ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.110
Committed: Wed Apr 27 14:06:30 2011 UTC (13 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.109: +1 -1 lines
Log Message:
add missing javadoc asterisks

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 jsr166 1.68 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37     * However, iterators are designed to be used by only one thread at a time.
38 tim 1.1 *
39 dl 1.19 * <p> The allowed concurrency among update operations is guided by
40     * the optional <tt>concurrencyLevel</tt> constructor argument
41 dl 1.57 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 dl 1.21 * table is internally partitioned to try to permit the indicated
43     * number of concurrent updates without contention. Because placement
44     * in hash tables is essentially random, the actual concurrency will
45     * vary. Ideally, you should choose a value to accommodate as many
46 dl 1.25 * threads as will ever concurrently modify the table. Using a
47 dl 1.21 * significantly higher value than you need can waste space and time,
48     * and a significantly lower value can lead to thread contention. But
49     * overestimates and underestimates within an order of magnitude do
50 dl 1.25 * not usually have much noticeable impact. A value of one is
51 dl 1.45 * appropriate when it is known that only one thread will modify and
52     * all others will only read. Also, resizing this or any other kind of
53     * hash table is a relatively slow operation, so, when possible, it is
54     * a good idea to provide estimates of expected table sizes in
55     * constructors.
56 tim 1.1 *
57 dl 1.45 * <p>This class and its views and iterators implement all of the
58     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59     * interfaces.
60 dl 1.23 *
61 jsr166 1.68 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62     * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 tim 1.1 *
64 dl 1.42 * <p>This class is a member of the
65 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
66 dl 1.42 * Java Collections Framework</a>.
67     *
68 dl 1.8 * @since 1.5
69     * @author Doug Lea
70 dl 1.27 * @param <K> the type of keys maintained by this map
71 jsr166 1.64 * @param <V> the type of mapped values
72 dl 1.8 */
73 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 dl 1.48 implements ConcurrentMap<K, V>, Serializable {
75 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
76 tim 1.1
77     /*
78 dl 1.4 * The basic strategy is to subdivide the table among Segments,
79 dl 1.99 * each of which itself is a concurrently readable hash table. To
80     * reduce footprint, all but one segments are constructed only
81     * when first needed (see ensureSegment). To maintain visibility
82     * in the presence of lazy construction, accesses to segments as
83     * well as elements of segment's table must use volatile access,
84     * which is done via Unsafe within methods segmentAt etc
85     * below. These provide the functionality of AtomicReferenceArrays
86     * but reduce the levels of indirection. Additionally,
87     * volatile-writes of table elements and entry "next" fields
88     * within locked operations use the cheaper "lazySet" forms of
89 dl 1.100 * writes (via putOrderedObject) because these writes are always
90 dl 1.99 * followed by lock releases that maintain sequential consistency
91     * of table updates.
92     *
93     * Historical note: The previous version of this class relied
94     * heavily on "final" fields, which avoided some volatile reads at
95     * the expense of a large initial footprint. Some remnants of
96     * that design (including forced construction of segment 0) exist
97     * to ensure serialization compatibility.
98 dl 1.4 */
99 tim 1.1
100 dl 1.4 /* ---------------- Constants -------------- */
101 tim 1.11
102 dl 1.4 /**
103 dl 1.56 * The default initial capacity for this table,
104     * used when not otherwise specified in a constructor.
105 dl 1.4 */
106 dl 1.57 static final int DEFAULT_INITIAL_CAPACITY = 16;
107 dl 1.56
108     /**
109     * The default load factor for this table, used when not
110     * otherwise specified in a constructor.
111     */
112 dl 1.57 static final float DEFAULT_LOAD_FACTOR = 0.75f;
113 dl 1.56
114     /**
115     * The default concurrency level for this table, used when not
116     * otherwise specified in a constructor.
117 jsr166 1.59 */
118 dl 1.57 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
119 tim 1.1
120     /**
121 dl 1.4 * The maximum capacity, used if a higher value is implicitly
122     * specified by either of the constructors with arguments. MUST
123 jsr166 1.68 * be a power of two <= 1<<30 to ensure that entries are indexable
124 dl 1.21 * using ints.
125 dl 1.4 */
126 jsr166 1.64 static final int MAXIMUM_CAPACITY = 1 << 30;
127 tim 1.11
128 tim 1.1 /**
129 dl 1.99 * The minimum capacity for per-segment tables. Must be a power
130     * of two, at least two to avoid immediate resizing on next use
131     * after lazy construction.
132     */
133     static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
134    
135     /**
136 dl 1.37 * The maximum number of segments to allow; used to bound
137 dl 1.99 * constructor arguments. Must be power of two less than 1 << 24.
138 dl 1.21 */
139 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
140 dl 1.21
141 dl 1.46 /**
142     * Number of unsynchronized retries in size and containsValue
143     * methods before resorting to locking. This is used to avoid
144     * unbounded retries if tables undergo continuous modification
145     * which would make it impossible to obtain an accurate result.
146     */
147     static final int RETRIES_BEFORE_LOCK = 2;
148    
149 dl 1.4 /* ---------------- Fields -------------- */
150 tim 1.1
151     /**
152 dl 1.9 * Mask value for indexing into segments. The upper bits of a
153     * key's hash code are used to choose the segment.
154 jsr166 1.59 */
155 dl 1.41 final int segmentMask;
156 tim 1.1
157     /**
158 dl 1.4 * Shift value for indexing within segments.
159 jsr166 1.59 */
160 dl 1.41 final int segmentShift;
161 tim 1.1
162     /**
163 dl 1.99 * The segments, each of which is a specialized hash table.
164 tim 1.1 */
165 dl 1.71 final Segment<K,V>[] segments;
166 dl 1.4
167 dl 1.41 transient Set<K> keySet;
168     transient Set<Map.Entry<K,V>> entrySet;
169     transient Collection<V> values;
170 dl 1.4
171 dl 1.99 /**
172     * ConcurrentHashMap list entry. Note that this is never exported
173     * out as a user-visible Map.Entry.
174     */
175     static final class HashEntry<K,V> {
176     final int hash;
177     final K key;
178     volatile V value;
179     volatile HashEntry<K,V> next;
180    
181     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
182     this.hash = hash;
183     this.key = key;
184     this.value = value;
185     this.next = next;
186     }
187    
188     /**
189     * Sets next field with volatile write semantics. (See above
190     * about use of putOrderedObject.)
191     */
192     final void setNext(HashEntry<K,V> n) {
193     UNSAFE.putOrderedObject(this, nextOffset, n);
194     }
195    
196     // Unsafe mechanics
197     static final sun.misc.Unsafe UNSAFE;
198     static final long nextOffset;
199     static {
200     try {
201     UNSAFE = sun.misc.Unsafe.getUnsafe();
202     Class k = HashEntry.class;
203     nextOffset = UNSAFE.objectFieldOffset
204     (k.getDeclaredField("next"));
205     } catch (Exception e) {
206     throw new Error(e);
207     }
208     }
209     }
210    
211     /**
212     * Gets the ith element of given table (if nonnull) with volatile
213 dl 1.105 * read semantics. Note: This is manually integrated into a few
214     * performance-sensitive methods to reduce call overhead.
