ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.155
Committed: Thu Dec 27 20:47:47 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.154: +9 -13 lines
Log Message:
Track lambda-lib API changes

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11     import java.util.stream.Spliterator;
12     import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98     * {@link #computeIfAbsent}. For example, to add a count to a {@code
99     * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100     * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152     * </li>
153     * </ul>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482     /**
483     * Holder for the thread-local hash code determining which
484 dl 1.153 * Cell to use. The code is initialized via the
485     * cellHashCodeGenerator, but may be moved upon collisions.
486 dl 1.149 */
487 dl 1.153 static final class CellHashCode {
488 dl 1.149 int code;
489     }
490    
491     /**
492 dl 1.153 * Generates initial value for per-thread CellHashCodes
493 dl 1.149 */
494 dl 1.153 static final AtomicInteger cellHashCodeGenerator = new AtomicInteger();
495 dl 1.149
496     /**
497 dl 1.153 * Increment for cellHashCodeGenerator. See class ThreadLocal
498 dl 1.149 * for explanation.
499     */
500     static final int SEED_INCREMENT = 0x61c88647;
501    
502     /**
503     * Per-thread counter hash codes. Shared across all instances
504     */
505 dl 1.153 static final ThreadLocal<CellHashCode> threadCellHashCode =
506     new ThreadLocal<CellHashCode>();
507 dl 1.46
508 dl 1.4 /* ---------------- Fields -------------- */
509 tim 1.1
510     /**
511 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
512     * Size is always a power of two. Accessed directly by iterators.
513 jsr166 1.59 */
514 dl 1.151 transient volatile Node<V>[] table;
515 tim 1.1
516     /**
517 dl 1.149 * The next table to use; non-null only while resizing.
518 jsr166 1.59 */
519 dl 1.151 private transient volatile Node<V>[] nextTable;
520 dl 1.149
521     /**
522     * Base counter value, used mainly when there is no contention,
523     * but also as a fallback during table initialization
524     * races. Updated via CAS.
525     */
526     private transient volatile long baseCount;
527 tim 1.1
528     /**
529 dl 1.119 * Table initialization and resizing control. When negative, the
530 dl 1.149 * table is being initialized or resized: -1 for initialization,
531     * else -(1 + the number of active resizing threads). Otherwise,
532     * when table is null, holds the initial table size to use upon
533     * creation, or 0 for default. After initialization, holds the
534     * next element count value upon which to resize the table.
535 tim 1.1 */
536 dl 1.119 private transient volatile int sizeCtl;
537 dl 1.4
538 dl 1.149 /**
539     * The next table index (plus one) to split while resizing.
540     */
541     private transient volatile int transferIndex;
542    
543     /**
544     * The least available table index to split while resizing.
545     */
546     private transient volatile int transferOrigin;
547    
548     /**
549     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
550     */
551 dl 1.153 private transient volatile int cellsBusy;
552 dl 1.149
553     /**
554     * Table of counter cells. When non-null, size is a power of 2.
555     */
556 dl 1.153 private transient volatile Cell[] counterCells;
557 dl 1.149
558 dl 1.119 // views
559 dl 1.137 private transient KeySetView<K,V> keySet;
560 dl 1.142 private transient ValuesView<K,V> values;
561     private transient EntrySetView<K,V> entrySet;
562 dl 1.119
563     /** For serialization compatibility. Null unless serialized; see below */
564     private Segment<K,V>[] segments;
565    
566     /* ---------------- Table element access -------------- */
567    
568     /*
569     * Volatile access methods are used for table elements as well as
570     * elements of in-progress next table while resizing. Uses are
571     * null checked by callers, and implicitly bounds-checked, relying
572     * on the invariants that tab arrays have non-zero size, and all
573     * indices are masked with (tab.length - 1) which is never
574     * negative and always less than length. Note that, to be correct
575     * wrt arbitrary concurrency errors by users, bounds checks must
576     * operate on local variables, which accounts for some odd-looking
577     * inline assignments below.
578     */
579    
580 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
581     (Node<V>[] tab, int i) { // used by Traverser
582     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
583 dl 1.119 }
584    
585 dl 1.151 private static final <V> boolean casTabAt
586     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
587 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
588 dl 1.119 }
589    
590 dl 1.151 private static final <V> void setTabAt
591     (Node<V>[] tab, int i, Node<V> v) {
592 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
593 dl 1.119 }
594    
595     /* ---------------- Nodes -------------- */
596 dl 1.4
597 dl 1.99 /**
598 dl 1.119 * Key-value entry. Note that this is never exported out as a
599     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
600     * field of MOVED are special, and do not contain user keys or
601     * values. Otherwise, keys are never null, and null val fields
602     * indicate that a node is in the process of being deleted or
603     * created. For purposes of read-only access, a key may be read
604     * before a val, but can only be used after checking val to be
605     * non-null.
606 dl 1.99 */
607 dl 1.151 static class Node<V> {
608 dl 1.149 final int hash;
609 dl 1.119 final Object key;
610 dl 1.151 volatile V val;
611     volatile Node<V> next;
612 dl 1.99
613 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
614 dl 1.99 this.hash = hash;
615     this.key = key;
616 dl 1.119 this.val = val;
617 dl 1.99 this.next = next;
618     }
619     }
620    
621 dl 1.119 /* ---------------- TreeBins -------------- */
622    
623 dl 1.99 /**
624 dl 1.119 * Nodes for use in TreeBins
625 dl 1.99 */
626 dl 1.151 static final class TreeNode<V> extends Node<V> {
627     TreeNode<V> parent; // red-black tree links
628     TreeNode<V> left;
629     TreeNode<V> right;
630     TreeNode<V> prev; // needed to unlink next upon deletion
631 dl 1.119 boolean red;
632 dl 1.99
633 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
634 dl 1.119 super(hash, key, val, next);
635     this.parent = parent;
636     }
637 dl 1.99 }
638 tim 1.1
639     /**
640 dl 1.119 * A specialized form of red-black tree for use in bins
641     * whose size exceeds a threshold.
642     *
643     * TreeBins use a special form of comparison for search and
644     * related operations (which is the main reason we cannot use
645     * existing collections such as TreeMaps). TreeBins contain
646     * Comparable elements, but may contain others, as well as
647     * elements that are Comparable but not necessarily Comparable<T>
648     * for the same T, so we cannot invoke compareTo among them. To
649     * handle this, the tree is ordered primarily by hash value, then
650     * by getClass().getName() order, and then by Comparator order
651     * among elements of the same class. On lookup at a node, if
652     * elements are not comparable or compare as 0, both left and
653     * right children may need to be searched in the case of tied hash
654     * values. (This corresponds to the full list search that would be
655     * necessary if all elements were non-Comparable and had tied
656     * hashes.) The red-black balancing code is updated from
657     * pre-jdk-collections
658     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
659     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
660     * Algorithms" (CLR).
661     *
662     * TreeBins also maintain a separate locking discipline than
663     * regular bins. Because they are forwarded via special MOVED
664     * nodes at bin heads (which can never change once established),
665     * we cannot use those nodes as locks. Instead, TreeBin
666     * extends AbstractQueuedSynchronizer to support a simple form of
667     * read-write lock. For update operations and table validation,
668     * the exclusive form of lock behaves in the same way as bin-head
669     * locks. However, lookups use shared read-lock mechanics to allow
670     * multiple readers in the absence of writers. Additionally,
671     * these lookups do not ever block: While the lock is not
672     * available, they proceed along the slow traversal path (via
673     * next-pointers) until the lock becomes available or the list is
674     * exhausted, whichever comes first. (These cases are not fast,
675     * but maximize aggregate expected throughput.) The AQS mechanics
676     * for doing this are straightforward. The lock state is held as
677     * AQS getState(). Read counts are negative; the write count (1)
678     * is positive. There are no signalling preferences among readers
679     * and writers. Since we don't need to export full Lock API, we
680     * just override the minimal AQS methods and use them directly.
681     */
682 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
683 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
684 dl 1.151 transient TreeNode<V> root; // root of tree
685     transient TreeNode<V> first; // head of next-pointer list
686 dl 1.24
687 dl 1.119 /* AQS overrides */
688     public final boolean isHeldExclusively() { return getState() > 0; }
689     public final boolean tryAcquire(int ignore) {
690     if (compareAndSetState(0, 1)) {
691     setExclusiveOwnerThread(Thread.currentThread());
692     return true;
693     }
694     return false;
695     }
696     public final boolean tryRelease(int ignore) {
697     setExclusiveOwnerThread(null);
698     setState(0);
699     return true;
700     }
701     public final int tryAcquireShared(int ignore) {
702     for (int c;;) {
703     if ((c = getState()) > 0)
704     return -1;
705     if (compareAndSetState(c, c -1))
706     return 1;
707     }
708     }
709     public final boolean tryReleaseShared(int ignore) {
710     int c;
711     do {} while (!compareAndSetState(c = getState(), c + 1));
712     return c == -1;
713     }
714    
715     /** From CLR */
716 dl 1.151 private void rotateLeft(TreeNode<V> p) {
717 dl 1.119 if (p != null) {
718 dl 1.151 TreeNode<V> r = p.right, pp, rl;
719 dl 1.119 if ((rl = p.right = r.left) != null)
720     rl.parent = p;
721     if ((pp = r.parent = p.parent) == null)
722     root = r;
723     else if (pp.left == p)
724     pp.left = r;
725     else
726     pp.right = r;
727     r.left = p;
728     p.parent = r;
729     }
730     }
731 dl 1.4
732 dl 1.119 /** From CLR */
733 dl 1.151 private void rotateRight(TreeNode<V> p) {
734 dl 1.119 if (p != null) {
735 dl 1.151 TreeNode<V> l = p.left, pp, lr;
736 dl 1.119 if ((lr = p.left = l.right) != null)
737     lr.parent = p;
738     if ((pp = l.parent = p.parent) == null)
739     root = l;
740     else if (pp.right == p)
741     pp.right = l;
742     else
743     pp.left = l;
744     l.right = p;
745     p.parent = l;
746     }
747     }
748 dl 1.4
749     /**
750 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
751 dl 1.119 * starting at given root.
752 dl 1.4 */
753 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
754     (int h, Object k, TreeNode<V> p) {
755 dl 1.119 Class<?> c = k.getClass();
756     while (p != null) {
757     int dir, ph; Object pk; Class<?> pc;
758     if ((ph = p.hash) == h) {
759     if ((pk = p.key) == k || k.equals(pk))
760     return p;
761     if (c != (pc = pk.getClass()) ||
762     !(k instanceof Comparable) ||
763     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
764 dl 1.148 if ((dir = (c == pc) ? 0 :
765     c.getName().compareTo(pc.getName())) == 0) {
766 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
767 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
768     (r = getTreeNode(h, k, pr)) != null)
769     return r;
770     else if ((pl = p.left) != null && h <= pl.hash)
771     dir = -1;
772     else // nothing there
773     return null;
774 dl 1.99 }
775 dl 1.45 }
776     }
777 dl 1.119 else
778     dir = (h < ph) ? -1 : 1;
779     p = (dir > 0) ? p.right : p.left;
780 dl 1.33 }
781 dl 1.119 return null;
782 dl 1.33 }
783    
784 dl 1.99 /**
785 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
786     * read-lock to call getTreeNode, but during failure to get
787     * lock, searches along next links.
788 dl 1.99 */
789 dl 1.151 final V getValue(int h, Object k) {
790     Node<V> r = null;
791 dl 1.119 int c = getState(); // Must read lock state first
792 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
793 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
794     try {
795     r = getTreeNode(h, k, root);
796     } finally {
797     releaseShared(0);
798 dl 1.99 }
799     break;
800     }
801 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
802 dl 1.119 r = e;
803 dl 1.99 break;
804     }
805 dl 1.119 else
806     c = getState();
807 dl 1.99 }
808 dl 1.119 return r == null ? null : r.val;
809 dl 1.99 }
810    
811     /**
812 dl 1.119 * Finds or adds a node.
813     * @return null if added
814 dl 1.6 */
815 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
816     (int h, Object k, V v) {
817 dl 1.119 Class<?> c = k.getClass();
818 dl 1.151 TreeNode<V> pp = root, p = null;
819 dl 1.119 int dir = 0;
820     while (pp != null) { // find existing node or leaf to insert at
821     int ph; Object pk; Class<?> pc;
822     p = pp;
823     if ((ph = p.hash) == h) {
824     if ((pk = p.key) == k || k.equals(pk))
825     return p;
826     if (c != (pc = pk.getClass()) ||
827     !(k instanceof Comparable) ||
828     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
829 dl 1.151 TreeNode<V> s = null, r = null, pr;
830 dl 1.148 if ((dir = (c == pc) ? 0 :
831     c.getName().compareTo(pc.getName())) == 0) {
832     if ((pr = p.right) != null && h >= pr.hash &&
833     (r = getTreeNode(h, k, pr)) != null)
834     return r;
835     else // continue left
836     dir = -1;
837 dl 1.99 }
838 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
839     s = pr;
840     if (s != null && (r = getTreeNode(h, k, s)) != null)
841     return r;
842 dl 1.99 }
843     }
844 dl 1.119 else
845     dir = (h < ph) ? -1 : 1;
846     pp = (dir > 0) ? p.right : p.left;
847 dl 1.99 }
848    
849 dl 1.151 TreeNode<V> f = first;
850     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
851 dl 1.119 if (p == null)
852     root = x;
853     else { // attach and rebalance; adapted from CLR
854 dl 1.151 TreeNode<V> xp, xpp;
855 dl 1.119 if (f != null)
856     f.prev = x;
857     if (dir <= 0)
858     p.left = x;
859     else
860     p.right = x;
861     x.red = true;
862     while (x != null && (xp = x.parent) != null && xp.red &&
863     (xpp = xp.parent) != null) {
864 dl 1.151 TreeNode<V> xppl = xpp.left;
865 dl 1.119 if (xp == xppl) {
866 dl 1.151 TreeNode<V> y = xpp.right;
867 dl 1.119 if (y != null && y.red) {
868     y.red = false;
869     xp.red = false;
870     xpp.red = true;
871     x = xpp;
872     }
873     else {
874     if (x == xp.right) {
875     rotateLeft(x = xp);
876     xpp = (xp = x.parent) == null ? null : xp.parent;
877     }
878     if (xp != null) {
879     xp.red = false;
880     if (xpp != null) {
881     xpp.red = true;
882     rotateRight(xpp);
883     }
884     }
885     }
886     }
887     else {
888 dl 1.151 TreeNode<V> y = xppl;
889 dl 1.119 if (y != null && y.red) {
890     y.red = false;
891     xp.red = false;
892     xpp.red = true;
893     x = xpp;
894     }
895     else {
896     if (x == xp.left) {
897     rotateRight(x = xp);
898     xpp = (xp = x.parent) == null ? null : xp.parent;
899     }
900     if (xp != null) {
901     xp.red = false;
902     if (xpp != null) {
903     xpp.red = true;
904     rotateLeft(xpp);
905     }
906     }
907 dl 1.99 }
908     }
909     }
910 dl 1.151 TreeNode<V> r = root;
911 dl 1.119 if (r != null && r.red)
912     r.red = false;
913 dl 1.99 }
914 dl 1.119 return null;
915 dl 1.99 }
916 dl 1.45
917 dl 1.119 /**
918     * Removes the given node, that must be present before this
919     * call. This is messier than typical red-black deletion code
920     * because we cannot swap the contents of an interior node
921     * with a leaf successor that is pinned by "next" pointers
922     * that are accessible independently of lock. So instead we
923     * swap the tree linkages.
924     */
925 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
926     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
927     TreeNode<V> pred = p.prev;
928 dl 1.119 if (pred == null)
929     first = next;
930     else
931     pred.next = next;
932     if (next != null)
933     next.prev = pred;
934 dl 1.151 TreeNode<V> replacement;
935     TreeNode<V> pl = p.left;
936     TreeNode<V> pr = p.right;
937 dl 1.119 if (pl != null && pr != null) {
938 dl 1.151 TreeNode<V> s = pr, sl;
939 dl 1.119 while ((sl = s.left) != null) // find successor
940     s = sl;
941     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
942 dl 1.151 TreeNode<V> sr = s.right;
943     TreeNode<V> pp = p.parent;
944 dl 1.119 if (s == pr) { // p was s's direct parent
945     p.parent = s;
946     s.right = p;
947     }
948     else {
949 dl 1.151 TreeNode<V> sp = s.parent;
950 dl 1.119 if ((p.parent = sp) != null) {
951     if (s == sp.left)
952     sp.left = p;
953     else
954     sp.right = p;
955 dl 1.45 }
956 dl 1.119 if ((s.right = pr) != null)
957     pr.parent = s;
958 dl 1.4 }
959 dl 1.119 p.left = null;
960     if ((p.right = sr) != null)
961     sr.parent = p;
962     if ((s.left = pl) != null)
963     pl.parent = s;
964     if ((s.parent = pp) == null)
965     root = s;
966     else if (p == pp.left)
967     pp.left = s;
968     else
969     pp.right = s;
970     replacement = sr;
971     }
972     else
973     replacement = (pl != null) ? pl : pr;
974 dl 1.151 TreeNode<V> pp = p.parent;
975 dl 1.119 if (replacement == null) {
976     if (pp == null) {
977     root = null;
978     return;
979     }
980     replacement = p;
981 dl 1.99 }
982 dl 1.119 else {
983     replacement.parent = pp;
984     if (pp == null)
985     root = replacement;
986     else if (p == pp.left)
987     pp.left = replacement;
988     else
989     pp.right = replacement;
990     p.left = p.right = p.parent = null;
991 dl 1.4 }
992 dl 1.119 if (!p.red) { // rebalance, from CLR
993 dl 1.151 TreeNode<V> x = replacement;
994 dl 1.119 while (x != null) {
995 dl 1.151 TreeNode<V> xp, xpl;
996 dl 1.119 if (x.red || (xp = x.parent) == null) {
997     x.red = false;
998 dl 1.99 break;
999 dl 1.119 }
1000     if (x == (xpl = xp.left)) {
1001 dl 1.151 TreeNode<V> sib = xp.right;
1002 dl 1.119 if (sib != null && sib.red) {
1003     sib.red = false;
1004     xp.red = true;
1005     rotateLeft(xp);
1006     sib = (xp = x.parent) == null ? null : xp.right;
1007     }
1008     if (sib == null)
1009     x = xp;
1010     else {
1011 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1012 dl 1.119 if ((sr == null || !sr.red) &&
1013     (sl == null || !sl.red)) {
1014     sib.red = true;
1015     x = xp;
1016     }
1017     else {
1018     if (sr == null || !sr.red) {
1019     if (sl != null)
1020     sl.red = false;
1021     sib.red = true;
1022     rotateRight(sib);
1023 dl 1.149 sib = (xp = x.parent) == null ?
1024     null : xp.right;
1025 dl 1.119 }
1026     if (sib != null) {
1027     sib.red = (xp == null) ? false : xp.red;
1028     if ((sr = sib.right) != null)
1029     sr.red = false;
1030     }
1031     if (xp != null) {
1032     xp.red = false;
1033     rotateLeft(xp);
1034     }
1035     x = root;
1036     }
1037     }
1038     }
1039     else { // symmetric
1040 dl 1.151 TreeNode<V> sib = xpl;
1041 dl 1.119 if (sib != null && sib.red) {
1042     sib.red = false;
1043     xp.red = true;
1044     rotateRight(xp);
1045     sib = (xp = x.parent) == null ? null : xp.left;
1046     }
1047     if (sib == null)
1048     x = xp;
1049     else {
1050 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1051 dl 1.119 if ((sl == null || !sl.red) &&
1052     (sr == null || !sr.red)) {
1053     sib.red = true;
1054     x = xp;
1055     }
1056     else {
1057     if (sl == null || !sl.red) {
1058     if (sr != null)
1059     sr.red = false;
1060     sib.red = true;
1061     rotateLeft(sib);
1062 dl 1.149 sib = (xp = x.parent) == null ?
1063     null : xp.left;
1064 dl 1.119 }
1065     if (sib != null) {
1066     sib.red = (xp == null) ? false : xp.red;
1067     if ((sl = sib.left) != null)
1068     sl.red = false;
1069     }
1070     if (xp != null) {
1071     xp.red = false;
1072     rotateRight(xp);
1073     }
1074     x = root;
1075     }
1076     }
1077     }
1078 dl 1.45 }
1079 dl 1.4 }
1080 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1081     if (p == pp.left) // detach pointers
1082     pp.left = null;
1083     else if (p == pp.right)
1084     pp.right = null;
1085     p.parent = null;
1086     }
1087 dl 1.4 }
1088 tim 1.1 }
1089    
1090 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1091 tim 1.1
1092 dl 1.99 /**
1093 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1094 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1095     * that vary only in bits above the current mask will always
1096     * collide. (Among known examples are sets of Float keys holding
1097     * consecutive whole numbers in small tables.) To counter this,
1098     * we apply a transform that spreads the impact of higher bits
1099     * downward. There is a tradeoff between speed, utility, and
1100     * quality of bit-spreading. Because many common sets of hashes
1101     * are already reasonably distributed across bits (so don't benefit
1102     * from spreading), and because we use trees to handle large sets
1103     * of collisions in bins, we don't need excessively high quality.
1104     */
1105     private static final int spread(int h) {
1106     h ^= (h >>> 18) ^ (h >>> 12);
1107     return (h ^ (h >>> 10)) & HASH_BITS;
1108 dl 1.99 }
1109    
1110     /**
1111 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1112     * only when locked.
1113 dl 1.119 */
1114 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1115 dl 1.149 if (key instanceof Comparable) {
1116 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1117     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1118 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1119 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1120 dl 1.119 }
1121 dl 1.99 }
1122 tim 1.11
1123 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1124    
1125     /** Implementation for get and containsKey */
1126 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1127 dl 1.119 int h = spread(k.hashCode());
1128 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1129     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1130 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1131 dl 1.149 if ((eh = e.hash) < 0) {
1132 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1133 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1134     else { // restart with new table
1135     tab = (Node<V>[])ek;
1136 dl 1.119 continue retry;
1137     }
1138     }
1139 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1140 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1141 dl 1.151 return ev;
1142 dl 1.119 }
1143     break;
1144     }
1145     return null;
1146 tim 1.1 }
1147    
1148     /**
1149 dl 1.119 * Implementation for the four public remove/replace methods:
1150     * Replaces node value with v, conditional upon match of cv if
1151     * non-null. If resulting value is null, delete.
1152     */
1153 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1154     (Object k, V v, Object cv) {
1155 dl 1.119 int h = spread(k.hashCode());
1156 dl 1.151 V oldVal = null;
1157     for (Node<V>[] tab = table;;) {
1158     Node<V> f; int i, fh; Object fk;
1159 dl 1.119 if (tab == null ||
1160     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1161     break;
1162 dl 1.149 else if ((fh = f.hash) < 0) {
1163 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1164 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1165 dl 1.119 boolean validated = false;
1166     boolean deleted = false;
1167     t.acquire(0);
1168     try {
1169     if (tabAt(tab, i) == f) {
1170     validated = true;
1171 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1172 dl 1.119 if (p != null) {
1173 dl 1.151 V pv = p.val;
1174 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1175     oldVal = pv;
1176     if ((p.val = v) == null) {
1177     deleted = true;
1178     t.deleteTreeNode(p);
1179     }
1180     }
1181     }
1182     }
1183     } finally {
1184     t.release(0);
1185     }
1186     if (validated) {
1187     if (deleted)
1188 dl 1.149 addCount(-1L, -1);
1189 dl 1.119 break;
1190     }
1191     }
1192     else
1193 dl 1.151 tab = (Node<V>[])fk;
1194 dl 1.119 }
1195 dl 1.149 else if (fh != h && f.next == null) // precheck
1196 dl 1.119 break; // rules out possible existence
1197 dl 1.149 else {
1198 dl 1.119 boolean validated = false;
1199     boolean deleted = false;
1200 jsr166 1.150 synchronized (f) {
1201 dl 1.119 if (tabAt(tab, i) == f) {
1202     validated = true;
1203 dl 1.151 for (Node<V> e = f, pred = null;;) {
1204     Object ek; V ev;
1205 dl 1.149 if (e.hash == h &&
1206 dl 1.119 ((ev = e.val) != null) &&
1207     ((ek = e.key) == k || k.equals(ek))) {
1208     if (cv == null || cv == ev || cv.equals(ev)) {
1209     oldVal = ev;
1210     if ((e.val = v) == null) {
1211     deleted = true;
1212 dl 1.151 Node<V> en = e.next;
1213 dl 1.119 if (pred != null)
1214     pred.next = en;
1215     else
1216     setTabAt(tab, i, en);
1217     }
1218     }
1219     break;
1220     }
1221     pred = e;
1222     if ((e = e.next) == null)
1223     break;
1224     }
1225     }
1226     }
1227     if (validated) {
1228     if (deleted)
1229 dl 1.149 addCount(-1L, -1);
1230 dl 1.119 break;
1231     }
1232     }
1233     }
1234 dl 1.151 return oldVal;
1235 dl 1.55 }
1236    
1237 dl 1.119 /*
1238 dl 1.149 * Internal versions of insertion methods
1239     * All have the same basic structure as the first (internalPut):
1240 dl 1.119 * 1. If table uninitialized, create
1241     * 2. If bin empty, try to CAS new node
1242     * 3. If bin stale, use new table
1243     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1244     * 5. Lock and validate; if valid, scan and add or update
1245 tim 1.1 *
1246 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1247     * enough table space, and also more lazily performs count updates
1248     * and checks.
1249     *
1250     * Most of the function-accepting methods can't be factored nicely
1251     * because they require different functional forms, so instead
1252     * sprawl out similar mechanics.
