ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.12
Committed: Thu Jul 31 16:43:47 2003 UTC (20 years, 10 months ago) by tim
Branch: MAIN
Changes since 1.11: +15 -15 lines
Log Message:
Fix unchecked calls to raw type

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18     * same functional specification as
19     * <tt>java.util.Hashtable</tt>. However, even though all operations
20     * are thread-safe, retrieval operations do <em>not</em> entail
21     * locking, and there is <em>not</em> any support for locking the
22     * entire table in a way that prevents all access. This class is
23     * fully interoperable with Hashtable in programs that rely on its
24     * thread safety but not on its synchronization details.
25 tim 1.11 *
26 dl 1.4 * <p> Retrieval operations (including <tt>get</tt>) ordinarily
27 dl 1.5 * overlap with update operations (including <tt>put</tt> and
28 dl 1.4 * <tt>remove</tt>). Retrievals reflect the results of the most
29     * recently <em>completed</em> update operations holding upon their
30     * onset. For aggregate operations such as <tt>putAll</tt> and
31     * <tt>clear</tt>, concurrent retrievals may reflect insertion or
32     * removal of only some entries. Similarly, Iterators and
33     * Enumerations return elements reflecting the state of the hash table
34     * at some point at or since the creation of the iterator/enumeration.
35     * They do <em>not</em> throw ConcurrentModificationException.
36     * However, Iterators are designed to be used by only one thread at a
37     * time.
38 tim 1.1 *
39 dl 1.4 * <p> The allowed concurrency among update operations is controlled
40     * by the optional <tt>segments</tt> constructor argument (default
41 brian 1.7 * 16). The table is divided into this many independent parts, each of
42 dl 1.4 * which can be updated concurrently. Because placement in hash tables
43     * is essentially random, the actual concurrency will vary. As a rough
44     * rule of thumb, you should choose at least as many segments as you
45     * expect concurrent threads. However, using more segments than you
46     * need can waste space and time. Using a value of 1 for
47     * <tt>segments</tt> results in a table that is concurrently readable
48     * but can only be updated by one thread at a time.
49 tim 1.1 *
50 dl 1.4 * <p> Like Hashtable but unlike java.util.HashMap, this class does
51     * NOT allow <tt>null</tt> to be used as a key or value.
52 tim 1.1 *
53 dl 1.8 * @since 1.5
54     * @author Doug Lea
55     */
56 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
57     implements ConcurrentMap<K, V>, Cloneable, Serializable {
58    
59     /*
60 dl 1.4 * The basic strategy is to subdivide the table among Segments,
61     * each of which itself is a concurrently readable hash table.
62     */
63 tim 1.1
64 dl 1.4 /* ---------------- Constants -------------- */
65 tim 1.11
66 dl 1.4 /**
67     * The default initial number of table slots for this table (32).
68     * Used when not otherwise specified in constructor.
69     */
70 tim 1.11 private static int DEFAULT_INITIAL_CAPACITY = 16;
71 tim 1.1
72     /**
73 dl 1.4 * The maximum capacity, used if a higher value is implicitly
74     * specified by either of the constructors with arguments. MUST
75     * be a power of two <= 1<<30.
76     */
77     static final int MAXIMUM_CAPACITY = 1 << 30;
78 tim 1.11
79 tim 1.1 /**
80 dl 1.4 * The default load factor for this table. Used when not
81     * otherwise specified in constructor.
82     */
83 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
84 tim 1.1
85     /**
86 dl 1.4 * The default number of concurrency control segments.
87 tim 1.1 **/
88 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
89 tim 1.1
90 dl 1.4 /* ---------------- Fields -------------- */
91 tim 1.1
92     /**
93 dl 1.9 * Mask value for indexing into segments. The upper bits of a
94     * key's hash code are used to choose the segment.
95 tim 1.1 **/
96 dl 1.4 private final int segmentMask;
97 tim 1.1
98     /**
99 dl 1.4 * Shift value for indexing within segments.
100 tim 1.1 **/
101 dl 1.4 private final int segmentShift;
102 tim 1.1
103     /**
104 dl 1.4 * The segments, each of which is a specialized hash table
105 tim 1.1 */
106 tim 1.11 private final Segment[] segments;
107 dl 1.4
108 dl 1.6 private transient Set<K> keySet;
109 tim 1.12 private transient Set<Map.Entry<K,V>> entrySet;
110 dl 1.6 private transient Collection<V> values;
111 dl 1.4
112     /* ---------------- Small Utilities -------------- */
113 tim 1.1
114     /**
115 tim 1.11 * Return a hash code for non-null Object x.