215 dl 1.99 */
216     @SuppressWarnings("unchecked")
217     static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
218 jsr166 1.101 return (tab == null) ? null :
219 dl 1.99 (HashEntry<K,V>) UNSAFE.getObjectVolatile
220     (tab, ((long)i << TSHIFT) + TBASE);
221     }
222    
223     /**
224     * Sets the ith element of given table, with volatile write
225     * semantics. (See above about use of putOrderedObject.)
226     */
227     static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
228     HashEntry<K,V> e) {
229     UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
230     }
231 tim 1.1
232     /**
233 dl 1.89 * Applies a supplemental hash function to a given hashCode, which
234     * defends against poor quality hash functions. This is critical
235 jsr166 1.90 * because ConcurrentHashMap uses power-of-two length hash tables,
236     * that otherwise encounter collisions for hashCodes that do not
237 dl 1.93 * differ in lower or upper bits.
238 dl 1.89 */
239 jsr166 1.90 private static int hash(int h) {
240 dl 1.92 // Spread bits to regularize both segment and index locations,
241 dl 1.93 // using variant of single-word Wang/Jenkins hash.
242     h += (h << 15) ^ 0xffffcd7d;
243     h ^= (h >>> 10);
244     h += (h << 3);
245     h ^= (h >>> 6);
246     h += (h << 2) + (h << 14);
247     return h ^ (h >>> 16);
248 dl 1.4 }
249    
250 tim 1.1 /**
251 dl 1.6 * Segments are specialized versions of hash tables. This
252 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
253     * simplify some locking and avoid separate construction.
254 jsr166 1.59 */
255 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
256 dl 1.4 /*
257 dl 1.99 * Segments maintain a table of entry lists that are always
258     * kept in a consistent state, so can be read (via volatile
259     * reads of segments and tables) without locking. This
260     * requires replicating nodes when necessary during table
261     * resizing, so the old lists can be traversed by readers
262     * still using old version of table.
263 dl 1.4 *
264 dl 1.99 * This class defines only mutative methods requiring locking.
265     * Except as noted, the methods of this class perform the
266     * per-segment versions of ConcurrentHashMap methods. (Other
267     * methods are integrated directly into ConcurrentHashMap
268     * methods.) These mutative methods use a form of controlled
269     * spinning on contention via methods scanAndLock and
270     * scanAndLockForPut. These intersperse tryLocks with
271     * traversals to locate nodes. The main benefit is to absorb
272     * cache misses (which are very common for hash tables) while
273     * obtaining locks so that traversal is faster once
274     * acquired. We do not actually use the found nodes since they
275     * must be re-acquired under lock anyway to ensure sequential
276     * consistency of updates (and in any case may be undetectably
277     * stale), but they will normally be much faster to re-locate.
278     * Also, scanAndLockForPut speculatively creates a fresh node
279     * to use in put if no node is found.
280 dl 1.4 */
281 tim 1.11
282 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
283    
284 dl 1.4 /**
285 dl 1.99 * The maximum number of times to tryLock in a prescan before
286     * possibly blocking on acquire in preparation for a locked
287     * segment operation. On multiprocessors, using a bounded
288     * number of retries maintains cache acquired while locating
289     * nodes.
290 jsr166 1.59 */
291 dl 1.99 static final int MAX_SCAN_RETRIES =
292     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
293 dl 1.4
294     /**
295 dl 1.99 * The per-segment table. Elements are accessed via
296     * entryAt/setEntryAt providing volatile semantics.
297     */
298     transient volatile HashEntry<K,V>[] table;
299    
300     /**
301     * The number of elements. Accessed only either within locks
302     * or among other volatile reads that maintain visibility.
303     */
304     transient int count;
305    
306     /**
307 dl 1.104 * The total number of mutative operations in this segment.
308     * Even though this may overflows 32 bits, it provides
309     * sufficient accuracy for stability checks in CHM isEmpty()
310     * and size() methods. Accessed only either within locks or
311     * among other volatile reads that maintain visibility.
312 dl 1.21 */
313     transient int modCount;
314    
315     /**
316 dl 1.4 * The table is rehashed when its size exceeds this threshold.
317 jsr166 1.68 * (The value of this field is always <tt>(int)(capacity *
318     * loadFactor)</tt>.)
319 dl 1.4 */
320 dl 1.41 transient int threshold;
321 dl 1.4
322     /**
323     * The load factor for the hash table. Even though this value
324     * is same for all segments, it is replicated to avoid needing
325     * links to outer object.
326     * @serial
327     */
328 dl 1.41 final float loadFactor;
329 tim 1.1
330 dl 1.99 Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
331     this.loadFactor = lf;
332     this.threshold = threshold;
333     this.table = tab;
334 dl 1.4 }
335 tim 1.1
336 dl 1.99 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
337     HashEntry<K,V> node = tryLock() ? null :
338     scanAndLockForPut(key, hash, value);
339     V oldValue;
340 dl 1.45 try {
341 dl 1.99 HashEntry<K,V>[] tab = table;
342     int index = (tab.length - 1) & hash;
343     HashEntry<K,V> first = entryAt(tab, index);
344     for (HashEntry<K,V> e = first;;) {
345     if (e != null) {
346     K k;
347     if ((k = e.key) == key ||
348     (e.hash == hash && key.equals(k))) {
349     oldValue = e.value;
350 dl 1.104 if (!onlyIfAbsent) {
351 dl 1.99 e.value = value;
352 dl 1.104 ++modCount;
353     }
354 dl 1.99 break;
355     }
356     e = e.next;
357 dl 1.45 }
358 dl 1.99 else {
359     if (node != null)
360     node.setNext(first);
361     else
362     node = new HashEntry<K,V>(hash, key, value, first);
363     int c = count + 1;
364 dl 1.105 if (c > threshold && tab.length < MAXIMUM_CAPACITY)
365 dl 1.99 rehash(node);
366     else
367     setEntryAt(tab, index, node);
368     ++modCount;
369     count = c;
370     oldValue = null;
371     break;
372 dl 1.45 }
373     }
374 dl 1.33 } finally {
375     unlock();
376     }
377 dl 1.99 return oldValue;
378 dl 1.33 }
379    
380 dl 1.99 /**
381     * Doubles size of table and repacks entries, also adding the
382     * given node to new table
383     */
384     @SuppressWarnings("unchecked")
385     private void rehash(HashEntry<K,V> node) {
386     /*
387     * Reclassify nodes in each list to new table. Because we
388     * are using power-of-two expansion, the elements from
389     * each bin must either stay at same index, or move with a
390     * power of two offset. We eliminate unnecessary node
391     * creation by catching cases where old nodes can be
392     * reused because their next fields won't change.
393     * Statistically, at the default threshold, only about
394     * one-sixth of them need cloning when a table
395     * doubles. The nodes they replace will be garbage
396     * collectable as soon as they are no longer referenced by
397     * any reader thread that may be in the midst of
398     * concurrently traversing table. Entry accesses use plain
399     * array indexing because they are followed by volatile
400     * table write.
