ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.162
Committed: Wed Jan 16 15:04:03 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.161: +4 -4 lines
Log Message:
lambda-lib support

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98     * {@link #computeIfAbsent}. For example, to add a count to a {@code
99     * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100     * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152     * </li>
153     * </ul>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695     if (len > 1)
1696     addCount(delta, len);
1697 dl 1.119 break;
1698 dl 1.99 }
1699 dl 1.21 }
1700     }
1701 dl 1.45 }
1702     } finally {
1703 dl 1.149 if (delta != 0L)
1704     addCount(delta, 2);
1705 dl 1.45 }
1706 dl 1.119 if (npe)
1707     throw new NullPointerException();
1708 tim 1.1 }
1709 dl 1.19
1710 dl 1.149 /**
1711     * Implementation for clear. Steps through each bin, removing all
1712     * nodes.
1713     */
1714 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1715 dl 1.149 long delta = 0L; // negative number of deletions
1716     int i = 0;
1717 dl 1.151 Node<V>[] tab = table;
1718 dl 1.149 while (tab != null && i < tab.length) {
1719 dl 1.151 Node<V> f = tabAt(tab, i);
1720 dl 1.149 if (f == null)
1721     ++i;
1722     else if (f.hash < 0) {
1723     Object fk;
1724     if ((fk = f.key) instanceof TreeBin) {
1725 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1726 dl 1.149 t.acquire(0);
1727     try {
1728     if (tabAt(tab, i) == f) {
1729 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1730 dl 1.149 if (p.val != null) { // (currently always true)
1731     p.val = null;
1732     --delta;
1733     }
1734     }
1735     t.first = null;
1736     t.root = null;
1737     ++i;
1738     }
1739     } finally {
1740     t.release(0);
1741     }
1742     }
1743     else
1744 dl 1.151 tab = (Node<V>[])fk;
1745 dl 1.149 }
1746     else {
1747 jsr166 1.150 synchronized (f) {
1748 dl 1.149 if (tabAt(tab, i) == f) {
1749 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1750 dl 1.149 if (e.val != null) { // (currently always true)
1751     e.val = null;
1752     --delta;
1753     }
1754     }
1755     setTabAt(tab, i, null);
1756     ++i;
1757     }
1758     }
1759     }
1760     }
1761     if (delta != 0L)
1762     addCount(delta, -1);
1763     }
1764    
1765 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1766    
1767 tim 1.1 /**
1768 dl 1.119 * Returns a power of two table size for the given desired capacity.
1769     * See Hackers Delight, sec 3.2
1770 tim 1.1 */
1771 dl 1.119 private static final int tableSizeFor(int c) {
1772     int n = c - 1;
1773     n |= n >>> 1;
1774     n |= n >>> 2;
1775     n |= n >>> 4;
1776     n |= n >>> 8;
1777     n |= n >>> 16;
1778     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1779 tim 1.1 }
1780    
1781     /**
1782 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1783     */
1784 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1785     Node<V>[] tab; int sc;
1786 dl 1.119 while ((tab = table) == null) {
1787     if ((sc = sizeCtl) < 0)
1788     Thread.yield(); // lost initialization race; just spin
1789 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1790 dl 1.119 try {
1791     if ((tab = table) == null) {
1792     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1793 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1794     table = tab = (Node<V>[])tb;
1795 dl 1.119 sc = n - (n >>> 2);
1796     }
1797     } finally {
1798     sizeCtl = sc;
1799     }
1800     break;
1801     }
1802     }
1803     return tab;
1804 dl 1.4 }
1805    
1806     /**
1807 dl 1.149 * Adds to count, and if table is too small and not already
1808     * resizing, initiates transfer. If already resizing, helps
1809     * perform transfer if work is available. Rechecks occupancy
1810     * after a transfer to see if another resize is already needed
1811     * because resizings are lagging additions.
