     if ((w = ws[i]) != null)
2772     count += w.queueSize();
2773     }
2774     }
2775     return count;
2776     }
2777    
2778     /**
2779     * Returns an estimate of the number of tasks submitted to this
2780     * pool that have not yet begun executing. This method may take
2781     * time proportional to the number of submissions.
2782     *
2783     * @return the number of queued submissions
2784     */
2785     public int getQueuedSubmissionCount() {
2786     int count = 0;
2787     WorkQueue[] ws; WorkQueue w;
2788     if ((ws = workQueues) != null) {
2789     for (int i = 0; i < ws.length; i += 2) {
2790     if ((w = ws[i]) != null)
2791     count += w.queueSize();
2792     }
2793     }
2794     return count;
2795     }
2796    
2797     /**
2798     * Returns {@code true} if there are any tasks submitted to this
2799     * pool that have not yet begun executing.
2800     *
2801     * @return {@code true} if there are any queued submissions
2802     */
2803     public boolean hasQueuedSubmissions() {
2804     WorkQueue[] ws; WorkQueue w;
2805     if ((ws = workQueues) != null) {
2806     for (int i = 0; i < ws.length; i += 2) {
2807 dl 1.21 if ((w = ws[i]) != null && !w.isEmpty())
2808 dl 1.1 return true;
2809     }
2810     }
2811     return false;
2812     }
2813    
2814     /**
2815     * Removes and returns the next unexecuted submission if one is
2816     * available. This method may be useful in extensions to this
2817     * class that re-assign work in systems with multiple pools.
2818     *
2819     * @return the next submission, or {@code null} if none
2820     */
2821     protected ForkJoinTask<?> pollSubmission() {
2822     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2823     if ((ws = workQueues) != null) {
2824     for (int i = 0; i < ws.length; i += 2) {
2825     if ((w = ws[i]) != null && (t = w.poll()) != null)
2826     return t;
2827     }
2828     }
2829     return null;
2830     }
2831    
2832     /**
2833     * Removes all available unexecuted submitted and forked tasks
2834     * from scheduling queues and adds them to the given collection,
2835     * without altering their execution status. These may include
2836     * artificially generated or wrapped tasks. This method is
2837     * designed to be invoked only when the pool is known to be
2838     * quiescent. Invocations at other times may not remove all
2839     * tasks. A failure encountered while attempting to add elements
2840     * to collection {@code c} may result in elements being in
2841     * neither, either or both collections when the associated
2842     * exception is thrown. The behavior of this operation is
2843     * undefined if the specified collection is modified while the
2844     * operation is in progress.
2845     *
2846     * @param c the collection to transfer elements into
2847     * @return the number of elements transferred
2848     */
2849     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2850     int count = 0;
2851     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2852     if ((ws = workQueues) != null) {
2853     for (int i = 0; i < ws.length; ++i) {
2854     if ((w = ws[i]) != null) {
2855     while ((t = w.poll()) != null) {
2856     c.add(t);
2857     ++count;
2858     }
2859     }
2860     }
2861     }
2862     return count;
2863     }
2864    
2865     /**
2866     * Returns a string identifying this pool, as well as its state,
2867     * including indications of run state, parallelism level, and
2868     * worker and task counts.
2869     *
2870     * @return a string identifying this pool, as well as its state
2871     */
2872     public String toString() {
2873     // Use a single pass through workQueues to collect counts
2874     long qt = 0L, qs = 0L; int rc = 0;
2875 dl 1.8 long st = stealCount;
2876 dl 1.1 long c = ctl;
2877     WorkQueue[] ws; WorkQueue w;
2878     if ((ws = workQueues) != null) {
2879     for (int i = 0; i < ws.length; ++i) {
2880     if ((w = ws[i]) != null) {
2881     int size = w.queueSize();
2882     if ((i & 1) == 0)
2883     qs += size;
2884     else {
2885     qt += size;
2886 dl 1.12 st += w.nsteals;
2887 dl 1.1 if (w.isApparentlyUnblocked())
2888     ++rc;
2889     }
2890     }
2891     }
2892     }
2893 dl 1.58 int pc = parallelism;
2894 dl 1.1 int tc = pc + (short)(c >>> TC_SHIFT);
2895     int ac = pc + (int)(c >> AC_SHIFT);
2896     if (ac < 0) // ignore transient negative
2897     ac = 0;
2898     String level;
2899     if ((c & STOP_BIT) != 0)
2900     level = (tc == 0) ? "Terminated" : "Terminating";
2901     else
2902 dl 1.12 level = plock < 0 ? "Shutting down" : "Running";
2903 dl 1.1 return super.toString() +
2904     "[" + level +
2905     ", parallelism = " + pc +
2906     ", size = " + tc +
2907     ", active = " + ac +
2908     ", running = " + rc +
2909     ", steals = " + st +
2910     ", tasks = " + qt +
2911     ", submissions = " + qs +
2912     "]";
2913     }
2914    
2915     /**
2916 dl 1.7 * Possibly initiates an orderly shutdown in which previously
2917     * submitted tasks are executed, but no new tasks will be
2918     * accepted. Invocation has no effect on execution state if this
2919 jsr166 1.43 * is the {@link #commonPool()}, and no additional effect if
2920 dl 1.7 * already shut down. Tasks that are in the process of being
2921     * submitted concurrently during the course of this method may or
2922     * may not be rejected.