401     */
402 dl 1.71 HashEntry<K,V>[] oldTable = table;
403 dl 1.4 int oldCapacity = oldTable.length;
404 dl 1.99 int newCapacity = oldCapacity << 1;
405     threshold = (int)(newCapacity * loadFactor);
406     HashEntry<K,V>[] newTable =
407     (HashEntry<K,V>[]) new HashEntry[newCapacity];
408     int sizeMask = newCapacity - 1;
409 dl 1.4 for (int i = 0; i < oldCapacity ; i++) {
410 dl 1.71 HashEntry<K,V> e = oldTable[i];
411 dl 1.4 if (e != null) {
412     HashEntry<K,V> next = e.next;
413     int idx = e.hash & sizeMask;
414 dl 1.99 if (next == null) // Single node on list
415 dl 1.4 newTable[idx] = e;
416 dl 1.99 else { // Reuse consecutive sequence at same slot
417 dl 1.4 HashEntry<K,V> lastRun = e;
418     int lastIdx = idx;
419 tim 1.11 for (HashEntry<K,V> last = next;
420     last != null;
421 dl 1.4 last = last.next) {
422     int k = last.hash & sizeMask;
423     if (k != lastIdx) {
424     lastIdx = k;
425     lastRun = last;
426     }
427     }
428     newTable[lastIdx] = lastRun;
429 dl 1.99 // Clone remaining nodes
430 dl 1.4 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431 dl 1.99 V v = p.value;
432     int h = p.hash;
433     int k = h & sizeMask;
434 dl 1.71 HashEntry<K,V> n = newTable[k];
435 dl 1.99 newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 dl 1.4 }
437     }
438     }
439     }
440 dl 1.99 int nodeIndex = node.hash & sizeMask; // add the new node
441     node.setNext(newTable[nodeIndex]);
442     newTable[nodeIndex] = node;
443 dl 1.45 table = newTable;
444 dl 1.4 }
445 dl 1.6
446     /**
447 dl 1.99 * Scans for a node containing given key while trying to
448     * acquire lock, creating and returning one if not found. Upon
449 jsr166 1.106 * return, guarantees that lock is held. Unlike in most
450 dl 1.104 * methods, calls to method equals are not screened: Since
451     * traversal speed doesn't matter, we might as well help warm
452     * up the associated code and accesses as well.
453 dl 1.99 *
454     * @return a new node if key not found, else null
455     */
456     private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457     HashEntry<K,V> first = entryForHash(this, hash);
458     HashEntry<K,V> e = first;
459     HashEntry<K,V> node = null;
460     int retries = -1; // negative while locating node
461     while (!tryLock()) {
462     HashEntry<K,V> f; // to recheck first below
463     if (retries < 0) {
464     if (e == null) {
465     if (node == null) // speculatively create node
466     node = new HashEntry<K,V>(hash, key, value, null);
467     retries = 0;
468     }
469     else if (key.equals(e.key))
470     retries = 0;
471     else
472     e = e.next;
473     }
474     else if (++retries > MAX_SCAN_RETRIES) {
475     lock();
476     break;
477     }
478     else if ((retries & 1) == 0 &&
479     (f = entryForHash(this, hash)) != first) {
480     e = first = f; // re-traverse if entry changed
481     retries = -1;
482     }
483     }
484     return node;
485     }
486    
487     /**
488     * Scans for a node containing the given key while trying to
489     * acquire lock for a remove or replace operation. Upon
490     * return, guarantees that lock is held. Note that we must
491     * lock even if the key is not found, to ensure sequential
492     * consistency of updates.
493     */
494     private void scanAndLock(Object key, int hash) {
495     // similar to but simpler than scanAndLockForPut
496     HashEntry<K,V> first = entryForHash(this, hash);
497     HashEntry<K,V> e = first;
498     int retries = -1;
499     while (!tryLock()) {
500     HashEntry<K,V> f;
501     if (retries < 0) {
502     if (e == null || key.equals(e.key))
503     retries = 0;
504     else
505     e = e.next;
506     }
507     else if (++retries > MAX_SCAN_RETRIES) {
508     lock();
509     break;
510     }
511     else if ((retries & 1) == 0 &&
512     (f = entryForHash(this, hash)) != first) {
513     e = first = f;
514     retries = -1;
515     }
516     }
517     }
518    
519     /**
520 dl 1.6 * Remove; match on key only if value null, else match both.
521     */
522 dl 1.99 final V remove(Object key, int hash, Object value) {
523     if (!tryLock())
524     scanAndLock(key, hash);
525     V oldValue = null;
526 dl 1.4 try {
527 dl 1.71 HashEntry<K,V>[] tab = table;
528 dl 1.99 int index = (tab.length - 1) & hash;
529     HashEntry<K,V> e = entryAt(tab, index);
530     HashEntry<K,V> pred = null;
531     while (e != null) {
532     K k;
533     HashEntry<K,V> next = e.next;
534     if ((k = e.key) == key ||
535     (e.hash == hash && key.equals(k))) {
536     V v = e.value;
537     if (value == null || value == v || value.equals(v)) {
538     if (pred == null)
539     setEntryAt(tab, index, next);
540     else
541     pred.setNext(next);
542     ++modCount;
543     --count;
544     oldValue = v;
545     }
546     break;
547     }
548     pred = e;
549     e = next;
550     }
551     } finally {
552     unlock();
553     }
554     return oldValue;
555     }
556    
557     final boolean replace(K key, int hash, V oldValue, V newValue) {
558     if (!tryLock())
559     scanAndLock(key, hash);
560     boolean replaced = false;
561     try {
562     HashEntry<K,V> e;
563     for (e = entryForHash(this, hash); e != null; e = e.next) {
564     K k;
565     if ((k = e.key) == key ||
566     (e.hash == hash && key.equals(k))) {
567     if (oldValue.equals(e.value)) {
568     e.value = newValue;
569 dl 1.104 ++modCount;
570 dl 1.99 replaced = true;
571     }
572     break;
573     }
574     }
575     } finally {
576     unlock();
577     }
578     return replaced;
579     }
580 dl 1.45
581 dl 1.99 final V replace(K key, int hash, V value) {
582     if (!tryLock())
583     scanAndLock(key, hash);
584     V oldValue = null;
585     try {
586     HashEntry<K,V> e;
587     for (e = entryForHash(this, hash); e != null; e = e.next) {
588     K k;
589     if ((k = e.key) == key ||
590     (e.hash == hash && key.equals(k))) {
591     oldValue = e.value;
592     e.value = value;
593 dl 1.104 ++modCount;
594 dl 1.99 break;
595 dl 1.45 }
596 dl 1.4 }
597 dl 1.99 } finally {
598     unlock();
599     }
600     return oldValue;
601     }
602    
603     final void clear() {
604     lock();
605     try {
606     HashEntry<K,V>[] tab = table;
607     for (int i = 0; i < tab.length ; i++)
608     setEntryAt(tab, i, null);
609     ++modCount;
610     count = 0;
611 tim 1.16 } finally {
612 dl 1.4 unlock();
613     }
614     }
615 dl 1.99 }
616    
617     // Accessing segments
618 dl 1.4
619 dl 1.99 /**
620     * Gets the jth element of given segment array (if nonnull) with
621 dl 1.105 * volatile element access semantics via Unsafe. (The null check
622     * can trigger harmlessly only during deserialization.) Note:
623     * because each element of segments array is set only once (using
624     * fully ordered writes), some performance-sensitive methods rely
625     * on this method only as a recheck upon null reads.
