ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.147
Committed: Sat Nov 24 03:46:28 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.146: +1 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.atomic.LongAdder;
9     import java.util.concurrent.ForkJoinPool;
10 dl 1.146 import java.util.concurrent.CountedCompleter;
11 dl 1.119
12     import java.util.Comparator;
13     import java.util.Arrays;
14     import java.util.Map;
15     import java.util.Set;
16     import java.util.Collection;
17     import java.util.AbstractMap;
18     import java.util.AbstractSet;
19     import java.util.AbstractCollection;
20     import java.util.Hashtable;
21     import java.util.HashMap;
22     import java.util.Iterator;
23     import java.util.Enumeration;
24     import java.util.ConcurrentModificationException;
25     import java.util.NoSuchElementException;
26     import java.util.concurrent.ConcurrentMap;
27     import java.util.concurrent.ThreadLocalRandom;
28     import java.util.concurrent.locks.LockSupport;
29     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30     import java.util.concurrent.atomic.AtomicReference;
31    
32 tim 1.1 import java.io.Serializable;
33    
34     /**
35 dl 1.4 * A hash table supporting full concurrency of retrievals and
36 dl 1.119 * high expected concurrency for updates. This class obeys the
37 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
38 dl 1.19 * includes versions of methods corresponding to each method of
39 dl 1.119 * {@code Hashtable}. However, even though all operations are
40 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
41     * and there is <em>not</em> any support for locking the entire table
42     * in a way that prevents all access. This class is fully
43 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
44 dl 1.4 * thread safety but not on its synchronization details.
45 tim 1.11 *
46 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
47 dl 1.119 * block, so may overlap with update operations (including {@code put}
48     * and {@code remove}). Retrievals reflect the results of the most
49     * recently <em>completed</em> update operations holding upon their
50 dl 1.126 * onset. (More formally, an update operation for a given key bears a
51     * <em>happens-before</em> relation with any (non-null) retrieval for
52     * that key reporting the updated value.) For aggregate operations
53     * such as {@code putAll} and {@code clear}, concurrent retrievals may
54     * reflect insertion or removal of only some entries. Similarly,
55     * Iterators and Enumerations return elements reflecting the state of
56     * the hash table at some point at or since the creation of the
57     * iterator/enumeration. They do <em>not</em> throw {@link
58     * ConcurrentModificationException}. However, iterators are designed
59     * to be used by only one thread at a time. Bear in mind that the
60     * results of aggregate status methods including {@code size}, {@code
61     * isEmpty}, and {@code containsValue} are typically useful only when
62     * a map is not undergoing concurrent updates in other threads.
63     * Otherwise the results of these methods reflect transient states
64     * that may be adequate for monitoring or estimation purposes, but not
65     * for program control.
66 tim 1.1 *
67 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
68 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
69     * the same slot modulo the table size), with the expected average
70     * effect of maintaining roughly two bins per mapping (corresponding
71     * to a 0.75 load factor threshold for resizing). There may be much
72     * variance around this average as mappings are added and removed, but
73     * overall, this maintains a commonly accepted time/space tradeoff for
74     * hash tables. However, resizing this or any other kind of hash
75     * table may be a relatively slow operation. When possible, it is a
76     * good idea to provide a size estimate as an optional {@code
77     * initialCapacity} constructor argument. An additional optional
78     * {@code loadFactor} constructor argument provides a further means of
79     * customizing initial table capacity by specifying the table density
80     * to be used in calculating the amount of space to allocate for the
81     * given number of elements. Also, for compatibility with previous
82     * versions of this class, constructors may optionally specify an
83     * expected {@code concurrencyLevel} as an additional hint for
84     * internal sizing. Note that using many keys with exactly the same
85     * {@code hashCode()} is a sure way to slow down performance of any
86     * hash table.
87 tim 1.1 *
88 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
89 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90     * (using {@link #keySet(Object)} when only keys are of interest, and the
91     * mapped values are (perhaps transiently) not used or all take the
92     * same mapping value.
93     *
94 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
95 dl 1.137 * form of histogram or multiset) by using {@link LongAdder} values
96     * and initializing via {@link #computeIfAbsent}. For example, to add
97     * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
98     * can use {@code freqs.computeIfAbsent(k -> new
99     * LongAdder()).increment();}
100     *
101 dl 1.45 * <p>This class and its views and iterators implement all of the
102     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
103     * interfaces.
104 dl 1.23 *
105 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
106 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
107 tim 1.1 *
108 dl 1.137 * <p>ConcurrentHashMaps support parallel operations using the {@link
109 jsr166 1.140 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
110 dl 1.137 * are available in class {@link ForkJoinTasks}). These operations are
111     * designed to be safely, and often sensibly, applied even with maps
112     * that are being concurrently updated by other threads; for example,
113     * when computing a snapshot summary of the values in a shared
114     * registry. There are three kinds of operation, each with four
115     * forms, accepting functions with Keys, Values, Entries, and (Key,
116 dl 1.142 * Value) arguments and/or return values. (The first three forms are
117     * also available via the {@link #keySet()}, {@link #values()} and
118     * {@link #entrySet()} views). Because the elements of a
119 dl 1.137 * ConcurrentHashMap are not ordered in any particular way, and may be
120     * processed in different orders in different parallel executions, the
121     * correctness of supplied functions should not depend on any
122     * ordering, or on any other objects or values that may transiently
123     * change while computation is in progress; and except for forEach
124     * actions, should ideally be side-effect-free.
125     *
126     * <ul>
127     * <li> forEach: Perform a given action on each element.
128     * A variant form applies a given transformation on each element
129     * before performing the action.</li>
130     *
131     * <li> search: Return the first available non-null result of
132     * applying a given function on each element; skipping further
133     * search when a result is found.</li>
134     *
135     * <li> reduce: Accumulate each element. The supplied reduction
136     * function cannot rely on ordering (more formally, it should be
137     * both associative and commutative). There are five variants:
138     *
139     * <ul>
140     *
141     * <li> Plain reductions. (There is not a form of this method for
142     * (key, value) function arguments since there is no corresponding
143     * return type.)</li>
144     *
145     * <li> Mapped reductions that accumulate the results of a given
146     * function applied to each element.</li>
147     *
148     * <li> Reductions to scalar doubles, longs, and ints, using a
149     * given basis value.</li>
150     *
151     * </li>
152     * </ul>
153     * </ul>
154     *
155     * <p>The concurrency properties of bulk operations follow
156     * from those of ConcurrentHashMap: Any non-null result returned
157     * from {@code get(key)} and related access methods bears a
158     * happens-before relation with the associated insertion or
159     * update. The result of any bulk operation reflects the
160     * composition of these per-element relations (but is not
161     * necessarily atomic with respect to the map as a whole unless it
162     * is somehow known to be quiescent). Conversely, because keys
163     * and values in the map are never null, null serves as a reliable
164     * atomic indicator of the current lack of any result. To
165     * maintain this property, null serves as an implicit basis for
166     * all non-scalar reduction operations. For the double, long, and
167     * int versions, the basis should be one that, when combined with
168     * any other value, returns that other value (more formally, it
169     * should be the identity element for the reduction). Most common
170     * reductions have these properties; for example, computing a sum
171     * with basis 0 or a minimum with basis MAX_VALUE.
172     *
173     * <p>Search and transformation functions provided as arguments
174     * should similarly return null to indicate the lack of any result
175     * (in which case it is not used). In the case of mapped
176     * reductions, this also enables transformations to serve as
177     * filters, returning null (or, in the case of primitive
178     * specializations, the identity basis) if the element should not
179     * be combined. You can create compound transformations and
180     * filterings by composing them yourself under this "null means
181     * there is nothing there now" rule before using them in search or
182     * reduce operations.
183     *
184     * <p>Methods accepting and/or returning Entry arguments maintain
185     * key-value associations. They may be useful for example when
186     * finding the key for the greatest value. Note that "plain" Entry
187     * arguments can be supplied using {@code new
188     * AbstractMap.SimpleEntry(k,v)}.
189     *
190 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
191 dl 1.137 * exception encountered in the application of a supplied
192     * function. Bear in mind when handling such exceptions that other
193     * concurrently executing functions could also have thrown
194     * exceptions, or would have done so if the first exception had
195     * not occurred.
196     *
197     * <p>Parallel speedups for bulk operations compared to sequential
198     * processing are common but not guaranteed. Operations involving
199     * brief functions on small maps may execute more slowly than
200     * sequential loops if the underlying work to parallelize the
201 jsr166 1.141 * computation is more expensive than the computation itself.
202     * Similarly, parallelization may not lead to much actual parallelism
203     * if all processors are busy performing unrelated tasks.
204 dl 1.137 *
205 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
206 dl 1.137 *
207     * <p><em>jsr166e note: During transition, this class
208     * uses nested functional interfaces with different names but the
209 jsr166 1.144 * same forms as those expected for JDK8.</em>
210 dl 1.137 *
211 dl 1.42 * <p>This class is a member of the
212 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213 dl 1.42 * Java Collections Framework</a>.
214     *
215 dl 1.8 * @since 1.5
216     * @author Doug Lea
217 dl 1.27 * @param <K> the type of keys maintained by this map
218 jsr166 1.64 * @param <V> the type of mapped values
219 dl 1.8 */
220 dl 1.119 public class ConcurrentHashMap<K, V>
221     implements ConcurrentMap<K, V>, Serializable {
222 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
223 tim 1.1
224 dl 1.119 /**
225     * A partitionable iterator. A Spliterator can be traversed
226     * directly, but can also be partitioned (before traversal) by
227     * creating another Spliterator that covers a non-overlapping
228     * portion of the elements, and so may be amenable to parallel
229     * execution.
230     *
231 jsr166 1.145 * <p>This interface exports a subset of expected JDK8
232 dl 1.119 * functionality.
233     *
234     * <p>Sample usage: Here is one (of the several) ways to compute
235     * the sum of the values held in a map using the ForkJoin
236     * framework. As illustrated here, Spliterators are well suited to
237     * designs in which a task repeatedly splits off half its work
238     * into forked subtasks until small enough to process directly,
239     * and then joins these subtasks. Variants of this style can also
240     * be used in completion-based designs.
241     *
242     * <pre>
243     * {@code ConcurrentHashMap<String, Long> m = ...
244     * // split as if have 8 * parallelism, for load balance
245     * int n = m.size();
246     * int p = aForkJoinPool.getParallelism() * 8;
247     * int split = (n < p)? n : p;
248     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249     * // ...
250     * static class SumValues extends RecursiveTask<Long> {
251     * final Spliterator<Long> s;
252     * final int split; // split while > 1
253     * final SumValues nextJoin; // records forked subtasks to join
254     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256     * }
257     * public Long compute() {
258     * long sum = 0;
259     * SumValues subtasks = null; // fork subtasks
260     * for (int s = split >>> 1; s > 0; s >>>= 1)
261     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262     * while (s.hasNext()) // directly process remaining elements
263     * sum += s.next();
264     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
265     * sum += t.join(); // collect subtask results
266     * return sum;
267     * }
268     * }
269     * }</pre>
270     */
271     public static interface Spliterator<T> extends Iterator<T> {
272     /**
273     * Returns a Spliterator covering approximately half of the
274     * elements, guaranteed not to overlap with those subsequently
275     * returned by this Spliterator. After invoking this method,
276     * the current Spliterator will <em>not</em> produce any of
277     * the elements of the returned Spliterator, but the two
278     * Spliterators together will produce all of the elements that
279     * would have been produced by this Spliterator had this
280     * method not been called. The exact number of elements
281     * produced by the returned Spliterator is not guaranteed, and
282     * may be zero (i.e., with {@code hasNext()} reporting {@code
283     * false}) if this Spliterator cannot be further split.
284     *
285     * @return a Spliterator covering approximately half of the
286     * elements
287     * @throws IllegalStateException if this Spliterator has
288     * already commenced traversing elements
289     */
290     Spliterator<T> split();
291     }
292    
293 dl 1.137
294 tim 1.1 /*
295 dl 1.119 * Overview:
296     *
297     * The primary design goal of this hash table is to maintain
298     * concurrent readability (typically method get(), but also
299     * iterators and related methods) while minimizing update
300     * contention. Secondary goals are to keep space consumption about
301     * the same or better than java.util.HashMap, and to support high
302     * initial insertion rates on an empty table by many threads.
303     *
304     * Each key-value mapping is held in a Node. Because Node fields
305     * can contain special values, they are defined using plain Object
306     * types. Similarly in turn, all internal methods that use them
307     * work off Object types. And similarly, so do the internal
308     * methods of auxiliary iterator and view classes. All public
309     * generic typed methods relay in/out of these internal methods,
310     * supplying null-checks and casts as needed. This also allows
311     * many of the public methods to be factored into a smaller number
312     * of internal methods (although sadly not so for the five
313     * variants of put-related operations). The validation-based
314     * approach explained below leads to a lot of code sprawl because
315     * retry-control precludes factoring into smaller methods.
316     *
317     * The table is lazily initialized to a power-of-two size upon the
318     * first insertion. Each bin in the table normally contains a
319     * list of Nodes (most often, the list has only zero or one Node).
320     * Table accesses require volatile/atomic reads, writes, and
321     * CASes. Because there is no other way to arrange this without
322     * adding further indirections, we use intrinsics
323     * (sun.misc.Unsafe) operations. The lists of nodes within bins
324     * are always accurately traversable under volatile reads, so long
325     * as lookups check hash code and non-nullness of value before
326     * checking key equality.
327     *
328     * We use the top two bits of Node hash fields for control
329     * purposes -- they are available anyway because of addressing
330     * constraints. As explained further below, these top bits are
331     * used as follows:
332     * 00 - Normal
333     * 01 - Locked
334     * 11 - Locked and may have a thread waiting for lock
335     * 10 - Node is a forwarding node
336     *
337     * The lower 30 bits of each Node's hash field contain a
338     * transformation of the key's hash code, except for forwarding
339     * nodes, for which the lower bits are zero (and so always have
340     * hash field == MOVED).
341     *
342     * Insertion (via put or its variants) of the first node in an
343     * empty bin is performed by just CASing it to the bin. This is
344     * by far the most common case for put operations under most
345     * key/hash distributions. Other update operations (insert,
346     * delete, and replace) require locks. We do not want to waste
347     * the space required to associate a distinct lock object with
348     * each bin, so instead use the first node of a bin list itself as
349     * a lock. Blocking support for these locks relies on the builtin
350     * "synchronized" monitors. However, we also need a tryLock
351     * construction, so we overlay these by using bits of the Node
352     * hash field for lock control (see above), and so normally use
353     * builtin monitors only for blocking and signalling using
354     * wait/notifyAll constructions. See Node.tryAwaitLock.
355     *
356     * Using the first node of a list as a lock does not by itself
357     * suffice though: When a node is locked, any update must first
358     * validate that it is still the first node after locking it, and
359     * retry if not. Because new nodes are always appended to lists,
360     * once a node is first in a bin, it remains first until deleted
361     * or the bin becomes invalidated (upon resizing). However,
362     * operations that only conditionally update may inspect nodes
363     * until the point of update. This is a converse of sorts to the
364     * lazy locking technique described by Herlihy & Shavit.
365     *
366     * The main disadvantage of per-bin locks is that other update
367     * operations on other nodes in a bin list protected by the same
368     * lock can stall, for example when user equals() or mapping
369     * functions take a long time. However, statistically, under
370     * random hash codes, this is not a common problem. Ideally, the
371     * frequency of nodes in bins follows a Poisson distribution
372     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
373     * parameter of about 0.5 on average, given the resizing threshold
374     * of 0.75, although with a large variance because of resizing
375     * granularity. Ignoring variance, the expected occurrences of
376     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
377     * first values are:
378     *
379     * 0: 0.60653066
380     * 1: 0.30326533
381     * 2: 0.07581633
382     * 3: 0.01263606
383     * 4: 0.00157952
384     * 5: 0.00015795
385     * 6: 0.00001316
386     * 7: 0.00000094
387     * 8: 0.00000006
388     * more: less than 1 in ten million
389     *
390     * Lock contention probability for two threads accessing distinct
391     * elements is roughly 1 / (8 * #elements) under random hashes.
392     *
393     * Actual hash code distributions encountered in practice
394     * sometimes deviate significantly from uniform randomness. This
395     * includes the case when N > (1<<30), so some keys MUST collide.
396     * Similarly for dumb or hostile usages in which multiple keys are
397     * designed to have identical hash codes. Also, although we guard
398     * against the worst effects of this (see method spread), sets of
399     * hashes may differ only in bits that do not impact their bin
400     * index for a given power-of-two mask. So we use a secondary
401     * strategy that applies when the number of nodes in a bin exceeds
402     * a threshold, and at least one of the keys implements
403     * Comparable. These TreeBins use a balanced tree to hold nodes
404     * (a specialized form of red-black trees), bounding search time
405     * to O(log N). Each search step in a TreeBin is around twice as
406     * slow as in a regular list, but given that N cannot exceed
407     * (1<<64) (before running out of addresses) this bounds search
408     * steps, lock hold times, etc, to reasonable constants (roughly
409     * 100 nodes inspected per operation worst case) so long as keys
410     * are Comparable (which is very common -- String, Long, etc).
411     * TreeBin nodes (TreeNodes) also maintain the same "next"
412     * traversal pointers as regular nodes, so can be traversed in
413     * iterators in the same way.
414     *
415     * The table is resized when occupancy exceeds a percentage
416     * threshold (nominally, 0.75, but see below). Only a single
417     * thread performs the resize (using field "sizeCtl", to arrange
418     * exclusion), but the table otherwise remains usable for reads
419     * and updates. Resizing proceeds by transferring bins, one by
420     * one, from the table to the next table. Because we are using
421     * power-of-two expansion, the elements from each bin must either
422     * stay at same index, or move with a power of two offset. We
423     * eliminate unnecessary node creation by catching cases where old
424     * nodes can be reused because their next fields won't change. On
425     * average, only about one-sixth of them need cloning when a table
426     * doubles. The nodes they replace will be garbage collectable as
427     * soon as they are no longer referenced by any reader thread that
428     * may be in the midst of concurrently traversing table. Upon
429     * transfer, the old table bin contains only a special forwarding
430     * node (with hash field "MOVED") that contains the next table as
431     * its key. On encountering a forwarding node, access and update
432     * operations restart, using the new table.
433     *
434     * Each bin transfer requires its bin lock. However, unlike other
435     * cases, a transfer can skip a bin if it fails to acquire its
436     * lock, and revisit it later (unless it is a TreeBin). Method
437     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
438     * have been skipped because of failure to acquire a lock, and
439     * blocks only if none are available (i.e., only very rarely).
440     * The transfer operation must also ensure that all accessible
441     * bins in both the old and new table are usable by any traversal.
442     * When there are no lock acquisition failures, this is arranged
443     * simply by proceeding from the last bin (table.length - 1) up
444     * towards the first. Upon seeing a forwarding node, traversals
445     * (see class Iter) arrange to move to the new table
446     * without revisiting nodes. However, when any node is skipped
447     * during a transfer, all earlier table bins may have become
448     * visible, so are initialized with a reverse-forwarding node back
449     * to the old table until the new ones are established. (This
450     * sometimes requires transiently locking a forwarding node, which
451     * is possible under the above encoding.) These more expensive
452     * mechanics trigger only when necessary.
453     *
454     * The traversal scheme also applies to partial traversals of
455     * ranges of bins (via an alternate Traverser constructor)
456     * to support partitioned aggregate operations. Also, read-only
457     * operations give up if ever forwarded to a null table, which
458     * provides support for shutdown-style clearing, which is also not
459     * currently implemented.
460     *
461     * Lazy table initialization minimizes footprint until first use,
462     * and also avoids resizings when the first operation is from a
463     * putAll, constructor with map argument, or deserialization.
464     * These cases attempt to override the initial capacity settings,
465     * but harmlessly fail to take effect in cases of races.
466     *
467     * The element count is maintained using a LongAdder, which avoids
468     * contention on updates but can encounter cache thrashing if read
469     * too frequently during concurrent access. To avoid reading so
470     * often, resizing is attempted either when a bin lock is
471     * contended, or upon adding to a bin already holding two or more
472     * nodes (checked before adding in the xIfAbsent methods, after
473     * adding in others). Under uniform hash distributions, the
474     * probability of this occurring at threshold is around 13%,
475     * meaning that only about 1 in 8 puts check threshold (and after
476     * resizing, many fewer do so). But this approximation has high
477     * variance for small table sizes, so we check on any collision
478     * for sizes <= 64. The bulk putAll operation further reduces
479     * contention by only committing count updates upon these size
480     * checks.
481     *
482     * Maintaining API and serialization compatibility with previous
483     * versions of this class introduces several oddities. Mainly: We
484     * leave untouched but unused constructor arguments refering to
485     * concurrencyLevel. We accept a loadFactor constructor argument,
486     * but apply it only to initial table capacity (which is the only
487     * time that we can guarantee to honor it.) We also declare an
488     * unused "Segment" class that is instantiated in minimal form
489     * only when serializing.
490 dl 1.4 */
491 tim 1.1
492 dl 1.4 /* ---------------- Constants -------------- */
493 tim 1.11
494 dl 1.4 /**
495 dl 1.119 * The largest possible table capacity. This value must be
496     * exactly 1<<30 to stay within Java array allocation and indexing
497     * bounds for power of two table sizes, and is further required
498     * because the top two bits of 32bit hash fields are used for
499     * control purposes.
500 dl 1.4 */
501 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
502 dl 1.56
503     /**
504 dl 1.119 * The default initial table capacity. Must be a power of 2
505     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
506 dl 1.56 */
507 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
508 dl 1.56
509     /**
510 dl 1.119 * The largest possible (non-power of two) array size.
511     * Needed by toArray and related methods.
512 jsr166 1.59 */
513 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
514 tim 1.1
515     /**
516 dl 1.119 * The default concurrency level for this table. Unused but
517     * defined for compatibility with previous versions of this class.
518 dl 1.4 */
519 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
520 tim 1.11
521 tim 1.1 /**
522 dl 1.119 * The load factor for this table. Overrides of this value in
523     * constructors affect only the initial table capacity. The
524     * actual floating point value isn't normally used -- it is
525     * simpler to use expressions such as {@code n - (n >>> 2)} for
526     * the associated resizing threshold.
527 dl 1.99 */
528 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
529 dl 1.99
530     /**
531 dl 1.119 * The buffer size for skipped bins during transfers. The
532     * value is arbitrary but should be large enough to avoid
533     * most locking stalls during resizes.
534 dl 1.21 */
535 dl 1.119 private static final int TRANSFER_BUFFER_SIZE = 32;
536 dl 1.21
537 dl 1.46 /**
538 dl 1.119 * The bin count threshold for using a tree rather than list for a
539     * bin. The value reflects the approximate break-even point for
540     * using tree-based operations.
541     */
542     private static final int TREE_THRESHOLD = 8;
543    
544     /*
545     * Encodings for special uses of Node hash fields. See above for
546     * explanation.
547 dl 1.46 */
548 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
549     static final int LOCKED = 0x40000000; // set/tested only as a bit
550     static final int WAITING = 0xc0000000; // both bits set/tested together
551     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
552 dl 1.46
553 dl 1.4 /* ---------------- Fields -------------- */
554 tim 1.1
555     /**
556 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
557     * Size is always a power of two. Accessed directly by iterators.
558 jsr166 1.59 */
559 dl 1.119 transient volatile Node[] table;
560 tim 1.1
561     /**
562 dl 1.119 * The counter maintaining number of elements.
563 jsr166 1.59 */
564 dl 1.119 private transient final LongAdder counter;
565 tim 1.1
566     /**
567 dl 1.119 * Table initialization and resizing control. When negative, the
568     * table is being initialized or resized. Otherwise, when table is
569     * null, holds the initial table size to use upon creation, or 0
570     * for default. After initialization, holds the next element count
571     * value upon which to resize the table.
572 tim 1.1 */
573 dl 1.119 private transient volatile int sizeCtl;
574 dl 1.4
575 dl 1.119 // views
576 dl 1.137 private transient KeySetView<K,V> keySet;
577 dl 1.142 private transient ValuesView<K,V> values;
578     private transient EntrySetView<K,V> entrySet;
579 dl 1.119
580     /** For serialization compatibility. Null unless serialized; see below */
581     private Segment<K,V>[] segments;
582    
583     /* ---------------- Table element access -------------- */
584    
585     /*
586     * Volatile access methods are used for table elements as well as
587     * elements of in-progress next table while resizing. Uses are
588     * null checked by callers, and implicitly bounds-checked, relying
589     * on the invariants that tab arrays have non-zero size, and all
590     * indices are masked with (tab.length - 1) which is never
591     * negative and always less than length. Note that, to be correct
592     * wrt arbitrary concurrency errors by users, bounds checks must
593     * operate on local variables, which accounts for some odd-looking
594     * inline assignments below.
595     */
596    
597     static final Node tabAt(Node[] tab, int i) { // used by Iter
598     return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
599     }
600    
601     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
602     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
603     }
604    
605     private static final void setTabAt(Node[] tab, int i, Node v) {
606     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
607     }
608    
609     /* ---------------- Nodes -------------- */
610 dl 1.4
611 dl 1.99 /**
612 dl 1.119 * Key-value entry. Note that this is never exported out as a
613     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
614     * field of MOVED are special, and do not contain user keys or
615     * values. Otherwise, keys are never null, and null val fields
616     * indicate that a node is in the process of being deleted or
617     * created. For purposes of read-only access, a key may be read
618     * before a val, but can only be used after checking val to be
619     * non-null.
620 dl 1.99 */
621 dl 1.119 static class Node {
622     volatile int hash;
623     final Object key;
624     volatile Object val;
625     volatile Node next;
626 dl 1.99
627 dl 1.119 Node(int hash, Object key, Object val, Node next) {
628 dl 1.99 this.hash = hash;
629     this.key = key;
630 dl 1.119 this.val = val;
631 dl 1.99 this.next = next;
632     }
633    
634 dl 1.119 /** CompareAndSet the hash field */
635     final boolean casHash(int cmp, int val) {
636     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637     }
638    
639     /** The number of spins before blocking for a lock */
640     static final int MAX_SPINS =
641     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642    
643 dl 1.99 /**
644 dl 1.119 * Spins a while if LOCKED bit set and this node is the first
645     * of its bin, and then sets WAITING bits on hash field and
646     * blocks (once) if they are still set. It is OK for this
647     * method to return even if lock is not available upon exit,
648     * which enables these simple single-wait mechanics.
649     *
650     * The corresponding signalling operation is performed within
651     * callers: Upon detecting that WAITING has been set when
652     * unlocking lock (via a failed CAS from non-waiting LOCKED
653     * state), unlockers acquire the sync lock and perform a
654     * notifyAll.
655 dl 1.128 *
656     * The initial sanity check on tab and bounds is not currently
657     * necessary in the only usages of this method, but enables
658     * use in other future contexts.
659 dl 1.99 */
660 dl 1.119 final void tryAwaitLock(Node[] tab, int i) {
661 dl 1.128 if (tab != null && i >= 0 && i < tab.length) { // sanity check
662 dl 1.119 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663     int spins = MAX_SPINS, h;
664     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665     if (spins >= 0) {
666     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667     if (r >= 0 && --spins == 0)
668     Thread.yield(); // yield before block
669     }
670     else if (casHash(h, h | WAITING)) {
671     synchronized (this) {
672     if (tabAt(tab, i) == this &&
673     (hash & WAITING) == WAITING) {
674     try {
675     wait();
676     } catch (InterruptedException ie) {
677 dl 1.142 try {
678     Thread.currentThread().interrupt();
679     } catch (SecurityException ignore) {
680     }
681 dl 1.119 }
682     }
683     else
684     notifyAll(); // possibly won race vs signaller
685     }
686     break;
687     }
688     }
689     }
690 dl 1.99 }
691    
692 dl 1.119 // Unsafe mechanics for casHash
693     private static final sun.misc.Unsafe UNSAFE;
694     private static final long hashOffset;
695    
696 dl 1.99 static {
697     try {
698     UNSAFE = sun.misc.Unsafe.getUnsafe();
699 dl 1.119 Class<?> k = Node.class;
700     hashOffset = UNSAFE.objectFieldOffset
701     (k.getDeclaredField("hash"));
702 dl 1.99 } catch (Exception e) {
703     throw new Error(e);
704     }
705     }
706     }
707    
708 dl 1.119 /* ---------------- TreeBins -------------- */
709    
710 dl 1.99 /**
711 dl 1.119 * Nodes for use in TreeBins
712 dl 1.99 */
713 dl 1.119 static final class TreeNode extends Node {
714     TreeNode parent; // red-black tree links
715     TreeNode left;
716     TreeNode right;
717     TreeNode prev; // needed to unlink next upon deletion
718     boolean red;
719 dl 1.99
720 dl 1.119 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
721     super(hash, key, val, next);
722     this.parent = parent;
723     }
724 dl 1.99 }
725 tim 1.1
726     /**
727 dl 1.119 * A specialized form of red-black tree for use in bins
728     * whose size exceeds a threshold.