1812     *
1813     * @param x the count to add
1814     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1815     */
1816     private final void addCount(long x, int check) {
1817 dl 1.153 Cell[] as; long b, s;
1818 dl 1.149 if ((as = counterCells) != null ||
1819     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1820 dl 1.160 Cell a; long v; int m;
1821 dl 1.149 boolean uncontended = true;
1822 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1823     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1824 dl 1.149 !(uncontended =
1825     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1826 dl 1.160 fullAddCount(x, uncontended);
1827 dl 1.149 return;
1828     }
1829     if (check <= 1)
1830     return;
1831     s = sumCount();
1832     }
1833     if (check >= 0) {
1834 dl 1.151 Node<V>[] tab, nt; int sc;
1835 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1836     tab.length < MAXIMUM_CAPACITY) {
1837     if (sc < 0) {
1838     if (sc == -1 || transferIndex <= transferOrigin ||
1839     (nt = nextTable) == null)
1840     break;
1841     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1842     transfer(tab, nt);
1843 dl 1.119 }
1844 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1845     transfer(tab, null);
1846     s = sumCount();
1847 dl 1.119 }
1848     }
1849 dl 1.4 }
1850    
1851     /**
1852 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1853 tim 1.1 *
1854 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1855 tim 1.1 */
1856 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1857 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1858     tableSizeFor(size + (size >>> 1) + 1);
1859     int sc;
1860     while ((sc = sizeCtl) >= 0) {
1861 dl 1.151 Node<V>[] tab = table; int n;
1862 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1863     n = (sc > c) ? sc : c;
1864 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1865 dl 1.119 try {
1866     if (table == tab) {
1867 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1868     table = (Node<V>[])tb;
1869 dl 1.119 sc = n - (n >>> 2);
1870     }
1871     } finally {
1872     sizeCtl = sc;
1873     }
1874     }
1875     }
1876     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1877     break;
1878 dl 1.149 else if (tab == table &&
1879     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1880     transfer(tab, null);
1881 dl 1.119 }
1882 dl 1.4 }
1883    
1884 dl 1.119 /*
1885     * Moves and/or copies the nodes in each bin to new table. See
1886     * above for explanation.
1887 dl 1.4 */
1888 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1889     (Node<V>[] tab, Node<V>[] nextTab) {
1890 dl 1.149 int n = tab.length, stride;
1891     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1892     stride = MIN_TRANSFER_STRIDE; // subdivide range
1893     if (nextTab == null) { // initiating
1894     try {
1895 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1896     nextTab = (Node<V>[])tb;
1897 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1898 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1899     return;
1900     }
1901     nextTable = nextTab;
1902     transferOrigin = n;
1903     transferIndex = n;
1904 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1905 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1906 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1907 dl 1.149 for (int m = nextk; m < k; ++m)
1908     nextTab[m] = rev;
1909     for (int m = n + nextk; m < n + k; ++m)
1910     nextTab[m] = rev;
1911     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1912     }
1913     }
1914     int nextn = nextTab.length;
1915 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1916 dl 1.149 boolean advance = true;
1917     for (int i = 0, bound = 0;;) {
1918 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1919 dl 1.149 while (advance) {
1920     if (--i >= bound)
1921     advance = false;
1922     else if ((nextIndex = transferIndex) <= transferOrigin) {
1923     i = -1;
1924     advance = false;
1925     }
1926     else if (U.compareAndSwapInt
1927     (this, TRANSFERINDEX, nextIndex,
1928 jsr166 1.150 nextBound = (nextIndex > stride ?