626 dl 1.99 */
627     @SuppressWarnings("unchecked")
628     static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
629     long u = (j << SSHIFT) + SBASE;
630     return ss == null ? null :
631     (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
632     }
633    
634     /**
635     * Returns the segment for the given index, creating it and
636     * recording in segment table (via CAS) if not already present.
637     *
638     * @param k the index
639     * @return the segment
640     */
641     @SuppressWarnings("unchecked")
642     private Segment<K,V> ensureSegment(int k) {
643     final Segment<K,V>[] ss = this.segments;
644     long u = (k << SSHIFT) + SBASE; // raw offset
645     Segment<K,V> seg;
646     if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
647     Segment<K,V> proto = ss[0]; // use segment 0 as prototype
648     int cap = proto.table.length;
649     float lf = proto.loadFactor;
650     int threshold = (int)(cap * lf);
651     HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
652     if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
653     == null) { // recheck
654     Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
655     while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
656     == null) {
657     if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
658     break;
659 dl 1.45 }
660 dl 1.4 }
661     }
662 dl 1.99 return seg;
663 tim 1.1 }
664    
665 dl 1.99 // Hash-based segment and entry accesses
666 tim 1.1
667 dl 1.99 /**
668 jsr166 1.109 * Gets the segment for the given hash code.
669 dl 1.99 */
670     @SuppressWarnings("unchecked")
671     private Segment<K,V> segmentForHash(int h) {
672     long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
673     return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
674     }
675    
676     /**
677 jsr166 1.109 * Gets the table entry for the given segment and hash code.
678 dl 1.99 */
679     @SuppressWarnings("unchecked")
680     static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
681     HashEntry<K,V>[] tab;
682 jsr166 1.101 return (seg == null || (tab = seg.table) == null) ? null :
683 dl 1.99 (HashEntry<K,V>) UNSAFE.getObjectVolatile
684     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
685     }
686 tim 1.11
687 dl 1.4 /* ---------------- Public operations -------------- */
688 tim 1.1
689     /**
690 dl 1.44 * Creates a new, empty map with the specified initial
691 dl 1.56 * capacity, load factor and concurrency level.
692 tim 1.1 *
693 dl 1.19 * @param initialCapacity the initial capacity. The implementation
694     * performs internal sizing to accommodate this many elements.
695 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
696 dl 1.56 * Resizing may be performed when the average number of elements per
697     * bin exceeds this threshold.
698 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
699     * updating threads. The implementation performs internal sizing
700 jsr166 1.64 * to try to accommodate this many threads.
701 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
702 dl 1.19 * negative or the load factor or concurrencyLevel are
703 dl 1.4 * nonpositive.
704     */
705 dl 1.99 @SuppressWarnings("unchecked")
706 tim 1.11 public ConcurrentHashMap(int initialCapacity,
707 dl 1.19 float loadFactor, int concurrencyLevel) {
708     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 dl 1.4 throw new IllegalArgumentException();
710 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
711     concurrencyLevel = MAX_SEGMENTS;
712 dl 1.4 // Find power-of-two sizes best matching arguments
713     int sshift = 0;
714     int ssize = 1;
715 dl 1.19 while (ssize < concurrencyLevel) {
716 dl 1.4 ++sshift;
717     ssize <<= 1;
718     }
719 dl 1.99 this.segmentShift = 32 - sshift;
720     this.segmentMask = ssize - 1;
721 dl 1.4 if (initialCapacity > MAXIMUM_CAPACITY)
722     initialCapacity = MAXIMUM_CAPACITY;
723     int c = initialCapacity / ssize;
724 tim 1.11 if (c * ssize < initialCapacity)
725 dl 1.4 ++c;
726 dl 1.99 int cap = MIN_SEGMENT_TABLE_CAPACITY;
727 dl 1.4 while (cap < c)
728     cap <<= 1;
729 dl 1.99 // create segments and segments[0]
730     Segment<K,V> s0 =
731     new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
732     (HashEntry<K,V>[])new HashEntry[cap]);
733     Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
734     UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
735     this.segments = ss;
736 tim 1.1 }
737    
738     /**
739 dl 1.55 * Creates a new, empty map with the specified initial capacity
740 jsr166 1.76 * and load factor and with the default concurrencyLevel (16).
741 dl 1.55 *
742     * @param initialCapacity The implementation performs internal
743     * sizing to accommodate this many elements.
744     * @param loadFactor the load factor threshold, used to control resizing.
745 jsr166 1.68 * Resizing may be performed when the average number of elements per
746     * bin exceeds this threshold.
747 dl 1.55 * @throws IllegalArgumentException if the initial capacity of
748     * elements is negative or the load factor is nonpositive
749 jsr166 1.78 *
750     * @since 1.6
751 dl 1.55 */
752     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
753 dl 1.56 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
754 dl 1.55 }
755    
756     /**
757 dl 1.56 * Creates a new, empty map with the specified initial capacity,
758 jsr166 1.76 * and with default load factor (0.75) and concurrencyLevel (16).
759 tim 1.1 *
760 dl 1.58 * @param initialCapacity the initial capacity. The implementation
761     * performs internal sizing to accommodate this many elements.
762 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
763     * elements is negative.
764 tim 1.1 */
765     public ConcurrentHashMap(int initialCapacity) {
766 dl 1.56 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
767 tim 1.1 }
768    
769     /**
770 jsr166 1.76 * Creates a new, empty map with a default initial capacity (16),
771     * load factor (0.75) and concurrencyLevel (16).
772 tim 1.1 */
773     public ConcurrentHashMap() {
774 dl 1.56 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
775 tim 1.1 }
776    
777     /**
778 jsr166 1.76 * Creates a new map with the same mappings as the given map.
779     * The map is created with a capacity of 1.5 times the number
780     * of mappings in the given map or 16 (whichever is greater),
781     * and a default load factor (0.75) and concurrencyLevel (16).
782     *
783 jsr166 1.68 * @param m the map
784 tim 1.1 */
785 jsr166 1.68 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
786     this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
787 dl 1.56 DEFAULT_INITIAL_CAPACITY),
788     DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 jsr166 1.68 putAll(m);
790 tim 1.1 }
791    
792 dl 1.56 /**
793     * Returns <tt>true</tt> if this map contains no key-value mappings.