2923 dl 1.1 *
2924     * @throws SecurityException if a security manager exists and
2925     * the caller is not permitted to modify threads
2926     * because it does not hold {@link
2927     * java.lang.RuntimePermission}{@code ("modifyThread")}
2928     */
2929     public void shutdown() {
2930     checkPermission();
2931 dl 1.12 tryTerminate(false, true);
2932 dl 1.1 }
2933    
2934     /**
2935 dl 1.7 * Possibly attempts to cancel and/or stop all tasks, and reject
2936     * all subsequently submitted tasks. Invocation has no effect on
2937 jsr166 1.43 * execution state if this is the {@link #commonPool()}, and no
2938 dl 1.7 * additional effect if already shut down. Otherwise, tasks that
2939     * are in the process of being submitted or executed concurrently
2940     * during the course of this method may or may not be
2941     * rejected. This method cancels both existing and unexecuted
2942     * tasks, in order to permit termination in the presence of task
2943     * dependencies. So the method always returns an empty list
2944     * (unlike the case for some other Executors).
2945 dl 1.1 *
2946     * @return an empty list
2947     * @throws SecurityException if a security manager exists and
2948     * the caller is not permitted to modify threads
2949     * because it does not hold {@link
2950     * java.lang.RuntimePermission}{@code ("modifyThread")}
2951     */
2952     public List<Runnable> shutdownNow() {
2953     checkPermission();
2954 dl 1.12 tryTerminate(true, true);
2955 dl 1.1 return Collections.emptyList();
2956     }
2957    
2958     /**
2959     * Returns {@code true} if all tasks have completed following shut down.
2960     *
2961     * @return {@code true} if all tasks have completed following shut down
2962     */
2963     public boolean isTerminated() {
2964     long c = ctl;
2965     return ((c & STOP_BIT) != 0L &&
2966 dl 1.58 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2967 dl 1.1 }
2968    
2969     /**
2970     * Returns {@code true} if the process of termination has
2971     * commenced but not yet completed. This method may be useful for
2972     * debugging. A return of {@code true} reported a sufficient
2973     * period after shutdown may indicate that submitted tasks have
2974 jsr166 1.25 * ignored or suppressed interruption, or are waiting for I/O,
2975 dl 1.1 * causing this executor not to properly terminate. (See the
2976     * advisory notes for class {@link ForkJoinTask} stating that
2977     * tasks should not normally entail blocking operations. But if
2978     * they do, they must abort them on interrupt.)
2979     *
2980     * @return {@code true} if terminating but not yet terminated
2981     */
2982     public boolean isTerminating() {
2983     long c = ctl;
2984     return ((c & STOP_BIT) != 0L &&
2985 dl 1.58 (short)(c >>> TC_SHIFT) + parallelism > 0);
2986 dl 1.1 }
2987    
2988     /**
2989     * Returns {@code true} if this pool has been shut down.