1929 dl 1.149 nextIndex - stride : 0))) {
1930     bound = nextBound;
1931     i = nextIndex - 1;
1932     advance = false;
1933     }
1934     }
1935     if (i < 0 || i >= n || i + n >= nextn) {
1936     for (int sc;;) {
1937     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1938     if (sc == -1) {
1939     nextTable = null;
1940     table = nextTab;
1941     sizeCtl = (n << 1) - (n >>> 1);
1942     }
1943     return;
1944     }
1945     }
1946     }
1947     else if ((f = tabAt(tab, i)) == null) {
1948     if (casTabAt(tab, i, null, fwd)) {
1949 dl 1.119 setTabAt(nextTab, i, null);
1950     setTabAt(nextTab, i + n, null);
1951 dl 1.149 advance = true;
1952     }
1953     }
1954     else if (f.hash >= 0) {
1955 jsr166 1.150 synchronized (f) {
1956 dl 1.149 if (tabAt(tab, i) == f) {
1957     int runBit = f.hash & n;
1958 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1959     for (Node<V> p = f.next; p != null; p = p.next) {
1960 dl 1.149 int b = p.hash & n;
1961     if (b != runBit) {
1962     runBit = b;
1963     lastRun = p;
1964     }
1965     }
1966     if (runBit == 0)
1967     lo = lastRun;
1968     else
1969     hi = lastRun;
1970 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1971 dl 1.149 int ph = p.hash;
1972 dl 1.151 Object pk = p.key; V pv = p.val;
1973 dl 1.149 if ((ph & n) == 0)
1974 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1975 dl 1.149 else
1976 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1977 dl 1.149 }
1978     setTabAt(nextTab, i, lo);
1979     setTabAt(nextTab, i + n, hi);
1980     setTabAt(tab, i, fwd);
1981     advance = true;
1982 dl 1.119 }
1983     }
1984     }
1985 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1986 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1987 dl 1.149 t.acquire(0);
1988     try {
1989     if (tabAt(tab, i) == f) {
1990 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1991     TreeBin<V> ht = new TreeBin<V>();
1992 dl 1.149 int lc = 0, hc = 0;
1993 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1994 dl 1.149 int h = e.hash;
1995 dl 1.151 Object k = e.key; V v = e.val;
1996 dl 1.149 if ((h & n) == 0) {
1997     ++lc;
1998     lt.putTreeNode(h, k, v);
1999     }
2000     else {
2001     ++hc;
2002     ht.putTreeNode(h, k, v);
2003     }
2004     }
2005 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2006 dl 1.149 if (lc < TREE_THRESHOLD) {
2007     ln = null;
2008 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2009     ln = new Node<V>(p.hash, p.key, p.val, ln);
2010 dl 1.149 }
2011     else
2012 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2013 dl 1.149 setTabAt(nextTab, i, ln);
2014     if (hc < TREE_THRESHOLD) {
2015     hn = null;
2016 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2017     hn = new Node<V>(p.hash, p.key, p.val, hn);
2018 dl 1.119 }
2019 dl 1.149 else
2020 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2021 dl 1.149 setTabAt(nextTab, i + n, hn);
2022 dl 1.119 setTabAt(tab, i, fwd);
2023 dl 1.149 advance = true;
2024 dl 1.119 }
2025     } finally {
2026 dl 1.149 t.release(0);
2027 dl 1.119 }
2028     }
2029     else
2030 dl 1.149 advance = true; // already processed
2031 dl 1.119 }
2032 dl 1.4 }
2033 tim 1.1
2034 dl 1.149 /* ---------------- Counter support -------------- */
2035    
2036     final long sumCount() {
2037 dl 1.153 Cell[] as = counterCells; Cell a;
2038 dl 1.149 long sum = baseCount;
2039     if (as != null) {
2040     for (int i = 0; i < as.length; ++i) {
2041     if ((a = as[i]) != null)
2042     sum += a.value;
2043 dl 1.119 }
2044     }
2045 dl 1.149 return sum;
2046 dl 1.119 }
2047    
2048 dl 1.149 // See LongAdder version for explanation
2049 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2050 dl 1.149 int h;
2051 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2052     ThreadLocalRandom.localInit(); // force initialization
2053     h = ThreadLocalRandom.getProbe();
2054     wasUncontended = true;
2055 dl 1.119 }
2056 dl 1.149 boolean collide = false; // True if last slot nonempty
2057     for (;;) {
2058 dl 1.153 Cell[] as; Cell a; int n; long v;