116 dl 1.4 * Uses the same hash code spreader as most other j.u hash tables.
117 dl 1.8 * @param x the object serving as a key
118     * @return the hash code
119 tim 1.1 */
120 dl 1.4 private static int hash(Object x) {
121     int h = x.hashCode();
122     h += ~(h << 9);
123     h ^= (h >>> 14);
124     h += (h << 4);
125     h ^= (h >>> 10);
126     return h;
127     }
128    
129 tim 1.1 /**
130 dl 1.4 * Return the segment that should be used for key with given hash
131 tim 1.1 */
132 dl 1.4 private Segment<K,V> segmentFor(int hash) {
133 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
134 dl 1.4 }
135 tim 1.1
136 dl 1.4 /* ---------------- Inner Classes -------------- */
137 tim 1.1
138     /**
139 dl 1.6 * Segments are specialized versions of hash tables. This
140 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
141     * simplify some locking and avoid separate construction.
142 tim 1.1 **/
143 dl 1.8 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
144 dl 1.4 /*
145     * Segments maintain a table of entry lists that are ALWAYS
146     * kept in a consistent state, so can be read without locking.
147     * Next fields of nodes are immutable (final). All list
148     * additions are performed at the front of each bin. This
149     * makes it easy to check changes, and also fast to traverse.
150     * When nodes would otherwise be changed, new nodes are
151     * created to replace them. This works well for hash tables
152     * since the bin lists tend to be short. (The average length
153     * is less than two for the default load factor threshold.)
154     *
155     * Read operations can thus proceed without locking, but rely
156     * on a memory barrier to ensure that completed write
157     * operations performed by other threads are
158     * noticed. Conveniently, the "count" field, tracking the
159     * number of elements, can also serve as the volatile variable
160     * providing proper read/write barriers. This is convenient
161     * because this field needs to be read in many read operations
162     * anyway. The use of volatiles for this purpose is only
163     * guaranteed to work in accord with reuirements in
164     * multithreaded environments when run on JVMs conforming to
165     * the clarified JSR133 memory model specification. This true
166     * for hotspot as of release 1.4.
167     *
168     * Implementors note. The basic rules for all this are:
169     *
170     * - All unsynchronized read operations must first read the
171     * "count" field, and should not look at table entries if
172     * it is 0.
173 tim 1.11 *
174 dl 1.4 * - All synchronized write operations should write to
175     * the "count" field after updating. The operations must not
176     * take any action that could even momentarily cause
177     * a concurrent read operation to see inconsistent
178     * data. This is made easier by the nature of the read
179     * operations in Map. For example, no operation
180     * can reveal that the table has grown but the threshold
181     * has not yet been updated, so there are no atomicity
182     * requirements for this with respect to reads.
183     *
184     * As a guide, all critical volatile reads and writes are marked
185     * in code comments.
186     */
187 tim 1.11
188 dl 1.4 /**
189     * The number of elements in this segment's region.
190     **/
191     transient volatile int count;
192    
193     /**
194     * The table is rehashed when its size exceeds this threshold.
195     * (The value of this field is always (int)(capacity *
196     * loadFactor).)
197     */
198 dl 1.8 private transient int threshold;
199 dl 1.4
200     /**
201     * The per-segment table
202     */
203 tim 1.11 transient HashEntry[] table;
204 dl 1.4
205     /**
206     * The load factor for the hash table. Even though this value
207     * is same for all segments, it is replicated to avoid needing
208     * links to outer object.
209     * @serial
210     */
211     private final float loadFactor;
212 tim 1.1
213 dl 1.4 Segment(int initialCapacity, float lf) {
214     loadFactor = lf;
215 tim 1.11 setTable(new HashEntry[initialCapacity]);
216 dl 1.4 }
217 tim 1.1
218 dl 1.4 /**
219 tim 1.11 * Set table to new HashEntry array.
220 dl 1.4 * Call only while holding lock or in constructor.