729     *
730     * TreeBins use a special form of comparison for search and
731     * related operations (which is the main reason we cannot use
732     * existing collections such as TreeMaps). TreeBins contain
733     * Comparable elements, but may contain others, as well as
734     * elements that are Comparable but not necessarily Comparable<T>
735     * for the same T, so we cannot invoke compareTo among them. To
736     * handle this, the tree is ordered primarily by hash value, then
737     * by getClass().getName() order, and then by Comparator order
738     * among elements of the same class. On lookup at a node, if
739     * elements are not comparable or compare as 0, both left and
740     * right children may need to be searched in the case of tied hash
741     * values. (This corresponds to the full list search that would be
742     * necessary if all elements were non-Comparable and had tied
743     * hashes.) The red-black balancing code is updated from
744     * pre-jdk-collections
745     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
746     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
747     * Algorithms" (CLR).
748     *
749     * TreeBins also maintain a separate locking discipline than
750     * regular bins. Because they are forwarded via special MOVED
751     * nodes at bin heads (which can never change once established),
752     * we cannot use those nodes as locks. Instead, TreeBin
753     * extends AbstractQueuedSynchronizer to support a simple form of
754     * read-write lock. For update operations and table validation,
755     * the exclusive form of lock behaves in the same way as bin-head
756     * locks. However, lookups use shared read-lock mechanics to allow
757     * multiple readers in the absence of writers. Additionally,
758     * these lookups do not ever block: While the lock is not
759     * available, they proceed along the slow traversal path (via
760     * next-pointers) until the lock becomes available or the list is
761     * exhausted, whichever comes first. (These cases are not fast,
762     * but maximize aggregate expected throughput.) The AQS mechanics
763     * for doing this are straightforward. The lock state is held as
764     * AQS getState(). Read counts are negative; the write count (1)
765     * is positive. There are no signalling preferences among readers
766     * and writers. Since we don't need to export full Lock API, we
767     * just override the minimal AQS methods and use them directly.
768     */
769     static final class TreeBin extends AbstractQueuedSynchronizer {
770 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
771 dl 1.119 transient TreeNode root; // root of tree
772     transient TreeNode first; // head of next-pointer list
773 dl 1.24
774 dl 1.119 /* AQS overrides */
775     public final boolean isHeldExclusively() { return getState() > 0; }
776     public final boolean tryAcquire(int ignore) {
777     if (compareAndSetState(0, 1)) {
778     setExclusiveOwnerThread(Thread.currentThread());
779     return true;
780     }
781     return false;
782     }
783     public final boolean tryRelease(int ignore) {
784     setExclusiveOwnerThread(null);
785     setState(0);
786     return true;
787     }
788     public final int tryAcquireShared(int ignore) {
789     for (int c;;) {
790     if ((c = getState()) > 0)
791     return -1;
792     if (compareAndSetState(c, c -1))
793     return 1;
794     }
795     }
796     public final boolean tryReleaseShared(int ignore) {
797     int c;
798     do {} while (!compareAndSetState(c = getState(), c + 1));
799     return c == -1;
800     }
801    
802     /** From CLR */
803     private void rotateLeft(TreeNode p) {
804     if (p != null) {
805     TreeNode r = p.right, pp, rl;
806     if ((rl = p.right = r.left) != null)
807     rl.parent = p;
808     if ((pp = r.parent = p.parent) == null)
809     root = r;
810     else if (pp.left == p)
811     pp.left = r;
812     else
813     pp.right = r;
814     r.left = p;
815     p.parent = r;
816     }
817     }
818 dl 1.4
819 dl 1.119 /** From CLR */
820     private void rotateRight(TreeNode p) {
821     if (p != null) {
822     TreeNode l = p.left, pp, lr;
823     if ((lr = p.left = l.right) != null)
824     lr.parent = p;
825     if ((pp = l.parent = p.parent) == null)
826     root = l;
827     else if (pp.right == p)
828     pp.right = l;
829     else
830     pp.left = l;
831     l.right = p;
832     p.parent = l;
833     }
834     }
835 dl 1.4
836     /**
837 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
838 dl 1.119 * starting at given root.
839 dl 1.4 */
840 dl 1.128 @SuppressWarnings("unchecked") final TreeNode getTreeNode
841     (int h, Object k, TreeNode p) {
842 dl 1.119 Class<?> c = k.getClass();
843     while (p != null) {
844     int dir, ph; Object pk; Class<?> pc;
845     if ((ph = p.hash) == h) {
846     if ((pk = p.key) == k || k.equals(pk))
847     return p;
848     if (c != (pc = pk.getClass()) ||
849     !(k instanceof Comparable) ||
850     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
851     dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
852     TreeNode r = null, s = null, pl, pr;
853     if (dir >= 0) {
854     if ((pl = p.left) != null && h <= pl.hash)
855     s = pl;
856 dl 1.99 }
857 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
858     s = pr;
859     if (s != null && (r = getTreeNode(h, k, s)) != null)
860     return r;
861 dl 1.45 }
862     }
863 dl 1.119 else
864     dir = (h < ph) ? -1 : 1;
865     p = (dir > 0) ? p.right : p.left;
866 dl 1.33 }
867 dl 1.119 return null;
868 dl 1.33 }
869    
870 dl 1.99 /**
871 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
872     * read-lock to call getTreeNode, but during failure to get
873     * lock, searches along next links.
874 dl 1.99 */
875 dl 1.119 final Object getValue(int h, Object k) {
876     Node r = null;
877     int c = getState(); // Must read lock state first
878     for (Node e = first; e != null; e = e.next) {
879     if (c <= 0 && compareAndSetState(c, c - 1)) {
880     try {
881     r = getTreeNode(h, k, root);
882     } finally {
883     releaseShared(0);
884 dl 1.99 }
885     break;
886     }
887 dl 1.119 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
888     r = e;
889 dl 1.99 break;
890     }
891 dl 1.119 else
892     c = getState();
893 dl 1.99 }
894 dl 1.119 return r == null ? null : r.val;
895 dl 1.99 }
896    
897     /**
898 dl 1.119 * Finds or adds a node.
899     * @return null if added
900 dl 1.6 */
901 dl 1.128 @SuppressWarnings("unchecked") final TreeNode putTreeNode
902     (int h, Object k, Object v) {
903 dl 1.119 Class<?> c = k.getClass();
904     TreeNode pp = root, p = null;
905     int dir = 0;
906     while (pp != null) { // find existing node or leaf to insert at
907     int ph; Object pk; Class<?> pc;
908     p = pp;
909     if ((ph = p.hash) == h) {
910     if ((pk = p.key) == k || k.equals(pk))
911     return p;
912     if (c != (pc = pk.getClass()) ||
913     !(k instanceof Comparable) ||
914     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
915     dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
916     TreeNode r = null, s = null, pl, pr;
917     if (dir >= 0) {
918     if ((pl = p.left) != null && h <= pl.hash)
919     s = pl;
920 dl 1.99 }
921 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
922     s = pr;
923     if (s != null && (r = getTreeNode(h, k, s)) != null)
924     return r;
925 dl 1.99 }
926     }
927 dl 1.119 else
928     dir = (h < ph) ? -1 : 1;
929     pp = (dir > 0) ? p.right : p.left;
930 dl 1.99 }
931    
932 dl 1.119 TreeNode f = first;
933     TreeNode x = first = new TreeNode(h, k, v, f, p);
934     if (p == null)
935     root = x;
936     else { // attach and rebalance; adapted from CLR
937     TreeNode xp, xpp;
938     if (f != null)
939     f.prev = x;
940     if (dir <= 0)
941     p.left = x;
942     else
943     p.right = x;
944     x.red = true;
945     while (x != null && (xp = x.parent) != null && xp.red &&
946     (xpp = xp.parent) != null) {
947     TreeNode xppl = xpp.left;
948     if (xp == xppl) {
949     TreeNode y = xpp.right;
950     if (y != null && y.red) {
951     y.red = false;
952     xp.red = false;
953     xpp.red = true;
954     x = xpp;
955     }
956     else {
957     if (x == xp.right) {
958     rotateLeft(x = xp);
959     xpp = (xp = x.parent) == null ? null : xp.parent;
960     }
961     if (xp != null) {
962     xp.red = false;
963     if (xpp != null) {
964     xpp.red = true;
965     rotateRight(xpp);
966     }
967     }
968     }
969     }
970     else {
971     TreeNode y = xppl;
972     if (y != null && y.red) {
973     y.red = false;
974     xp.red = false;
975     xpp.red = true;
976     x = xpp;
977     }
978     else {
979     if (x == xp.left) {
980     rotateRight(x = xp);
981     xpp = (xp = x.parent) == null ? null : xp.parent;
982     }
983     if (xp != null) {
984     xp.red = false;
985     if (xpp != null) {
986     xpp.red = true;
987     rotateLeft(xpp);
988     }
989     }
990 dl 1.99 }
991     }
992     }
993 dl 1.119 TreeNode r = root;
994     if (r != null && r.red)
995     r.red = false;
996 dl 1.99 }
997 dl 1.119 return null;
998 dl 1.99 }
999 dl 1.45
1000 dl 1.119 /**
1001     * Removes the given node, that must be present before this
1002     * call. This is messier than typical red-black deletion code
1003     * because we cannot swap the contents of an interior node
1004     * with a leaf successor that is pinned by "next" pointers
1005     * that are accessible independently of lock. So instead we
1006     * swap the tree linkages.
1007     */
1008     final void deleteTreeNode(TreeNode p) {
1009     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1010     TreeNode pred = p.prev;
1011     if (pred == null)
1012     first = next;
1013     else
1014     pred.next = next;
1015     if (next != null)
1016     next.prev = pred;
1017     TreeNode replacement;
1018     TreeNode pl = p.left;
1019     TreeNode pr = p.right;
1020     if (pl != null && pr != null) {
1021     TreeNode s = pr, sl;
1022     while ((sl = s.left) != null) // find successor
1023     s = sl;
1024     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1025     TreeNode sr = s.right;
1026     TreeNode pp = p.parent;
1027     if (s == pr) { // p was s's direct parent
1028     p.parent = s;
1029     s.right = p;
1030     }
1031     else {
1032     TreeNode sp = s.parent;
1033     if ((p.parent = sp) != null) {
1034     if (s == sp.left)
1035     sp.left = p;
1036     else
1037     sp.right = p;
1038 dl 1.45 }
1039 dl 1.119 if ((s.right = pr) != null)
1040     pr.parent = s;
1041 dl 1.4 }
1042 dl 1.119 p.left = null;
1043     if ((p.right = sr) != null)
1044     sr.parent = p;
1045     if ((s.left = pl) != null)
1046     pl.parent = s;
1047     if ((s.parent = pp) == null)
1048     root = s;
1049     else if (p == pp.left)
1050     pp.left = s;
1051     else
1052     pp.right = s;
1053     replacement = sr;
1054     }
1055     else
1056     replacement = (pl != null) ? pl : pr;
1057     TreeNode pp = p.parent;
1058     if (replacement == null) {
1059     if (pp == null) {
1060     root = null;
1061     return;
1062     }
1063     replacement = p;
1064 dl 1.99 }
1065 dl 1.119 else {
1066     replacement.parent = pp;
1067     if (pp == null)
1068     root = replacement;
1069     else if (p == pp.left)
1070     pp.left = replacement;
1071     else
1072     pp.right = replacement;
1073     p.left = p.right = p.parent = null;
1074 dl 1.4 }
1075 dl 1.119 if (!p.red) { // rebalance, from CLR
1076     TreeNode x = replacement;
1077     while (x != null) {
1078     TreeNode xp, xpl;
1079     if (x.red || (xp = x.parent) == null) {
1080     x.red = false;
1081 dl 1.99 break;
1082 dl 1.119 }
1083     if (x == (xpl = xp.left)) {
1084     TreeNode sib = xp.right;
1085     if (sib != null && sib.red) {
1086     sib.red = false;
1087     xp.red = true;
1088     rotateLeft(xp);
1089     sib = (xp = x.parent) == null ? null : xp.right;
1090     }
1091     if (sib == null)
1092     x = xp;
1093     else {
1094     TreeNode sl = sib.left, sr = sib.right;
1095     if ((sr == null || !sr.red) &&
1096     (sl == null || !sl.red)) {
1097     sib.red = true;
1098     x = xp;
1099     }
1100     else {
1101     if (sr == null || !sr.red) {
1102     if (sl != null)
1103     sl.red = false;
1104     sib.red = true;
1105     rotateRight(sib);
1106     sib = (xp = x.parent) == null ? null : xp.right;
1107     }
1108     if (sib != null) {
1109     sib.red = (xp == null) ? false : xp.red;
1110     if ((sr = sib.right) != null)
1111     sr.red = false;
1112     }
1113     if (xp != null) {
1114     xp.red = false;
1115     rotateLeft(xp);
1116     }
1117     x = root;
1118     }
1119     }
1120     }
1121     else { // symmetric
1122     TreeNode sib = xpl;
1123     if (sib != null && sib.red) {
1124     sib.red = false;
1125     xp.red = true;
1126     rotateRight(xp);
1127     sib = (xp = x.parent) == null ? null : xp.left;
1128     }
1129     if (sib == null)
1130     x = xp;
1131     else {
1132     TreeNode sl = sib.left, sr = sib.right;
1133     if ((sl == null || !sl.red) &&
1134     (sr == null || !sr.red)) {
1135     sib.red = true;
1136     x = xp;
1137     }
1138     else {
1139     if (sl == null || !sl.red) {
1140     if (sr != null)
1141     sr.red = false;
1142     sib.red = true;
1143     rotateLeft(sib);
1144     sib = (xp = x.parent) == null ? null : xp.left;
1145     }
1146     if (sib != null) {
1147     sib.red = (xp == null) ? false : xp.red;
1148     if ((sl = sib.left) != null)
1149     sl.red = false;
1150     }
1151     if (xp != null) {
1152     xp.red = false;
1153     rotateRight(xp);
1154     }
1155     x = root;
1156     }
1157     }
1158     }
1159 dl 1.45 }
1160 dl 1.4 }
1161 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1162     if (p == pp.left) // detach pointers
1163     pp.left = null;
1164     else if (p == pp.right)
1165     pp.right = null;
1166     p.parent = null;
1167     }
1168 dl 1.4 }
1169 tim 1.1 }
1170    
1171 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1172 tim 1.1
1173 dl 1.99 /**
1174 dl 1.119 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1175     * Because the table uses power-of-two masking, sets of hashes
1176     * that vary only in bits above the current mask will always
1177     * collide. (Among known examples are sets of Float keys holding
1178     * consecutive whole numbers in small tables.) To counter this,
1179     * we apply a transform that spreads the impact of higher bits
1180     * downward. There is a tradeoff between speed, utility, and
1181     * quality of bit-spreading. Because many common sets of hashes
1182     * are already reasonably distributed across bits (so don't benefit
1183     * from spreading), and because we use trees to handle large sets
1184     * of collisions in bins, we don't need excessively high quality.
1185     */
1186     private static final int spread(int h) {
1187     h ^= (h >>> 18) ^ (h >>> 12);
1188     return (h ^ (h >>> 10)) & HASH_BITS;
1189 dl 1.99 }
1190    
1191     /**
1192 dl 1.119 * Replaces a list bin with a tree bin. Call only when locked.
1193     * Fails to replace if the given key is non-comparable or table
1194     * is, or needs, resizing.
1195     */
1196     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1197     if ((key instanceof Comparable) &&
1198     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1199     TreeBin t = new TreeBin();
1200     for (Node e = tabAt(tab, index); e != null; e = e.next)
1201     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202     setTabAt(tab, index, new Node(MOVED, t, null, null));
1203     }
1204 dl 1.99 }
1205 tim 1.11
1206 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1207    
1208     /** Implementation for get and containsKey */
1209     private final Object internalGet(Object k) {
1210     int h = spread(k.hashCode());
1211     retry: for (Node[] tab = table; tab != null;) {
1212     Node e, p; Object ek, ev; int eh; // locals to read fields once
1213     for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1214     if ((eh = e.hash) == MOVED) {
1215     if ((ek = e.key) instanceof TreeBin) // search TreeBin
1216     return ((TreeBin)ek).getValue(h, k);
1217     else { // restart with new table
1218     tab = (Node[])ek;
1219     continue retry;
1220     }
1221     }
1222     else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1223     ((ek = e.key) == k || k.equals(ek)))
1224     return ev;
1225     }
1226     break;
1227     }
1228     return null;
1229 tim 1.1 }
1230    
1231     /**
1232 dl 1.119 * Implementation for the four public remove/replace methods:
1233     * Replaces node value with v, conditional upon match of cv if
1234     * non-null. If resulting value is null, delete.
1235     */
1236     private final Object internalReplace(Object k, Object v, Object cv) {
1237     int h = spread(k.hashCode());
1238     Object oldVal = null;
1239     for (Node[] tab = table;;) {
1240     Node f; int i, fh; Object fk;
1241     if (tab == null ||
1242     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1243     break;
1244     else if ((fh = f.hash) == MOVED) {
1245     if ((fk = f.key) instanceof TreeBin) {
1246     TreeBin t = (TreeBin)fk;
1247     boolean validated = false;
1248     boolean deleted = false;
1249     t.acquire(0);
1250     try {
1251     if (tabAt(tab, i) == f) {
1252     validated = true;
1253     TreeNode p = t.getTreeNode(h, k, t.root);
1254     if (p != null) {
1255     Object pv = p.val;
1256     if (cv == null || cv == pv || cv.equals(pv)) {
1257     oldVal = pv;
1258     if ((p.val = v) == null) {
1259     deleted = true;
1260     t.deleteTreeNode(p);
1261     }
1262     }
1263     }
1264     }
1265     } finally {
1266     t.release(0);
1267     }
1268     if (validated) {
1269     if (deleted)
1270     counter.add(-1L);
1271     break;
1272     }
1273     }
1274     else
1275     tab = (Node[])fk;
1276     }
1277     else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1278     break; // rules out possible existence
1279     else if ((fh & LOCKED) != 0) {
1280     checkForResize(); // try resizing if can't get lock
1281     f.tryAwaitLock(tab, i);
1282     }
1283     else if (f.casHash(fh, fh | LOCKED)) {
1284     boolean validated = false;
1285     boolean deleted = false;
1286     try {
1287     if (tabAt(tab, i) == f) {
1288     validated = true;
1289     for (Node e = f, pred = null;;) {
1290     Object ek, ev;
1291     if ((e.hash & HASH_BITS) == h &&
1292     ((ev = e.val) != null) &&
1293     ((ek = e.key) == k || k.equals(ek))) {
1294     if (cv == null || cv == ev || cv.equals(ev)) {
1295     oldVal = ev;
1296     if ((e.val = v) == null) {
1297     deleted = true;
1298     Node en = e.next;
1299     if (pred != null)
1300     pred.next = en;
1301     else
1302     setTabAt(tab, i, en);
1303     }
1304     }
1305     break;
1306     }
1307     pred = e;
1308     if ((e = e.next) == null)
1309     break;
1310     }
1311     }
1312     } finally {
1313     if (!f.casHash(fh | LOCKED, fh)) {
1314     f.hash = fh;
1315     synchronized (f) { f.notifyAll(); };
1316     }
1317     }
1318     if (validated) {
1319     if (deleted)
1320     counter.add(-1L);
1321     break;
1322     }
1323     }
1324     }
1325     return oldVal;
1326 dl 1.55 }
1327    
1328 dl 1.119 /*
1329 dl 1.126 * Internal versions of the six insertion methods, each a
1330 dl 1.119 * little more complicated than the last. All have
1331     * the same basic structure as the first (internalPut):
1332     * 1. If table uninitialized, create
1333     * 2. If bin empty, try to CAS new node
1334     * 3. If bin stale, use new table
1335     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1336     * 5. Lock and validate; if valid, scan and add or update
1337 tim 1.1 *
1338 dl 1.119 * The others interweave other checks and/or alternative actions:
1339     * * Plain put checks for and performs resize after insertion.
1340     * * putIfAbsent prescans for mapping without lock (and fails to add
1341     * if present), which also makes pre-emptive resize checks worthwhile.
1342     * * computeIfAbsent extends form used in putIfAbsent with additional
1343     * mechanics to deal with, calls, potential exceptions and null
1344     * returns from function call.
1345     * * compute uses the same function-call mechanics, but without
1346     * the prescans
1347 dl 1.126 * * merge acts as putIfAbsent in the absent case, but invokes the
1348     * update function if present
1349 dl 1.119 * * putAll attempts to pre-allocate enough table space
1350     * and more lazily performs count updates and checks.
1351 jsr166 1.76 *
1352 dl 1.119 * Someday when details settle down a bit more, it might be worth
1353     * some factoring to reduce sprawl.