2059 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2060     if ((a = as[(n - 1) & h]) == null) {
2061 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2062     Cell r = new Cell(x); // Optimistic create
2063     if (cellsBusy == 0 &&
2064     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2065 dl 1.149 boolean created = false;
2066     try { // Recheck under lock
2067 dl 1.153 Cell[] rs; int m, j;
2068 dl 1.149 if ((rs = counterCells) != null &&
2069     (m = rs.length) > 0 &&
2070     rs[j = (m - 1) & h] == null) {
2071     rs[j] = r;
2072     created = true;
2073 dl 1.128 }
2074 dl 1.149 } finally {
2075 dl 1.153 cellsBusy = 0;
2076 dl 1.119 }
2077 dl 1.149 if (created)
2078     break;
2079     continue; // Slot is now non-empty
2080     }
2081     }
2082     collide = false;
2083     }
2084     else if (!wasUncontended) // CAS already known to fail
2085     wasUncontended = true; // Continue after rehash
2086     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2087     break;
2088     else if (counterCells != as || n >= NCPU)
2089     collide = false; // At max size or stale
2090     else if (!collide)
2091     collide = true;
2092 dl 1.153 else if (cellsBusy == 0 &&
2093     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2094 dl 1.149 try {
2095     if (counterCells == as) {// Expand table unless stale
2096 dl 1.153 Cell[] rs = new Cell[n << 1];
2097 dl 1.149 for (int i = 0; i < n; ++i)
2098     rs[i] = as[i];
2099     counterCells = rs;
2100 dl 1.119 }
2101     } finally {
2102 dl 1.153 cellsBusy = 0;
2103 dl 1.119 }
2104 dl 1.149 collide = false;
2105     continue; // Retry with expanded table
2106 dl 1.119 }
2107 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2108 dl 1.149 }
2109 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2110     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2111 dl 1.149 boolean init = false;
2112     try { // Initialize table
2113     if (counterCells == as) {
2114 dl 1.153 Cell[] rs = new Cell[2];
2115     rs[h & 1] = new Cell(x);
2116 dl 1.149 counterCells = rs;
2117     init = true;
2118 dl 1.119 }
2119     } finally {
2120 dl 1.153 cellsBusy = 0;
2121 dl 1.119 }
2122 dl 1.149 if (init)
2123     break;
2124 dl 1.119 }
2125 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2126     break; // Fall back on using base
2127 dl 1.119 }
2128     }
2129    
2130     /* ----------------Table Traversal -------------- */
2131    
2132     /**
2133     * Encapsulates traversal for methods such as containsValue; also
2134 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2135 dl 1.119 *
2136     * At each step, the iterator snapshots the key ("nextKey") and
2137     * value ("nextVal") of a valid node (i.e., one that, at point of
2138     * snapshot, has a non-null user value). Because val fields can
2139     * change (including to null, indicating deletion), field nextVal
2140     * might not be accurate at point of use, but still maintains the
2141     * weak consistency property of holding a value that was once
2142 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2143     * updated (nulled out) when the iterator cannot advance.
2144 dl 1.119 *
2145     * Internal traversals directly access these fields, as in:
2146     * {@code while (it.advance() != null) { process(it.nextKey); }}
2147     *
2148     * Exported iterators must track whether the iterator has advanced
2149     * (in hasNext vs next) (by setting/checking/nulling field
2150     * nextVal), and then extract key, value, or key-value pairs as
2151     * return values of next().
2152     *
2153     * The iterator visits once each still-valid node that was
2154     * reachable upon iterator construction. It might miss some that
2155     * were added to a bin after the bin was visited, which is OK wrt
2156     * consistency guarantees. Maintaining this property in the face
2157     * of possible ongoing resizes requires a fair amount of
2158     * bookkeeping state that is difficult to optimize away amidst
2159     * volatile accesses. Even so, traversal maintains reasonable
2160     * throughput.
2161     *
2162     * Normally, iteration proceeds bin-by-bin traversing lists.