1253 tim 1.1 */
1254    
1255 dl 1.149 /** Implementation for put and putIfAbsent */
1256     @SuppressWarnings("unchecked") private final V internalPut
1257     (K k, V v, boolean onlyIfAbsent) {
1258     if (k == null || v == null) throw new NullPointerException();
1259 dl 1.119 int h = spread(k.hashCode());
1260 dl 1.149 int len = 0;
1261 dl 1.151 for (Node<V>[] tab = table;;) {
1262     int i, fh; Node<V> f; Object fk; V fv;
1263 dl 1.119 if (tab == null)
1264     tab = initTable();
1265     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1266 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1267 dl 1.119 break; // no lock when adding to empty bin
1268 dl 1.99 }
1269 dl 1.149 else if ((fh = f.hash) < 0) {
1270 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1271 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1272     V oldVal = null;
1273 dl 1.119 t.acquire(0);
1274     try {
1275     if (tabAt(tab, i) == f) {
1276 dl 1.149 len = 2;
1277 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1278 dl 1.119 if (p != null) {
1279     oldVal = p.val;
1280 dl 1.149 if (!onlyIfAbsent)
1281     p.val = v;
1282 dl 1.119 }
1283     }
1284     } finally {
1285     t.release(0);
1286     }
1287 dl 1.149 if (len != 0) {
1288 dl 1.119 if (oldVal != null)
1289 dl 1.151 return oldVal;
1290 dl 1.119 break;
1291     }
1292     }
1293     else
1294 dl 1.151 tab = (Node<V>[])fk;
1295 dl 1.119 }
1296 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1297     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1298 dl 1.151 return fv;
1299 dl 1.149 else {
1300 dl 1.151 V oldVal = null;
1301 jsr166 1.150 synchronized (f) {
1302 dl 1.119 if (tabAt(tab, i) == f) {
1303 dl 1.149 len = 1;
1304 dl 1.151 for (Node<V> e = f;; ++len) {
1305     Object ek; V ev;
1306 dl 1.149 if (e.hash == h &&
1307 dl 1.119 (ev = e.val) != null &&
1308     ((ek = e.key) == k || k.equals(ek))) {
1309     oldVal = ev;
1310 dl 1.149 if (!onlyIfAbsent)
1311     e.val = v;
1312 dl 1.119 break;
1313     }
1314 dl 1.151 Node<V> last = e;
1315 dl 1.119 if ((e = e.next) == null) {
1316 dl 1.151 last.next = new Node<V>(h, k, v, null);
1317 dl 1.149 if (len >= TREE_THRESHOLD)
1318 dl 1.119 replaceWithTreeBin(tab, i, k);
1319     break;
1320     }
1321     }
1322     }
1323     }
1324 dl 1.149 if (len != 0) {
1325 dl 1.119 if (oldVal != null)
1326 dl 1.151 return oldVal;
1327 dl 1.119 break;
1328     }
1329     }
1330 dl 1.45 }
1331 dl 1.149 addCount(1L, len);
1332 dl 1.119 return null;
1333 dl 1.21 }
1334    
1335 dl 1.119 /** Implementation for computeIfAbsent */
1336 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1337 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1338 dl 1.149 if (k == null || mf == null)
1339     throw new NullPointerException();
1340 dl 1.119 int h = spread(k.hashCode());
1341 dl 1.151 V val = null;
1342 dl 1.149 int len = 0;
1343 dl 1.151 for (Node<V>[] tab = table;;) {
1344     Node<V> f; int i; Object fk;
1345 dl 1.119 if (tab == null)
1346     tab = initTable();
1347     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1348 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1349 jsr166 1.150 synchronized (node) {
1350 dl 1.149 if (casTabAt(tab, i, null, node)) {
1351     len = 1;
1352     try {
1353     if ((val = mf.apply(k)) != null)
1354     node.val = val;
1355     } finally {
1356     if (val == null)
1357     setTabAt(tab, i, null);
1358 dl 1.119 }
1359     }
1360     }
1361 dl 1.149 if (len != 0)
1362 dl 1.119 break;
1363     }
1364 dl 1.149 else if (f.hash < 0) {
1365 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1366 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1367 dl 1.119 boolean added = false;
1368     t.acquire(0);
1369     try {
1370     if (tabAt(tab, i) == f) {
1371 dl 1.149 len = 1;
1372 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1373 dl 1.119 if (p != null)
1374     val = p.val;
1375     else if ((val = mf.apply(k)) != null) {
1376     added = true;
1377 dl 1.149 len = 2;
1378 dl 1.119 t.putTreeNode(h, k, val);
1379     }
1380     }
1381     } finally {
1382     t.release(0);
1383     }
1384 dl 1.149 if (len != 0) {
1385 dl 1.119 if (!added)
1386 dl 1.151 return val;
1387 dl 1.119 break;
1388     }
1389     }
1390     else
1391 dl 1.151 tab = (Node<V>[])fk;
1392 dl 1.119 }
1393     else {
1394 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1395     Object ek; V ev;
1396 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1397     ((ek = e.key) == k || k.equals(ek)))
1398 dl 1.151 return ev;
1399 dl 1.119 }
1400 dl 1.149 boolean added = false;
1401 jsr166 1.150 synchronized (f) {
1402 dl 1.149 if (tabAt(tab, i) == f) {
1403     len = 1;
1404 dl 1.151 for (Node<V> e = f;; ++len) {
1405     Object ek; V ev;
1406 dl 1.149 if (e.hash == h &&
1407     (ev = e.val) != null &&
1408     ((ek = e.key) == k || k.equals(ek))) {
1409     val = ev;
1410     break;
1411     }
1412 dl 1.151 Node<V> last = e;
1413 dl 1.149 if ((e = e.next) == null) {
1414     if ((val = mf.apply(k)) != null) {
1415     added = true;
1416 dl 1.151 last.next = new Node<V>(h, k, val, null);
1417 dl 1.149 if (len >= TREE_THRESHOLD)
1418     replaceWithTreeBin(tab, i, k);
1419 dl 1.119 }
1420 dl 1.149 break;
1421 dl 1.119 }
1422     }
1423     }
1424 dl 1.149 }
1425     if (len != 0) {
1426     if (!added)
1427 dl 1.151 return val;
1428 dl 1.149 break;
1429 dl 1.119 }
1430 dl 1.105 }
1431 dl 1.99 }
1432 dl 1.149 if (val != null)
1433     addCount(1L, len);
1434 dl 1.151 return val;
1435 tim 1.1 }
1436    
1437 dl 1.119 /** Implementation for compute */
1438 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1439     (K k, boolean onlyIfPresent,
1440 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1441 dl 1.149 if (k == null || mf == null)
1442     throw new NullPointerException();
1443 dl 1.119 int h = spread(k.hashCode());
1444 dl 1.151 V val = null;
1445 dl 1.119 int delta = 0;
1446 dl 1.149 int len = 0;
1447 dl 1.151 for (Node<V>[] tab = table;;) {
1448     Node<V> f; int i, fh; Object fk;
1449 dl 1.119 if (tab == null)
1450     tab = initTable();
1451     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1452     if (onlyIfPresent)
1453     break;
1454 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1455 jsr166 1.150 synchronized (node) {
1456 dl 1.149 if (casTabAt(tab, i, null, node)) {
1457     try {
1458     len = 1;
1459     if ((val = mf.apply(k, null)) != null) {
1460     node.val = val;
1461     delta = 1;
1462     }
1463     } finally {
1464     if (delta == 0)
1465     setTabAt(tab, i, null);
1466 dl 1.119 }
1467     }
1468     }
1469 dl 1.149 if (len != 0)
1470 dl 1.119 break;
1471     }
1472 dl 1.149 else if ((fh = f.hash) < 0) {
1473 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1474 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1475 dl 1.119 t.acquire(0);
1476     try {
1477     if (tabAt(tab, i) == f) {
1478 dl 1.149 len = 1;
1479 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1480 dl 1.149 if (p == null && onlyIfPresent)
1481     break;
1482 dl 1.151 V pv = (p == null) ? null : p.val;
1483     if ((val = mf.apply(k, pv)) != null) {
1484 dl 1.119 if (p != null)
1485     p.val = val;
1486     else {
1487 dl 1.149 len = 2;
1488 dl 1.119 delta = 1;
1489     t.putTreeNode(h, k, val);
1490     }
1491     }
1492     else if (p != null) {
1493     delta = -1;
1494     t.deleteTreeNode(p);
1495     }
1496     }
1497     } finally {
1498     t.release(0);
1499     }
1500 dl 1.149 if (len != 0)
1501 dl 1.119 break;
1502     }
1503     else
1504 dl 1.151 tab = (Node<V>[])fk;
1505 dl 1.119 }
1506 dl 1.149 else {
1507 jsr166 1.150 synchronized (f) {
1508 dl 1.119 if (tabAt(tab, i) == f) {
1509 dl 1.149 len = 1;
1510 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1511     Object ek; V ev;
1512 dl 1.149 if (e.hash == h &&
1513 dl 1.119 (ev = e.val) != null &&
1514     ((ek = e.key) == k || k.equals(ek))) {
1515 dl 1.151 val = mf.apply(k, ev);
1516 dl 1.119 if (val != null)
1517     e.val = val;
1518     else {
1519     delta = -1;
1520 dl 1.151 Node<V> en = e.next;
1521 dl 1.119 if (pred != null)
1522     pred.next = en;
1523     else
1524     setTabAt(tab, i, en);
1525     }
1526     break;
1527     }
1528     pred = e;
1529     if ((e = e.next) == null) {
1530 dl 1.149 if (!onlyIfPresent &&
1531     (val = mf.apply(k, null)) != null) {
1532 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1533 dl 1.119 delta = 1;
1534 dl 1.149 if (len >= TREE_THRESHOLD)
1535 dl 1.119 replaceWithTreeBin(tab, i, k);
1536     }
1537     break;
1538     }
1539     }
1540     }
1541     }
1542 dl 1.149 if (len != 0)
1543 dl 1.119 break;
1544     }
1545     }
1546 dl 1.149 if (delta != 0)
1547     addCount((long)delta, len);
1548 dl 1.151 return val;
1549 dl 1.119 }
1550    
1551 dl 1.126 /** Implementation for merge */
1552 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1553 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1554 dl 1.149 if (k == null || v == null || mf == null)
1555     throw new NullPointerException();
1556 dl 1.119 int h = spread(k.hashCode());
1557 dl 1.151 V val = null;
1558 dl 1.119 int delta = 0;
1559 dl 1.149 int len = 0;
1560 dl 1.151 for (Node<V>[] tab = table;;) {
1561     int i; Node<V> f; Object fk; V fv;
1562 dl 1.119 if (tab == null)
1563     tab = initTable();
1564     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1565 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1566 dl 1.119 delta = 1;
1567     val = v;
1568     break;
1569     }
1570     }
1571 dl 1.149 else if (f.hash < 0) {
1572 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1573 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1574 dl 1.119 t.acquire(0);
1575     try {
1576     if (tabAt(tab, i) == f) {
1577 dl 1.149 len = 1;
1578 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1579     val = (p == null) ? v : mf.apply(p.val, v);
1580 dl 1.119 if (val != null) {
1581     if (p != null)
1582     p.val = val;
1583     else {
1584 dl 1.149 len = 2;
1585 dl 1.119 delta = 1;
1586     t.putTreeNode(h, k, val);
1587     }
1588     }
1589     else if (p != null) {
1590     delta = -1;
1591     t.deleteTreeNode(p);
1592     }
1593     }
1594     } finally {
1595     t.release(0);
1596     }
1597 dl 1.149 if (len != 0)
1598 dl 1.119 break;
1599     }
1600     else
1601 dl 1.151 tab = (Node<V>[])fk;
1602 dl 1.119 }
1603 dl 1.149 else {
1604 jsr166 1.150 synchronized (f) {
1605 dl 1.119 if (tabAt(tab, i) == f) {
1606 dl 1.149 len = 1;
1607 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1608     Object ek; V ev;
1609 dl 1.149 if (e.hash == h &&
1610 dl 1.119 (ev = e.val) != null &&
1611     ((ek = e.key) == k || k.equals(ek))) {
1612 dl 1.151 val = mf.apply(ev, v);
1613 dl 1.119 if (val != null)
1614     e.val = val;
1615     else {
1616     delta = -1;
1617 dl 1.151 Node<V> en = e.next;
1618 dl 1.119 if (pred != null)
1619     pred.next = en;
1620     else
1621     setTabAt(tab, i, en);
1622     }
1623     break;
1624     }
1625     pred = e;
1626     if ((e = e.next) == null) {
1627     val = v;
1628 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1629 dl 1.119 delta = 1;
1630 dl 1.149 if (len >= TREE_THRESHOLD)
1631 dl 1.119 replaceWithTreeBin(tab, i, k);
1632     break;
1633     }
1634     }
1635     }
1636     }
1637 dl 1.149 if (len != 0)
1638 dl 1.119 break;
1639 dl 1.105 }
1640 dl 1.99 }
1641 dl 1.149 if (delta != 0)
1642     addCount((long)delta, len);
1643 dl 1.151 return val;
1644 dl 1.119 }
1645    
1646     /** Implementation for putAll */
1647 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1648     (Map<? extends K, ? extends V> m) {
1649 dl 1.119 tryPresize(m.size());
1650     long delta = 0L; // number of uncommitted additions
1651     boolean npe = false; // to throw exception on exit for nulls
1652     try { // to clean up counts on other exceptions
1653 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1654     Object k; V v;
1655 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1656     (v = entry.getValue()) == null) {
1657     npe = true;
1658     break;
1659     }
1660     int h = spread(k.hashCode());
1661 dl 1.151 for (Node<V>[] tab = table;;) {
1662     int i; Node<V> f; int fh; Object fk;
1663 dl 1.119 if (tab == null)
1664     tab = initTable();
1665     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1666 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1667 dl 1.119 ++delta;
1668     break;
1669     }
1670     }
1671 dl 1.149 else if ((fh = f.hash) < 0) {
1672 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1673 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1674 dl 1.119 boolean validated = false;
1675     t.acquire(0);
1676     try {
1677     if (tabAt(tab, i) == f) {
1678     validated = true;
1679 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1680 dl 1.119 if (p != null)
1681     p.val = v;
1682     else {
1683     t.putTreeNode(h, k, v);
1684     ++delta;
1685     }
1686     }
1687     } finally {
1688     t.release(0);
1689     }
1690     if (validated)
1691     break;
1692     }
1693     else
1694 dl 1.151 tab = (Node<V>[])fk;
1695 dl 1.119 }
1696 dl 1.149 else {
1697     int len = 0;
1698 jsr166 1.150 synchronized (f) {
1699 dl 1.119 if (tabAt(tab, i) == f) {
1700 dl 1.149 len = 1;
1701 dl 1.151 for (Node<V> e = f;; ++len) {
1702     Object ek; V ev;
1703 dl 1.149 if (e.hash == h &&
1704 dl 1.119 (ev = e.val) != null &&
1705     ((ek = e.key) == k || k.equals(ek))) {
1706     e.val = v;
1707     break;
1708     }
1709 dl 1.151 Node<V> last = e;
1710 dl 1.119 if ((e = e.next) == null) {
1711     ++delta;
1712 dl 1.151 last.next = new Node<V>(h, k, v, null);
1713 dl 1.149 if (len >= TREE_THRESHOLD)
1714 dl 1.119 replaceWithTreeBin(tab, i, k);
1715     break;
1716     }
1717     }
1718     }
1719     }
1720 dl 1.149 if (len != 0) {
1721     if (len > 1)
1722     addCount(delta, len);
1723 dl 1.119 break;
1724 dl 1.99 }
1725 dl 1.21 }
1726     }
1727 dl 1.45 }
1728     } finally {
1729 dl 1.149 if (delta != 0L)
1730     addCount(delta, 2);
1731 dl 1.45 }
1732 dl 1.119 if (npe)
1733     throw new NullPointerException();
1734 tim 1.1 }
1735 dl 1.19
1736 dl 1.149 /**
1737     * Implementation for clear. Steps through each bin, removing all
1738     * nodes.
1739     */
1740 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1741 dl 1.149 long delta = 0L; // negative number of deletions
1742     int i = 0;
1743 dl 1.151 Node<V>[] tab = table;
1744 dl 1.149 while (tab != null && i < tab.length) {
1745 dl 1.151 Node<V> f = tabAt(tab, i);
1746 dl 1.149 if (f == null)
1747     ++i;
1748     else if (f.hash < 0) {
1749     Object fk;
1750     if ((fk = f.key) instanceof TreeBin) {
1751 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1752 dl 1.149 t.acquire(0);
1753     try {
1754     if (tabAt(tab, i) == f) {
1755 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1756 dl 1.149 if (p.val != null) { // (currently always true)
1757     p.val = null;
1758     --delta;
1759     }
1760     }
1761     t.first = null;
1762     t.root = null;
1763     ++i;
1764     }
1765     } finally {
1766     t.release(0);
1767     }
1768     }
1769     else
1770 dl 1.151 tab = (Node<V>[])fk;
1771 dl 1.149 }
1772     else {
1773 jsr166 1.150 synchronized (f) {
1774 dl 1.149 if (tabAt(tab, i) == f) {
1775 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1776 dl 1.149 if (e.val != null) { // (currently always true)
1777     e.val = null;
1778     --delta;
1779     }
1780     }
1781     setTabAt(tab, i, null);
1782     ++i;
1783     }
1784     }
1785     }
1786     }
1787     if (delta != 0L)
1788     addCount(delta, -1);
1789     }
1790    
1791 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1792    
1793 tim 1.1 /**
1794 dl 1.119 * Returns a power of two table size for the given desired capacity.
1795     * See Hackers Delight, sec 3.2
1796 tim 1.1 */
1797 dl 1.119 private static final int tableSizeFor(int c) {
1798     int n = c - 1;
1799     n |= n >>> 1;
1800     n |= n >>> 2;
1801     n |= n >>> 4;
1802     n |= n >>> 8;
1803     n |= n >>> 16;
1804     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1805 tim 1.1 }
1806    
1807     /**
1808 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1809     */
1810 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1811     Node<V>[] tab; int sc;
1812 dl 1.119 while ((tab = table) == null) {
1813     if ((sc = sizeCtl) < 0)
1814     Thread.yield(); // lost initialization race; just spin
1815 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1816 dl 1.119 try {
1817     if ((tab = table) == null) {
1818     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1819 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1820     table = tab = (Node<V>[])tb;
1821 dl 1.119 sc = n - (n >>> 2);
1822     }
1823     } finally {
1824     sizeCtl = sc;
1825     }
1826     break;
1827     }
1828     }
1829     return tab;
1830 dl 1.4 }
1831    
1832     /**
1833 dl 1.149 * Adds to count, and if table is too small and not already
1834     * resizing, initiates transfer. If already resizing, helps
1835     * perform transfer if work is available. Rechecks occupancy
1836     * after a transfer to see if another resize is already needed
1837     * because resizings are lagging additions.
1838     *
1839     * @param x the count to add
1840     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1841     */
1842     private final void addCount(long x, int check) {
1843 dl 1.153 Cell[] as; long b, s;
1844 dl 1.149 if ((as = counterCells) != null ||
1845     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1846 dl 1.153 CellHashCode hc; Cell a; long v; int m;
1847 dl 1.149 boolean uncontended = true;
1848 dl 1.153 if ((hc = threadCellHashCode.get()) == null ||
1849 dl 1.149 as == null || (m = as.length - 1) < 0 ||
1850     (a = as[m & hc.code]) == null ||
1851     !(uncontended =
1852     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1853     fullAddCount(x, hc, uncontended);
1854     return;
1855     }
1856     if (check <= 1)
1857     return;
1858     s = sumCount();
1859     }
1860     if (check >= 0) {
1861 dl 1.151 Node<V>[] tab, nt; int sc;
1862 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1863     tab.length < MAXIMUM_CAPACITY) {
1864     if (sc < 0) {
1865     if (sc == -1 || transferIndex <= transferOrigin ||
1866     (nt = nextTable) == null)
1867     break;
1868     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1869     transfer(tab, nt);
1870 dl 1.119 }
1871 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1872     transfer(tab, null);
1873     s = sumCount();
1874 dl 1.119 }
1875     }
1876 dl 1.4 }
1877    
1878     /**
1879 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1880 tim 1.1 *
1881 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1882 tim 1.1 */
1883 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1884 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1885     tableSizeFor(size + (size >>> 1) + 1);
1886     int sc;
1887     while ((sc = sizeCtl) >= 0) {
1888 dl 1.151 Node<V>[] tab = table; int n;
1889 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1890     n = (sc > c) ? sc : c;
1891 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1892 dl 1.119 try {
1893     if (table == tab) {
1894 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1895     table = (Node<V>[])tb;
1896 dl 1.119 sc = n - (n >>> 2);
1897     }
1898     } finally {
1899     sizeCtl = sc;
1900     }
1901     }
1902     }
1903     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1904     break;
1905 dl 1.149 else if (tab == table &&
1906     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1907     transfer(tab, null);
1908 dl 1.119 }
1909 dl 1.4 }
1910    
1911 dl 1.119 /*
1912     * Moves and/or copies the nodes in each bin to new table. See
1913     * above for explanation.
1914 dl 1.4 */
1915 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1916     (Node<V>[] tab, Node<V>[] nextTab) {
1917 dl 1.149 int n = tab.length, stride;
1918     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1919     stride = MIN_TRANSFER_STRIDE; // subdivide range
1920     if (nextTab == null) { // initiating
1921     try {
1922 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1923     nextTab = (Node<V>[])tb;
1924 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1925 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1926     return;
1927     }
1928     nextTable = nextTab;
1929     transferOrigin = n;
1930     transferIndex = n;
1931 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1932 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1933 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1934 dl 1.149 for (int m = nextk; m < k; ++m)
1935     nextTab[m] = rev;
1936     for (int m = n + nextk; m < n + k; ++m)
1937     nextTab[m] = rev;
1938     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1939     }
1940     }
1941     int nextn = nextTab.length;
1942 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1943 dl 1.149 boolean advance = true;
1944     for (int i = 0, bound = 0;;) {
1945 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1946 dl 1.149 while (advance) {
1947     if (--i >= bound)
1948     advance = false;
1949     else if ((nextIndex = transferIndex) <= transferOrigin) {
1950     i = -1;
1951     advance = false;
1952     }
1953     else if (U.compareAndSwapInt
1954     (this, TRANSFERINDEX, nextIndex,
1955 jsr166 1.150 nextBound = (nextIndex > stride ?
1956 dl 1.149 nextIndex - stride : 0))) {
1957     bound = nextBound;
1958     i = nextIndex - 1;
1959     advance = false;
1960     }
1961     }
1962     if (i < 0 || i >= n || i + n >= nextn) {
1963     for (int sc;;) {
1964     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1965     if (sc == -1) {
1966     nextTable = null;
1967     table = nextTab;
1968     sizeCtl = (n << 1) - (n >>> 1);
1969     }
1970     return;
1971     }
1972     }
1973     }
1974     else if ((f = tabAt(tab, i)) == null) {
1975     if (casTabAt(tab, i, null, fwd)) {
1976 dl 1.119 setTabAt(nextTab, i, null);
1977     setTabAt(nextTab, i + n, null);
1978 dl 1.149 advance = true;
1979     }
1980     }
1981     else if (f.hash >= 0) {
1982 jsr166 1.150 synchronized (f) {
1983 dl 1.149 if (tabAt(tab, i) == f) {
1984     int runBit = f.hash & n;
1985 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1986     for (Node<V> p = f.next; p != null; p = p.next) {
1987 dl 1.149 int b = p.hash & n;
1988     if (b != runBit) {
1989     runBit = b;
1990     lastRun = p;
1991     }
1992     }
1993     if (runBit == 0)
1994     lo = lastRun;
1995     else
1996     hi = lastRun;
1997 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1998 dl 1.149 int ph = p.hash;
1999 dl 1.151 Object pk = p.key; V pv = p.val;
2000 dl 1.149 if ((ph & n) == 0)
2001 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
2002 dl 1.149 else
2003 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
2004 dl 1.149 }
2005     setTabAt(nextTab, i, lo);
2006     setTabAt(nextTab, i + n, hi);
2007     setTabAt(tab, i, fwd);
2008     advance = true;
2009 dl 1.119 }
2010     }
2011     }
2012 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
2013 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
2014 dl 1.149 t.acquire(0);
2015     try {
2016     if (tabAt(tab, i) == f) {
2017 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
2018     TreeBin<V> ht = new TreeBin<V>();
2019 dl 1.149 int lc = 0, hc = 0;
2020 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
2021 dl 1.149 int h = e.hash;
2022 dl 1.151 Object k = e.key; V v = e.val;
2023 dl 1.149 if ((h & n) == 0) {
2024     ++lc;
2025     lt.putTreeNode(h, k, v);
2026     }
2027     else {
2028     ++hc;
2029     ht.putTreeNode(h, k, v);
2030     }
2031     }
2032 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2033 dl 1.149 if (lc < TREE_THRESHOLD) {
2034     ln = null;
2035 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2036     ln = new Node<V>(p.hash, p.key, p.val, ln);
2037 dl 1.149 }
2038     else
2039 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2040 dl 1.149 setTabAt(nextTab, i, ln);
2041     if (hc < TREE_THRESHOLD) {
2042     hn = null;
2043 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2044     hn = new Node<V>(p.hash, p.key, p.val, hn);
2045 dl 1.119 }
2046 dl 1.149 else
2047 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2048 dl 1.149 setTabAt(nextTab, i + n, hn);
2049 dl 1.119 setTabAt(tab, i, fwd);
2050 dl 1.149 advance = true;
2051 dl 1.119 }
2052     } finally {
2053 dl 1.149 t.release(0);
2054 dl 1.119 }
2055     }
2056     else
2057 dl 1.149 advance = true; // already processed
2058 dl 1.119 }
2059 dl 1.4 }
2060 tim 1.1
2061 dl 1.149 /* ---------------- Counter support -------------- */
2062    
2063     final long sumCount() {
2064 dl 1.153 Cell[] as = counterCells; Cell a;
2065 dl 1.149 long sum = baseCount;
2066     if (as != null) {
2067     for (int i = 0; i < as.length; ++i) {
2068     if ((a = as[i]) != null)
2069     sum += a.value;
2070 dl 1.119 }
2071     }
2072 dl 1.149 return sum;
2073 dl 1.119 }
2074    
2075 dl 1.149 // See LongAdder version for explanation
2076 dl 1.153 private final void fullAddCount(long x, CellHashCode hc,
2077 dl 1.149 boolean wasUncontended) {
2078     int h;
2079     if (hc == null) {
2080 dl 1.153 hc = new CellHashCode();
2081     int s = cellHashCodeGenerator.addAndGet(SEED_INCREMENT);
2082 dl 1.149 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2083 dl 1.153 threadCellHashCode.set(hc);
2084 dl 1.119 }
2085     else
2086 dl 1.149 h = hc.code;
2087     boolean collide = false; // True if last slot nonempty
2088     for (;;) {
2089 dl 1.153 Cell[] as; Cell a; int n; long v;
2090 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2091     if ((a = as[(n - 1) & h]) == null) {
2092 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2093     Cell r = new Cell(x); // Optimistic create
2094     if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 boolean created = false;
2097     try { // Recheck under lock
2098 dl 1.153 Cell[] rs; int m, j;
2099 dl 1.149 if ((rs = counterCells) != null &&
2100     (m = rs.length) > 0 &&
2101     rs[j = (m - 1) & h] == null) {
2102     rs[j] = r;
2103     created = true;
2104 dl 1.128 }
2105 dl 1.149 } finally {
2106 dl 1.153 cellsBusy = 0;
2107 dl 1.119 }
2108 dl 1.149 if (created)
2109     break;
2110     continue; // Slot is now non-empty
2111     }
2112     }
2113     collide = false;
2114     }
2115     else if (!wasUncontended) // CAS already known to fail
2116     wasUncontended = true; // Continue after rehash
2117     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2118     break;
2119     else if (counterCells != as || n >= NCPU)
2120     collide = false; // At max size or stale
2121     else if (!collide)
2122     collide = true;
2123 dl 1.153 else if (cellsBusy == 0 &&
2124     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2125 dl 1.149 try {
2126     if (counterCells == as) {// Expand table unless stale
2127 dl 1.153 Cell[] rs = new Cell[n << 1];
2128 dl 1.149 for (int i = 0; i < n; ++i)
2129     rs[i] = as[i];
2130     counterCells = rs;
2131 dl 1.119 }
2132     } finally {
2133 dl 1.153 cellsBusy = 0;
2134 dl 1.119 }
2135 dl 1.149 collide = false;
2136     continue; // Retry with expanded table
2137 dl 1.119 }
2138 dl 1.149 h ^= h << 13; // Rehash
2139     h ^= h >>> 17;
2140     h ^= h << 5;
2141     }
2142 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2143     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2144 dl 1.149 boolean init = false;
2145     try { // Initialize table
2146     if (counterCells == as) {
2147 dl 1.153 Cell[] rs = new Cell[2];
2148     rs[h & 1] = new Cell(x);
2149 dl 1.149 counterCells = rs;
2150     init = true;
2151 dl 1.119 }
2152     } finally {
2153 dl 1.153 cellsBusy = 0;
2154 dl 1.119 }
2155 dl 1.149 if (init)
2156     break;
2157 dl 1.119 }
2158 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2159     break; // Fall back on using base
2160 dl 1.119 }
2161 dl 1.149 hc.code = h; // Record index for next time
2162 dl 1.119 }
2163    
2164     /* ----------------Table Traversal -------------- */
2165    
2166     /**
2167     * Encapsulates traversal for methods such as containsValue; also
2168 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2169 dl 1.119 *
2170     * At each step, the iterator snapshots the key ("nextKey") and
2171     * value ("nextVal") of a valid node (i.e., one that, at point of
2172     * snapshot, has a non-null user value). Because val fields can
2173     * change (including to null, indicating deletion), field nextVal
2174     * might not be accurate at point of use, but still maintains the
2175     * weak consistency property of holding a value that was once
2176 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2177     * updated (nulled out) when the iterator cannot advance.