1354 tim 1.1 */
1355    
1356 dl 1.119 /** Implementation for put */
1357     private final Object internalPut(Object k, Object v) {
1358     int h = spread(k.hashCode());
1359     int count = 0;
1360     for (Node[] tab = table;;) {
1361     int i; Node f; int fh; Object fk;
1362     if (tab == null)
1363     tab = initTable();
1364     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1365     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1366     break; // no lock when adding to empty bin
1367 dl 1.99 }
1368 dl 1.119 else if ((fh = f.hash) == MOVED) {
1369     if ((fk = f.key) instanceof TreeBin) {
1370     TreeBin t = (TreeBin)fk;
1371     Object oldVal = null;
1372     t.acquire(0);
1373     try {
1374     if (tabAt(tab, i) == f) {
1375     count = 2;
1376     TreeNode p = t.putTreeNode(h, k, v);
1377     if (p != null) {
1378     oldVal = p.val;
1379     p.val = v;
1380     }
1381     }
1382     } finally {
1383     t.release(0);
1384     }
1385     if (count != 0) {
1386     if (oldVal != null)
1387     return oldVal;
1388     break;
1389     }
1390     }
1391     else
1392     tab = (Node[])fk;
1393     }
1394     else if ((fh & LOCKED) != 0) {
1395     checkForResize();
1396     f.tryAwaitLock(tab, i);
1397     }
1398     else if (f.casHash(fh, fh | LOCKED)) {
1399     Object oldVal = null;
1400     try { // needed in case equals() throws
1401     if (tabAt(tab, i) == f) {
1402     count = 1;
1403     for (Node e = f;; ++count) {
1404     Object ek, ev;
1405     if ((e.hash & HASH_BITS) == h &&
1406     (ev = e.val) != null &&
1407     ((ek = e.key) == k || k.equals(ek))) {
1408     oldVal = ev;
1409     e.val = v;
1410     break;
1411     }
1412     Node last = e;
1413     if ((e = e.next) == null) {
1414     last.next = new Node(h, k, v, null);
1415     if (count >= TREE_THRESHOLD)
1416     replaceWithTreeBin(tab, i, k);
1417     break;
1418     }
1419     }
1420     }
1421     } finally { // unlock and signal if needed
1422     if (!f.casHash(fh | LOCKED, fh)) {
1423     f.hash = fh;
1424     synchronized (f) { f.notifyAll(); };
1425     }
1426     }
1427     if (count != 0) {
1428     if (oldVal != null)
1429     return oldVal;
1430     if (tab.length <= 64)
1431     count = 2;
1432     break;
1433 dl 1.99 }
1434 dl 1.21 }
1435     }
1436 dl 1.119 counter.add(1L);
1437     if (count > 1)
1438     checkForResize();
1439     return null;
1440 tim 1.1 }
1441    
1442 dl 1.119 /** Implementation for putIfAbsent */
1443     private final Object internalPutIfAbsent(Object k, Object v) {
1444     int h = spread(k.hashCode());
1445     int count = 0;
1446     for (Node[] tab = table;;) {
1447     int i; Node f; int fh; Object fk, fv;
1448     if (tab == null)
1449     tab = initTable();
1450     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452     break;
1453     }
1454     else if ((fh = f.hash) == MOVED) {
1455     if ((fk = f.key) instanceof TreeBin) {
1456     TreeBin t = (TreeBin)fk;
1457     Object oldVal = null;
1458     t.acquire(0);
1459     try {
1460     if (tabAt(tab, i) == f) {
1461     count = 2;
1462     TreeNode p = t.putTreeNode(h, k, v);
1463     if (p != null)
1464     oldVal = p.val;
1465     }
1466     } finally {
1467     t.release(0);
1468     }
1469     if (count != 0) {
1470     if (oldVal != null)
1471     return oldVal;
1472     break;
1473     }
1474     }
1475     else
1476     tab = (Node[])fk;
1477     }
1478     else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479     ((fk = f.key) == k || k.equals(fk)))
1480     return fv;
1481     else {
1482     Node g = f.next;
1483     if (g != null) { // at least 2 nodes -- search and maybe resize
1484     for (Node e = g;;) {
1485     Object ek, ev;
1486     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487     ((ek = e.key) == k || k.equals(ek)))
1488     return ev;
1489     if ((e = e.next) == null) {
1490     checkForResize();
1491     break;
1492     }
1493     }
1494     }
1495     if (((fh = f.hash) & LOCKED) != 0) {
1496     checkForResize();
1497     f.tryAwaitLock(tab, i);
1498     }
1499     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500     Object oldVal = null;
1501     try {
1502     if (tabAt(tab, i) == f) {
1503     count = 1;
1504     for (Node e = f;; ++count) {
1505     Object ek, ev;
1506     if ((e.hash & HASH_BITS) == h &&
1507     (ev = e.val) != null &&
1508     ((ek = e.key) == k || k.equals(ek))) {
1509     oldVal = ev;
1510     break;
1511     }
1512     Node last = e;
1513     if ((e = e.next) == null) {
1514     last.next = new Node(h, k, v, null);
1515     if (count >= TREE_THRESHOLD)
1516     replaceWithTreeBin(tab, i, k);
1517     break;
1518     }
1519     }
1520     }
1521     } finally {
1522     if (!f.casHash(fh | LOCKED, fh)) {
1523     f.hash = fh;
1524     synchronized (f) { f.notifyAll(); };
1525     }
1526     }
1527     if (count != 0) {
1528     if (oldVal != null)
1529     return oldVal;
1530     if (tab.length <= 64)
1531     count = 2;
1532     break;
1533     }
1534     }
1535     }
1536 dl 1.45 }
1537 dl 1.119 counter.add(1L);
1538     if (count > 1)
1539     checkForResize();
1540     return null;
1541 dl 1.21 }
1542    
1543 dl 1.119 /** Implementation for computeIfAbsent */
1544     private final Object internalComputeIfAbsent(K k,
1545     Fun<? super K, ?> mf) {
1546     int h = spread(k.hashCode());
1547     Object val = null;
1548     int count = 0;
1549     for (Node[] tab = table;;) {
1550     Node f; int i, fh; Object fk, fv;
1551     if (tab == null)
1552     tab = initTable();
1553     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1554     Node node = new Node(fh = h | LOCKED, k, null, null);
1555     if (casTabAt(tab, i, null, node)) {
1556     count = 1;
1557     try {
1558     if ((val = mf.apply(k)) != null)
1559     node.val = val;
1560     } finally {
1561     if (val == null)
1562     setTabAt(tab, i, null);
1563     if (!node.casHash(fh, h)) {
1564     node.hash = h;
1565     synchronized (node) { node.notifyAll(); };
1566     }
1567     }
1568     }
1569     if (count != 0)
1570     break;
1571     }
1572     else if ((fh = f.hash) == MOVED) {
1573     if ((fk = f.key) instanceof TreeBin) {
1574     TreeBin t = (TreeBin)fk;
1575     boolean added = false;
1576     t.acquire(0);
1577     try {
1578     if (tabAt(tab, i) == f) {
1579     count = 1;
1580     TreeNode p = t.getTreeNode(h, k, t.root);
1581     if (p != null)
1582     val = p.val;
1583     else if ((val = mf.apply(k)) != null) {
1584     added = true;
1585     count = 2;
1586     t.putTreeNode(h, k, val);
1587     }
1588     }
1589     } finally {
1590     t.release(0);
1591     }
1592     if (count != 0) {
1593     if (!added)
1594     return val;
1595     break;
1596     }
1597     }
1598     else
1599     tab = (Node[])fk;
1600     }
1601     else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602     ((fk = f.key) == k || k.equals(fk)))
1603     return fv;
1604     else {
1605     Node g = f.next;
1606     if (g != null) {
1607     for (Node e = g;;) {
1608     Object ek, ev;
1609     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610     ((ek = e.key) == k || k.equals(ek)))
1611     return ev;
1612     if ((e = e.next) == null) {
1613     checkForResize();
1614     break;
1615     }
1616     }
1617     }
1618     if (((fh = f.hash) & LOCKED) != 0) {
1619     checkForResize();
1620     f.tryAwaitLock(tab, i);
1621     }
1622     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1623     boolean added = false;
1624     try {
1625     if (tabAt(tab, i) == f) {
1626     count = 1;
1627     for (Node e = f;; ++count) {
1628     Object ek, ev;
1629     if ((e.hash & HASH_BITS) == h &&
1630     (ev = e.val) != null &&
1631     ((ek = e.key) == k || k.equals(ek))) {
1632     val = ev;
1633     break;
1634     }
1635     Node last = e;
1636     if ((e = e.next) == null) {
1637     if ((val = mf.apply(k)) != null) {
1638     added = true;
1639     last.next = new Node(h, k, val, null);
1640     if (count >= TREE_THRESHOLD)
1641     replaceWithTreeBin(tab, i, k);
1642     }
1643     break;
1644     }
1645     }
1646     }
1647     } finally {
1648     if (!f.casHash(fh | LOCKED, fh)) {
1649     f.hash = fh;
1650     synchronized (f) { f.notifyAll(); };
1651     }
1652     }
1653     if (count != 0) {
1654     if (!added)
1655     return val;
1656     if (tab.length <= 64)
1657     count = 2;
1658     break;
1659     }
1660     }
1661 dl 1.105 }
1662 dl 1.99 }
1663 dl 1.119 if (val != null) {
1664     counter.add(1L);
1665     if (count > 1)
1666     checkForResize();
1667     }
1668     return val;
1669 tim 1.1 }
1670    
1671 dl 1.119 /** Implementation for compute */
1672 dl 1.128 @SuppressWarnings("unchecked") private final Object internalCompute
1673     (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1674 dl 1.119 int h = spread(k.hashCode());
1675     Object val = null;
1676     int delta = 0;
1677     int count = 0;
1678     for (Node[] tab = table;;) {
1679     Node f; int i, fh; Object fk;
1680     if (tab == null)
1681     tab = initTable();
1682     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1683     if (onlyIfPresent)
1684     break;
1685     Node node = new Node(fh = h | LOCKED, k, null, null);
1686     if (casTabAt(tab, i, null, node)) {
1687     try {
1688     count = 1;
1689     if ((val = mf.apply(k, null)) != null) {
1690     node.val = val;
1691     delta = 1;
1692     }
1693     } finally {
1694     if (delta == 0)
1695     setTabAt(tab, i, null);
1696     if (!node.casHash(fh, h)) {
1697     node.hash = h;
1698     synchronized (node) { node.notifyAll(); };
1699     }
1700     }
1701     }
1702     if (count != 0)
1703     break;
1704     }
1705     else if ((fh = f.hash) == MOVED) {
1706     if ((fk = f.key) instanceof TreeBin) {
1707     TreeBin t = (TreeBin)fk;
1708     t.acquire(0);
1709     try {
1710     if (tabAt(tab, i) == f) {
1711     count = 1;
1712     TreeNode p = t.getTreeNode(h, k, t.root);
1713     Object pv = (p == null) ? null : p.val;
1714     if ((val = mf.apply(k, (V)pv)) != null) {
1715     if (p != null)
1716     p.val = val;
1717     else {
1718     count = 2;
1719     delta = 1;
1720     t.putTreeNode(h, k, val);
1721     }
1722     }
1723     else if (p != null) {
1724     delta = -1;
1725     t.deleteTreeNode(p);
1726     }
1727     }
1728     } finally {
1729     t.release(0);
1730     }
1731     if (count != 0)
1732     break;
1733     }
1734     else
1735     tab = (Node[])fk;
1736     }
1737     else if ((fh & LOCKED) != 0) {
1738     checkForResize();
1739     f.tryAwaitLock(tab, i);
1740     }
1741     else if (f.casHash(fh, fh | LOCKED)) {
1742     try {
1743     if (tabAt(tab, i) == f) {
1744     count = 1;
1745     for (Node e = f, pred = null;; ++count) {
1746     Object ek, ev;
1747     if ((e.hash & HASH_BITS) == h &&
1748     (ev = e.val) != null &&
1749     ((ek = e.key) == k || k.equals(ek))) {
1750     val = mf.apply(k, (V)ev);
1751     if (val != null)
1752     e.val = val;
1753     else {
1754     delta = -1;
1755     Node en = e.next;
1756     if (pred != null)
1757     pred.next = en;
1758     else
1759     setTabAt(tab, i, en);
1760     }
1761     break;
1762     }
1763     pred = e;
1764     if ((e = e.next) == null) {
1765     if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1766     pred.next = new Node(h, k, val, null);
1767     delta = 1;
1768     if (count >= TREE_THRESHOLD)
1769     replaceWithTreeBin(tab, i, k);
1770     }
1771     break;
1772     }
1773     }
1774     }
1775     } finally {
1776     if (!f.casHash(fh | LOCKED, fh)) {
1777     f.hash = fh;
1778     synchronized (f) { f.notifyAll(); };
1779     }
1780     }
1781     if (count != 0) {
1782     if (tab.length <= 64)
1783     count = 2;
1784     break;
1785     }
1786     }
1787     }
1788     if (delta != 0) {
1789     counter.add((long)delta);
1790     if (count > 1)
1791     checkForResize();
1792     }
1793     return val;
1794     }
1795    
1796 dl 1.126 /** Implementation for merge */
1797 dl 1.128 @SuppressWarnings("unchecked") private final Object internalMerge
1798     (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1799 dl 1.119 int h = spread(k.hashCode());
1800     Object val = null;
1801     int delta = 0;
1802     int count = 0;
1803     for (Node[] tab = table;;) {
1804     int i; Node f; int fh; Object fk, fv;
1805     if (tab == null)
1806     tab = initTable();
1807     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1808     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809     delta = 1;
1810     val = v;
1811     break;
1812     }
1813     }
1814     else if ((fh = f.hash) == MOVED) {
1815     if ((fk = f.key) instanceof TreeBin) {
1816     TreeBin t = (TreeBin)fk;
1817     t.acquire(0);
1818     try {
1819     if (tabAt(tab, i) == f) {
1820     count = 1;
1821     TreeNode p = t.getTreeNode(h, k, t.root);
1822     val = (p == null) ? v : mf.apply((V)p.val, v);
1823     if (val != null) {
1824     if (p != null)
1825     p.val = val;
1826     else {
1827     count = 2;
1828     delta = 1;
1829     t.putTreeNode(h, k, val);
1830     }
1831     }
1832     else if (p != null) {
1833     delta = -1;
1834     t.deleteTreeNode(p);
1835     }
1836     }
1837     } finally {
1838     t.release(0);
1839     }
1840     if (count != 0)
1841     break;
1842     }
1843     else
1844     tab = (Node[])fk;
1845     }
1846     else if ((fh & LOCKED) != 0) {
1847     checkForResize();
1848     f.tryAwaitLock(tab, i);
1849     }
1850     else if (f.casHash(fh, fh | LOCKED)) {
1851     try {
1852     if (tabAt(tab, i) == f) {
1853     count = 1;
1854     for (Node e = f, pred = null;; ++count) {
1855     Object ek, ev;
1856     if ((e.hash & HASH_BITS) == h &&
1857     (ev = e.val) != null &&
1858     ((ek = e.key) == k || k.equals(ek))) {
1859     val = mf.apply(v, (V)ev);
1860     if (val != null)
1861     e.val = val;
1862     else {
1863     delta = -1;
1864     Node en = e.next;
1865     if (pred != null)
1866     pred.next = en;
1867     else
1868     setTabAt(tab, i, en);
1869     }
1870     break;
1871     }
1872     pred = e;
1873     if ((e = e.next) == null) {
1874     val = v;
1875     pred.next = new Node(h, k, val, null);
1876     delta = 1;
1877     if (count >= TREE_THRESHOLD)
1878     replaceWithTreeBin(tab, i, k);
1879     break;
1880     }
1881     }
1882     }
1883     } finally {
1884     if (!f.casHash(fh | LOCKED, fh)) {
1885     f.hash = fh;
1886     synchronized (f) { f.notifyAll(); };
1887     }
1888     }
1889     if (count != 0) {
1890     if (tab.length <= 64)
1891     count = 2;
1892     break;
1893     }
1894 dl 1.105 }
1895 dl 1.99 }
1896 dl 1.119 if (delta != 0) {
1897     counter.add((long)delta);
1898     if (count > 1)
1899     checkForResize();
1900     }
1901     return val;
1902     }
1903    
1904     /** Implementation for putAll */
1905     private final void internalPutAll(Map<?, ?> m) {
1906     tryPresize(m.size());
1907     long delta = 0L; // number of uncommitted additions
1908     boolean npe = false; // to throw exception on exit for nulls
1909     try { // to clean up counts on other exceptions
1910     for (Map.Entry<?, ?> entry : m.entrySet()) {
1911     Object k, v;
1912     if (entry == null || (k = entry.getKey()) == null ||
1913     (v = entry.getValue()) == null) {
1914     npe = true;
1915     break;
1916     }
1917     int h = spread(k.hashCode());
1918     for (Node[] tab = table;;) {
1919     int i; Node f; int fh; Object fk;
1920     if (tab == null)
1921     tab = initTable();
1922     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1923     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1924     ++delta;
1925     break;
1926     }
1927     }
1928     else if ((fh = f.hash) == MOVED) {
1929     if ((fk = f.key) instanceof TreeBin) {
1930     TreeBin t = (TreeBin)fk;
1931     boolean validated = false;
1932     t.acquire(0);
1933     try {
1934     if (tabAt(tab, i) == f) {
1935     validated = true;
1936     TreeNode p = t.getTreeNode(h, k, t.root);
1937     if (p != null)
1938     p.val = v;
1939     else {
1940     t.putTreeNode(h, k, v);
1941     ++delta;
1942     }
1943     }
1944     } finally {
1945     t.release(0);
1946     }
1947     if (validated)
1948     break;
1949     }
1950     else
1951     tab = (Node[])fk;
1952     }
1953     else if ((fh & LOCKED) != 0) {
1954     counter.add(delta);
1955     delta = 0L;
1956     checkForResize();
1957     f.tryAwaitLock(tab, i);
1958     }
1959     else if (f.casHash(fh, fh | LOCKED)) {
1960     int count = 0;
1961     try {
1962     if (tabAt(tab, i) == f) {
1963     count = 1;
1964     for (Node e = f;; ++count) {
1965     Object ek, ev;
1966     if ((e.hash & HASH_BITS) == h &&
1967     (ev = e.val) != null &&
1968     ((ek = e.key) == k || k.equals(ek))) {
1969     e.val = v;
1970     break;
1971     }
1972     Node last = e;
1973     if ((e = e.next) == null) {
1974     ++delta;
1975     last.next = new Node(h, k, v, null);
1976     if (count >= TREE_THRESHOLD)
1977     replaceWithTreeBin(tab, i, k);
1978     break;
1979     }
1980     }
1981     }
1982     } finally {
1983     if (!f.casHash(fh | LOCKED, fh)) {
1984     f.hash = fh;
1985     synchronized (f) { f.notifyAll(); };
1986     }
1987     }
1988     if (count != 0) {
1989     if (count > 1) {
1990     counter.add(delta);
1991     delta = 0L;
1992     checkForResize();
1993 dl 1.99 }
1994 dl 1.119 break;
1995 dl 1.99 }
1996 dl 1.21 }
1997     }
1998 dl 1.45 }
1999     } finally {
2000 dl 1.119 if (delta != 0)
2001     counter.add(delta);
2002 dl 1.45 }
2003 dl 1.119 if (npe)
2004     throw new NullPointerException();
2005 tim 1.1 }
2006 dl 1.19
2007 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
2008    
2009 tim 1.1 /**
2010 dl 1.119 * Returns a power of two table size for the given desired capacity.
2011     * See Hackers Delight, sec 3.2
2012 tim 1.1 */
2013 dl 1.119 private static final int tableSizeFor(int c) {
2014     int n = c - 1;
2015     n |= n >>> 1;
2016     n |= n >>> 2;
2017     n |= n >>> 4;
2018     n |= n >>> 8;
2019     n |= n >>> 16;
2020     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2021 tim 1.1 }
2022    
2023     /**
2024 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
2025     */
2026     private final Node[] initTable() {
2027     Node[] tab; int sc;
2028     while ((tab = table) == null) {
2029     if ((sc = sizeCtl) < 0)
2030     Thread.yield(); // lost initialization race; just spin
2031     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2032     try {
2033     if ((tab = table) == null) {
2034     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2035     tab = table = new Node[n];
2036     sc = n - (n >>> 2);
2037     }
2038     } finally {
2039     sizeCtl = sc;
2040     }
2041     break;
2042     }
2043     }
2044     return tab;
2045 dl 1.4 }
2046    
2047     /**
2048 dl 1.119 * If table is too small and not already resizing, creates next
2049     * table and transfers bins. Rechecks occupancy after a transfer
2050     * to see if another resize is already needed because resizings
2051     * are lagging additions.
2052 dl 1.51 */
2053 dl 1.119 private final void checkForResize() {
2054     Node[] tab; int n, sc;
2055     while ((tab = table) != null &&
2056     (n = tab.length) < MAXIMUM_CAPACITY &&
2057     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2058     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2059     try {
2060     if (tab == table) {
2061     table = rebuild(tab);
2062     sc = (n << 1) - (n >>> 1);
2063     }
2064     } finally {
2065     sizeCtl = sc;
2066     }
2067     }
2068 dl 1.4 }
2069    
2070     /**
2071 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2072 tim 1.1 *
2073 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2074 tim 1.1 */
2075 dl 1.119 private final void tryPresize(int size) {
2076     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2077     tableSizeFor(size + (size >>> 1) + 1);
2078     int sc;
2079     while ((sc = sizeCtl) >= 0) {
2080     Node[] tab = table; int n;
2081     if (tab == null || (n = tab.length) == 0) {
2082     n = (sc > c) ? sc : c;
2083     if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2084     try {
2085     if (table == tab) {
2086     table = new Node[n];
2087     sc = n - (n >>> 2);
2088     }
2089     } finally {
2090     sizeCtl = sc;
2091     }
2092     }
2093     }
2094     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2095     break;
2096     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097     try {
2098     if (table == tab) {
2099     table = rebuild(tab);
2100     sc = (n << 1) - (n >>> 1);
2101     }
2102     } finally {
2103     sizeCtl = sc;
2104     }
2105     }
2106     }
2107 dl 1.4 }
2108    
2109 dl 1.119 /*
2110     * Moves and/or copies the nodes in each bin to new table. See
2111     * above for explanation.
2112 dl 1.4 *
2113 dl 1.119 * @return the new table
2114 dl 1.4 */
2115 dl 1.119 private static final Node[] rebuild(Node[] tab) {
2116     int n = tab.length;
2117     Node[] nextTab = new Node[n << 1];
2118     Node fwd = new Node(MOVED, nextTab, null, null);
2119     int[] buffer = null; // holds bins to revisit; null until needed
2120     Node rev = null; // reverse forwarder; null until needed
2121     int nbuffered = 0; // the number of bins in buffer list
2122     int bufferIndex = 0; // buffer index of current buffered bin
2123     int bin = n - 1; // current non-buffered bin or -1 if none
2124    
2125     for (int i = bin;;) { // start upwards sweep
2126     int fh; Node f;
2127     if ((f = tabAt(tab, i)) == null) {
2128 dl 1.128 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2129 dl 1.119 if (!casTabAt(tab, i, f, fwd))
2130     continue;
2131     }
2132     else { // transiently use a locked forwarding node
2133     Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2134     if (!casTabAt(tab, i, f, g))
2135     continue;
2136     setTabAt(nextTab, i, null);
2137     setTabAt(nextTab, i + n, null);
2138     setTabAt(tab, i, fwd);
2139     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140     g.hash = MOVED;
2141     synchronized (g) { g.notifyAll(); }
2142     }
2143     }
2144     }
2145     else if ((fh = f.hash) == MOVED) {
2146     Object fk = f.key;
2147     if (fk instanceof TreeBin) {
2148     TreeBin t = (TreeBin)fk;
2149     boolean validated = false;
2150     t.acquire(0);
2151     try {
2152     if (tabAt(tab, i) == f) {
2153     validated = true;
2154     splitTreeBin(nextTab, i, t);
2155     setTabAt(tab, i, fwd);
2156     }
2157     } finally {
2158     t.release(0);
2159     }
2160     if (!validated)
2161     continue;
2162     }
2163     }
2164     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2165     boolean validated = false;
2166     try { // split to lo and hi lists; copying as needed
2167     if (tabAt(tab, i) == f) {
2168     validated = true;
2169     splitBin(nextTab, i, f);
2170     setTabAt(tab, i, fwd);
2171     }
2172     } finally {
2173     if (!f.casHash(fh | LOCKED, fh)) {
2174     f.hash = fh;
2175     synchronized (f) { f.notifyAll(); };
2176     }
2177     }
2178     if (!validated)
2179     continue;
2180     }
2181     else {
2182     if (buffer == null) // initialize buffer for revisits
2183     buffer = new int[TRANSFER_BUFFER_SIZE];
2184     if (bin < 0 && bufferIndex > 0) {
2185     int j = buffer[--bufferIndex];
2186     buffer[bufferIndex] = i;
2187     i = j; // swap with another bin
2188     continue;
2189     }
2190     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191     f.tryAwaitLock(tab, i);
2192     continue; // no other options -- block
2193     }
2194     if (rev == null) // initialize reverse-forwarder
2195     rev = new Node(MOVED, tab, null, null);
2196     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197     continue; // recheck before adding to list
2198     buffer[nbuffered++] = i;
2199     setTabAt(nextTab, i, rev); // install place-holders
2200     setTabAt(nextTab, i + n, rev);
2201     }
2202    
2203     if (bin > 0)
2204     i = --bin;
2205     else if (buffer != null && nbuffered > 0) {
2206     bin = -1;
2207     i = buffer[bufferIndex = --nbuffered];
2208     }
2209     else
2210     return nextTab;
2211     }
2212 dl 1.4 }
2213 tim 1.1
2214 dl 1.4 /**
2215 dl 1.119 * Splits a normal bin with list headed by e into lo and hi parts;
2216     * installs in given table.
2217 dl 1.4 */
2218 dl 1.119 private static void splitBin(Node[] nextTab, int i, Node e) {
2219     int bit = nextTab.length >>> 1; // bit to split on
2220     int runBit = e.hash & bit;
2221     Node lastRun = e, lo = null, hi = null;
2222     for (Node p = e.next; p != null; p = p.next) {
2223     int b = p.hash & bit;
2224     if (b != runBit) {
2225     runBit = b;
2226     lastRun = p;
2227     }
2228     }
2229     if (runBit == 0)
2230     lo = lastRun;
2231     else
2232     hi = lastRun;
2233     for (Node p = e; p != lastRun; p = p.next) {
2234     int ph = p.hash & HASH_BITS;
2235     Object pk = p.key, pv = p.val;
2236     if ((ph & bit) == 0)
2237     lo = new Node(ph, pk, pv, lo);
2238     else
2239     hi = new Node(ph, pk, pv, hi);
2240     }
2241     setTabAt(nextTab, i, lo);
2242     setTabAt(nextTab, i + bit, hi);
2243     }
2244    
2245     /**
2246     * Splits a tree bin into lo and hi parts; installs in given table.
2247     */
2248     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2249     int bit = nextTab.length >>> 1;
2250     TreeBin lt = new TreeBin();
2251     TreeBin ht = new TreeBin();
2252     int lc = 0, hc = 0;
2253     for (Node e = t.first; e != null; e = e.next) {
2254     int h = e.hash & HASH_BITS;
2255     Object k = e.key, v = e.val;
2256     if ((h & bit) == 0) {
2257     ++lc;
2258     lt.putTreeNode(h, k, v);
2259     }
2260     else {
2261     ++hc;
2262     ht.putTreeNode(h, k, v);
2263     }
2264     }
2265     Node ln, hn; // throw away trees if too small
2266     if (lc <= (TREE_THRESHOLD >>> 1)) {
2267     ln = null;
2268     for (Node p = lt.first; p != null; p = p.next)
2269     ln = new Node(p.hash, p.key, p.val, ln);
2270     }
2271     else
2272     ln = new Node(MOVED, lt, null, null);
2273     setTabAt(nextTab, i, ln);
2274     if (hc <= (TREE_THRESHOLD >>> 1)) {
2275     hn = null;
2276     for (Node p = ht.first; p != null; p = p.next)
2277     hn = new Node(p.hash, p.key, p.val, hn);
2278     }
2279     else
2280     hn = new Node(MOVED, ht, null, null);
2281     setTabAt(nextTab, i + bit, hn);
2282     }
2283    
2284     /**
2285     * Implementation for clear. Steps through each bin, removing all
2286     * nodes.
2287     */
2288     private final void internalClear() {
2289     long delta = 0L; // negative number of deletions
2290     int i = 0;
2291     Node[] tab = table;
2292     while (tab != null && i < tab.length) {
2293     int fh; Object fk;
2294     Node f = tabAt(tab, i);
2295     if (f == null)
2296     ++i;
2297     else if ((fh = f.hash) == MOVED) {
2298     if ((fk = f.key) instanceof TreeBin) {
2299     TreeBin t = (TreeBin)fk;
2300     t.acquire(0);
2301     try {
2302     if (tabAt(tab, i) == f) {
2303     for (Node p = t.first; p != null; p = p.next) {
2304 dl 1.128 if (p.val != null) { // (currently always true)
2305     p.val = null;
2306     --delta;
2307     }
2308 dl 1.119 }
2309     t.first = null;
2310     t.root = null;
2311     ++i;
2312     }
2313     } finally {
2314     t.release(0);
2315     }
2316     }
2317     else
2318     tab = (Node[])fk;
2319     }
2320     else if ((fh & LOCKED) != 0) {
2321     counter.add(delta); // opportunistically update count
2322     delta = 0L;
2323     f.tryAwaitLock(tab, i);
2324     }
2325     else if (f.casHash(fh, fh | LOCKED)) {
2326     try {
2327     if (tabAt(tab, i) == f) {
2328     for (Node e = f; e != null; e = e.next) {
2329 dl 1.128 if (e.val != null) { // (currently always true)
2330     e.val = null;
2331     --delta;
2332     }
2333 dl 1.119 }
2334     setTabAt(tab, i, null);
2335     ++i;
2336     }
2337     } finally {
2338     if (!f.casHash(fh | LOCKED, fh)) {
2339     f.hash = fh;
2340     synchronized (f) { f.notifyAll(); };
2341     }
2342     }
2343     }
2344     }
2345     if (delta != 0)
2346     counter.add(delta);
2347     }
2348    
2349     /* ----------------Table Traversal -------------- */
2350    
2351     /**
2352     * Encapsulates traversal for methods such as containsValue; also
2353 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2354 dl 1.119 *
2355     * At each step, the iterator snapshots the key ("nextKey") and
2356     * value ("nextVal") of a valid node (i.e., one that, at point of
2357     * snapshot, has a non-null user value). Because val fields can
2358     * change (including to null, indicating deletion), field nextVal
2359     * might not be accurate at point of use, but still maintains the
2360     * weak consistency property of holding a value that was once
2361 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2362     * updated (nulled out) when the iterator cannot advance.
2363 dl 1.119 *
2364     * Internal traversals directly access these fields, as in:
2365     * {@code while (it.advance() != null) { process(it.nextKey); }}
2366     *
2367     * Exported iterators must track whether the iterator has advanced
2368     * (in hasNext vs next) (by setting/checking/nulling field
2369     * nextVal), and then extract key, value, or key-value pairs as
2370     * return values of next().
2371     *
2372     * The iterator visits once each still-valid node that was
2373     * reachable upon iterator construction. It might miss some that
2374     * were added to a bin after the bin was visited, which is OK wrt
2375     * consistency guarantees. Maintaining this property in the face
2376     * of possible ongoing resizes requires a fair amount of
2377     * bookkeeping state that is difficult to optimize away amidst
2378     * volatile accesses. Even so, traversal maintains reasonable
2379     * throughput.
2380     *
2381     * Normally, iteration proceeds bin-by-bin traversing lists.
2382     * However, if the table has been resized, then all future steps
2383     * must traverse both the bin at the current index as well as at
2384     * (index + baseSize); and so on for further resizings. To
2385     * paranoically cope with potential sharing by users of iterators
2386     * across threads, iteration terminates if a bounds checks fails
2387     * for a table read.
2388     *
2389 dl 1.146 * This class extends CountedCompleter to streamline parallel
2390     * iteration in bulk operations. This adds only a few fields of
2391     * space overhead, which is small enough in cases where it is not
2392     * needed to not worry about it. Because CountedCompleter is
2393     * Serializable, but iterators need not be, we need to add warning
2394     * suppressions.
2395 dl 1.119 */
2396 dl 1.146 @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2397 dl 1.119 final ConcurrentHashMap<K, V> map;
2398     Node next; // the next entry to use
2399     Object nextKey; // cached key field of next
2400     Object nextVal; // cached val field of next
2401     Node[] tab; // current table; updated if resized
2402     int index; // index of bin to use next
2403     int baseIndex; // current index of initial table
2404     int baseLimit; // index bound for initial table
2405 dl 1.130 int baseSize; // initial table size
2406 dl 1.146 int batch; // split control
2407 dl 1.119
2408     /** Creates iterator for all entries in the table. */
2409     Traverser(ConcurrentHashMap<K, V> map) {
2410 dl 1.130 this.map = map;
2411 dl 1.119 }
2412    
2413 dl 1.146 /** Creates iterator for split() methods and task constructors */
2414     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2415     super(it);
2416     this.batch = batch;
2417     if ((this.map = map) != null && it != null) { // split parent
2418     Node[] t;
2419     if ((t = it.tab) == null &&
2420     (t = it.tab = map.table) != null)
2421     it.baseLimit = it.baseSize = t.length;
2422     this.tab = t;
2423     this.baseSize = it.baseSize;
2424     int hi = this.baseLimit = it.baseLimit;
2425     it.baseLimit = this.index = this.baseIndex =
2426     (hi + it.baseIndex + 1) >>> 1;
2427     }
2428 dl 1.119 }
2429    
2430     /**
2431     * Advances next; returns nextVal or null if terminated.
2432     * See above for explanation.
2433     */
2434     final Object advance() {
2435 dl 1.137 Node e = next;
2436 dl 1.119 Object ev = null;
2437     outer: do {
2438     if (e != null) // advance past used/skipped node
2439     e = e.next;
2440     while (e == null) { // get to next non-null bin
2441 dl 1.130 ConcurrentHashMap<K, V> m;
2442 dl 1.119 Node[] t; int b, i, n; Object ek; // checks must use locals
2443 dl 1.130 if ((t = tab) != null)
2444     n = t.length;
2445     else if ((m = map) != null && (t = tab = m.table) != null)
2446     n = baseLimit = baseSize = t.length;
2447     else
2448 dl 1.119 break outer;
2449 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2450     (i = index) < 0 || i >= n)
2451     break outer;
2452     if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2453 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2454     e = ((TreeBin)ek).first;
2455     else {
2456     tab = (Node[])ek;
2457     continue; // restarts due to null val
2458     }
2459     } // visit upper slots if present
2460     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2461     }
2462     nextKey = e.key;
2463     } while ((ev = e.val) == null); // skip deleted or special nodes
2464     next = e;
2465     return nextVal = ev;
2466     }
2467    
2468     public final void remove() {
2469 dl 1.137 Object k = nextKey;
2470     if (k == null && (advance() == null || (k = nextKey) == null))
2471 dl 1.119 throw new IllegalStateException();
2472 dl 1.137 map.internalReplace(k, null, null);
2473 dl 1.119 }
2474    
2475     public final boolean hasNext() {
2476     return nextVal != null || advance() != null;
2477     }
2478    
2479     public final boolean hasMoreElements() { return hasNext(); }
2480 dl 1.146
2481     public void compute() { } // default no-op CountedCompleter body
2482    
2483     /**
2484     * Returns a batch value > 0 if this task should (and must) be
2485     * split, if so, adding to pending count, and in any case
2486     * updating batch value. The initial batch value is approx
2487     * exp2 of the number of times (minus one) to split task by
2488     * two before executing leaf action. This value is faster to
2489     * compute and more convenient to use as a guide to splitting
2490     * than is the depth, since it is used while dividing by two
2491     * anyway.
2492     */
2493     final int preSplit() {
2494     ConcurrentHashMap<K, V> m; int b; Node[] t; ForkJoinPool pool;
2495     if ((b = batch) < 0 && (m = map) != null) { // force initialization
2496     if ((t = tab) == null && (t = tab = m.table) != null)
2497     baseLimit = baseSize = t.length;
2498     if (t != null) {
2499     long n = m.counter.sum();
2500     int par = ((pool = getPool()) == null) ?
2501     ForkJoinPool.getCommonPoolParallelism() :
2502     pool.getParallelism();
2503     int sp = par << 3; // slack of 8
2504     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2505     }
2506     }
2507 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2508 dl 1.146 if ((batch = b) > 0)
2509     addToPendingCount(1);
2510     return b;
2511     }
2512    
2513 dl 1.119 }
2514    
2515     /* ---------------- Public operations -------------- */
2516    
2517     /**
2518     * Creates a new, empty map with the default initial table size (16).