794     *
795 jsr166 1.68 * @return <tt>true</tt> if this map contains no key-value mappings
796 dl 1.56 */
797 tim 1.1 public boolean isEmpty() {
798 dl 1.21 /*
799 dl 1.99 * Sum per-segment modCounts to avoid mis-reporting when
800     * elements are concurrently added and removed in one segment
801     * while checking another, in which case the table was never
802     * actually empty at any point. (The sum ensures accuracy up
803     * through at least 1<<31 per-segment modifications before
804     * recheck.) Methods size() and containsValue() use similar
805     * constructions for stability checks.
806 dl 1.21 */
807 dl 1.99 long sum = 0L;
808     final Segment<K,V>[] segments = this.segments;
809     for (int j = 0; j < segments.length; ++j) {
810     Segment<K,V> seg = segmentAt(segments, j);
811     if (seg != null) {
812     if (seg.count != 0)
813     return false;
814     sum += seg.modCount;
815     }
816 dl 1.21 }
817 dl 1.99 if (sum != 0L) { // recheck unless no modifications
818     for (int j = 0; j < segments.length; ++j) {
819     Segment<K,V> seg = segmentAt(segments, j);
820     if (seg != null) {
821     if (seg.count != 0)
822     return false;
823     sum -= seg.modCount;
824     }
825 dl 1.21 }
826 dl 1.99 if (sum != 0L)
827     return false;
828 dl 1.21 }
829 tim 1.1 return true;
830     }
831    
832 dl 1.56 /**
833     * Returns the number of key-value mappings in this map. If the
834     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835     * <tt>Integer.MAX_VALUE</tt>.
836     *
837 jsr166 1.68 * @return the number of key-value mappings in this map
838 dl 1.56 */
839 dl 1.21 public int size() {
840 dl 1.46 // Try a few times to get accurate count. On failure due to
841 dl 1.45 // continuous async changes in table, resort to locking.
842 dl 1.99 final Segment<K,V>[] segments = this.segments;
843     int size;
844     boolean overflow; // true if size overflows 32 bits
845     long sum; // sum of modCounts
846     long last = 0L; // previous sum
847     int retries = -1; // first iteration isn't retry
848     try {
849     for (;;) {
850     if (retries++ == RETRIES_BEFORE_LOCK) {
851     for (int j = 0; j < segments.length; ++j)
852     ensureSegment(j).lock(); // force creation
853     }
854     sum = 0L;
855     size = 0;
856     overflow = false;
857     for (int j = 0; j < segments.length; ++j) {
858     Segment<K,V> seg = segmentAt(segments, j);
859     if (seg != null) {
860     sum += seg.modCount;
861     int c = seg.count;
862     if (c < 0 || (size += c) < 0)
863     overflow = true;
864 dl 1.21 }
865     }
866 dl 1.99 if (sum == last)
867     break;
868     last = sum;
869     }
870     } finally {
871     if (retries > RETRIES_BEFORE_LOCK) {
872     for (int j = 0; j < segments.length; ++j)
873     segmentAt(segments, j).unlock();
874 dl 1.21 }
875 dl 1.45 }
876 dl 1.99 return overflow ? Integer.MAX_VALUE : size;
877 dl 1.21 }
878    
879 tim 1.1 /**
880 jsr166 1.85 * Returns the value to which the specified key is mapped,
881     * or {@code null} if this map contains no mapping for the key.
882     *
883     * <p>More formally, if this map contains a mapping from a key
884     * {@code k} to a value {@code v} such that {@code key.equals(k)},
885     * then this method returns {@code v}; otherwise it returns
886     * {@code null}. (There can be at most one such mapping.)
887 tim 1.1 *
888 jsr166 1.68 * @throws NullPointerException if the specified key is null
889 tim 1.1 */
890 tim 1.11 public V get(Object key) {
891 dl 1.105 Segment<K,V> s; // manually integrate access methods to reduce overhead
892     HashEntry<K,V>[] tab;
893     int h = hash(key.hashCode());
894     long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
895     if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
896     (tab = s.table) != null) {
897     for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
898     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
899     e != null; e = e.next) {
900     K k;
901     if ((k = e.key) == key || (e.hash == h && key.equals(k)))
902     return e.value;
903     }
904 dl 1.99 }
905     return null;
906 tim 1.1 }
907    
908     /**
909     * Tests if the specified object is a key in this table.
910 tim 1.11 *
911 jsr166 1.68 * @param key possible key
912     * @return <tt>true</tt> if and only if the specified object
913     * is a key in this table, as determined by the
914     * <tt>equals</tt> method; <tt>false</tt> otherwise.
915     * @throws NullPointerException if the specified key is null
916 tim 1.1 */
917 dl 1.105 @SuppressWarnings("unchecked")
918 tim 1.1 public boolean containsKey(Object key) {
919 dl 1.105 Segment<K,V> s; // same as get() except no need for volatile value read
920     HashEntry<K,V>[] tab;
921     int h = hash(key.hashCode());
922     long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
923     if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
924     (tab = s.table) != null) {
925     for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
926     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
927     e != null; e = e.next) {
928     K k;
929     if ((k = e.key) == key || (e.hash == h && key.equals(k)))
930     return true;
931     }
932 dl 1.99 }
933     return false;
934 tim 1.1 }
935    
936     /**
937     * Returns <tt>true</tt> if this map maps one or more keys to the
938     * specified value. Note: This method requires a full internal
939     * traversal of the hash table, and so is much slower than
940     * method <tt>containsKey</tt>.
941     *
942 jsr166 1.68 * @param value value whose presence in this map is to be tested
943 tim 1.1 * @return <tt>true</tt> if this map maps one or more keys to the
944 jsr166 1.68 * specified value
945     * @throws NullPointerException if the specified value is null
946 tim 1.1 */
947     public boolean containsValue(Object value) {
948 dl 1.104 // Same idea as size()
949 tim 1.11 if (value == null)
950 dl 1.4 throw new NullPointerException();
951 dl 1.71 final Segment<K,V>[] segments = this.segments;
952 dl 1.99 boolean found = false;
953 jsr166 1.108 long last = 0L; // previous sum
954 dl 1.99 int retries = -1;
955     try {
956     outer: for (;;) {
957     if (retries++ == RETRIES_BEFORE_LOCK) {
958     for (int j = 0; j < segments.length; ++j)
959     ensureSegment(j).lock(); // force creation
960     }
961 jsr166 1.108 long sum = 0L;
962 dl 1.99 for (int j = 0; j < segments.length; ++j) {
963     HashEntry<K,V>[] tab;
964     Segment<K,V> seg = segmentAt(segments, j);
965     if (seg != null && (tab = seg.table) != null) {
966     for (int i = 0 ; i < tab.length; i++) {
967     HashEntry<K,V> e;
968     for (e = entryAt(tab, i); e != null; e = e.next) {
969     V v = e.value;
970     if (v != null && value.equals(v)) {
971     found = true;
972     break outer;
973     }
974     }
975     }
976 dl 1.104 sum += seg.modCount;
977 dl 1.21 }
978     }
979 dl 1.103 if (retries > 0 && sum == last)
980 dl 1.45 break;
981 dl 1.99 last = sum;
982 dl 1.45 }
983     } finally {
984 dl 1.99 if (retries > RETRIES_BEFORE_LOCK) {
985     for (int j = 0; j < segments.length; ++j)
986     segmentAt(segments, j).unlock();
987     }
988 dl 1.45 }
989     return found;
990 tim 1.1 }
991 dl 1.19
992 tim 1.1 /**
993 dl 1.18 * Legacy method testing if some key maps into the specified value
994 dl 1.23 * in this table. This method is identical in functionality to
995 jsr166 1.68 * {@link #containsValue}, and exists solely to ensure
996 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
997 dl 1.18 * which supported this method prior to introduction of the
998 dl 1.23 * Java Collections framework.
