ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.59
Committed: Wed Jun 19 16:22:44 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.58: +6 -5 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.ThreadLocalRandom;
22 import java.util.concurrent.TimeUnit;
23
24 /**
25 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26 * A {@code ForkJoinPool} provides the entry point for submissions
27 * from non-{@code ForkJoinTask} clients, as well as management and
28 * monitoring operations.
29 *
30 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31 * ExecutorService} mainly by virtue of employing
32 * <em>work-stealing</em>: all threads in the pool attempt to find and
33 * execute tasks submitted to the pool and/or created by other active
34 * tasks (eventually blocking waiting for work if none exist). This
35 * enables efficient processing when most tasks spawn other subtasks
36 * (as do most {@code ForkJoinTask}s), as well as when many small
37 * tasks are submitted to the pool from external clients. Especially
38 * when setting <em>asyncMode</em> to true in constructors, {@code
39 * ForkJoinPool}s may also be appropriate for use with event-style
40 * tasks that are never joined.
41 *
42 * <p>A static {@link #commonPool()} is available and appropriate for
43 * most applications. The common pool is used by any ForkJoinTask that
44 * is not explicitly submitted to a specified pool. Using the common
45 * pool normally reduces resource usage (its threads are slowly
46 * reclaimed during periods of non-use, and reinstated upon subsequent
47 * use).
48 *
49 * <p>For applications that require separate or custom pools, a {@code
50 * ForkJoinPool} may be constructed with a given target parallelism
51 * level; by default, equal to the number of available processors. The
52 * pool attempts to maintain enough active (or available) threads by
53 * dynamically adding, suspending, or resuming internal worker
54 * threads, even if some tasks are stalled waiting to join others.
55 * However, no such adjustments are guaranteed in the face of blocked
56 * I/O or other unmanaged synchronization. The nested {@link
57 * ManagedBlocker} interface enables extension of the kinds of
58 * synchronization accommodated.
59 *
60 * <p>In addition to execution and lifecycle control methods, this
61 * class provides status check methods (for example
62 * {@link #getStealCount}) that are intended to aid in developing,
63 * tuning, and monitoring fork/join applications. Also, method
64 * {@link #toString} returns indications of pool state in a
65 * convenient form for informal monitoring.
66 *
67 * <p>As is the case with other ExecutorServices, there are three
68 * main task execution methods summarized in the following table.
69 * These are designed to be used primarily by clients not already
70 * engaged in fork/join computations in the current pool. The main
71 * forms of these methods accept instances of {@code ForkJoinTask},
72 * but overloaded forms also allow mixed execution of plain {@code
73 * Runnable}- or {@code Callable}- based activities as well. However,
74 * tasks that are already executing in a pool should normally instead
75 * use the within-computation forms listed in the table unless using
76 * async event-style tasks that are not usually joined, in which case
77 * there is little difference among choice of methods.
78 *
79 * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 * <caption>Summary of task execution methods</caption>
81 * <tr>
82 * <td></td>
83 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85 * </tr>
86 * <tr>
87 * <td> <b>Arrange async execution</b></td>
88 * <td> {@link #execute(ForkJoinTask)}</td>
89 * <td> {@link ForkJoinTask#fork}</td>
90 * </tr>
91 * <tr>
92 * <td> <b>Await and obtain result</b></td>
93 * <td> {@link #invoke(ForkJoinTask)}</td>
94 * <td> {@link ForkJoinTask#invoke}</td>
95 * </tr>
96 * <tr>
97 * <td> <b>Arrange exec and obtain Future</b></td>
98 * <td> {@link #submit(ForkJoinTask)}</td>
99 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100 * </tr>
101 * </table>
102 *
103 * <p>The common pool is by default constructed with default
104 * parameters, but these may be controlled by setting three
105 * {@linkplain System#getProperty system properties}:
106 * <ul>
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108 * - the parallelism level, a non-negative integer
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110 * - the class name of a {@link ForkJoinWorkerThreadFactory}
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112 * - the class name of a {@link UncaughtExceptionHandler}
113 * </ul>
114 * The system class loader is used to load these classes.
115 * Upon any error in establishing these settings, default parameters
116 * are used. It is possible to disable or limit the use of threads in
117 * the common pool by setting the parallelism property to zero, and/or
118 * using a factory that may return {@code null}.
119 *
120 * <p><b>Implementation notes</b>: This implementation restricts the
121 * maximum number of running threads to 32767. Attempts to create
122 * pools with greater than the maximum number result in
123 * {@code IllegalArgumentException}.
124 *
125 * <p>This implementation rejects submitted tasks (that is, by throwing
126 * {@link RejectedExecutionException}) only when the pool is shut down
127 * or internal resources have been exhausted.
128 *
129 * @since 1.7
130 * @author Doug Lea
131 */
132 public class ForkJoinPool extends AbstractExecutorService {
133
134 /*
135 * Implementation Overview
136 *
137 * This class and its nested classes provide the main
138 * functionality and control for a set of worker threads:
139 * Submissions from non-FJ threads enter into submission queues.
140 * Workers take these tasks and typically split them into subtasks
141 * that may be stolen by other workers. Preference rules give
142 * first priority to processing tasks from their own queues (LIFO
143 * or FIFO, depending on mode), then to randomized FIFO steals of
144 * tasks in other queues.
145 *
146 * WorkQueues
147 * ==========
148 *
149 * Most operations occur within work-stealing queues (in nested
150 * class WorkQueue). These are special forms of Deques that
151 * support only three of the four possible end-operations -- push,
152 * pop, and poll (aka steal), under the further constraints that
153 * push and pop are called only from the owning thread (or, as
154 * extended here, under a lock), while poll may be called from
155 * other threads. (If you are unfamiliar with them, you probably
156 * want to read Herlihy and Shavit's book "The Art of
157 * Multiprocessor programming", chapter 16 describing these in
158 * more detail before proceeding.) The main work-stealing queue
159 * design is roughly similar to those in the papers "Dynamic
160 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161 * (http://research.sun.com/scalable/pubs/index.html) and
162 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 * See also "Correct and Efficient Work-Stealing for Weak Memory
165 * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167 * analysis of memory ordering (atomic, volatile etc) issues. The
168 * main differences ultimately stem from GC requirements that we
169 * null out taken slots as soon as we can, to maintain as small a
170 * footprint as possible even in programs generating huge numbers
171 * of tasks. To accomplish this, we shift the CAS arbitrating pop
172 * vs poll (steal) from being on the indices ("base" and "top") to
173 * the slots themselves. So, both a successful pop and poll
174 * mainly entail a CAS of a slot from non-null to null. Because
175 * we rely on CASes of references, we do not need tag bits on base
176 * or top. They are simple ints as used in any circular
177 * array-based queue (see for example ArrayDeque). Updates to the
178 * indices must still be ordered in a way that guarantees that top
179 * == base means the queue is empty, but otherwise may err on the
180 * side of possibly making the queue appear nonempty when a push,
181 * pop, or poll have not fully committed. Note that this means
182 * that the poll operation, considered individually, is not
183 * wait-free. One thief cannot successfully continue until another
184 * in-progress one (or, if previously empty, a push) completes.
185 * However, in the aggregate, we ensure at least probabilistic
186 * non-blockingness. If an attempted steal fails, a thief always
187 * chooses a different random victim target to try next. So, in
188 * order for one thief to progress, it suffices for any
189 * in-progress poll or new push on any empty queue to
190 * complete. (This is why we normally use method pollAt and its
191 * variants that try once at the apparent base index, else
192 * consider alternative actions, rather than method poll.)
193 *
194 * This approach also enables support of a user mode in which local
195 * task processing is in FIFO, not LIFO order, simply by using
196 * poll rather than pop. This can be useful in message-passing
197 * frameworks in which tasks are never joined. However neither
198 * mode considers affinities, loads, cache localities, etc, so
199 * rarely provide the best possible performance on a given
200 * machine, but portably provide good throughput by averaging over
201 * these factors. (Further, even if we did try to use such
202 * information, we do not usually have a basis for exploiting it.
203 * For example, some sets of tasks profit from cache affinities,
204 * but others are harmed by cache pollution effects.)
205 *
206 * WorkQueues are also used in a similar way for tasks submitted
207 * to the pool. We cannot mix these tasks in the same queues used
208 * for work-stealing (this would contaminate lifo/fifo
209 * processing). Instead, we randomly associate submission queues
210 * with submitting threads, using a form of hashing. The
211 * Submitter probe value serves as a hash code for
212 * choosing existing queues, and may be randomly repositioned upon
213 * contention with other submitters. In essence, submitters act
214 * like workers except that they are restricted to executing local
215 * tasks that they submitted (or in the case of CountedCompleters,
216 * others with the same root task). However, because most
217 * shared/external queue operations are more expensive than
218 * internal, and because, at steady state, external submitters
219 * will compete for CPU with workers, ForkJoinTask.join and
220 * related methods disable them from repeatedly helping to process
221 * tasks if all workers are active. Insertion of tasks in shared
222 * mode requires a lock (mainly to protect in the case of
223 * resizing) but we use only a simple spinlock (using bits in
224 * field qlock), because submitters encountering a busy queue move
225 * on to try or create other queues -- they block only when
226 * creating and registering new queues.
227 *
228 * Management
229 * ==========
230 *
231 * The main throughput advantages of work-stealing stem from
232 * decentralized control -- workers mostly take tasks from
233 * themselves or each other. We cannot negate this in the
234 * implementation of other management responsibilities. The main
235 * tactic for avoiding bottlenecks is packing nearly all
236 * essentially atomic control state into two volatile variables
237 * that are by far most often read (not written) as status and
238 * consistency checks.
239 *
240 * Field "ctl" contains 64 bits holding all the information needed
241 * to atomically decide to add, inactivate, enqueue (on an event
242 * queue), dequeue, and/or re-activate workers. To enable this
243 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244 * far in excess of normal operating range) to allow ids, counts,
245 * and their negations (used for thresholding) to fit into 16bit
246 * fields.
247 *
248 * Field "plock" is a form of sequence lock with a saturating
249 * shutdown bit (similarly for per-queue "qlocks"), mainly
250 * protecting updates to the workQueues array, as well as to
251 * enable shutdown. When used as a lock, it is normally only very
252 * briefly held, so is nearly always available after at most a
253 * brief spin, but we use a monitor-based backup strategy to
254 * block when needed.
255 *
256 * Recording WorkQueues. WorkQueues are recorded in the
257 * "workQueues" array that is created upon first use and expanded
258 * if necessary. Updates to the array while recording new workers
259 * and unrecording terminated ones are protected from each other
260 * by a lock but the array is otherwise concurrently readable, and
261 * accessed directly. To simplify index-based operations, the
262 * array size is always a power of two, and all readers must
263 * tolerate null slots. Worker queues are at odd indices. Shared
264 * (submission) queues are at even indices, up to a maximum of 64
265 * slots, to limit growth even if array needs to expand to add
266 * more workers. Grouping them together in this way simplifies and
267 * speeds up task scanning.
268 *
269 * All worker thread creation is on-demand, triggered by task
270 * submissions, replacement of terminated workers, and/or
271 * compensation for blocked workers. However, all other support
272 * code is set up to work with other policies. To ensure that we
273 * do not hold on to worker references that would prevent GC, ALL
274 * accesses to workQueues are via indices into the workQueues
275 * array (which is one source of some of the messy code
276 * constructions here). In essence, the workQueues array serves as
277 * a weak reference mechanism. Thus for example the wait queue
278 * field of ctl stores indices, not references. Access to the
279 * workQueues in associated methods (for example signalWork) must
280 * both index-check and null-check the IDs. All such accesses
281 * ignore bad IDs by returning out early from what they are doing,
282 * since this can only be associated with termination, in which
283 * case it is OK to give up. All uses of the workQueues array
284 * also check that it is non-null (even if previously
285 * non-null). This allows nulling during termination, which is
286 * currently not necessary, but remains an option for
287 * resource-revocation-based shutdown schemes. It also helps
288 * reduce JIT issuance of uncommon-trap code, which tends to
289 * unnecessarily complicate control flow in some methods.
290 *
291 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 * let workers spin indefinitely scanning for tasks when none can
293 * be found immediately, and we cannot start/resume workers unless
294 * there appear to be tasks available. On the other hand, we must
295 * quickly prod them into action when new tasks are submitted or
296 * generated. In many usages, ramp-up time to activate workers is
297 * the main limiting factor in overall performance (this is
298 * compounded at program start-up by JIT compilation and
299 * allocation). So we try to streamline this as much as possible.
300 * We park/unpark workers after placing in an event wait queue
301 * when they cannot find work. This "queue" is actually a simple
302 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303 * counter value (that reflects the number of times a worker has
304 * been inactivated) to avoid ABA effects (we need only as many
305 * version numbers as worker threads). Successors are held in
306 * field WorkQueue.nextWait. Queuing deals with several intrinsic
307 * races, mainly that a task-producing thread can miss seeing (and
308 * signalling) another thread that gave up looking for work but
309 * has not yet entered the wait queue. We solve this by requiring
310 * a full sweep of all workers (via repeated calls to method
311 * scan()) both before and after a newly waiting worker is added
312 * to the wait queue. Because enqueued workers may actually be
313 * rescanning rather than waiting, we set and clear the "parker"
314 * field of WorkQueues to reduce unnecessary calls to unpark.
315 * (This requires a secondary recheck to avoid missed signals.)
316 * Note the unusual conventions about Thread.interrupts
317 * surrounding parking and other blocking: Because interrupts are
318 * used solely to alert threads to check termination, which is
319 * checked anyway upon blocking, we clear status (using
320 * Thread.interrupted) before any call to park, so that park does
321 * not immediately return due to status being set via some other
322 * unrelated call to interrupt in user code.
323 *
324 * Signalling. We create or wake up workers only when there
325 * appears to be at least one task they might be able to find and
326 * execute. When a submission is added or another worker adds a
327 * task to a queue that has fewer than two tasks, they signal
328 * waiting workers (or trigger creation of new ones if fewer than
329 * the given parallelism level -- signalWork). These primary
330 * signals are buttressed by others whenever other threads remove
331 * a task from a queue and notice that there are other tasks there
332 * as well. So in general, pools will be over-signalled. On most
333 * platforms, signalling (unpark) overhead time is noticeably
334 * long, and the time between signalling a thread and it actually
335 * making progress can be very noticeably long, so it is worth
336 * offloading these delays from critical paths as much as
337 * possible. Additionally, workers spin-down gradually, by staying
338 * alive so long as they see the ctl state changing. Similar
339 * stability-sensing techniques are also used before blocking in
340 * awaitJoin and helpComplete.