2519     */
2520     public ConcurrentHashMap() {
2521     this.counter = new LongAdder();
2522     }
2523    
2524     /**
2525     * Creates a new, empty map with an initial table size
2526     * accommodating the specified number of elements without the need
2527     * to dynamically resize.
2528     *
2529     * @param initialCapacity The implementation performs internal
2530     * sizing to accommodate this many elements.
2531     * @throws IllegalArgumentException if the initial capacity of
2532     * elements is negative
2533     */
2534     public ConcurrentHashMap(int initialCapacity) {
2535     if (initialCapacity < 0)
2536     throw new IllegalArgumentException();
2537     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2538     MAXIMUM_CAPACITY :
2539     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2540     this.counter = new LongAdder();
2541     this.sizeCtl = cap;
2542     }
2543    
2544     /**
2545     * Creates a new map with the same mappings as the given map.
2546     *
2547     * @param m the map
2548     */
2549     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2550     this.counter = new LongAdder();
2551     this.sizeCtl = DEFAULT_CAPACITY;
2552     internalPutAll(m);
2553     }
2554    
2555     /**
2556     * Creates a new, empty map with an initial table size based on
2557     * the given number of elements ({@code initialCapacity}) and
2558     * initial table density ({@code loadFactor}).
2559     *
2560     * @param initialCapacity the initial capacity. The implementation
2561     * performs internal sizing to accommodate this many elements,
2562     * given the specified load factor.
2563     * @param loadFactor the load factor (table density) for
2564     * establishing the initial table size
2565     * @throws IllegalArgumentException if the initial capacity of
2566     * elements is negative or the load factor is nonpositive
2567     *
2568     * @since 1.6
2569     */
2570     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2571     this(initialCapacity, loadFactor, 1);
2572     }
2573    
2574     /**
2575     * Creates a new, empty map with an initial table size based on
2576     * the given number of elements ({@code initialCapacity}), table
2577     * density ({@code loadFactor}), and number of concurrently
2578     * updating threads ({@code concurrencyLevel}).
2579     *
2580     * @param initialCapacity the initial capacity. The implementation
2581     * performs internal sizing to accommodate this many elements,
2582     * given the specified load factor.
2583     * @param loadFactor the load factor (table density) for
2584     * establishing the initial table size
2585     * @param concurrencyLevel the estimated number of concurrently
2586     * updating threads. The implementation may use this value as
2587     * a sizing hint.
2588     * @throws IllegalArgumentException if the initial capacity is
2589     * negative or the load factor or concurrencyLevel are
2590     * nonpositive
2591     */
2592     public ConcurrentHashMap(int initialCapacity,
2593     float loadFactor, int concurrencyLevel) {
2594     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2595     throw new IllegalArgumentException();
2596     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2597     initialCapacity = concurrencyLevel; // as estimated threads
2598     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2599     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2600     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2601     this.counter = new LongAdder();
2602     this.sizeCtl = cap;
2603     }
2604    
2605     /**
2606 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2607     * from the given type to {@code Boolean.TRUE}.
2608     *
2609     * @return the new set
2610     */
2611     public static <K> KeySetView<K,Boolean> newKeySet() {
2612     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2613     Boolean.TRUE);
2614     }
2615    
2616     /**
2617     * Creates a new {@link Set} backed by a ConcurrentHashMap
2618     * from the given type to {@code Boolean.TRUE}.
2619     *
2620     * @param initialCapacity The implementation performs internal
2621     * sizing to accommodate this many elements.
2622     * @throws IllegalArgumentException if the initial capacity of
2623     * elements is negative
2624     * @return the new set
2625     */
2626     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2627     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2628     Boolean.TRUE);
2629     }
2630    
2631     /**
2632 dl 1.119 * {@inheritDoc}
2633     */
2634     public boolean isEmpty() {
2635     return counter.sum() <= 0L; // ignore transient negative values
2636     }
2637    
2638     /**
2639     * {@inheritDoc}
2640     */
2641     public int size() {
2642     long n = counter.sum();
2643     return ((n < 0L) ? 0 :
2644     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2645     (int)n);
2646     }
2647    
2648     /**
2649     * Returns the number of mappings. This method should be used
2650     * instead of {@link #size} because a ConcurrentHashMap may
2651     * contain more mappings than can be represented as an int. The
2652 dl 1.146 * value returned is an estimate; the actual count may differ if
2653     * there are concurrent insertions or removals.
2654 dl 1.119 *
2655     * @return the number of mappings
2656     */
2657     public long mappingCount() {
2658     long n = counter.sum();
2659 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2660 dl 1.119 }
2661    
2662     /**
2663     * Returns the value to which the specified key is mapped,
2664     * or {@code null} if this map contains no mapping for the key.
2665     *
2666     * <p>More formally, if this map contains a mapping from a key
2667     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2668     * then this method returns {@code v}; otherwise it returns
2669     * {@code null}. (There can be at most one such mapping.)
2670     *
2671     * @throws NullPointerException if the specified key is null
2672     */
2673 dl 1.128 @SuppressWarnings("unchecked") public V get(Object key) {
2674 dl 1.119 if (key == null)
2675     throw new NullPointerException();
2676     return (V)internalGet(key);
2677     }
2678    
2679     /**
2680 dl 1.129 * Returns the value to which the specified key is mapped,
2681 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2682 dl 1.129 *
2683     * @param key the key
2684     * @param defaultValue the value to return if this map contains
2685 jsr166 1.134 * no mapping for the given key
2686 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2687     * @throws NullPointerException if the specified key is null
2688     */
2689     @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2690     if (key == null)
2691     throw new NullPointerException();
2692     V v = (V) internalGet(key);
2693     return v == null ? defaultValue : v;
2694     }
2695    
2696     /**
2697 dl 1.119 * Tests if the specified object is a key in this table.
2698     *
2699     * @param key possible key
2700     * @return {@code true} if and only if the specified object
2701     * is a key in this table, as determined by the
2702     * {@code equals} method; {@code false} otherwise
2703     * @throws NullPointerException if the specified key is null
2704     */
2705     public boolean containsKey(Object key) {
2706     if (key == null)
2707     throw new NullPointerException();
2708     return internalGet(key) != null;
2709     }
2710    
2711     /**
2712     * Returns {@code true} if this map maps one or more keys to the
2713     * specified value. Note: This method may require a full traversal
2714     * of the map, and is much slower than method {@code containsKey}.
2715     *
2716     * @param value value whose presence in this map is to be tested
2717     * @return {@code true} if this map maps one or more keys to the
2718     * specified value
2719     * @throws NullPointerException if the specified value is null
2720     */
2721     public boolean containsValue(Object value) {
2722     if (value == null)
2723     throw new NullPointerException();
2724     Object v;
2725     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2726     while ((v = it.advance()) != null) {
2727     if (v == value || value.equals(v))
2728     return true;
2729     }
2730     return false;
2731     }
2732    
2733     /**
2734     * Legacy method testing if some key maps into the specified value
2735     * in this table. This method is identical in functionality to
2736     * {@link #containsValue}, and exists solely to ensure
2737     * full compatibility with class {@link java.util.Hashtable},
2738     * which supported this method prior to introduction of the
2739     * Java Collections framework.
2740     *
2741     * @param value a value to search for
2742     * @return {@code true} if and only if some key maps to the
2743     * {@code value} argument in this table as
2744     * determined by the {@code equals} method;
2745     * {@code false} otherwise
2746     * @throws NullPointerException if the specified value is null
2747     */
2748     public boolean contains(Object value) {
2749     return containsValue(value);
2750     }
2751    
2752     /**
2753     * Maps the specified key to the specified value in this table.
2754     * Neither the key nor the value can be null.
2755     *
2756 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2757 dl 1.119 * with a key that is equal to the original key.
2758     *
2759     * @param key key with which the specified value is to be associated
2760     * @param value value to be associated with the specified key
2761     * @return the previous value associated with {@code key}, or
2762     * {@code null} if there was no mapping for {@code key}
2763     * @throws NullPointerException if the specified key or value is null
2764     */
2765 dl 1.128 @SuppressWarnings("unchecked") public V put(K key, V value) {
2766 dl 1.119 if (key == null || value == null)
2767     throw new NullPointerException();
2768     return (V)internalPut(key, value);
2769     }
2770    
2771     /**
2772     * {@inheritDoc}
2773     *
2774     * @return the previous value associated with the specified key,
2775     * or {@code null} if there was no mapping for the key
2776     * @throws NullPointerException if the specified key or value is null
2777     */
2778 dl 1.128 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2779 dl 1.119 if (key == null || value == null)
2780     throw new NullPointerException();
2781     return (V)internalPutIfAbsent(key, value);
2782     }
2783    
2784     /**
2785     * Copies all of the mappings from the specified map to this one.
2786     * These mappings replace any mappings that this map had for any of the
2787     * keys currently in the specified map.
2788     *
2789     * @param m mappings to be stored in this map
2790     */
2791     public void putAll(Map<? extends K, ? extends V> m) {
2792     internalPutAll(m);
2793     }
2794    
2795     /**
2796     * If the specified key is not already associated with a value,
2797     * computes its value using the given mappingFunction and enters
2798     * it into the map unless null. This is equivalent to
2799     * <pre> {@code
2800     * if (map.containsKey(key))
2801     * return map.get(key);
2802     * value = mappingFunction.apply(key);
2803     * if (value != null)
2804     * map.put(key, value);
2805     * return value;}</pre>
2806     *
2807     * except that the action is performed atomically. If the
2808     * function returns {@code null} no mapping is recorded. If the
2809     * function itself throws an (unchecked) exception, the exception
2810     * is rethrown to its caller, and no mapping is recorded. Some
2811     * attempted update operations on this map by other threads may be
2812     * blocked while computation is in progress, so the computation
2813     * should be short and simple, and must not attempt to update any
2814     * other mappings of this Map. The most appropriate usage is to
2815     * construct a new object serving as an initial mapped value, or
2816     * memoized result, as in:
2817     *
2818     * <pre> {@code
2819     * map.computeIfAbsent(key, new Fun<K, V>() {
2820     * public V map(K k) { return new Value(f(k)); }});}</pre>
2821     *
2822     * @param key key with which the specified value is to be associated
2823     * @param mappingFunction the function to compute a value
2824     * @return the current (existing or computed) value associated with
2825 jsr166 1.134 * the specified key, or null if the computed value is null
2826 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2827     * is null
2828     * @throws IllegalStateException if the computation detectably
2829     * attempts a recursive update to this map that would
2830     * otherwise never complete
2831     * @throws RuntimeException or Error if the mappingFunction does so,
2832     * in which case the mapping is left unestablished
2833     */
2834 dl 1.128 @SuppressWarnings("unchecked") public V computeIfAbsent
2835     (K key, Fun<? super K, ? extends V> mappingFunction) {
2836 dl 1.119 if (key == null || mappingFunction == null)
2837     throw new NullPointerException();
2838     return (V)internalComputeIfAbsent(key, mappingFunction);
2839     }
2840    
2841     /**
2842     * If the given key is present, computes a new mapping value given a key and
2843     * its current mapped value. This is equivalent to
2844     * <pre> {@code
2845     * if (map.containsKey(key)) {
2846     * value = remappingFunction.apply(key, map.get(key));
2847     * if (value != null)
2848     * map.put(key, value);
2849     * else
2850     * map.remove(key);
2851     * }
2852     * }</pre>
2853     *
2854     * except that the action is performed atomically. If the
2855     * function returns {@code null}, the mapping is removed. If the
2856     * function itself throws an (unchecked) exception, the exception
2857     * is rethrown to its caller, and the current mapping is left
2858     * unchanged. Some attempted update operations on this map by
2859     * other threads may be blocked while computation is in progress,
2860     * so the computation should be short and simple, and must not
2861     * attempt to update any other mappings of this Map. For example,
2862     * to either create or append new messages to a value mapping:
2863     *
2864     * @param key key with which the specified value is to be associated
2865     * @param remappingFunction the function to compute a value
2866 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2867 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2868     * is null
2869     * @throws IllegalStateException if the computation detectably
2870     * attempts a recursive update to this map that would
2871     * otherwise never complete
2872     * @throws RuntimeException or Error if the remappingFunction does so,
2873     * in which case the mapping is unchanged
2874     */
2875 dl 1.128 @SuppressWarnings("unchecked") public V computeIfPresent
2876     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2877 dl 1.119 if (key == null || remappingFunction == null)
2878     throw new NullPointerException();
2879     return (V)internalCompute(key, true, remappingFunction);
2880     }
2881    
2882     /**
2883     * Computes a new mapping value given a key and
2884     * its current mapped value (or {@code null} if there is no current
2885     * mapping). This is equivalent to
2886     * <pre> {@code
2887     * value = remappingFunction.apply(key, map.get(key));
2888     * if (value != null)
2889     * map.put(key, value);
2890     * else
2891     * map.remove(key);
2892     * }</pre>
2893     *
2894     * except that the action is performed atomically. If the
2895     * function returns {@code null}, the mapping is removed. If the
2896     * function itself throws an (unchecked) exception, the exception
2897     * is rethrown to its caller, and the current mapping is left
2898     * unchanged. Some attempted update operations on this map by
2899     * other threads may be blocked while computation is in progress,
2900     * so the computation should be short and simple, and must not
2901     * attempt to update any other mappings of this Map. For example,
2902     * to either create or append new messages to a value mapping:
2903     *
2904     * <pre> {@code
2905     * Map<Key, String> map = ...;
2906     * final String msg = ...;
2907     * map.compute(key, new BiFun<Key, String, String>() {
2908     * public String apply(Key k, String v) {
2909     * return (v == null) ? msg : v + msg;});}}</pre>
2910     *
2911     * @param key key with which the specified value is to be associated
2912     * @param remappingFunction the function to compute a value
2913 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2914 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2915     * is null
2916     * @throws IllegalStateException if the computation detectably
2917     * attempts a recursive update to this map that would
2918     * otherwise never complete
2919     * @throws RuntimeException or Error if the remappingFunction does so,
2920     * in which case the mapping is unchanged
2921     */
2922 dl 1.128 @SuppressWarnings("unchecked") public V compute
2923     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2924 dl 1.119 if (key == null || remappingFunction == null)
2925     throw new NullPointerException();
2926     return (V)internalCompute(key, false, remappingFunction);
2927     }
2928    
2929     /**
2930     * If the specified key is not already associated
2931     * with a value, associate it with the given value.
2932     * Otherwise, replace the value with the results of
2933     * the given remapping function. This is equivalent to:
2934     * <pre> {@code
2935     * if (!map.containsKey(key))
2936     * map.put(value);
2937     * else {
2938     * newValue = remappingFunction.apply(map.get(key), value);
2939     * if (value != null)
2940     * map.put(key, value);
2941     * else
2942     * map.remove(key);
2943     * }
2944     * }</pre>
2945     * except that the action is performed atomically. If the
2946     * function returns {@code null}, the mapping is removed. If the
2947     * function itself throws an (unchecked) exception, the exception
2948     * is rethrown to its caller, and the current mapping is left
2949     * unchanged. Some attempted update operations on this map by
2950     * other threads may be blocked while computation is in progress,
2951     * so the computation should be short and simple, and must not
2952     * attempt to update any other mappings of this Map.
2953     */
2954 dl 1.128 @SuppressWarnings("unchecked") public V merge
2955     (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2956 dl 1.119 if (key == null || value == null || remappingFunction == null)
2957     throw new NullPointerException();
2958     return (V)internalMerge(key, value, remappingFunction);
2959     }
2960    
2961     /**
2962     * Removes the key (and its corresponding value) from this map.
2963     * This method does nothing if the key is not in the map.
2964     *
2965     * @param key the key that needs to be removed
2966     * @return the previous value associated with {@code key}, or
2967     * {@code null} if there was no mapping for {@code key}
2968     * @throws NullPointerException if the specified key is null
2969     */
2970 dl 1.128 @SuppressWarnings("unchecked") public V remove(Object key) {
2971 dl 1.119 if (key == null)
2972     throw new NullPointerException();
2973     return (V)internalReplace(key, null, null);
2974     }
2975    
2976     /**
2977     * {@inheritDoc}
2978     *
2979     * @throws NullPointerException if the specified key is null
2980     */
2981     public boolean remove(Object key, Object value) {
2982     if (key == null)
2983     throw new NullPointerException();
2984     if (value == null)
2985     return false;
2986     return internalReplace(key, null, value) != null;
2987 tim 1.1 }
2988 dl 1.31
2989     /**
2990 jsr166 1.68 * {@inheritDoc}
2991     *
2992     * @throws NullPointerException if any of the arguments are null
2993 dl 1.31 */
2994     public boolean replace(K key, V oldValue, V newValue) {
2995 dl 1.119 if (key == null || oldValue == null || newValue == null)
2996 dl 1.31 throw new NullPointerException();
2997 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2998 dl 1.32 }
2999    
3000     /**
3001 jsr166 1.68 * {@inheritDoc}
3002     *
3003     * @return the previous value associated with the specified key,
3004 dl 1.119 * or {@code null} if there was no mapping for the key
3005 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
3006 dl 1.32 */
3007 dl 1.128 @SuppressWarnings("unchecked") public V replace(K key, V value) {
3008 dl 1.119 if (key == null || value == null)
3009 dl 1.32 throw new NullPointerException();
3010 dl 1.119 return (V)internalReplace(key, value, null);
3011 dl 1.31 }
3012    
3013 tim 1.1 /**
3014 jsr166 1.68 * Removes all of the mappings from this map.
3015 tim 1.1 */
3016     public void clear() {
3017 dl 1.119 internalClear();
3018 tim 1.1 }
3019    
3020     /**
3021 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
3022     * The set is backed by the map, so changes to the map are
3023 dl 1.137 * reflected in the set, and vice-versa.
3024     *
3025     * @return the set view
3026     */
3027     public KeySetView<K,V> keySet() {
3028     KeySetView<K,V> ks = keySet;
3029     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3030     }
3031    
3032     /**
3033     * Returns a {@link Set} view of the keys in this map, using the
3034     * given common mapped value for any additions (i.e., {@link
3035     * Collection#add} and {@link Collection#addAll}). This is of
3036     * course only appropriate if it is acceptable to use the same
3037     * value for all additions from this view.
3038 jsr166 1.68 *
3039 dl 1.137 * @param mappedValue the mapped value to use for any
3040     * additions.
3041     * @return the set view
3042     * @throws NullPointerException if the mappedValue is null
3043 tim 1.1 */
3044 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
3045     if (mappedValue == null)
3046     throw new NullPointerException();
3047     return new KeySetView<K,V>(this, mappedValue);
3048 tim 1.1 }
3049    
3050     /**
3051 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
3052     * The collection is backed by the map, so changes to the map are
3053 jsr166 1.143 * reflected in the collection, and vice-versa.
3054 tim 1.1 */
3055 dl 1.142 public ValuesView<K,V> values() {
3056     ValuesView<K,V> vs = values;
3057     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3058 dl 1.119 }
3059    
3060     /**
3061     * Returns a {@link Set} view of the mappings contained in this map.
3062     * The set is backed by the map, so changes to the map are
3063     * reflected in the set, and vice-versa. The set supports element
3064     * removal, which removes the corresponding mapping from the map,
3065     * via the {@code Iterator.remove}, {@code Set.remove},
3066     * {@code removeAll}, {@code retainAll}, and {@code clear}
3067     * operations. It does not support the {@code add} or
3068     * {@code addAll} operations.
3069     *
3070     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3071     * that will never throw {@link ConcurrentModificationException},
3072     * and guarantees to traverse elements as they existed upon
3073     * construction of the iterator, and may (but is not guaranteed to)
3074     * reflect any modifications subsequent to construction.
3075     */
3076     public Set<Map.Entry<K,V>> entrySet() {
3077 dl 1.142 EntrySetView<K,V> es = entrySet;
3078     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3079 dl 1.119 }
3080    
3081     /**
3082     * Returns an enumeration of the keys in this table.
3083     *
3084     * @return an enumeration of the keys in this table
3085     * @see #keySet()
3086     */
3087     public Enumeration<K> keys() {
3088     return new KeyIterator<K,V>(this);
3089     }
3090    
3091     /**
3092     * Returns an enumeration of the values in this table.
3093     *
3094     * @return an enumeration of the values in this table
3095     * @see #values()
3096     */
3097     public Enumeration<V> elements() {
3098     return new ValueIterator<K,V>(this);
3099     }
3100    
3101     /**
3102 jsr166 1.122 * Returns a partitionable iterator of the keys in this map.
3103 dl 1.119 *
3104 jsr166 1.122 * @return a partitionable iterator of the keys in this map
3105 dl 1.119 */
3106     public Spliterator<K> keySpliterator() {
3107     return new KeyIterator<K,V>(this);
3108     }
3109    
3110     /**
3111 jsr166 1.122 * Returns a partitionable iterator of the values in this map.
3112 dl 1.119 *
3113 jsr166 1.122 * @return a partitionable iterator of the values in this map
3114 dl 1.119 */
3115     public Spliterator<V> valueSpliterator() {
3116     return new ValueIterator<K,V>(this);
3117     }
3118    
3119     /**
3120 jsr166 1.122 * Returns a partitionable iterator of the entries in this map.
3121 dl 1.119 *
3122 jsr166 1.122 * @return a partitionable iterator of the entries in this map
3123 dl 1.119 */
3124     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3125     return new EntryIterator<K,V>(this);
3126     }
3127    
3128     /**
3129     * Returns the hash code value for this {@link Map}, i.e.,
3130     * the sum of, for each key-value pair in the map,
3131     * {@code key.hashCode() ^ value.hashCode()}.
3132     *
3133     * @return the hash code value for this map
3134     */
3135     public int hashCode() {
3136     int h = 0;
3137     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138     Object v;
3139     while ((v = it.advance()) != null) {
3140     h += it.nextKey.hashCode() ^ v.hashCode();
3141     }
3142     return h;
3143     }
3144    
3145     /**
3146     * Returns a string representation of this map. The string
3147     * representation consists of a list of key-value mappings (in no
3148     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3149     * mappings are separated by the characters {@code ", "} (comma
3150     * and space). Each key-value mapping is rendered as the key
3151     * followed by an equals sign ("{@code =}") followed by the
3152     * associated value.
3153     *
3154     * @return a string representation of this map
3155     */
3156     public String toString() {
3157     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3158     StringBuilder sb = new StringBuilder();
3159     sb.append('{');
3160     Object v;
3161     if ((v = it.advance()) != null) {
3162     for (;;) {
3163     Object k = it.nextKey;
3164     sb.append(k == this ? "(this Map)" : k);
3165     sb.append('=');
3166     sb.append(v == this ? "(this Map)" : v);
3167     if ((v = it.advance()) == null)
3168     break;
3169     sb.append(',').append(' ');
3170     }
3171     }
3172     return sb.append('}').toString();
3173     }
3174    
3175     /**
3176     * Compares the specified object with this map for equality.
3177     * Returns {@code true} if the given object is a map with the same
3178     * mappings as this map. This operation may return misleading
3179     * results if either map is concurrently modified during execution
3180     * of this method.
3181     *
3182     * @param o object to be compared for equality with this map
3183     * @return {@code true} if the specified object is equal to this map
3184     */
3185     public boolean equals(Object o) {
3186     if (o != this) {
3187     if (!(o instanceof Map))
3188     return false;
3189     Map<?,?> m = (Map<?,?>) o;
3190     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3191     Object val;
3192     while ((val = it.advance()) != null) {
3193     Object v = m.get(it.nextKey);
3194     if (v == null || (v != val && !v.equals(val)))
3195     return false;
3196     }
3197     for (Map.Entry<?,?> e : m.entrySet()) {
3198     Object mk, mv, v;
3199     if ((mk = e.getKey()) == null ||
3200     (mv = e.getValue()) == null ||
3201     (v = internalGet(mk)) == null ||
3202     (mv != v && !mv.equals(v)))
3203     return false;
3204     }
3205     }
3206     return true;
3207     }
3208    
3209     /* ----------------Iterators -------------- */
3210    
3211 dl 1.128 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3212 dl 1.119 implements Spliterator<K>, Enumeration<K> {
3213     KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3214 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3215     super(map, it, -1);
3216 dl 1.119 }
3217     public KeyIterator<K,V> split() {
3218 dl 1.137 if (nextKey != null)
3219 dl 1.119 throw new IllegalStateException();
3220 dl 1.146 return new KeyIterator<K,V>(map, this);
3221 dl 1.119 }
3222 dl 1.128 @SuppressWarnings("unchecked") public final K next() {
3223 dl 1.119 if (nextVal == null && advance() == null)
3224     throw new NoSuchElementException();
3225     Object k = nextKey;
3226     nextVal = null;
3227     return (K) k;
3228     }
3229    
3230     public final K nextElement() { return next(); }
3231     }
3232    
3233 dl 1.128 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3234 dl 1.119 implements Spliterator<V>, Enumeration<V> {
3235     ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3236 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3237     super(map, it, -1);
3238 dl 1.119 }
3239     public ValueIterator<K,V> split() {
3240 dl 1.137 if (nextKey != null)
3241 dl 1.119 throw new IllegalStateException();
3242 dl 1.146 return new ValueIterator<K,V>(map, this);
3243 dl 1.119 }
3244    
3245 dl 1.128 @SuppressWarnings("unchecked") public final V next() {
3246 dl 1.119 Object v;
3247     if ((v = nextVal) == null && (v = advance()) == null)
3248     throw new NoSuchElementException();
3249     nextVal = null;
3250     return (V) v;
3251     }
3252    
3253     public final V nextElement() { return next(); }
3254     }
3255    
3256 dl 1.128 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3257 dl 1.119 implements Spliterator<Map.Entry<K,V>> {
3258     EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3259 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3260     super(map, it, -1);
3261 dl 1.119 }
3262     public EntryIterator<K,V> split() {
3263 dl 1.137 if (nextKey != null)
3264 dl 1.119 throw new IllegalStateException();
3265 dl 1.146 return new EntryIterator<K,V>(map, this);
3266 dl 1.119 }
3267    
3268 dl 1.128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3269 dl 1.119 Object v;
3270     if ((v = nextVal) == null && (v = advance()) == null)
3271     throw new NoSuchElementException();
3272     Object k = nextKey;
3273     nextVal = null;
3274     return new MapEntry<K,V>((K)k, (V)v, map);
3275     }
3276     }
3277    
3278     /**
3279     * Exported Entry for iterators
3280     */
3281     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3282     final K key; // non-null
3283     V val; // non-null
3284     final ConcurrentHashMap<K, V> map;
3285     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3286     this.key = key;
3287     this.val = val;
3288     this.map = map;
3289     }
3290     public final K getKey() { return key; }
3291     public final V getValue() { return val; }
3292     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3293     public final String toString(){ return key + "=" + val; }
3294    
3295     public final boolean equals(Object o) {
3296     Object k, v; Map.Entry<?,?> e;
3297     return ((o instanceof Map.Entry) &&
3298     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3299     (v = e.getValue()) != null &&
3300     (k == key || k.equals(key)) &&
3301     (v == val || v.equals(val)));
3302     }
3303    
3304     /**
3305     * Sets our entry's value and writes through to the map. The
3306     * value to return is somewhat arbitrary here. Since we do not
3307     * necessarily track asynchronous changes, the most recent
3308     * "previous" value could be different from what we return (or
3309     * could even have been removed in which case the put will
3310     * re-establish). We do not and cannot guarantee more.
3311     */
3312     public final V setValue(V value) {
3313     if (value == null) throw new NullPointerException();
3314     V v = val;
3315     val = value;
3316     map.put(key, value);
3317     return v;
3318     }
3319     }
3320    
3321 dl 1.146 /**
3322     * Returns exportable snapshot entry for the given key and value
3323     * when write-through can't or shouldn't be used.
3324     */
3325     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3326     return new AbstractMap.SimpleEntry<K,V>(k, v);
3327     }
3328    
3329 dl 1.142 /* ---------------- Serialization Support -------------- */
3330 dl 1.119
3331     /**
3332 dl 1.142 * Stripped-down version of helper class used in previous version,
3333     * declared for the sake of serialization compatibility
3334 dl 1.119 */
3335 dl 1.142 static class Segment<K,V> implements Serializable {
3336     private static final long serialVersionUID = 2249069246763182397L;
3337     final float loadFactor;
3338     Segment(float lf) { this.loadFactor = lf; }
3339     }
3340 dl 1.119
3341 dl 1.142 /**
3342     * Saves the state of the {@code ConcurrentHashMap} instance to a
3343     * stream (i.e., serializes it).
3344     * @param s the stream
3345     * @serialData
3346     * the key (Object) and value (Object)
3347     * for each key-value mapping, followed by a null pair.