221     **/
222 tim 1.11 private void setTable(HashEntry[] newTable) {
223 dl 1.4 table = newTable;
224     threshold = (int)(newTable.length * loadFactor);
225     count = count; // write-volatile
226 tim 1.11 }
227 dl 1.4
228     /* Specialized implementations of map methods */
229 tim 1.11
230     V get(K key, int hash) {
231 dl 1.4 if (count != 0) { // read-volatile
232 tim 1.11 HashEntry[] tab = table;
233 dl 1.9 int index = hash & (tab.length - 1);
234 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
235 dl 1.4 while (e != null) {
236 tim 1.11 if (e.hash == hash && key.equals(e.key))
237 dl 1.4 return e.value;
238     e = e.next;
239     }
240     }
241     return null;
242     }
243    
244     boolean containsKey(Object key, int hash) {
245     if (count != 0) { // read-volatile
246 tim 1.11 HashEntry[] tab = table;
247 dl 1.9 int index = hash & (tab.length - 1);
248 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
249 dl 1.4 while (e != null) {
250 tim 1.11 if (e.hash == hash && key.equals(e.key))
251 dl 1.4 return true;
252     e = e.next;
253     }
254     }
255     return false;
256     }
257 tim 1.11
258 dl 1.4 boolean containsValue(Object value) {
259     if (count != 0) { // read-volatile
260 tim 1.11 HashEntry[] tab = table;
261 dl 1.4 int len = tab.length;
262 tim 1.11 for (int i = 0 ; i < len; i++)
263 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
264 dl 1.4 if (value.equals(e.value))
265     return true;
266     }
267     return false;
268     }
269    
270 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
271 dl 1.4 lock();
272     try {
273 dl 1.9 int c = count;
274 tim 1.11 HashEntry[] tab = table;
275 dl 1.9 int index = hash & (tab.length - 1);
276 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
277    
278     for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
279 dl 1.9 if (e.hash == hash && key.equals(e.key)) {
280 tim 1.11 V oldValue = e.value;
281 dl 1.4 if (!onlyIfAbsent)
282     e.value = value;
283 dl 1.9 count = c; // write-volatile
284 dl 1.4 return oldValue;
285     }
286     }
287 tim 1.11
288 dl 1.4 tab[index] = new HashEntry<K,V>(hash, key, value, first);
289 dl 1.9 ++c;
290     count = c; // write-volatile
291 tim 1.11 if (c > threshold)
292 dl 1.9 setTable(rehash(tab));
293 dl 1.4 return null;
294     }
295     finally {
296     unlock();
297     }
298     }
299    
300 tim 1.11 private HashEntry[] rehash(HashEntry[] oldTable) {
301 dl 1.4 int oldCapacity = oldTable.length;
302     if (oldCapacity >= MAXIMUM_CAPACITY)
303 dl 1.9 return oldTable;
304 dl 1.4
305     /*
306     * Reclassify nodes in each list to new Map. Because we are
307     * using power-of-two expansion, the elements from each bin
308     * must either stay at same index, or move with a power of two
309     * offset. We eliminate unnecessary node creation by catching
310     * cases where old nodes can be reused because their next
311     * fields won't change. Statistically, at the default
312     * threshhold, only about one-sixth of them need cloning when
313     * a table doubles. The nodes they replace will be garbage
314     * collectable as soon as they are no longer referenced by any
315     * reader thread that may be in the midst of traversing table
316     * right now.
317     */
318 tim 1.11
319     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
320 dl 1.4 int sizeMask = newTable.length - 1;
321     for (int i = 0; i < oldCapacity ; i++) {
322     // We need to guarantee that any existing reads of old Map can
323 tim 1.11 // proceed. So we cannot yet null out each bin.
324 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
325 tim 1.11
326 dl 1.4 if (e != null) {
327     HashEntry<K,V> next = e.next;
328     int idx = e.hash & sizeMask;
329 tim 1.11
330 dl 1.4 // Single node on list
331 tim 1.11 if (next == null)
332 dl 1.4 newTable[idx] = e;
333 tim 1.11
334     else {
335 dl 1.4 // Reuse trailing consecutive sequence at same slot
336     HashEntry<K,V> lastRun = e;
337     int lastIdx = idx;
338 tim 1.11 for (HashEntry<K,V> last = next;
339     last != null;
340 dl 1.4 last = last.next) {
341     int k = last.hash & sizeMask;
342     if (k != lastIdx) {
343     lastIdx = k;
344     lastRun = last;
345     }
346     }
347     newTable[lastIdx] = lastRun;
348 tim 1.11
349 dl 1.4 // Clone all remaining nodes
350     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
351     int k = p.hash & sizeMask;
352 tim 1.11 newTable[k] = new HashEntry<K,V>(p.hash,
353     p.key,
354     p.value,
355     (HashEntry<K,V>) newTable[k]);
356 dl 1.4 }
357     }
358     }
359     }
360 dl 1.9 return newTable;
361 dl 1.4 }
362 dl 1.6
363     /**
364     * Remove; match on key only if value null, else match both.