999 jsr166 1.110 *
1000 jsr166 1.68 * @param value a value to search for
1001     * @return <tt>true</tt> if and only if some key maps to the
1002     * <tt>value</tt> argument in this table as
1003     * determined by the <tt>equals</tt> method;
1004     * <tt>false</tt> otherwise
1005     * @throws NullPointerException if the specified value is null
1006 tim 1.1 */
1007 dl 1.4 public boolean contains(Object value) {
1008 tim 1.1 return containsValue(value);
1009     }
1010    
1011     /**
1012 jsr166 1.75 * Maps the specified key to the specified value in this table.
1013     * Neither the key nor the value can be null.
1014 dl 1.4 *
1015 dl 1.44 * <p> The value can be retrieved by calling the <tt>get</tt> method
1016 tim 1.11 * with a key that is equal to the original key.
1017 dl 1.4 *
1018 jsr166 1.68 * @param key key with which the specified value is to be associated
1019     * @param value value to be associated with the specified key
1020     * @return the previous value associated with <tt>key</tt>, or
1021     * <tt>null</tt> if there was no mapping for <tt>key</tt>
1022     * @throws NullPointerException if the specified key or value is null
1023 dl 1.4 */
1024 dl 1.105 @SuppressWarnings("unchecked")
1025 tim 1.11 public V put(K key, V value) {
1026 dl 1.105 Segment<K,V> s;
1027 tim 1.11 if (value == null)
1028 dl 1.4 throw new NullPointerException();
1029 dl 1.89 int hash = hash(key.hashCode());
1030 dl 1.99 int j = (hash >>> segmentShift) & segmentMask;
1031 dl 1.105 if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
1032     (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
1033 jsr166 1.101 s = ensureSegment(j);
1034     return s.put(key, hash, value, false);
1035 dl 1.4 }
1036    
1037     /**
1038 jsr166 1.68 * {@inheritDoc}
1039     *
1040     * @return the previous value associated with the specified key,
1041     * or <tt>null</tt> if there was no mapping for the key
1042     * @throws NullPointerException if the specified key or value is null
1043 dl 1.51 */
1044 dl 1.105 @SuppressWarnings("unchecked")
1045 tim 1.11 public V putIfAbsent(K key, V value) {
1046 dl 1.105 Segment<K,V> s;
1047 tim 1.11 if (value == null)
1048 dl 1.4 throw new NullPointerException();
1049 dl 1.89 int hash = hash(key.hashCode());
1050 dl 1.99 int j = (hash >>> segmentShift) & segmentMask;
1051 dl 1.105 if ((s = (Segment<K,V>)UNSAFE.getObject
1052     (segments, (j << SSHIFT) + SBASE)) == null)
1053 jsr166 1.101 s = ensureSegment(j);
1054     return s.put(key, hash, value, true);
1055 dl 1.4 }
1056    
1057     /**
1058 tim 1.1 * Copies all of the mappings from the specified map to this one.
1059     * These mappings replace any mappings that this map had for any of the
1060 jsr166 1.68 * keys currently in the specified map.
1061 tim 1.1 *
1062 jsr166 1.68 * @param m mappings to be stored in this map
1063 tim 1.1 */
1064 jsr166 1.68 public void putAll(Map<? extends K, ? extends V> m) {
1065 jsr166 1.84 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1066 dl 1.4 put(e.getKey(), e.getValue());
1067     }
1068    
1069     /**
1070 jsr166 1.68 * Removes the key (and its corresponding value) from this map.
1071     * This method does nothing if the key is not in the map.
1072 dl 1.4 *
1073 jsr166 1.68 * @param key the key that needs to be removed
1074     * @return the previous value associated with <tt>key</tt>, or
1075 jsr166 1.84 * <tt>null</tt> if there was no mapping for <tt>key</tt>
1076 jsr166 1.68 * @throws NullPointerException if the specified key is null
1077 dl 1.4 */
1078     public V remove(Object key) {
1079 jsr166 1.96 int hash = hash(key.hashCode());
1080 dl 1.99 Segment<K,V> s = segmentForHash(hash);
1081     return s == null ? null : s.remove(key, hash, null);
1082 dl 1.4 }
1083 tim 1.1
1084 dl 1.4 /**
1085 jsr166 1.68 * {@inheritDoc}
1086     *
1087 jsr166 1.69 * @throws NullPointerException if the specified key is null
1088 dl 1.4 */
1089 dl 1.13 public boolean remove(Object key, Object value) {
1090 dl 1.89 int hash = hash(key.hashCode());
1091 dl 1.99 Segment<K,V> s;
1092     return value != null && (s = segmentForHash(hash)) != null &&
1093     s.remove(key, hash, value) != null;
1094 tim 1.1 }
1095 dl 1.31
1096     /**
1097 jsr166 1.68 * {@inheritDoc}
1098     *
1099     * @throws NullPointerException if any of the arguments are null
1100 dl 1.31 */
1101     public boolean replace(K key, V oldValue, V newValue) {
1102 dl 1.99 int hash = hash(key.hashCode());
1103 dl 1.31 if (oldValue == null || newValue == null)
1104     throw new NullPointerException();
1105 dl 1.99 Segment<K,V> s = segmentForHash(hash);
1106     return s != null && s.replace(key, hash, oldValue, newValue);
1107 dl 1.32 }
1108    
1109     /**
1110 jsr166 1.68 * {@inheritDoc}
1111     *
1112     * @return the previous value associated with the specified key,
1113     * or <tt>null</tt> if there was no mapping for the key
1114     * @throws NullPointerException if the specified key or value is null
1115 dl 1.32 */
1116 dl 1.33 public V replace(K key, V value) {
1117 dl 1.99 int hash = hash(key.hashCode());
1118 dl 1.32 if (value == null)
1119     throw new NullPointerException();
1120 dl 1.99 Segment<K,V> s = segmentForHash(hash);
1121     return s == null ? null : s.replace(key, hash, value);
1122 dl 1.31 }
1123    
1124 tim 1.1 /**
1125 jsr166 1.68 * Removes all of the mappings from this map.
1126 tim 1.1 */
1127     public void clear() {
1128 dl 1.99 final Segment<K,V>[] segments = this.segments;
1129     for (int j = 0; j < segments.length; ++j) {
1130     Segment<K,V> s = segmentAt(segments, j);
1131     if (s != null)
1132     s.clear();
1133     }
1134 tim 1.1 }
1135    
1136     /**
1137 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
1138     * The set is backed by the map, so changes to the map are
1139     * reflected in the set, and vice-versa. The set supports element
1140     * removal, which removes the corresponding mapping from this map,
1141     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1142     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1143     * operations. It does not support the <tt>add</tt> or
1144 tim 1.1 * <tt>addAll</tt> operations.