3348     * The key-value mappings are emitted in no particular order.
3349     */
3350     @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3351     throws java.io.IOException {
3352     if (segments == null) { // for serialization compatibility
3353     segments = (Segment<K,V>[])
3354     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3355     for (int i = 0; i < segments.length; ++i)
3356     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3357     }
3358     s.defaultWriteObject();
3359     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3360     Object v;
3361     while ((v = it.advance()) != null) {
3362     s.writeObject(it.nextKey);
3363     s.writeObject(v);
3364     }
3365     s.writeObject(null);
3366     s.writeObject(null);
3367     segments = null; // throw away
3368     }
3369 dl 1.119
3370 dl 1.142 /**
3371     * Reconstitutes the instance from a stream (that is, deserializes it).
3372     * @param s the stream
3373     */
3374     @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3375     throws java.io.IOException, ClassNotFoundException {
3376     s.defaultReadObject();
3377     this.segments = null; // unneeded
3378     // initialize transient final field
3379     UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3380 dl 1.119
3381 dl 1.142 // Create all nodes, then place in table once size is known
3382     long size = 0L;
3383     Node p = null;
3384     for (;;) {
3385     K k = (K) s.readObject();
3386     V v = (V) s.readObject();
3387     if (k != null && v != null) {
3388     int h = spread(k.hashCode());
3389     p = new Node(h, k, v, p);
3390     ++size;
3391 dl 1.119 }
3392 dl 1.142 else
3393     break;
3394 dl 1.119 }
3395 dl 1.142 if (p != null) {
3396     boolean init = false;
3397     int n;
3398     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3399     n = MAXIMUM_CAPACITY;
3400     else {
3401     int sz = (int)size;
3402     n = tableSizeFor(sz + (sz >>> 1) + 1);
3403     }
3404     int sc = sizeCtl;
3405     boolean collide = false;
3406     if (n > sc &&
3407     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3408     try {
3409     if (table == null) {
3410     init = true;
3411     Node[] tab = new Node[n];
3412     int mask = n - 1;
3413     while (p != null) {
3414     int j = p.hash & mask;
3415     Node next = p.next;
3416     Node q = p.next = tabAt(tab, j);
3417     setTabAt(tab, j, p);
3418     if (!collide && q != null && q.hash == p.hash)
3419     collide = true;
3420     p = next;
3421     }
3422     table = tab;
3423     counter.add(size);
3424     sc = n - (n >>> 2);
3425     }
3426     } finally {
3427     sizeCtl = sc;
3428     }
3429     if (collide) { // rescan and convert to TreeBins
3430     Node[] tab = table;
3431     for (int i = 0; i < tab.length; ++i) {
3432     int c = 0;
3433     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3434     if (++c > TREE_THRESHOLD &&
3435     (e.key instanceof Comparable)) {
3436     replaceWithTreeBin(tab, i, e.key);
3437     break;
3438     }
3439     }
3440     }
3441 dl 1.119 }
3442     }
3443 dl 1.142 if (!init) { // Can only happen if unsafely published.
3444     while (p != null) {
3445     internalPut(p.key, p.val);
3446     p = p.next;
3447     }
3448 dl 1.119 }
3449     }
3450 dl 1.142 }
3451 dl 1.119
3452    
3453 dl 1.142 // -------------------------------------------------------
3454    
3455     // Sams
3456     /** Interface describing a void action of one argument */
3457 dl 1.119 public interface Action<A> { void apply(A a); }
3458     /** Interface describing a void action of two arguments */
3459     public interface BiAction<A,B> { void apply(A a, B b); }
3460     /** Interface describing a function of one argument */
3461     public interface Fun<A,T> { T apply(A a); }
3462     /** Interface describing a function of two arguments */
3463     public interface BiFun<A,B,T> { T apply(A a, B b); }
3464     /** Interface describing a function of no arguments */
3465     public interface Generator<T> { T apply(); }
3466     /** Interface describing a function mapping its argument to a double */
3467     public interface ObjectToDouble<A> { double apply(A a); }
3468     /** Interface describing a function mapping its argument to a long */
3469     public interface ObjectToLong<A> { long apply(A a); }
3470     /** Interface describing a function mapping its argument to an int */
3471     public interface ObjectToInt<A> {int apply(A a); }
3472     /** Interface describing a function mapping two arguments to a double */
3473     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3474     /** Interface describing a function mapping two arguments to a long */
3475     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3476     /** Interface describing a function mapping two arguments to an int */
3477     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3478     /** Interface describing a function mapping a double to a double */
3479     public interface DoubleToDouble { double apply(double a); }
3480     /** Interface describing a function mapping a long to a long */
3481     public interface LongToLong { long apply(long a); }
3482     /** Interface describing a function mapping an int to an int */
3483     public interface IntToInt { int apply(int a); }
3484     /** Interface describing a function mapping two doubles to a double */
3485     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3486     /** Interface describing a function mapping two longs to a long */
3487     public interface LongByLongToLong { long apply(long a, long b); }
3488     /** Interface describing a function mapping two ints to an int */
3489     public interface IntByIntToInt { int apply(int a, int b); }
3490    
3491    
3492     // -------------------------------------------------------
3493    
3494     /**
3495 dl 1.137 * Performs the given action for each (key, value).
3496 dl 1.119 *
3497 dl 1.137 * @param action the action
3498 dl 1.119 */
3499 dl 1.137 public void forEach(BiAction<K,V> action) {
3500     ForkJoinTasks.forEach
3501     (this, action).invoke();
3502 dl 1.119 }
3503    
3504     /**
3505 dl 1.137 * Performs the given action for each non-null transformation
3506     * of each (key, value).
3507     *
3508     * @param transformer a function returning the transformation
3509     * for an element, or null of there is no transformation (in
3510     * which case the action is not applied).
3511     * @param action the action
3512 dl 1.119 */
3513 dl 1.137 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3514     Action<U> action) {
3515     ForkJoinTasks.forEach
3516     (this, transformer, action).invoke();
3517     }
3518    
3519     /**
3520     * Returns a non-null result from applying the given search
3521     * function on each (key, value), or null if none. Upon
3522     * success, further element processing is suppressed and the
3523     * results of any other parallel invocations of the search
3524     * function are ignored.
3525     *
3526     * @param searchFunction a function returning a non-null
3527     * result on success, else null
3528     * @return a non-null result from applying the given search
3529     * function on each (key, value), or null if none
3530     */
3531     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3532     return ForkJoinTasks.search
3533     (this, searchFunction).invoke();
3534     }
3535    
3536     /**
3537     * Returns the result of accumulating the given transformation
3538     * of all (key, value) pairs using the given reducer to
3539     * combine values, or null if none.
3540     *
3541     * @param transformer a function returning the transformation
3542     * for an element, or null of there is no transformation (in
3543     * which case it is not combined).
3544     * @param reducer a commutative associative combining function
3545     * @return the result of accumulating the given transformation
3546     * of all (key, value) pairs
3547     */
3548     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3549     BiFun<? super U, ? super U, ? extends U> reducer) {
3550     return ForkJoinTasks.reduce
3551     (this, transformer, reducer).invoke();
3552     }
3553    
3554     /**
3555     * Returns the result of accumulating the given transformation
3556     * of all (key, value) pairs using the given reducer to
3557     * combine values, and the given basis as an identity value.
3558     *
3559     * @param transformer a function returning the transformation
3560     * for an element
3561     * @param basis the identity (initial default value) for the reduction
3562     * @param reducer a commutative associative combining function
3563     * @return the result of accumulating the given transformation
3564     * of all (key, value) pairs
3565     */
3566     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3567     double basis,
3568     DoubleByDoubleToDouble reducer) {
3569     return ForkJoinTasks.reduceToDouble
3570     (this, transformer, basis, reducer).invoke();
3571     }
3572 dl 1.119
3573 dl 1.137 /**
3574     * Returns the result of accumulating the given transformation
3575     * of all (key, value) pairs using the given reducer to
3576     * combine values, and the given basis as an identity value.
3577     *
3578     * @param transformer a function returning the transformation
3579     * for an element
3580     * @param basis the identity (initial default value) for the reduction
3581     * @param reducer a commutative associative combining function
3582     * @return the result of accumulating the given transformation
3583     * of all (key, value) pairs
3584     */
3585     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3586     long basis,
3587     LongByLongToLong reducer) {
3588     return ForkJoinTasks.reduceToLong
3589     (this, transformer, basis, reducer).invoke();
3590     }
3591    
3592     /**
3593     * Returns the result of accumulating the given transformation
3594     * of all (key, value) pairs using the given reducer to
3595     * combine values, and the given basis as an identity value.
3596     *
3597     * @param transformer a function returning the transformation
3598     * for an element
3599     * @param basis the identity (initial default value) for the reduction
3600     * @param reducer a commutative associative combining function
3601     * @return the result of accumulating the given transformation
3602     * of all (key, value) pairs
3603     */
3604     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3605     int basis,
3606     IntByIntToInt reducer) {
3607     return ForkJoinTasks.reduceToInt
3608     (this, transformer, basis, reducer).invoke();
3609     }
3610    
3611     /**
3612     * Performs the given action for each key.
3613     *
3614     * @param action the action
3615     */
3616     public void forEachKey(Action<K> action) {
3617     ForkJoinTasks.forEachKey
3618     (this, action).invoke();
3619     }
3620 dl 1.119
3621 dl 1.137 /**
3622     * Performs the given action for each non-null transformation
3623     * of each key.
3624     *
3625     * @param transformer a function returning the transformation
3626     * for an element, or null of there is no transformation (in
3627     * which case the action is not applied).
3628     * @param action the action
3629     */
3630     public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3631     Action<U> action) {
3632     ForkJoinTasks.forEachKey
3633     (this, transformer, action).invoke();
3634     }
3635 dl 1.119
3636 dl 1.137 /**
3637     * Returns a non-null result from applying the given search
3638     * function on each key, or null if none. Upon success,
3639     * further element processing is suppressed and the results of
3640     * any other parallel invocations of the search function are
3641     * ignored.
3642     *
3643     * @param searchFunction a function returning a non-null
3644     * result on success, else null
3645     * @return a non-null result from applying the given search
3646     * function on each key, or null if none
3647     */
3648     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3649     return ForkJoinTasks.searchKeys
3650     (this, searchFunction).invoke();
3651     }
3652 dl 1.119
3653 dl 1.137 /**
3654     * Returns the result of accumulating all keys using the given
3655     * reducer to combine values, or null if none.
3656     *
3657     * @param reducer a commutative associative combining function
3658     * @return the result of accumulating all keys using the given
3659     * reducer to combine values, or null if none
3660     */
3661     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3662     return ForkJoinTasks.reduceKeys
3663     (this, reducer).invoke();
3664     }
3665 dl 1.119
3666 dl 1.137 /**
3667     * Returns the result of accumulating the given transformation
3668     * of all keys using the given reducer to combine values, or
3669     * null if none.
3670     *
3671     * @param transformer a function returning the transformation
3672     * for an element, or null of there is no transformation (in
3673     * which case it is not combined).
3674     * @param reducer a commutative associative combining function
3675     * @return the result of accumulating the given transformation
3676     * of all keys
3677     */
3678     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3679 dl 1.119 BiFun<? super U, ? super U, ? extends U> reducer) {
3680 dl 1.137 return ForkJoinTasks.reduceKeys
3681     (this, transformer, reducer).invoke();
3682     }
3683 dl 1.119
3684 dl 1.137 /**
3685     * Returns the result of accumulating the given transformation
3686     * of all keys using the given reducer to combine values, and
3687     * the given basis as an identity value.
3688     *
3689     * @param transformer a function returning the transformation
3690     * for an element
3691     * @param basis the identity (initial default value) for the reduction
3692     * @param reducer a commutative associative combining function
3693     * @return the result of accumulating the given transformation
3694     * of all keys
3695     */
3696     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3697 dl 1.119 double basis,
3698     DoubleByDoubleToDouble reducer) {
3699 dl 1.137 return ForkJoinTasks.reduceKeysToDouble
3700     (this, transformer, basis, reducer).invoke();
3701     }
3702 dl 1.119
3703 dl 1.137 /**
3704     * Returns the result of accumulating the given transformation
3705     * of all keys using the given reducer to combine values, and
3706     * the given basis as an identity value.
3707     *
3708     * @param transformer a function returning the transformation
3709     * for an element
3710     * @param basis the identity (initial default value) for the reduction
3711     * @param reducer a commutative associative combining function
3712     * @return the result of accumulating the given transformation
3713     * of all keys
3714     */
3715     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3716 dl 1.119 long basis,
3717     LongByLongToLong reducer) {
3718 dl 1.137 return ForkJoinTasks.reduceKeysToLong
3719     (this, transformer, basis, reducer).invoke();
3720     }
3721 dl 1.119
3722 dl 1.137 /**
3723     * Returns the result of accumulating the given transformation
3724     * of all keys using the given reducer to combine values, and
3725     * the given basis as an identity value.
3726     *
3727     * @param transformer a function returning the transformation
3728     * for an element
3729     * @param basis the identity (initial default value) for the reduction
3730     * @param reducer a commutative associative combining function
3731     * @return the result of accumulating the given transformation
3732     * of all keys
3733     */
3734     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3735 dl 1.119 int basis,
3736     IntByIntToInt reducer) {
3737 dl 1.137 return ForkJoinTasks.reduceKeysToInt
3738     (this, transformer, basis, reducer).invoke();
3739     }
3740 dl 1.119
3741 dl 1.137 /**
3742     * Performs the given action for each value.
3743     *
3744     * @param action the action
3745     */
3746     public void forEachValue(Action<V> action) {
3747     ForkJoinTasks.forEachValue
3748     (this, action).invoke();
3749     }
3750 dl 1.119
3751 dl 1.137 /**
3752     * Performs the given action for each non-null transformation
3753     * of each value.
3754     *
3755     * @param transformer a function returning the transformation
3756     * for an element, or null of there is no transformation (in
3757     * which case the action is not applied).
3758     */
3759     public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3760     Action<U> action) {
3761     ForkJoinTasks.forEachValue
3762     (this, transformer, action).invoke();
3763     }
3764 dl 1.119
3765 dl 1.137 /**
3766     * Returns a non-null result from applying the given search
3767     * function on each value, or null if none. Upon success,
3768     * further element processing is suppressed and the results of
3769     * any other parallel invocations of the search function are
3770     * ignored.
3771     *
3772     * @param searchFunction a function returning a non-null
3773     * result on success, else null
3774     * @return a non-null result from applying the given search
3775     * function on each value, or null if none
3776     *
3777     */
3778     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3779     return ForkJoinTasks.searchValues
3780     (this, searchFunction).invoke();
3781     }
3782 dl 1.119
3783 dl 1.137 /**
3784     * Returns the result of accumulating all values using the
3785     * given reducer to combine values, or null if none.
3786     *
3787     * @param reducer a commutative associative combining function
3788     * @return the result of accumulating all values
3789     */
3790     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3791     return ForkJoinTasks.reduceValues
3792     (this, reducer).invoke();
3793     }
3794 dl 1.119
3795 dl 1.137 /**
3796     * Returns the result of accumulating the given transformation
3797     * of all values using the given reducer to combine values, or
3798     * null if none.
3799     *
3800     * @param transformer a function returning the transformation
3801     * for an element, or null of there is no transformation (in
3802     * which case it is not combined).
3803     * @param reducer a commutative associative combining function
3804     * @return the result of accumulating the given transformation
3805     * of all values
3806     */
3807     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3808     BiFun<? super U, ? super U, ? extends U> reducer) {
3809     return ForkJoinTasks.reduceValues
3810     (this, transformer, reducer).invoke();
3811     }
3812 dl 1.119
3813 dl 1.137 /**
3814     * Returns the result of accumulating the given transformation
3815     * of all values using the given reducer to combine values,
3816     * and the given basis as an identity value.
3817     *
3818     * @param transformer a function returning the transformation
3819     * for an element
3820     * @param basis the identity (initial default value) for the reduction
3821     * @param reducer a commutative associative combining function
3822     * @return the result of accumulating the given transformation
3823     * of all values
3824     */
3825     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3826     double basis,
3827     DoubleByDoubleToDouble reducer) {
3828     return ForkJoinTasks.reduceValuesToDouble
3829     (this, transformer, basis, reducer).invoke();
3830     }
3831 dl 1.119
3832 dl 1.137 /**
3833     * Returns the result of accumulating the given transformation
3834     * of all values using the given reducer to combine values,
3835     * and the given basis as an identity value.
3836     *
3837     * @param transformer a function returning the transformation
3838     * for an element
3839     * @param basis the identity (initial default value) for the reduction
3840     * @param reducer a commutative associative combining function
3841     * @return the result of accumulating the given transformation
3842     * of all values
3843     */
3844     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3845     long basis,
3846     LongByLongToLong reducer) {
3847     return ForkJoinTasks.reduceValuesToLong
3848     (this, transformer, basis, reducer).invoke();
3849     }
3850 dl 1.119
3851 dl 1.137 /**
3852     * Returns the result of accumulating the given transformation
3853     * of all values using the given reducer to combine values,
3854     * and the given basis as an identity value.
3855     *
3856     * @param transformer a function returning the transformation
3857     * for an element
3858     * @param basis the identity (initial default value) for the reduction
3859     * @param reducer a commutative associative combining function
3860     * @return the result of accumulating the given transformation
3861     * of all values
3862     */
3863     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3864     int basis,
3865     IntByIntToInt reducer) {
3866     return ForkJoinTasks.reduceValuesToInt
3867     (this, transformer, basis, reducer).invoke();
3868     }
3869 dl 1.119
3870 dl 1.137 /**
3871     * Performs the given action for each entry.
3872     *
3873     * @param action the action
3874     */
3875     public void forEachEntry(Action<Map.Entry<K,V>> action) {
3876     ForkJoinTasks.forEachEntry
3877     (this, action).invoke();
3878     }
3879 dl 1.119
3880 dl 1.137 /**
3881     * Performs the given action for each non-null transformation
3882     * of each entry.
3883     *
3884     * @param transformer a function returning the transformation
3885     * for an element, or null of there is no transformation (in
3886     * which case the action is not applied).
3887     * @param action the action
3888     */
3889     public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3890     Action<U> action) {
3891     ForkJoinTasks.forEachEntry
3892     (this, transformer, action).invoke();
3893     }
3894 dl 1.119
3895 dl 1.137 /**
3896     * Returns a non-null result from applying the given search
3897     * function on each entry, or null if none. Upon success,
3898     * further element processing is suppressed and the results of
3899     * any other parallel invocations of the search function are
3900     * ignored.
3901     *
3902     * @param searchFunction a function returning a non-null
3903     * result on success, else null
3904     * @return a non-null result from applying the given search
3905     * function on each entry, or null if none
3906     */
3907     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3908     return ForkJoinTasks.searchEntries
3909     (this, searchFunction).invoke();
3910     }
3911 dl 1.119
3912 dl 1.137 /**
3913     * Returns the result of accumulating all entries using the
3914     * given reducer to combine values, or null if none.
3915     *
3916     * @param reducer a commutative associative combining function
3917     * @return the result of accumulating all entries
3918     */
3919     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3920     return ForkJoinTasks.reduceEntries
3921     (this, reducer).invoke();
3922     }
3923 dl 1.119
3924 dl 1.137 /**
3925     * Returns the result of accumulating the given transformation
3926     * of all entries using the given reducer to combine values,
3927     * or null if none.
3928     *
3929     * @param transformer a function returning the transformation
3930     * for an element, or null of there is no transformation (in
3931     * which case it is not combined).
3932     * @param reducer a commutative associative combining function
3933     * @return the result of accumulating the given transformation
3934     * of all entries
3935     */
3936     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3937     BiFun<? super U, ? super U, ? extends U> reducer) {
3938     return ForkJoinTasks.reduceEntries
3939     (this, transformer, reducer).invoke();
3940     }
3941 dl 1.119
3942 dl 1.137 /**
3943     * Returns the result of accumulating the given transformation
3944     * of all entries using the given reducer to combine values,
3945     * and the given basis as an identity value.
3946     *
3947     * @param transformer a function returning the transformation
3948     * for an element
3949     * @param basis the identity (initial default value) for the reduction
3950     * @param reducer a commutative associative combining function
3951     * @return the result of accumulating the given transformation
3952     * of all entries
3953     */
3954     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3955     double basis,
3956     DoubleByDoubleToDouble reducer) {
3957     return ForkJoinTasks.reduceEntriesToDouble
3958     (this, transformer, basis, reducer).invoke();
3959     }
3960 dl 1.119
3961 dl 1.137 /**
3962     * Returns the result of accumulating the given transformation
3963     * of all entries using the given reducer to combine values,
3964     * and the given basis as an identity value.
3965     *
3966     * @param transformer a function returning the transformation
3967     * for an element
3968     * @param basis the identity (initial default value) for the reduction
3969     * @param reducer a commutative associative combining function
3970     * @return the result of accumulating the given transformation
3971     * of all entries
3972     */
3973     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3974     long basis,
3975     LongByLongToLong reducer) {
3976     return ForkJoinTasks.reduceEntriesToLong
3977     (this, transformer, basis, reducer).invoke();
3978     }
3979 dl 1.119
3980 dl 1.137 /**
3981     * Returns the result of accumulating the given transformation
3982     * of all entries using the given reducer to combine values,
3983     * and the given basis as an identity value.
3984     *
3985     * @param transformer a function returning the transformation
3986     * for an element
3987     * @param basis the identity (initial default value) for the reduction
3988     * @param reducer a commutative associative combining function
3989     * @return the result of accumulating the given transformation
3990     * of all entries
3991     */
3992     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3993     int basis,
3994     IntByIntToInt reducer) {
3995     return ForkJoinTasks.reduceEntriesToInt
3996     (this, transformer, basis, reducer).invoke();
3997 dl 1.119 }
3998    
3999 dl 1.142 /* ----------------Views -------------- */
4000    
4001     /**
4002     * Base class for views.
4003     */
4004     static abstract class CHMView<K, V> {
4005     final ConcurrentHashMap<K, V> map;
4006     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4007    
4008     /**
4009     * Returns the map backing this view.
4010     *
4011     * @return the map backing this view
4012     */
4013     public ConcurrentHashMap<K,V> getMap() { return map; }
4014    
4015     public final int size() { return map.size(); }
4016     public final boolean isEmpty() { return map.isEmpty(); }
4017     public final void clear() { map.clear(); }
4018    
4019     // implementations below rely on concrete classes supplying these
4020     abstract public Iterator<?> iterator();
4021     abstract public boolean contains(Object o);
4022     abstract public boolean remove(Object o);
4023    
4024     private static final String oomeMsg = "Required array size too large";
4025    
4026     public final Object[] toArray() {
4027     long sz = map.mappingCount();
4028     if (sz > (long)(MAX_ARRAY_SIZE))
4029     throw new OutOfMemoryError(oomeMsg);
4030     int n = (int)sz;
4031     Object[] r = new Object[n];
4032     int i = 0;
4033     Iterator<?> it = iterator();
4034     while (it.hasNext()) {
4035     if (i == n) {
4036     if (n >= MAX_ARRAY_SIZE)
4037     throw new OutOfMemoryError(oomeMsg);
4038     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4039     n = MAX_ARRAY_SIZE;
4040     else
4041     n += (n >>> 1) + 1;
4042     r = Arrays.copyOf(r, n);
4043     }
4044     r[i++] = it.next();
4045     }
4046     return (i == n) ? r : Arrays.copyOf(r, i);
4047     }
4048    
4049     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4050     long sz = map.mappingCount();
4051     if (sz > (long)(MAX_ARRAY_SIZE))
4052     throw new OutOfMemoryError(oomeMsg);
4053     int m = (int)sz;
4054     T[] r = (a.length >= m) ? a :
4055     (T[])java.lang.reflect.Array
4056     .newInstance(a.getClass().getComponentType(), m);
4057     int n = r.length;
4058     int i = 0;
4059     Iterator<?> it = iterator();
4060     while (it.hasNext()) {
4061     if (i == n) {
4062     if (n >= MAX_ARRAY_SIZE)
4063     throw new OutOfMemoryError(oomeMsg);
4064     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4065     n = MAX_ARRAY_SIZE;
4066     else
4067     n += (n >>> 1) + 1;
4068     r = Arrays.copyOf(r, n);
4069     }
4070     r[i++] = (T)it.next();
4071     }
4072     if (a == r && i < n) {
4073     r[i] = null; // null-terminate
4074     return r;
4075     }
4076     return (i == n) ? r : Arrays.copyOf(r, i);
4077     }
4078    
4079     public final int hashCode() {
4080     int h = 0;
4081     for (Iterator<?> it = iterator(); it.hasNext();)
4082     h += it.next().hashCode();
4083     return h;
4084     }
4085    
4086     public final String toString() {
4087     StringBuilder sb = new StringBuilder();
4088     sb.append('[');
4089     Iterator<?> it = iterator();
4090     if (it.hasNext()) {
4091     for (;;) {
4092     Object e = it.next();
4093     sb.append(e == this ? "(this Collection)" : e);
4094     if (!it.hasNext())
4095     break;
4096     sb.append(',').append(' ');
4097     }
4098     }
4099     return sb.append(']').toString();
4100     }
4101    
4102     public final boolean containsAll(Collection<?> c) {
4103     if (c != this) {
4104     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4105     Object e = it.next();
4106     if (e == null || !contains(e))
4107     return false;
4108     }
4109     }
4110     return true;
4111     }
4112    
4113     public final boolean removeAll(Collection<?> c) {
4114     boolean modified = false;
4115     for (Iterator<?> it = iterator(); it.hasNext();) {
4116     if (c.contains(it.next())) {
4117     it.remove();
4118     modified = true;
4119     }
4120     }
4121     return modified;
4122     }
4123    
4124     public final boolean retainAll(Collection<?> c) {
4125     boolean modified = false;
4126     for (Iterator<?> it = iterator(); it.hasNext();) {
4127     if (!c.contains(it.next())) {
4128     it.remove();
4129     modified = true;
4130     }
4131     }
4132     return modified;
4133     }
4134    
4135     }
4136    
4137     /**
4138     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4139     * which additions may optionally be enabled by mapping to a
4140     * common value. This class cannot be directly instantiated. See
4141     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4142     * {@link #newKeySet(int)}.
4143     */
4144     public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4145     private static final long serialVersionUID = 7249069246763182397L;
4146     private final V value;
4147     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4148     super(map);
4149     this.value = value;
4150     }
4151    
4152     /**
4153     * Returns the default mapped value for additions,
4154     * or {@code null} if additions are not supported.
4155     *
4156     * @return the default mapped value for additions, or {@code null}
4157     * if not supported.
4158     */
4159     public V getMappedValue() { return value; }
4160    
4161     // implement Set API
4162    
4163     public boolean contains(Object o) { return map.containsKey(o); }
4164     public boolean remove(Object o) { return map.remove(o) != null; }
4165    
4166     /**
4167     * Returns a "weakly consistent" iterator that will never
4168     * throw {@link ConcurrentModificationException}, and
4169     * guarantees to traverse elements as they existed upon
4170     * construction of the iterator, and may (but is not
4171     * guaranteed to) reflect any modifications subsequent to
4172     * construction.
4173     *
4174     * @return an iterator over the keys of this map
4175     */
4176     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4177     public boolean add(K e) {
4178     V v;
4179     if ((v = value) == null)
4180     throw new UnsupportedOperationException();
4181     if (e == null)
4182     throw new NullPointerException();
4183     return map.internalPutIfAbsent(e, v) == null;
4184     }
4185     public boolean addAll(Collection<? extends K> c) {
4186     boolean added = false;
4187     V v;
4188     if ((v = value) == null)
4189     throw new UnsupportedOperationException();
4190     for (K e : c) {
4191     if (e == null)
4192     throw new NullPointerException();
4193     if (map.internalPutIfAbsent(e, v) == null)
4194     added = true;
4195     }
4196     return added;
4197     }
4198     public boolean equals(Object o) {
4199     Set<?> c;
4200     return ((o instanceof Set) &&
4201     ((c = (Set<?>)o) == this ||
4202     (containsAll(c) && c.containsAll(this))));
4203     }
4204    
4205     /**
4206     * Performs the given action for each key.
4207     *
4208     * @param action the action
4209     */
4210     public void forEach(Action<K> action) {
4211     ForkJoinTasks.forEachKey
4212     (map, action).invoke();
4213     }
4214    
4215     /**
4216     * Performs the given action for each non-null transformation
4217     * of each key.
4218     *
4219     * @param transformer a function returning the transformation
4220     * for an element, or null of there is no transformation (in
4221     * which case the action is not applied).
4222     * @param action the action
4223     */
4224     public <U> void forEach(Fun<? super K, ? extends U> transformer,
4225     Action<U> action) {
4226     ForkJoinTasks.forEachKey
4227     (map, transformer, action).invoke();
4228     }
4229    
4230     /**
4231     * Returns a non-null result from applying the given search
4232     * function on each key, or null if none. Upon success,
4233     * further element processing is suppressed and the results of
4234     * any other parallel invocations of the search function are
4235     * ignored.