365     */
366 dl 1.4 V remove(Object key, int hash, Object value) {
367 tim 1.11 lock();
368 dl 1.4 try {
369 dl 1.9 int c = count;
370 dl 1.4 HashEntry[] tab = table;
371 dl 1.9 int index = hash & (tab.length - 1);
372 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
373 tim 1.11
374 dl 1.4 HashEntry<K,V> e = first;
375 dl 1.9 for (;;) {
376 dl 1.4 if (e == null)
377     return null;
378 dl 1.9 if (e.hash == hash && key.equals(e.key))
379 dl 1.4 break;
380     e = e.next;
381     }
382    
383     V oldValue = e.value;
384     if (value != null && !value.equals(oldValue))
385     return null;
386 dl 1.9
387 dl 1.4 // All entries following removed node can stay in list, but
388 tim 1.11 // all preceeding ones need to be cloned.
389 dl 1.4 HashEntry<K,V> newFirst = e.next;
390 tim 1.11 for (HashEntry<K,V> p = first; p != e; p = p.next)
391     newFirst = new HashEntry<K,V>(p.hash, p.key,
392 dl 1.8 p.value, newFirst);
393 dl 1.4 tab[index] = newFirst;
394 dl 1.9 count = c-1; // write-volatile
395     return oldValue;
396 dl 1.4 }
397     finally {
398     unlock();
399     }
400     }
401    
402     void clear() {
403     lock();
404     try {
405 tim 1.11 HashEntry[] tab = table;
406     for (int i = 0; i < tab.length ; i++)
407 dl 1.4 tab[i] = null;
408     count = 0; // write-volatile
409     }
410     finally {
411     unlock();
412     }
413     }
414 tim 1.1 }
415    
416     /**
417 dl 1.4 * ConcurrentReaderHashMap list entry.
418 tim 1.1 */
419 dl 1.4 private static class HashEntry<K,V> implements Entry<K,V> {
420     private final K key;
421     private V value;
422     private final int hash;
423     private final HashEntry<K,V> next;
424    
425     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
426     this.value = value;
427     this.hash = hash;
428     this.key = key;
429     this.next = next;
430     }
431    
432     public K getKey() {
433     return key;
434     }
435 tim 1.1
436 dl 1.4 public V getValue() {
437 tim 1.11 return value;
438 tim 1.1 }
439    
440 dl 1.4 public V setValue(V newValue) {
441     // We aren't required to, and don't provide any
442     // visibility barriers for setting value.
443     if (newValue == null)
444     throw new NullPointerException();
445     V oldValue = this.value;
446     this.value = newValue;
447     return oldValue;
448     }
449 tim 1.1
450 dl 1.4 public boolean equals(Object o) {
451     if (!(o instanceof Entry))
452     return false;
453 tim 1.12 Entry<K,V> e = (Entry<K,V>)o;
454 dl 1.4 return (key.equals(e.getKey()) && value.equals(e.getValue()));
455     }
456 tim 1.11
457 dl 1.4 public int hashCode() {
458     return key.hashCode() ^ value.hashCode();
459     }
460 tim 1.1
461 dl 1.4 public String toString() {
462     return key + "=" + value;
463     }
464 tim 1.1 }
465    
466 tim 1.11
467 dl 1.4 /* ---------------- Public operations -------------- */
468 tim 1.1
469     /**
470     * Constructs a new, empty map with the specified initial
471     * capacity and the specified load factor.
472     *
473 dl 1.4 * @param initialCapacity the initial capacity. The actual
474     * initial capacity is rounded up to the nearest power of two.
475 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
476 dl 1.4 * @param segments the number of concurrently accessible segments. the
477     * actual number of segments is rounded to the next power of two.
478     * @throws IllegalArgumentException if the initial capacity is
479     * negative or the load factor or number of segments are
480     * nonpositive.
481     */
482 tim 1.11 public ConcurrentHashMap(int initialCapacity,
483 dl 1.8 float loadFactor, int segments) {
484 dl 1.4 if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
485     throw new IllegalArgumentException();
486    
487     // Find power-of-two sizes best matching arguments
488     int sshift = 0;
489     int ssize = 1;
490     while (ssize < segments) {
491     ++sshift;
492     ssize <<= 1;
493     }
494 dl 1.9 segmentShift = 32 - sshift;
495 dl 1.8 segmentMask = ssize - 1;
496 tim 1.11 this.segments = new Segment[ssize];
497 dl 1.4
498     if (initialCapacity > MAXIMUM_CAPACITY)
499     initialCapacity = MAXIMUM_CAPACITY;
500     int c = initialCapacity / ssize;
501 tim 1.11 if (c * ssize < initialCapacity)
502 dl 1.4 ++c;
503     int cap = 1;
504     while (cap < c)
505     cap <<= 1;
506    
507     for (int i = 0; i < this.segments.length; ++i)
508     this.segments[i] = new Segment<K,V>(cap, loadFactor);
509 tim 1.1 }
510    
511     /**
512     * Constructs a new, empty map with the specified initial
513 dl 1.4 * capacity, and with default load factor and segments.