341 *
342 * Trimming workers. To release resources after periods of lack of
343 * use, a worker starting to wait when the pool is quiescent will
344 * time out and terminate if the pool has remained quiescent for a
345 * given period -- a short period if there are more threads than
346 * parallelism, longer as the number of threads decreases. This
347 * will slowly propagate, eventually terminating all workers after
348 * periods of non-use.
349 *
350 * Shutdown and Termination. A call to shutdownNow atomically sets
351 * a plock bit and then (non-atomically) sets each worker's
352 * qlock status, cancels all unprocessed tasks, and wakes up
353 * all waiting workers. Detecting whether termination should
354 * commence after a non-abrupt shutdown() call requires more work
355 * and bookkeeping. We need consensus about quiescence (i.e., that
356 * there is no more work). The active count provides a primary
357 * indication but non-abrupt shutdown still requires a rechecking
358 * scan for any workers that are inactive but not queued.
359 *
360 * Joining Tasks
361 * =============
362 *
363 * Any of several actions may be taken when one worker is waiting
364 * to join a task stolen (or always held) by another. Because we
365 * are multiplexing many tasks on to a pool of workers, we can't
366 * just let them block (as in Thread.join). We also cannot just
367 * reassign the joiner's run-time stack with another and replace
368 * it later, which would be a form of "continuation", that even if
369 * possible is not necessarily a good idea since we sometimes need
370 * both an unblocked task and its continuation to progress.
371 * Instead we combine two tactics:
372 *
373 * Helping: Arranging for the joiner to execute some task that it
374 * would be running if the steal had not occurred.
375 *
376 * Compensating: Unless there are already enough live threads,
377 * method tryCompensate() may create or re-activate a spare
378 * thread to compensate for blocked joiners until they unblock.
379 *
380 * A third form (implemented in tryRemoveAndExec) amounts to
381 * helping a hypothetical compensator: If we can readily tell that
382 * a possible action of a compensator is to steal and execute the
383 * task being joined, the joining thread can do so directly,
384 * without the need for a compensation thread (although at the
385 * expense of larger run-time stacks, but the tradeoff is
386 * typically worthwhile).
387 *
388 * The ManagedBlocker extension API can't use helping so relies
389 * only on compensation in method awaitBlocker.
390 *
391 * The algorithm in tryHelpStealer entails a form of "linear"
392 * helping: Each worker records (in field currentSteal) the most
393 * recent task it stole from some other worker. Plus, it records
394 * (in field currentJoin) the task it is currently actively
395 * joining. Method tryHelpStealer uses these markers to try to
396 * find a worker to help (i.e., steal back a task from and execute
397 * it) that could hasten completion of the actively joined task.
398 * In essence, the joiner executes a task that would be on its own
399 * local deque had the to-be-joined task not been stolen. This may
400 * be seen as a conservative variant of the approach in Wagner &
401 * Calder "Leapfrogging: a portable technique for implementing
402 * efficient futures" SIGPLAN Notices, 1993
403 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
404 * that: (1) We only maintain dependency links across workers upon
405 * steals, rather than use per-task bookkeeping. This sometimes
406 * requires a linear scan of workQueues array to locate stealers,
407 * but often doesn't because stealers leave hints (that may become
408 * stale/wrong) of where to locate them. It is only a hint
409 * because a worker might have had multiple steals and the hint
410 * records only one of them (usually the most current). Hinting
411 * isolates cost to when it is needed, rather than adding to
412 * per-task overhead. (2) It is "shallow", ignoring nesting and
413 * potentially cyclic mutual steals. (3) It is intentionally
414 * racy: field currentJoin is updated only while actively joining,
415 * which means that we miss links in the chain during long-lived
416 * tasks, GC stalls etc (which is OK since blocking in such cases
417 * is usually a good idea). (4) We bound the number of attempts
418 * to find work (see MAX_HELP) and fall back to suspending the
419 * worker and if necessary replacing it with another.
420 *
421 * Helping actions for CountedCompleters are much simpler: Method
422 * helpComplete can take and execute any task with the same root
423 * as the task being waited on. However, this still entails some
424 * traversal of completer chains, so is less efficient than using
425 * CountedCompleters without explicit joins.
426 *
427 * It is impossible to keep exactly the target parallelism number
428 * of threads running at any given time. Determining the
429 * existence of conservatively safe helping targets, the
430 * availability of already-created spares, and the apparent need
431 * to create new spares are all racy, so we rely on multiple
432 * retries of each. Compensation in the apparent absence of
433 * helping opportunities is challenging to control on JVMs, where
434 * GC and other activities can stall progress of tasks that in
435 * turn stall out many other dependent tasks, without us being
436 * able to determine whether they will ever require compensation.
437 * Even though work-stealing otherwise encounters little
438 * degradation in the presence of more threads than cores,
439 * aggressively adding new threads in such cases entails risk of
440 * unwanted positive feedback control loops in which more threads
441 * cause more dependent stalls (as well as delayed progress of
442 * unblocked threads to the point that we know they are available)
443 * leading to more situations requiring more threads, and so
444 * on. This aspect of control can be seen as an (analytically
445 * intractable) game with an opponent that may choose the worst
446 * (for us) active thread to stall at any time. We take several
447 * precautions to bound losses (and thus bound gains), mainly in
448 * methods tryCompensate and awaitJoin.
449 *
450 * Common Pool
451 * ===========
452 *
453 * The static common pool always exists after static
454 * initialization. Since it (or any other created pool) need
455 * never be used, we minimize initial construction overhead and
456 * footprint to the setup of about a dozen fields, with no nested
457 * allocation. Most bootstrapping occurs within method
458 * fullExternalPush during the first submission to the pool.
459 *
460 * When external threads submit to the common pool, they can
461 * perform subtask processing (see externalHelpJoin and related
462 * methods). This caller-helps policy makes it sensible to set
463 * common pool parallelism level to one (or more) less than the
464 * total number of available cores, or even zero for pure
465 * caller-runs. We do not need to record whether external
466 * submissions are to the common pool -- if not, externalHelpJoin
467 * returns quickly (at the most helping to signal some common pool
468 * workers). These submitters would otherwise be blocked waiting
469 * for completion, so the extra effort (with liberally sprinkled
470 * task status checks) in inapplicable cases amounts to an odd
471 * form of limited spin-wait before blocking in ForkJoinTask.join.
472 *
473 * Style notes
474 * ===========
475 *
476 * There is a lot of representation-level coupling among classes
477 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
478 * fields of WorkQueue maintain data structures managed by
479 * ForkJoinPool, so are directly accessed. There is little point
480 * trying to reduce this, since any associated future changes in
481 * representations will need to be accompanied by algorithmic
482 * changes anyway. Several methods intrinsically sprawl because
483 * they must accumulate sets of consistent reads of volatiles held
484 * in local variables. Methods signalWork() and scan() are the
485 * main bottlenecks, so are especially heavily
486 * micro-optimized/mangled. There are lots of inline assignments
487 * (of form "while ((local = field) != 0)") which are usually the
488 * simplest way to ensure the required read orderings (which are
489 * sometimes critical). This leads to a "C"-like style of listing
490 * declarations of these locals at the heads of methods or blocks.
491 * There are several occurrences of the unusual "do {} while
492 * (!cas...)" which is the simplest way to force an update of a
493 * CAS'ed variable. There are also other coding oddities (including
494 * several unnecessary-looking hoisted null checks) that help
495 * some methods perform reasonably even when interpreted (not
496 * compiled).
497 *
498 * The order of declarations in this file is:
499 * (1) Static utility functions
500 * (2) Nested (static) classes
501 * (3) Static fields
502 * (4) Fields, along with constants used when unpacking some of them
503 * (5) Internal control methods
504 * (6) Callbacks and other support for ForkJoinTask methods
505 * (7) Exported methods
506 * (8) Static block initializing statics in minimally dependent order
507 */
508
509 // Static utilities
510
511 /**
512 * If there is a security manager, makes sure caller has
513 * permission to modify threads.
514 */
515 private static void checkPermission() {
516 SecurityManager security = System.getSecurityManager();
517 if (security != null)
518 security.checkPermission(modifyThreadPermission);
519 }
520
521 // Nested classes
522
523 /**
524 * Factory for creating new {@link ForkJoinWorkerThread}s.
525 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
526 * for {@code ForkJoinWorkerThread} subclasses that extend base
527 * functionality or initialize threads with different contexts.
528 */
529 public static interface ForkJoinWorkerThreadFactory {
530 /**
531 * Returns a new worker thread operating in the given pool.
532 *
533 * @param pool the pool this thread works in
534 * @throws NullPointerException if the pool is null
535 * @return the new worker thread
536 */
537 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
538 }
539
540 /**
541 * Default ForkJoinWorkerThreadFactory implementation; creates a
542 * new ForkJoinWorkerThread.
543 */
544 static final class DefaultForkJoinWorkerThreadFactory
545 implements ForkJoinWorkerThreadFactory {
546 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
547 return new ForkJoinWorkerThread(pool);
548 }
549 }
550
551 /**
552 * Class for artificial tasks that are used to replace the target
553 * of local joins if they are removed from an interior queue slot
554 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
555 * actually do anything beyond having a unique identity.
556 */
557 static final class EmptyTask extends ForkJoinTask<Void> {
558 private static final long serialVersionUID = -7721805057305804111L;
559 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
560 public final Void getRawResult() { return null; }
561 public final void setRawResult(Void x) {}
562 public final boolean exec() { return true; }
563 }
564
565 /**
566 * Queues supporting work-stealing as well as external task
567 * submission. See above for main rationale and algorithms.
568 * Implementation relies heavily on "Unsafe" intrinsics
569 * and selective use of "volatile":
570 *
571 * Field "base" is the index (mod array.length) of the least valid
572 * queue slot, which is always the next position to steal (poll)
573 * from if nonempty. Reads and writes require volatile orderings
574 * but not CAS, because updates are only performed after slot
575 * CASes.
576 *
577 * Field "top" is the index (mod array.length) of the next queue
578 * slot to push to or pop from. It is written only by owner thread
579 * for push, or under lock for external/shared push, and accessed
580 * by other threads only after reading (volatile) base. Both top
581 * and base are allowed to wrap around on overflow, but (top -
582 * base) (or more commonly -(base - top) to force volatile read of
583 * base before top) still estimates size. The lock ("qlock") is
584 * forced to -1 on termination, causing all further lock attempts
585 * to fail. (Note: we don't need CAS for termination state because
586 * upon pool shutdown, all shared-queues will stop being used
587 * anyway.) Nearly all lock bodies are set up so that exceptions
588 * within lock bodies are "impossible" (modulo JVM errors that
589 * would cause failure anyway.)
590 *
591 * The array slots are read and written using the emulation of
592 * volatiles/atomics provided by Unsafe. Insertions must in
593 * general use putOrderedObject as a form of releasing store to
594 * ensure that all writes to the task object are ordered before
595 * its publication in the queue. All removals entail a CAS to
596 * null. The array is always a power of two. To ensure safety of
597 * Unsafe array operations, all accesses perform explicit null
598 * checks and implicit bounds checks via power-of-two masking.
599 *
600 * In addition to basic queuing support, this class contains
601 * fields described elsewhere to control execution. It turns out
602 * to work better memory-layout-wise to include them in this class
603 * rather than a separate class.
604 *
605 * Performance on most platforms is very sensitive to placement of
606 * instances of both WorkQueues and their arrays -- we absolutely
607 * do not want multiple WorkQueue instances or multiple queue
608 * arrays sharing cache lines. (It would be best for queue objects
609 * and their arrays to share, but there is nothing available to
610 * help arrange that). The @Contended annotation alerts JVMs to
611 * try to keep instances apart.
612 */
613 static final class WorkQueue {
614 /**
615 * Capacity of work-stealing queue array upon initialization.
616 * Must be a power of two; at least 4, but should be larger to
617 * reduce or eliminate cacheline sharing among queues.
618 * Currently, it is much larger, as a partial workaround for
619 * the fact that JVMs often place arrays in locations that
620 * share GC bookkeeping (especially cardmarks) such that
621 * per-write accesses encounter serious memory contention.
622 */
623 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
624
625 /**
626 * Maximum size for queue arrays. Must be a power of two less
627 * than or equal to 1 << (31 - width of array entry) to ensure
628 * lack of wraparound of index calculations, but defined to a
629 * value a bit less than this to help users trap runaway
630 * programs before saturating systems.
631 */
632 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
633
634 // Heuristic padding to ameliorate unfortunate memory placements
635 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
636
637 volatile int eventCount; // encoded inactivation count; < 0 if inactive
638 int nextWait; // encoded record of next event waiter
639 int nsteals; // number of steals
640 int hint; // steal index hint
641 short poolIndex; // index of this queue in pool
642 final short mode; // 0: lifo, > 0: fifo, < 0: shared
643 volatile int qlock; // 1: locked, -1: terminate; else 0
644 volatile int base; // index of next slot for poll
645 int top; // index of next slot for push
646 ForkJoinTask<?>[] array; // the elements (initially unallocated)
647 final ForkJoinPool pool; // the containing pool (may be null)
648 final ForkJoinWorkerThread owner; // owning thread or null if shared
649 volatile Thread parker; // == owner during call to park; else null
650 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
651 ForkJoinTask<?> currentSteal; // current non-local task being executed
652
653 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
654 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
655
656 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
657 int seed) {
658 this.pool = pool;
659 this.owner = owner;
660 this.mode = (short)mode;
661 this.hint = seed; // store initial seed for runWorker
662 // Place indices in the center of array (that is not yet allocated)
663 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
664 }
665
666 /**
667 * Returns the approximate number of tasks in the queue.
668 */
669 final int queueSize() {
670 int n = base - top; // non-owner callers must read base first
671 return (n >= 0) ? 0 : -n; // ignore transient negative
672 }
673
674 /**
675 * Provides a more accurate estimate of whether this queue has
676 * any tasks than does queueSize, by checking whether a
677 * near-empty queue has at least one unclaimed task.
678 */
679 final boolean isEmpty() {
680 ForkJoinTask<?>[] a; int m, s;
681 int n = base - (s = top);
682 return (n >= 0 ||
683 (n == -1 &&
684 ((a = array) == null ||
685 (m = a.length - 1) < 0 ||
686 U.getObject
687 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
688 }
689
690 /**
691 * Pushes a task. Call only by owner in unshared queues. (The
692 * shared-queue version is embedded in method externalPush.)
693 *
694 * @param task the task. Caller must ensure non-null.