1145 jsr166 1.68 *
1146     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1147     * that will never throw {@link ConcurrentModificationException},
1148 dl 1.14 * and guarantees to traverse elements as they existed upon
1149     * construction of the iterator, and may (but is not guaranteed to)
1150     * reflect any modifications subsequent to construction.
1151 tim 1.1 */
1152     public Set<K> keySet() {
1153     Set<K> ks = keySet;
1154 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
1155 tim 1.1 }
1156    
1157     /**
1158 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
1159     * The collection is backed by the map, so changes to the map are
1160     * reflected in the collection, and vice-versa. The collection
1161     * supports element removal, which removes the corresponding
1162     * mapping from this map, via the <tt>Iterator.remove</tt>,
1163     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1164     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
1165     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1166     *
1167     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1168     * that will never throw {@link ConcurrentModificationException},
1169 dl 1.14 * and guarantees to traverse elements as they existed upon
1170     * construction of the iterator, and may (but is not guaranteed to)
1171     * reflect any modifications subsequent to construction.
1172 tim 1.1 */
1173     public Collection<V> values() {
1174     Collection<V> vs = values;
1175 dl 1.8 return (vs != null) ? vs : (values = new Values());
1176 tim 1.1 }
1177    
1178     /**
1179 jsr166 1.68 * Returns a {@link Set} view of the mappings contained in this map.
1180     * The set is backed by the map, so changes to the map are
1181     * reflected in the set, and vice-versa. The set supports element
1182     * removal, which removes the corresponding mapping from the map,
1183     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1184     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1185     * operations. It does not support the <tt>add</tt> or
1186     * <tt>addAll</tt> operations.
1187     *
1188     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1189     * that will never throw {@link ConcurrentModificationException},
1190 dl 1.14 * and guarantees to traverse elements as they existed upon
1191     * construction of the iterator, and may (but is not guaranteed to)
1192     * reflect any modifications subsequent to construction.
1193 tim 1.1 */
1194     public Set<Map.Entry<K,V>> entrySet() {
1195     Set<Map.Entry<K,V>> es = entrySet;
1196 jsr166 1.65 return (es != null) ? es : (entrySet = new EntrySet());
1197 tim 1.1 }
1198    
1199     /**
1200     * Returns an enumeration of the keys in this table.
1201     *
1202 jsr166 1.70 * @return an enumeration of the keys in this table
1203 jsr166 1.94 * @see #keySet()
1204 tim 1.1 */
1205 dl 1.4 public Enumeration<K> keys() {
1206 tim 1.1 return new KeyIterator();
1207     }
1208    
1209     /**
1210     * Returns an enumeration of the values in this table.
1211     *
1212 jsr166 1.70 * @return an enumeration of the values in this table
1213 jsr166 1.94 * @see #values()
1214 tim 1.1 */
1215 dl 1.4 public Enumeration<V> elements() {
1216 tim 1.1 return new ValueIterator();
1217     }
1218    
1219 dl 1.4 /* ---------------- Iterator Support -------------- */
1220 tim 1.11
1221 jsr166 1.82 abstract class HashIterator {
1222 dl 1.41 int nextSegmentIndex;
1223     int nextTableIndex;
1224 dl 1.71 HashEntry<K,V>[] currentTable;
1225 dl 1.41 HashEntry<K, V> nextEntry;
1226 dl 1.30 HashEntry<K, V> lastReturned;
1227 tim 1.1
1228 dl 1.41 HashIterator() {
1229 dl 1.8 nextSegmentIndex = segments.length - 1;
1230 dl 1.4 nextTableIndex = -1;
1231     advance();
1232 tim 1.1 }
1233    
1234 dl 1.99 /**
1235 jsr166 1.109 * Sets nextEntry to first node of next non-empty table
1236 dl 1.99 * (in backwards order, to simplify checks).
1237     */
1238 dl 1.41 final void advance() {
1239 dl 1.99 for (;;) {
1240     if (nextTableIndex >= 0) {
1241     if ((nextEntry = entryAt(currentTable,
1242     nextTableIndex--)) != null)
1243     break;
1244     }
1245     else if (nextSegmentIndex >= 0) {
1246     Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1247     if (seg != null && (currentTable = seg.table) != null)
1248     nextTableIndex = currentTable.length - 1;
1249 tim 1.1 }
1250 dl 1.99 else
1251     break;
1252 tim 1.1 }
1253     }
1254    
1255 dl 1.99 final HashEntry<K,V> nextEntry() {
1256 dl 1.102 HashEntry<K,V> e = nextEntry;
1257 dl 1.99 if (e == null)
1258 tim 1.1 throw new NoSuchElementException();
1259 dl 1.102 lastReturned = e; // cannot assign until after null check
1260 dl 1.99 if ((nextEntry = e.next) == null)
1261     advance();
1262     return e;
1263 tim 1.1 }
1264    
1265 dl 1.99 public final boolean hasNext() { return nextEntry != null; }
1266     public final boolean hasMoreElements() { return nextEntry != null; }
1267    
1268     public final void remove() {
1269 tim 1.1 if (lastReturned == null)
1270     throw new IllegalStateException();
1271     ConcurrentHashMap.this.remove(lastReturned.key);
1272     lastReturned = null;
1273     }
1274 dl 1.4 }
1275    
1276 jsr166 1.82 final class KeyIterator
1277 jsr166 1.96 extends HashIterator
1278     implements Iterator<K>, Enumeration<K>
1279 jsr166 1.82 {
1280 dl 1.99 public final K next() { return super.nextEntry().key; }
1281     public final K nextElement() { return super.nextEntry().key; }
1282 dl 1.4 }
1283    
1284 jsr166 1.82 final class ValueIterator
1285 jsr166 1.96 extends HashIterator
1286     implements Iterator<V>, Enumeration<V>
1287 jsr166 1.82 {
1288 dl 1.99 public final V next() { return super.nextEntry().value; }
1289     public final V nextElement() { return super.nextEntry().value; }
1290 dl 1.4 }
1291 tim 1.1
1292 dl 1.30 /**
1293 dl 1.79 * Custom Entry class used by EntryIterator.next(), that relays
1294     * setValue changes to the underlying map.
1295 jsr166 1.80 */
1296 jsr166 1.83 final class WriteThroughEntry
1297 jsr166 1.96 extends AbstractMap.SimpleEntry<K,V>
1298 jsr166 1.81 {
1299 jsr166 1.83 WriteThroughEntry(K k, V v) {
1300 jsr166 1.80 super(k,v);
1301 dl 1.79 }
1302    
1303     /**
1304 jsr166 1.109 * Sets our entry's value and writes through to the map. The
1305 dl 1.79 * value to return is somewhat arbitrary here. Since a
1306     * WriteThroughEntry does not necessarily track asynchronous
1307     * changes, the most recent "previous" value could be
1308 jsr166 1.81 * different from what we return (or could even have been
1309 dl 1.79 * removed in which case the put will re-establish). We do not
1310     * and cannot guarantee more.