2178 dl 1.119 *
2179     * Internal traversals directly access these fields, as in:
2180     * {@code while (it.advance() != null) { process(it.nextKey); }}
2181     *
2182     * Exported iterators must track whether the iterator has advanced
2183     * (in hasNext vs next) (by setting/checking/nulling field
2184     * nextVal), and then extract key, value, or key-value pairs as
2185     * return values of next().
2186     *
2187     * The iterator visits once each still-valid node that was
2188     * reachable upon iterator construction. It might miss some that
2189     * were added to a bin after the bin was visited, which is OK wrt
2190     * consistency guarantees. Maintaining this property in the face
2191     * of possible ongoing resizes requires a fair amount of
2192     * bookkeeping state that is difficult to optimize away amidst
2193     * volatile accesses. Even so, traversal maintains reasonable
2194     * throughput.
2195     *
2196     * Normally, iteration proceeds bin-by-bin traversing lists.
2197     * However, if the table has been resized, then all future steps
2198     * must traverse both the bin at the current index as well as at
2199     * (index + baseSize); and so on for further resizings. To
2200     * paranoically cope with potential sharing by users of iterators
2201     * across threads, iteration terminates if a bounds checks fails
2202     * for a table read.
2203     *
2204 dl 1.153 * This class supports both Spliterator-based traversal and
2205     * CountedCompleter-based bulk tasks. The same "batch" field is
2206     * used, but in slightly different ways, in the two cases. For
2207     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2208     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2209     * size that halves down to zero for leaf tasks, that is only
2210     * computed upon execution of the task. (Tasks can be submitted to
2211     * any pool, of any size, so we don't know scale factors until
2212     * running.)
2213     *
2214 dl 1.146 * This class extends CountedCompleter to streamline parallel
2215     * iteration in bulk operations. This adds only a few fields of
2216     * space overhead, which is small enough in cases where it is not
2217     * needed to not worry about it. Because CountedCompleter is
2218     * Serializable, but iterators need not be, we need to add warning
2219     * suppressions.
2220 dl 1.119 */
2221 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2222     extends CountedCompleter<R> {
2223 dl 1.119 final ConcurrentHashMap<K, V> map;
2224 dl 1.151 Node<V> next; // the next entry to use
2225 dl 1.119 Object nextKey; // cached key field of next
2226 dl 1.151 V nextVal; // cached val field of next
2227     Node<V>[] tab; // current table; updated if resized
2228 dl 1.119 int index; // index of bin to use next
2229     int baseIndex; // current index of initial table
2230     int baseLimit; // index bound for initial table
2231 dl 1.130 int baseSize; // initial table size
2232 dl 1.146 int batch; // split control
2233 dl 1.119 /** Creates iterator for all entries in the table. */
2234     Traverser(ConcurrentHashMap<K, V> map) {
2235 dl 1.130 this.map = map;
2236 dl 1.153 Node<V>[] t;
2237     if ((t = tab = map.table) != null)
2238     baseLimit = baseSize = t.length;
2239 dl 1.119 }
2240    
2241 dl 1.153 /** Task constructor */
2242 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2243     super(it);
2244 dl 1.153 this.map = map;
2245     this.batch = batch; // -1 if unknown
2246     if (it == null) {
2247 dl 1.151 Node<V>[] t;
2248 dl 1.153 if ((t = tab = map.table) != null)
2249     baseLimit = baseSize = t.length;
2250     }
2251     else { // split parent
2252     this.tab = it.tab;
2253 dl 1.146 this.baseSize = it.baseSize;
2254     int hi = this.baseLimit = it.baseLimit;
2255     it.baseLimit = this.index = this.baseIndex =
2256     (hi + it.baseIndex + 1) >>> 1;
2257     }
2258 dl 1.119 }
2259    
2260 dl 1.153 /** Spliterator constructor */
2261     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2262     super(it);
2263     this.map = map;
2264     if (it == null) {
2265     Node<V>[] t;
2266     if ((t = tab = map.table) != null)
2267     baseLimit = baseSize = t.length;
2268     long n = map.sumCount();
2269     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2270     (int)n);
2271     }
2272     else {
2273     this.tab = it.tab;
2274     this.baseSize = it.baseSize;
2275     int hi = this.baseLimit = it.baseLimit;
2276     it.baseLimit = this.index = this.baseIndex =
2277     (hi + it.baseIndex + 1) >>> 1;
2278     this.batch = it.batch >>>= 1;
2279     }
2280     }
2281    
2282 dl 1.119 /**
2283     * Advances next; returns nextVal or null if terminated.
2284     * See above for explanation.
2285     */
2286 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2287     Node<V> e = next;
2288     V ev = null;
2289 dl 1.119 outer: do {
2290     if (e != null) // advance past used/skipped node
2291     e = e.next;
2292     while (e == null) { // get to next non-null bin
2293 dl 1.130 ConcurrentHashMap<K, V> m;
2294 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2295 dl 1.130 if ((t = tab) != null)
2296     n = t.length;
2297     else if ((m = map) != null && (t = tab = m.table) != null)
2298     n = baseLimit = baseSize = t.length;
2299     else
2300 dl 1.119 break outer;
2301 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2302     (i = index) < 0 || i >= n)
2303     break outer;
2304 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2305 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2306 dl 1.151 e = ((TreeBin<V>)ek).first;
2307 dl 1.119 else {
2308 dl 1.151 tab = (Node<V>[])ek;
2309 dl 1.119 continue; // restarts due to null val
2310     }
2311     } // visit upper slots if present
2312     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2313     }
2314     nextKey = e.key;
2315     } while ((ev = e.val) == null); // skip deleted or special nodes
2316     next = e;
2317     return nextVal = ev;
2318     }
2319    
2320     public final void remove() {
2321 dl 1.137 Object k = nextKey;
2322     if (k == null && (advance() == null || (k = nextKey) == null))
2323 dl 1.119 throw new IllegalStateException();
2324 dl 1.137 map.internalReplace(k, null, null);
2325 dl 1.119 }
2326    
2327     public final boolean hasNext() {
2328     return nextVal != null || advance() != null;
2329     }
2330    
2331     public final boolean hasMoreElements() { return hasNext(); }
2332 dl 1.146
2333     public void compute() { } // default no-op CountedCompleter body
2334    
2335     /**
2336     * Returns a batch value > 0 if this task should (and must) be
2337     * split, if so, adding to pending count, and in any case
2338     * updating batch value. The initial batch value is approx
2339     * exp2 of the number of times (minus one) to split task by
2340     * two before executing leaf action. This value is faster to
2341     * compute and more convenient to use as a guide to splitting
2342     * than is the depth, since it is used while dividing by two
2343     * anyway.
2344     */
2345     final int preSplit() {
2346 dl 1.153 int b; ForkJoinPool pool;
2347     if ((b = batch) < 0) { // force initialization
2348     int sp = (((pool = getPool()) == null) ?
2349     ForkJoinPool.getCommonPoolParallelism() :
2350     pool.getParallelism()) << 3; // slack of 8
2351     long n = map.sumCount();
2352     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2353 dl 1.146 }
2354 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2355 dl 1.146 if ((batch = b) > 0)
2356     addToPendingCount(1);
2357     return b;
2358     }
2359    
2360 dl 1.153 // spliterator support
2361    
2362     public long exactSizeIfKnown() {
2363     return -1;
2364     }
2365    
2366     public boolean hasExactSplits() {
2367     return false;
2368     }
2369    
2370     public long estimateSize() {
2371     return batch;
2372     }
2373 dl 1.119 }
2374    
2375     /* ---------------- Public operations -------------- */
2376    
2377     /**
2378     * Creates a new, empty map with the default initial table size (16).
2379     */
2380     public ConcurrentHashMap() {
2381     }
2382    
2383     /**
2384     * Creates a new, empty map with an initial table size
2385     * accommodating the specified number of elements without the need
2386     * to dynamically resize.
2387     *
2388     * @param initialCapacity The implementation performs internal
2389     * sizing to accommodate this many elements.
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative
2392     */
2393     public ConcurrentHashMap(int initialCapacity) {
2394     if (initialCapacity < 0)
2395     throw new IllegalArgumentException();
2396     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2397     MAXIMUM_CAPACITY :
2398     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2399     this.sizeCtl = cap;
2400     }
2401    
2402     /**
2403     * Creates a new map with the same mappings as the given map.
2404     *
2405     * @param m the map
2406     */
2407     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2408     this.sizeCtl = DEFAULT_CAPACITY;
2409     internalPutAll(m);
2410     }
2411    
2412     /**
2413     * Creates a new, empty map with an initial table size based on
2414     * the given number of elements ({@code initialCapacity}) and
2415     * initial table density ({@code loadFactor}).
2416     *
2417     * @param initialCapacity the initial capacity. The implementation
2418     * performs internal sizing to accommodate this many elements,
2419     * given the specified load factor.
2420     * @param loadFactor the load factor (table density) for
2421     * establishing the initial table size
2422     * @throws IllegalArgumentException if the initial capacity of
2423     * elements is negative or the load factor is nonpositive
2424     *
2425     * @since 1.6
2426     */
2427     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2428     this(initialCapacity, loadFactor, 1);
2429     }
2430    
2431     /**
2432     * Creates a new, empty map with an initial table size based on
2433     * the given number of elements ({@code initialCapacity}), table
2434     * density ({@code loadFactor}), and number of concurrently
2435     * updating threads ({@code concurrencyLevel}).
2436     *
2437     * @param initialCapacity the initial capacity. The implementation
2438     * performs internal sizing to accommodate this many elements,
2439     * given the specified load factor.
2440     * @param loadFactor the load factor (table density) for
2441     * establishing the initial table size
2442     * @param concurrencyLevel the estimated number of concurrently
2443     * updating threads. The implementation may use this value as
2444     * a sizing hint.
2445     * @throws IllegalArgumentException if the initial capacity is
2446     * negative or the load factor or concurrencyLevel are
2447     * nonpositive
2448     */
2449     public ConcurrentHashMap(int initialCapacity,
2450     float loadFactor, int concurrencyLevel) {
2451     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2452     throw new IllegalArgumentException();
2453     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2454     initialCapacity = concurrencyLevel; // as estimated threads
2455     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2456     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2457     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2458     this.sizeCtl = cap;
2459     }
2460    
2461     /**
2462 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2463     * from the given type to {@code Boolean.TRUE}.
2464     *
2465     * @return the new set
2466     */
2467     public static <K> KeySetView<K,Boolean> newKeySet() {
2468     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2469     Boolean.TRUE);
2470     }
2471    
2472     /**
2473     * Creates a new {@link Set} backed by a ConcurrentHashMap
2474     * from the given type to {@code Boolean.TRUE}.
2475     *
2476     * @param initialCapacity The implementation performs internal
2477     * sizing to accommodate this many elements.
2478     * @throws IllegalArgumentException if the initial capacity of
2479     * elements is negative
2480     * @return the new set
2481     */
2482     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2483 dl 1.149 return new KeySetView<K,Boolean>
2484     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2485 dl 1.137 }
2486    
2487     /**
2488 dl 1.119 * {@inheritDoc}
2489     */
2490     public boolean isEmpty() {
2491 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2492 dl 1.119 }
2493    
2494     /**
2495     * {@inheritDoc}
2496     */
2497     public int size() {
2498 dl 1.149 long n = sumCount();
2499 dl 1.119 return ((n < 0L) ? 0 :
2500     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2501     (int)n);
2502     }
2503    
2504     /**
2505     * Returns the number of mappings. This method should be used
2506     * instead of {@link #size} because a ConcurrentHashMap may
2507     * contain more mappings than can be represented as an int. The
2508 dl 1.146 * value returned is an estimate; the actual count may differ if
2509     * there are concurrent insertions or removals.
2510 dl 1.119 *
2511     * @return the number of mappings
2512     */
2513     public long mappingCount() {
2514 dl 1.149 long n = sumCount();
2515 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2516 dl 1.119 }
2517    
2518     /**
2519     * Returns the value to which the specified key is mapped,
2520     * or {@code null} if this map contains no mapping for the key.
2521     *
2522     * <p>More formally, if this map contains a mapping from a key
2523     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2524     * then this method returns {@code v}; otherwise it returns
2525     * {@code null}. (There can be at most one such mapping.)
2526     *
2527     * @throws NullPointerException if the specified key is null
2528     */
2529 dl 1.149 public V get(Object key) {
2530     return internalGet(key);
2531 dl 1.119 }
2532    
2533     /**
2534 dl 1.129 * Returns the value to which the specified key is mapped,
2535 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2536 dl 1.129 *
2537     * @param key the key
2538     * @param defaultValue the value to return if this map contains
2539 jsr166 1.134 * no mapping for the given key
2540 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2541     * @throws NullPointerException if the specified key is null
2542     */
2543 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2544     V v;
2545     return (v = internalGet(key)) == null ? defaultValue : v;
2546 dl 1.129 }
2547    
2548     /**
2549 dl 1.119 * Tests if the specified object is a key in this table.
2550     *
2551     * @param key possible key
2552     * @return {@code true} if and only if the specified object
2553     * is a key in this table, as determined by the
2554     * {@code equals} method; {@code false} otherwise
2555     * @throws NullPointerException if the specified key is null
2556     */
2557     public boolean containsKey(Object key) {
2558     return internalGet(key) != null;
2559     }
2560    
2561     /**
2562     * Returns {@code true} if this map maps one or more keys to the
2563     * specified value. Note: This method may require a full traversal
2564     * of the map, and is much slower than method {@code containsKey}.
2565     *
2566     * @param value value whose presence in this map is to be tested
2567     * @return {@code true} if this map maps one or more keys to the
2568     * specified value
2569     * @throws NullPointerException if the specified value is null
2570     */
2571     public boolean containsValue(Object value) {
2572     if (value == null)
2573     throw new NullPointerException();
2574 dl 1.151 V v;
2575 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2576     while ((v = it.advance()) != null) {
2577     if (v == value || value.equals(v))
2578     return true;
2579     }
2580     return false;
2581     }
2582    
2583     /**
2584     * Legacy method testing if some key maps into the specified value
2585     * in this table. This method is identical in functionality to
2586     * {@link #containsValue}, and exists solely to ensure
2587     * full compatibility with class {@link java.util.Hashtable},
2588     * which supported this method prior to introduction of the
2589     * Java Collections framework.
2590     *
2591     * @param value a value to search for
2592     * @return {@code true} if and only if some key maps to the
2593     * {@code value} argument in this table as
2594     * determined by the {@code equals} method;
2595     * {@code false} otherwise
2596     * @throws NullPointerException if the specified value is null
2597     */
2598 dl 1.151 @Deprecated public boolean contains(Object value) {
2599 dl 1.119 return containsValue(value);
2600     }
2601    
2602     /**
2603     * Maps the specified key to the specified value in this table.
2604     * Neither the key nor the value can be null.
2605     *
2606 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2607 dl 1.119 * with a key that is equal to the original key.
2608     *
2609     * @param key key with which the specified value is to be associated
2610     * @param value value to be associated with the specified key
2611     * @return the previous value associated with {@code key}, or
2612     * {@code null} if there was no mapping for {@code key}
2613     * @throws NullPointerException if the specified key or value is null
2614     */
2615 dl 1.149 public V put(K key, V value) {
2616     return internalPut(key, value, false);
2617 dl 1.119 }
2618    
2619     /**
2620     * {@inheritDoc}
2621     *
2622     * @return the previous value associated with the specified key,
2623     * or {@code null} if there was no mapping for the key
2624     * @throws NullPointerException if the specified key or value is null
2625     */
2626 dl 1.149 public V putIfAbsent(K key, V value) {
2627     return internalPut(key, value, true);
2628 dl 1.119 }
2629    
2630     /**
2631     * Copies all of the mappings from the specified map to this one.
2632     * These mappings replace any mappings that this map had for any of the
2633     * keys currently in the specified map.
2634     *
2635     * @param m mappings to be stored in this map
2636     */
2637     public void putAll(Map<? extends K, ? extends V> m) {
2638     internalPutAll(m);
2639     }
2640    
2641     /**
2642 dl 1.153 * If the specified key is not already associated with a value (or
2643     * is mapped to {@code null}), attempts to compute its value using
2644     * the given mapping function and enters it into this map unless
2645     * {@code null}. The entire method invocation is performed
2646     * atomically, so the function is applied at most once per key.
2647     * Some attempted update operations on this map by other threads
2648     * may be blocked while computation is in progress, so the
2649     * computation should be short and simple, and must not attempt to
2650     * update any other mappings of this Map.
2651 dl 1.119 *
2652     * @param key key with which the specified value is to be associated
2653     * @param mappingFunction the function to compute a value
2654     * @return the current (existing or computed) value associated with
2655 jsr166 1.134 * the specified key, or null if the computed value is null
2656 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2657     * is null
2658     * @throws IllegalStateException if the computation detectably
2659     * attempts a recursive update to this map that would
2660     * otherwise never complete
2661     * @throws RuntimeException or Error if the mappingFunction does so,
2662     * in which case the mapping is left unestablished
2663     */
2664 dl 1.149 public V computeIfAbsent
2665 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2666 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2667 dl 1.119 }
2668    
2669     /**
2670 dl 1.153 * If the value for the specified key is present and non-null,
2671     * attempts to compute a new mapping given the key and its current
2672     * mapped value. The entire method invocation is performed
2673     * atomically. Some attempted update operations on this map by
2674 dl 1.119 * other threads may be blocked while computation is in progress,
2675     * so the computation should be short and simple, and must not
2676 dl 1.153 * attempt to update any other mappings of this Map.
2677 dl 1.119 *
2678     * @param key key with which the specified value is to be associated
2679     * @param remappingFunction the function to compute a value
2680 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2681 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2682     * is null
2683     * @throws IllegalStateException if the computation detectably
2684     * attempts a recursive update to this map that would
2685     * otherwise never complete
2686     * @throws RuntimeException or Error if the remappingFunction does so,
2687     * in which case the mapping is unchanged
2688     */
2689 dl 1.149 public V computeIfPresent
2690 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2691 dl 1.149 return internalCompute(key, true, remappingFunction);
2692 dl 1.119 }
2693    
2694     /**
2695 dl 1.153 * Attempts to compute a mapping for the specified key and its
2696     * current mapped value (or {@code null} if there is no current
2697     * mapping). The entire method invocation is performed atomically.
2698     * Some attempted update operations on this map by other threads
2699     * may be blocked while computation is in progress, so the
2700     * computation should be short and simple, and must not attempt to
2701     * update any other mappings of this Map.
2702 dl 1.119 *
2703     * @param key key with which the specified value is to be associated
2704     * @param remappingFunction the function to compute a value
2705 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2706 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2707     * is null
2708     * @throws IllegalStateException if the computation detectably
2709     * attempts a recursive update to this map that would
2710     * otherwise never complete
2711     * @throws RuntimeException or Error if the remappingFunction does so,
2712     * in which case the mapping is unchanged
2713     */
2714 dl 1.149 public V compute
2715 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2716 dl 1.149 return internalCompute(key, false, remappingFunction);
2717 dl 1.119 }
2718    
2719     /**
2720 dl 1.153 * If the specified key is not already associated with a
2721     * (non-null) value, associates it with the given value.
2722     * Otherwise, replaces the value with the results of the given
2723     * remapping function, or removes if {@code null}. The entire
2724     * method invocation is performed atomically. Some attempted
2725     * update operations on this map by other threads may be blocked
2726     * while computation is in progress, so the computation should be
2727     * short and simple, and must not attempt to update any other
2728     * mappings of this Map.
2729     *
2730     * @param key key with which the specified value is to be associated
2731     * @param value the value to use if absent
2732     * @param remappingFunction the function to recompute a value if present
2733     * @return the new value associated with the specified key, or null if none
2734     * @throws NullPointerException if the specified key or the
2735     * remappingFunction is null
2736     * @throws RuntimeException or Error if the remappingFunction does so,
2737     * in which case the mapping is unchanged
2738 dl 1.119 */
2739 dl 1.149 public V merge
2740     (K key, V value,
2741 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2742 dl 1.149 return internalMerge(key, value, remappingFunction);
2743 dl 1.119 }
2744    
2745     /**
2746     * Removes the key (and its corresponding value) from this map.
2747     * This method does nothing if the key is not in the map.
2748     *
2749     * @param key the key that needs to be removed
2750     * @return the previous value associated with {@code key}, or
2751     * {@code null} if there was no mapping for {@code key}
2752     * @throws NullPointerException if the specified key is null
2753     */
2754 dl 1.149 public V remove(Object key) {
2755     return internalReplace(key, null, null);
2756 dl 1.119 }
2757    
2758     /**
2759     * {@inheritDoc}
2760     *
2761     * @throws NullPointerException if the specified key is null
2762     */
2763     public boolean remove(Object key, Object value) {
2764 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2765 tim 1.1 }
2766 dl 1.31
2767     /**
2768 jsr166 1.68 * {@inheritDoc}
2769     *
2770     * @throws NullPointerException if any of the arguments are null
2771 dl 1.31 */
2772     public boolean replace(K key, V oldValue, V newValue) {
2773 dl 1.119 if (key == null || oldValue == null || newValue == null)
2774 dl 1.31 throw new NullPointerException();
2775 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2776 dl 1.32 }
2777    
2778     /**
2779 jsr166 1.68 * {@inheritDoc}
2780     *
2781     * @return the previous value associated with the specified key,
2782 dl 1.119 * or {@code null} if there was no mapping for the key
2783 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2784 dl 1.32 */
2785 dl 1.149 public V replace(K key, V value) {
2786 dl 1.119 if (key == null || value == null)
2787 dl 1.32 throw new NullPointerException();
2788 dl 1.149 return internalReplace(key, value, null);
2789 dl 1.31 }
2790    
2791 tim 1.1 /**
2792 jsr166 1.68 * Removes all of the mappings from this map.
2793 tim 1.1 */
2794     public void clear() {
2795 dl 1.119 internalClear();
2796 tim 1.1 }
2797    
2798     /**
2799 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2800     * The set is backed by the map, so changes to the map are
2801 dl 1.137 * reflected in the set, and vice-versa.
2802     *
2803     * @return the set view
2804     */
2805     public KeySetView<K,V> keySet() {
2806     KeySetView<K,V> ks = keySet;
2807     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2808     }
2809    
2810     /**
2811     * Returns a {@link Set} view of the keys in this map, using the
2812     * given common mapped value for any additions (i.e., {@link
2813     * Collection#add} and {@link Collection#addAll}). This is of
2814     * course only appropriate if it is acceptable to use the same
2815     * value for all additions from this view.
2816 jsr166 1.68 *
2817 dl 1.137 * @param mappedValue the mapped value to use for any
2818     * additions.
2819     * @return the set view
2820     * @throws NullPointerException if the mappedValue is null
2821 tim 1.1 */
2822 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2823     if (mappedValue == null)
2824     throw new NullPointerException();
2825     return new KeySetView<K,V>(this, mappedValue);
2826 tim 1.1 }
2827    
2828     /**
2829 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2830     * The collection is backed by the map, so changes to the map are
2831 jsr166 1.143 * reflected in the collection, and vice-versa.
2832 tim 1.1 */
2833 dl 1.142 public ValuesView<K,V> values() {
2834     ValuesView<K,V> vs = values;
2835     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2836 dl 1.119 }
2837    
2838     /**
2839     * Returns a {@link Set} view of the mappings contained in this map.
2840     * The set is backed by the map, so changes to the map are
2841     * reflected in the set, and vice-versa. The set supports element
2842     * removal, which removes the corresponding mapping from the map,
2843     * via the {@code Iterator.remove}, {@code Set.remove},
2844     * {@code removeAll}, {@code retainAll}, and {@code clear}
2845     * operations. It does not support the {@code add} or
2846     * {@code addAll} operations.
2847     *
2848     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2849     * that will never throw {@link ConcurrentModificationException},
2850     * and guarantees to traverse elements as they existed upon
2851     * construction of the iterator, and may (but is not guaranteed to)
2852     * reflect any modifications subsequent to construction.
2853     */
2854     public Set<Map.Entry<K,V>> entrySet() {
2855 dl 1.142 EntrySetView<K,V> es = entrySet;
2856     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2857 dl 1.119 }
2858    
2859     /**
2860     * Returns an enumeration of the keys in this table.
2861     *
2862     * @return an enumeration of the keys in this table
2863     * @see #keySet()
2864     */
2865     public Enumeration<K> keys() {
2866     return new KeyIterator<K,V>(this);
2867     }
2868    
2869     /**
2870     * Returns an enumeration of the values in this table.
2871     *
2872     * @return an enumeration of the values in this table
2873     * @see #values()
2874     */
2875     public Enumeration<V> elements() {
2876     return new ValueIterator<K,V>(this);
2877     }
2878    
2879     /**
2880     * Returns the hash code value for this {@link Map}, i.e.,
2881     * the sum of, for each key-value pair in the map,
2882     * {@code key.hashCode() ^ value.hashCode()}.