695 * @throws RejectedExecutionException if array cannot be resized
696 */
697 final void push(ForkJoinTask<?> task) {
698 ForkJoinTask<?>[] a; ForkJoinPool p;
699 int s = top, n;
700 if ((a = array) != null) { // ignore if queue removed
701 int m = a.length - 1;
702 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
703 if ((n = (top = s + 1) - base) <= 2)
704 (p = pool).signalWork(p.workQueues, this);
705 else if (n >= m)
706 growArray();
707 }
708 }
709
710 /**
711 * Initializes or doubles the capacity of array. Call either
712 * by owner or with lock held -- it is OK for base, but not
713 * top, to move while resizings are in progress.
714 */
715 final ForkJoinTask<?>[] growArray() {
716 ForkJoinTask<?>[] oldA = array;
717 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
718 if (size > MAXIMUM_QUEUE_CAPACITY)
719 throw new RejectedExecutionException("Queue capacity exceeded");
720 int oldMask, t, b;
721 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
722 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
723 (t = top) - (b = base) > 0) {
724 int mask = size - 1;
725 do {
726 ForkJoinTask<?> x;
727 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
728 int j = ((b & mask) << ASHIFT) + ABASE;
729 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
730 if (x != null &&
731 U.compareAndSwapObject(oldA, oldj, x, null))
732 U.putObjectVolatile(a, j, x);
733 } while (++b != t);
734 }
735 return a;
736 }
737
738 /**
739 * Takes next task, if one exists, in LIFO order. Call only
740 * by owner in unshared queues.
741 */
742 final ForkJoinTask<?> pop() {
743 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
744 if ((a = array) != null && (m = a.length - 1) >= 0) {
745 for (int s; (s = top - 1) - base >= 0;) {
746 long j = ((m & s) << ASHIFT) + ABASE;
747 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
748 break;
749 if (U.compareAndSwapObject(a, j, t, null)) {
750 top = s;
751 return t;
752 }
753 }
754 }
755 return null;
756 }
757
758 /**
759 * Takes a task in FIFO order if b is base of queue and a task
760 * can be claimed without contention. Specialized versions
761 * appear in ForkJoinPool methods scan and tryHelpStealer.
762 */
763 final ForkJoinTask<?> pollAt(int b) {
764 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
765 if ((a = array) != null) {
766 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
767 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
768 base == b && U.compareAndSwapObject(a, j, t, null)) {
769 U.putOrderedInt(this, QBASE, b + 1);
770 return t;
771 }
772 }
773 return null;
774 }
775
776 /**
777 * Takes next task, if one exists, in FIFO order.
778 */
779 final ForkJoinTask<?> poll() {
780 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781 while ((b = base) - top < 0 && (a = array) != null) {
782 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784 if (t != null) {
785 if (U.compareAndSwapObject(a, j, t, null)) {
786 U.putOrderedInt(this, QBASE, b + 1);
787 return t;
788 }
789 }
790 else if (base == b) {
791 if (b + 1 == top)
792 break;
793 Thread.yield(); // wait for lagging update (very rare)
794 }
795 }
796 return null;
797 }
798
799 /**
800 * Takes next task, if one exists, in order specified by mode.
801 */
802 final ForkJoinTask<?> nextLocalTask() {
803 return mode == 0 ? pop() : poll();
804 }
805
806 /**
807 * Returns next task, if one exists, in order specified by mode.
808 */
809 final ForkJoinTask<?> peek() {
810 ForkJoinTask<?>[] a = array; int m;
811 if (a == null || (m = a.length - 1) < 0)
812 return null;
813 int i = mode == 0 ? top - 1 : base;
814 int j = ((i & m) << ASHIFT) + ABASE;
815 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
816 }
817
818 /**
819 * Pops the given task only if it is at the current top.
820 * (A shared version is available only via FJP.tryExternalUnpush)
821 */
822 final boolean tryUnpush(ForkJoinTask<?> t) {
823 ForkJoinTask<?>[] a; int s;
824 if ((a = array) != null && (s = top) != base &&
825 U.compareAndSwapObject
826 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827 top = s;
828 return true;
829 }
830 return false;
831 }
832
833 /**
834 * Removes and cancels all known tasks, ignoring any exceptions.
835 */
836 final void cancelAll() {
837 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
838 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
839 for (ForkJoinTask<?> t; (t = poll()) != null; )
840 ForkJoinTask.cancelIgnoringExceptions(t);
841 }
842
843 // Specialized execution methods
844
845 /**
846 * Polls and runs tasks until empty.
847 */
848 final void pollAndExecAll() {
849 for (ForkJoinTask<?> t; (t = poll()) != null;)
850 t.doExec();
851 }
852
853 /**
854 * Executes a top-level task and any local tasks remaining
855 * after execution.
856 */
857 final void runTask(ForkJoinTask<?> task) {
858 if ((currentSteal = task) != null) {
859 task.doExec();
860 ForkJoinTask<?>[] a = array;
861 int md = mode;
862 ++nsteals;
863 currentSteal = null;
864 if (md != 0)
865 pollAndExecAll();
866 else if (a != null) {
867 int s, m = a.length - 1;
868 while ((s = top - 1) - base >= 0) {
869 long i = ((m & s) << ASHIFT) + ABASE;
870 ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
871 if (t == null)
872 break;
873 if (U.compareAndSwapObject(a, i, t, null)) {
874 top = s;
875 t.doExec();
876 }
877 }
878 }
879 }
880 }
881
882 /**
883 * If present, removes from queue and executes the given task,
884 * or any other cancelled task. Returns (true) on any CAS
885 * or consistency check failure so caller can retry.
886 *
887 * @return false if no progress can be made, else true
888 */
889 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
890 boolean stat;
891 ForkJoinTask<?>[] a; int m, s, b, n;
892 if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
893 (n = (s = top) - (b = base)) > 0) {
894 boolean removed = false, empty = true;
895 stat = true;
896 for (ForkJoinTask<?> t;;) { // traverse from s to b
897 long j = ((--s & m) << ASHIFT) + ABASE;
898 t = (ForkJoinTask<?>)U.getObject(a, j);
899 if (t == null) // inconsistent length
900 break;
901 else if (t == task) {
902 if (s + 1 == top) { // pop
903 if (!U.compareAndSwapObject(a, j, task, null))
904 break;
905 top = s;
906 removed = true;
907 }
908 else if (base == b) // replace with proxy
909 removed = U.compareAndSwapObject(a, j, task,
910 new EmptyTask());
911 break;
912 }
913 else if (t.status >= 0)
914 empty = false;
915 else if (s + 1 == top) { // pop and throw away
916 if (U.compareAndSwapObject(a, j, t, null))
917 top = s;
918 break;
919 }
920 if (--n == 0) {
921 if (!empty && base == b)
922 stat = false;
923 break;
924 }
925 }
926 if (removed)
927 task.doExec();
928 }
929 else
930 stat = false;
931 return stat;
932 }
933
934 /**
935 * Tries to poll for and execute the given task or any other
936 * task in its CountedCompleter computation.
937 */
938 final boolean pollAndExecCC(CountedCompleter<?> root) {
939 ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
940 if ((b = base) - top < 0 && (a = array) != null) {
941 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
942 if ((o = U.getObjectVolatile(a, j)) == null)
943 return true; // retry
944 if (o instanceof CountedCompleter) {
945 for (t = (CountedCompleter<?>)o, r = t;;) {
946 if (r == root) {
947 if (base == b &&
948 U.compareAndSwapObject(a, j, t, null)) {
949 U.putOrderedInt(this, QBASE, b + 1);
950 t.doExec();
951 }
952 return true;
953 }
954 else if ((r = r.completer) == null)
955 break; // not part of root computation
956 }
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Tries to pop and execute the given task or any other task
964 * in its CountedCompleter computation.
965 */
966 final boolean externalPopAndExecCC(CountedCompleter<?> root) {
967 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
968 if (base - (s = top) < 0 && (a = array) != null) {
969 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
970 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
971 for (t = (CountedCompleter<?>)o, r = t;;) {
972 if (r == root) {
973 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
974 if (top == s && array == a &&
975 U.compareAndSwapObject(a, j, t, null)) {
976 top = s - 1;
977 qlock = 0;
978 t.doExec();
979 }
980 else
981 qlock = 0;
982 }
983 return true;
984 }
985 else if ((r = r.completer) == null)
986 break;
987 }
988 }
989 }
990 return false;
991 }
992
993 /**
994 * Internal version
995 */
996 final boolean internalPopAndExecCC(CountedCompleter<?> root) {
997 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
998 if (base - (s = top) < 0 && (a = array) != null) {
999 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1000 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1001 for (t = (CountedCompleter<?>)o, r = t;;) {
1002 if (r == root) {
1003 if (U.compareAndSwapObject(a, j, t, null)) {
1004 top = s - 1;
1005 t.doExec();
1006 }
1007 return true;
1008 }
1009 else if ((r = r.completer) == null)
1010 break;
1011 }
1012 }
1013 }
1014 return false;
1015 }
1016
1017 /**
1018 * Returns true if owned and not known to be blocked.
1019 */
1020 final boolean isApparentlyUnblocked() {
1021 Thread wt; Thread.State s;
1022 return (eventCount >= 0 &&
1023 (wt = owner) != null &&
1024 (s = wt.getState()) != Thread.State.BLOCKED &&
1025 s != Thread.State.WAITING &&
1026 s != Thread.State.TIMED_WAITING);
1027 }
1028
1029 // Unsafe mechanics
1030 private static final sun.misc.Unsafe U;
1031 private static final long QBASE;
1032 private static final long QLOCK;
1033 private static final int ABASE;
1034 private static final int ASHIFT;
1035 static {
1036 try {
1037 U = getUnsafe();
1038 Class<?> k = WorkQueue.class;
1039 Class<?> ak = ForkJoinTask[].class;
1040 QBASE = U.objectFieldOffset
1041 (k.getDeclaredField("base"));
1042 QLOCK = U.objectFieldOffset
1043 (k.getDeclaredField("qlock"));
1044 ABASE = U.arrayBaseOffset(ak);
1045 int scale = U.arrayIndexScale(ak);
1046 if ((scale & (scale - 1)) != 0)
1047 throw new Error("data type scale not a power of two");
1048 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1049 } catch (Exception e) {
1050 throw new Error(e);
1051 }
1052 }
1053 }
1054
1055 // static fields (initialized in static initializer below)
1056
1057 /**
1058 * Per-thread submission bookkeeping. Shared across all pools
1059 * to reduce ThreadLocal pollution and because random motion
1060 * to avoid contention in one pool is likely to hold for others.
1061 * Lazily initialized on first submission (but null-checked
1062 * in other contexts to avoid unnecessary initialization).
1063 */
1064 static final ThreadLocal<Submitter> submitters;
1065
1066 /**
1067 * Creates a new ForkJoinWorkerThread. This factory is used unless
1068 * overridden in ForkJoinPool constructors.
1069 */
1070 public static final ForkJoinWorkerThreadFactory
1071 defaultForkJoinWorkerThreadFactory;
1072
1073 /**
1074 * Permission required for callers of methods that may start or
1075 * kill threads.
1076 */
1077 private static final RuntimePermission modifyThreadPermission;
1078
1079 /**
1080 * Common (static) pool. Non-null for public use unless a static
1081 * construction exception, but internal usages null-check on use
1082 * to paranoically avoid potential initialization circularities
1083 * as well as to simplify generated code.
1084 */
1085 static final ForkJoinPool common;
1086
1087 /**
1088 * Common pool parallelism. To allow simpler use and management
1089 * when common pool threads are disabled, we allow the underlying
1090 * common.parallelism field to be zero, but in that case still report
1091 * parallelism as 1 to reflect resulting caller-runs mechanics.
1092 */
1093 static final int commonParallelism;
1094
1095 /**
1096 * Sequence number for creating workerNamePrefix.
1097 */
1098 private static int poolNumberSequence;
1099
1100 /**
1101 * Returns the next sequence number. We don't expect this to
1102 * ever contend, so use simple builtin sync.
1103 */
1104 private static final synchronized int nextPoolId() {
1105 return ++poolNumberSequence;
1106 }
1107
1108 // static constants
1109
1110 /**
1111 * Initial timeout value (in nanoseconds) for the thread
1112 * triggering quiescence to park waiting for new work. On timeout,
1113 * the thread will instead try to shrink the number of
1114 * workers. The value should be large enough to avoid overly
1115 * aggressive shrinkage during most transient stalls (long GCs
1116 * etc).
1117 */
1118 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1119
1120 /**
1121 * Timeout value when there are more threads than parallelism level
1122 */
1123 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1124
1125 /**
1126 * Tolerance for idle timeouts, to cope with timer undershoots
1127 */
1128 private static final long TIMEOUT_SLOP = 2000000L;
1129
1130 /**
1131 * The maximum stolen->joining link depth allowed in method
1132 * tryHelpStealer. Must be a power of two. Depths for legitimate
1133 * chains are unbounded, but we use a fixed constant to avoid
1134 * (otherwise unchecked) cycles and to bound staleness of
1135 * traversal parameters at the expense of sometimes blocking when
1136 * we could be helping.
1137 */
1138 private static final int MAX_HELP = 64;
1139
1140 /**
1141 * Increment for seed generators. See class ThreadLocal for
1142 * explanation.
1143 */
1144 private static final int SEED_INCREMENT = 0x61c88647;
1145
1146 /*
1147 * Bits and masks for control variables
1148 *
1149 * Field ctl is a long packed with:
1150 * AC: Number of active running workers minus target parallelism (16 bits)
1151 * TC: Number of total workers minus target parallelism (16 bits)
1152 * ST: true if pool is terminating (1 bit)
1153 * EC: the wait count of top waiting thread (15 bits)
1154 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1155 *
1156 * When convenient, we can extract the upper 32 bits of counts and
1157 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1158 * (int)ctl. The ec field is never accessed alone, but always
1159 * together with id and st. The offsets of counts by the target
1160 * parallelism and the positionings of fields makes it possible to
1161 * perform the most common checks via sign tests of fields: When
1162 * ac is negative, there are not enough active workers, when tc is
1163 * negative, there are not enough total workers, and when e is
1164 * negative, the pool is terminating. To deal with these possibly
1165 * negative fields, we use casts in and out of "short" and/or
1166 * signed shifts to maintain signedness.
1167 *
1168 * When a thread is queued (inactivated), its eventCount field is
1169 * set negative, which is the only way to tell if a worker is
1170 * prevented from executing tasks, even though it must continue to
1171 * scan for them to avoid queuing races. Note however that
1172 * eventCount updates lag releases so usage requires care.