2163     * However, if the table has been resized, then all future steps
2164     * must traverse both the bin at the current index as well as at
2165     * (index + baseSize); and so on for further resizings. To
2166     * paranoically cope with potential sharing by users of iterators
2167     * across threads, iteration terminates if a bounds checks fails
2168     * for a table read.
2169     *
2170 dl 1.153 * This class supports both Spliterator-based traversal and
2171     * CountedCompleter-based bulk tasks. The same "batch" field is
2172     * used, but in slightly different ways, in the two cases. For
2173     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2174     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2175     * size that halves down to zero for leaf tasks, that is only
2176     * computed upon execution of the task. (Tasks can be submitted to
2177     * any pool, of any size, so we don't know scale factors until
2178     * running.)
2179     *
2180 dl 1.146 * This class extends CountedCompleter to streamline parallel
2181     * iteration in bulk operations. This adds only a few fields of
2182     * space overhead, which is small enough in cases where it is not
2183     * needed to not worry about it. Because CountedCompleter is
2184     * Serializable, but iterators need not be, we need to add warning
2185     * suppressions.
2186 dl 1.119 */
2187 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2188     extends CountedCompleter<R> {
2189 dl 1.119 final ConcurrentHashMap<K, V> map;
2190 dl 1.151 Node<V> next; // the next entry to use
2191 dl 1.119 Object nextKey; // cached key field of next
2192 dl 1.151 V nextVal; // cached val field of next
2193     Node<V>[] tab; // current table; updated if resized
2194 dl 1.119 int index; // index of bin to use next
2195     int baseIndex; // current index of initial table
2196     int baseLimit; // index bound for initial table
2197 dl 1.130 int baseSize; // initial table size
2198 dl 1.146 int batch; // split control
2199 dl 1.119 /** Creates iterator for all entries in the table. */
2200     Traverser(ConcurrentHashMap<K, V> map) {
2201 dl 1.130 this.map = map;
2202 dl 1.153 Node<V>[] t;
2203     if ((t = tab = map.table) != null)
2204     baseLimit = baseSize = t.length;
2205 dl 1.119 }
2206    
2207 dl 1.153 /** Task constructor */
2208 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2209     super(it);
2210 dl 1.153 this.map = map;
2211     this.batch = batch; // -1 if unknown
2212     if (it == null) {
2213 dl 1.151 Node<V>[] t;
2214 dl 1.153 if ((t = tab = map.table) != null)
2215     baseLimit = baseSize = t.length;
2216     }
2217     else { // split parent
2218     this.tab = it.tab;
2219 dl 1.146 this.baseSize = it.baseSize;
2220     int hi = this.baseLimit = it.baseLimit;
2221     it.baseLimit = this.index = this.baseIndex =
2222     (hi + it.baseIndex + 1) >>> 1;
2223     }
2224 dl 1.119 }
2225    
2226 dl 1.153 /** Spliterator constructor */
2227     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2228     super(it);
2229     this.map = map;
2230     if (it == null) {
2231     Node<V>[] t;
2232     if ((t = tab = map.table) != null)
2233     baseLimit = baseSize = t.length;
2234     long n = map.sumCount();
2235     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2236     (int)n);
2237     }
2238     else {
2239     this.tab = it.tab;
2240     this.baseSize = it.baseSize;
2241     int hi = this.baseLimit = it.baseLimit;
2242     it.baseLimit = this.index = this.baseIndex =
2243     (hi + it.baseIndex + 1) >>> 1;
2244     this.batch = it.batch >>>= 1;
2245     }
2246     }
2247    
2248 dl 1.119 /**
2249     * Advances next; returns nextVal or null if terminated.
2250     * See above for explanation.