4236     *
4237     * @param searchFunction a function returning a non-null
4238     * result on success, else null
4239     * @return a non-null result from applying the given search
4240     * function on each key, or null if none
4241     */
4242     public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4243     return ForkJoinTasks.searchKeys
4244     (map, searchFunction).invoke();
4245     }
4246    
4247     /**
4248     * Returns the result of accumulating all keys using the given
4249     * reducer to combine values, or null if none.
4250     *
4251     * @param reducer a commutative associative combining function
4252     * @return the result of accumulating all keys using the given
4253     * reducer to combine values, or null if none
4254     */
4255     public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4256     return ForkJoinTasks.reduceKeys
4257     (map, reducer).invoke();
4258     }
4259    
4260     /**
4261     * Returns the result of accumulating the given transformation
4262     * of all keys using the given reducer to combine values, and
4263     * the given basis as an identity value.
4264     *
4265     * @param transformer a function returning the transformation
4266     * for an element
4267     * @param basis the identity (initial default value) for the reduction
4268     * @param reducer a commutative associative combining function
4269     * @return the result of accumulating the given transformation
4270     * of all keys
4271     */
4272     public double reduceToDouble(ObjectToDouble<? super K> transformer,
4273     double basis,
4274     DoubleByDoubleToDouble reducer) {
4275     return ForkJoinTasks.reduceKeysToDouble
4276     (map, transformer, basis, reducer).invoke();
4277     }
4278    
4279    
4280     /**
4281     * Returns the result of accumulating the given transformation
4282     * of all keys using the given reducer to combine values, and
4283     * the given basis as an identity value.
4284     *
4285     * @param transformer a function returning the transformation
4286     * for an element
4287     * @param basis the identity (initial default value) for the reduction
4288     * @param reducer a commutative associative combining function
4289     * @return the result of accumulating the given transformation
4290     * of all keys
4291     */
4292     public long reduceToLong(ObjectToLong<? super K> transformer,
4293     long basis,
4294     LongByLongToLong reducer) {
4295     return ForkJoinTasks.reduceKeysToLong
4296     (map, transformer, basis, reducer).invoke();
4297     }
4298 jsr166 1.143
4299 dl 1.142 /**
4300     * Returns the result of accumulating the given transformation
4301     * of all keys using the given reducer to combine values, and
4302     * the given basis as an identity value.
4303     *
4304     * @param transformer a function returning the transformation
4305     * for an element
4306     * @param basis the identity (initial default value) for the reduction
4307     * @param reducer a commutative associative combining function
4308     * @return the result of accumulating the given transformation
4309     * of all keys
4310     */
4311     public int reduceToInt(ObjectToInt<? super K> transformer,
4312     int basis,
4313     IntByIntToInt reducer) {
4314     return ForkJoinTasks.reduceKeysToInt
4315     (map, transformer, basis, reducer).invoke();
4316     }
4317 jsr166 1.143
4318 dl 1.142 }
4319    
4320     /**
4321     * A view of a ConcurrentHashMap as a {@link Collection} of
4322     * values, in which additions are disabled. This class cannot be
4323     * directly instantiated. See {@link #values},
4324     *
4325     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4326     * that will never throw {@link ConcurrentModificationException},
4327     * and guarantees to traverse elements as they existed upon
4328     * construction of the iterator, and may (but is not guaranteed to)
4329     * reflect any modifications subsequent to construction.
4330     */
4331     public static final class ValuesView<K,V> extends CHMView<K,V>
4332     implements Collection<V> {
4333     ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4334     public final boolean contains(Object o) { return map.containsValue(o); }
4335     public final boolean remove(Object o) {
4336     if (o != null) {
4337     Iterator<V> it = new ValueIterator<K,V>(map);
4338     while (it.hasNext()) {
4339     if (o.equals(it.next())) {
4340     it.remove();
4341     return true;
4342     }
4343     }
4344     }
4345     return false;
4346     }
4347    
4348     /**
4349     * Returns a "weakly consistent" iterator that will never
4350     * throw {@link ConcurrentModificationException}, and
4351     * guarantees to traverse elements as they existed upon
4352     * construction of the iterator, and may (but is not
4353     * guaranteed to) reflect any modifications subsequent to
4354     * construction.
4355     *
4356     * @return an iterator over the values of this map
4357     */
4358     public final Iterator<V> iterator() {
4359     return new ValueIterator<K,V>(map);
4360     }
4361     public final boolean add(V e) {
4362     throw new UnsupportedOperationException();
4363     }
4364     public final boolean addAll(Collection<? extends V> c) {
4365     throw new UnsupportedOperationException();
4366     }
4367    
4368     /**
4369     * Performs the given action for each value.
4370     *
4371     * @param action the action
4372     */
4373     public void forEach(Action<V> action) {
4374     ForkJoinTasks.forEachValue
4375     (map, action).invoke();
4376     }
4377    
4378     /**
4379     * Performs the given action for each non-null transformation
4380     * of each value.
4381     *
4382     * @param transformer a function returning the transformation
4383     * for an element, or null of there is no transformation (in
4384     * which case the action is not applied).
4385     */
4386     public <U> void forEach(Fun<? super V, ? extends U> transformer,
4387     Action<U> action) {
4388     ForkJoinTasks.forEachValue
4389     (map, transformer, action).invoke();
4390     }
4391    
4392     /**
4393     * Returns a non-null result from applying the given search
4394     * function on each value, or null if none. Upon success,
4395     * further element processing is suppressed and the results of
4396     * any other parallel invocations of the search function are
4397     * ignored.
4398     *
4399     * @param searchFunction a function returning a non-null
4400     * result on success, else null
4401     * @return a non-null result from applying the given search
4402     * function on each value, or null if none
4403     *
4404     */
4405     public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4406     return ForkJoinTasks.searchValues
4407     (map, searchFunction).invoke();
4408     }
4409    
4410     /**
4411     * Returns the result of accumulating all values using the
4412     * given reducer to combine values, or null if none.
4413     *
4414     * @param reducer a commutative associative combining function
4415     * @return the result of accumulating all values
4416     */
4417     public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4418     return ForkJoinTasks.reduceValues
4419     (map, reducer).invoke();
4420     }
4421    
4422     /**
4423     * Returns the result of accumulating the given transformation
4424     * of all values using the given reducer to combine values, or
4425     * null if none.
4426     *
4427     * @param transformer a function returning the transformation
4428     * for an element, or null of there is no transformation (in
4429     * which case it is not combined).
4430     * @param reducer a commutative associative combining function
4431     * @return the result of accumulating the given transformation
4432     * of all values
4433     */
4434     public <U> U reduce(Fun<? super V, ? extends U> transformer,
4435     BiFun<? super U, ? super U, ? extends U> reducer) {
4436     return ForkJoinTasks.reduceValues
4437     (map, transformer, reducer).invoke();
4438     }
4439 jsr166 1.143
4440 dl 1.142 /**
4441     * Returns the result of accumulating the given transformation
4442     * of all values using the given reducer to combine values,
4443     * and the given basis as an identity value.
4444     *
4445     * @param transformer a function returning the transformation
4446     * for an element
4447     * @param basis the identity (initial default value) for the reduction
4448     * @param reducer a commutative associative combining function
4449     * @return the result of accumulating the given transformation
4450     * of all values
4451     */
4452     public double reduceToDouble(ObjectToDouble<? super V> transformer,
4453     double basis,
4454     DoubleByDoubleToDouble reducer) {
4455     return ForkJoinTasks.reduceValuesToDouble
4456     (map, transformer, basis, reducer).invoke();
4457     }
4458    
4459     /**
4460     * Returns the result of accumulating the given transformation
4461     * of all values using the given reducer to combine values,
4462     * and the given basis as an identity value.
4463     *
4464     * @param transformer a function returning the transformation
4465     * for an element
4466     * @param basis the identity (initial default value) for the reduction
4467     * @param reducer a commutative associative combining function
4468     * @return the result of accumulating the given transformation
4469     * of all values
4470     */
4471     public long reduceToLong(ObjectToLong<? super V> transformer,
4472     long basis,
4473     LongByLongToLong reducer) {
4474     return ForkJoinTasks.reduceValuesToLong
4475     (map, transformer, basis, reducer).invoke();
4476     }
4477    
4478     /**
4479     * Returns the result of accumulating the given transformation
4480     * of all values using the given reducer to combine values,
4481     * and the given basis as an identity value.
4482     *
4483     * @param transformer a function returning the transformation
4484     * for an element
4485     * @param basis the identity (initial default value) for the reduction
4486     * @param reducer a commutative associative combining function
4487     * @return the result of accumulating the given transformation
4488     * of all values
4489     */
4490     public int reduceToInt(ObjectToInt<? super V> transformer,
4491     int basis,
4492     IntByIntToInt reducer) {
4493     return ForkJoinTasks.reduceValuesToInt
4494     (map, transformer, basis, reducer).invoke();
4495     }
4496    
4497     }
4498    
4499     /**
4500     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4501     * entries. This class cannot be directly instantiated. See
4502     * {@link #entrySet}.
4503     */
4504     public static final class EntrySetView<K,V> extends CHMView<K,V>
4505     implements Set<Map.Entry<K,V>> {
4506     EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4507     public final boolean contains(Object o) {
4508     Object k, v, r; Map.Entry<?,?> e;
4509     return ((o instanceof Map.Entry) &&
4510     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4511     (r = map.get(k)) != null &&
4512     (v = e.getValue()) != null &&
4513     (v == r || v.equals(r)));
4514     }
4515     public final boolean remove(Object o) {
4516     Object k, v; Map.Entry<?,?> e;
4517     return ((o instanceof Map.Entry) &&
4518     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4519     (v = e.getValue()) != null &&
4520     map.remove(k, v));
4521     }
4522    
4523     /**
4524     * Returns a "weakly consistent" iterator that will never
4525     * throw {@link ConcurrentModificationException}, and
4526     * guarantees to traverse elements as they existed upon
4527     * construction of the iterator, and may (but is not
4528     * guaranteed to) reflect any modifications subsequent to
4529     * construction.
4530     *
4531     * @return an iterator over the entries of this map
4532     */
4533     public final Iterator<Map.Entry<K,V>> iterator() {
4534     return new EntryIterator<K,V>(map);
4535     }
4536    
4537     public final boolean add(Entry<K,V> e) {
4538     K key = e.getKey();
4539     V value = e.getValue();
4540     if (key == null || value == null)
4541     throw new NullPointerException();
4542     return map.internalPut(key, value) == null;
4543     }
4544     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4545     boolean added = false;
4546     for (Entry<K,V> e : c) {
4547     if (add(e))
4548     added = true;
4549     }
4550     return added;
4551     }
4552     public boolean equals(Object o) {
4553     Set<?> c;
4554     return ((o instanceof Set) &&
4555     ((c = (Set<?>)o) == this ||
4556     (containsAll(c) && c.containsAll(this))));
4557     }
4558    
4559     /**
4560     * Performs the given action for each entry.
4561     *
4562     * @param action the action
4563     */
4564     public void forEach(Action<Map.Entry<K,V>> action) {
4565     ForkJoinTasks.forEachEntry
4566     (map, action).invoke();
4567     }
4568    
4569     /**
4570     * Performs the given action for each non-null transformation
4571     * of each entry.
4572     *
4573     * @param transformer a function returning the transformation
4574     * for an element, or null of there is no transformation (in
4575     * which case the action is not applied).
4576     * @param action the action
4577     */
4578     public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4579     Action<U> action) {
4580     ForkJoinTasks.forEachEntry
4581     (map, transformer, action).invoke();
4582     }
4583    
4584     /**
4585     * Returns a non-null result from applying the given search
4586     * function on each entry, or null if none. Upon success,
4587     * further element processing is suppressed and the results of
4588     * any other parallel invocations of the search function are
4589     * ignored.
4590     *
4591     * @param searchFunction a function returning a non-null
4592     * result on success, else null
4593     * @return a non-null result from applying the given search
4594     * function on each entry, or null if none
4595     */
4596     public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4597     return ForkJoinTasks.searchEntries
4598     (map, searchFunction).invoke();
4599     }
4600    
4601     /**
4602     * Returns the result of accumulating all entries using the
4603     * given reducer to combine values, or null if none.
4604     *
4605     * @param reducer a commutative associative combining function
4606     * @return the result of accumulating all entries
4607     */
4608     public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4609     return ForkJoinTasks.reduceEntries
4610     (map, reducer).invoke();
4611     }
4612    
4613     /**
4614     * Returns the result of accumulating the given transformation
4615     * of all entries using the given reducer to combine values,
4616     * or null if none.
4617     *
4618     * @param transformer a function returning the transformation
4619     * for an element, or null of there is no transformation (in
4620     * which case it is not combined).
4621     * @param reducer a commutative associative combining function
4622     * @return the result of accumulating the given transformation
4623     * of all entries
4624     */
4625     public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4626     BiFun<? super U, ? super U, ? extends U> reducer) {
4627     return ForkJoinTasks.reduceEntries
4628     (map, transformer, reducer).invoke();
4629     }
4630    
4631     /**
4632     * Returns the result of accumulating the given transformation
4633     * of all entries using the given reducer to combine values,
4634     * and the given basis as an identity value.
4635     *
4636     * @param transformer a function returning the transformation
4637     * for an element
4638     * @param basis the identity (initial default value) for the reduction
4639     * @param reducer a commutative associative combining function
4640     * @return the result of accumulating the given transformation
4641     * of all entries
4642     */
4643     public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4644     double basis,
4645     DoubleByDoubleToDouble reducer) {
4646     return ForkJoinTasks.reduceEntriesToDouble
4647     (map, transformer, basis, reducer).invoke();
4648     }
4649    
4650     /**
4651     * Returns the result of accumulating the given transformation
4652     * of all entries using the given reducer to combine values,
4653     * and the given basis as an identity value.
4654     *
4655     * @param transformer a function returning the transformation
4656     * for an element
4657     * @param basis the identity (initial default value) for the reduction
4658     * @param reducer a commutative associative combining function
4659     * @return the result of accumulating the given transformation
4660     * of all entries
4661     */
4662     public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4663     long basis,
4664     LongByLongToLong reducer) {
4665     return ForkJoinTasks.reduceEntriesToLong
4666     (map, transformer, basis, reducer).invoke();
4667     }
4668    
4669     /**
4670     * Returns the result of accumulating the given transformation
4671     * of all entries using the given reducer to combine values,
4672     * and the given basis as an identity value.
4673     *
4674     * @param transformer a function returning the transformation
4675     * for an element
4676     * @param basis the identity (initial default value) for the reduction
4677     * @param reducer a commutative associative combining function
4678     * @return the result of accumulating the given transformation
4679     * of all entries
4680     */
4681     public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4682     int basis,
4683     IntByIntToInt reducer) {
4684     return ForkJoinTasks.reduceEntriesToInt
4685     (map, transformer, basis, reducer).invoke();
4686     }
4687    
4688     }
4689    
4690 dl 1.119 // ---------------------------------------------------------------------
4691    
4692     /**
4693     * Predefined tasks for performing bulk parallel operations on
4694     * ConcurrentHashMaps. These tasks follow the forms and rules used
4695 dl 1.137 * for bulk operations. Each method has the same name, but returns
4696     * a task rather than invoking it. These methods may be useful in
4697     * custom applications such as submitting a task without waiting
4698     * for completion, using a custom pool, or combining with other
4699     * tasks.
4700 dl 1.119 */
4701     public static class ForkJoinTasks {
4702     private ForkJoinTasks() {}
4703    
4704     /**
4705     * Returns a task that when invoked, performs the given
4706     * action for each (key, value)
4707     *
4708     * @param map the map
4709     * @param action the action
4710     * @return the task
4711     */
4712 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4713 dl 1.119 (ConcurrentHashMap<K,V> map,
4714     BiAction<K,V> action) {
4715     if (action == null) throw new NullPointerException();
4716 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4717 dl 1.119 }
4718    
4719     /**
4720     * Returns a task that when invoked, performs the given
4721     * action for each non-null transformation of each (key, value)
4722     *
4723     * @param map the map
4724     * @param transformer a function returning the transformation
4725 jsr166 1.135 * for an element, or null if there is no transformation (in
4726 jsr166 1.134 * which case the action is not applied)
4727 dl 1.119 * @param action the action
4728     * @return the task
4729     */
4730 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4731 dl 1.119 (ConcurrentHashMap<K,V> map,
4732     BiFun<? super K, ? super V, ? extends U> transformer,
4733     Action<U> action) {
4734     if (transformer == null || action == null)
4735     throw new NullPointerException();
4736     return new ForEachTransformedMappingTask<K,V,U>
4737 dl 1.146 (map, null, -1, transformer, action);
4738 dl 1.119 }
4739    
4740     /**
4741 dl 1.126 * Returns a task that when invoked, returns a non-null result
4742     * from applying the given search function on each (key,
4743     * value), or null if none. Upon success, further element
4744     * processing is suppressed and the results of any other
4745     * parallel invocations of the search function are ignored.
4746 dl 1.119 *
4747     * @param map the map
4748     * @param searchFunction a function returning a non-null
4749     * result on success, else null
4750     * @return the task
4751     */
4752     public static <K,V,U> ForkJoinTask<U> search
4753     (ConcurrentHashMap<K,V> map,
4754     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4755     if (searchFunction == null) throw new NullPointerException();
4756     return new SearchMappingsTask<K,V,U>
4757 dl 1.146 (map, null, -1, searchFunction,
4758 dl 1.119 new AtomicReference<U>());
4759     }
4760    
4761     /**
4762     * Returns a task that when invoked, returns the result of
4763     * accumulating the given transformation of all (key, value) pairs
4764     * using the given reducer to combine values, or null if none.
4765     *
4766     * @param map the map
4767     * @param transformer a function returning the transformation
4768 jsr166 1.135 * for an element, or null if there is no transformation (in
4769 dl 1.119 * which case it is not combined).
4770     * @param reducer a commutative associative combining function
4771     * @return the task
4772     */
4773     public static <K,V,U> ForkJoinTask<U> reduce
4774     (ConcurrentHashMap<K,V> map,
4775     BiFun<? super K, ? super V, ? extends U> transformer,
4776     BiFun<? super U, ? super U, ? extends U> reducer) {
4777     if (transformer == null || reducer == null)
4778     throw new NullPointerException();
4779     return new MapReduceMappingsTask<K,V,U>
4780 dl 1.130 (map, null, -1, null, transformer, reducer);
4781 dl 1.119 }
4782    
4783     /**
4784     * Returns a task that when invoked, returns the result of
4785     * accumulating the given transformation of all (key, value) pairs
4786     * using the given reducer to combine values, and the given
4787     * basis as an identity value.
4788     *
4789     * @param map the map
4790     * @param transformer a function returning the transformation
4791     * for an element
4792     * @param basis the identity (initial default value) for the reduction
4793     * @param reducer a commutative associative combining function
4794     * @return the task
4795     */
4796     public static <K,V> ForkJoinTask<Double> reduceToDouble
4797     (ConcurrentHashMap<K,V> map,
4798     ObjectByObjectToDouble<? super K, ? super V> transformer,
4799     double basis,
4800     DoubleByDoubleToDouble reducer) {
4801     if (transformer == null || reducer == null)
4802     throw new NullPointerException();
4803     return new MapReduceMappingsToDoubleTask<K,V>
4804 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4805 dl 1.119 }
4806    
4807     /**
4808     * Returns a task that when invoked, returns the result of
4809     * accumulating the given transformation of all (key, value) pairs
4810     * using the given reducer to combine values, and the given
4811     * basis as an identity value.
4812     *
4813     * @param map the map
4814     * @param transformer a function returning the transformation
4815     * for an element
4816     * @param basis the identity (initial default value) for the reduction
4817     * @param reducer a commutative associative combining function
4818     * @return the task
4819     */
4820     public static <K,V> ForkJoinTask<Long> reduceToLong
4821     (ConcurrentHashMap<K,V> map,
4822     ObjectByObjectToLong<? super K, ? super V> transformer,
4823     long basis,
4824     LongByLongToLong reducer) {
4825     if (transformer == null || reducer == null)
4826     throw new NullPointerException();
4827     return new MapReduceMappingsToLongTask<K,V>
4828 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4829 dl 1.119 }
4830    
4831     /**
4832     * Returns a task that when invoked, returns the result of
4833     * accumulating the given transformation of all (key, value) pairs
4834     * using the given reducer to combine values, and the given
4835     * basis as an identity value.
4836     *
4837     * @param transformer a function returning the transformation
4838     * for an element
4839     * @param basis the identity (initial default value) for the reduction
4840     * @param reducer a commutative associative combining function
4841     * @return the task
4842     */
4843     public static <K,V> ForkJoinTask<Integer> reduceToInt
4844     (ConcurrentHashMap<K,V> map,
4845     ObjectByObjectToInt<? super K, ? super V> transformer,
4846     int basis,
4847     IntByIntToInt reducer) {
4848     if (transformer == null || reducer == null)
4849     throw new NullPointerException();
4850     return new MapReduceMappingsToIntTask<K,V>
4851 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4852 dl 1.119 }
4853    
4854     /**
4855     * Returns a task that when invoked, performs the given action
4856 jsr166 1.123 * for each key.
4857 dl 1.119 *
4858     * @param map the map
4859     * @param action the action
4860     * @return the task
4861     */
4862 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4863 dl 1.119 (ConcurrentHashMap<K,V> map,
4864     Action<K> action) {
4865     if (action == null) throw new NullPointerException();
4866 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4867 dl 1.119 }
4868    
4869     /**
4870     * Returns a task that when invoked, performs the given action
4871 jsr166 1.123 * for each non-null transformation of each key.
4872 dl 1.119 *
4873     * @param map the map
4874     * @param transformer a function returning the transformation
4875 jsr166 1.135 * for an element, or null if there is no transformation (in
4876 jsr166 1.134 * which case the action is not applied)
4877 dl 1.119 * @param action the action
4878     * @return the task
4879     */
4880 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4881 dl 1.119 (ConcurrentHashMap<K,V> map,
4882     Fun<? super K, ? extends U> transformer,
4883     Action<U> action) {
4884     if (transformer == null || action == null)
4885     throw new NullPointerException();
4886     return new ForEachTransformedKeyTask<K,V,U>
4887 dl 1.146 (map, null, -1, transformer, action);
4888 dl 1.119 }
4889    
4890     /**
4891     * Returns a task that when invoked, returns a non-null result
4892     * from applying the given search function on each key, or
4893 dl 1.126 * null if none. Upon success, further element processing is
4894     * suppressed and the results of any other parallel
4895     * invocations of the search function are ignored.
4896 dl 1.119 *
4897     * @param map the map
4898     * @param searchFunction a function returning a non-null
4899     * result on success, else null
4900     * @return the task
4901     */
4902     public static <K,V,U> ForkJoinTask<U> searchKeys
4903     (ConcurrentHashMap<K,V> map,
4904     Fun<? super K, ? extends U> searchFunction) {
4905     if (searchFunction == null) throw new NullPointerException();
4906     return new SearchKeysTask<K,V,U>
4907 dl 1.146 (map, null, -1, searchFunction,
4908 dl 1.119 new AtomicReference<U>());
4909     }
4910    
4911     /**
4912     * Returns a task that when invoked, returns the result of
4913     * accumulating all keys using the given reducer to combine
4914     * values, or null if none.
4915     *
4916     * @param map the map
4917     * @param reducer a commutative associative combining function
4918     * @return the task
4919     */
4920     public static <K,V> ForkJoinTask<K> reduceKeys
4921     (ConcurrentHashMap<K,V> map,
4922     BiFun<? super K, ? super K, ? extends K> reducer) {
4923     if (reducer == null) throw new NullPointerException();
4924     return new ReduceKeysTask<K,V>
4925 dl 1.130 (map, null, -1, null, reducer);
4926 dl 1.119 }
4927 jsr166 1.125
4928 dl 1.119 /**
4929     * Returns a task that when invoked, returns the result of
4930     * accumulating the given transformation of all keys using the given
4931     * reducer to combine values, or null if none.
4932     *
4933     * @param map the map
4934     * @param transformer a function returning the transformation
4935 jsr166 1.135 * for an element, or null if there is no transformation (in
4936 dl 1.119 * which case it is not combined).
4937     * @param reducer a commutative associative combining function
4938     * @return the task
4939     */
4940     public static <K,V,U> ForkJoinTask<U> reduceKeys
4941     (ConcurrentHashMap<K,V> map,
4942     Fun<? super K, ? extends U> transformer,
4943     BiFun<? super U, ? super U, ? extends U> reducer) {
4944     if (transformer == null || reducer == null)
4945     throw new NullPointerException();
4946     return new MapReduceKeysTask<K,V,U>
4947 dl 1.130 (map, null, -1, null, transformer, reducer);
4948 dl 1.119 }
4949    
4950     /**
4951     * Returns a task that when invoked, returns the result of
4952     * accumulating the given transformation of all keys using the given
4953     * reducer to combine values, and the given basis as an
4954     * identity value.
4955     *
4956     * @param map the map
4957     * @param transformer a function returning the transformation
4958     * for an element
4959     * @param basis the identity (initial default value) for the reduction
4960     * @param reducer a commutative associative combining function
4961     * @return the task
4962     */
4963     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4964     (ConcurrentHashMap<K,V> map,
4965     ObjectToDouble<? super K> transformer,
4966     double basis,
4967     DoubleByDoubleToDouble reducer) {
4968     if (transformer == null || reducer == null)
4969     throw new NullPointerException();
4970     return new MapReduceKeysToDoubleTask<K,V>
4971 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4972 dl 1.119 }
4973    
4974     /**
4975     * Returns a task that when invoked, returns the result of
4976     * accumulating the given transformation of all keys using the given
4977     * reducer to combine values, and the given basis as an
4978     * identity value.
4979     *
4980     * @param map the map
4981     * @param transformer a function returning the transformation
4982     * for an element
4983     * @param basis the identity (initial default value) for the reduction
4984     * @param reducer a commutative associative combining function
4985     * @return the task
4986     */
4987     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4988     (ConcurrentHashMap<K,V> map,
4989     ObjectToLong<? super K> transformer,
4990     long basis,
4991     LongByLongToLong reducer) {
4992     if (transformer == null || reducer == null)
4993     throw new NullPointerException();
4994     return new MapReduceKeysToLongTask<K,V>
4995 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4996 dl 1.119 }
4997    
4998     /**
4999     * Returns a task that when invoked, returns the result of
5000     * accumulating the given transformation of all keys using the given
5001     * reducer to combine values, and the given basis as an
5002     * identity value.
5003     *
5004     * @param map the map
5005     * @param transformer a function returning the transformation
5006     * for an element
5007     * @param basis the identity (initial default value) for the reduction
5008     * @param reducer a commutative associative combining function
5009     * @return the task
5010     */
5011     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5012     (ConcurrentHashMap<K,V> map,
5013     ObjectToInt<? super K> transformer,
5014     int basis,
5015     IntByIntToInt reducer) {
5016     if (transformer == null || reducer == null)
5017     throw new NullPointerException();
5018     return new MapReduceKeysToIntTask<K,V>
5019 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5020 dl 1.119 }
5021    
5022     /**
5023     * Returns a task that when invoked, performs the given action
5024 jsr166 1.123 * for each value.
5025 dl 1.119 *
5026     * @param map the map
5027     * @param action the action
5028     */
5029 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5030 dl 1.119 (ConcurrentHashMap<K,V> map,
5031     Action<V> action) {
5032     if (action == null) throw new NullPointerException();
5033 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5034 dl 1.119 }
5035    
5036     /**
5037     * Returns a task that when invoked, performs the given action
5038 jsr166 1.123 * for each non-null transformation of each value.
5039 dl 1.119 *
5040     * @param map the map
5041     * @param transformer a function returning the transformation
5042 jsr166 1.135 * for an element, or null if there is no transformation (in
5043 jsr166 1.134 * which case the action is not applied)
5044 dl 1.119 * @param action the action
5045     */
5046 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5047 dl 1.119 (ConcurrentHashMap<K,V> map,
5048     Fun<? super V, ? extends U> transformer,
5049     Action<U> action) {
5050     if (transformer == null || action == null)
5051     throw new NullPointerException();
5052     return new ForEachTransformedValueTask<K,V,U>
5053 dl 1.146 (map, null, -1, transformer, action);
5054 dl 1.119 }
5055    
5056     /**
5057     * Returns a task that when invoked, returns a non-null result
5058     * from applying the given search function on each value, or
5059 dl 1.126 * null if none. Upon success, further element processing is
5060     * suppressed and the results of any other parallel
5061     * invocations of the search function are ignored.