1173 *
1174 * Field plock is an int packed with:
1175 * SHUTDOWN: true if shutdown is enabled (1 bit)
1176 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1177 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1178 *
1179 * The sequence number enables simple consistency checks:
1180 * Staleness of read-only operations on the workQueues array can
1181 * be checked by comparing plock before vs after the reads.
1182 */
1183
1184 // bit positions/shifts for fields
1185 private static final int AC_SHIFT = 48;
1186 private static final int TC_SHIFT = 32;
1187 private static final int ST_SHIFT = 31;
1188 private static final int EC_SHIFT = 16;
1189
1190 // bounds
1191 private static final int SMASK = 0xffff; // short bits
1192 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1193 private static final int EVENMASK = 0xfffe; // even short bits
1194 private static final int SQMASK = 0x007e; // max 64 (even) slots
1195 private static final int SHORT_SIGN = 1 << 15;
1196 private static final int INT_SIGN = 1 << 31;
1197
1198 // masks
1199 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1200 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1201 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1202
1203 // units for incrementing and decrementing
1204 private static final long TC_UNIT = 1L << TC_SHIFT;
1205 private static final long AC_UNIT = 1L << AC_SHIFT;
1206
1207 // masks and units for dealing with u = (int)(ctl >>> 32)
1208 private static final int UAC_SHIFT = AC_SHIFT - 32;
1209 private static final int UTC_SHIFT = TC_SHIFT - 32;
1210 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1211 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1212 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1213 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1214
1215 // masks and units for dealing with e = (int)ctl
1216 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1217 private static final int E_SEQ = 1 << EC_SHIFT;
1218
1219 // plock bits
1220 private static final int SHUTDOWN = 1 << 31;
1221 private static final int PL_LOCK = 2;
1222 private static final int PL_SIGNAL = 1;
1223 private static final int PL_SPINS = 1 << 8;
1224
1225 // access mode for WorkQueue
1226 static final int LIFO_QUEUE = 0;
1227 static final int FIFO_QUEUE = 1;
1228 static final int SHARED_QUEUE = -1;
1229
1230 // Heuristic padding to ameliorate unfortunate memory placements
1231 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1232
1233 // Instance fields
1234 volatile long stealCount; // collects worker counts
1235 volatile long ctl; // main pool control
1236 volatile int plock; // shutdown status and seqLock
1237 volatile int indexSeed; // worker/submitter index seed
1238 final short parallelism; // parallelism level
1239 final short mode; // LIFO/FIFO
1240 WorkQueue[] workQueues; // main registry
1241 final ForkJoinWorkerThreadFactory factory;
1242 final UncaughtExceptionHandler ueh; // per-worker UEH
1243 final String workerNamePrefix; // to create worker name string
1244
1245 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 volatile Object pad18, pad19, pad1a, pad1b;
1247
1248 /**
1249 * Acquires the plock lock to protect worker array and related
1250 * updates. This method is called only if an initial CAS on plock
1251 * fails. This acts as a spinlock for normal cases, but falls back
1252 * to builtin monitor to block when (rarely) needed. This would be
1253 * a terrible idea for a highly contended lock, but works fine as
1254 * a more conservative alternative to a pure spinlock.
1255 */
1256 private int acquirePlock() {
1257 int spins = PL_SPINS, ps, nps;
1258 for (;;) {
1259 if (((ps = plock) & PL_LOCK) == 0 &&
1260 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 return nps;
1262 else if (spins >= 0) {
1263 if (ThreadLocalRandom.current().nextInt() >= 0)
1264 --spins;
1265 }
1266 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1267 synchronized (this) {
1268 if ((plock & PL_SIGNAL) != 0) {
1269 try {
1270 wait();
1271 } catch (InterruptedException ie) {
1272 try {
1273 Thread.currentThread().interrupt();
1274 } catch (SecurityException ignore) {
1275 }
1276 }
1277 }
1278 else
1279 notifyAll();
1280 }
1281 }
1282 }
1283 }
1284
1285 /**
1286 * Unlocks and signals any thread waiting for plock. Called only
1287 * when CAS of seq value for unlock fails.
1288 */
1289 private void releasePlock(int ps) {
1290 plock = ps;
1291 synchronized (this) { notifyAll(); }
1292 }
1293
1294 /**
1295 * Tries to create and start one worker if fewer than target
1296 * parallelism level exist. Adjusts counts etc on failure.
1297 */
1298 private void tryAddWorker() {
1299 long c; int u, e;
1300 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1301 (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1302 long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1303 ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1304 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1305 ForkJoinWorkerThreadFactory fac;
1306 Throwable ex = null;
1307 ForkJoinWorkerThread wt = null;
1308 try {
1309 if ((fac = factory) != null &&
1310 (wt = fac.newThread(this)) != null) {
1311 wt.start();
1312 break;
1313 }
1314 } catch (Throwable rex) {
1315 ex = rex;
1316 }
1317 deregisterWorker(wt, ex);
1318 break;
1319 }
1320 }
1321 }
1322
1323 // Registering and deregistering workers
1324
1325 /**
1326 * Callback from ForkJoinWorkerThread to establish and record its
1327 * WorkQueue. To avoid scanning bias due to packing entries in
1328 * front of the workQueues array, we treat the array as a simple
1329 * power-of-two hash table using per-thread seed as hash,
1330 * expanding as needed.
1331 *
1332 * @param wt the worker thread
1333 * @return the worker's queue
1334 */
1335 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1336 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1337 wt.setDaemon(true);
1338 if ((handler = ueh) != null)
1339 wt.setUncaughtExceptionHandler(handler);
1340 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1341 s += SEED_INCREMENT) ||
1342 s == 0); // skip 0
1343 WorkQueue w = new WorkQueue(this, wt, mode, s);
1344 if (((ps = plock) & PL_LOCK) != 0 ||
1345 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1346 ps = acquirePlock();
1347 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1348 try {
1349 if ((ws = workQueues) != null) { // skip if shutting down
1350 int n = ws.length, m = n - 1;
1351 int r = (s << 1) | 1; // use odd-numbered indices
1352 if (ws[r &= m] != null) { // collision
1353 int probes = 0; // step by approx half size
1354 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1355 while (ws[r = (r + step) & m] != null) {
1356 if (++probes >= n) {
1357 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1358 m = n - 1;
1359 probes = 0;
1360 }
1361 }
1362 }
1363 w.poolIndex = (short)r;
1364 w.eventCount = r; // volatile write orders
1365 ws[r] = w;
1366 }
1367 } finally {
1368 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1369 releasePlock(nps);
1370 }
1371 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1372 return w;
1373 }
1374
1375 /**
1376 * Final callback from terminating worker, as well as upon failure
1377 * to construct or start a worker. Removes record of worker from
1378 * array, and adjusts counts. If pool is shutting down, tries to
1379 * complete termination.
1380 *
1381 * @param wt the worker thread, or null if construction failed
1382 * @param ex the exception causing failure, or null if none
1383 */
1384 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1385 WorkQueue w = null;
1386 if (wt != null && (w = wt.workQueue) != null) {
1387 int ps; long sc;
1388 w.qlock = -1; // ensure set
1389 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1390 sc = stealCount,
1391 sc + w.nsteals));
1392 if (((ps = plock) & PL_LOCK) != 0 ||
1393 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1394 ps = acquirePlock();
1395 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1396 try {
1397 int idx = w.poolIndex;
1398 WorkQueue[] ws = workQueues;
1399 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1400 ws[idx] = null;
1401 } finally {
1402 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1403 releasePlock(nps);
1404 }
1405 }
1406
1407 long c; // adjust ctl counts
1408 do {} while (!U.compareAndSwapLong
1409 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1410 ((c - TC_UNIT) & TC_MASK) |
1411 (c & ~(AC_MASK|TC_MASK)))));
1412
1413 if (!tryTerminate(false, false) && w != null && w.array != null) {
1414 w.cancelAll(); // cancel remaining tasks
1415 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1416 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1417 if (e > 0) { // activate or create replacement
1418 if ((ws = workQueues) == null ||
1419 (i = e & SMASK) >= ws.length ||
1420 (v = ws[i]) == null)
1421 break;
1422 long nc = (((long)(v.nextWait & E_MASK)) |
1423 ((long)(u + UAC_UNIT) << 32));
1424 if (v.eventCount != (e | INT_SIGN))
1425 break;
1426 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1427 v.eventCount = (e + E_SEQ) & E_MASK;
1428 if ((p = v.parker) != null)
1429 U.unpark(p);
1430 break;
1431 }
1432 }
1433 else {
1434 if ((short)u < 0)
1435 tryAddWorker();
1436 break;
1437 }
1438 }
1439 }
1440 if (ex == null) // help clean refs on way out
1441 ForkJoinTask.helpExpungeStaleExceptions();
1442 else // rethrow
1443 ForkJoinTask.rethrow(ex);
1444 }
1445
1446 // Submissions
1447
1448 /**
1449 * Per-thread records for threads that submit to pools. Currently
1450 * holds only pseudo-random seed / index that is used to choose
1451 * submission queues in method externalPush. In the future, this may
1452 * also incorporate a means to implement different task rejection
1453 * and resubmission policies.
1454 *
1455 * Seeds for submitters and workers/workQueues work in basically
1456 * the same way but are initialized and updated using slightly
1457 * different mechanics. Both are initialized using the same
1458 * approach as in class ThreadLocal, where successive values are
1459 * unlikely to collide with previous values. Seeds are then
1460 * randomly modified upon collisions using xorshifts, which
1461 * requires a non-zero seed.
1462 */
1463 static final class Submitter {
1464 int seed;
1465 Submitter(int s) { seed = s; }
1466 }
1467
1468 /**
1469 * Unless shutting down, adds the given task to a submission queue
1470 * at submitter's current queue index (modulo submission
1471 * range). Only the most common path is directly handled in this
1472 * method. All others are relayed to fullExternalPush.
1473 *
1474 * @param task the task. Caller must ensure non-null.
1475 */
1476 final void externalPush(ForkJoinTask<?> task) {
1477 Submitter z = submitters.get();
1478 WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1479 int ps = plock;
1480 WorkQueue[] ws = workQueues;
1481 if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1482 (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1483 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1484 if ((a = q.array) != null &&
1485 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1486 int j = ((am & s) << ASHIFT) + ABASE;
1487 U.putOrderedObject(a, j, task);
1488 q.top = s + 1; // push on to deque
1489 q.qlock = 0;
1490 if (n <= 1)
1491 signalWork(ws, q);
1492 return;
1493 }
1494 q.qlock = 0;
1495 }
1496 fullExternalPush(task);
1497 }
1498
1499 /**
1500 * Full version of externalPush. This method is called, among
1501 * other times, upon the first submission of the first task to the
1502 * pool, so must perform secondary initialization. It also
1503 * detects first submission by an external thread by looking up
1504 * its ThreadLocal, and creates a new shared queue if the one at
1505 * index if empty or contended. The plock lock body must be
1506 * exception-free (so no try/finally) so we optimistically
1507 * allocate new queues outside the lock and throw them away if
1508 * (very rarely) not needed.
1509 *
1510 * Secondary initialization occurs when plock is zero, to create
1511 * workQueue array and set plock to a valid value. This lock body
1512 * must also be exception-free. Because the plock seq value can
1513 * eventually wrap around zero, this method harmlessly fails to
1514 * reinitialize if workQueues exists, while still advancing plock.
1515 */
1516 private void fullExternalPush(ForkJoinTask<?> task) {
1517 int r = 0; // random index seed
1518 for (Submitter z = submitters.get();;) {
1519 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1520 if (z == null) {
1521 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1522 r += SEED_INCREMENT) && r != 0)
1523 submitters.set(z = new Submitter(r));
1524 }
1525 else if (r == 0) { // move to a different index
1526 r = z.seed;
1527 r ^= r << 13; // same xorshift as WorkQueues
1528 r ^= r >>> 17;
1529 z.seed = r ^= (r << 5);
1530 }
1531 if ((ps = plock) < 0)
1532 throw new RejectedExecutionException();
1533 else if (ps == 0 || (ws = workQueues) == null ||
1534 (m = ws.length - 1) < 0) { // initialize workQueues
1535 int p = parallelism; // find power of two table size
1536 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1537 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1538 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1539 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1540 new WorkQueue[n] : null);
1541 if (((ps = plock) & PL_LOCK) != 0 ||
1542 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1543 ps = acquirePlock();
1544 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1545 workQueues = nws;
1546 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1547 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1548 releasePlock(nps);
1549 }
1550 else if ((q = ws[k = r & m & SQMASK]) != null) {
1551 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1552 ForkJoinTask<?>[] a = q.array;
1553 int s = q.top;
1554 boolean submitted = false;
1555 try { // locked version of push
1556 if ((a != null && a.length > s + 1 - q.base) ||
1557 (a = q.growArray()) != null) { // must presize
1558 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1559 U.putOrderedObject(a, j, task);
1560 q.top = s + 1;
1561 submitted = true;
1562 }
1563 } finally {
1564 q.qlock = 0; // unlock
1565 }
1566 if (submitted) {
1567 signalWork(ws, q);
1568 return;
1569 }
1570 }
1571 r = 0; // move on failure
1572 }
1573 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1574 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1575 q.poolIndex = (short)k;
1576 if (((ps = plock) & PL_LOCK) != 0 ||
1577 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1578 ps = acquirePlock();
1579 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1580 ws[k] = q;
1581 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1582 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1583 releasePlock(nps);
1584 }
1585 else
1586 r = 0;
1587 }
1588 }
1589
1590 // Maintaining ctl counts
1591
1592 /**
1593 * Increments active count; mainly called upon return from blocking.
1594 */
1595 final void incrementActiveCount() {
1596 long c;
1597 do {} while (!U.compareAndSwapLong
1598 (this, CTL, c = ctl, ((c & ~AC_MASK) |
1599 ((c & AC_MASK) + AC_UNIT))));
1600 }
1601
1602 /**
1603 * Tries to create or activate a worker if too few are active.