2883     *
2884     * @return the hash code value for this map
2885     */
2886     public int hashCode() {
2887     int h = 0;
2888     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2889 dl 1.151 V v;
2890 dl 1.119 while ((v = it.advance()) != null) {
2891     h += it.nextKey.hashCode() ^ v.hashCode();
2892     }
2893     return h;
2894     }
2895    
2896     /**
2897     * Returns a string representation of this map. The string
2898     * representation consists of a list of key-value mappings (in no
2899     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2900     * mappings are separated by the characters {@code ", "} (comma
2901     * and space). Each key-value mapping is rendered as the key
2902     * followed by an equals sign ("{@code =}") followed by the
2903     * associated value.
2904     *
2905     * @return a string representation of this map
2906     */
2907     public String toString() {
2908     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2909     StringBuilder sb = new StringBuilder();
2910     sb.append('{');
2911 dl 1.151 V v;
2912 dl 1.119 if ((v = it.advance()) != null) {
2913     for (;;) {
2914     Object k = it.nextKey;
2915     sb.append(k == this ? "(this Map)" : k);
2916     sb.append('=');
2917     sb.append(v == this ? "(this Map)" : v);
2918     if ((v = it.advance()) == null)
2919     break;
2920     sb.append(',').append(' ');
2921     }
2922     }
2923     return sb.append('}').toString();
2924     }
2925    
2926     /**
2927     * Compares the specified object with this map for equality.
2928     * Returns {@code true} if the given object is a map with the same
2929     * mappings as this map. This operation may return misleading
2930     * results if either map is concurrently modified during execution
2931     * of this method.
2932     *
2933     * @param o object to be compared for equality with this map
2934     * @return {@code true} if the specified object is equal to this map
2935     */
2936     public boolean equals(Object o) {
2937     if (o != this) {
2938     if (!(o instanceof Map))
2939     return false;
2940     Map<?,?> m = (Map<?,?>) o;
2941     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2942 dl 1.151 V val;
2943 dl 1.119 while ((val = it.advance()) != null) {
2944     Object v = m.get(it.nextKey);
2945     if (v == null || (v != val && !v.equals(val)))
2946     return false;
2947     }
2948     for (Map.Entry<?,?> e : m.entrySet()) {
2949     Object mk, mv, v;
2950     if ((mk = e.getKey()) == null ||
2951     (mv = e.getValue()) == null ||
2952     (v = internalGet(mk)) == null ||
2953     (mv != v && !mv.equals(v)))
2954     return false;
2955     }
2956     }
2957     return true;
2958     }
2959    
2960     /* ----------------Iterators -------------- */
2961    
2962 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2963     extends Traverser<K,V,Object>
2964 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2965 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2966 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2967 dl 1.153 super(map, it);
2968 dl 1.119 }
2969 dl 1.155 public KeyIterator<K,V> trySplit() {
2970     if (tab != null && baseIndex == baseLimit)
2971     return null;
2972 dl 1.146 return new KeyIterator<K,V>(map, this);
2973 dl 1.119 }
2974 dl 1.128 @SuppressWarnings("unchecked") public final K next() {
2975 dl 1.119 if (nextVal == null && advance() == null)
2976     throw new NoSuchElementException();
2977     Object k = nextKey;
2978     nextVal = null;
2979     return (K) k;
2980     }
2981    
2982     public final K nextElement() { return next(); }
2983 dl 1.153
2984     public Iterator<K> iterator() { return this; }
2985    
2986     public void forEach(Block<? super K> action) {
2987     if (action == null) throw new NullPointerException();
2988     while (advance() != null)
2989     action.accept((K)nextKey);
2990     }
2991 dl 1.119 }
2992    
2993 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2994     extends Traverser<K,V,Object>
2995 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2996 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2997 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2998 dl 1.153 super(map, it);
2999 dl 1.119 }
3000 dl 1.155 public ValueIterator<K,V> trySplit() {
3001     if (tab != null && baseIndex == baseLimit)
3002     return null;
3003 dl 1.146 return new ValueIterator<K,V>(map, this);
3004 dl 1.119 }
3005    
3006 dl 1.151 public final V next() {
3007     V v;
3008 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3009     throw new NoSuchElementException();
3010     nextVal = null;
3011 dl 1.151 return v;
3012 dl 1.119 }
3013    
3014     public final V nextElement() { return next(); }
3015 dl 1.153
3016     public Iterator<V> iterator() { return this; }
3017    
3018     public void forEach(Block<? super V> action) {
3019     if (action == null) throw new NullPointerException();
3020     V v;
3021     while ((v = advance()) != null)
3022     action.accept(v);
3023     }
3024 dl 1.119 }
3025    
3026 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3027     extends Traverser<K,V,Object>
3028 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3029 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3030 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3031 dl 1.153 super(map, it);
3032 dl 1.119 }
3033 dl 1.155 public EntryIterator<K,V> trySplit() {
3034     if (tab != null && baseIndex == baseLimit)
3035     return null;
3036 dl 1.146 return new EntryIterator<K,V>(map, this);
3037 dl 1.119 }
3038    
3039 dl 1.128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3040 dl 1.151 V v;
3041 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3042     throw new NoSuchElementException();
3043     Object k = nextKey;
3044     nextVal = null;
3045 dl 1.151 return new MapEntry<K,V>((K)k, v, map);
3046 dl 1.119 }
3047 dl 1.153
3048     public Iterator<Map.Entry<K,V>> iterator() { return this; }
3049    
3050     public void forEach(Block<? super Map.Entry<K,V>> action) {
3051     if (action == null) throw new NullPointerException();
3052     V v;
3053     while ((v = advance()) != null)
3054     action.accept(entryFor((K)nextKey, v));
3055     }
3056 dl 1.119 }
3057    
3058     /**
3059     * Exported Entry for iterators
3060     */
3061     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3062     final K key; // non-null
3063     V val; // non-null
3064     final ConcurrentHashMap<K, V> map;
3065     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3066     this.key = key;
3067     this.val = val;
3068     this.map = map;
3069     }
3070     public final K getKey() { return key; }
3071     public final V getValue() { return val; }
3072     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3073     public final String toString(){ return key + "=" + val; }
3074    
3075     public final boolean equals(Object o) {
3076     Object k, v; Map.Entry<?,?> e;
3077     return ((o instanceof Map.Entry) &&
3078     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3079     (v = e.getValue()) != null &&
3080     (k == key || k.equals(key)) &&
3081     (v == val || v.equals(val)));
3082     }
3083    
3084     /**
3085     * Sets our entry's value and writes through to the map. The
3086     * value to return is somewhat arbitrary here. Since we do not
3087     * necessarily track asynchronous changes, the most recent
3088     * "previous" value could be different from what we return (or
3089     * could even have been removed in which case the put will
3090     * re-establish). We do not and cannot guarantee more.
3091     */
3092     public final V setValue(V value) {
3093     if (value == null) throw new NullPointerException();
3094     V v = val;
3095     val = value;
3096     map.put(key, value);
3097     return v;
3098     }
3099     }
3100    
3101 dl 1.146 /**
3102     * Returns exportable snapshot entry for the given key and value
3103     * when write-through can't or shouldn't be used.
3104     */
3105     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3106     return new AbstractMap.SimpleEntry<K,V>(k, v);
3107     }
3108    
3109 dl 1.142 /* ---------------- Serialization Support -------------- */
3110 dl 1.119
3111     /**
3112 dl 1.142 * Stripped-down version of helper class used in previous version,
3113     * declared for the sake of serialization compatibility
3114 dl 1.119 */
3115 dl 1.142 static class Segment<K,V> implements Serializable {
3116     private static final long serialVersionUID = 2249069246763182397L;
3117     final float loadFactor;
3118     Segment(float lf) { this.loadFactor = lf; }
3119     }
3120 dl 1.119
3121 dl 1.142 /**
3122     * Saves the state of the {@code ConcurrentHashMap} instance to a
3123     * stream (i.e., serializes it).
3124     * @param s the stream
3125     * @serialData
3126     * the key (Object) and value (Object)
3127     * for each key-value mapping, followed by a null pair.
3128     * The key-value mappings are emitted in no particular order.
3129     */
3130 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3131     (java.io.ObjectOutputStream s)
3132 dl 1.142 throws java.io.IOException {
3133     if (segments == null) { // for serialization compatibility
3134     segments = (Segment<K,V>[])
3135     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3136     for (int i = 0; i < segments.length; ++i)
3137     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3138     }
3139     s.defaultWriteObject();
3140     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3141 dl 1.151 V v;
3142 dl 1.142 while ((v = it.advance()) != null) {
3143     s.writeObject(it.nextKey);
3144     s.writeObject(v);
3145     }
3146     s.writeObject(null);
3147     s.writeObject(null);
3148     segments = null; // throw away
3149     }
3150 dl 1.119
3151 dl 1.142 /**
3152     * Reconstitutes the instance from a stream (that is, deserializes it).
3153     * @param s the stream
3154     */
3155 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3156     (java.io.ObjectInputStream s)
3157 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3158     s.defaultReadObject();
3159     this.segments = null; // unneeded
3160 dl 1.119
3161 dl 1.142 // Create all nodes, then place in table once size is known
3162     long size = 0L;
3163 dl 1.151 Node<V> p = null;
3164 dl 1.142 for (;;) {
3165     K k = (K) s.readObject();
3166     V v = (V) s.readObject();
3167     if (k != null && v != null) {
3168     int h = spread(k.hashCode());
3169 dl 1.151 p = new Node<V>(h, k, v, p);
3170 dl 1.142 ++size;
3171 dl 1.119 }
3172 dl 1.142 else
3173     break;
3174 dl 1.119 }
3175 dl 1.142 if (p != null) {
3176     boolean init = false;
3177     int n;
3178     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3179     n = MAXIMUM_CAPACITY;
3180     else {
3181     int sz = (int)size;
3182     n = tableSizeFor(sz + (sz >>> 1) + 1);
3183     }
3184     int sc = sizeCtl;
3185     boolean collide = false;
3186     if (n > sc &&
3187 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3188 dl 1.142 try {
3189     if (table == null) {
3190     init = true;
3191 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3192     Node<V>[] tab = (Node<V>[])rt;
3193 dl 1.142 int mask = n - 1;
3194     while (p != null) {
3195     int j = p.hash & mask;
3196 dl 1.151 Node<V> next = p.next;
3197     Node<V> q = p.next = tabAt(tab, j);
3198 dl 1.142 setTabAt(tab, j, p);
3199     if (!collide && q != null && q.hash == p.hash)
3200     collide = true;
3201     p = next;
3202     }
3203     table = tab;
3204 dl 1.149 addCount(size, -1);
3205 dl 1.142 sc = n - (n >>> 2);
3206     }
3207     } finally {
3208     sizeCtl = sc;
3209     }
3210     if (collide) { // rescan and convert to TreeBins
3211 dl 1.151 Node<V>[] tab = table;
3212 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3213     int c = 0;
3214 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3215 dl 1.142 if (++c > TREE_THRESHOLD &&
3216     (e.key instanceof Comparable)) {
3217     replaceWithTreeBin(tab, i, e.key);
3218     break;
3219     }
3220     }
3221     }
3222 dl 1.119 }
3223     }
3224 dl 1.142 if (!init) { // Can only happen if unsafely published.
3225     while (p != null) {
3226 dl 1.151 internalPut((K)p.key, p.val, false);
3227 dl 1.142 p = p.next;
3228     }
3229 dl 1.119 }
3230     }
3231 dl 1.142 }
3232 dl 1.119
3233 dl 1.142 // -------------------------------------------------------
3234    
3235 dl 1.151 // Sequential bulk operations
3236    
3237 dl 1.119 /**
3238 dl 1.137 * Performs the given action for each (key, value).
3239 dl 1.119 *
3240 dl 1.137 * @param action the action
3241 dl 1.119 */
3242 dl 1.151 @SuppressWarnings("unchecked") public void forEachSequentially
3243 dl 1.153 (BiBlock<? super K, ? super V> action) {
3244 dl 1.151 if (action == null) throw new NullPointerException();
3245     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3246     V v;
3247     while ((v = it.advance()) != null)
3248 dl 1.153 action.accept((K)it.nextKey, v);
3249 dl 1.119 }
3250    
3251     /**
3252 dl 1.137 * Performs the given action for each non-null transformation
3253     * of each (key, value).
3254     *
3255     * @param transformer a function returning the transformation
3256     * for an element, or null of there is no transformation (in
3257     * which case the action is not applied).
3258     * @param action the action
3259 dl 1.119 */
3260 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3261 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3262     Block<? super U> action) {
3263 dl 1.151 if (transformer == null || action == null)
3264     throw new NullPointerException();
3265     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3266     V v; U u;
3267     while ((v = it.advance()) != null) {
3268     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3269 dl 1.153 action.accept(u);
3270 dl 1.151 }
3271 dl 1.137 }
3272    
3273     /**
3274     * Returns a non-null result from applying the given search
3275 dl 1.151 * function on each (key, value), or null if none.
3276 dl 1.137 *
3277     * @param searchFunction a function returning a non-null
3278     * result on success, else null
3279     * @return a non-null result from applying the given search
3280     * function on each (key, value), or null if none
3281     */
3282 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchSequentially
3283 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3284 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3285     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3286     V v; U u;
3287     while ((v = it.advance()) != null) {
3288     if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3289     return u;
3290     }
3291     return null;
3292 dl 1.137 }
3293    
3294     /**
3295     * Returns the result of accumulating the given transformation
3296     * of all (key, value) pairs using the given reducer to
3297     * combine values, or null if none.
3298     *
3299     * @param transformer a function returning the transformation
3300     * for an element, or null of there is no transformation (in
3301     * which case it is not combined).
3302     * @param reducer a commutative associative combining function
3303     * @return the result of accumulating the given transformation
3304     * of all (key, value) pairs
3305     */
3306 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3307 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3308     BiFunction<? super U, ? super U, ? extends U> reducer) {
3309 dl 1.151 if (transformer == null || reducer == null)
3310     throw new NullPointerException();
3311     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3312     U r = null, u; V v;
3313     while ((v = it.advance()) != null) {
3314     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3315     r = (r == null) ? u : reducer.apply(r, u);
3316     }
3317     return r;
3318 dl 1.137 }
3319    
3320     /**
3321     * Returns the result of accumulating the given transformation
3322     * of all (key, value) pairs using the given reducer to
3323     * combine values, and the given basis as an identity value.
3324     *
3325     * @param transformer a function returning the transformation
3326     * for an element
3327     * @param basis the identity (initial default value) for the reduction
3328     * @param reducer a commutative associative combining function
3329     * @return the result of accumulating the given transformation
3330     * of all (key, value) pairs
3331     */
3332 dl 1.151 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3333 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
3334 dl 1.151 double basis,
3335 dl 1.153 DoubleBinaryOperator reducer) {
3336 dl 1.151 if (transformer == null || reducer == null)
3337     throw new NullPointerException();
3338     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3339     double r = basis; V v;
3340     while ((v = it.advance()) != null)
3341 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3342 dl 1.151 return r;
3343 dl 1.137 }
3344 dl 1.119
3345 dl 1.137 /**
3346     * Returns the result of accumulating the given transformation
3347     * of all (key, value) pairs using the given reducer to
3348     * combine values, and the given basis as an identity value.
3349     *
3350     * @param transformer a function returning the transformation
3351     * for an element
3352     * @param basis the identity (initial default value) for the reduction
3353     * @param reducer a commutative associative combining function
3354     * @return the result of accumulating the given transformation
3355     * of all (key, value) pairs
3356     */
3357 dl 1.151 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3358 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
3359 dl 1.151 long basis,
3360 dl 1.153 LongBinaryOperator reducer) {
3361 dl 1.151 if (transformer == null || reducer == null)
3362     throw new NullPointerException();
3363     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364     long r = basis; V v;
3365     while ((v = it.advance()) != null)
3366 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3367 dl 1.151 return r;
3368 dl 1.137 }
3369    
3370     /**
3371     * Returns the result of accumulating the given transformation
3372     * of all (key, value) pairs using the given reducer to
3373     * combine values, and the given basis as an identity value.
3374     *
3375     * @param transformer a function returning the transformation
3376     * for an element
3377     * @param basis the identity (initial default value) for the reduction
3378     * @param reducer a commutative associative combining function
3379     * @return the result of accumulating the given transformation
3380     * of all (key, value) pairs
3381     */
3382 dl 1.151 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3383 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
3384 dl 1.151 int basis,
3385 dl 1.153 IntBinaryOperator reducer) {
3386 dl 1.151 if (transformer == null || reducer == null)
3387     throw new NullPointerException();
3388     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3389     int r = basis; V v;
3390     while ((v = it.advance()) != null)
3391 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3392 dl 1.151 return r;
3393 dl 1.137 }
3394    
3395     /**
3396     * Performs the given action for each key.
3397     *
3398     * @param action the action
3399     */
3400 dl 1.151 @SuppressWarnings("unchecked") public void forEachKeySequentially
3401 dl 1.153 (Block<? super K> action) {
3402 dl 1.151 if (action == null) throw new NullPointerException();
3403     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404     while (it.advance() != null)
3405 dl 1.153 action.accept((K)it.nextKey);
3406 dl 1.137 }
3407 dl 1.119
3408 dl 1.137 /**
3409     * Performs the given action for each non-null transformation
3410     * of each key.
3411     *
3412     * @param transformer a function returning the transformation
3413     * for an element, or null of there is no transformation (in
3414     * which case the action is not applied).
3415     * @param action the action
3416     */
3417 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3418 dl 1.153 (Function<? super K, ? extends U> transformer,
3419     Block<? super U> action) {
3420 dl 1.151 if (transformer == null || action == null)
3421     throw new NullPointerException();
3422     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3423     U u;
3424     while (it.advance() != null) {
3425     if ((u = transformer.apply((K)it.nextKey)) != null)
3426 dl 1.153 action.accept(u);
3427 dl 1.151 }
3428 dl 1.137 ForkJoinTasks.forEachKey
3429     (this, transformer, action).invoke();
3430     }
3431 dl 1.119
3432 dl 1.137 /**
3433     * Returns a non-null result from applying the given search
3434 dl 1.151 * function on each key, or null if none.
3435 dl 1.137 *
3436     * @param searchFunction a function returning a non-null
3437     * result on success, else null
3438     * @return a non-null result from applying the given search
3439     * function on each key, or null if none
3440     */
3441 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3442 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3443 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3444     U u;
3445     while (it.advance() != null) {
3446     if ((u = searchFunction.apply((K)it.nextKey)) != null)
3447     return u;
3448     }
3449     return null;
3450 dl 1.137 }
3451 dl 1.119
3452 dl 1.137 /**
3453     * Returns the result of accumulating all keys using the given
3454     * reducer to combine values, or null if none.
3455     *
3456     * @param reducer a commutative associative combining function
3457     * @return the result of accumulating all keys using the given
3458     * reducer to combine values, or null if none
3459     */
3460 dl 1.151 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3461 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3462 dl 1.151 if (reducer == null) throw new NullPointerException();
3463     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3464     K r = null;
3465     while (it.advance() != null) {
3466     K u = (K)it.nextKey;
3467     r = (r == null) ? u : reducer.apply(r, u);
3468     }
3469     return r;
3470 dl 1.137 }
3471 dl 1.119
3472 dl 1.137 /**
3473     * Returns the result of accumulating the given transformation
3474     * of all keys using the given reducer to combine values, or
3475     * null if none.
3476     *
3477     * @param transformer a function returning the transformation
3478     * for an element, or null of there is no transformation (in
3479     * which case it is not combined).
3480     * @param reducer a commutative associative combining function
3481     * @return the result of accumulating the given transformation
3482     * of all keys
3483     */
3484 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3485 dl 1.153 (Function<? super K, ? extends U> transformer,
3486     BiFunction<? super U, ? super U, ? extends U> reducer) {
3487 dl 1.151 if (transformer == null || reducer == null)
3488     throw new NullPointerException();
3489     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3490     U r = null, u;
3491     while (it.advance() != null) {
3492     if ((u = transformer.apply((K)it.nextKey)) != null)
3493     r = (r == null) ? u : reducer.apply(r, u);
3494     }
3495     return r;
3496 dl 1.137 }
3497 dl 1.119
3498 dl 1.137 /**
3499     * Returns the result of accumulating the given transformation
3500     * of all keys using the given reducer to combine values, and
3501     * the given basis as an identity value.
3502     *
3503     * @param transformer a function returning the transformation
3504     * for an element
3505     * @param basis the identity (initial default value) for the reduction
3506     * @param reducer a commutative associative combining function
3507     * @return the result of accumulating the given transformation
3508     * of all keys
3509     */
3510 dl 1.151 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3511 dl 1.153 (DoubleFunction<? super K> transformer,
3512 dl 1.151 double basis,
3513 dl 1.153 DoubleBinaryOperator reducer) {
3514 dl 1.151 if (transformer == null || reducer == null)
3515     throw new NullPointerException();
3516     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3517     double r = basis;
3518     while (it.advance() != null)
3519 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3520 dl 1.151 return r;
3521 dl 1.137 }
3522 dl 1.119
3523 dl 1.137 /**
3524     * Returns the result of accumulating the given transformation
3525     * of all keys using the given reducer to combine values, and
3526     * the given basis as an identity value.
3527     *
3528     * @param transformer a function returning the transformation
3529     * for an element
3530     * @param basis the identity (initial default value) for the reduction
3531     * @param reducer a commutative associative combining function
3532     * @return the result of accumulating the given transformation
3533     * of all keys
3534     */
3535 dl 1.151 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3536 dl 1.153 (LongFunction<? super K> transformer,
3537 dl 1.151 long basis,
3538 dl 1.153 LongBinaryOperator reducer) {
3539 dl 1.151 if (transformer == null || reducer == null)
3540     throw new NullPointerException();
3541     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3542     long r = basis;
3543     while (it.advance() != null)
3544 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3545 dl 1.151 return r;
3546 dl 1.137 }
3547 dl 1.119
3548 dl 1.137 /**
3549     * Returns the result of accumulating the given transformation
3550     * of all keys using the given reducer to combine values, and
3551     * the given basis as an identity value.
3552     *
3553     * @param transformer a function returning the transformation
3554     * for an element
3555     * @param basis the identity (initial default value) for the reduction
3556     * @param reducer a commutative associative combining function
3557     * @return the result of accumulating the given transformation
3558     * of all keys
3559     */
3560 dl 1.151 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3561 dl 1.153 (IntFunction<? super K> transformer,
3562 dl 1.151 int basis,
3563 dl 1.153 IntBinaryOperator reducer) {
3564 dl 1.151 if (transformer == null || reducer == null)
3565     throw new NullPointerException();
3566     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3567     int r = basis;
3568     while (it.advance() != null)
3569 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3570 dl 1.151 return r;
3571 dl 1.137 }
3572 dl 1.119
3573 dl 1.137 /**
3574     * Performs the given action for each value.
3575     *
3576     * @param action the action
3577     */
3578 dl 1.153 public void forEachValueSequentially(Block<? super V> action) {
3579 dl 1.151 if (action == null) throw new NullPointerException();
3580     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3581     V v;
3582     while ((v = it.advance()) != null)
3583 dl 1.153 action.accept(v);
3584 dl 1.137 }
3585 dl 1.119
3586 dl 1.137 /**
3587     * Performs the given action for each non-null transformation
3588     * of each value.
3589     *
3590     * @param transformer a function returning the transformation
3591     * for an element, or null of there is no transformation (in
3592     * which case the action is not applied).
3593     */
3594 dl 1.151 public <U> void forEachValueSequentially
3595 dl 1.153 (Function<? super V, ? extends U> transformer,
3596     Block<? super U> action) {
3597 dl 1.151 if (transformer == null || action == null)
3598     throw new NullPointerException();
3599     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3600     V v; U u;
3601     while ((v = it.advance()) != null) {
3602     if ((u = transformer.apply(v)) != null)
3603 dl 1.153 action.accept(u);
3604 dl 1.151 }
3605 dl 1.137 }
3606 dl 1.119
3607 dl 1.137 /**
3608     * Returns a non-null result from applying the given search
3609 dl 1.151 * function on each value, or null if none.
3610 dl 1.137 *
3611     * @param searchFunction a function returning a non-null
3612     * result on success, else null
3613     * @return a non-null result from applying the given search
3614     * function on each value, or null if none
3615     *
3616     */
3617 dl 1.151 public <U> U searchValuesSequentially
3618 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3619 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3620     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3621     V v; U u;
3622     while ((v = it.advance()) != null) {
3623     if ((u = searchFunction.apply(v)) != null)
3624     return u;
3625     }
3626     return null;
3627 dl 1.137 }
3628 dl 1.119
3629 dl 1.137 /**
3630     * Returns the result of accumulating all values using the
3631     * given reducer to combine values, or null if none.
3632     *
3633     * @param reducer a commutative associative combining function
3634     * @return the result of accumulating all values
3635     */
3636 dl 1.151 public V reduceValuesSequentially
3637 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3638 dl 1.151 if (reducer == null) throw new NullPointerException();
3639     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3640     V r = null; V v;
3641     while ((v = it.advance()) != null)
3642     r = (r == null) ? v : reducer.apply(r, v);
3643     return r;
3644 dl 1.137 }
3645 dl 1.119
3646 dl 1.137 /**
3647     * Returns the result of accumulating the given transformation
3648     * of all values using the given reducer to combine values, or
3649     * null if none.
3650     *
3651     * @param transformer a function returning the transformation
3652     * for an element, or null of there is no transformation (in
3653     * which case it is not combined).
3654     * @param reducer a commutative associative combining function
3655     * @return the result of accumulating the given transformation
3656     * of all values
3657     */
3658 dl 1.151 public <U> U reduceValuesSequentially
3659 dl 1.153 (Function<? super V, ? extends U> transformer,
3660     BiFunction<? super U, ? super U, ? extends U> reducer) {
3661 dl 1.151 if (transformer == null || reducer == null)
3662     throw new NullPointerException();
3663     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3664     U r = null, u; V v;
3665     while ((v = it.advance()) != null) {
3666     if ((u = transformer.apply(v)) != null)
3667     r = (r == null) ? u : reducer.apply(r, u);
3668     }
3669     return r;
3670 dl 1.137 }
3671 dl 1.119
3672 dl 1.137 /**
3673     * Returns the result of accumulating the given transformation
3674     * of all values using the given reducer to combine values,
3675     * and the given basis as an identity value.
3676     *
3677     * @param transformer a function returning the transformation
3678     * for an element
3679     * @param basis the identity (initial default value) for the reduction
3680     * @param reducer a commutative associative combining function
3681     * @return the result of accumulating the given transformation
3682     * of all values
3683     */
3684 dl 1.151 public double reduceValuesToDoubleSequentially
3685 dl 1.153 (DoubleFunction<? super V> transformer,
3686 dl 1.151 double basis,
3687 dl 1.153 DoubleBinaryOperator reducer) {
3688 dl 1.151 if (transformer == null || reducer == null)
3689     throw new NullPointerException();
3690     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3691     double r = basis; V v;
3692     while ((v = it.advance()) != null)
3693 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3694 dl 1.151 return r;
3695 dl 1.137 }
3696 dl 1.119
3697 dl 1.137 /**
3698     * Returns the result of accumulating the given transformation
3699     * of all values using the given reducer to combine values,
3700     * and the given basis as an identity value.