514 tim 1.1 *
515 dl 1.4 * @param initialCapacity the initial capacity of the
516     * ConcurrentHashMap.
517     * @throws IllegalArgumentException if the initial capacity of
518     * elements is negative.
519 tim 1.1 */
520     public ConcurrentHashMap(int initialCapacity) {
521 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
522 tim 1.1 }
523    
524     /**
525 dl 1.4 * Constructs a new, empty map with a default initial capacity,
526     * load factor, and number of segments
527 tim 1.1 */
528     public ConcurrentHashMap() {
529 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
530 tim 1.1 }
531    
532     /**
533     * Constructs a new map with the same mappings as the given map. The
534     * map is created with a capacity of twice the number of mappings in
535 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
536 tim 1.1 */
537     public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
538     this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
539 dl 1.4 11),
540     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
541     putAll(t);
542 tim 1.1 }
543    
544 dl 1.4 // inherit Map javadoc
545 tim 1.1 public int size() {
546     int c = 0;
547     for (int i = 0; i < segments.length; ++i)
548 dl 1.4 c += segments[i].count;
549 tim 1.1 return c;
550     }
551    
552 dl 1.4 // inherit Map javadoc
553 tim 1.1 public boolean isEmpty() {
554     for (int i = 0; i < segments.length; ++i)
555 dl 1.4 if (segments[i].count != 0)
556 tim 1.1 return false;
557     return true;
558     }
559    
560     /**
561     * Returns the value to which the specified key is mapped in this table.
562     *
563     * @param key a key in the table.
564     * @return the value to which the key is mapped in this table;
565     * <code>null</code> if the key is not mapped to any value in
566     * this table.
567 dl 1.8 * @throws NullPointerException if the key is
568 tim 1.1 * <code>null</code>.
569     * @see #put(Object, Object)
570     */
571 tim 1.11 public V get(Object key) {
572 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
573 tim 1.11 return segmentFor(hash).get((K) key, hash);
574 tim 1.1 }
575    
576     /**
577     * Tests if the specified object is a key in this table.
578 tim 1.11 *
579 tim 1.1 * @param key possible key.
580 tim 1.11 * @return <code>true</code> if and only if the specified object
581     * is a key in this table, as determined by the
582 tim 1.1 * <tt>equals</tt> method; <code>false</code> otherwise.
583 dl 1.8 * @throws NullPointerException if the key is
584 tim 1.1 * <code>null</code>.
585     * @see #contains(Object)
586     */
587     public boolean containsKey(Object key) {
588 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
589 dl 1.9 return segmentFor(hash).containsKey(key, hash);
590 tim 1.1 }
591    
592     /**
593     * Returns <tt>true</tt> if this map maps one or more keys to the
594     * specified value. Note: This method requires a full internal
595     * traversal of the hash table, and so is much slower than
596     * method <tt>containsKey</tt>.
597     *
598     * @param value value whose presence in this map is to be tested.
599     * @return <tt>true</tt> if this map maps one or more keys to the
600 tim 1.11 * specified value.
601 dl 1.8 * @throws NullPointerException if the value is <code>null</code>.
602 tim 1.1 */
603     public boolean containsValue(Object value) {
604 tim 1.11 if (value == null)
605 dl 1.4 throw new NullPointerException();
606 tim 1.1
607 dl 1.4 for (int i = 0; i < segments.length; ++i) {
608     if (segments[i].containsValue(value))
609     return true;
610 tim 1.1 }
611     return false;
612     }
613     /**
614     * Tests if some key maps into the specified value in this table.
615     * This operation is more expensive than the <code>containsKey</code>
616     * method.<p>
617     *
618     * Note that this method is identical in functionality to containsValue,
619     * (which is part of the Map interface in the collections framework).
620 tim 1.11 *
621 tim 1.1 * @param value a value to search for.
622     * @return <code>true</code> if and only if some key maps to the
623 tim 1.11 * <code>value</code> argument in this table as
624 tim 1.1 * determined by the <tt>equals</tt> method;
625     * <code>false</code> otherwise.