5062 dl 1.119 *
5063     * @param map the map
5064     * @param searchFunction a function returning a non-null
5065     * result on success, else null
5066     * @return the task
5067     */
5068     public static <K,V,U> ForkJoinTask<U> searchValues
5069     (ConcurrentHashMap<K,V> map,
5070     Fun<? super V, ? extends U> searchFunction) {
5071     if (searchFunction == null) throw new NullPointerException();
5072     return new SearchValuesTask<K,V,U>
5073 dl 1.146 (map, null, -1, searchFunction,
5074 dl 1.119 new AtomicReference<U>());
5075     }
5076    
5077     /**
5078     * Returns a task that when invoked, returns the result of
5079     * accumulating all values using the given reducer to combine
5080     * values, or null if none.
5081     *
5082     * @param map the map
5083     * @param reducer a commutative associative combining function
5084     * @return the task
5085     */
5086     public static <K,V> ForkJoinTask<V> reduceValues
5087     (ConcurrentHashMap<K,V> map,
5088     BiFun<? super V, ? super V, ? extends V> reducer) {
5089     if (reducer == null) throw new NullPointerException();
5090     return new ReduceValuesTask<K,V>
5091 dl 1.130 (map, null, -1, null, reducer);
5092 dl 1.119 }
5093    
5094     /**
5095     * Returns a task that when invoked, returns the result of
5096     * accumulating the given transformation of all values using the
5097     * given reducer to combine values, or null if none.
5098     *
5099     * @param map the map
5100     * @param transformer a function returning the transformation
5101 jsr166 1.135 * for an element, or null if there is no transformation (in
5102 dl 1.119 * which case it is not combined).
5103     * @param reducer a commutative associative combining function
5104     * @return the task
5105     */
5106     public static <K,V,U> ForkJoinTask<U> reduceValues
5107     (ConcurrentHashMap<K,V> map,
5108     Fun<? super V, ? extends U> transformer,
5109     BiFun<? super U, ? super U, ? extends U> reducer) {
5110     if (transformer == null || reducer == null)
5111     throw new NullPointerException();
5112     return new MapReduceValuesTask<K,V,U>
5113 dl 1.130 (map, null, -1, null, transformer, reducer);
5114 dl 1.119 }
5115    
5116     /**
5117     * Returns a task that when invoked, returns the result of
5118     * accumulating the given transformation of all values using the
5119     * given reducer to combine values, and the given basis as an
5120     * identity value.
5121     *
5122     * @param map the map
5123     * @param transformer a function returning the transformation
5124     * for an element
5125     * @param basis the identity (initial default value) for the reduction
5126     * @param reducer a commutative associative combining function
5127     * @return the task
5128     */
5129     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5130     (ConcurrentHashMap<K,V> map,
5131     ObjectToDouble<? super V> transformer,
5132     double basis,
5133     DoubleByDoubleToDouble reducer) {
5134     if (transformer == null || reducer == null)
5135     throw new NullPointerException();
5136     return new MapReduceValuesToDoubleTask<K,V>
5137 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5138 dl 1.119 }
5139    
5140     /**
5141     * Returns a task that when invoked, returns the result of
5142     * accumulating the given transformation of all values using the
5143     * given reducer to combine values, and the given basis as an
5144     * identity value.
5145     *
5146     * @param map the map
5147     * @param transformer a function returning the transformation
5148     * for an element
5149     * @param basis the identity (initial default value) for the reduction
5150     * @param reducer a commutative associative combining function
5151     * @return the task
5152     */
5153     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5154     (ConcurrentHashMap<K,V> map,
5155     ObjectToLong<? super V> transformer,
5156     long basis,
5157     LongByLongToLong reducer) {
5158     if (transformer == null || reducer == null)
5159     throw new NullPointerException();
5160     return new MapReduceValuesToLongTask<K,V>
5161 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5162 dl 1.119 }
5163    
5164     /**
5165     * Returns a task that when invoked, returns the result of
5166     * accumulating the given transformation of all values using the
5167     * given reducer to combine values, and the given basis as an
5168     * identity value.
5169     *
5170     * @param map the map
5171     * @param transformer a function returning the transformation
5172     * for an element
5173     * @param basis the identity (initial default value) for the reduction
5174     * @param reducer a commutative associative combining function
5175     * @return the task
5176     */
5177     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5178     (ConcurrentHashMap<K,V> map,
5179     ObjectToInt<? super V> transformer,
5180     int basis,
5181     IntByIntToInt reducer) {
5182     if (transformer == null || reducer == null)
5183     throw new NullPointerException();
5184     return new MapReduceValuesToIntTask<K,V>
5185 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5186 dl 1.119 }
5187    
5188     /**
5189     * Returns a task that when invoked, perform the given action
5190 jsr166 1.123 * for each entry.
5191 dl 1.119 *
5192     * @param map the map
5193     * @param action the action
5194     */
5195 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5196 dl 1.119 (ConcurrentHashMap<K,V> map,
5197     Action<Map.Entry<K,V>> action) {
5198     if (action == null) throw new NullPointerException();
5199 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5200 dl 1.119 }
5201    
5202     /**
5203     * Returns a task that when invoked, perform the given action
5204 jsr166 1.123 * for each non-null transformation of each entry.
5205 dl 1.119 *
5206     * @param map the map
5207     * @param transformer a function returning the transformation
5208 jsr166 1.135 * for an element, or null if there is no transformation (in
5209 jsr166 1.134 * which case the action is not applied)
5210 dl 1.119 * @param action the action
5211     */
5212 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5213 dl 1.119 (ConcurrentHashMap<K,V> map,
5214     Fun<Map.Entry<K,V>, ? extends U> transformer,
5215     Action<U> action) {
5216     if (transformer == null || action == null)
5217     throw new NullPointerException();
5218     return new ForEachTransformedEntryTask<K,V,U>
5219 dl 1.146 (map, null, -1, transformer, action);
5220 dl 1.119 }
5221    
5222     /**
5223     * Returns a task that when invoked, returns a non-null result
5224     * from applying the given search function on each entry, or
5225 dl 1.126 * null if none. Upon success, further element processing is
5226     * suppressed and the results of any other parallel
5227     * invocations of the search function are ignored.
5228 dl 1.119 *
5229     * @param map the map
5230     * @param searchFunction a function returning a non-null
5231     * result on success, else null
5232     * @return the task
5233     */
5234     public static <K,V,U> ForkJoinTask<U> searchEntries
5235     (ConcurrentHashMap<K,V> map,
5236     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5237     if (searchFunction == null) throw new NullPointerException();
5238     return new SearchEntriesTask<K,V,U>
5239 dl 1.146 (map, null, -1, searchFunction,
5240 dl 1.119 new AtomicReference<U>());
5241     }
5242    
5243     /**
5244     * Returns a task that when invoked, returns the result of
5245     * accumulating all entries using the given reducer to combine
5246     * values, or null if none.
5247     *
5248     * @param map the map
5249     * @param reducer a commutative associative combining function
5250     * @return the task
5251     */
5252     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5253     (ConcurrentHashMap<K,V> map,
5254     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5255     if (reducer == null) throw new NullPointerException();
5256     return new ReduceEntriesTask<K,V>
5257 dl 1.130 (map, null, -1, null, reducer);
5258 dl 1.119 }
5259    
5260     /**
5261     * Returns a task that when invoked, returns the result of
5262     * accumulating the given transformation of all entries using the
5263     * given reducer to combine values, or null if none.
5264     *
5265     * @param map the map
5266     * @param transformer a function returning the transformation
5267 jsr166 1.135 * for an element, or null if there is no transformation (in
5268 dl 1.119 * which case it is not combined).
5269     * @param reducer a commutative associative combining function
5270     * @return the task
5271     */
5272     public static <K,V,U> ForkJoinTask<U> reduceEntries
5273     (ConcurrentHashMap<K,V> map,
5274     Fun<Map.Entry<K,V>, ? extends U> transformer,
5275     BiFun<? super U, ? super U, ? extends U> reducer) {
5276     if (transformer == null || reducer == null)
5277     throw new NullPointerException();
5278     return new MapReduceEntriesTask<K,V,U>
5279 dl 1.130 (map, null, -1, null, transformer, reducer);
5280 dl 1.119 }
5281    
5282     /**
5283     * Returns a task that when invoked, returns the result of
5284     * accumulating the given transformation of all entries using the
5285     * given reducer to combine values, and the given basis as an
5286     * identity value.
5287     *
5288     * @param map the map
5289     * @param transformer a function returning the transformation
5290     * for an element
5291     * @param basis the identity (initial default value) for the reduction
5292     * @param reducer a commutative associative combining function
5293     * @return the task
5294     */
5295     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5296     (ConcurrentHashMap<K,V> map,
5297     ObjectToDouble<Map.Entry<K,V>> transformer,
5298     double basis,
5299     DoubleByDoubleToDouble reducer) {
5300     if (transformer == null || reducer == null)
5301     throw new NullPointerException();
5302     return new MapReduceEntriesToDoubleTask<K,V>
5303 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5304 dl 1.119 }
5305    
5306     /**
5307     * Returns a task that when invoked, returns the result of
5308     * accumulating the given transformation of all entries using the
5309     * given reducer to combine values, and the given basis as an
5310     * identity value.
5311     *
5312     * @param map the map
5313     * @param transformer a function returning the transformation
5314     * for an element
5315     * @param basis the identity (initial default value) for the reduction
5316     * @param reducer a commutative associative combining function
5317     * @return the task
5318     */
5319     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5320     (ConcurrentHashMap<K,V> map,
5321     ObjectToLong<Map.Entry<K,V>> transformer,
5322     long basis,
5323     LongByLongToLong reducer) {
5324     if (transformer == null || reducer == null)
5325     throw new NullPointerException();
5326     return new MapReduceEntriesToLongTask<K,V>
5327 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5328 dl 1.119 }
5329    
5330     /**
5331     * Returns a task that when invoked, returns the result of
5332     * accumulating the given transformation of all entries using the
5333     * given reducer to combine values, and the given basis as an
5334     * identity value.
5335     *
5336     * @param map the map
5337     * @param transformer a function returning the transformation
5338     * for an element
5339     * @param basis the identity (initial default value) for the reduction
5340     * @param reducer a commutative associative combining function
5341     * @return the task
5342     */
5343     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5344     (ConcurrentHashMap<K,V> map,
5345     ObjectToInt<Map.Entry<K,V>> transformer,
5346     int basis,
5347     IntByIntToInt reducer) {
5348     if (transformer == null || reducer == null)
5349     throw new NullPointerException();
5350     return new MapReduceEntriesToIntTask<K,V>
5351 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5352 dl 1.119 }
5353     }
5354    
5355     // -------------------------------------------------------
5356    
5357     /*
5358     * Task classes. Coded in a regular but ugly format/style to
5359     * simplify checks that each variant differs in the right way from
5360     * others.
5361     */
5362    
5363 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5364 dl 1.146 extends Traverser<K,V,Void> {
5365 dl 1.119 final Action<K> action;
5366     ForEachKeyTask
5367 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5368 dl 1.119 Action<K> action) {
5369 dl 1.146 super(m, p, b);
5370 dl 1.119 this.action = action;
5371     }
5372 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5373     final Action<K> action;
5374     if ((action = this.action) == null)
5375     throw new NullPointerException();
5376     for (int b; (b = preSplit()) > 0;)
5377     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5378     while (advance() != null)
5379     action.apply((K)nextKey);
5380     propagateCompletion();
5381 dl 1.119 }
5382     }
5383    
5384 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5385 dl 1.146 extends Traverser<K,V,Void> {
5386 dl 1.119 final Action<V> action;
5387     ForEachValueTask
5388 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5389 dl 1.119 Action<V> action) {
5390 dl 1.146 super(m, p, b);
5391 dl 1.119 this.action = action;
5392     }
5393 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5394     final Action<V> action;
5395     if ((action = this.action) == null)
5396     throw new NullPointerException();
5397     for (int b; (b = preSplit()) > 0;)
5398     new ForEachValueTask<K,V>(map, this, b, action).fork();
5399     Object v;
5400     while ((v = advance()) != null)
5401     action.apply((V)v);
5402     propagateCompletion();
5403 dl 1.119 }
5404     }
5405    
5406 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5407 dl 1.146 extends Traverser<K,V,Void> {
5408 dl 1.119 final Action<Entry<K,V>> action;
5409     ForEachEntryTask
5410 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5411 dl 1.119 Action<Entry<K,V>> action) {
5412 dl 1.146 super(m, p, b);
5413 dl 1.119 this.action = action;
5414     }
5415 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5416     final Action<Entry<K,V>> action;
5417     if ((action = this.action) == null)
5418     throw new NullPointerException();
5419     for (int b; (b = preSplit()) > 0;)
5420     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5421     Object v;
5422     while ((v = advance()) != null)
5423     action.apply(entryFor((K)nextKey, (V)v));
5424     propagateCompletion();
5425 dl 1.119 }
5426     }
5427    
5428 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5429 dl 1.146 extends Traverser<K,V,Void> {
5430 dl 1.119 final BiAction<K,V> action;
5431     ForEachMappingTask
5432 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5433 dl 1.119 BiAction<K,V> action) {
5434 dl 1.146 super(m, p, b);
5435 dl 1.119 this.action = action;
5436     }
5437 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5438     final BiAction<K,V> action;
5439     if ((action = this.action) == null)
5440     throw new NullPointerException();
5441     for (int b; (b = preSplit()) > 0;)
5442     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5443     Object v;
5444     while ((v = advance()) != null)
5445     action.apply((K)nextKey, (V)v);
5446     propagateCompletion();
5447 dl 1.119 }
5448     }
5449    
5450 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5451 dl 1.146 extends Traverser<K,V,Void> {
5452 dl 1.119 final Fun<? super K, ? extends U> transformer;
5453     final Action<U> action;
5454     ForEachTransformedKeyTask
5455 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5456     Fun<? super K, ? extends U> transformer, Action<U> action) {
5457     super(m, p, b);
5458     this.transformer = transformer; this.action = action;
5459     }
5460     @SuppressWarnings("unchecked") public final void compute() {
5461     final Fun<? super K, ? extends U> transformer;
5462     final Action<U> action;
5463     if ((transformer = this.transformer) == null ||
5464     (action = this.action) == null)
5465     throw new NullPointerException();
5466     for (int b; (b = preSplit()) > 0;)
5467     new ForEachTransformedKeyTask<K,V,U>
5468     (map, this, b, transformer, action).fork();
5469     U u;
5470     while (advance() != null) {
5471     if ((u = transformer.apply((K)nextKey)) != null)
5472     action.apply(u);
5473 dl 1.119 }
5474 dl 1.146 propagateCompletion();
5475 dl 1.119 }
5476     }
5477    
5478 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5479 dl 1.146 extends Traverser<K,V,Void> {
5480 dl 1.119 final Fun<? super V, ? extends U> transformer;
5481     final Action<U> action;
5482     ForEachTransformedValueTask
5483 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5484     Fun<? super V, ? extends U> transformer, Action<U> action) {
5485     super(m, p, b);
5486     this.transformer = transformer; this.action = action;
5487     }
5488     @SuppressWarnings("unchecked") public final void compute() {
5489     final Fun<? super V, ? extends U> transformer;
5490     final Action<U> action;
5491     if ((transformer = this.transformer) == null ||
5492     (action = this.action) == null)
5493     throw new NullPointerException();
5494     for (int b; (b = preSplit()) > 0;)
5495     new ForEachTransformedValueTask<K,V,U>
5496     (map, this, b, transformer, action).fork();
5497     Object v; U u;
5498     while ((v = advance()) != null) {
5499     if ((u = transformer.apply((V)v)) != null)
5500     action.apply(u);
5501 dl 1.119 }
5502 dl 1.146 propagateCompletion();
5503 dl 1.119 }
5504 tim 1.1 }
5505    
5506 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5507 dl 1.146 extends Traverser<K,V,Void> {
5508 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5509     final Action<U> action;
5510     ForEachTransformedEntryTask
5511 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5512     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5513     super(m, p, b);
5514     this.transformer = transformer; this.action = action;
5515     }
5516     @SuppressWarnings("unchecked") public final void compute() {
5517     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5518     final Action<U> action;
5519     if ((transformer = this.transformer) == null ||
5520     (action = this.action) == null)
5521     throw new NullPointerException();
5522     for (int b; (b = preSplit()) > 0;)
5523     new ForEachTransformedEntryTask<K,V,U>
5524     (map, this, b, transformer, action).fork();
5525     Object v; U u;
5526     while ((v = advance()) != null) {
5527     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5528     action.apply(u);
5529 dl 1.119 }
5530 dl 1.146 propagateCompletion();
5531 dl 1.119 }
5532 tim 1.1 }
5533    
5534 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5535 dl 1.146 extends Traverser<K,V,Void> {
5536 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer;
5537     final Action<U> action;
5538     ForEachTransformedMappingTask
5539 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5540 dl 1.119 BiFun<? super K, ? super V, ? extends U> transformer,
5541     Action<U> action) {
5542 dl 1.146 super(m, p, b);
5543     this.transformer = transformer; this.action = action;
5544 dl 1.119 }
5545 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5546     final BiFun<? super K, ? super V, ? extends U> transformer;
5547     final Action<U> action;
5548     if ((transformer = this.transformer) == null ||
5549     (action = this.action) == null)
5550     throw new NullPointerException();
5551     for (int b; (b = preSplit()) > 0;)
5552     new ForEachTransformedMappingTask<K,V,U>
5553     (map, this, b, transformer, action).fork();
5554     Object v; U u;
5555     while ((v = advance()) != null) {
5556     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5557     action.apply(u);
5558 dl 1.119 }
5559 dl 1.146 propagateCompletion();
5560 dl 1.119 }
5561 tim 1.1 }
5562    
5563 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5564 dl 1.146 extends Traverser<K,V,U> {
5565 dl 1.119 final Fun<? super K, ? extends U> searchFunction;
5566     final AtomicReference<U> result;
5567     SearchKeysTask
5568 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5569 dl 1.119 Fun<? super K, ? extends U> searchFunction,
5570     AtomicReference<U> result) {
5571 dl 1.146 super(m, p, b);
5572 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5573     }
5574 dl 1.146 public final U getRawResult() { return result.get(); }
5575     @SuppressWarnings("unchecked") public final void compute() {
5576     final Fun<? super K, ? extends U> searchFunction;
5577     final AtomicReference<U> result;
5578     if ((searchFunction = this.searchFunction) == null ||
5579     (result = this.result) == null)
5580     throw new NullPointerException();
5581     for (int b;;) {
5582     if (result.get() != null)
5583     return;
5584     if ((b = preSplit()) <= 0)
5585     break;
5586     new SearchKeysTask<K,V,U>
5587     (map, this, b, searchFunction, result).fork();
5588     }
5589     while (result.get() == null) {
5590     U u;
5591     if (advance() == null) {
5592     propagateCompletion();
5593     break;
5594 dl 1.128 }
5595 dl 1.146 if ((u = searchFunction.apply((K)nextKey)) != null) {
5596     if (result.compareAndSet(null, u))
5597     quietlyCompleteRoot();
5598     break;
5599 dl 1.119 }
5600     }
5601     }
5602 tim 1.1 }
5603    
5604 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5605 dl 1.146 extends Traverser<K,V,U> {
5606 dl 1.119 final Fun<? super V, ? extends U> searchFunction;
5607     final AtomicReference<U> result;
5608     SearchValuesTask
5609 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5610 dl 1.119 Fun<? super V, ? extends U> searchFunction,
5611     AtomicReference<U> result) {
5612 dl 1.146 super(m, p, b);
5613 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5614     }
5615 dl 1.146 public final U getRawResult() { return result.get(); }
5616     @SuppressWarnings("unchecked") public final void compute() {
5617     final Fun<? super V, ? extends U> searchFunction;
5618     final AtomicReference<U> result;
5619     if ((searchFunction = this.searchFunction) == null ||
5620     (result = this.result) == null)
5621     throw new NullPointerException();
5622     for (int b;;) {
5623     if (result.get() != null)
5624     return;
5625     if ((b = preSplit()) <= 0)
5626     break;
5627     new SearchValuesTask<K,V,U>
5628     (map, this, b, searchFunction, result).fork();
5629     }
5630     while (result.get() == null) {
5631     Object v; U u;
5632     if ((v = advance()) == null) {
5633     propagateCompletion();
5634     break;
5635 dl 1.128 }
5636 dl 1.146 if ((u = searchFunction.apply((V)v)) != null) {
5637     if (result.compareAndSet(null, u))
5638     quietlyCompleteRoot();
5639     break;
5640 dl 1.119 }
5641     }
5642     }
5643     }
5644 tim 1.11
5645 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5646 dl 1.146 extends Traverser<K,V,U> {
5647 dl 1.119 final Fun<Entry<K,V>, ? extends U> searchFunction;
5648     final AtomicReference<U> result;
5649     SearchEntriesTask
5650 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5651 dl 1.119 Fun<Entry<K,V>, ? extends U> searchFunction,
5652     AtomicReference<U> result) {
5653 dl 1.146 super(m, p, b);
5654 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5655     }
5656 dl 1.146 public final U getRawResult() { return result.get(); }
5657     @SuppressWarnings("unchecked") public final void compute() {
5658     final Fun<Entry<K,V>, ? extends U> searchFunction;
5659     final AtomicReference<U> result;
5660     if ((searchFunction = this.searchFunction) == null ||
5661     (result = this.result) == null)
5662     throw new NullPointerException();
5663     for (int b;;) {
5664     if (result.get() != null)
5665     return;
5666     if ((b = preSplit()) <= 0)
5667     break;
5668     new SearchEntriesTask<K,V,U>
5669     (map, this, b, searchFunction, result).fork();
5670     }
5671     while (result.get() == null) {
5672     Object v; U u;
5673     if ((v = advance()) == null) {
5674     propagateCompletion();
5675     break;
5676 dl 1.128 }
5677 dl 1.146 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5678     if (result.compareAndSet(null, u))
5679     quietlyCompleteRoot();
5680     return;
5681 dl 1.119 }
5682     }
5683     }
5684     }
5685 tim 1.1
5686 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5687 dl 1.146 extends Traverser<K,V,U> {
5688 dl 1.119 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5689     final AtomicReference<U> result;
5690     SearchMappingsTask
5691 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5692 dl 1.119 BiFun<? super K, ? super V, ? extends U> searchFunction,
5693     AtomicReference<U> result) {
5694 dl 1.146 super(m, p, b);
5695 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5696     }
5697 dl 1.146 public final U getRawResult() { return result.get(); }
5698     @SuppressWarnings("unchecked") public final void compute() {
5699     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5700     final AtomicReference<U> result;
5701     if ((searchFunction = this.searchFunction) == null ||
5702     (result = this.result) == null)
5703     throw new NullPointerException();
5704     for (int b;;) {
5705     if (result.get() != null)
5706     return;
5707     if ((b = preSplit()) <= 0)
5708     break;
5709     new SearchMappingsTask<K,V,U>
5710     (map, this, b, searchFunction, result).fork();
5711     }
5712     while (result.get() == null) {
5713     Object v; U u;
5714     if ((v = advance()) == null) {
5715     propagateCompletion();
5716     break;
5717 dl 1.128 }
5718 dl 1.146 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5719     if (result.compareAndSet(null, u))
5720     quietlyCompleteRoot();
5721     break;
5722 dl 1.119 }
5723     }
5724 tim 1.1 }
5725 dl 1.119 }
5726 tim 1.1
5727 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5728 dl 1.146 extends Traverser<K,V,K> {
5729 dl 1.119 final BiFun<? super K, ? super K, ? extends K> reducer;
5730     K result;
5731 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5732 dl 1.119 ReduceKeysTask
5733 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5734 dl 1.128 ReduceKeysTask<K,V> nextRight,
5735 dl 1.119 BiFun<? super K, ? super K, ? extends K> reducer) {
5736 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5737 dl 1.119 this.reducer = reducer;
5738     }
5739 dl 1.146 public final K getRawResult() { return result; }
5740     @SuppressWarnings("unchecked") public final void compute() {
5741 dl 1.119 final BiFun<? super K, ? super K, ? extends K> reducer =
5742     this.reducer;
5743     if (reducer == null)
5744 dl 1.146 throw new NullPointerException();
5745     for (int b; (b = preSplit()) > 0;)
5746     (rights = new ReduceKeysTask<K,V>
5747     (map, this, b, rights, reducer)).fork();
5748     K r = null;
5749     while (advance() != null) {
5750     K u = (K)nextKey;
5751     r = (r == null) ? u : reducer.apply(r, u);
5752     }
5753     result = r;
5754     CountedCompleter<?> c;
5755     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756     ReduceKeysTask<K,V>
5757     t = (ReduceKeysTask<K,V>)c,
5758     s = t.rights;
5759     while (s != null) {
5760     K tr, sr;
5761     if ((sr = s.result) != null)
5762     t.result = (((tr = t.result) == null) ? sr :
5763     reducer.apply(tr, sr));
5764     s = t.rights = s.nextRight;
5765 dl 1.99 }
5766 dl 1.138 }
5767 tim 1.1 }
5768 dl 1.119 }
5769 tim 1.1
5770 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5771 dl 1.146 extends Traverser<K,V,V> {
5772 dl 1.119 final BiFun<? super V, ? super V, ? extends V> reducer;
5773     V result;
5774 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5775 dl 1.119 ReduceValuesTask
5776 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5777 dl 1.128 ReduceValuesTask<K,V> nextRight,
5778 dl 1.119 BiFun<? super V, ? super V, ? extends V> reducer) {
5779 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5780 dl 1.119 this.reducer = reducer;
5781     }
5782 dl 1.146 public final V getRawResult() { return result; }
5783     @SuppressWarnings("unchecked") public final void compute() {
5784 dl 1.119 final BiFun<? super V, ? super V, ? extends V> reducer =
5785     this.reducer;
5786     if (reducer == null)
5787 dl 1.146 throw new NullPointerException();
5788     for (int b; (b = preSplit()) > 0;)
5789     (rights = new ReduceValuesTask<K,V>
5790     (map, this, b, rights, reducer)).fork();
5791     V r = null;
5792     Object v;
5793     while ((v = advance()) != null) {
5794     V u = (V)v;
5795     r = (r == null) ? u : reducer.apply(r, u);
5796     }
5797     result = r;
5798     CountedCompleter<?> c;
5799     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5800     ReduceValuesTask<K,V>
5801     t = (ReduceValuesTask<K,V>)c,
5802     s = t.rights;
5803     while (s != null) {
5804     V tr, sr;
5805     if ((sr = s.result) != null)
5806     t.result = (((tr = t.result) == null) ? sr :
5807     reducer.apply(tr, sr));
5808     s = t.rights = s.nextRight;
5809 dl 1.119 }
5810     }
5811 tim 1.1 }
5812 dl 1.119 }
5813 tim 1.1
5814 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5815 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5816 dl 1.119 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5817     Map.Entry<K,V> result;
5818 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5819 dl 1.119 ReduceEntriesTask
5820 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5821 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5822 dl 1.119 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5823 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5824 dl 1.119 this.reducer = reducer;
5825     }
5826 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5827     @SuppressWarnings("unchecked") public final void compute() {
5828 dl 1.119 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5829     this.reducer;
5830     if (reducer == null)
5831 dl 1.146 throw new NullPointerException();
5832     for (int b; (b = preSplit()) > 0;)
5833     (rights = new ReduceEntriesTask<K,V>
5834     (map, this, b, rights, reducer)).fork();
5835     Map.Entry<K,V> r = null;
5836     Object v;
5837     while ((v = advance()) != null) {
5838     Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5839     r = (r == null) ? u : reducer.apply(r, u);
5840     }
5841     result = r;
5842     CountedCompleter<?> c;
5843     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844     ReduceEntriesTask<K,V>
5845     t = (ReduceEntriesTask<K,V>)c,
5846     s = t.rights;
5847     while (s != null) {
5848     Map.Entry<K,V> tr, sr;
5849     if ((sr = s.result) != null)
5850     t.result = (((tr = t.result) == null) ? sr :
5851     reducer.apply(tr, sr));
5852     s = t.rights = s.nextRight;
5853 dl 1.119 }
5854 dl 1.138 }
5855 dl 1.119 }
5856     }
5857 dl 1.99