1604 *
1605 * @param ws the worker array to use to find signallees
1606 * @param q if non-null, the queue holding tasks to be processed
1607 */
1608 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1609 for (;;) {
1610 long c; int e, u, i; WorkQueue w; Thread p;
1611 if ((u = (int)((c = ctl) >>> 32)) >= 0)
1612 break;
1613 if ((e = (int)c) <= 0) {
1614 if ((short)u < 0)
1615 tryAddWorker();
1616 break;
1617 }
1618 if (ws == null || ws.length <= (i = e & SMASK) ||
1619 (w = ws[i]) == null)
1620 break;
1621 long nc = (((long)(w.nextWait & E_MASK)) |
1622 ((long)(u + UAC_UNIT)) << 32);
1623 int ne = (e + E_SEQ) & E_MASK;
1624 if (w.eventCount == (e | INT_SIGN) &&
1625 U.compareAndSwapLong(this, CTL, c, nc)) {
1626 w.eventCount = ne;
1627 if ((p = w.parker) != null)
1628 U.unpark(p);
1629 break;
1630 }
1631 if (q != null && q.base >= q.top)
1632 break;
1633 }
1634 }
1635
1636 // Scanning for tasks
1637
1638 /**
1639 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1640 */
1641 final void runWorker(WorkQueue w) {
1642 w.growArray(); // allocate queue
1643 for (int r = w.hint; scan(w, r) == 0; ) {
1644 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1645 }
1646 }
1647
1648 /**
1649 * Scans for and, if found, runs one task, else possibly
1650 * inactivates the worker. This method operates on single reads of
1651 * volatile state and is designed to be re-invoked continuously,
1652 * in part because it returns upon detecting inconsistencies,
1653 * contention, or state changes that indicate possible success on
1654 * re-invocation.
1655 *
1656 * The scan searches for tasks across queues starting at a random
1657 * index, checking each at least twice. The scan terminates upon
1658 * either finding a non-empty queue, or completing the sweep. If
1659 * the worker is not inactivated, it takes and runs a task from
1660 * this queue. Otherwise, if not activated, it tries to activate
1661 * itself or some other worker by signalling. On failure to find a
1662 * task, returns (for retry) if pool state may have changed during
1663 * an empty scan, or tries to inactivate if active, else possibly
1664 * blocks or terminates via method awaitWork.
1665 *
1666 * @param w the worker (via its WorkQueue)
1667 * @param r a random seed
1668 * @return worker qlock status if would have waited, else 0
1669 */
1670 private final int scan(WorkQueue w, int r) {
1671 WorkQueue[] ws; int m;
1672 long c = ctl; // for consistency check
1673 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1674 for (int j = m + m + 1, ec = w.eventCount;;) {
1675 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1676 if ((q = ws[(r - j) & m]) != null &&
1677 (b = q.base) - q.top < 0 && (a = q.array) != null) {
1678 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1679 if ((t = ((ForkJoinTask<?>)
1680 U.getObjectVolatile(a, i))) != null) {
1681 if (ec < 0)
1682 helpRelease(c, ws, w, q, b);
1683 else if (q.base == b &&
1684 U.compareAndSwapObject(a, i, t, null)) {
1685 U.putOrderedInt(q, QBASE, b + 1);
1686 if ((b + 1) - q.top < 0)
1687 signalWork(ws, q);
1688 w.runTask(t);
1689 }
1690 }
1691 break;
1692 }
1693 else if (--j < 0) {
1694 if ((ec | (e = (int)c)) < 0) // inactive or terminating
1695 return awaitWork(w, c, ec);
1696 else if (ctl == c) { // try to inactivate and enqueue
1697 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1698 w.nextWait = e;
1699 w.eventCount = ec | INT_SIGN;
1700 if (!U.compareAndSwapLong(this, CTL, c, nc))
1701 w.eventCount = ec; // back out
1702 }
1703 break;
1704 }
1705 }
1706 }
1707 return 0;
1708 }
1709
1710 /**
1711 * A continuation of scan(), possibly blocking or terminating
1712 * worker w. Returns without blocking if pool state has apparently
1713 * changed since last invocation. Also, if inactivating w has
1714 * caused the pool to become quiescent, checks for pool
1715 * termination, and, so long as this is not the only worker, waits
1716 * for event for up to a given duration. On timeout, if ctl has
1717 * not changed, terminates the worker, which will in turn wake up
1718 * another worker to possibly repeat this process.
1719 *
1720 * @param w the calling worker
1721 * @param c the ctl value on entry to scan
1722 * @param ec the worker's eventCount on entry to scan
1723 */
1724 private final int awaitWork(WorkQueue w, long c, int ec) {
1725 int stat, ns; long parkTime, deadline;
1726 if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1727 !Thread.interrupted()) {
1728 int e = (int)c;
1729 int u = (int)(c >>> 32);
1730 int d = (u >> UAC_SHIFT) + parallelism; // active count
1731
1732 if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1733 stat = w.qlock = -1; // pool is terminating
1734 else if ((ns = w.nsteals) != 0) { // collect steals and retry
1735 long sc;
1736 w.nsteals = 0;
1737 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1738 sc = stealCount, sc + ns));
1739 }
1740 else {
1741 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1742 ((long)(w.nextWait & E_MASK)) | // ctl to restore
1743 ((long)(u + UAC_UNIT)) << 32);
1744 if (pc != 0L) { // timed wait if last waiter
1745 int dc = -(short)(c >>> TC_SHIFT);
1746 parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1747 (dc + 1) * IDLE_TIMEOUT);
1748 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1749 }
1750 else
1751 parkTime = deadline = 0L;
1752 if (w.eventCount == ec && ctl == c) {
1753 Thread wt = Thread.currentThread();
1754 U.putObject(wt, PARKBLOCKER, this);
1755 w.parker = wt; // emulate LockSupport.park
1756 if (w.eventCount == ec && ctl == c)
1757 U.park(false, parkTime); // must recheck before park
1758 w.parker = null;
1759 U.putObject(wt, PARKBLOCKER, null);
1760 if (parkTime != 0L && ctl == c &&
1761 deadline - System.nanoTime() <= 0L &&
1762 U.compareAndSwapLong(this, CTL, c, pc))
1763 stat = w.qlock = -1; // shrink pool
1764 }
1765 }
1766 }
1767 return stat;
1768 }
1769
1770 /**
1771 * Possibly releases (signals) a worker. Called only from scan()
1772 * when a worker with apparently inactive status finds a non-empty
1773 * queue. This requires revalidating all of the associated state
1774 * from caller.
1775 */
1776 private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1777 WorkQueue q, int b) {
1778 WorkQueue v; int e, i; Thread p;
1779 if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1780 ws != null && ws.length > (i = e & SMASK) &&
1781 (v = ws[i]) != null && ctl == c) {
1782 long nc = (((long)(v.nextWait & E_MASK)) |
1783 ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1784 int ne = (e + E_SEQ) & E_MASK;
1785 if (q != null && q.base == b && w.eventCount < 0 &&
1786 v.eventCount == (e | INT_SIGN) &&
1787 U.compareAndSwapLong(this, CTL, c, nc)) {
1788 v.eventCount = ne;
1789 if ((p = v.parker) != null)
1790 U.unpark(p);
1791 }
1792 }
1793 }
1794
1795 /**
1796 * Tries to locate and execute tasks for a stealer of the given
1797 * task, or in turn one of its stealers, Traces currentSteal ->
1798 * currentJoin links looking for a thread working on a descendant
1799 * of the given task and with a non-empty queue to steal back and
1800 * execute tasks from. The first call to this method upon a
1801 * waiting join will often entail scanning/search, (which is OK
1802 * because the joiner has nothing better to do), but this method
1803 * leaves hints in workers to speed up subsequent calls. The
1804 * implementation is very branchy to cope with potential
1805 * inconsistencies or loops encountering chains that are stale,
1806 * unknown, or so long that they are likely cyclic.
1807 *
1808 * @param joiner the joining worker
1809 * @param task the task to join
1810 * @return 0 if no progress can be made, negative if task
1811 * known complete, else positive
1812 */
1813 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1814 int stat = 0, steps = 0; // bound to avoid cycles
1815 if (task != null && joiner != null &&
1816 joiner.base - joiner.top >= 0) { // hoist checks
1817 restart: for (;;) {
1818 ForkJoinTask<?> subtask = task; // current target
1819 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1820 WorkQueue[] ws; int m, s, h;
1821 if ((s = task.status) < 0) {
1822 stat = s;
1823 break restart;
1824 }
1825 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1826 break restart; // shutting down
1827 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1828 v.currentSteal != subtask) {
1829 for (int origin = h;;) { // find stealer
1830 if (((h = (h + 2) & m) & 15) == 1 &&
1831 (subtask.status < 0 || j.currentJoin != subtask))
1832 continue restart; // occasional staleness check
1833 if ((v = ws[h]) != null &&
1834 v.currentSteal == subtask) {
1835 j.hint = h; // save hint
1836 break;
1837 }
1838 if (h == origin)
1839 break restart; // cannot find stealer
1840 }
1841 }
1842 for (;;) { // help stealer or descend to its stealer
1843 ForkJoinTask[] a; int b;
1844 if (subtask.status < 0) // surround probes with
1845 continue restart; // consistency checks
1846 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1847 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1848 ForkJoinTask<?> t =
1849 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1850 if (subtask.status < 0 || j.currentJoin != subtask ||
1851 v.currentSteal != subtask)
1852 continue restart; // stale
1853 stat = 1; // apparent progress
1854 if (v.base == b) {
1855 if (t == null)
1856 break restart;
1857 if (U.compareAndSwapObject(a, i, t, null)) {
1858 U.putOrderedInt(v, QBASE, b + 1);
1859 ForkJoinTask<?> ps = joiner.currentSteal;
1860 int jt = joiner.top;
1861 do {
1862 joiner.currentSteal = t;
1863 t.doExec(); // clear local tasks too
1864 } while (task.status >= 0 &&
1865 joiner.top != jt &&
1866 (t = joiner.pop()) != null);
1867 joiner.currentSteal = ps;
1868 break restart;
1869 }
1870 }
1871 }
1872 else { // empty -- try to descend
1873 ForkJoinTask<?> next = v.currentJoin;
1874 if (subtask.status < 0 || j.currentJoin != subtask ||
1875 v.currentSteal != subtask)
1876 continue restart; // stale
1877 else if (next == null || ++steps == MAX_HELP)
1878 break restart; // dead-end or maybe cyclic
1879 else {
1880 subtask = next;
1881 j = v;
1882 break;
1883 }
1884 }
1885 }
1886 }
1887 }
1888 }
1889 return stat;
1890 }
1891
1892 /**
1893 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1894 * and run tasks within the target's computation.
1895 *
1896 * @param task the task to join
1897 */
1898 private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1899 WorkQueue[] ws; int m;
1900 int s = 0;
1901 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1902 joiner != null && task != null) {
1903 int j = joiner.poolIndex;
1904 int scans = m + m + 1;
1905 long c = 0L; // for stability check
1906 for (int k = scans; ; j += 2) {
1907 WorkQueue q;
1908 if ((s = task.status) < 0)
1909 break;
1910 else if (joiner.internalPopAndExecCC(task))
1911 k = scans;
1912 else if ((s = task.status) < 0)
1913 break;
1914 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1915 k = scans;
1916 else if (--k < 0) {
1917 if (c == (c = ctl))
1918 break;
1919 k = scans;
1920 }
1921 }
1922 }
1923 return s;
1924 }
1925
1926 /**
1927 * Tries to decrement active count (sometimes implicitly) and
1928 * possibly release or create a compensating worker in preparation
1929 * for blocking. Fails on contention or termination. Otherwise,
1930 * adds a new thread if no idle workers are available and pool
1931 * may become starved.
1932 *
1933 * @param c the assumed ctl value
1934 */
1935 final boolean tryCompensate(long c) {
1936 WorkQueue[] ws = workQueues;
1937 int pc = parallelism, e = (int)c, m, tc;
1938 if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1939 WorkQueue w = ws[e & m];
1940 if (e != 0 && w != null) {
1941 Thread p;
1942 long nc = ((long)(w.nextWait & E_MASK) |
1943 (c & (AC_MASK|TC_MASK)));
1944 int ne = (e + E_SEQ) & E_MASK;
1945 if (w.eventCount == (e | INT_SIGN) &&
1946 U.compareAndSwapLong(this, CTL, c, nc)) {
1947 w.eventCount = ne;
1948 if ((p = w.parker) != null)
1949 U.unpark(p);
1950 return true; // replace with idle worker
1951 }
1952 }
1953 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1954 (int)(c >> AC_SHIFT) + pc > 1) {
1955 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1956 if (U.compareAndSwapLong(this, CTL, c, nc))
1957 return true; // no compensation
1958 }
1959 else if (tc + pc < MAX_CAP) {
1960 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1961 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1962 ForkJoinWorkerThreadFactory fac;
1963 Throwable ex = null;
1964 ForkJoinWorkerThread wt = null;
1965 try {
1966 if ((fac = factory) != null &&
1967 (wt = fac.newThread(this)) != null) {
1968 wt.start();
1969 return true;
1970 }
1971 } catch (Throwable rex) {
1972 ex = rex;
1973 }
1974 deregisterWorker(wt, ex); // clean up and return false
1975 }
1976 }
1977 }
1978 return false;
1979 }
1980
1981 /**
1982 * Helps and/or blocks until the given task is done.
1983 *
1984 * @param joiner the joining worker
1985 * @param task the task
1986 * @return task status on exit
1987 */
1988 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1989 int s = 0;
1990 if (task != null && (s = task.status) >= 0 && joiner != null) {
1991 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1992 joiner.currentJoin = task;
1993 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1994 (s = task.status) >= 0);
1995 if (s >= 0 && (task instanceof CountedCompleter))
1996 s = helpComplete(joiner, (CountedCompleter<?>)task);
1997 long cc = 0; // for stability checks
1998 while (s >= 0 && (s = task.status) >= 0) {
1999 if ((s = tryHelpStealer(joiner, task)) == 0 &&
2000 (s = task.status) >= 0) {
2001 if (!tryCompensate(cc))
2002 cc = ctl;
2003 else {
2004 if (task.trySetSignal() && (s = task.status) >= 0) {
2005 synchronized (task) {
2006 if (task.status >= 0) {
2007 try { // see ForkJoinTask
2008 task.wait(); // for explanation
2009 } catch (InterruptedException ie) {
2010 }
2011 }
2012 else
2013 task.notifyAll();
2014 }
2015 }
2016 long c; // reactivate
2017 do {} while (!U.compareAndSwapLong
2018 (this, CTL, c = ctl,
2019 ((c & ~AC_MASK) |
2020 ((c & AC_MASK) + AC_UNIT))));
2021 }
2022 }
2023 }
2024 joiner.currentJoin = prevJoin;
2025 }
2026 return s;
2027 }
2028
2029 /**
2030 * Stripped-down variant of awaitJoin used by timed joins. Tries
2031 * to help join only while there is continuous progress. (Caller
2032 * will then enter a timed wait.)