3701     *
3702     * @param transformer a function returning the transformation
3703     * for an element
3704     * @param basis the identity (initial default value) for the reduction
3705     * @param reducer a commutative associative combining function
3706     * @return the result of accumulating the given transformation
3707     * of all values
3708     */
3709 dl 1.151 public long reduceValuesToLongSequentially
3710 dl 1.153 (LongFunction<? super V> transformer,
3711 dl 1.151 long basis,
3712 dl 1.153 LongBinaryOperator reducer) {
3713 dl 1.151 if (transformer == null || reducer == null)
3714     throw new NullPointerException();
3715     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3716     long r = basis; V v;
3717     while ((v = it.advance()) != null)
3718 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3719 dl 1.151 return r;
3720 dl 1.137 }
3721 dl 1.119
3722 dl 1.137 /**
3723     * Returns the result of accumulating the given transformation
3724     * of all values using the given reducer to combine values,
3725     * and the given basis as an identity value.
3726     *
3727     * @param transformer a function returning the transformation
3728     * for an element
3729     * @param basis the identity (initial default value) for the reduction
3730     * @param reducer a commutative associative combining function
3731     * @return the result of accumulating the given transformation
3732     * of all values
3733     */
3734 dl 1.151 public int reduceValuesToIntSequentially
3735 dl 1.153 (IntFunction<? super V> transformer,
3736 dl 1.151 int basis,
3737 dl 1.153 IntBinaryOperator reducer) {
3738 dl 1.151 if (transformer == null || reducer == null)
3739     throw new NullPointerException();
3740     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3741     int r = basis; V v;
3742     while ((v = it.advance()) != null)
3743 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3744 dl 1.151 return r;
3745 dl 1.137 }
3746 dl 1.119
3747 dl 1.137 /**
3748     * Performs the given action for each entry.
3749     *
3750     * @param action the action
3751     */
3752 dl 1.151 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3753 dl 1.153 (Block<? super Map.Entry<K,V>> action) {
3754 dl 1.151 if (action == null) throw new NullPointerException();
3755     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3756     V v;
3757     while ((v = it.advance()) != null)
3758 dl 1.153 action.accept(entryFor((K)it.nextKey, v));
3759 dl 1.137 }
3760 dl 1.119
3761 dl 1.137 /**
3762     * Performs the given action for each non-null transformation
3763     * of each entry.
3764     *
3765     * @param transformer a function returning the transformation
3766     * for an element, or null of there is no transformation (in
3767     * which case the action is not applied).
3768     * @param action the action
3769     */
3770 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3771 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3772     Block<? super U> action) {
3773 dl 1.151 if (transformer == null || action == null)
3774     throw new NullPointerException();
3775     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3776     V v; U u;
3777     while ((v = it.advance()) != null) {
3778     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3779 dl 1.153 action.accept(u);
3780 dl 1.151 }
3781 dl 1.137 }
3782 dl 1.119
3783 dl 1.137 /**
3784     * Returns a non-null result from applying the given search
3785 dl 1.151 * function on each entry, or null if none.
3786 dl 1.137 *
3787     * @param searchFunction a function returning a non-null
3788     * result on success, else null
3789     * @return a non-null result from applying the given search
3790     * function on each entry, or null if none
3791     */
3792 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3793 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3794 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3795     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3796     V v; U u;
3797     while ((v = it.advance()) != null) {
3798     if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3799     return u;
3800     }
3801     return null;
3802 dl 1.137 }
3803 dl 1.119
3804 dl 1.137 /**
3805     * Returns the result of accumulating all entries using the
3806     * given reducer to combine values, or null if none.
3807     *
3808     * @param reducer a commutative associative combining function
3809     * @return the result of accumulating all entries
3810     */
3811 dl 1.151 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3812 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3813 dl 1.151 if (reducer == null) throw new NullPointerException();
3814     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3815     Map.Entry<K,V> r = null; V v;
3816     while ((v = it.advance()) != null) {
3817     Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3818     r = (r == null) ? u : reducer.apply(r, u);
3819     }
3820     return r;
3821 dl 1.137 }
3822 dl 1.119
3823 dl 1.137 /**
3824     * Returns the result of accumulating the given transformation
3825     * of all entries using the given reducer to combine values,
3826     * or null if none.
3827     *
3828     * @param transformer a function returning the transformation
3829     * for an element, or null of there is no transformation (in
3830     * which case it is not combined).
3831     * @param reducer a commutative associative combining function
3832     * @return the result of accumulating the given transformation
3833     * of all entries
3834     */
3835 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3836 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3837     BiFunction<? super U, ? super U, ? extends U> reducer) {
3838 dl 1.151 if (transformer == null || reducer == null)
3839     throw new NullPointerException();
3840     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3841     U r = null, u; V v;
3842     while ((v = it.advance()) != null) {
3843     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3844     r = (r == null) ? u : reducer.apply(r, u);
3845     }
3846     return r;
3847 dl 1.137 }
3848 dl 1.119
3849 dl 1.137 /**
3850     * Returns the result of accumulating the given transformation
3851     * of all entries using the given reducer to combine values,
3852     * and the given basis as an identity value.
3853     *
3854     * @param transformer a function returning the transformation
3855     * for an element
3856     * @param basis the identity (initial default value) for the reduction
3857     * @param reducer a commutative associative combining function
3858     * @return the result of accumulating the given transformation
3859     * of all entries
3860     */
3861 dl 1.151 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3862 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
3863 dl 1.151 double basis,
3864 dl 1.153 DoubleBinaryOperator reducer) {
3865 dl 1.151 if (transformer == null || reducer == null)
3866     throw new NullPointerException();
3867     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3868     double r = basis; V v;
3869     while ((v = it.advance()) != null)
3870 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3871 dl 1.151 return r;
3872 dl 1.137 }
3873 dl 1.119
3874 dl 1.137 /**
3875     * Returns the result of accumulating the given transformation
3876     * of all entries using the given reducer to combine values,
3877     * and the given basis as an identity value.
3878     *
3879     * @param transformer a function returning the transformation
3880     * for an element
3881     * @param basis the identity (initial default value) for the reduction
3882     * @param reducer a commutative associative combining function
3883     * @return the result of accumulating the given transformation
3884     * of all entries
3885     */
3886 dl 1.151 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3887 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
3888 dl 1.151 long basis,
3889 dl 1.153 LongBinaryOperator reducer) {
3890 dl 1.151 if (transformer == null || reducer == null)
3891     throw new NullPointerException();
3892     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893     long r = basis; V v;
3894     while ((v = it.advance()) != null)
3895 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3896 dl 1.151 return r;
3897 dl 1.137 }
3898 dl 1.119
3899 dl 1.137 /**
3900     * Returns the result of accumulating the given transformation
3901     * of all entries using the given reducer to combine values,
3902     * and the given basis as an identity value.
3903     *
3904     * @param transformer a function returning the transformation
3905     * for an element
3906     * @param basis the identity (initial default value) for the reduction
3907     * @param reducer a commutative associative combining function
3908     * @return the result of accumulating the given transformation
3909     * of all entries
3910     */
3911 dl 1.151 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3912 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
3913 dl 1.151 int basis,
3914 dl 1.153 IntBinaryOperator reducer) {
3915 dl 1.151 if (transformer == null || reducer == null)
3916     throw new NullPointerException();
3917     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3918     int r = basis; V v;
3919     while ((v = it.advance()) != null)
3920 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3921 dl 1.151 return r;
3922 dl 1.119 }
3923    
3924 dl 1.151 // Parallel bulk operations
3925 dl 1.142
3926     /**
3927 dl 1.151 * Performs the given action for each (key, value).
3928     *
3929     * @param action the action
3930 dl 1.142 */
3931 dl 1.153 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3932 dl 1.151 ForkJoinTasks.forEach
3933     (this, action).invoke();
3934     }
3935 dl 1.142
3936 dl 1.151 /**
3937     * Performs the given action for each non-null transformation
3938     * of each (key, value).
3939     *
3940     * @param transformer a function returning the transformation
3941     * for an element, or null of there is no transformation (in
3942     * which case the action is not applied).
3943     * @param action the action
3944     */
3945     public <U> void forEachInParallel
3946 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3947     Block<? super U> action) {
3948 dl 1.151 ForkJoinTasks.forEach
3949     (this, transformer, action).invoke();
3950     }
3951 dl 1.142
3952 dl 1.151 /**
3953     * Returns a non-null result from applying the given search
3954     * function on each (key, value), or null if none. Upon
3955     * success, further element processing is suppressed and the
3956     * results of any other parallel invocations of the search
3957     * function are ignored.
3958     *
3959     * @param searchFunction a function returning a non-null
3960     * result on success, else null
3961     * @return a non-null result from applying the given search
3962     * function on each (key, value), or null if none
3963     */
3964     public <U> U searchInParallel
3965 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3966 dl 1.151 return ForkJoinTasks.search
3967     (this, searchFunction).invoke();
3968     }
3969 dl 1.142
3970 dl 1.151 /**
3971     * Returns the result of accumulating the given transformation
3972     * of all (key, value) pairs using the given reducer to
3973     * combine values, or null if none.
3974     *
3975     * @param transformer a function returning the transformation
3976     * for an element, or null of there is no transformation (in
3977     * which case it is not combined).
3978     * @param reducer a commutative associative combining function
3979     * @return the result of accumulating the given transformation
3980     * of all (key, value) pairs
3981     */
3982     public <U> U reduceInParallel
3983 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3984     BiFunction<? super U, ? super U, ? extends U> reducer) {
3985 dl 1.151 return ForkJoinTasks.reduce
3986     (this, transformer, reducer).invoke();
3987     }
3988 dl 1.142
3989 dl 1.151 /**
3990     * Returns the result of accumulating the given transformation
3991     * of all (key, value) pairs using the given reducer to
3992     * combine values, and the given basis as an identity value.
3993     *
3994     * @param transformer a function returning the transformation
3995     * for an element
3996     * @param basis the identity (initial default value) for the reduction
3997     * @param reducer a commutative associative combining function
3998     * @return the result of accumulating the given transformation
3999     * of all (key, value) pairs
4000     */
4001     public double reduceToDoubleInParallel
4002 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
4003 dl 1.151 double basis,
4004 dl 1.153 DoubleBinaryOperator reducer) {
4005 dl 1.151 return ForkJoinTasks.reduceToDouble
4006     (this, transformer, basis, reducer).invoke();
4007     }
4008    
4009     /**
4010     * Returns the result of accumulating the given transformation
4011     * of all (key, value) pairs using the given reducer to
4012     * combine values, and the given basis as an identity value.
4013     *
4014     * @param transformer a function returning the transformation
4015     * for an element
4016     * @param basis the identity (initial default value) for the reduction
4017     * @param reducer a commutative associative combining function
4018     * @return the result of accumulating the given transformation
4019     * of all (key, value) pairs
4020     */
4021     public long reduceToLongInParallel
4022 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
4023 dl 1.151 long basis,
4024 dl 1.153 LongBinaryOperator reducer) {
4025 dl 1.151 return ForkJoinTasks.reduceToLong
4026     (this, transformer, basis, reducer).invoke();
4027     }
4028    
4029     /**
4030     * Returns the result of accumulating the given transformation
4031     * of all (key, value) pairs using the given reducer to
4032     * combine values, and the given basis as an identity value.
4033     *
4034     * @param transformer a function returning the transformation
4035     * for an element
4036     * @param basis the identity (initial default value) for the reduction
4037     * @param reducer a commutative associative combining function
4038     * @return the result of accumulating the given transformation
4039     * of all (key, value) pairs
4040     */
4041     public int reduceToIntInParallel
4042 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
4043 dl 1.151 int basis,
4044 dl 1.153 IntBinaryOperator reducer) {
4045 dl 1.151 return ForkJoinTasks.reduceToInt
4046     (this, transformer, basis, reducer).invoke();
4047     }
4048    
4049     /**
4050     * Performs the given action for each key.
4051     *
4052     * @param action the action
4053     */
4054 dl 1.153 public void forEachKeyInParallel(Block<? super K> action) {
4055 dl 1.151 ForkJoinTasks.forEachKey
4056     (this, action).invoke();
4057     }
4058    
4059     /**
4060     * Performs the given action for each non-null transformation
4061     * of each key.
4062     *
4063     * @param transformer a function returning the transformation
4064     * for an element, or null of there is no transformation (in
4065     * which case the action is not applied).
4066     * @param action the action
4067     */
4068     public <U> void forEachKeyInParallel
4069 dl 1.153 (Function<? super K, ? extends U> transformer,
4070     Block<? super U> action) {
4071 dl 1.151 ForkJoinTasks.forEachKey
4072     (this, transformer, action).invoke();
4073     }
4074    
4075     /**
4076     * Returns a non-null result from applying the given search
4077     * function on each key, or null if none. Upon success,
4078     * further element processing is suppressed and the results of
4079     * any other parallel invocations of the search function are
4080     * ignored.
4081     *
4082     * @param searchFunction a function returning a non-null
4083     * result on success, else null
4084     * @return a non-null result from applying the given search
4085     * function on each key, or null if none
4086     */
4087     public <U> U searchKeysInParallel
4088 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4089 dl 1.151 return ForkJoinTasks.searchKeys
4090     (this, searchFunction).invoke();
4091     }
4092    
4093     /**
4094     * Returns the result of accumulating all keys using the given
4095     * reducer to combine values, or null if none.
4096     *
4097     * @param reducer a commutative associative combining function
4098     * @return the result of accumulating all keys using the given
4099     * reducer to combine values, or null if none
4100     */
4101     public K reduceKeysInParallel
4102 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4103 dl 1.151 return ForkJoinTasks.reduceKeys
4104     (this, reducer).invoke();
4105     }
4106    
4107     /**
4108     * Returns the result of accumulating the given transformation
4109     * of all keys using the given reducer to combine values, or
4110     * null if none.
4111     *
4112     * @param transformer a function returning the transformation
4113     * for an element, or null of there is no transformation (in
4114     * which case it is not combined).
4115     * @param reducer a commutative associative combining function
4116     * @return the result of accumulating the given transformation
4117     * of all keys
4118     */
4119     public <U> U reduceKeysInParallel
4120 dl 1.153 (Function<? super K, ? extends U> transformer,
4121     BiFunction<? super U, ? super U, ? extends U> reducer) {
4122 dl 1.151 return ForkJoinTasks.reduceKeys
4123     (this, transformer, reducer).invoke();
4124     }
4125    
4126     /**
4127     * Returns the result of accumulating the given transformation
4128     * of all keys using the given reducer to combine values, and
4129     * the given basis as an identity value.
4130     *
4131     * @param transformer a function returning the transformation
4132     * for an element
4133     * @param basis the identity (initial default value) for the reduction
4134     * @param reducer a commutative associative combining function
4135     * @return the result of accumulating the given transformation
4136     * of all keys
4137     */
4138     public double reduceKeysToDoubleInParallel
4139 dl 1.153 (DoubleFunction<? super K> transformer,
4140 dl 1.151 double basis,
4141 dl 1.153 DoubleBinaryOperator reducer) {
4142 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4143     (this, transformer, basis, reducer).invoke();
4144     }
4145    
4146     /**
4147     * Returns the result of accumulating the given transformation
4148     * of all keys using the given reducer to combine values, and
4149     * the given basis as an identity value.
4150     *
4151     * @param transformer a function returning the transformation
4152     * for an element
4153     * @param basis the identity (initial default value) for the reduction
4154     * @param reducer a commutative associative combining function
4155     * @return the result of accumulating the given transformation
4156     * of all keys
4157     */
4158     public long reduceKeysToLongInParallel
4159 dl 1.153 (LongFunction<? super K> transformer,
4160 dl 1.151 long basis,
4161 dl 1.153 LongBinaryOperator reducer) {
4162 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4163     (this, transformer, basis, reducer).invoke();
4164     }
4165    
4166     /**
4167     * Returns the result of accumulating the given transformation
4168     * of all keys using the given reducer to combine values, and
4169     * the given basis as an identity value.
4170     *
4171     * @param transformer a function returning the transformation
4172     * for an element
4173     * @param basis the identity (initial default value) for the reduction
4174     * @param reducer a commutative associative combining function
4175     * @return the result of accumulating the given transformation
4176     * of all keys
4177     */
4178     public int reduceKeysToIntInParallel
4179 dl 1.153 (IntFunction<? super K> transformer,
4180 dl 1.151 int basis,
4181 dl 1.153 IntBinaryOperator reducer) {
4182 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4183     (this, transformer, basis, reducer).invoke();
4184     }
4185    
4186     /**
4187     * Performs the given action for each value.
4188     *
4189     * @param action the action
4190     */
4191 dl 1.153 public void forEachValueInParallel(Block<? super V> action) {
4192 dl 1.151 ForkJoinTasks.forEachValue
4193     (this, action).invoke();
4194     }
4195    
4196     /**
4197     * Performs the given action for each non-null transformation
4198     * of each value.
4199     *
4200     * @param transformer a function returning the transformation
4201     * for an element, or null of there is no transformation (in
4202     * which case the action is not applied).
4203     */
4204     public <U> void forEachValueInParallel
4205 dl 1.153 (Function<? super V, ? extends U> transformer,
4206     Block<? super U> action) {
4207 dl 1.151 ForkJoinTasks.forEachValue
4208     (this, transformer, action).invoke();
4209     }
4210    
4211     /**
4212     * Returns a non-null result from applying the given search
4213     * function on each value, or null if none. Upon success,
4214     * further element processing is suppressed and the results of
4215     * any other parallel invocations of the search function are
4216     * ignored.
4217     *
4218     * @param searchFunction a function returning a non-null
4219     * result on success, else null
4220     * @return a non-null result from applying the given search
4221     * function on each value, or null if none
4222     *
4223     */
4224     public <U> U searchValuesInParallel
4225 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4226 dl 1.151 return ForkJoinTasks.searchValues
4227     (this, searchFunction).invoke();
4228     }
4229    
4230     /**
4231     * Returns the result of accumulating all values using the
4232     * given reducer to combine values, or null if none.
4233     *
4234     * @param reducer a commutative associative combining function
4235     * @return the result of accumulating all values
4236     */
4237     public V reduceValuesInParallel
4238 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4239 dl 1.151 return ForkJoinTasks.reduceValues
4240     (this, reducer).invoke();
4241     }
4242    
4243     /**
4244     * Returns the result of accumulating the given transformation
4245     * of all values using the given reducer to combine values, or
4246     * null if none.
4247     *
4248     * @param transformer a function returning the transformation
4249     * for an element, or null of there is no transformation (in
4250     * which case it is not combined).
4251     * @param reducer a commutative associative combining function
4252     * @return the result of accumulating the given transformation
4253     * of all values
4254     */
4255     public <U> U reduceValuesInParallel
4256 dl 1.153 (Function<? super V, ? extends U> transformer,
4257     BiFunction<? super U, ? super U, ? extends U> reducer) {
4258 dl 1.151 return ForkJoinTasks.reduceValues
4259     (this, transformer, reducer).invoke();
4260     }
4261    
4262     /**
4263     * Returns the result of accumulating the given transformation
4264     * of all values using the given reducer to combine values,
4265     * and the given basis as an identity value.
4266     *
4267     * @param transformer a function returning the transformation
4268     * for an element
4269     * @param basis the identity (initial default value) for the reduction
4270     * @param reducer a commutative associative combining function
4271     * @return the result of accumulating the given transformation
4272     * of all values
4273     */
4274     public double reduceValuesToDoubleInParallel
4275 dl 1.153 (DoubleFunction<? super V> transformer,
4276 dl 1.151 double basis,
4277 dl 1.153 DoubleBinaryOperator reducer) {
4278 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4279     (this, transformer, basis, reducer).invoke();
4280     }
4281    
4282     /**
4283     * Returns the result of accumulating the given transformation
4284     * of all values using the given reducer to combine values,
4285     * and the given basis as an identity value.
4286     *
4287     * @param transformer a function returning the transformation
4288     * for an element
4289     * @param basis the identity (initial default value) for the reduction
4290     * @param reducer a commutative associative combining function
4291     * @return the result of accumulating the given transformation
4292     * of all values
4293     */
4294     public long reduceValuesToLongInParallel
4295 dl 1.153 (LongFunction<? super V> transformer,
4296 dl 1.151 long basis,
4297 dl 1.153 LongBinaryOperator reducer) {
4298 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4299     (this, transformer, basis, reducer).invoke();
4300     }
4301    
4302     /**
4303     * Returns the result of accumulating the given transformation
4304     * of all values using the given reducer to combine values,
4305     * and the given basis as an identity value.
4306     *
4307     * @param transformer a function returning the transformation
4308     * for an element
4309     * @param basis the identity (initial default value) for the reduction
4310     * @param reducer a commutative associative combining function
4311     * @return the result of accumulating the given transformation
4312     * of all values
4313     */
4314     public int reduceValuesToIntInParallel
4315 dl 1.153 (IntFunction<? super V> transformer,
4316 dl 1.151 int basis,
4317 dl 1.153 IntBinaryOperator reducer) {
4318 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4319     (this, transformer, basis, reducer).invoke();
4320     }
4321    
4322     /**
4323     * Performs the given action for each entry.
4324     *
4325     * @param action the action
4326     */
4327 dl 1.153 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4328 dl 1.151 ForkJoinTasks.forEachEntry
4329     (this, action).invoke();
4330     }
4331    
4332     /**
4333     * Performs the given action for each non-null transformation
4334     * of each entry.
4335     *
4336     * @param transformer a function returning the transformation
4337     * for an element, or null of there is no transformation (in
4338     * which case the action is not applied).
4339     * @param action the action
4340     */
4341     public <U> void forEachEntryInParallel
4342 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4343     Block<? super U> action) {
4344 dl 1.151 ForkJoinTasks.forEachEntry
4345     (this, transformer, action).invoke();
4346     }
4347    
4348     /**
4349     * Returns a non-null result from applying the given search
4350     * function on each entry, or null if none. Upon success,
4351     * further element processing is suppressed and the results of
4352     * any other parallel invocations of the search function are
4353     * ignored.
4354     *
4355     * @param searchFunction a function returning a non-null
4356     * result on success, else null
4357     * @return a non-null result from applying the given search
4358     * function on each entry, or null if none
4359     */
4360     public <U> U searchEntriesInParallel
4361 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4362 dl 1.151 return ForkJoinTasks.searchEntries
4363     (this, searchFunction).invoke();
4364     }
4365    
4366     /**
4367     * Returns the result of accumulating all entries using the
4368     * given reducer to combine values, or null if none.
4369     *
4370     * @param reducer a commutative associative combining function
4371     * @return the result of accumulating all entries
4372     */
4373     public Map.Entry<K,V> reduceEntriesInParallel
4374 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4375 dl 1.151 return ForkJoinTasks.reduceEntries
4376     (this, reducer).invoke();
4377     }
4378    
4379     /**
4380     * Returns the result of accumulating the given transformation
4381     * of all entries using the given reducer to combine values,
4382     * or null if none.
4383     *
4384     * @param transformer a function returning the transformation
4385     * for an element, or null of there is no transformation (in
4386     * which case it is not combined).
4387     * @param reducer a commutative associative combining function
4388     * @return the result of accumulating the given transformation
4389     * of all entries
4390     */
4391     public <U> U reduceEntriesInParallel
4392 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4393     BiFunction<? super U, ? super U, ? extends U> reducer) {
4394 dl 1.151 return ForkJoinTasks.reduceEntries
4395     (this, transformer, reducer).invoke();
4396     }
4397    
4398     /**
4399     * Returns the result of accumulating the given transformation
4400     * of all entries using the given reducer to combine values,
4401     * and the given basis as an identity value.
4402     *
4403     * @param transformer a function returning the transformation
4404     * for an element
4405     * @param basis the identity (initial default value) for the reduction
4406     * @param reducer a commutative associative combining function
4407     * @return the result of accumulating the given transformation
4408     * of all entries
4409     */
4410     public double reduceEntriesToDoubleInParallel
4411 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
4412 dl 1.151 double basis,
4413 dl 1.153 DoubleBinaryOperator reducer) {
4414 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4415     (this, transformer, basis, reducer).invoke();
4416     }
4417    
4418     /**
4419     * Returns the result of accumulating the given transformation
4420     * of all entries using the given reducer to combine values,
4421     * and the given basis as an identity value.
4422     *
4423     * @param transformer a function returning the transformation
4424     * for an element
4425     * @param basis the identity (initial default value) for the reduction
4426     * @param reducer a commutative associative combining function
4427     * @return the result of accumulating the given transformation
4428     * of all entries
4429     */
4430     public long reduceEntriesToLongInParallel
4431 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
4432 dl 1.151 long basis,
4433 dl 1.153 LongBinaryOperator reducer) {
4434 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4435     (this, transformer, basis, reducer).invoke();
4436     }
4437    
4438     /**
4439     * Returns the result of accumulating the given transformation
4440     * of all entries using the given reducer to combine values,
4441     * and the given basis as an identity value.
4442     *
4443     * @param transformer a function returning the transformation
4444     * for an element
4445     * @param basis the identity (initial default value) for the reduction
4446     * @param reducer a commutative associative combining function
4447     * @return the result of accumulating the given transformation
4448     * of all entries
4449     */
4450     public int reduceEntriesToIntInParallel
4451 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
4452 dl 1.151 int basis,
4453 dl 1.153 IntBinaryOperator reducer) {
4454 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4455     (this, transformer, basis, reducer).invoke();
4456     }
4457    
4458    
4459     /* ----------------Views -------------- */
4460    
4461     /**
4462     * Base class for views.
4463     */
4464     static abstract class CHMView<K, V> {
4465     final ConcurrentHashMap<K, V> map;
4466     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4467    
4468     /**
4469     * Returns the map backing this view.