626 dl 1.8 * @throws NullPointerException if the value is <code>null</code>.
627 tim 1.1 * @see #containsKey(Object)
628     * @see #containsValue(Object)
629 dl 1.8 * @see Map
630 tim 1.1 */
631 dl 1.4 public boolean contains(Object value) {
632 tim 1.1 return containsValue(value);
633     }
634    
635     /**
636 tim 1.11 * Maps the specified <code>key</code> to the specified
637     * <code>value</code> in this table. Neither the key nor the
638 dl 1.4 * value can be <code>null</code>. <p>
639     *
640 tim 1.11 * The value can be retrieved by calling the <code>get</code> method
641     * with a key that is equal to the original key.
642 dl 1.4 *
643     * @param key the table key.
644     * @param value the value.
645     * @return the previous value of the specified key in this table,
646     * or <code>null</code> if it did not have one.
647 dl 1.8 * @throws NullPointerException if the key or value is
648 dl 1.4 * <code>null</code>.
649     * @see Object#equals(Object)
650     * @see #get(Object)
651     */
652 tim 1.11 public V put(K key, V value) {
653     if (value == null)
654 dl 1.4 throw new NullPointerException();
655 tim 1.11 int hash = hash(key);
656 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
657 dl 1.4 }
658    
659     /**
660     * If the specified key is not already associated
661     * with a value, associate it with the given value.
662     * This is equivalent to
663     * <pre>
664     * if (!map.containsKey(key)) map.put(key, value);
665     * return get(key);
666     * </pre>
667     * Except that the action is performed atomically.
668     * @param key key with which the specified value is to be associated.
669     * @param value value to be associated with the specified key.
670     * @return previous value associated with specified key, or <tt>null</tt>
671     * if there was no mapping for key. A <tt>null</tt> return can
672     * also indicate that the map previously associated <tt>null</tt>
673     * with the specified key, if the implementation supports
674     * <tt>null</tt> values.
675     *
676     * @throws NullPointerException this map does not permit <tt>null</tt>
677     * keys or values, and the specified key or value is
678     * <tt>null</tt>.
679     *
680     **/
681 tim 1.11 public V putIfAbsent(K key, V value) {
682     if (value == null)
683 dl 1.4 throw new NullPointerException();
684 tim 1.11 int hash = hash(key);
685 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
686 dl 1.4 }
687    
688    
689     /**
690 tim 1.1 * Copies all of the mappings from the specified map to this one.
691     *
692     * These mappings replace any mappings that this map had for any of the
693     * keys currently in the specified Map.
694     *
695     * @param t Mappings to be stored in this map.
696     */
697 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
698 tim 1.12 Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
699 dl 1.8 while (it.hasNext()) {
700 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
701 dl 1.4 put(e.getKey(), e.getValue());
702 tim 1.1 }
703 dl 1.4 }
704    
705     /**
706 tim 1.11 * Removes the key (and its corresponding value) from this
707 dl 1.4 * table. This method does nothing if the key is not in the table.
708     *
709     * @param key the key that needs to be removed.
710     * @return the value to which the key had been mapped in this table,
711     * or <code>null</code> if the key did not have a mapping.
712 dl 1.8 * @throws NullPointerException if the key is
713 dl 1.4 * <code>null</code>.
714     */
715     public V remove(Object key) {
716     int hash = hash(key);
717 dl 1.9 return segmentFor(hash).remove(key, hash, null);
718 dl 1.4 }
719 tim 1.1
720 dl 1.4 /**
721     * Removes the (key, value) pair from this
722     * table. This method does nothing if the key is not in the table,
723 tim 1.11 * or if the key is associated with a different value.
724 dl 1.4 *
725     * @param key the key that needs to be removed.
726     * @param value the associated value. If the value is null,
727     * it means "any value".
728     * @return the value to which the key had been mapped in this table,
729     * or <code>null</code> if the key did not have a mapping.
730 dl 1.8 * @throws NullPointerException if the key is
731 dl 1.4 * <code>null</code>.
732     */
733     public V remove(Object key, Object value) {
734     int hash = hash(key);
735 dl 1.9 return segmentFor(hash).remove(key, hash, value);
736 tim 1.1 }
737    
738     /**
739     * Removes all mappings from this map.
740     */
741     public void clear() {
742 tim 1.11 for (int i = 0; i < segments.length; ++i)
743 dl 1.4 segments[i].clear();
744 tim 1.1 }
745    
746 dl 1.4
747 tim 1.1 /**
748     * Returns a shallow copy of this
749     * <tt>ConcurrentHashMap</tt> instance: the keys and
750     * values themselves are not cloned.