2033 *
2034 * @param joiner the joining worker
2035 * @param task the task
2036 */
2037 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2038 int s;
2039 if (joiner != null && task != null && (s = task.status) >= 0) {
2040 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2041 joiner.currentJoin = task;
2042 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2043 (s = task.status) >= 0);
2044 if (s >= 0) {
2045 if (task instanceof CountedCompleter)
2046 helpComplete(joiner, (CountedCompleter<?>)task);
2047 do {} while (task.status >= 0 &&
2048 tryHelpStealer(joiner, task) > 0);
2049 }
2050 joiner.currentJoin = prevJoin;
2051 }
2052 }
2053
2054 /**
2055 * Returns a (probably) non-empty steal queue, if one is found
2056 * during a scan, else null. This method must be retried by
2057 * caller if, by the time it tries to use the queue, it is empty.
2058 */
2059 private WorkQueue findNonEmptyStealQueue() {
2060 int r = ThreadLocalRandom.current().nextInt();
2061 for (;;) {
2062 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2063 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2064 for (int j = (m + 1) << 2; j >= 0; --j) {
2065 if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2066 q.base - q.top < 0)
2067 return q;
2068 }
2069 }
2070 if (plock == ps)
2071 return null;
2072 }
2073 }
2074
2075 /**
2076 * Runs tasks until {@code isQuiescent()}. We piggyback on
2077 * active count ctl maintenance, but rather than blocking
2078 * when tasks cannot be found, we rescan until all others cannot
2079 * find tasks either.
2080 */
2081 final void helpQuiescePool(WorkQueue w) {
2082 ForkJoinTask<?> ps = w.currentSteal;
2083 for (boolean active = true;;) {
2084 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2085 while ((t = w.nextLocalTask()) != null)
2086 t.doExec();
2087 if ((q = findNonEmptyStealQueue()) != null) {
2088 if (!active) { // re-establish active count
2089 active = true;
2090 do {} while (!U.compareAndSwapLong
2091 (this, CTL, c = ctl,
2092 ((c & ~AC_MASK) |
2093 ((c & AC_MASK) + AC_UNIT))));
2094 }
2095 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2096 (w.currentSteal = t).doExec();
2097 w.currentSteal = ps;
2098 }
2099 }
2100 else if (active) { // decrement active count without queuing
2101 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2102 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2103 break; // bypass decrement-then-increment
2104 if (U.compareAndSwapLong(this, CTL, c, nc))
2105 active = false;
2106 }
2107 else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2108 U.compareAndSwapLong
2109 (this, CTL, c, ((c & ~AC_MASK) |
2110 ((c & AC_MASK) + AC_UNIT))))
2111 break;
2112 }
2113 }
2114
2115 /**
2116 * Gets and removes a local or stolen task for the given worker.
2117 *
2118 * @return a task, if available
2119 */
2120 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2121 for (ForkJoinTask<?> t;;) {
2122 WorkQueue q; int b;
2123 if ((t = w.nextLocalTask()) != null)
2124 return t;
2125 if ((q = findNonEmptyStealQueue()) == null)
2126 return null;
2127 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2128 return t;
2129 }
2130 }
2131
2132 /**
2133 * Returns a cheap heuristic guide for task partitioning when
2134 * programmers, frameworks, tools, or languages have little or no
2135 * idea about task granularity. In essence by offering this
2136 * method, we ask users only about tradeoffs in overhead vs
2137 * expected throughput and its variance, rather than how finely to
2138 * partition tasks.
2139 *
2140 * In a steady state strict (tree-structured) computation, each
2141 * thread makes available for stealing enough tasks for other
2142 * threads to remain active. Inductively, if all threads play by
2143 * the same rules, each thread should make available only a
2144 * constant number of tasks.
2145 *
2146 * The minimum useful constant is just 1. But using a value of 1
2147 * would require immediate replenishment upon each steal to
2148 * maintain enough tasks, which is infeasible. Further,
2149 * partitionings/granularities of offered tasks should minimize
2150 * steal rates, which in general means that threads nearer the top
2151 * of computation tree should generate more than those nearer the
2152 * bottom. In perfect steady state, each thread is at
2153 * approximately the same level of computation tree. However,
2154 * producing extra tasks amortizes the uncertainty of progress and
2155 * diffusion assumptions.
2156 *
2157 * So, users will want to use values larger (but not much larger)
2158 * than 1 to both smooth over transient shortages and hedge
2159 * against uneven progress; as traded off against the cost of
2160 * extra task overhead. We leave the user to pick a threshold
2161 * value to compare with the results of this call to guide
2162 * decisions, but recommend values such as 3.
2163 *
2164 * When all threads are active, it is on average OK to estimate
2165 * surplus strictly locally. In steady-state, if one thread is
2166 * maintaining say 2 surplus tasks, then so are others. So we can
2167 * just use estimated queue length. However, this strategy alone
2168 * leads to serious mis-estimates in some non-steady-state
2169 * conditions (ramp-up, ramp-down, other stalls). We can detect
2170 * many of these by further considering the number of "idle"
2171 * threads, that are known to have zero queued tasks, so
2172 * compensate by a factor of (#idle/#active) threads.
2173 *
2174 * Note: The approximation of #busy workers as #active workers is
2175 * not very good under current signalling scheme, and should be
2176 * improved.
2177 */
2178 static int getSurplusQueuedTaskCount() {
2179 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2180 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2181 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2182 int n = (q = wt.workQueue).top - q.base;
2183 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2184 return n - (a > (p >>>= 1) ? 0 :
2185 a > (p >>>= 1) ? 1 :
2186 a > (p >>>= 1) ? 2 :
2187 a > (p >>>= 1) ? 4 :
2188 8);
2189 }
2190 return 0;
2191 }
2192
2193 // Termination
2194
2195 /**
2196 * Possibly initiates and/or completes termination. The caller
2197 * triggering termination runs three passes through workQueues:
2198 * (0) Setting termination status, followed by wakeups of queued
2199 * workers; (1) cancelling all tasks; (2) interrupting lagging
2200 * threads (likely in external tasks, but possibly also blocked in
2201 * joins). Each pass repeats previous steps because of potential
2202 * lagging thread creation.
2203 *
2204 * @param now if true, unconditionally terminate, else only
2205 * if no work and no active workers
2206 * @param enable if true, enable shutdown when next possible
2207 * @return true if now terminating or terminated
2208 */
2209 private boolean tryTerminate(boolean now, boolean enable) {
2210 int ps;
2211 if (this == common) // cannot shut down
2212 return false;
2213 if ((ps = plock) >= 0) { // enable by setting plock
2214 if (!enable)
2215 return false;
2216 if ((ps & PL_LOCK) != 0 ||
2217 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2218 ps = acquirePlock();
2219 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2220 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2221 releasePlock(nps);
2222 }
2223 for (long c;;) {
2224 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2225 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2226 synchronized (this) {
2227 notifyAll(); // signal when 0 workers
2228 }
2229 }
2230 return true;
2231 }
2232 if (!now) { // check if idle & no tasks
2233 WorkQueue[] ws; WorkQueue w;
2234 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2235 return false;
2236 if ((ws = workQueues) != null) {
2237 for (int i = 0; i < ws.length; ++i) {
2238 if ((w = ws[i]) != null &&
2239 (!w.isEmpty() ||
2240 ((i & 1) != 0 && w.eventCount >= 0))) {
2241 signalWork(ws, w);
2242 return false;
2243 }
2244 }
2245 }
2246 }
2247 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2248 for (int pass = 0; pass < 3; ++pass) {
2249 WorkQueue[] ws; WorkQueue w; Thread wt;
2250 if ((ws = workQueues) != null) {
2251 int n = ws.length;
2252 for (int i = 0; i < n; ++i) {
2253 if ((w = ws[i]) != null) {
2254 w.qlock = -1;
2255 if (pass > 0) {
2256 w.cancelAll();
2257 if (pass > 1 && (wt = w.owner) != null) {
2258 if (!wt.isInterrupted()) {
2259 try {
2260 wt.interrupt();
2261 } catch (Throwable ignore) {
2262 }
2263 }
2264 U.unpark(wt);
2265 }
2266 }
2267 }
2268 }
2269 // Wake up workers parked on event queue
2270 int i, e; long cc; Thread p;
2271 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2272 (i = e & SMASK) < n && i >= 0 &&
2273 (w = ws[i]) != null) {
2274 long nc = ((long)(w.nextWait & E_MASK) |
2275 ((cc + AC_UNIT) & AC_MASK) |
2276 (cc & (TC_MASK|STOP_BIT)));
2277 if (w.eventCount == (e | INT_SIGN) &&
2278 U.compareAndSwapLong(this, CTL, cc, nc)) {
2279 w.eventCount = (e + E_SEQ) & E_MASK;
2280 w.qlock = -1;
2281 if ((p = w.parker) != null)
2282 U.unpark(p);
2283 }
2284 }
2285 }
2286 }
2287 }
2288 }
2289 }
2290
2291 // external operations on common pool
2292
2293 /**
2294 * Returns common pool queue for a thread that has submitted at
2295 * least one task.
2296 */
2297 static WorkQueue commonSubmitterQueue() {
2298 Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2299 return ((z = submitters.get()) != null &&
2300 (p = common) != null &&
2301 (ws = p.workQueues) != null &&
2302 (m = ws.length - 1) >= 0) ?
2303 ws[m & z.seed & SQMASK] : null;
2304 }
2305
2306 /**
2307 * Tries to pop the given task from submitter's queue in common pool.
2308 */
2309 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2310 WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2311 Submitter z = submitters.get();
2312 WorkQueue[] ws = workQueues;
2313 boolean popped = false;
2314 if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2315 (joiner = ws[z.seed & m & SQMASK]) != null &&
2316 joiner.base != (s = joiner.top) &&
2317 (a = joiner.array) != null) {
2318 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319 if (U.getObject(a, j) == task &&
2320 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2321 if (joiner.top == s && joiner.array == a &&
2322 U.compareAndSwapObject(a, j, task, null)) {
2323 joiner.top = s - 1;
2324 popped = true;
2325 }
2326 joiner.qlock = 0;
2327 }
2328 }
2329 return popped;
2330 }
2331
2332 final int externalHelpComplete(CountedCompleter<?> task) {
2333 WorkQueue joiner; int m, j;
2334 Submitter z = submitters.get();
2335 WorkQueue[] ws = workQueues;
2336 int s = 0;
2337 if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2338 (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2339 int scans = m + m + 1;
2340 long c = 0L; // for stability check
2341 j |= 1; // poll odd queues
2342 for (int k = scans; ; j += 2) {
2343 WorkQueue q;
2344 if ((s = task.status) < 0)
2345 break;
2346 else if (joiner.externalPopAndExecCC(task))
2347 k = scans;
2348 else if ((s = task.status) < 0)
2349 break;
2350 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2351 k = scans;
2352 else if (--k < 0) {
2353 if (c == (c = ctl))
2354 break;
2355 k = scans;
2356 }
2357 }
2358 }
2359 return s;
2360 }
2361
2362 // Exported methods
2363
2364 // Constructors
2365
2366 /**
2367 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2368 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2369 * #defaultForkJoinWorkerThreadFactory default thread factory},
2370 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2371 *
2372 * @throws SecurityException if a security manager exists and
2373 * the caller is not permitted to modify threads
2374 * because it does not hold {@link
2375 * java.lang.RuntimePermission}{@code ("modifyThread")}
2376 */
2377 public ForkJoinPool() {
2378 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2379 defaultForkJoinWorkerThreadFactory, null, false);
2380 }
2381
2382 /**
2383 * Creates a {@code ForkJoinPool} with the indicated parallelism
2384 * level, the {@linkplain
2385 * #defaultForkJoinWorkerThreadFactory default thread factory},
2386 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2387 *
2388 * @param parallelism the parallelism level
2389 * @throws IllegalArgumentException if parallelism less than or
2390 * equal to zero, or greater than implementation limit
2391 * @throws SecurityException if a security manager exists and
2392 * the caller is not permitted to modify threads
2393 * because it does not hold {@link
2394 * java.lang.RuntimePermission}{@code ("modifyThread")}
2395 */
2396 public ForkJoinPool(int parallelism) {
2397 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2398 }
2399
2400 /**
2401 * Creates a {@code ForkJoinPool} with the given parameters.
2402 *
2403 * @param parallelism the parallelism level. For default value,
2404 * use {@link java.lang.Runtime#availableProcessors}.
2405 * @param factory the factory for creating new threads. For default value,
2406 * use {@link #defaultForkJoinWorkerThreadFactory}.
2407 * @param handler the handler for internal worker threads that
2408 * terminate due to unrecoverable errors encountered while executing
2409 * tasks. For default value, use {@code null}.
2410 * @param asyncMode if true,
2411 * establishes local first-in-first-out scheduling mode for forked
2412 * tasks that are never joined. This mode may be more appropriate
2413 * than default locally stack-based mode in applications in which
2414 * worker threads only process event-style asynchronous tasks.
2415 * For default value, use {@code false}.
2416 * @throws IllegalArgumentException if parallelism less than or
2417 * equal to zero, or greater than implementation limit
2418 * @throws NullPointerException if the factory is null
2419 * @throws SecurityException if a security manager exists and
2420 * the caller is not permitted to modify threads
2421 * because it does not hold {@link
2422 * java.lang.RuntimePermission}{@code ("modifyThread")}
2423 */
2424 public ForkJoinPool(int parallelism,
2425 ForkJoinWorkerThreadFactory factory,
2426 UncaughtExceptionHandler handler,
2427 boolean asyncMode) {
2428 this(checkParallelism(parallelism),
2429 checkFactory(factory),
2430 handler,
2431 (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2432 "ForkJoinPool-" + nextPoolId() + "-worker-");
2433 checkPermission();
2434 }
2435
2436 private static int checkParallelism(int parallelism) {
2437 if (parallelism <= 0 || parallelism > MAX_CAP)
2438 throw new IllegalArgumentException();
2439 return parallelism;
2440 }
2441
2442 private static ForkJoinWorkerThreadFactory checkFactory
2443 (ForkJoinWorkerThreadFactory factory) {
2444 if (factory == null)
2445 throw new NullPointerException();
2446 return factory;
2447 }
2448
2449 /**
2450 * Creates a {@code ForkJoinPool} with the given parameters, without
2451 * any security checks or parameter validation. Invoked directly by
2452 * makeCommonPool.