4470     *
4471     * @return the map backing this view
4472     */
4473     public ConcurrentHashMap<K,V> getMap() { return map; }
4474    
4475     public final int size() { return map.size(); }
4476     public final boolean isEmpty() { return map.isEmpty(); }
4477     public final void clear() { map.clear(); }
4478    
4479     // implementations below rely on concrete classes supplying these
4480     abstract public Iterator<?> iterator();
4481     abstract public boolean contains(Object o);
4482     abstract public boolean remove(Object o);
4483    
4484     private static final String oomeMsg = "Required array size too large";
4485 dl 1.142
4486     public final Object[] toArray() {
4487     long sz = map.mappingCount();
4488     if (sz > (long)(MAX_ARRAY_SIZE))
4489     throw new OutOfMemoryError(oomeMsg);
4490     int n = (int)sz;
4491     Object[] r = new Object[n];
4492     int i = 0;
4493     Iterator<?> it = iterator();
4494     while (it.hasNext()) {
4495     if (i == n) {
4496     if (n >= MAX_ARRAY_SIZE)
4497     throw new OutOfMemoryError(oomeMsg);
4498     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4499     n = MAX_ARRAY_SIZE;
4500     else
4501     n += (n >>> 1) + 1;
4502     r = Arrays.copyOf(r, n);
4503     }
4504     r[i++] = it.next();
4505     }
4506     return (i == n) ? r : Arrays.copyOf(r, i);
4507     }
4508    
4509     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4510     long sz = map.mappingCount();
4511     if (sz > (long)(MAX_ARRAY_SIZE))
4512     throw new OutOfMemoryError(oomeMsg);
4513     int m = (int)sz;
4514     T[] r = (a.length >= m) ? a :
4515     (T[])java.lang.reflect.Array
4516     .newInstance(a.getClass().getComponentType(), m);
4517     int n = r.length;
4518     int i = 0;
4519     Iterator<?> it = iterator();
4520     while (it.hasNext()) {
4521     if (i == n) {
4522     if (n >= MAX_ARRAY_SIZE)
4523     throw new OutOfMemoryError(oomeMsg);
4524     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4525     n = MAX_ARRAY_SIZE;
4526     else
4527     n += (n >>> 1) + 1;
4528     r = Arrays.copyOf(r, n);
4529     }
4530     r[i++] = (T)it.next();
4531     }
4532     if (a == r && i < n) {
4533     r[i] = null; // null-terminate
4534     return r;
4535     }
4536     return (i == n) ? r : Arrays.copyOf(r, i);
4537     }
4538    
4539     public final int hashCode() {
4540     int h = 0;
4541     for (Iterator<?> it = iterator(); it.hasNext();)
4542     h += it.next().hashCode();
4543     return h;
4544     }
4545    
4546     public final String toString() {
4547     StringBuilder sb = new StringBuilder();
4548     sb.append('[');
4549     Iterator<?> it = iterator();
4550     if (it.hasNext()) {
4551     for (;;) {
4552     Object e = it.next();
4553     sb.append(e == this ? "(this Collection)" : e);
4554     if (!it.hasNext())
4555     break;
4556     sb.append(',').append(' ');
4557     }
4558     }
4559     return sb.append(']').toString();
4560     }
4561    
4562     public final boolean containsAll(Collection<?> c) {
4563     if (c != this) {
4564     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4565     Object e = it.next();
4566     if (e == null || !contains(e))
4567     return false;
4568     }
4569     }
4570     return true;
4571     }
4572    
4573     public final boolean removeAll(Collection<?> c) {
4574     boolean modified = false;
4575     for (Iterator<?> it = iterator(); it.hasNext();) {
4576     if (c.contains(it.next())) {
4577     it.remove();
4578     modified = true;
4579     }
4580     }
4581     return modified;
4582     }
4583    
4584     public final boolean retainAll(Collection<?> c) {
4585     boolean modified = false;
4586     for (Iterator<?> it = iterator(); it.hasNext();) {
4587     if (!c.contains(it.next())) {
4588     it.remove();
4589     modified = true;
4590     }
4591     }
4592     return modified;
4593     }
4594    
4595     }
4596    
4597     /**
4598     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4599     * which additions may optionally be enabled by mapping to a
4600     * common value. This class cannot be directly instantiated. See
4601     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4602     * {@link #newKeySet(int)}.
4603     */
4604 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4605     implements Set<K>, java.io.Serializable {
4606 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4607     private final V value;
4608     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4609     super(map);
4610     this.value = value;
4611     }
4612    
4613     /**
4614     * Returns the default mapped value for additions,
4615     * or {@code null} if additions are not supported.
4616     *
4617     * @return the default mapped value for additions, or {@code null}
4618     * if not supported.
4619     */
4620     public V getMappedValue() { return value; }
4621    
4622     // implement Set API
4623    
4624     public boolean contains(Object o) { return map.containsKey(o); }
4625     public boolean remove(Object o) { return map.remove(o) != null; }
4626    
4627     /**
4628     * Returns a "weakly consistent" iterator that will never
4629     * throw {@link ConcurrentModificationException}, and
4630     * guarantees to traverse elements as they existed upon
4631     * construction of the iterator, and may (but is not
4632     * guaranteed to) reflect any modifications subsequent to
4633     * construction.
4634     *
4635     * @return an iterator over the keys of this map
4636     */
4637     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4638     public boolean add(K e) {
4639     V v;
4640     if ((v = value) == null)
4641     throw new UnsupportedOperationException();
4642     if (e == null)
4643     throw new NullPointerException();
4644 dl 1.149 return map.internalPut(e, v, true) == null;
4645 dl 1.142 }
4646     public boolean addAll(Collection<? extends K> c) {
4647     boolean added = false;
4648     V v;
4649     if ((v = value) == null)
4650     throw new UnsupportedOperationException();
4651     for (K e : c) {
4652     if (e == null)
4653     throw new NullPointerException();
4654 dl 1.149 if (map.internalPut(e, v, true) == null)
4655 dl 1.142 added = true;
4656     }
4657     return added;
4658     }
4659     public boolean equals(Object o) {
4660     Set<?> c;
4661     return ((o instanceof Set) &&
4662     ((c = (Set<?>)o) == this ||
4663     (containsAll(c) && c.containsAll(this))));
4664     }
4665 dl 1.153
4666     public Stream<K> stream() {
4667     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4668     }
4669     public Stream<K> parallelStream() {
4670     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4671     0);
4672     }
4673 dl 1.142 }
4674    
4675     /**
4676     * A view of a ConcurrentHashMap as a {@link Collection} of
4677     * values, in which additions are disabled. This class cannot be
4678     * directly instantiated. See {@link #values},
4679     *
4680     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4681     * that will never throw {@link ConcurrentModificationException},
4682     * and guarantees to traverse elements as they existed upon
4683     * construction of the iterator, and may (but is not guaranteed to)
4684     * reflect any modifications subsequent to construction.
4685     */
4686     public static final class ValuesView<K,V> extends CHMView<K,V>
4687     implements Collection<V> {
4688     ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4689     public final boolean contains(Object o) { return map.containsValue(o); }
4690     public final boolean remove(Object o) {
4691     if (o != null) {
4692     Iterator<V> it = new ValueIterator<K,V>(map);
4693     while (it.hasNext()) {
4694     if (o.equals(it.next())) {
4695     it.remove();
4696     return true;
4697     }
4698     }
4699     }
4700     return false;
4701     }
4702    
4703     /**
4704     * Returns a "weakly consistent" iterator that will never
4705     * throw {@link ConcurrentModificationException}, and
4706     * guarantees to traverse elements as they existed upon
4707     * construction of the iterator, and may (but is not
4708     * guaranteed to) reflect any modifications subsequent to
4709     * construction.
4710     *
4711     * @return an iterator over the values of this map
4712     */
4713     public final Iterator<V> iterator() {
4714     return new ValueIterator<K,V>(map);
4715     }
4716     public final boolean add(V e) {
4717     throw new UnsupportedOperationException();
4718     }
4719     public final boolean addAll(Collection<? extends V> c) {
4720     throw new UnsupportedOperationException();
4721     }
4722    
4723 dl 1.153 public Stream<V> stream() {
4724     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4725     }
4726    
4727     public Stream<V> parallelStream() {
4728     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4729     0);
4730     }
4731    
4732 dl 1.142 }
4733    
4734     /**
4735     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4736     * entries. This class cannot be directly instantiated. See
4737     * {@link #entrySet}.
4738     */
4739     public static final class EntrySetView<K,V> extends CHMView<K,V>
4740     implements Set<Map.Entry<K,V>> {
4741     EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4742     public final boolean contains(Object o) {
4743     Object k, v, r; Map.Entry<?,?> e;
4744     return ((o instanceof Map.Entry) &&
4745     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4746     (r = map.get(k)) != null &&
4747     (v = e.getValue()) != null &&
4748     (v == r || v.equals(r)));
4749     }
4750     public final boolean remove(Object o) {
4751     Object k, v; Map.Entry<?,?> e;
4752     return ((o instanceof Map.Entry) &&
4753     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4754     (v = e.getValue()) != null &&
4755     map.remove(k, v));
4756     }
4757    
4758     /**
4759     * Returns a "weakly consistent" iterator that will never
4760     * throw {@link ConcurrentModificationException}, and
4761     * guarantees to traverse elements as they existed upon
4762     * construction of the iterator, and may (but is not
4763     * guaranteed to) reflect any modifications subsequent to
4764     * construction.
4765     *
4766     * @return an iterator over the entries of this map
4767     */
4768     public final Iterator<Map.Entry<K,V>> iterator() {
4769     return new EntryIterator<K,V>(map);
4770     }
4771    
4772     public final boolean add(Entry<K,V> e) {
4773     K key = e.getKey();
4774     V value = e.getValue();
4775     if (key == null || value == null)
4776     throw new NullPointerException();
4777 dl 1.149 return map.internalPut(key, value, false) == null;
4778 dl 1.142 }
4779     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4780     boolean added = false;
4781     for (Entry<K,V> e : c) {
4782     if (add(e))
4783     added = true;
4784     }
4785     return added;
4786     }
4787     public boolean equals(Object o) {
4788     Set<?> c;
4789     return ((o instanceof Set) &&
4790     ((c = (Set<?>)o) == this ||
4791     (containsAll(c) && c.containsAll(this))));
4792     }
4793 dl 1.153
4794     public Stream<Map.Entry<K,V>> stream() {
4795     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4796     }
4797    
4798     public Stream<Map.Entry<K,V>> parallelStream() {
4799     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4800     0);
4801     }
4802 dl 1.142 }
4803    
4804 dl 1.119 // ---------------------------------------------------------------------
4805    
4806     /**
4807     * Predefined tasks for performing bulk parallel operations on
4808     * ConcurrentHashMaps. These tasks follow the forms and rules used
4809 dl 1.137 * for bulk operations. Each method has the same name, but returns
4810     * a task rather than invoking it. These methods may be useful in
4811     * custom applications such as submitting a task without waiting
4812     * for completion, using a custom pool, or combining with other
4813     * tasks.
4814 dl 1.119 */
4815     public static class ForkJoinTasks {
4816     private ForkJoinTasks() {}
4817    
4818     /**
4819     * Returns a task that when invoked, performs the given
4820     * action for each (key, value)
4821     *
4822     * @param map the map
4823     * @param action the action
4824     * @return the task
4825     */
4826 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4827 dl 1.119 (ConcurrentHashMap<K,V> map,
4828 dl 1.153 BiBlock<? super K, ? super V> action) {
4829 dl 1.119 if (action == null) throw new NullPointerException();
4830 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4831 dl 1.119 }
4832    
4833     /**
4834     * Returns a task that when invoked, performs the given
4835     * action for each non-null transformation of each (key, value)
4836     *
4837     * @param map the map
4838     * @param transformer a function returning the transformation
4839 jsr166 1.135 * for an element, or null if there is no transformation (in
4840 jsr166 1.134 * which case the action is not applied)
4841 dl 1.119 * @param action the action
4842     * @return the task
4843     */
4844 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4845 dl 1.119 (ConcurrentHashMap<K,V> map,
4846 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4847     Block<? super U> action) {
4848 dl 1.119 if (transformer == null || action == null)
4849     throw new NullPointerException();
4850     return new ForEachTransformedMappingTask<K,V,U>
4851 dl 1.146 (map, null, -1, transformer, action);
4852 dl 1.119 }
4853    
4854     /**
4855 dl 1.126 * Returns a task that when invoked, returns a non-null result
4856     * from applying the given search function on each (key,
4857     * value), or null if none. Upon success, further element
4858     * processing is suppressed and the results of any other
4859     * parallel invocations of the search function are ignored.
4860 dl 1.119 *
4861     * @param map the map
4862     * @param searchFunction a function returning a non-null
4863     * result on success, else null
4864     * @return the task
4865     */
4866     public static <K,V,U> ForkJoinTask<U> search
4867     (ConcurrentHashMap<K,V> map,
4868 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4869 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4870     return new SearchMappingsTask<K,V,U>
4871 dl 1.146 (map, null, -1, searchFunction,
4872 dl 1.119 new AtomicReference<U>());
4873     }
4874    
4875     /**
4876     * Returns a task that when invoked, returns the result of
4877     * accumulating the given transformation of all (key, value) pairs
4878     * using the given reducer to combine values, or null if none.
4879     *
4880     * @param map the map
4881     * @param transformer a function returning the transformation
4882 jsr166 1.135 * for an element, or null if there is no transformation (in
4883 dl 1.119 * which case it is not combined).
4884     * @param reducer a commutative associative combining function
4885     * @return the task
4886     */
4887     public static <K,V,U> ForkJoinTask<U> reduce
4888     (ConcurrentHashMap<K,V> map,
4889 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4890     BiFunction<? super U, ? super U, ? extends U> reducer) {
4891 dl 1.119 if (transformer == null || reducer == null)
4892     throw new NullPointerException();
4893     return new MapReduceMappingsTask<K,V,U>
4894 dl 1.130 (map, null, -1, null, transformer, reducer);
4895 dl 1.119 }
4896    
4897     /**
4898     * Returns a task that when invoked, returns the result of
4899     * accumulating the given transformation of all (key, value) pairs
4900     * using the given reducer to combine values, and the given
4901     * basis as an identity value.
4902     *
4903     * @param map the map
4904     * @param transformer a function returning the transformation
4905     * for an element
4906     * @param basis the identity (initial default value) for the reduction
4907     * @param reducer a commutative associative combining function
4908     * @return the task
4909     */
4910     public static <K,V> ForkJoinTask<Double> reduceToDouble
4911     (ConcurrentHashMap<K,V> map,
4912 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
4913 dl 1.119 double basis,
4914 dl 1.153 DoubleBinaryOperator reducer) {
4915 dl 1.119 if (transformer == null || reducer == null)
4916     throw new NullPointerException();
4917     return new MapReduceMappingsToDoubleTask<K,V>
4918 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4919 dl 1.119 }
4920    
4921     /**
4922     * Returns a task that when invoked, returns the result of
4923     * accumulating the given transformation of all (key, value) pairs
4924     * using the given reducer to combine values, and the given
4925     * basis as an identity value.
4926     *
4927     * @param map the map
4928     * @param transformer a function returning the transformation
4929     * for an element
4930     * @param basis the identity (initial default value) for the reduction
4931     * @param reducer a commutative associative combining function
4932     * @return the task
4933     */
4934     public static <K,V> ForkJoinTask<Long> reduceToLong
4935     (ConcurrentHashMap<K,V> map,
4936 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
4937 dl 1.119 long basis,
4938 dl 1.153 LongBinaryOperator reducer) {
4939 dl 1.119 if (transformer == null || reducer == null)
4940     throw new NullPointerException();
4941     return new MapReduceMappingsToLongTask<K,V>
4942 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4943 dl 1.119 }
4944    
4945     /**
4946     * Returns a task that when invoked, returns the result of
4947     * accumulating the given transformation of all (key, value) pairs
4948     * using the given reducer to combine values, and the given
4949     * basis as an identity value.
4950     *
4951     * @param transformer a function returning the transformation
4952     * for an element
4953     * @param basis the identity (initial default value) for the reduction
4954     * @param reducer a commutative associative combining function
4955     * @return the task
4956     */
4957     public static <K,V> ForkJoinTask<Integer> reduceToInt
4958     (ConcurrentHashMap<K,V> map,
4959 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
4960 dl 1.119 int basis,
4961 dl 1.153 IntBinaryOperator reducer) {
4962 dl 1.119 if (transformer == null || reducer == null)
4963     throw new NullPointerException();
4964     return new MapReduceMappingsToIntTask<K,V>
4965 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4966 dl 1.119 }
4967    
4968     /**
4969     * Returns a task that when invoked, performs the given action
4970 jsr166 1.123 * for each key.
4971 dl 1.119 *
4972     * @param map the map
4973     * @param action the action
4974     * @return the task
4975     */
4976 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4977 dl 1.119 (ConcurrentHashMap<K,V> map,
4978 dl 1.153 Block<? super K> action) {
4979 dl 1.119 if (action == null) throw new NullPointerException();
4980 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4981 dl 1.119 }
4982    
4983     /**
4984     * Returns a task that when invoked, performs the given action
4985 jsr166 1.123 * for each non-null transformation of each key.
4986 dl 1.119 *
4987     * @param map the map
4988     * @param transformer a function returning the transformation
4989 jsr166 1.135 * for an element, or null if there is no transformation (in
4990 jsr166 1.134 * which case the action is not applied)
4991 dl 1.119 * @param action the action
4992     * @return the task
4993     */
4994 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4995 dl 1.119 (ConcurrentHashMap<K,V> map,
4996 dl 1.153 Function<? super K, ? extends U> transformer,
4997     Block<? super U> action) {
4998 dl 1.119 if (transformer == null || action == null)
4999     throw new NullPointerException();
5000     return new ForEachTransformedKeyTask<K,V,U>
5001 dl 1.146 (map, null, -1, transformer, action);
5002 dl 1.119 }
5003    
5004     /**
5005     * Returns a task that when invoked, returns a non-null result
5006     * from applying the given search function on each key, or
5007 dl 1.126 * null if none. Upon success, further element processing is
5008     * suppressed and the results of any other parallel
5009     * invocations of the search function are ignored.
5010 dl 1.119 *
5011     * @param map the map
5012     * @param searchFunction a function returning a non-null
5013     * result on success, else null
5014     * @return the task
5015     */
5016     public static <K,V,U> ForkJoinTask<U> searchKeys
5017     (ConcurrentHashMap<K,V> map,
5018 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5019 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5020     return new SearchKeysTask<K,V,U>
5021 dl 1.146 (map, null, -1, searchFunction,
5022 dl 1.119 new AtomicReference<U>());
5023     }
5024    
5025     /**
5026     * Returns a task that when invoked, returns the result of
5027     * accumulating all keys using the given reducer to combine
5028     * values, or null if none.
5029     *
5030     * @param map the map
5031     * @param reducer a commutative associative combining function
5032     * @return the task
5033     */
5034     public static <K,V> ForkJoinTask<K> reduceKeys
5035     (ConcurrentHashMap<K,V> map,
5036 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5037 dl 1.119 if (reducer == null) throw new NullPointerException();
5038     return new ReduceKeysTask<K,V>
5039 dl 1.130 (map, null, -1, null, reducer);
5040 dl 1.119 }
5041 jsr166 1.125
5042 dl 1.119 /**
5043     * Returns a task that when invoked, returns the result of
5044     * accumulating the given transformation of all keys using the given
5045     * reducer to combine values, or null if none.
5046     *
5047     * @param map the map
5048     * @param transformer a function returning the transformation
5049 jsr166 1.135 * for an element, or null if there is no transformation (in
5050 dl 1.119 * which case it is not combined).
5051     * @param reducer a commutative associative combining function
5052     * @return the task
5053     */
5054     public static <K,V,U> ForkJoinTask<U> reduceKeys
5055     (ConcurrentHashMap<K,V> map,
5056 dl 1.153 Function<? super K, ? extends U> transformer,
5057     BiFunction<? super U, ? super U, ? extends U> reducer) {
5058 dl 1.119 if (transformer == null || reducer == null)
5059     throw new NullPointerException();
5060     return new MapReduceKeysTask<K,V,U>
5061 dl 1.130 (map, null, -1, null, transformer, reducer);
5062 dl 1.119 }
5063    
5064     /**
5065     * Returns a task that when invoked, returns the result of
5066     * accumulating the given transformation of all keys using the given
5067     * reducer to combine values, and the given basis as an
5068     * identity value.
5069     *
5070     * @param map the map
5071     * @param transformer a function returning the transformation
5072     * for an element
5073     * @param basis the identity (initial default value) for the reduction
5074     * @param reducer a commutative associative combining function
5075     * @return the task
5076     */
5077     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5078     (ConcurrentHashMap<K,V> map,
5079 dl 1.153 DoubleFunction<? super K> transformer,
5080 dl 1.119 double basis,
5081 dl 1.153 DoubleBinaryOperator reducer) {
5082 dl 1.119 if (transformer == null || reducer == null)
5083     throw new NullPointerException();
5084     return new MapReduceKeysToDoubleTask<K,V>
5085 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5086 dl 1.119 }
5087    
5088     /**
5089     * Returns a task that when invoked, returns the result of
5090     * accumulating the given transformation of all keys using the given
5091     * reducer to combine values, and the given basis as an
5092     * identity value.
5093     *
5094     * @param map the map
5095     * @param transformer a function returning the transformation
5096     * for an element
5097     * @param basis the identity (initial default value) for the reduction
5098     * @param reducer a commutative associative combining function
5099     * @return the task
5100     */
5101     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5102     (ConcurrentHashMap<K,V> map,
5103 dl 1.153 LongFunction<? super K> transformer,
5104 dl 1.119 long basis,
5105 dl 1.153 LongBinaryOperator reducer) {
5106 dl 1.119 if (transformer == null || reducer == null)
5107     throw new NullPointerException();
5108     return new MapReduceKeysToLongTask<K,V>
5109 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5110 dl 1.119 }
5111    
5112     /**
5113     * Returns a task that when invoked, returns the result of
5114     * accumulating the given transformation of all keys using the given
5115     * reducer to combine values, and the given basis as an
5116     * identity value.
5117     *
5118     * @param map the map
5119     * @param transformer a function returning the transformation
5120     * for an element
5121     * @param basis the identity (initial default value) for the reduction
5122     * @param reducer a commutative associative combining function
5123     * @return the task
5124     */
5125     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5126     (ConcurrentHashMap<K,V> map,
5127 dl 1.153 IntFunction<? super K> transformer,
5128 dl 1.119 int basis,
5129 dl 1.153 IntBinaryOperator reducer) {
5130 dl 1.119 if (transformer == null || reducer == null)
5131     throw new NullPointerException();
5132     return new MapReduceKeysToIntTask<K,V>
5133 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5134 dl 1.119 }
5135    
5136     /**
5137     * Returns a task that when invoked, performs the given action
5138 jsr166 1.123 * for each value.
5139 dl 1.119 *
5140     * @param map the map
5141     * @param action the action
5142     */
5143 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5144 dl 1.119 (ConcurrentHashMap<K,V> map,
5145 dl 1.153 Block<? super V> action) {
5146 dl 1.119 if (action == null) throw new NullPointerException();
5147 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5148 dl 1.119 }
5149    
5150     /**
5151     * Returns a task that when invoked, performs the given action
5152 jsr166 1.123 * for each non-null transformation of each value.
5153 dl 1.119 *
5154     * @param map the map
5155     * @param transformer a function returning the transformation
5156 jsr166 1.135 * for an element, or null if there is no transformation (in
5157 jsr166 1.134 * which case the action is not applied)
5158 dl 1.119 * @param action the action
5159     */
5160 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5161 dl 1.119 (ConcurrentHashMap<K,V> map,
5162 dl 1.153 Function<? super V, ? extends U> transformer,
5163     Block<? super U> action) {
5164 dl 1.119 if (transformer == null || action == null)
5165     throw new NullPointerException();
5166     return new ForEachTransformedValueTask<K,V,U>
5167 dl 1.146 (map, null, -1, transformer, action);
5168 dl 1.119 }
5169    
5170     /**
5171     * Returns a task that when invoked, returns a non-null result
5172     * from applying the given search function on each value, or
5173 dl 1.126 * null if none. Upon success, further element processing is
5174     * suppressed and the results of any other parallel
5175     * invocations of the search function are ignored.
5176 dl 1.119 *
5177     * @param map the map
5178     * @param searchFunction a function returning a non-null
5179     * result on success, else null
5180     * @return the task
5181     */
5182     public static <K,V,U> ForkJoinTask<U> searchValues
5183     (ConcurrentHashMap<K,V> map,
5184 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5185 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5186     return new SearchValuesTask<K,V,U>
5187 dl 1.146 (map, null, -1, searchFunction,
5188 dl 1.119 new AtomicReference<U>());
5189     }
5190    
5191     /**
5192     * Returns a task that when invoked, returns the result of
5193     * accumulating all values using the given reducer to combine
5194     * values, or null if none.
5195     *
5196     * @param map the map
5197     * @param reducer a commutative associative combining function
5198     * @return the task
5199     */
5200     public static <K,V> ForkJoinTask<V> reduceValues
5201     (ConcurrentHashMap<K,V> map,
5202 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5203 dl 1.119 if (reducer == null) throw new NullPointerException();
5204     return new ReduceValuesTask<K,V>
5205 dl 1.130 (map, null, -1, null, reducer);
5206 dl 1.119 }
5207    
5208     /**
5209     * Returns a task that when invoked, returns the result of
5210     * accumulating the given transformation of all values using the
5211     * given reducer to combine values, or null if none.
5212     *
5213     * @param map the map
5214     * @param transformer a function returning the transformation
5215 jsr166 1.135 * for an element, or null if there is no transformation (in
5216 dl 1.119 * which case it is not combined).
5217     * @param reducer a commutative associative combining function
5218     * @return the task
5219     */
5220     public static <K,V,U> ForkJoinTask<U> reduceValues
5221     (ConcurrentHashMap<K,V> map,
5222 dl 1.153 Function<? super V, ? extends U> transformer,
5223     BiFunction<? super U, ? super U, ? extends U> reducer) {
5224 dl 1.119 if (transformer == null || reducer == null)
5225     throw new NullPointerException();
5226     return new MapReduceValuesTask<K,V,U>
5227 dl 1.130 (map, null, -1, null, transformer, reducer);
5228 dl 1.119 }
5229    
5230     /**
5231     * Returns a task that when invoked, returns the result of
5232     * accumulating the given transformation of all values using the
5233     * given reducer to combine values, and the given basis as an
5234     * identity value.
5235     *
5236     * @param map the map
5237     * @param transformer a function returning the transformation
5238     * for an element
5239     * @param basis the identity (initial default value) for the reduction
5240     * @param reducer a commutative associative combining function
5241     * @return the task
5242     */
5243     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5244     (ConcurrentHashMap<K,V> map,
5245 dl 1.153 DoubleFunction<? super V> transformer,
5246 dl 1.119 double basis,
5247 dl 1.153 DoubleBinaryOperator reducer) {
5248 dl 1.119 if (transformer == null || reducer == null)
5249     throw new NullPointerException();
5250     return new MapReduceValuesToDoubleTask<K,V>
5251 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5252 dl 1.119 }
5253    
5254     /**
5255     * Returns a task that when invoked, returns the result of
5256     * accumulating the given transformation of all values using the
5257     * given reducer to combine values, and the given basis as an
5258     * identity value.