2990     *
2991     * @return {@code true} if this pool has been shut down
2992     */
2993     public boolean isShutdown() {
2994 dl 1.12 return plock < 0;
2995 dl 1.1 }
2996    
2997     /**
2998 dl 1.12 * Blocks until all tasks have completed execution after a
2999     * shutdown request, or the timeout occurs, or the current thread
3000 dl 1.40 * is interrupted, whichever happens first. Because the {@link
3001     * #commonPool()} never terminates until program shutdown, when
3002     * applied to the common pool, this method is equivalent to {@link
3003 dl 1.58 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3004 dl 1.1 *
3005     * @param timeout the maximum time to wait
3006     * @param unit the time unit of the timeout argument
3007     * @return {@code true} if this executor terminated and
3008     * {@code false} if the timeout elapsed before termination
3009     * @throws InterruptedException if interrupted while waiting
3010     */
3011     public boolean awaitTermination(long timeout, TimeUnit unit)
3012     throws InterruptedException {
3013 dl 1.40 if (Thread.interrupted())
3014     throw new InterruptedException();
3015     if (this == common) {
3016     awaitQuiescence(timeout, unit);
3017     return false;
3018     }
3019 dl 1.1 long nanos = unit.toNanos(timeout);
3020 dl 1.8 if (isTerminated())
3021     return true;
3022 dl 1.58 if (nanos <= 0L)
3023     return false;
3024     long deadline = System.nanoTime() + nanos;
3025 jsr166 1.10 synchronized (this) {
3026 dl 1.58 for (;;) {
3027     if (isTerminated())
3028     return true;
3029     if (nanos <= 0L)
3030     return false;
3031     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3032     wait(millis > 0L ? millis : 1L);
3033     nanos = deadline - System.nanoTime();
3034 dl 1.1 }
3035     }
3036     }
3037    
3038     /**
3039 dl 1.40 * If called by a ForkJoinTask operating in this pool, equivalent
3040     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3041     * waits and/or attempts to assist performing tasks until this
3042     * pool {@link #isQuiescent} or the indicated timeout elapses.
3043     *
3044     * @param timeout the maximum time to wait
3045     * @param unit the time unit of the timeout argument
3046     * @return {@code true} if quiescent; {@code false} if the
3047     * timeout elapsed.
3048     */
3049     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3050     long nanos = unit.toNanos(timeout);
3051     ForkJoinWorkerThread wt;
3052     Thread thread = Thread.currentThread();
3053     if ((thread instanceof ForkJoinWorkerThread) &&
3054     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3055     helpQuiescePool(wt.workQueue);
3056     return true;
3057     }
3058     long startTime = System.nanoTime();
3059     WorkQueue[] ws;
3060     int r = 0, m;
3061     boolean found = true;
3062     while (!isQuiescent() && (ws = workQueues) != null &&
3063     (m = ws.length - 1) >= 0) {
3064     if (!found) {
3065     if ((System.nanoTime() - startTime) > nanos)
3066     return false;
3067     Thread.yield(); // cannot block
3068     }
3069     found = false;
3070     for (int j = (m + 1) << 2; j >= 0; --j) {
3071     ForkJoinTask<?> t; WorkQueue q; int b;
3072     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3073     found = true;
3074 dl 1.58 if ((t = q.pollAt(b)) != null)
3075 dl 1.40 t.doExec();
3076     break;
3077     }
3078     }
3079     }
3080     return true;
3081     }
3082    
3083     /**
3084     * Waits and/or attempts to assist performing tasks indefinitely
3085 jsr166 1.54 * until the {@link #commonPool()} {@link #isQuiescent}.
3086 dl 1.40 */
3087 dl 1.42 static void quiesceCommonPool() {
3088 dl 1.40 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3089     }
3090    
3091     /**
3092 dl 1.1 * Interface for extending managed parallelism for tasks running
3093     * in {@link ForkJoinPool}s.
3094     *
3095     * <p>A {@code ManagedBlocker} provides two methods. Method
3096     * {@code isReleasable} must return {@code true} if blocking is
3097     * not necessary. Method {@code block} blocks the current thread
3098     * if necessary (perhaps internally invoking {@code isReleasable}
3099     * before actually blocking). These actions are performed by any
3100 dl 1.58 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3101     * The unusual methods in this API accommodate synchronizers that
3102     * may, but don't usually, block for long periods. Similarly, they
3103 dl 1.1 * allow more efficient internal handling of cases in which
3104     * additional workers may be, but usually are not, needed to
3105     * ensure sufficient parallelism. Toward this end,
3106     * implementations of method {@code isReleasable} must be amenable
3107     * to repeated invocation.