2453 */
2454 private ForkJoinPool(int parallelism,
2455 ForkJoinWorkerThreadFactory factory,
2456 UncaughtExceptionHandler handler,
2457 int mode,
2458 String workerNamePrefix) {
2459 this.workerNamePrefix = workerNamePrefix;
2460 this.factory = factory;
2461 this.ueh = handler;
2462 this.mode = (short)mode;
2463 this.parallelism = (short)parallelism;
2464 long np = (long)(-parallelism); // offset ctl counts
2465 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2466 }
2467
2468 /**
2469 * Returns the common pool instance. This pool is statically
2470 * constructed; its run state is unaffected by attempts to {@link
2471 * #shutdown} or {@link #shutdownNow}. However this pool and any
2472 * ongoing processing are automatically terminated upon program
2473 * {@link System#exit}. Any program that relies on asynchronous
2474 * task processing to complete before program termination should
2475 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2476 * before exit.
2477 *
2478 * @return the common pool instance
2479 * @since 1.8
2480 */
2481 public static ForkJoinPool commonPool() {
2482 // assert common != null : "static init error";
2483 return common;
2484 }
2485
2486 // Execution methods
2487
2488 /**
2489 * Performs the given task, returning its result upon completion.
2490 * If the computation encounters an unchecked Exception or Error,
2491 * it is rethrown as the outcome of this invocation. Rethrown
2492 * exceptions behave in the same way as regular exceptions, but,
2493 * when possible, contain stack traces (as displayed for example
2494 * using {@code ex.printStackTrace()}) of both the current thread
2495 * as well as the thread actually encountering the exception;
2496 * minimally only the latter.
2497 *
2498 * @param task the task
2499 * @return the task's result
2500 * @throws NullPointerException if the task is null
2501 * @throws RejectedExecutionException if the task cannot be
2502 * scheduled for execution
2503 */
2504 public <T> T invoke(ForkJoinTask<T> task) {
2505 if (task == null)
2506 throw new NullPointerException();
2507 externalPush(task);
2508 return task.join();
2509 }
2510
2511 /**
2512 * Arranges for (asynchronous) execution of the given task.
2513 *
2514 * @param task the task
2515 * @throws NullPointerException if the task is null
2516 * @throws RejectedExecutionException if the task cannot be
2517 * scheduled for execution
2518 */
2519 public void execute(ForkJoinTask<?> task) {
2520 if (task == null)
2521 throw new NullPointerException();
2522 externalPush(task);
2523 }
2524
2525 // AbstractExecutorService methods
2526
2527 /**
2528 * @throws NullPointerException if the task is null
2529 * @throws RejectedExecutionException if the task cannot be
2530 * scheduled for execution
2531 */
2532 public void execute(Runnable task) {
2533 if (task == null)
2534 throw new NullPointerException();
2535 ForkJoinTask<?> job;
2536 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2537 job = (ForkJoinTask<?>) task;
2538 else
2539 job = new ForkJoinTask.RunnableExecuteAction(task);
2540 externalPush(job);
2541 }
2542
2543 /**
2544 * Submits a ForkJoinTask for execution.
2545 *
2546 * @param task the task to submit
2547 * @return the task
2548 * @throws NullPointerException if the task is null
2549 * @throws RejectedExecutionException if the task cannot be
2550 * scheduled for execution
2551 */
2552 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2553 if (task == null)
2554 throw new NullPointerException();
2555 externalPush(task);
2556 return task;
2557 }
2558
2559 /**
2560 * @throws NullPointerException if the task is null
2561 * @throws RejectedExecutionException if the task cannot be
2562 * scheduled for execution
2563 */
2564 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2565 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2566 externalPush(job);
2567 return job;
2568 }
2569
2570 /**
2571 * @throws NullPointerException if the task is null
2572 * @throws RejectedExecutionException if the task cannot be
2573 * scheduled for execution
2574 */
2575 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2576 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2577 externalPush(job);
2578 return job;
2579 }
2580
2581 /**
2582 * @throws NullPointerException if the task is null
2583 * @throws RejectedExecutionException if the task cannot be
2584 * scheduled for execution
2585 */
2586 public ForkJoinTask<?> submit(Runnable task) {
2587 if (task == null)
2588 throw new NullPointerException();
2589 ForkJoinTask<?> job;
2590 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2591 job = (ForkJoinTask<?>) task;
2592 else
2593 job = new ForkJoinTask.AdaptedRunnableAction(task);
2594 externalPush(job);
2595 return job;
2596 }
2597
2598 /**
2599 * @throws NullPointerException {@inheritDoc}
2600 * @throws RejectedExecutionException {@inheritDoc}
2601 */
2602 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2603 // In previous versions of this class, this method constructed
2604 // a task to run ForkJoinTask.invokeAll, but now external
2605 // invocation of multiple tasks is at least as efficient.
2606 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2607
2608 boolean done = false;
2609 try {
2610 for (Callable<T> t : tasks) {
2611 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 futures.add(f);
2613 externalPush(f);
2614 }
2615 for (int i = 0, size = futures.size(); i < size; i++)
2616 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2617 done = true;
2618 return futures;
2619 } finally {
2620 if (!done)
2621 for (int i = 0, size = futures.size(); i < size; i++)
2622 futures.get(i).cancel(false);
2623 }
2624 }
2625
2626 /**
2627 * Returns the factory used for constructing new workers.
2628 *
2629 * @return the factory used for constructing new workers
2630 */
2631 public ForkJoinWorkerThreadFactory getFactory() {
2632 return factory;
2633 }
2634
2635 /**
2636 * Returns the handler for internal worker threads that terminate
2637 * due to unrecoverable errors encountered while executing tasks.
2638 *
2639 * @return the handler, or {@code null} if none
2640 */
2641 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2642 return ueh;
2643 }
2644
2645 /**
2646 * Returns the targeted parallelism level of this pool.
2647 *
2648 * @return the targeted parallelism level of this pool
2649 */
2650 public int getParallelism() {
2651 int par;
2652 return ((par = parallelism) > 0) ? par : 1;
2653 }
2654
2655 /**
2656 * Returns the targeted parallelism level of the common pool.
2657 *
2658 * @return the targeted parallelism level of the common pool
2659 * @since 1.8
2660 */
2661 public static int getCommonPoolParallelism() {
2662 return commonParallelism;
2663 }
2664
2665 /**
2666 * Returns the number of worker threads that have started but not
2667 * yet terminated. The result returned by this method may differ
2668 * from {@link #getParallelism} when threads are created to
2669 * maintain parallelism when others are cooperatively blocked.
2670 *
2671 * @return the number of worker threads
2672 */
2673 public int getPoolSize() {
2674 return parallelism + (short)(ctl >>> TC_SHIFT);
2675 }
2676
2677 /**
2678 * Returns {@code true} if this pool uses local first-in-first-out
2679 * scheduling mode for forked tasks that are never joined.
2680 *
2681 * @return {@code true} if this pool uses async mode
2682 */
2683 public boolean getAsyncMode() {
2684 return mode == FIFO_QUEUE;
2685 }
2686
2687 /**
2688 * Returns an estimate of the number of worker threads that are
2689 * not blocked waiting to join tasks or for other managed
2690 * synchronization. This method may overestimate the
2691 * number of running threads.
2692 *
2693 * @return the number of worker threads
2694 */
2695 public int getRunningThreadCount() {
2696 int rc = 0;
2697 WorkQueue[] ws; WorkQueue w;
2698 if ((ws = workQueues) != null) {
2699 for (int i = 1; i < ws.length; i += 2) {
2700 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2701 ++rc;
2702 }
2703 }
2704 return rc;
2705 }
2706
2707 /**
2708 * Returns an estimate of the number of threads that are currently
2709 * stealing or executing tasks. This method may overestimate the
2710 * number of active threads.
2711 *
2712 * @return the number of active threads
2713 */
2714 public int getActiveThreadCount() {
2715 int r = parallelism + (int)(ctl >> AC_SHIFT);
2716 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2717 }
2718
2719 /**
2720 * Returns {@code true} if all worker threads are currently idle.
2721 * An idle worker is one that cannot obtain a task to execute
2722 * because none are available to steal from other threads, and
2723 * there are no pending submissions to the pool. This method is
2724 * conservative; it might not return {@code true} immediately upon
2725 * idleness of all threads, but will eventually become true if
2726 * threads remain inactive.
2727 *
2728 * @return {@code true} if all threads are currently idle
2729 */
2730 public boolean isQuiescent() {
2731 return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2732 }
2733
2734 /**
2735 * Returns an estimate of the total number of tasks stolen from
2736 * one thread's work queue by another. The reported value
2737 * underestimates the actual total number of steals when the pool
2738 * is not quiescent. This value may be useful for monitoring and
2739 * tuning fork/join programs: in general, steal counts should be
2740 * high enough to keep threads busy, but low enough to avoid
2741 * overhead and contention across threads.
2742 *
2743 * @return the number of steals
2744 */
2745 public long getStealCount() {
2746 long count = stealCount;
2747 WorkQueue[] ws; WorkQueue w;
2748 if ((ws = workQueues) != null) {
2749 for (int i = 1; i < ws.length; i += 2) {
2750 if ((w = ws[i]) != null)
2751 count += w.nsteals;
2752 }
2753 }
2754 return count;
2755 }
2756
2757 /**
2758 * Returns an estimate of the total number of tasks currently held
2759 * in queues by worker threads (but not including tasks submitted
2760 * to the pool that have not begun executing). This value is only
2761 * an approximation, obtained by iterating across all threads in
2762 * the pool. This method may be useful for tuning task
2763 * granularities.
2764 *
2765 * @return the number of queued tasks
2766 */
2767 public long getQueuedTaskCount() {
2768 long count = 0;
2769 WorkQueue[] ws; WorkQueue w;
2770 if ((ws = workQueues) != null) {
2771 for (int i = 1; i < ws.length; i += 2) {
2772 if ((w = ws[i]) != null)
2773 count += w.queueSize();
2774 }
2775 }
2776 return count;
2777 }
2778
2779 /**
2780 * Returns an estimate of the number of tasks submitted to this
2781 * pool that have not yet begun executing. This method may take
2782 * time proportional to the number of submissions.
2783 *
2784 * @return the number of queued submissions
2785 */
2786 public int getQueuedSubmissionCount() {
2787 int count = 0;
2788 WorkQueue[] ws; WorkQueue w;
2789 if ((ws = workQueues) != null) {
2790 for (int i = 0; i < ws.length; i += 2) {
2791 if ((w = ws[i]) != null)
2792 count += w.queueSize();
2793 }
2794 }
2795 return count;
2796 }
2797
2798 /**
2799 * Returns {@code true} if there are any tasks submitted to this
2800 * pool that have not yet begun executing.
2801 *
2802 * @return {@code true} if there are any queued submissions
2803 */
2804 public boolean hasQueuedSubmissions() {
2805 WorkQueue[] ws; WorkQueue w;
2806 if ((ws = workQueues) != null) {
2807 for (int i = 0; i < ws.length; i += 2) {
2808 if ((w = ws[i]) != null && !w.isEmpty())
2809 return true;
2810 }
2811 }
2812 return false;
2813 }
2814
2815 /**
2816 * Removes and returns the next unexecuted submission if one is
2817 * available. This method may be useful in extensions to this
2818 * class that re-assign work in systems with multiple pools.
2819 *
2820 * @return the next submission, or {@code null} if none
2821 */
2822 protected ForkJoinTask<?> pollSubmission() {
2823 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2824 if ((ws = workQueues) != null) {
2825 for (int i = 0; i < ws.length; i += 2) {
2826 if ((w = ws[i]) != null && (t = w.poll()) != null)
2827 return t;
2828 }
2829 }
2830 return null;
2831 }
2832
2833 /**
2834 * Removes all available unexecuted submitted and forked tasks
2835 * from scheduling queues and adds them to the given collection,
2836 * without altering their execution status. These may include
2837 * artificially generated or wrapped tasks. This method is
2838 * designed to be invoked only when the pool is known to be
2839 * quiescent. Invocations at other times may not remove all
2840 * tasks. A failure encountered while attempting to add elements
2841 * to collection {@code c} may result in elements being in
2842 * neither, either or both collections when the associated
2843 * exception is thrown. The behavior of this operation is
2844 * undefined if the specified collection is modified while the
2845 * operation is in progress.
2846 *
2847 * @param c the collection to transfer elements into
2848 * @return the number of elements transferred
2849 */
2850 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2851 int count = 0;
2852 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2853 if ((ws = workQueues) != null) {
2854 for (int i = 0; i < ws.length; ++i) {
2855 if ((w = ws[i]) != null) {
2856 while ((t = w.poll()) != null) {
2857 c.add(t);
2858 ++count;
2859 }
2860 }
2861 }
2862 }
2863 return count;
2864 }
2865
2866 /**
2867 * Returns a string identifying this pool, as well as its state,
2868 * including indications of run state, parallelism level, and
2869 * worker and task counts.
2870 *
2871 * @return a string identifying this pool, as well as its state
2872 */
2873 public String toString() {
2874 // Use a single pass through workQueues to collect counts
2875 long qt = 0L, qs = 0L; int rc = 0;
2876 long st = stealCount;
2877 long c = ctl;
2878 WorkQueue[] ws; WorkQueue w;
2879 if ((ws = workQueues) != null) {
2880 for (int i = 0; i < ws.length; ++i) {
2881 if ((w = ws[i]) != null) {
2882 int size = w.queueSize();
2883 if ((i & 1) == 0)
2884 qs += size;
2885 else {
2886 qt += size;
2887 st += w.nsteals;
2888 if (w.isApparentlyUnblocked())
2889 ++rc;
2890 }
2891 }
2892 }
2893 }
2894 int pc = parallelism;
2895 int tc = pc + (short)(c >>> TC_SHIFT);
2896 int ac = pc + (int)(c >> AC_SHIFT);
2897 if (ac < 0) // ignore transient negative
2898 ac = 0;
2899 String level;
2900 if ((c & STOP_BIT) != 0)
2901 level = (tc == 0) ? "Terminated" : "Terminating";
2902 else
2903 level = plock < 0 ? "Shutting down" : "Running";
2904 return super.toString() +
2905 "[" + level +
2906 ", parallelism = " + pc +
2907 ", size = " + tc +
2908 ", active = " + ac +
2909 ", running = " + rc +
2910 ", steals = " + st +
2911 ", tasks = " + qt +
2912 ", submissions = " + qs +
2913 "]";
2914 }
2915
2916 /**
2917 * Possibly initiates an orderly shutdown in which previously
2918 * submitted tasks are executed, but no new tasks will be
2919 * accepted. Invocation has no effect on execution state if this
2920 * is the {@link #commonPool()}, and no additional effect if
2921 * already shut down. Tasks that are in the process of being
2922 * submitted concurrently during the course of this method may or
2923 * may not be rejected.