5858 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5859 dl 1.146 extends Traverser<K,V,U> {
5860 dl 1.119 final Fun<? super K, ? extends U> transformer;
5861     final BiFun<? super U, ? super U, ? extends U> reducer;
5862     U result;
5863 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5864 dl 1.119 MapReduceKeysTask
5865 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5866 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5867 dl 1.119 Fun<? super K, ? extends U> transformer,
5868     BiFun<? super U, ? super U, ? extends U> reducer) {
5869 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5870 dl 1.119 this.transformer = transformer;
5871     this.reducer = reducer;
5872     }
5873 dl 1.146 public final U getRawResult() { return result; }
5874     @SuppressWarnings("unchecked") public final void compute() {
5875 dl 1.119 final Fun<? super K, ? extends U> transformer =
5876     this.transformer;
5877     final BiFun<? super U, ? super U, ? extends U> reducer =
5878     this.reducer;
5879     if (transformer == null || reducer == null)
5880 dl 1.146 throw new NullPointerException();
5881     for (int b; (b = preSplit()) > 0;)
5882     (rights = new MapReduceKeysTask<K,V,U>
5883     (map, this, b, rights, transformer, reducer)).fork();
5884     U r = null, u;
5885     while (advance() != null) {
5886     if ((u = transformer.apply((K)nextKey)) != null)
5887     r = (r == null) ? u : reducer.apply(r, u);
5888     }
5889     result = r;
5890     CountedCompleter<?> c;
5891     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892     MapReduceKeysTask<K,V,U>
5893     t = (MapReduceKeysTask<K,V,U>)c,
5894     s = t.rights;
5895     while (s != null) {
5896     U tr, sr;
5897     if ((sr = s.result) != null)
5898     t.result = (((tr = t.result) == null) ? sr :
5899     reducer.apply(tr, sr));
5900     s = t.rights = s.nextRight;
5901 dl 1.119 }
5902 dl 1.138 }
5903 tim 1.1 }
5904 dl 1.4 }
5905    
5906 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5907 dl 1.146 extends Traverser<K,V,U> {
5908 dl 1.119 final Fun<? super V, ? extends U> transformer;
5909     final BiFun<? super U, ? super U, ? extends U> reducer;
5910     U result;
5911 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5912 dl 1.119 MapReduceValuesTask
5913 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5914 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5915 dl 1.119 Fun<? super V, ? extends U> transformer,
5916     BiFun<? super U, ? super U, ? extends U> reducer) {
5917 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5918 dl 1.119 this.transformer = transformer;
5919     this.reducer = reducer;
5920     }
5921 dl 1.146 public final U getRawResult() { return result; }
5922     @SuppressWarnings("unchecked") public final void compute() {
5923 dl 1.119 final Fun<? super V, ? extends U> transformer =
5924     this.transformer;
5925     final BiFun<? super U, ? super U, ? extends U> reducer =
5926     this.reducer;
5927     if (transformer == null || reducer == null)
5928 dl 1.146 throw new NullPointerException();
5929     for (int b; (b = preSplit()) > 0;)
5930     (rights = new MapReduceValuesTask<K,V,U>
5931     (map, this, b, rights, transformer, reducer)).fork();
5932     U r = null, u;
5933     Object v;
5934     while ((v = advance()) != null) {
5935     if ((u = transformer.apply((V)v)) != null)
5936     r = (r == null) ? u : reducer.apply(r, u);
5937     }
5938     result = r;
5939     CountedCompleter<?> c;
5940     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941     MapReduceValuesTask<K,V,U>
5942     t = (MapReduceValuesTask<K,V,U>)c,
5943     s = t.rights;
5944     while (s != null) {
5945     U tr, sr;
5946     if ((sr = s.result) != null)
5947     t.result = (((tr = t.result) == null) ? sr :
5948     reducer.apply(tr, sr));
5949     s = t.rights = s.nextRight;
5950 dl 1.119 }
5951     }
5952     }
5953 dl 1.4 }
5954    
5955 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5956 dl 1.146 extends Traverser<K,V,U> {
5957 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5958     final BiFun<? super U, ? super U, ? extends U> reducer;
5959     U result;
5960 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5961 dl 1.119 MapReduceEntriesTask
5962 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5963 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5964 dl 1.119 Fun<Map.Entry<K,V>, ? extends U> transformer,
5965     BiFun<? super U, ? super U, ? extends U> reducer) {
5966 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5967 dl 1.119 this.transformer = transformer;
5968     this.reducer = reducer;
5969     }
5970 dl 1.146 public final U getRawResult() { return result; }
5971     @SuppressWarnings("unchecked") public final void compute() {
5972 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5973     this.transformer;
5974     final BiFun<? super U, ? super U, ? extends U> reducer =
5975     this.reducer;
5976     if (transformer == null || reducer == null)
5977 dl 1.146 throw new NullPointerException();
5978     for (int b; (b = preSplit()) > 0;)
5979     (rights = new MapReduceEntriesTask<K,V,U>
5980     (map, this, b, rights, transformer, reducer)).fork();
5981     U r = null, u;
5982     Object v;
5983     while ((v = advance()) != null) {
5984     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5985     r = (r == null) ? u : reducer.apply(r, u);
5986     }
5987     result = r;
5988     CountedCompleter<?> c;
5989     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990     MapReduceEntriesTask<K,V,U>
5991     t = (MapReduceEntriesTask<K,V,U>)c,
5992     s = t.rights;
5993     while (s != null) {
5994     U tr, sr;
5995     if ((sr = s.result) != null)
5996     t.result = (((tr = t.result) == null) ? sr :
5997     reducer.apply(tr, sr));
5998     s = t.rights = s.nextRight;
5999 dl 1.119 }
6000 dl 1.138 }
6001 dl 1.119 }
6002 dl 1.4 }
6003 tim 1.1
6004 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6005 dl 1.146 extends Traverser<K,V,U> {
6006 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer;
6007     final BiFun<? super U, ? super U, ? extends U> reducer;
6008     U result;
6009 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6010 dl 1.119 MapReduceMappingsTask
6011 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6012 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6013 dl 1.119 BiFun<? super K, ? super V, ? extends U> transformer,
6014     BiFun<? super U, ? super U, ? extends U> reducer) {
6015 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6016 dl 1.119 this.transformer = transformer;
6017     this.reducer = reducer;
6018     }
6019 dl 1.146 public final U getRawResult() { return result; }
6020     @SuppressWarnings("unchecked") public final void compute() {
6021 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer =
6022     this.transformer;
6023     final BiFun<? super U, ? super U, ? extends U> reducer =
6024     this.reducer;
6025     if (transformer == null || reducer == null)
6026 dl 1.146 throw new NullPointerException();
6027     for (int b; (b = preSplit()) > 0;)
6028     (rights = new MapReduceMappingsTask<K,V,U>
6029     (map, this, b, rights, transformer, reducer)).fork();
6030     U r = null, u;
6031     Object v;
6032     while ((v = advance()) != null) {
6033     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6034     r = (r == null) ? u : reducer.apply(r, u);
6035     }
6036     result = r;
6037     CountedCompleter<?> c;
6038     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039     MapReduceMappingsTask<K,V,U>
6040     t = (MapReduceMappingsTask<K,V,U>)c,
6041     s = t.rights;
6042     while (s != null) {
6043     U tr, sr;
6044     if ((sr = s.result) != null)
6045     t.result = (((tr = t.result) == null) ? sr :
6046     reducer.apply(tr, sr));
6047     s = t.rights = s.nextRight;
6048 dl 1.119 }
6049     }
6050     }
6051     }
6052 jsr166 1.114
6053 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6054 dl 1.146 extends Traverser<K,V,Double> {
6055 dl 1.119 final ObjectToDouble<? super K> transformer;
6056     final DoubleByDoubleToDouble reducer;
6057     final double basis;
6058     double result;
6059 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6060 dl 1.119 MapReduceKeysToDoubleTask
6061 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6062 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6063 dl 1.119 ObjectToDouble<? super K> transformer,
6064     double basis,
6065     DoubleByDoubleToDouble reducer) {
6066 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6067 dl 1.119 this.transformer = transformer;
6068     this.basis = basis; this.reducer = reducer;
6069     }
6070 dl 1.146 public final Double getRawResult() { return result; }
6071     @SuppressWarnings("unchecked") public final void compute() {
6072 dl 1.119 final ObjectToDouble<? super K> transformer =
6073     this.transformer;
6074     final DoubleByDoubleToDouble reducer = this.reducer;
6075     if (transformer == null || reducer == null)
6076 dl 1.146 throw new NullPointerException();
6077     double r = this.basis;
6078     for (int b; (b = preSplit()) > 0;)
6079     (rights = new MapReduceKeysToDoubleTask<K,V>
6080     (map, this, b, rights, transformer, r, reducer)).fork();
6081     while (advance() != null)
6082     r = reducer.apply(r, transformer.apply((K)nextKey));
6083     result = r;
6084     CountedCompleter<?> c;
6085     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6086     MapReduceKeysToDoubleTask<K,V>
6087     t = (MapReduceKeysToDoubleTask<K,V>)c,
6088     s = t.rights;
6089     while (s != null) {
6090     t.result = reducer.apply(t.result, s.result);
6091     s = t.rights = s.nextRight;
6092 dl 1.119 }
6093 dl 1.138 }
6094 dl 1.79 }
6095 dl 1.119 }
6096 dl 1.79
6097 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6098 dl 1.146 extends Traverser<K,V,Double> {
6099 dl 1.119 final ObjectToDouble<? super V> transformer;
6100     final DoubleByDoubleToDouble reducer;
6101     final double basis;
6102     double result;
6103 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6104 dl 1.119 MapReduceValuesToDoubleTask
6105 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6106 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6107 dl 1.119 ObjectToDouble<? super V> transformer,
6108     double basis,
6109     DoubleByDoubleToDouble reducer) {
6110 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6111 dl 1.119 this.transformer = transformer;
6112     this.basis = basis; this.reducer = reducer;
6113     }
6114 dl 1.146 public final Double getRawResult() { return result; }
6115     @SuppressWarnings("unchecked") public final void compute() {
6116 dl 1.119 final ObjectToDouble<? super V> transformer =
6117     this.transformer;
6118     final DoubleByDoubleToDouble reducer = this.reducer;
6119     if (transformer == null || reducer == null)
6120 dl 1.146 throw new NullPointerException();
6121     double r = this.basis;
6122     for (int b; (b = preSplit()) > 0;)
6123     (rights = new MapReduceValuesToDoubleTask<K,V>
6124     (map, this, b, rights, transformer, r, reducer)).fork();
6125     Object v;
6126     while ((v = advance()) != null)
6127     r = reducer.apply(r, transformer.apply((V)v));
6128     result = r;
6129     CountedCompleter<?> c;
6130     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6131     MapReduceValuesToDoubleTask<K,V>
6132     t = (MapReduceValuesToDoubleTask<K,V>)c,
6133     s = t.rights;
6134     while (s != null) {
6135     t.result = reducer.apply(t.result, s.result);
6136     s = t.rights = s.nextRight;
6137 dl 1.119 }
6138     }
6139 dl 1.30 }
6140 dl 1.79 }
6141 dl 1.30
6142 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6143 dl 1.146 extends Traverser<K,V,Double> {
6144 dl 1.119 final ObjectToDouble<Map.Entry<K,V>> transformer;
6145     final DoubleByDoubleToDouble reducer;
6146     final double basis;
6147     double result;
6148 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6149 dl 1.119 MapReduceEntriesToDoubleTask
6150 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6151 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6152 dl 1.119 ObjectToDouble<Map.Entry<K,V>> transformer,
6153     double basis,
6154     DoubleByDoubleToDouble reducer) {
6155 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6156 dl 1.119 this.transformer = transformer;
6157     this.basis = basis; this.reducer = reducer;
6158     }
6159 dl 1.146 public final Double getRawResult() { return result; }
6160     @SuppressWarnings("unchecked") public final void compute() {
6161 dl 1.119 final ObjectToDouble<Map.Entry<K,V>> transformer =
6162     this.transformer;
6163     final DoubleByDoubleToDouble reducer = this.reducer;
6164     if (transformer == null || reducer == null)
6165 dl 1.146 throw new NullPointerException();
6166     double r = this.basis;
6167     for (int b; (b = preSplit()) > 0;)
6168     (rights = new MapReduceEntriesToDoubleTask<K,V>
6169     (map, this, b, rights, transformer, r, reducer)).fork();
6170     Object v;
6171     while ((v = advance()) != null)
6172     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6173     result = r;
6174     CountedCompleter<?> c;
6175     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6176     MapReduceEntriesToDoubleTask<K,V>
6177     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6178     s = t.rights;
6179     while (s != null) {
6180     t.result = reducer.apply(t.result, s.result);
6181     s = t.rights = s.nextRight;
6182 dl 1.119 }
6183 dl 1.138 }
6184 dl 1.30 }
6185 tim 1.1 }
6186    
6187 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6188 dl 1.146 extends Traverser<K,V,Double> {
6189 dl 1.119 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6190     final DoubleByDoubleToDouble reducer;
6191     final double basis;
6192     double result;
6193 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6194 dl 1.119 MapReduceMappingsToDoubleTask
6195 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6196 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6197 dl 1.119 ObjectByObjectToDouble<? super K, ? super V> transformer,
6198     double basis,
6199     DoubleByDoubleToDouble reducer) {
6200 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6201 dl 1.119 this.transformer = transformer;
6202     this.basis = basis; this.reducer = reducer;
6203     }
6204 dl 1.146 public final Double getRawResult() { return result; }
6205     @SuppressWarnings("unchecked") public final void compute() {
6206 dl 1.119 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6207     this.transformer;
6208     final DoubleByDoubleToDouble reducer = this.reducer;
6209     if (transformer == null || reducer == null)
6210 dl 1.146 throw new NullPointerException();
6211     double r = this.basis;
6212     for (int b; (b = preSplit()) > 0;)
6213     (rights = new MapReduceMappingsToDoubleTask<K,V>
6214     (map, this, b, rights, transformer, r, reducer)).fork();
6215     Object v;
6216     while ((v = advance()) != null)
6217     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6218     result = r;
6219     CountedCompleter<?> c;
6220     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6221     MapReduceMappingsToDoubleTask<K,V>
6222     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6223     s = t.rights;
6224     while (s != null) {
6225     t.result = reducer.apply(t.result, s.result);
6226     s = t.rights = s.nextRight;
6227 dl 1.119 }
6228     }
6229 dl 1.4 }
6230 dl 1.119 }
6231    
6232 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6233 dl 1.146 extends Traverser<K,V,Long> {
6234 dl 1.119 final ObjectToLong<? super K> transformer;
6235     final LongByLongToLong reducer;
6236     final long basis;
6237     long result;
6238 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6239 dl 1.119 MapReduceKeysToLongTask
6240 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6241 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6242 dl 1.119 ObjectToLong<? super K> transformer,
6243     long basis,
6244     LongByLongToLong reducer) {
6245 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6246 dl 1.119 this.transformer = transformer;
6247     this.basis = basis; this.reducer = reducer;
6248     }
6249 dl 1.146 public final Long getRawResult() { return result; }
6250     @SuppressWarnings("unchecked") public final void compute() {
6251 dl 1.119 final ObjectToLong<? super K> transformer =
6252     this.transformer;
6253     final LongByLongToLong reducer = this.reducer;
6254     if (transformer == null || reducer == null)
6255 dl 1.146 throw new NullPointerException();
6256     long r = this.basis;
6257     for (int b; (b = preSplit()) > 0;)
6258     (rights = new MapReduceKeysToLongTask<K,V>
6259     (map, this, b, rights, transformer, r, reducer)).fork();
6260     while (advance() != null)
6261     r = reducer.apply(r, transformer.apply((K)nextKey));
6262     result = r;
6263     CountedCompleter<?> c;
6264     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6265     MapReduceKeysToLongTask<K,V>
6266     t = (MapReduceKeysToLongTask<K,V>)c,
6267     s = t.rights;
6268     while (s != null) {
6269     t.result = reducer.apply(t.result, s.result);
6270     s = t.rights = s.nextRight;
6271 dl 1.119 }
6272 dl 1.138 }
6273 dl 1.4 }
6274 dl 1.119 }
6275    
6276 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6277 dl 1.146 extends Traverser<K,V,Long> {
6278 dl 1.119 final ObjectToLong<? super V> transformer;
6279     final LongByLongToLong reducer;
6280     final long basis;
6281     long result;
6282 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6283 dl 1.119 MapReduceValuesToLongTask
6284 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6285 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6286 dl 1.119 ObjectToLong<? super V> transformer,
6287     long basis,
6288     LongByLongToLong reducer) {
6289 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6290 dl 1.119 this.transformer = transformer;
6291     this.basis = basis; this.reducer = reducer;
6292     }
6293 dl 1.146 public final Long getRawResult() { return result; }
6294     @SuppressWarnings("unchecked") public final void compute() {
6295 dl 1.119 final ObjectToLong<? super V> transformer =
6296     this.transformer;
6297     final LongByLongToLong reducer = this.reducer;
6298     if (transformer == null || reducer == null)
6299 dl 1.146 throw new NullPointerException();
6300     long r = this.basis;
6301     for (int b; (b = preSplit()) > 0;)
6302     (rights = new MapReduceValuesToLongTask<K,V>
6303     (map, this, b, rights, transformer, r, reducer)).fork();
6304     Object v;
6305     while ((v = advance()) != null)
6306     r = reducer.apply(r, transformer.apply((V)v));
6307     result = r;
6308     CountedCompleter<?> c;
6309     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6310     MapReduceValuesToLongTask<K,V>
6311     t = (MapReduceValuesToLongTask<K,V>)c,
6312     s = t.rights;
6313     while (s != null) {
6314     t.result = reducer.apply(t.result, s.result);
6315     s = t.rights = s.nextRight;
6316 dl 1.119 }
6317     }
6318 jsr166 1.95 }
6319 dl 1.119 }
6320    
6321 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6322 dl 1.146 extends Traverser<K,V,Long> {
6323 dl 1.119 final ObjectToLong<Map.Entry<K,V>> transformer;
6324     final LongByLongToLong reducer;
6325     final long basis;
6326     long result;
6327 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6328 dl 1.119 MapReduceEntriesToLongTask
6329 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6330 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6331 dl 1.119 ObjectToLong<Map.Entry<K,V>> transformer,
6332     long basis,
6333     LongByLongToLong reducer) {
6334 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6335 dl 1.119 this.transformer = transformer;
6336     this.basis = basis; this.reducer = reducer;
6337     }
6338 dl 1.146 public final Long getRawResult() { return result; }
6339     @SuppressWarnings("unchecked") public final void compute() {
6340 dl 1.119 final ObjectToLong<Map.Entry<K,V>> transformer =
6341     this.transformer;
6342     final LongByLongToLong reducer = this.reducer;
6343     if (transformer == null || reducer == null)
6344 dl 1.146 throw new NullPointerException();
6345     long r = this.basis;
6346     for (int b; (b = preSplit()) > 0;)
6347     (rights = new MapReduceEntriesToLongTask<K,V>
6348     (map, this, b, rights, transformer, r, reducer)).fork();
6349     Object v;
6350     while ((v = advance()) != null)
6351     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6352     result = r;
6353     CountedCompleter<?> c;
6354     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6355     MapReduceEntriesToLongTask<K,V>
6356     t = (MapReduceEntriesToLongTask<K,V>)c,
6357     s = t.rights;
6358     while (s != null) {
6359     t.result = reducer.apply(t.result, s.result);
6360     s = t.rights = s.nextRight;
6361 dl 1.119 }
6362 dl 1.138 }
6363 dl 1.4 }
6364 tim 1.1 }
6365    
6366 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6367 dl 1.146 extends Traverser<K,V,Long> {
6368 dl 1.119 final ObjectByObjectToLong<? super K, ? super V> transformer;
6369     final LongByLongToLong reducer;
6370     final long basis;
6371     long result;
6372 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6373 dl 1.119 MapReduceMappingsToLongTask
6374 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6375 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6376 dl 1.119 ObjectByObjectToLong<? super K, ? super V> transformer,
6377     long basis,
6378     LongByLongToLong reducer) {
6379 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6380 dl 1.119 this.transformer = transformer;
6381     this.basis = basis; this.reducer = reducer;
6382     }
6383 dl 1.146 public final Long getRawResult() { return result; }
6384     @SuppressWarnings("unchecked") public final void compute() {
6385 dl 1.119 final ObjectByObjectToLong<? super K, ? super V> transformer =
6386     this.transformer;
6387     final LongByLongToLong reducer = this.reducer;
6388     if (transformer == null || reducer == null)
6389 dl 1.146 throw new NullPointerException();
6390     long r = this.basis;
6391     for (int b; (b = preSplit()) > 0;)
6392     (rights = new MapReduceMappingsToLongTask<K,V>
6393     (map, this, b, rights, transformer, r, reducer)).fork();
6394     Object v;
6395     while ((v = advance()) != null)
6396     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6397     result = r;
6398     CountedCompleter<?> c;
6399     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6400     MapReduceMappingsToLongTask<K,V>
6401     t = (MapReduceMappingsToLongTask<K,V>)c,
6402     s = t.rights;
6403     while (s != null) {
6404     t.result = reducer.apply(t.result, s.result);
6405     s = t.rights = s.nextRight;
6406 dl 1.119 }
6407     }
6408 dl 1.4 }
6409 tim 1.1 }
6410    
6411 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6412 dl 1.146 extends Traverser<K,V,Integer> {
6413 dl 1.119 final ObjectToInt<? super K> transformer;
6414     final IntByIntToInt reducer;
6415     final int basis;
6416     int result;
6417 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6418 dl 1.119 MapReduceKeysToIntTask
6419 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6420 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6421 dl 1.119 ObjectToInt<? super K> transformer,
6422     int basis,
6423     IntByIntToInt reducer) {
6424 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6425 dl 1.119 this.transformer = transformer;
6426     this.basis = basis; this.reducer = reducer;
6427     }
6428 dl 1.146 public final Integer getRawResult() { return result; }
6429     @SuppressWarnings("unchecked") public final void compute() {
6430 dl 1.119 final ObjectToInt<? super K> transformer =
6431     this.transformer;
6432     final IntByIntToInt reducer = this.reducer;
6433     if (transformer == null || reducer == null)
6434 dl 1.146 throw new NullPointerException();
6435     int r = this.basis;
6436     for (int b; (b = preSplit()) > 0;)
6437     (rights = new MapReduceKeysToIntTask<K,V>
6438     (map, this, b, rights, transformer, r, reducer)).fork();
6439     while (advance() != null)
6440     r = reducer.apply(r, transformer.apply((K)nextKey));
6441     result = r;
6442     CountedCompleter<?> c;
6443     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6444     MapReduceKeysToIntTask<K,V>
6445     t = (MapReduceKeysToIntTask<K,V>)c,
6446     s = t.rights;
6447     while (s != null) {
6448     t.result = reducer.apply(t.result, s.result);
6449     s = t.rights = s.nextRight;
6450 dl 1.119 }
6451 dl 1.138 }
6452 dl 1.30 }
6453     }
6454    
6455 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6456 dl 1.146 extends Traverser<K,V,Integer> {
6457 dl 1.119 final ObjectToInt<? super V> transformer;
6458     final IntByIntToInt reducer;
6459     final int basis;
6460     int result;
6461 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6462 dl 1.119 MapReduceValuesToIntTask
6463 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6464 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6465 dl 1.119 ObjectToInt<? super V> transformer,
6466     int basis,
6467     IntByIntToInt reducer) {
6468 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6469 dl 1.119 this.transformer = transformer;
6470     this.basis = basis; this.reducer = reducer;
6471     }
6472 dl 1.146 public final Integer getRawResult() { return result; }
6473     @SuppressWarnings("unchecked") public final void compute() {
6474 dl 1.119 final ObjectToInt<? super V> transformer =
6475     this.transformer;
6476     final IntByIntToInt reducer = this.reducer;
6477     if (transformer == null || reducer == null)
6478 dl 1.146 throw new NullPointerException();
6479     int r = this.basis;
6480     for (int b; (b = preSplit()) > 0;)
6481     (rights = new MapReduceValuesToIntTask<K,V>
6482     (map, this, b, rights, transformer, r, reducer)).fork();
6483     Object v;
6484     while ((v = advance()) != null)
6485     r = reducer.apply(r, transformer.apply((V)v));
6486     result = r;
6487     CountedCompleter<?> c;
6488     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6489     MapReduceValuesToIntTask<K,V>
6490     t = (MapReduceValuesToIntTask<K,V>)c,
6491     s = t.rights;
6492     while (s != null) {
6493     t.result = reducer.apply(t.result, s.result);
6494     s = t.rights = s.nextRight;
6495 dl 1.119 }
6496 dl 1.2 }
6497 tim 1.1 }
6498     }
6499    
6500 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6501 dl 1.146 extends Traverser<K,V,Integer> {
6502 dl 1.119 final ObjectToInt<Map.Entry<K,V>> transformer;
6503     final IntByIntToInt reducer;
6504     final int basis;
6505     int result;
6506 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6507 dl 1.119 MapReduceEntriesToIntTask
6508 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6509 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6510 dl 1.119 ObjectToInt<Map.Entry<K,V>> transformer,
6511     int basis,
6512     IntByIntToInt reducer) {
6513 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6514 dl 1.119 this.transformer = transformer;
6515     this.basis = basis; this.reducer = reducer;
6516     }
6517 dl 1.146 public final Integer getRawResult() { return result; }
6518     @SuppressWarnings("unchecked") public final void compute() {
6519 dl 1.119 final ObjectToInt<Map.Entry<K,V>> transformer =
6520     this.transformer;
6521     final IntByIntToInt reducer = this.reducer;
6522     if (transformer == null || reducer == null)
6523 dl 1.146 throw new NullPointerException();
6524     int r = this.basis;
6525     for (int b; (b = preSplit()) > 0;)
6526     (rights = new MapReduceEntriesToIntTask<K,V>
6527     (map, this, b, rights, transformer, r, reducer)).fork();
6528     Object v;
6529     while ((v = advance()) != null)
6530     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6531     result = r;
6532     CountedCompleter<?> c;
6533     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6534     MapReduceEntriesToIntTask<K,V>
6535     t = (MapReduceEntriesToIntTask<K,V>)c,
6536     s = t.rights;
6537     while (s != null) {
6538     t.result = reducer.apply(t.result, s.result);
6539     s = t.rights = s.nextRight;
6540 dl 1.119 }
6541 dl 1.138 }
6542 dl 1.4 }
6543 dl 1.119 }
6544 tim 1.1
6545 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6546 dl 1.146 extends Traverser<K,V,Integer> {
6547 dl 1.119 final ObjectByObjectToInt<? super K, ? super V> transformer;
6548     final IntByIntToInt reducer;
6549     final int basis;
6550     int result;
6551 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6552 dl 1.119 MapReduceMappingsToIntTask
6553 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6554     MapReduceMappingsToIntTask<K,V> nextRight,
6555 dl 1.119 ObjectByObjectToInt<? super K, ? super V> transformer,
6556     int basis,
6557     IntByIntToInt reducer) {
6558 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6559 dl 1.119 this.transformer = transformer;
6560     this.basis = basis; this.reducer = reducer;
6561     }
6562 dl 1.146 public final Integer getRawResult() { return result; }
6563     @SuppressWarnings("unchecked") public final void compute() {
6564 dl 1.119 final ObjectByObjectToInt<? super K, ? super V> transformer =
6565     this.transformer;
6566     final IntByIntToInt reducer = this.reducer;
6567     if (transformer == null || reducer == null)
6568 dl 1.146 throw new NullPointerException();
6569     int r = this.basis;
6570     for (int b; (b = preSplit()) > 0;)
6571     (rights = new MapReduceMappingsToIntTask<K,V>
6572     (map, this, b, rights, transformer, r, reducer)).fork();
6573     Object v;
6574     while ((v = advance()) != null)
6575     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6576     result = r;
6577     CountedCompleter<?> c;
6578     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6579     MapReduceMappingsToIntTask<K,V>
6580     t = (MapReduceMappingsToIntTask<K,V>)c,
6581     s = t.rights;
6582     while (s != null) {
6583     t.result = reducer.apply(t.result, s.result);
6584     s = t.rights = s.nextRight;
6585 dl 1.119 }
6586 dl 1.138 }
6587 tim 1.1 }
6588     }
6589 dl 1.99
6590 dl 1.146
6591 dl 1.99 // Unsafe mechanics
6592     private static final sun.misc.Unsafe UNSAFE;
6593 dl 1.119 private static final long counterOffset;
6594     private static final long sizeCtlOffset;
6595     private static final long ABASE;
6596     private static final int ASHIFT;
6597 dl 1.99
6598     static {
6599 dl 1.119 int ss;
6600 dl 1.99 try {
6601 dl 1.126 UNSAFE = sun.misc.Unsafe.getUnsafe();
6602 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6603     counterOffset = UNSAFE.objectFieldOffset
6604     (k.getDeclaredField("counter"));
6605     sizeCtlOffset = UNSAFE.objectFieldOffset
6606     (k.getDeclaredField("sizeCtl"));
6607     Class<?> sc = Node[].class;
6608     ABASE = UNSAFE.arrayBaseOffset(sc);
6609 dl 1.99 ss = UNSAFE.arrayIndexScale(sc);
6610     } catch (Exception e) {
6611     throw new Error(e);
6612     }
6613 dl 1.119 if ((ss & (ss-1)) != 0)
6614 dl 1.99 throw new Error("data type scale not a power of two");
6615 dl 1.119 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6616 dl 1.99 }
6617 dl 1.128 }