5259     *
5260     * @param map the map
5261     * @param transformer a function returning the transformation
5262     * for an element
5263     * @param basis the identity (initial default value) for the reduction
5264     * @param reducer a commutative associative combining function
5265     * @return the task
5266     */
5267     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5268     (ConcurrentHashMap<K,V> map,
5269 dl 1.153 LongFunction<? super V> transformer,
5270 dl 1.119 long basis,
5271 dl 1.153 LongBinaryOperator reducer) {
5272 dl 1.119 if (transformer == null || reducer == null)
5273     throw new NullPointerException();
5274     return new MapReduceValuesToLongTask<K,V>
5275 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5276 dl 1.119 }
5277    
5278     /**
5279     * Returns a task that when invoked, returns the result of
5280     * accumulating the given transformation of all values using the
5281     * given reducer to combine values, and the given basis as an
5282     * identity value.
5283     *
5284     * @param map the map
5285     * @param transformer a function returning the transformation
5286     * for an element
5287     * @param basis the identity (initial default value) for the reduction
5288     * @param reducer a commutative associative combining function
5289     * @return the task
5290     */
5291     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5292     (ConcurrentHashMap<K,V> map,
5293 dl 1.153 IntFunction<? super V> transformer,
5294 dl 1.119 int basis,
5295 dl 1.153 IntBinaryOperator reducer) {
5296 dl 1.119 if (transformer == null || reducer == null)
5297     throw new NullPointerException();
5298     return new MapReduceValuesToIntTask<K,V>
5299 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5300 dl 1.119 }
5301    
5302     /**
5303     * Returns a task that when invoked, perform the given action
5304 jsr166 1.123 * for each entry.
5305 dl 1.119 *
5306     * @param map the map
5307     * @param action the action
5308     */
5309 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5310 dl 1.119 (ConcurrentHashMap<K,V> map,
5311 dl 1.153 Block<? super Map.Entry<K,V>> action) {
5312 dl 1.119 if (action == null) throw new NullPointerException();
5313 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5314 dl 1.119 }
5315    
5316     /**
5317     * Returns a task that when invoked, perform the given action
5318 jsr166 1.123 * for each non-null transformation of each entry.
5319 dl 1.119 *
5320     * @param map the map
5321     * @param transformer a function returning the transformation
5322 jsr166 1.135 * for an element, or null if there is no transformation (in
5323 jsr166 1.134 * which case the action is not applied)
5324 dl 1.119 * @param action the action
5325     */
5326 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5327 dl 1.119 (ConcurrentHashMap<K,V> map,
5328 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5329     Block<? super U> action) {
5330 dl 1.119 if (transformer == null || action == null)
5331     throw new NullPointerException();
5332     return new ForEachTransformedEntryTask<K,V,U>
5333 dl 1.146 (map, null, -1, transformer, action);
5334 dl 1.119 }
5335    
5336     /**
5337     * Returns a task that when invoked, returns a non-null result
5338     * from applying the given search function on each entry, or
5339 dl 1.126 * null if none. Upon success, further element processing is
5340     * suppressed and the results of any other parallel
5341     * invocations of the search function are ignored.
5342 dl 1.119 *
5343     * @param map the map
5344     * @param searchFunction a function returning a non-null
5345     * result on success, else null
5346     * @return the task
5347     */
5348     public static <K,V,U> ForkJoinTask<U> searchEntries
5349     (ConcurrentHashMap<K,V> map,
5350 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5351 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5352     return new SearchEntriesTask<K,V,U>
5353 dl 1.146 (map, null, -1, searchFunction,
5354 dl 1.119 new AtomicReference<U>());
5355     }
5356    
5357     /**
5358     * Returns a task that when invoked, returns the result of
5359     * accumulating all entries using the given reducer to combine
5360     * values, or null if none.
5361     *
5362     * @param map the map
5363     * @param reducer a commutative associative combining function
5364     * @return the task
5365     */
5366     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5367     (ConcurrentHashMap<K,V> map,
5368 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5369 dl 1.119 if (reducer == null) throw new NullPointerException();
5370     return new ReduceEntriesTask<K,V>
5371 dl 1.130 (map, null, -1, null, reducer);
5372 dl 1.119 }
5373    
5374     /**
5375     * Returns a task that when invoked, returns the result of
5376     * accumulating the given transformation of all entries using the
5377     * given reducer to combine values, or null if none.
5378     *
5379     * @param map the map
5380     * @param transformer a function returning the transformation
5381 jsr166 1.135 * for an element, or null if there is no transformation (in
5382 dl 1.119 * which case it is not combined).
5383     * @param reducer a commutative associative combining function
5384     * @return the task
5385     */
5386     public static <K,V,U> ForkJoinTask<U> reduceEntries
5387     (ConcurrentHashMap<K,V> map,
5388 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5389     BiFunction<? super U, ? super U, ? extends U> reducer) {
5390 dl 1.119 if (transformer == null || reducer == null)
5391     throw new NullPointerException();
5392     return new MapReduceEntriesTask<K,V,U>
5393 dl 1.130 (map, null, -1, null, transformer, reducer);
5394 dl 1.119 }
5395    
5396     /**
5397     * Returns a task that when invoked, returns the result of
5398     * accumulating the given transformation of all entries using the
5399     * given reducer to combine values, and the given basis as an
5400     * identity value.
5401     *
5402     * @param map the map
5403     * @param transformer a function returning the transformation
5404     * for an element
5405     * @param basis the identity (initial default value) for the reduction
5406     * @param reducer a commutative associative combining function
5407     * @return the task
5408     */
5409     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5410     (ConcurrentHashMap<K,V> map,
5411 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
5412 dl 1.119 double basis,
5413 dl 1.153 DoubleBinaryOperator reducer) {
5414 dl 1.119 if (transformer == null || reducer == null)
5415     throw new NullPointerException();
5416     return new MapReduceEntriesToDoubleTask<K,V>
5417 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5418 dl 1.119 }
5419    
5420     /**
5421     * Returns a task that when invoked, returns the result of
5422     * accumulating the given transformation of all entries using the
5423     * given reducer to combine values, and the given basis as an
5424     * identity value.
5425     *
5426     * @param map the map
5427     * @param transformer a function returning the transformation
5428     * for an element
5429     * @param basis the identity (initial default value) for the reduction
5430     * @param reducer a commutative associative combining function
5431     * @return the task
5432     */
5433     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5434     (ConcurrentHashMap<K,V> map,
5435 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
5436 dl 1.119 long basis,
5437 dl 1.153 LongBinaryOperator reducer) {
5438 dl 1.119 if (transformer == null || reducer == null)
5439     throw new NullPointerException();
5440     return new MapReduceEntriesToLongTask<K,V>
5441 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5442 dl 1.119 }
5443    
5444     /**
5445     * Returns a task that when invoked, returns the result of
5446     * accumulating the given transformation of all entries using the
5447     * given reducer to combine values, and the given basis as an
5448     * identity value.
5449     *
5450     * @param map the map
5451     * @param transformer a function returning the transformation
5452     * for an element
5453     * @param basis the identity (initial default value) for the reduction
5454     * @param reducer a commutative associative combining function
5455     * @return the task
5456     */
5457     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5458     (ConcurrentHashMap<K,V> map,
5459 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
5460 dl 1.119 int basis,
5461 dl 1.153 IntBinaryOperator reducer) {
5462 dl 1.119 if (transformer == null || reducer == null)
5463     throw new NullPointerException();
5464     return new MapReduceEntriesToIntTask<K,V>
5465 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5466 dl 1.119 }
5467     }
5468    
5469     // -------------------------------------------------------
5470    
5471     /*
5472     * Task classes. Coded in a regular but ugly format/style to
5473     * simplify checks that each variant differs in the right way from
5474 dl 1.149 * others. The null screenings exist because compilers cannot tell
5475     * that we've already null-checked task arguments, so we force
5476     * simplest hoisted bypass to help avoid convoluted traps.
5477 dl 1.119 */
5478    
5479 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5480 dl 1.146 extends Traverser<K,V,Void> {
5481 dl 1.153 final Block<? super K> action;
5482 dl 1.119 ForEachKeyTask
5483 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5484 dl 1.153 Block<? super K> action) {
5485 dl 1.146 super(m, p, b);
5486 dl 1.119 this.action = action;
5487     }
5488 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5489 dl 1.153 final Block<? super K> action;
5490 dl 1.149 if ((action = this.action) != null) {
5491     for (int b; (b = preSplit()) > 0;)
5492     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5493     while (advance() != null)
5494 dl 1.153 action.accept((K)nextKey);
5495 dl 1.149 propagateCompletion();
5496     }
5497 dl 1.119 }
5498     }
5499    
5500 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5501 dl 1.146 extends Traverser<K,V,Void> {
5502 dl 1.153 final Block<? super V> action;
5503 dl 1.119 ForEachValueTask
5504 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5505 dl 1.153 Block<? super V> action) {
5506 dl 1.146 super(m, p, b);
5507 dl 1.119 this.action = action;
5508     }
5509 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5510 dl 1.153 final Block<? super V> action;
5511 dl 1.149 if ((action = this.action) != null) {
5512     for (int b; (b = preSplit()) > 0;)
5513     new ForEachValueTask<K,V>(map, this, b, action).fork();
5514 dl 1.151 V v;
5515 dl 1.149 while ((v = advance()) != null)
5516 dl 1.153 action.accept(v);
5517 dl 1.149 propagateCompletion();
5518     }
5519 dl 1.119 }
5520     }
5521    
5522 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5523 dl 1.146 extends Traverser<K,V,Void> {
5524 dl 1.153 final Block<? super Entry<K,V>> action;
5525 dl 1.119 ForEachEntryTask
5526 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5527 dl 1.153 Block<? super Entry<K,V>> action) {
5528 dl 1.146 super(m, p, b);
5529 dl 1.119 this.action = action;
5530     }
5531 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5532 dl 1.153 final Block<? super Entry<K,V>> action;
5533 dl 1.149 if ((action = this.action) != null) {
5534     for (int b; (b = preSplit()) > 0;)
5535     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5536 dl 1.151 V v;
5537 dl 1.149 while ((v = advance()) != null)
5538 dl 1.153 action.accept(entryFor((K)nextKey, v));
5539 dl 1.149 propagateCompletion();
5540     }
5541 dl 1.119 }
5542     }
5543    
5544 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5545 dl 1.146 extends Traverser<K,V,Void> {
5546 dl 1.153 final BiBlock<? super K, ? super V> action;
5547 dl 1.119 ForEachMappingTask
5548 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5549 dl 1.153 BiBlock<? super K,? super V> action) {
5550 dl 1.146 super(m, p, b);
5551 dl 1.119 this.action = action;
5552     }
5553 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5554 dl 1.153 final BiBlock<? super K, ? super V> action;
5555 dl 1.149 if ((action = this.action) != null) {
5556     for (int b; (b = preSplit()) > 0;)
5557     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5558 dl 1.151 V v;
5559 dl 1.149 while ((v = advance()) != null)
5560 dl 1.153 action.accept((K)nextKey, v);
5561 dl 1.149 propagateCompletion();
5562     }
5563 dl 1.119 }
5564     }
5565    
5566 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5567 dl 1.146 extends Traverser<K,V,Void> {
5568 dl 1.153 final Function<? super K, ? extends U> transformer;
5569     final Block<? super U> action;
5570 dl 1.119 ForEachTransformedKeyTask
5571 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5572 dl 1.153 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5573 dl 1.146 super(m, p, b);
5574     this.transformer = transformer; this.action = action;
5575     }
5576     @SuppressWarnings("unchecked") public final void compute() {
5577 dl 1.153 final Function<? super K, ? extends U> transformer;
5578     final Block<? super U> action;
5579 dl 1.149 if ((transformer = this.transformer) != null &&
5580     (action = this.action) != null) {
5581     for (int b; (b = preSplit()) > 0;)
5582     new ForEachTransformedKeyTask<K,V,U>
5583     (map, this, b, transformer, action).fork();
5584     U u;
5585     while (advance() != null) {
5586     if ((u = transformer.apply((K)nextKey)) != null)
5587 dl 1.153 action.accept(u);
5588 dl 1.149 }
5589     propagateCompletion();
5590 dl 1.119 }
5591     }
5592     }
5593    
5594 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5595 dl 1.146 extends Traverser<K,V,Void> {
5596 dl 1.153 final Function<? super V, ? extends U> transformer;
5597     final Block<? super U> action;
5598 dl 1.119 ForEachTransformedValueTask
5599 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5600 dl 1.153 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5601 dl 1.146 super(m, p, b);
5602     this.transformer = transformer; this.action = action;
5603     }
5604     @SuppressWarnings("unchecked") public final void compute() {
5605 dl 1.153 final Function<? super V, ? extends U> transformer;
5606     final Block<? super U> action;
5607 dl 1.149 if ((transformer = this.transformer) != null &&
5608     (action = this.action) != null) {
5609     for (int b; (b = preSplit()) > 0;)
5610     new ForEachTransformedValueTask<K,V,U>
5611     (map, this, b, transformer, action).fork();
5612 dl 1.151 V v; U u;
5613 dl 1.149 while ((v = advance()) != null) {
5614 dl 1.151 if ((u = transformer.apply(v)) != null)
5615 dl 1.153 action.accept(u);
5616 dl 1.149 }
5617     propagateCompletion();
5618 dl 1.119 }
5619     }
5620 tim 1.1 }
5621    
5622 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5623 dl 1.146 extends Traverser<K,V,Void> {
5624 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5625     final Block<? super U> action;
5626 dl 1.119 ForEachTransformedEntryTask
5627 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5628 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5629 dl 1.146 super(m, p, b);
5630     this.transformer = transformer; this.action = action;
5631     }
5632     @SuppressWarnings("unchecked") public final void compute() {
5633 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5634     final Block<? super U> action;
5635 dl 1.149 if ((transformer = this.transformer) != null &&
5636     (action = this.action) != null) {
5637     for (int b; (b = preSplit()) > 0;)
5638     new ForEachTransformedEntryTask<K,V,U>
5639     (map, this, b, transformer, action).fork();
5640 dl 1.151 V v; U u;
5641 dl 1.149 while ((v = advance()) != null) {
5642     if ((u = transformer.apply(entryFor((K)nextKey,
5643 dl 1.151 v))) != null)
5644 dl 1.153 action.accept(u);
5645 dl 1.149 }
5646     propagateCompletion();
5647 dl 1.119 }
5648     }
5649 tim 1.1 }
5650    
5651 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5652 dl 1.146 extends Traverser<K,V,Void> {
5653 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5654     final Block<? super U> action;
5655 dl 1.119 ForEachTransformedMappingTask
5656 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5657 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5658     Block<? super U> action) {
5659 dl 1.146 super(m, p, b);
5660     this.transformer = transformer; this.action = action;
5661 dl 1.119 }
5662 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5663 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5664     final Block<? super U> action;
5665 dl 1.149 if ((transformer = this.transformer) != null &&
5666     (action = this.action) != null) {
5667     for (int b; (b = preSplit()) > 0;)
5668     new ForEachTransformedMappingTask<K,V,U>
5669     (map, this, b, transformer, action).fork();
5670 dl 1.151 V v; U u;
5671 dl 1.149 while ((v = advance()) != null) {
5672 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
5673 dl 1.153 action.accept(u);
5674 dl 1.149 }
5675     propagateCompletion();
5676 dl 1.119 }
5677     }
5678 tim 1.1 }
5679    
5680 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5681 dl 1.146 extends Traverser<K,V,U> {
5682 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5683 dl 1.119 final AtomicReference<U> result;
5684     SearchKeysTask
5685 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5686 dl 1.153 Function<? super K, ? extends U> searchFunction,
5687 dl 1.119 AtomicReference<U> result) {
5688 dl 1.146 super(m, p, b);
5689 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5690     }
5691 dl 1.146 public final U getRawResult() { return result.get(); }
5692     @SuppressWarnings("unchecked") public final void compute() {
5693 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5694 dl 1.146 final AtomicReference<U> result;
5695 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5696     (result = this.result) != null) {
5697     for (int b;;) {
5698     if (result.get() != null)
5699     return;
5700     if ((b = preSplit()) <= 0)
5701     break;
5702     new SearchKeysTask<K,V,U>
5703     (map, this, b, searchFunction, result).fork();
5704 dl 1.128 }
5705 dl 1.149 while (result.get() == null) {
5706     U u;
5707     if (advance() == null) {
5708     propagateCompletion();
5709     break;
5710     }
5711     if ((u = searchFunction.apply((K)nextKey)) != null) {
5712     if (result.compareAndSet(null, u))
5713     quietlyCompleteRoot();
5714     break;
5715     }
5716 dl 1.119 }
5717     }
5718     }
5719 tim 1.1 }
5720    
5721 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5722 dl 1.146 extends Traverser<K,V,U> {
5723 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5724 dl 1.119 final AtomicReference<U> result;
5725     SearchValuesTask
5726 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5727 dl 1.153 Function<? super V, ? extends U> searchFunction,
5728 dl 1.119 AtomicReference<U> result) {
5729 dl 1.146 super(m, p, b);
5730 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5731     }
5732 dl 1.146 public final U getRawResult() { return result.get(); }
5733     @SuppressWarnings("unchecked") public final void compute() {
5734 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5735 dl 1.146 final AtomicReference<U> result;
5736 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5737     (result = this.result) != null) {
5738     for (int b;;) {
5739     if (result.get() != null)
5740     return;
5741     if ((b = preSplit()) <= 0)
5742     break;
5743     new SearchValuesTask<K,V,U>
5744     (map, this, b, searchFunction, result).fork();
5745 dl 1.128 }
5746 dl 1.149 while (result.get() == null) {
5747 dl 1.151 V v; U u;
5748 dl 1.149 if ((v = advance()) == null) {
5749     propagateCompletion();
5750     break;
5751     }
5752 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5753 dl 1.149 if (result.compareAndSet(null, u))
5754     quietlyCompleteRoot();
5755     break;
5756     }
5757 dl 1.119 }
5758     }
5759     }
5760     }
5761 tim 1.11
5762 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5763 dl 1.146 extends Traverser<K,V,U> {
5764 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5765 dl 1.119 final AtomicReference<U> result;
5766     SearchEntriesTask
5767 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5768 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5769 dl 1.119 AtomicReference<U> result) {
5770 dl 1.146 super(m, p, b);
5771 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5772     }
5773 dl 1.146 public final U getRawResult() { return result.get(); }
5774     @SuppressWarnings("unchecked") public final void compute() {
5775 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5776 dl 1.146 final AtomicReference<U> result;
5777 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5778     (result = this.result) != null) {
5779     for (int b;;) {
5780     if (result.get() != null)
5781     return;
5782     if ((b = preSplit()) <= 0)
5783     break;
5784     new SearchEntriesTask<K,V,U>
5785     (map, this, b, searchFunction, result).fork();
5786 dl 1.128 }
5787 dl 1.149 while (result.get() == null) {
5788 dl 1.151 V v; U u;
5789 dl 1.149 if ((v = advance()) == null) {
5790     propagateCompletion();
5791     break;
5792     }
5793     if ((u = searchFunction.apply(entryFor((K)nextKey,
5794 dl 1.151 v))) != null) {
5795 dl 1.149 if (result.compareAndSet(null, u))
5796     quietlyCompleteRoot();
5797     return;
5798     }
5799 dl 1.119 }
5800     }
5801     }
5802     }
5803 tim 1.1
5804 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5805 dl 1.146 extends Traverser<K,V,U> {
5806 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5807 dl 1.119 final AtomicReference<U> result;
5808     SearchMappingsTask
5809 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5810 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5811 dl 1.119 AtomicReference<U> result) {
5812 dl 1.146 super(m, p, b);
5813 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5814     }
5815 dl 1.146 public final U getRawResult() { return result.get(); }
5816     @SuppressWarnings("unchecked") public final void compute() {
5817 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5818 dl 1.146 final AtomicReference<U> result;
5819 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5820     (result = this.result) != null) {
5821     for (int b;;) {
5822     if (result.get() != null)
5823     return;
5824     if ((b = preSplit()) <= 0)
5825     break;
5826     new SearchMappingsTask<K,V,U>
5827     (map, this, b, searchFunction, result).fork();
5828 dl 1.128 }
5829 dl 1.149 while (result.get() == null) {
5830 dl 1.151 V v; U u;
5831 dl 1.149 if ((v = advance()) == null) {
5832     propagateCompletion();
5833     break;
5834     }
5835 dl 1.151 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5836 dl 1.149 if (result.compareAndSet(null, u))
5837     quietlyCompleteRoot();
5838     break;
5839     }
5840 dl 1.119 }
5841     }
5842 tim 1.1 }
5843 dl 1.119 }
5844 tim 1.1
5845 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5846 dl 1.146 extends Traverser<K,V,K> {
5847 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5848 dl 1.119 K result;
5849 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5850 dl 1.119 ReduceKeysTask
5851 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5852 dl 1.128 ReduceKeysTask<K,V> nextRight,
5853 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5854 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5855 dl 1.119 this.reducer = reducer;
5856     }
5857 dl 1.146 public final K getRawResult() { return result; }
5858     @SuppressWarnings("unchecked") public final void compute() {
5859 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5860 dl 1.149 if ((reducer = this.reducer) != null) {
5861     for (int b; (b = preSplit()) > 0;)
5862     (rights = new ReduceKeysTask<K,V>
5863     (map, this, b, rights, reducer)).fork();
5864     K r = null;
5865     while (advance() != null) {
5866     K u = (K)nextKey;
5867 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5868 dl 1.149 }
5869     result = r;
5870     CountedCompleter<?> c;
5871     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5872     ReduceKeysTask<K,V>
5873     t = (ReduceKeysTask<K,V>)c,
5874     s = t.rights;
5875     while (s != null) {
5876     K tr, sr;
5877     if ((sr = s.result) != null)
5878     t.result = (((tr = t.result) == null) ? sr :
5879     reducer.apply(tr, sr));
5880     s = t.rights = s.nextRight;
5881     }
5882 dl 1.99 }
5883 dl 1.138 }
5884 tim 1.1 }
5885 dl 1.119 }
5886 tim 1.1
5887 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5888 dl 1.146 extends Traverser<K,V,V> {
5889 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5890 dl 1.119 V result;
5891 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5892 dl 1.119 ReduceValuesTask
5893 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5894 dl 1.128 ReduceValuesTask<K,V> nextRight,
5895 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5896 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5897 dl 1.119 this.reducer = reducer;
5898     }
5899 dl 1.146 public final V getRawResult() { return result; }
5900     @SuppressWarnings("unchecked") public final void compute() {
5901 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5902 dl 1.149 if ((reducer = this.reducer) != null) {
5903     for (int b; (b = preSplit()) > 0;)
5904     (rights = new ReduceValuesTask<K,V>
5905     (map, this, b, rights, reducer)).fork();
5906 dl 1.153 V r = null, v;
5907     while ((v = advance()) != null)
5908 jsr166 1.154 r = (r == null) ? v : v == null ? r : reducer.apply(r, v);
5909 dl 1.149 result = r;
5910     CountedCompleter<?> c;
5911     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5912     ReduceValuesTask<K,V>
5913     t = (ReduceValuesTask<K,V>)c,
5914     s = t.rights;
5915     while (s != null) {
5916     V tr, sr;
5917     if ((sr = s.result) != null)
5918     t.result = (((tr = t.result) == null) ? sr :
5919     reducer.apply(tr, sr));
5920     s = t.rights = s.nextRight;
5921     }
5922 dl 1.119 }
5923     }
5924 tim 1.1 }
5925 dl 1.119 }
5926 tim 1.1
5927 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5928 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5929 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5930 dl 1.119 Map.Entry<K,V> result;
5931 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5932 dl 1.119 ReduceEntriesTask
5933 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5934 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5935 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5936 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5937 dl 1.119 this.reducer = reducer;
5938     }
5939 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5940     @SuppressWarnings("unchecked") public final void compute() {
5941 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5942 dl 1.149 if ((reducer = this.reducer) != null) {
5943     for (int b; (b = preSplit()) > 0;)
5944     (rights = new ReduceEntriesTask<K,V>
5945     (map, this, b, rights, reducer)).fork();
5946     Map.Entry<K,V> r = null;
5947 dl 1.151 V v;
5948 dl 1.149 while ((v = advance()) != null) {
5949 dl 1.151 Map.Entry<K,V> u = entryFor((K)nextKey, v);
5950 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5951     }
5952     result = r;
5953     CountedCompleter<?> c;
5954     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5955     ReduceEntriesTask<K,V>
5956     t = (ReduceEntriesTask<K,V>)c,
5957     s = t.rights;
5958     while (s != null) {
5959     Map.Entry<K,V> tr, sr;
5960     if ((sr = s.result) != null)
5961     t.result = (((tr = t.result) == null) ? sr :
5962     reducer.apply(tr, sr));
5963     s = t.rights = s.nextRight;
5964     }
5965 dl 1.119 }
5966 dl 1.138 }
5967 dl 1.119 }
5968     }
5969 dl 1.99
5970 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5971 dl 1.146 extends Traverser<K,V,U> {
5972 dl 1.153 final Function<? super K, ? extends U> transformer;
5973     final BiFunction<? super U, ? super U, ? extends U> reducer;
5974 dl 1.119 U result;
5975 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5976 dl 1.119 MapReduceKeysTask
5977 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5978 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5979 dl 1.153 Function<? super K, ? extends U> transformer,
5980     BiFunction<? super U, ? super U, ? extends U> reducer) {
5981 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5982 dl 1.119 this.transformer = transformer;
5983     this.reducer = reducer;
5984     }
5985 dl 1.146 public final U getRawResult() { return result; }
5986     @SuppressWarnings("unchecked") public final void compute() {
5987 dl 1.153 final Function<? super K, ? extends U> transformer;
5988     final BiFunction<? super U, ? super U, ? extends U> reducer;
5989 dl 1.149 if ((transformer = this.transformer) != null &&
5990     (reducer = this.reducer) != null) {
5991     for (int b; (b = preSplit()) > 0;)
5992     (rights = new MapReduceKeysTask<K,V,U>
5993     (map, this, b, rights, transformer, reducer)).fork();
5994     U r = null, u;
5995     while (advance() != null) {
5996     if ((u = transformer.apply((K)nextKey)) != null)
5997     r = (r == null) ? u : reducer.apply(r, u);
5998     }
5999     result = r;
6000     CountedCompleter<?> c;
6001     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6002     MapReduceKeysTask<K,V,U>
6003     t = (MapReduceKeysTask<K,V,U>)c,
6004     s = t.rights;
6005     while (s != null) {
6006     U tr, sr;
6007     if ((sr = s.result) != null)
6008     t.result = (((tr = t.result) == null) ? sr :
6009     reducer.apply(tr, sr));
6010     s = t.rights = s.nextRight;
6011     }
6012 dl 1.119 }
6013 dl 1.138 }
6014 tim 1.1 }
6015 dl 1.4 }
6016    