751     *
752     * @return a shallow copy of this map.
753     */
754     public Object clone() {
755 dl 1.4 // We cannot call super.clone, since it would share final
756     // segments array, and there's no way to reassign finals.
757    
758     float lf = segments[0].loadFactor;
759     int segs = segments.length;
760     int cap = (int)(size() / lf);
761     if (cap < segs) cap = segs;
762 tim 1.12 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
763 dl 1.4 t.putAll(this);
764     return t;
765 tim 1.1 }
766    
767     /**
768     * Returns a set view of the keys contained in this map. The set is
769     * backed by the map, so changes to the map are reflected in the set, and
770     * vice-versa. The set supports element removal, which removes the
771     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
772     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
773     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
774     * <tt>addAll</tt> operations.
775     *
776     * @return a set view of the keys contained in this map.
777     */
778     public Set<K> keySet() {
779     Set<K> ks = keySet;
780 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
781 tim 1.1 }
782    
783    
784     /**
785     * Returns a collection view of the values contained in this map. The
786     * collection is backed by the map, so changes to the map are reflected in
787     * the collection, and vice-versa. The collection supports element
788     * removal, which removes the corresponding mapping from this map, via the
789     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
790     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
791     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
792     *
793     * @return a collection view of the values contained in this map.
794     */
795     public Collection<V> values() {
796     Collection<V> vs = values;
797 dl 1.8 return (vs != null) ? vs : (values = new Values());
798 tim 1.1 }
799    
800    
801     /**
802     * Returns a collection view of the mappings contained in this map. Each
803     * element in the returned collection is a <tt>Map.Entry</tt>. The
804     * collection is backed by the map, so changes to the map are reflected in
805     * the collection, and vice-versa. The collection supports element
806     * removal, which removes the corresponding mapping from the map, via the
807     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
808     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
809     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
810     *
811     * @return a collection view of the mappings contained in this map.
812     */
813     public Set<Map.Entry<K,V>> entrySet() {
814     Set<Map.Entry<K,V>> es = entrySet;
815     return (es != null) ? es : (entrySet = new EntrySet());
816     }
817    
818    
819     /**
820     * Returns an enumeration of the keys in this table.
821     *
822     * @return an enumeration of the keys in this table.
823     * @see Enumeration
824     * @see #elements()
825     * @see #keySet()
826     * @see Map
827     */
828 dl 1.4 public Enumeration<K> keys() {
829 tim 1.1 return new KeyIterator();
830     }
831    
832     /**
833     * Returns an enumeration of the values in this table.
834     * Use the Enumeration methods on the returned object to fetch the elements
835     * sequentially.
836     *
837     * @return an enumeration of the values in this table.
838     * @see java.util.Enumeration
839     * @see #keys()
840     * @see #values()
841     * @see Map
842     */
843 dl 1.4 public Enumeration<V> elements() {
844 tim 1.1 return new ValueIterator();
845     }
846    
847 dl 1.4 /* ---------------- Iterator Support -------------- */
848 tim 1.11
849 dl 1.4 private abstract class HashIterator {
850     private int nextSegmentIndex;
851     private int nextTableIndex;
852 tim 1.11 private HashEntry[] currentTable;
853 dl 1.4 private HashEntry<K, V> nextEntry;
854     private HashEntry<K, V> lastReturned;
855 tim 1.1
856     private HashIterator() {
857 dl 1.8 nextSegmentIndex = segments.length - 1;
858 dl 1.4 nextTableIndex = -1;
859     advance();
860 tim 1.1 }
861    
862     public boolean hasMoreElements() { return hasNext(); }
863    
864 dl 1.4 private void advance() {
865     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
866     return;
867 tim 1.11
868 dl 1.4 while (nextTableIndex >= 0) {
869 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
870 dl 1.4 return;
871     }
872 tim 1.11
873 dl 1.4 while (nextSegmentIndex >= 0) {
874 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
875 dl 1.4 if (seg.count != 0) {
876     currentTable = seg.table;
877 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
878 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
879 dl 1.8 nextTableIndex = j - 1;
880 dl 1.4 return;
881     }
882 tim 1.1 }
883     }
884     }
885     }