3108     *
3109     * <p>For example, here is a ManagedBlocker based on a
3110     * ReentrantLock:
3111     * <pre> {@code
3112     * class ManagedLocker implements ManagedBlocker {
3113     * final ReentrantLock lock;
3114     * boolean hasLock = false;
3115     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3116     * public boolean block() {
3117     * if (!hasLock)
3118     * lock.lock();
3119     * return true;
3120     * }
3121     * public boolean isReleasable() {
3122     * return hasLock || (hasLock = lock.tryLock());
3123     * }
3124     * }}</pre>
3125     *
3126     * <p>Here is a class that possibly blocks waiting for an
3127     * item on a given queue:
3128     * <pre> {@code
3129     * class QueueTaker<E> implements ManagedBlocker {
3130     * final BlockingQueue<E> queue;
3131     * volatile E item = null;
3132     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3133     * public boolean block() throws InterruptedException {
3134     * if (item == null)
3135     * item = queue.take();
3136     * return true;
3137     * }
3138     * public boolean isReleasable() {
3139     * return item != null || (item = queue.poll()) != null;
3140     * }
3141     * public E getItem() { // call after pool.managedBlock completes
3142     * return item;
3143     * }
3144     * }}</pre>
3145     */
3146     public static interface ManagedBlocker {
3147     /**
3148     * Possibly blocks the current thread, for example waiting for
3149     * a lock or condition.
3150     *
3151     * @return {@code true} if no additional blocking is necessary
3152     * (i.e., if isReleasable would return true)
3153     * @throws InterruptedException if interrupted while waiting
3154     * (the method is not required to do so, but is allowed to)
3155     */
3156     boolean block() throws InterruptedException;
3157    
3158     /**
3159     * Returns {@code true} if blocking is unnecessary.
3160 dl 1.58 * @return {@code true} if blocking is unnecessary
3161 dl 1.1 */
3162     boolean isReleasable();
3163     }
3164    
3165     /**
3166     * Blocks in accord with the given blocker. If the current thread
3167     * is a {@link ForkJoinWorkerThread}, this method possibly
3168     * arranges for a spare thread to be activated if necessary to
3169     * ensure sufficient parallelism while the current thread is blocked.
3170     *
3171     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3172     * behaviorally equivalent to
3173     * <pre> {@code
3174     * while (!blocker.isReleasable())
3175     * if (blocker.block())
3176     * return;
3177     * }</pre>
3178     *
3179     * If the caller is a {@code ForkJoinTask}, then the pool may
3180     * first be expanded to ensure parallelism, and later adjusted.
3181     *
3182     * @param blocker the blocker
3183     * @throws InterruptedException if blocker.block did so
3184     */
3185     public static void managedBlock(ManagedBlocker blocker)
3186     throws InterruptedException {
3187     Thread t = Thread.currentThread();
3188 dl 1.12 if (t instanceof ForkJoinWorkerThread) {
3189     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3190 dl 1.58 while (!blocker.isReleasable()) {
3191     if (p.tryCompensate(p.ctl)) {
3192 dl 1.12 try {
3193     do {} while (!blocker.isReleasable() &&
3194     !blocker.block());
3195     } finally {
3196 dl 1.1 p.incrementActiveCount();
3197 dl 1.12 }
3198     break;
3199 dl 1.1 }
3200     }
3201     }
3202 dl 1.12 else {
3203     do {} while (!blocker.isReleasable() &&
3204     !blocker.block());
3205     }
3206 dl 1.1 }
3207    
3208     // AbstractExecutorService overrides. These rely on undocumented
3209     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3210     // implement RunnableFuture.