6017 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6018 dl 1.146 extends Traverser<K,V,U> {
6019 dl 1.153 final Function<? super V, ? extends U> transformer;
6020     final BiFunction<? super U, ? super U, ? extends U> reducer;
6021 dl 1.119 U result;
6022 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6023 dl 1.119 MapReduceValuesTask
6024 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6025 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6026 dl 1.153 Function<? super V, ? extends U> transformer,
6027     BiFunction<? super U, ? super U, ? extends U> reducer) {
6028 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6029 dl 1.119 this.transformer = transformer;
6030     this.reducer = reducer;
6031     }
6032 dl 1.146 public final U getRawResult() { return result; }
6033     @SuppressWarnings("unchecked") public final void compute() {
6034 dl 1.153 final Function<? super V, ? extends U> transformer;
6035     final BiFunction<? super U, ? super U, ? extends U> reducer;
6036 dl 1.149 if ((transformer = this.transformer) != null &&
6037     (reducer = this.reducer) != null) {
6038     for (int b; (b = preSplit()) > 0;)
6039     (rights = new MapReduceValuesTask<K,V,U>
6040     (map, this, b, rights, transformer, reducer)).fork();
6041     U r = null, u;
6042 dl 1.151 V v;
6043 dl 1.149 while ((v = advance()) != null) {
6044 dl 1.151 if ((u = transformer.apply(v)) != null)
6045 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6046     }
6047     result = r;
6048     CountedCompleter<?> c;
6049     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6050     MapReduceValuesTask<K,V,U>
6051     t = (MapReduceValuesTask<K,V,U>)c,
6052     s = t.rights;
6053     while (s != null) {
6054     U tr, sr;
6055     if ((sr = s.result) != null)
6056     t.result = (((tr = t.result) == null) ? sr :
6057     reducer.apply(tr, sr));
6058     s = t.rights = s.nextRight;
6059     }
6060 dl 1.119 }
6061     }
6062     }
6063 dl 1.4 }
6064    
6065 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6066 dl 1.146 extends Traverser<K,V,U> {
6067 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6068     final BiFunction<? super U, ? super U, ? extends U> reducer;
6069 dl 1.119 U result;
6070 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6071 dl 1.119 MapReduceEntriesTask
6072 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6073 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6074 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6075     BiFunction<? super U, ? super U, ? extends U> reducer) {
6076 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6077 dl 1.119 this.transformer = transformer;
6078     this.reducer = reducer;
6079     }
6080 dl 1.146 public final U getRawResult() { return result; }
6081     @SuppressWarnings("unchecked") public final void compute() {
6082 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6083     final BiFunction<? super U, ? super U, ? extends U> reducer;
6084 dl 1.149 if ((transformer = this.transformer) != null &&
6085     (reducer = this.reducer) != null) {
6086     for (int b; (b = preSplit()) > 0;)
6087     (rights = new MapReduceEntriesTask<K,V,U>
6088     (map, this, b, rights, transformer, reducer)).fork();
6089     U r = null, u;
6090 dl 1.151 V v;
6091 dl 1.149 while ((v = advance()) != null) {
6092     if ((u = transformer.apply(entryFor((K)nextKey,
6093 dl 1.151 v))) != null)
6094 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6095     }
6096     result = r;
6097     CountedCompleter<?> c;
6098     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6099     MapReduceEntriesTask<K,V,U>
6100     t = (MapReduceEntriesTask<K,V,U>)c,
6101     s = t.rights;
6102     while (s != null) {
6103     U tr, sr;
6104     if ((sr = s.result) != null)
6105     t.result = (((tr = t.result) == null) ? sr :
6106     reducer.apply(tr, sr));
6107     s = t.rights = s.nextRight;
6108     }
6109 dl 1.119 }
6110 dl 1.138 }
6111 dl 1.119 }
6112 dl 1.4 }
6113 tim 1.1
6114 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6115 dl 1.146 extends Traverser<K,V,U> {
6116 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6117     final BiFunction<? super U, ? super U, ? extends U> reducer;
6118 dl 1.119 U result;
6119 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6120 dl 1.119 MapReduceMappingsTask
6121 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6122 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6123 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6124     BiFunction<? super U, ? super U, ? extends U> reducer) {
6125 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6126 dl 1.119 this.transformer = transformer;
6127     this.reducer = reducer;
6128     }
6129 dl 1.146 public final U getRawResult() { return result; }
6130     @SuppressWarnings("unchecked") public final void compute() {
6131 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6132     final BiFunction<? super U, ? super U, ? extends U> reducer;
6133 dl 1.149 if ((transformer = this.transformer) != null &&
6134     (reducer = this.reducer) != null) {
6135     for (int b; (b = preSplit()) > 0;)
6136     (rights = new MapReduceMappingsTask<K,V,U>
6137     (map, this, b, rights, transformer, reducer)).fork();
6138     U r = null, u;
6139 dl 1.151 V v;
6140 dl 1.149 while ((v = advance()) != null) {
6141 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
6142 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6143     }
6144     result = r;
6145     CountedCompleter<?> c;
6146     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6147     MapReduceMappingsTask<K,V,U>
6148     t = (MapReduceMappingsTask<K,V,U>)c,
6149     s = t.rights;
6150     while (s != null) {
6151     U tr, sr;
6152     if ((sr = s.result) != null)
6153     t.result = (((tr = t.result) == null) ? sr :
6154     reducer.apply(tr, sr));
6155     s = t.rights = s.nextRight;
6156     }
6157 dl 1.119 }
6158     }
6159     }
6160     }
6161 jsr166 1.114
6162 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6163 dl 1.146 extends Traverser<K,V,Double> {
6164 dl 1.153 final DoubleFunction<? super K> transformer;
6165     final DoubleBinaryOperator reducer;
6166 dl 1.119 final double basis;
6167     double result;
6168 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6169 dl 1.119 MapReduceKeysToDoubleTask
6170 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6171 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6172 dl 1.153 DoubleFunction<? super K> transformer,
6173 dl 1.119 double basis,
6174 dl 1.153 DoubleBinaryOperator reducer) {
6175 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6176 dl 1.119 this.transformer = transformer;
6177     this.basis = basis; this.reducer = reducer;
6178     }
6179 dl 1.146 public final Double getRawResult() { return result; }
6180     @SuppressWarnings("unchecked") public final void compute() {
6181 dl 1.153 final DoubleFunction<? super K> transformer;
6182     final DoubleBinaryOperator reducer;
6183 dl 1.149 if ((transformer = this.transformer) != null &&
6184     (reducer = this.reducer) != null) {
6185     double r = this.basis;
6186     for (int b; (b = preSplit()) > 0;)
6187     (rights = new MapReduceKeysToDoubleTask<K,V>
6188     (map, this, b, rights, transformer, r, reducer)).fork();
6189     while (advance() != null)
6190 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6191 dl 1.149 result = r;
6192     CountedCompleter<?> c;
6193     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6194     MapReduceKeysToDoubleTask<K,V>
6195     t = (MapReduceKeysToDoubleTask<K,V>)c,
6196     s = t.rights;
6197     while (s != null) {
6198 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6199 dl 1.149 s = t.rights = s.nextRight;
6200     }
6201 dl 1.119 }
6202 dl 1.138 }
6203 dl 1.79 }
6204 dl 1.119 }
6205 dl 1.79
6206 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6207 dl 1.146 extends Traverser<K,V,Double> {
6208 dl 1.153 final DoubleFunction<? super V> transformer;
6209     final DoubleBinaryOperator reducer;
6210 dl 1.119 final double basis;
6211     double result;
6212 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6213 dl 1.119 MapReduceValuesToDoubleTask
6214 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6215 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6216 dl 1.153 DoubleFunction<? super V> transformer,
6217 dl 1.119 double basis,
6218 dl 1.153 DoubleBinaryOperator reducer) {
6219 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6220 dl 1.119 this.transformer = transformer;
6221     this.basis = basis; this.reducer = reducer;
6222     }
6223 dl 1.146 public final Double getRawResult() { return result; }
6224     @SuppressWarnings("unchecked") public final void compute() {
6225 dl 1.153 final DoubleFunction<? super V> transformer;
6226     final DoubleBinaryOperator reducer;
6227 dl 1.149 if ((transformer = this.transformer) != null &&
6228     (reducer = this.reducer) != null) {
6229     double r = this.basis;
6230     for (int b; (b = preSplit()) > 0;)
6231     (rights = new MapReduceValuesToDoubleTask<K,V>
6232     (map, this, b, rights, transformer, r, reducer)).fork();
6233 dl 1.151 V v;
6234 dl 1.149 while ((v = advance()) != null)
6235 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6236 dl 1.149 result = r;
6237     CountedCompleter<?> c;
6238     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6239     MapReduceValuesToDoubleTask<K,V>
6240     t = (MapReduceValuesToDoubleTask<K,V>)c,
6241     s = t.rights;
6242     while (s != null) {
6243 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6244 dl 1.149 s = t.rights = s.nextRight;
6245     }
6246 dl 1.119 }
6247     }
6248 dl 1.30 }
6249 dl 1.79 }
6250 dl 1.30
6251 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6252 dl 1.146 extends Traverser<K,V,Double> {
6253 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6254     final DoubleBinaryOperator reducer;
6255 dl 1.119 final double basis;
6256     double result;
6257 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6258 dl 1.119 MapReduceEntriesToDoubleTask
6259 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6260 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6261 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
6262 dl 1.119 double basis,
6263 dl 1.153 DoubleBinaryOperator reducer) {
6264 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6265 dl 1.119 this.transformer = transformer;
6266     this.basis = basis; this.reducer = reducer;
6267     }
6268 dl 1.146 public final Double getRawResult() { return result; }
6269     @SuppressWarnings("unchecked") public final void compute() {
6270 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6271     final DoubleBinaryOperator reducer;
6272 dl 1.149 if ((transformer = this.transformer) != null &&
6273     (reducer = this.reducer) != null) {
6274     double r = this.basis;
6275     for (int b; (b = preSplit()) > 0;)
6276     (rights = new MapReduceEntriesToDoubleTask<K,V>
6277     (map, this, b, rights, transformer, r, reducer)).fork();
6278 dl 1.151 V v;
6279 dl 1.149 while ((v = advance()) != null)
6280 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6281 dl 1.151 v)));
6282 dl 1.149 result = r;
6283     CountedCompleter<?> c;
6284     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6285     MapReduceEntriesToDoubleTask<K,V>
6286     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6287     s = t.rights;
6288     while (s != null) {
6289 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6290 dl 1.149 s = t.rights = s.nextRight;
6291     }
6292 dl 1.119 }
6293 dl 1.138 }
6294 dl 1.30 }
6295 tim 1.1 }
6296    
6297 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6298 dl 1.146 extends Traverser<K,V,Double> {
6299 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6300     final DoubleBinaryOperator reducer;
6301 dl 1.119 final double basis;
6302     double result;
6303 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6304 dl 1.119 MapReduceMappingsToDoubleTask
6305 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6306 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6307 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
6308 dl 1.119 double basis,
6309 dl 1.153 DoubleBinaryOperator reducer) {
6310 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6311 dl 1.119 this.transformer = transformer;
6312     this.basis = basis; this.reducer = reducer;
6313     }
6314 dl 1.146 public final Double getRawResult() { return result; }
6315     @SuppressWarnings("unchecked") public final void compute() {
6316 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6317     final DoubleBinaryOperator reducer;
6318 dl 1.149 if ((transformer = this.transformer) != null &&
6319     (reducer = this.reducer) != null) {
6320     double r = this.basis;
6321     for (int b; (b = preSplit()) > 0;)
6322     (rights = new MapReduceMappingsToDoubleTask<K,V>
6323     (map, this, b, rights, transformer, r, reducer)).fork();
6324 dl 1.151 V v;
6325 dl 1.149 while ((v = advance()) != null)
6326 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6327 dl 1.149 result = r;
6328     CountedCompleter<?> c;
6329     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6330     MapReduceMappingsToDoubleTask<K,V>
6331     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6332     s = t.rights;
6333     while (s != null) {
6334 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6335 dl 1.149 s = t.rights = s.nextRight;
6336     }
6337 dl 1.119 }
6338     }
6339 dl 1.4 }
6340 dl 1.119 }
6341    
6342 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6343 dl 1.146 extends Traverser<K,V,Long> {
6344 dl 1.153 final LongFunction<? super K> transformer;
6345     final LongBinaryOperator reducer;
6346 dl 1.119 final long basis;
6347     long result;
6348 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6349 dl 1.119 MapReduceKeysToLongTask
6350 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6351 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6352 dl 1.153 LongFunction<? super K> transformer,
6353 dl 1.119 long basis,
6354 dl 1.153 LongBinaryOperator reducer) {
6355 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6356 dl 1.119 this.transformer = transformer;
6357     this.basis = basis; this.reducer = reducer;
6358     }
6359 dl 1.146 public final Long getRawResult() { return result; }
6360     @SuppressWarnings("unchecked") public final void compute() {
6361 dl 1.153 final LongFunction<? super K> transformer;
6362     final LongBinaryOperator reducer;
6363 dl 1.149 if ((transformer = this.transformer) != null &&
6364     (reducer = this.reducer) != null) {
6365     long r = this.basis;
6366     for (int b; (b = preSplit()) > 0;)
6367     (rights = new MapReduceKeysToLongTask<K,V>
6368     (map, this, b, rights, transformer, r, reducer)).fork();
6369     while (advance() != null)
6370 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6371 dl 1.149 result = r;
6372     CountedCompleter<?> c;
6373     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6374     MapReduceKeysToLongTask<K,V>
6375     t = (MapReduceKeysToLongTask<K,V>)c,
6376     s = t.rights;
6377     while (s != null) {
6378 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6379 dl 1.149 s = t.rights = s.nextRight;
6380     }
6381 dl 1.119 }
6382 dl 1.138 }
6383 dl 1.4 }
6384 dl 1.119 }
6385    
6386 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6387 dl 1.146 extends Traverser<K,V,Long> {
6388 dl 1.153 final LongFunction<? super V> transformer;
6389     final LongBinaryOperator reducer;
6390 dl 1.119 final long basis;
6391     long result;
6392 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6393 dl 1.119 MapReduceValuesToLongTask
6394 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6395 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6396 dl 1.153 LongFunction<? super V> transformer,
6397 dl 1.119 long basis,
6398 dl 1.153 LongBinaryOperator reducer) {
6399 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6400 dl 1.119 this.transformer = transformer;
6401     this.basis = basis; this.reducer = reducer;
6402     }
6403 dl 1.146 public final Long getRawResult() { return result; }
6404     @SuppressWarnings("unchecked") public final void compute() {
6405 dl 1.153 final LongFunction<? super V> transformer;
6406     final LongBinaryOperator reducer;
6407 dl 1.149 if ((transformer = this.transformer) != null &&
6408     (reducer = this.reducer) != null) {
6409     long r = this.basis;
6410     for (int b; (b = preSplit()) > 0;)
6411     (rights = new MapReduceValuesToLongTask<K,V>
6412     (map, this, b, rights, transformer, r, reducer)).fork();
6413 dl 1.151 V v;
6414 dl 1.149 while ((v = advance()) != null)
6415 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6416 dl 1.149 result = r;
6417     CountedCompleter<?> c;
6418     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6419     MapReduceValuesToLongTask<K,V>
6420     t = (MapReduceValuesToLongTask<K,V>)c,
6421     s = t.rights;
6422     while (s != null) {
6423 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6424 dl 1.149 s = t.rights = s.nextRight;
6425     }
6426 dl 1.119 }
6427     }
6428 jsr166 1.95 }
6429 dl 1.119 }
6430    
6431 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6432 dl 1.146 extends Traverser<K,V,Long> {
6433 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6434     final LongBinaryOperator reducer;
6435 dl 1.119 final long basis;
6436     long result;
6437 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6438 dl 1.119 MapReduceEntriesToLongTask
6439 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6440 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6441 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
6442 dl 1.119 long basis,
6443 dl 1.153 LongBinaryOperator reducer) {
6444 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6445 dl 1.119 this.transformer = transformer;
6446     this.basis = basis; this.reducer = reducer;
6447     }
6448 dl 1.146 public final Long getRawResult() { return result; }
6449     @SuppressWarnings("unchecked") public final void compute() {
6450 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6451     final LongBinaryOperator reducer;
6452 dl 1.149 if ((transformer = this.transformer) != null &&
6453     (reducer = this.reducer) != null) {
6454     long r = this.basis;
6455     for (int b; (b = preSplit()) > 0;)
6456     (rights = new MapReduceEntriesToLongTask<K,V>
6457     (map, this, b, rights, transformer, r, reducer)).fork();
6458 dl 1.151 V v;
6459 dl 1.149 while ((v = advance()) != null)
6460 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6461 dl 1.149 result = r;
6462     CountedCompleter<?> c;
6463     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6464     MapReduceEntriesToLongTask<K,V>
6465     t = (MapReduceEntriesToLongTask<K,V>)c,
6466     s = t.rights;
6467     while (s != null) {
6468 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6469 dl 1.149 s = t.rights = s.nextRight;
6470     }
6471 dl 1.119 }
6472 dl 1.138 }
6473 dl 1.4 }
6474 tim 1.1 }
6475    
6476 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6477 dl 1.146 extends Traverser<K,V,Long> {
6478 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6479     final LongBinaryOperator reducer;
6480 dl 1.119 final long basis;
6481     long result;
6482 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6483 dl 1.119 MapReduceMappingsToLongTask
6484 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6485 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6486 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
6487 dl 1.119 long basis,
6488 dl 1.153 LongBinaryOperator reducer) {
6489 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6490 dl 1.119 this.transformer = transformer;
6491     this.basis = basis; this.reducer = reducer;
6492     }
6493 dl 1.146 public final Long getRawResult() { return result; }
6494     @SuppressWarnings("unchecked") public final void compute() {
6495 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6496     final LongBinaryOperator reducer;
6497 dl 1.149 if ((transformer = this.transformer) != null &&
6498     (reducer = this.reducer) != null) {
6499     long r = this.basis;
6500     for (int b; (b = preSplit()) > 0;)
6501     (rights = new MapReduceMappingsToLongTask<K,V>
6502     (map, this, b, rights, transformer, r, reducer)).fork();
6503 dl 1.151 V v;
6504 dl 1.149 while ((v = advance()) != null)
6505 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6506 dl 1.149 result = r;
6507     CountedCompleter<?> c;
6508     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6509     MapReduceMappingsToLongTask<K,V>
6510     t = (MapReduceMappingsToLongTask<K,V>)c,
6511     s = t.rights;
6512     while (s != null) {
6513 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6514 dl 1.149 s = t.rights = s.nextRight;
6515     }
6516 dl 1.119 }
6517     }
6518 dl 1.4 }
6519 tim 1.1 }
6520    
6521 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6522 dl 1.146 extends Traverser<K,V,Integer> {
6523 dl 1.153 final IntFunction<? super K> transformer;
6524     final IntBinaryOperator reducer;
6525 dl 1.119 final int basis;
6526     int result;
6527 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6528 dl 1.119 MapReduceKeysToIntTask
6529 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6530 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6531 dl 1.153 IntFunction<? super K> transformer,
6532 dl 1.119 int basis,
6533 dl 1.153 IntBinaryOperator reducer) {
6534 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6535 dl 1.119 this.transformer = transformer;
6536     this.basis = basis; this.reducer = reducer;
6537     }
6538 dl 1.146 public final Integer getRawResult() { return result; }
6539     @SuppressWarnings("unchecked") public final void compute() {
6540 dl 1.153 final IntFunction<? super K> transformer;
6541     final IntBinaryOperator reducer;
6542 dl 1.149 if ((transformer = this.transformer) != null &&
6543     (reducer = this.reducer) != null) {
6544     int r = this.basis;
6545     for (int b; (b = preSplit()) > 0;)
6546     (rights = new MapReduceKeysToIntTask<K,V>
6547     (map, this, b, rights, transformer, r, reducer)).fork();
6548     while (advance() != null)
6549 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6550 dl 1.149 result = r;
6551     CountedCompleter<?> c;
6552     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6553     MapReduceKeysToIntTask<K,V>
6554     t = (MapReduceKeysToIntTask<K,V>)c,
6555     s = t.rights;
6556     while (s != null) {
6557 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6558 dl 1.149 s = t.rights = s.nextRight;
6559     }
6560 dl 1.119 }
6561 dl 1.138 }
6562 dl 1.30 }
6563     }
6564    
6565 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6566 dl 1.146 extends Traverser<K,V,Integer> {
6567 dl 1.153 final IntFunction<? super V> transformer;
6568     final IntBinaryOperator reducer;
6569 dl 1.119 final int basis;
6570     int result;
6571 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6572 dl 1.119 MapReduceValuesToIntTask
6573 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6574 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6575 dl 1.153 IntFunction<? super V> transformer,
6576 dl 1.119 int basis,
6577 dl 1.153 IntBinaryOperator reducer) {
6578 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6579 dl 1.119 this.transformer = transformer;
6580     this.basis = basis; this.reducer = reducer;
6581     }
6582 dl 1.146 public final Integer getRawResult() { return result; }
6583     @SuppressWarnings("unchecked") public final void compute() {
6584 dl 1.153 final IntFunction<? super V> transformer;
6585     final IntBinaryOperator reducer;
6586 dl 1.149 if ((transformer = this.transformer) != null &&
6587     (reducer = this.reducer) != null) {
6588     int r = this.basis;
6589     for (int b; (b = preSplit()) > 0;)
6590     (rights = new MapReduceValuesToIntTask<K,V>
6591     (map, this, b, rights, transformer, r, reducer)).fork();
6592 dl 1.151 V v;
6593 dl 1.149 while ((v = advance()) != null)
6594 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6595 dl 1.149 result = r;
6596     CountedCompleter<?> c;
6597     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6598     MapReduceValuesToIntTask<K,V>
6599     t = (MapReduceValuesToIntTask<K,V>)c,
6600     s = t.rights;
6601     while (s != null) {
6602 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6603 dl 1.149 s = t.rights = s.nextRight;
6604     }
6605 dl 1.119 }
6606 dl 1.2 }
6607 tim 1.1 }
6608     }
6609    
6610 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6611 dl 1.146 extends Traverser<K,V,Integer> {
6612 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6613     final IntBinaryOperator reducer;
6614 dl 1.119 final int basis;
6615     int result;
6616 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6617 dl 1.119 MapReduceEntriesToIntTask
6618 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6619 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6620 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
6621 dl 1.119 int basis,
6622 dl 1.153 IntBinaryOperator reducer) {
6623 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6624 dl 1.119 this.transformer = transformer;
6625     this.basis = basis; this.reducer = reducer;
6626     }
6627 dl 1.146 public final Integer getRawResult() { return result; }
6628     @SuppressWarnings("unchecked") public final void compute() {
6629 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6630     final IntBinaryOperator reducer;
6631 dl 1.149 if ((transformer = this.transformer) != null &&
6632     (reducer = this.reducer) != null) {
6633     int r = this.basis;
6634     for (int b; (b = preSplit()) > 0;)
6635     (rights = new MapReduceEntriesToIntTask<K,V>
6636     (map, this, b, rights, transformer, r, reducer)).fork();
6637 dl 1.151 V v;
6638 dl 1.149 while ((v = advance()) != null)
6639 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6640 dl 1.151 v)));
6641 dl 1.149 result = r;
6642     CountedCompleter<?> c;
6643     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6644     MapReduceEntriesToIntTask<K,V>
6645     t = (MapReduceEntriesToIntTask<K,V>)c,
6646     s = t.rights;
6647     while (s != null) {
6648 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6649 dl 1.149 s = t.rights = s.nextRight;
6650     }
6651 dl 1.119 }
6652 dl 1.138 }
6653 dl 1.4 }
6654 dl 1.119 }
6655 tim 1.1
6656 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6657 dl 1.146 extends Traverser<K,V,Integer> {
6658 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6659     final IntBinaryOperator reducer;
6660 dl 1.119 final int basis;
6661     int result;
6662 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6663 dl 1.119 MapReduceMappingsToIntTask
6664 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6665     MapReduceMappingsToIntTask<K,V> nextRight,
6666 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
6667 dl 1.119 int basis,
6668 dl 1.153 IntBinaryOperator reducer) {
6669 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6670 dl 1.119 this.transformer = transformer;
6671     this.basis = basis; this.reducer = reducer;
6672     }
6673 dl 1.146 public final Integer getRawResult() { return result; }
6674     @SuppressWarnings("unchecked") public final void compute() {
6675 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6676     final IntBinaryOperator reducer;
6677 dl 1.149 if ((transformer = this.transformer) != null &&
6678     (reducer = this.reducer) != null) {
6679     int r = this.basis;
6680     for (int b; (b = preSplit()) > 0;)
6681     (rights = new MapReduceMappingsToIntTask<K,V>
6682     (map, this, b, rights, transformer, r, reducer)).fork();
6683 dl 1.151 V v;
6684 dl 1.149 while ((v = advance()) != null)
6685 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6686 dl 1.149 result = r;
6687     CountedCompleter<?> c;
6688     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6689     MapReduceMappingsToIntTask<K,V>
6690     t = (MapReduceMappingsToIntTask<K,V>)c,
6691     s = t.rights;
6692     while (s != null) {
6693 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6694 dl 1.149 s = t.rights = s.nextRight;
6695     }
6696 dl 1.119 }
6697 dl 1.138 }
6698 tim 1.1 }
6699     }
6700 dl 1.99
6701     // Unsafe mechanics
6702 dl 1.149 private static final sun.misc.Unsafe U;
6703     private static final long SIZECTL;
6704     private static final long TRANSFERINDEX;
6705     private static final long TRANSFERORIGIN;
6706     private static final long BASECOUNT;
6707 dl 1.153 private static final long CELLSBUSY;
6708 dl 1.149 private static final long CELLVALUE;
6709 dl 1.119 private static final long ABASE;
6710     private static final int ASHIFT;
6711 dl 1.99
6712     static {
6713 dl 1.119 int ss;
6714 dl 1.99 try {
6715 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6716 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6717 dl 1.149 SIZECTL = U.objectFieldOffset
6718 dl 1.119 (k.getDeclaredField("sizeCtl"));
6719 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6720     (k.getDeclaredField("transferIndex"));
6721     TRANSFERORIGIN = U.objectFieldOffset
6722     (k.getDeclaredField("transferOrigin"));
6723     BASECOUNT = U.objectFieldOffset
6724     (k.getDeclaredField("baseCount"));
6725 dl 1.153 CELLSBUSY = U.objectFieldOffset
6726     (k.getDeclaredField("cellsBusy"));
6727     Class<?> ck = Cell.class;
6728 dl 1.149 CELLVALUE = U.objectFieldOffset
6729     (ck.getDeclaredField("value"));
6730 dl 1.119 Class<?> sc = Node[].class;
6731 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6732     ss = U.arrayIndexScale(sc);
6733     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6734 dl 1.99 } catch (Exception e) {
6735     throw new Error(e);
6736     }
6737 dl 1.119 if ((ss & (ss-1)) != 0)
6738 dl 1.99 throw new Error("data type scale not a power of two");
6739     }
6740 jsr166 1.152
6741     }