886    
887 dl 1.4 public boolean hasNext() { return nextEntry != null; }
888 tim 1.1
889 dl 1.4 HashEntry<K,V> nextEntry() {
890     if (nextEntry == null)
891 tim 1.1 throw new NoSuchElementException();
892 dl 1.4 lastReturned = nextEntry;
893     advance();
894     return lastReturned;
895 tim 1.1 }
896    
897     public void remove() {
898     if (lastReturned == null)
899     throw new IllegalStateException();
900     ConcurrentHashMap.this.remove(lastReturned.key);
901     lastReturned = null;
902     }
903 dl 1.4 }
904    
905     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
906     public K next() { return super.nextEntry().key; }
907     public K nextElement() { return super.nextEntry().key; }
908     }
909    
910     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
911     public V next() { return super.nextEntry().value; }
912     public V nextElement() { return super.nextEntry().value; }
913     }
914 tim 1.1
915 dl 1.4 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
916     public Map.Entry<K,V> next() { return super.nextEntry(); }
917 tim 1.1 }
918    
919 dl 1.4 private class KeySet extends AbstractSet<K> {
920     public Iterator<K> iterator() {
921     return new KeyIterator();
922     }
923     public int size() {
924     return ConcurrentHashMap.this.size();
925     }
926     public boolean contains(Object o) {
927     return ConcurrentHashMap.this.containsKey(o);
928     }
929     public boolean remove(Object o) {
930     return ConcurrentHashMap.this.remove(o) != null;
931     }
932     public void clear() {
933     ConcurrentHashMap.this.clear();
934     }
935 tim 1.1 }
936    
937 dl 1.4 private class Values extends AbstractCollection<V> {
938     public Iterator<V> iterator() {
939     return new ValueIterator();
940     }
941     public int size() {
942     return ConcurrentHashMap.this.size();
943     }
944     public boolean contains(Object o) {
945     return ConcurrentHashMap.this.containsValue(o);
946     }
947     public void clear() {
948     ConcurrentHashMap.this.clear();
949     }
950 tim 1.1 }
951    
952 tim 1.12 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
953 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
954     return new EntryIterator();
955     }
956     public boolean contains(Object o) {
957     if (!(o instanceof Map.Entry))
958     return false;
959     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
960     V v = ConcurrentHashMap.this.get(e.getKey());
961     return v != null && v.equals(e.getValue());
962     }
963     public boolean remove(Object o) {
964     if (!(o instanceof Map.Entry))
965     return false;
966     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
967     return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()) != null;
968     }
969     public int size() {
970     return ConcurrentHashMap.this.size();
971     }
972     public void clear() {
973     ConcurrentHashMap.this.clear();
974     }
975 tim 1.1 }
976    
977 dl 1.4 /* ---------------- Serialization Support -------------- */
978    
979 tim 1.1 /**
980     * Save the state of the <tt>ConcurrentHashMap</tt>
981     * instance to a stream (i.e.,
982     * serialize it).
983 dl 1.8 * @param s the stream
984 tim 1.1 * @serialData
985     * the key (Object) and value (Object)
986     * for each key-value mapping, followed by a null pair.
987     * The key-value mappings are emitted in no particular order.
988     */
989     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
990     s.defaultWriteObject();
991    
992     for (int k = 0; k < segments.length; ++k) {
993 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
994 dl 1.2 seg.lock();
995     try {
996 tim 1.11 HashEntry[] tab = seg.table;
997 dl 1.4 for (int i = 0; i < tab.length; ++i) {
998 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
999 dl 1.4 s.writeObject(e.key);
1000     s.writeObject(e.value);
1001     }
1002     }
1003 dl 1.2 }
1004     finally {
1005     seg.unlock();
1006     }
1007 tim 1.1 }
1008     s.writeObject(null);
1009     s.writeObject(null);
1010     }
1011    
1012     /**
1013     * Reconstitute the <tt>ConcurrentHashMap</tt>
1014     * instance from a stream (i.e.,
1015     * deserialize it).
1016 dl 1.8 * @param s the stream
1017 tim 1.1 */
1018     private void readObject(java.io.ObjectInputStream s)
1019     throws IOException, ClassNotFoundException {
1020     s.defaultReadObject();
1021    
1022 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1023     for (int i = 0; i < segments.length; ++i) {
1024 tim 1.11 segments[i].setTable(new HashEntry[1]);
1025 dl 1.4 }
1026 tim 1.1
1027     // Read the keys and values, and put the mappings in the table
1028 dl 1.9 for (;;) {
1029 tim 1.1 K key = (K) s.readObject();
1030     V value = (V) s.readObject();
1031     if (key == null)
1032     break;
1033     put(key, value);
1034     }
1035     }
1036     }
1037 tim 1.11