3211    
3212     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3213     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3214     }
3215    
3216     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3217     return new ForkJoinTask.AdaptedCallable<T>(callable);
3218     }
3219    
3220     // Unsafe mechanics
3221     private static final sun.misc.Unsafe U;
3222     private static final long CTL;
3223     private static final long PARKBLOCKER;
3224     private static final int ABASE;
3225     private static final int ASHIFT;
3226 dl 1.8 private static final long STEALCOUNT;
3227 dl 1.12 private static final long PLOCK;
3228     private static final long INDEXSEED;
3229 dl 1.58 private static final long QBASE;
3230 dl 1.12 private static final long QLOCK;
3231 dl 1.1
3232     static {
3233 jsr166 1.47 // initialize field offsets for CAS etc
3234 dl 1.1 try {
3235     U = getUnsafe();
3236     Class<?> k = ForkJoinPool.class;
3237     CTL = U.objectFieldOffset
3238     (k.getDeclaredField("ctl"));
3239 dl 1.8 STEALCOUNT = U.objectFieldOffset
3240     (k.getDeclaredField("stealCount"));
3241 dl 1.12 PLOCK = U.objectFieldOffset
3242     (k.getDeclaredField("plock"));
3243     INDEXSEED = U.objectFieldOffset
3244     (k.getDeclaredField("indexSeed"));
3245 dl 1.1 Class<?> tk = Thread.class;
3246     PARKBLOCKER = U.objectFieldOffset
3247     (tk.getDeclaredField("parkBlocker"));
3248 dl 1.12 Class<?> wk = WorkQueue.class;
3249 dl 1.58 QBASE = U.objectFieldOffset
3250     (wk.getDeclaredField("base"));
3251 dl 1.12 QLOCK = U.objectFieldOffset
3252     (wk.getDeclaredField("qlock"));
3253     Class<?> ak = ForkJoinTask[].class;
3254 dl 1.1 ABASE = U.arrayBaseOffset(ak);
3255 jsr166 1.47 int scale = U.arrayIndexScale(ak);
3256     if ((scale & (scale - 1)) != 0)
3257     throw new Error("data type scale not a power of two");
3258     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3259 dl 1.1 } catch (Exception e) {
3260     throw new Error(e);
3261     }
3262 dl 1.12
3263 dl 1.18 submitters = new ThreadLocal<Submitter>();
3264 dl 1.58 defaultForkJoinWorkerThreadFactory =
3265 dl 1.18 new DefaultForkJoinWorkerThreadFactory();
3266 dl 1.21 modifyThreadPermission = new RuntimePermission("modifyThread");
3267    
3268 dl 1.58 common = java.security.AccessController.doPrivileged
3269     (new java.security.PrivilegedAction<ForkJoinPool>() {
3270     public ForkJoinPool run() { return makeCommonPool(); }});
3271     int par = common.parallelism; // report 1 even if threads disabled
3272     commonParallelism = par > 0 ? par : 1;
3273     }
3274 dl 1.18
3275 dl 1.58 /**
3276     * Creates and returns the common pool, respecting user settings
3277     * specified via system properties.
3278     */
3279     private static ForkJoinPool makeCommonPool() {
3280     int parallelism = -1;
3281     ForkJoinWorkerThreadFactory factory
3282     = defaultForkJoinWorkerThreadFactory;
3283     UncaughtExceptionHandler handler = null;
3284 jsr166 1.60 try { // ignore exceptions in accessing/parsing properties
3285 dl 1.18 String pp = System.getProperty
3286     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3287 dl 1.58 String fp = System.getProperty
3288     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3289 dl 1.18 String hp = System.getProperty
3290     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3291 dl 1.58 if (pp != null)
3292     parallelism = Integer.parseInt(pp);
3293 dl 1.18 if (fp != null)
3294 dl 1.58 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3295     getSystemClassLoader().loadClass(fp).newInstance());
3296 dl 1.18 if (hp != null)
3297 dl 1.58 handler = ((UncaughtExceptionHandler)ClassLoader.
3298 dl 1.18 getSystemClassLoader().loadClass(hp).newInstance());
3299     } catch (Exception ignore) {
3300     }
3301    
3302 dl 1.58 if (parallelism < 0 && // default 1 less than #cores
3303     (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3304     parallelism = 0;
3305     if (parallelism > MAX_CAP)
3306     parallelism = MAX_CAP;
3307     return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3308     "ForkJoinPool.commonPool-worker-");
3309 dl 1.1 }
3310    
3311     /**
3312     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3313     * Replace with a simple call to Unsafe.getUnsafe when integrating
3314     * into a jdk.
3315     *
3316     * @return a sun.misc.Unsafe
3317     */
3318     private static sun.misc.Unsafe getUnsafe() {
3319     try {
3320     return sun.misc.Unsafe.getUnsafe();
3321 jsr166 1.45 } catch (SecurityException tryReflectionInstead) {}
3322     try {
3323     return java.security.AccessController.doPrivileged
3324     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3325     public sun.misc.Unsafe run() throws Exception {
3326     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3327     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3328     f.setAccessible(true);
3329     Object x = f.get(null);
3330     if (k.isInstance(x))
3331     return k.cast(x);
3332     }
3333     throw new NoSuchFieldError("the Unsafe");
3334     }});
3335     } catch (java.security.PrivilegedActionException e) {
3336     throw new RuntimeException("Could not initialize intrinsics",
3337     e.getCause());
3338 dl 1.1 }
3339     }
3340     }