1311     */
1312 jsr166 1.96 public V setValue(V value) {
1313 dl 1.79 if (value == null) throw new NullPointerException();
1314     V v = super.setValue(value);
1315 jsr166 1.83 ConcurrentHashMap.this.put(getKey(), value);
1316 dl 1.79 return v;
1317 dl 1.30 }
1318 dl 1.79 }
1319 dl 1.30
1320 jsr166 1.82 final class EntryIterator
1321 jsr166 1.96 extends HashIterator
1322     implements Iterator<Entry<K,V>>
1323 jsr166 1.82 {
1324 dl 1.79 public Map.Entry<K,V> next() {
1325     HashEntry<K,V> e = super.nextEntry();
1326 jsr166 1.83 return new WriteThroughEntry(e.key, e.value);
1327 dl 1.30 }
1328 tim 1.1 }
1329    
1330 dl 1.41 final class KeySet extends AbstractSet<K> {
1331 dl 1.4 public Iterator<K> iterator() {
1332     return new KeyIterator();
1333     }
1334     public int size() {
1335     return ConcurrentHashMap.this.size();
1336     }
1337 jsr166 1.95 public boolean isEmpty() {
1338     return ConcurrentHashMap.this.isEmpty();
1339     }
1340 dl 1.4 public boolean contains(Object o) {
1341     return ConcurrentHashMap.this.containsKey(o);
1342     }
1343     public boolean remove(Object o) {
1344     return ConcurrentHashMap.this.remove(o) != null;
1345     }
1346     public void clear() {
1347     ConcurrentHashMap.this.clear();
1348     }
1349 tim 1.1 }
1350    
1351 dl 1.41 final class Values extends AbstractCollection<V> {
1352 dl 1.4 public Iterator<V> iterator() {
1353     return new ValueIterator();
1354     }
1355     public int size() {
1356     return ConcurrentHashMap.this.size();
1357     }
1358 jsr166 1.95 public boolean isEmpty() {
1359     return ConcurrentHashMap.this.isEmpty();
1360     }
1361 dl 1.4 public boolean contains(Object o) {
1362     return ConcurrentHashMap.this.containsValue(o);
1363     }
1364     public void clear() {
1365     ConcurrentHashMap.this.clear();
1366     }
1367 tim 1.1 }
1368    
1369 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1370 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1371     return new EntryIterator();
1372     }
1373     public boolean contains(Object o) {
1374     if (!(o instanceof Map.Entry))
1375     return false;
1376 dl 1.71 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1377 dl 1.4 V v = ConcurrentHashMap.this.get(e.getKey());
1378     return v != null && v.equals(e.getValue());
1379     }
1380     public boolean remove(Object o) {
1381     if (!(o instanceof Map.Entry))
1382     return false;
1383 dl 1.71 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1384 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1385 dl 1.4 }
1386     public int size() {
1387     return ConcurrentHashMap.this.size();
1388     }
1389 jsr166 1.95 public boolean isEmpty() {
1390     return ConcurrentHashMap.this.isEmpty();
1391     }
1392 dl 1.4 public void clear() {
1393     ConcurrentHashMap.this.clear();
1394 dl 1.30 }
1395     }
1396    
1397 dl 1.4 /* ---------------- Serialization Support -------------- */
1398    
1399 tim 1.1 /**
1400 jsr166 1.109 * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
1401     * stream (i.e., serializes it).
1402 dl 1.8 * @param s the stream
1403 tim 1.1 * @serialData
1404     * the key (Object) and value (Object)
1405     * for each key-value mapping, followed by a null pair.
1406     * The key-value mappings are emitted in no particular order.
1407     */
1408 jsr166 1.97 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1409 dl 1.99 // force all segments for serialization compatibility
1410     for (int k = 0; k < segments.length; ++k)
1411     ensureSegment(k);
1412 tim 1.1 s.defaultWriteObject();
1413    
1414 dl 1.99 final Segment<K,V>[] segments = this.segments;
1415 tim 1.1 for (int k = 0; k < segments.length; ++k) {
1416 dl 1.99 Segment<K,V> seg = segmentAt(segments, k);
1417 dl 1.2 seg.lock();
1418     try {
1419 dl 1.71 HashEntry<K,V>[] tab = seg.table;
1420 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1421 dl 1.99 HashEntry<K,V> e;
1422     for (e = entryAt(tab, i); e != null; e = e.next) {
1423 dl 1.4 s.writeObject(e.key);
1424     s.writeObject(e.value);
1425     }
1426     }
1427 tim 1.16 } finally {
1428 dl 1.2 seg.unlock();
1429     }
1430 tim 1.1 }
1431     s.writeObject(null);
1432     s.writeObject(null);
1433     }
1434    
1435     /**
1436 jsr166 1.109 * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
1437     * stream (i.e., deserializes it).
1438 dl 1.8 * @param s the stream
1439 tim 1.1 */
1440 dl 1.99 @SuppressWarnings("unchecked")
1441 tim 1.1 private void readObject(java.io.ObjectInputStream s)
1442 jsr166 1.97 throws IOException, ClassNotFoundException {
1443 tim 1.1 s.defaultReadObject();
1444    
1445 dl 1.99 // Re-initialize segments to be minimally sized, and let grow.
1446     int cap = MIN_SEGMENT_TABLE_CAPACITY;
1447     final Segment<K,V>[] segments = this.segments;
1448     for (int k = 0; k < segments.length; ++k) {
1449     Segment<K,V> seg = segments[k];
1450     if (seg != null) {
1451     seg.threshold = (int)(cap * seg.loadFactor);
1452     seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
1453     }
1454 dl 1.4 }
1455 tim 1.1
1456     // Read the keys and values, and put the mappings in the table
1457 dl 1.9 for (;;) {
1458 tim 1.1 K key = (K) s.readObject();
1459     V value = (V) s.readObject();
1460     if (key == null)
1461     break;
1462     put(key, value);
1463     }
1464     }
1465 dl 1.99
1466     // Unsafe mechanics
1467     private static final sun.misc.Unsafe UNSAFE;
1468     private static final long SBASE;
1469     private static final int SSHIFT;
1470     private static final long TBASE;
1471     private static final int TSHIFT;
1472    
1473     static {
1474     int ss, ts;
1475     try {
1476     UNSAFE = sun.misc.Unsafe.getUnsafe();
1477     Class tc = HashEntry[].class;
1478     Class sc = Segment[].class;
1479     TBASE = UNSAFE.arrayBaseOffset(tc);
1480     SBASE = UNSAFE.arrayBaseOffset(sc);
1481     ts = UNSAFE.arrayIndexScale(tc);
1482     ss = UNSAFE.arrayIndexScale(sc);
1483     } catch (Exception e) {
1484     throw new Error(e);
1485     }
1486     if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1487     throw new Error("data type scale not a power of two");
1488     SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1489     TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1490     }
1491    
1492 tim 1.1 }