2924 *
2925 * @throws SecurityException if a security manager exists and
2926 * the caller is not permitted to modify threads
2927 * because it does not hold {@link
2928 * java.lang.RuntimePermission}{@code ("modifyThread")}
2929 */
2930 public void shutdown() {
2931 checkPermission();
2932 tryTerminate(false, true);
2933 }
2934
2935 /**
2936 * Possibly attempts to cancel and/or stop all tasks, and reject
2937 * all subsequently submitted tasks. Invocation has no effect on
2938 * execution state if this is the {@link #commonPool()}, and no
2939 * additional effect if already shut down. Otherwise, tasks that
2940 * are in the process of being submitted or executed concurrently
2941 * during the course of this method may or may not be
2942 * rejected. This method cancels both existing and unexecuted
2943 * tasks, in order to permit termination in the presence of task
2944 * dependencies. So the method always returns an empty list
2945 * (unlike the case for some other Executors).
2946 *
2947 * @return an empty list
2948 * @throws SecurityException if a security manager exists and
2949 * the caller is not permitted to modify threads
2950 * because it does not hold {@link
2951 * java.lang.RuntimePermission}{@code ("modifyThread")}
2952 */
2953 public List<Runnable> shutdownNow() {
2954 checkPermission();
2955 tryTerminate(true, true);
2956 return Collections.emptyList();
2957 }
2958
2959 /**
2960 * Returns {@code true} if all tasks have completed following shut down.
2961 *
2962 * @return {@code true} if all tasks have completed following shut down
2963 */
2964 public boolean isTerminated() {
2965 long c = ctl;
2966 return ((c & STOP_BIT) != 0L &&
2967 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2968 }
2969
2970 /**
2971 * Returns {@code true} if the process of termination has
2972 * commenced but not yet completed. This method may be useful for
2973 * debugging. A return of {@code true} reported a sufficient
2974 * period after shutdown may indicate that submitted tasks have
2975 * ignored or suppressed interruption, or are waiting for I/O,
2976 * causing this executor not to properly terminate. (See the
2977 * advisory notes for class {@link ForkJoinTask} stating that
2978 * tasks should not normally entail blocking operations. But if
2979 * they do, they must abort them on interrupt.)
2980 *
2981 * @return {@code true} if terminating but not yet terminated
2982 */
2983 public boolean isTerminating() {
2984 long c = ctl;
2985 return ((c & STOP_BIT) != 0L &&
2986 (short)(c >>> TC_SHIFT) + parallelism > 0);
2987 }
2988
2989 /**
2990 * Returns {@code true} if this pool has been shut down.
2991 *
2992 * @return {@code true} if this pool has been shut down
2993 */
2994 public boolean isShutdown() {
2995 return plock < 0;
2996 }
2997
2998 /**
2999 * Blocks until all tasks have completed execution after a
3000 * shutdown request, or the timeout occurs, or the current thread
3001 * is interrupted, whichever happens first. Because the {@link
3002 * #commonPool()} never terminates until program shutdown, when
3003 * applied to the common pool, this method is equivalent to {@link
3004 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3005 *
3006 * @param timeout the maximum time to wait
3007 * @param unit the time unit of the timeout argument
3008 * @return {@code true} if this executor terminated and
3009 * {@code false} if the timeout elapsed before termination
3010 * @throws InterruptedException if interrupted while waiting
3011 */
3012 public boolean awaitTermination(long timeout, TimeUnit unit)
3013 throws InterruptedException {
3014 if (Thread.interrupted())
3015 throw new InterruptedException();
3016 if (this == common) {
3017 awaitQuiescence(timeout, unit);
3018 return false;
3019 }
3020 long nanos = unit.toNanos(timeout);
3021 if (isTerminated())
3022 return true;
3023 if (nanos <= 0L)
3024 return false;
3025 long deadline = System.nanoTime() + nanos;
3026 synchronized (this) {
3027 for (;;) {
3028 if (isTerminated())
3029 return true;
3030 if (nanos <= 0L)
3031 return false;
3032 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3033 wait(millis > 0L ? millis : 1L);
3034 nanos = deadline - System.nanoTime();
3035 }
3036 }
3037 }
3038
3039 /**
3040 * If called by a ForkJoinTask operating in this pool, equivalent
3041 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3042 * waits and/or attempts to assist performing tasks until this
3043 * pool {@link #isQuiescent} or the indicated timeout elapses.
3044 *
3045 * @param timeout the maximum time to wait
3046 * @param unit the time unit of the timeout argument
3047 * @return {@code true} if quiescent; {@code false} if the
3048 * timeout elapsed.
3049 */
3050 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3051 long nanos = unit.toNanos(timeout);
3052 ForkJoinWorkerThread wt;
3053 Thread thread = Thread.currentThread();
3054 if ((thread instanceof ForkJoinWorkerThread) &&
3055 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3056 helpQuiescePool(wt.workQueue);
3057 return true;
3058 }
3059 long startTime = System.nanoTime();
3060 WorkQueue[] ws;
3061 int r = 0, m;
3062 boolean found = true;
3063 while (!isQuiescent() && (ws = workQueues) != null &&
3064 (m = ws.length - 1) >= 0) {
3065 if (!found) {
3066 if ((System.nanoTime() - startTime) > nanos)
3067 return false;
3068 Thread.yield(); // cannot block
3069 }
3070 found = false;
3071 for (int j = (m + 1) << 2; j >= 0; --j) {
3072 ForkJoinTask<?> t; WorkQueue q; int b;
3073 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3074 found = true;
3075 if ((t = q.pollAt(b)) != null)
3076 t.doExec();
3077 break;
3078 }
3079 }
3080 }
3081 return true;
3082 }
3083
3084 /**
3085 * Waits and/or attempts to assist performing tasks indefinitely
3086 * until the {@link #commonPool()} {@link #isQuiescent}.
3087 */
3088 static void quiesceCommonPool() {
3089 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3090 }
3091
3092 /**
3093 * Interface for extending managed parallelism for tasks running
3094 * in {@link ForkJoinPool}s.
3095 *
3096 * <p>A {@code ManagedBlocker} provides two methods. Method
3097 * {@code isReleasable} must return {@code true} if blocking is
3098 * not necessary. Method {@code block} blocks the current thread
3099 * if necessary (perhaps internally invoking {@code isReleasable}
3100 * before actually blocking). These actions are performed by any
3101 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3102 * The unusual methods in this API accommodate synchronizers that
3103 * may, but don't usually, block for long periods. Similarly, they
3104 * allow more efficient internal handling of cases in which
3105 * additional workers may be, but usually are not, needed to
3106 * ensure sufficient parallelism. Toward this end,
3107 * implementations of method {@code isReleasable} must be amenable
3108 * to repeated invocation.
3109 *
3110 * <p>For example, here is a ManagedBlocker based on a
3111 * ReentrantLock:
3112 * <pre> {@code
3113 * class ManagedLocker implements ManagedBlocker {
3114 * final ReentrantLock lock;
3115 * boolean hasLock = false;
3116 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3117 * public boolean block() {
3118 * if (!hasLock)
3119 * lock.lock();
3120 * return true;
3121 * }
3122 * public boolean isReleasable() {
3123 * return hasLock || (hasLock = lock.tryLock());
3124 * }
3125 * }}</pre>
3126 *
3127 * <p>Here is a class that possibly blocks waiting for an
3128 * item on a given queue:
3129 * <pre> {@code
3130 * class QueueTaker<E> implements ManagedBlocker {
3131 * final BlockingQueue<E> queue;
3132 * volatile E item = null;
3133 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3134 * public boolean block() throws InterruptedException {
3135 * if (item == null)
3136 * item = queue.take();
3137 * return true;
3138 * }
3139 * public boolean isReleasable() {
3140 * return item != null || (item = queue.poll()) != null;
3141 * }
3142 * public E getItem() { // call after pool.managedBlock completes
3143 * return item;
3144 * }
3145 * }}</pre>
3146 */
3147 public static interface ManagedBlocker {
3148 /**
3149 * Possibly blocks the current thread, for example waiting for
3150 * a lock or condition.
3151 *
3152 * @return {@code true} if no additional blocking is necessary
3153 * (i.e., if isReleasable would return true)
3154 * @throws InterruptedException if interrupted while waiting
3155 * (the method is not required to do so, but is allowed to)
3156 */
3157 boolean block() throws InterruptedException;
3158
3159 /**
3160 * Returns {@code true} if blocking is unnecessary.
3161 * @return {@code true} if blocking is unnecessary
3162 */
3163 boolean isReleasable();
3164 }
3165
3166 /**
3167 * Blocks in accord with the given blocker. If the current thread
3168 * is a {@link ForkJoinWorkerThread}, this method possibly
3169 * arranges for a spare thread to be activated if necessary to
3170 * ensure sufficient parallelism while the current thread is blocked.
3171 *
3172 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3173 * behaviorally equivalent to
3174 * <pre> {@code
3175 * while (!blocker.isReleasable())
3176 * if (blocker.block())
3177 * return;
3178 * }</pre>
3179 *
3180 * If the caller is a {@code ForkJoinTask}, then the pool may
3181 * first be expanded to ensure parallelism, and later adjusted.
3182 *
3183 * @param blocker the blocker
3184 * @throws InterruptedException if blocker.block did so
3185 */
3186 public static void managedBlock(ManagedBlocker blocker)
3187 throws InterruptedException {
3188 Thread t = Thread.currentThread();
3189 if (t instanceof ForkJoinWorkerThread) {
3190 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3191 while (!blocker.isReleasable()) {
3192 if (p.tryCompensate(p.ctl)) {
3193 try {
3194 do {} while (!blocker.isReleasable() &&
3195 !blocker.block());
3196 } finally {
3197 p.incrementActiveCount();
3198 }
3199 break;
3200 }
3201 }
3202 }
3203 else {
3204 do {} while (!blocker.isReleasable() &&
3205 !blocker.block());
3206 }
3207 }
3208
3209 // AbstractExecutorService overrides. These rely on undocumented
3210 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3211 // implement RunnableFuture.
3212
3213 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3214 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3215 }
3216
3217 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3218 return new ForkJoinTask.AdaptedCallable<T>(callable);
3219 }
3220
3221 // Unsafe mechanics
3222 private static final sun.misc.Unsafe U;
3223 private static final long CTL;
3224 private static final long PARKBLOCKER;
3225 private static final int ABASE;
3226 private static final int ASHIFT;
3227 private static final long STEALCOUNT;
3228 private static final long PLOCK;
3229 private static final long INDEXSEED;
3230 private static final long QBASE;
3231 private static final long QLOCK;
3232
3233 static {
3234 // initialize field offsets for CAS etc
3235 try {
3236 U = getUnsafe();
3237 Class<?> k = ForkJoinPool.class;
3238 CTL = U.objectFieldOffset
3239 (k.getDeclaredField("ctl"));
3240 STEALCOUNT = U.objectFieldOffset
3241 (k.getDeclaredField("stealCount"));
3242 PLOCK = U.objectFieldOffset
3243 (k.getDeclaredField("plock"));
3244 INDEXSEED = U.objectFieldOffset
3245 (k.getDeclaredField("indexSeed"));
3246 Class<?> tk = Thread.class;
3247 PARKBLOCKER = U.objectFieldOffset
3248 (tk.getDeclaredField("parkBlocker"));
3249 Class<?> wk = WorkQueue.class;
3250 QBASE = U.objectFieldOffset
3251 (wk.getDeclaredField("base"));
3252 QLOCK = U.objectFieldOffset
3253 (wk.getDeclaredField("qlock"));
3254 Class<?> ak = ForkJoinTask[].class;
3255 ABASE = U.arrayBaseOffset(ak);
3256 int scale = U.arrayIndexScale(ak);
3257 if ((scale & (scale - 1)) != 0)
3258 throw new Error("data type scale not a power of two");
3259 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3260 } catch (Exception e) {
3261 throw new Error(e);
3262 }
3263
3264 submitters = new ThreadLocal<Submitter>();
3265 defaultForkJoinWorkerThreadFactory =
3266 new DefaultForkJoinWorkerThreadFactory();
3267 modifyThreadPermission = new RuntimePermission("modifyThread");
3268
3269 common = java.security.AccessController.doPrivileged
3270 (new java.security.PrivilegedAction<ForkJoinPool>() {
3271 public ForkJoinPool run() { return makeCommonPool(); }});
3272 int par = common.parallelism; // report 1 even if threads disabled
3273 commonParallelism = par > 0 ? par : 1;
3274 }
3275
3276 /**
3277 * Creates and returns the common pool, respecting user settings
3278 * specified via system properties.
3279 */
3280 private static ForkJoinPool makeCommonPool() {
3281 int parallelism = -1;
3282 ForkJoinWorkerThreadFactory factory
3283 = defaultForkJoinWorkerThreadFactory;
3284 UncaughtExceptionHandler handler = null;
3285 try { // ignore exceptions in accesing/parsing properties
3286 String pp = System.getProperty
3287 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3288 String fp = System.getProperty
3289 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3290 String hp = System.getProperty
3291 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3292 if (pp != null)
3293 parallelism = Integer.parseInt(pp);
3294 if (fp != null)
3295 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3296 getSystemClassLoader().loadClass(fp).newInstance());
3297 if (hp != null)
3298 handler = ((UncaughtExceptionHandler)ClassLoader.
3299 getSystemClassLoader().loadClass(hp).newInstance());
3300 } catch (Exception ignore) {
3301 }
3302
3303 if (parallelism < 0 && // default 1 less than #cores
3304 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3305 parallelism = 0;
3306 if (parallelism > MAX_CAP)
3307 parallelism = MAX_CAP;
3308 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3309 "ForkJoinPool.commonPool-worker-");
3310 }
3311
3312 /**
3313 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3314 * Replace with a simple call to Unsafe.getUnsafe when integrating
3315 * into a jdk.
3316 *
3317 * @return a sun.misc.Unsafe
3318 */
3319 private static sun.misc.Unsafe getUnsafe() {
3320 try {
3321 return sun.misc.Unsafe.getUnsafe();
3322 } catch (SecurityException tryReflectionInstead) {}
3323 try {
3324 return java.security.AccessController.doPrivileged
3325 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3326 public sun.misc.Unsafe run() throws Exception {
3327 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3328 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3329 f.setAccessible(true);
3330 Object x = f.get(null);
3331 if (k.isInstance(x))
3332 return k.cast(x);
3333 }
3334 throw new NoSuchFieldError("the Unsafe");
3335 }});
3336 } catch (java.security.PrivilegedActionException e) {
3337 throw new RuntimeException("Could not initialize intrinsics",
3338 e.getCause());
3339 }
3340 }
3341 }