2251     */
2252 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2253     Node<V> e = next;
2254     V ev = null;
2255 dl 1.119 outer: do {
2256     if (e != null) // advance past used/skipped node
2257     e = e.next;
2258     while (e == null) { // get to next non-null bin
2259 dl 1.130 ConcurrentHashMap<K, V> m;
2260 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2261 dl 1.130 if ((t = tab) != null)
2262     n = t.length;
2263     else if ((m = map) != null && (t = tab = m.table) != null)
2264     n = baseLimit = baseSize = t.length;
2265     else
2266 dl 1.119 break outer;
2267 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2268     (i = index) < 0 || i >= n)
2269     break outer;
2270 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2271 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2272 dl 1.151 e = ((TreeBin<V>)ek).first;
2273 dl 1.119 else {
2274 dl 1.151 tab = (Node<V>[])ek;
2275 dl 1.119 continue; // restarts due to null val
2276     }
2277     } // visit upper slots if present
2278     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2279     }
2280     nextKey = e.key;
2281     } while ((ev = e.val) == null); // skip deleted or special nodes
2282     next = e;
2283     return nextVal = ev;
2284     }
2285    
2286     public final void remove() {
2287 dl 1.137 Object k = nextKey;
2288     if (k == null && (advance() == null || (k = nextKey) == null))
2289 dl 1.119 throw new IllegalStateException();
2290 dl 1.137 map.internalReplace(k, null, null);
2291 dl 1.119 }
2292    
2293     public final boolean hasNext() {
2294     return nextVal != null || advance() != null;
2295     }
2296    
2297     public final boolean hasMoreElements() { return hasNext(); }
2298 dl 1.146
2299     public void compute() { } // default no-op CountedCompleter body
2300    
2301     /**
2302     * Returns a batch value > 0 if this task should (and must) be
2303     * split, if so, adding to pending count, and in any case
2304     * updating batch value. The initial batch value is approx
2305     * exp2 of the number of times (minus one) to split task by
2306     * two before executing leaf action. This value is faster to
2307     * compute and more convenient to use as a guide to splitting
2308     * than is the depth, since it is used while dividing by two
2309     * anyway.
2310     */
2311     final int preSplit() {
2312 dl 1.153 int b; ForkJoinPool pool;
2313     if ((b = batch) < 0) { // force initialization
2314     int sp = (((pool = getPool()) == null) ?
2315     ForkJoinPool.getCommonPoolParallelism() :
2316     pool.getParallelism()) << 3; // slack of 8
2317     long n = map.sumCount();
2318     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2319 dl 1.146 }
2320 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2321 dl 1.146 if ((batch = b) > 0)
2322     addToPendingCount(1);
2323     return b;
2324     }
2325    
2326 dl 1.153 // spliterator support
2327    
2328 dl 1.160 public boolean hasExactSize() {
2329     return false;
2330 dl 1.153 }
2331    
2332     public boolean hasExactSplits() {
2333     return false;
2334     }
2335    
2336     public long estimateSize() {
2337     return batch;
2338     }
2339 dl 1.119 }
2340    
2341     /* ---------------- Public operations -------------- */
2342    
2343     /**
2344     * Creates a new, empty map with the default initial table size (16).
2345     */
2346     public ConcurrentHashMap() {
2347     }
2348    
2349     /**
2350     * Creates a new, empty map with an initial table size
2351     * accommodating the specified number of elements without the need
2352     * to dynamically resize.
2353     *
2354     * @param initialCapacity The implementation performs internal
2355     * sizing to accommodate this many elements.
2356     * @throws IllegalArgumentException if the initial capacity of
2357     * elements is negative
2358     */
2359     public ConcurrentHashMap(int initialCapacity) {
2360     if (initialCapacity < 0)
2361     throw new IllegalArgumentException();
2362     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2363     MAXIMUM_CAPACITY :
2364     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2365     this.sizeCtl = cap;
2366     }
2367    
2368     /**
2369     * Creates a new map with the same mappings as the given map.
2370     *
2371     * @param m the map
2372     */
2373     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2374     this.sizeCtl = DEFAULT_CAPACITY;
2375     internalPutAll(m);
2376     }
2377    
2378     /**
2379     * Creates a new, empty map with an initial table size based on
2380     * the given number of elements ({@code initialCapacity}) and
2381     * initial table density ({@code loadFactor}).
2382     *
2383     * @param initialCapacity the initial capacity. The implementation
2384     * performs internal sizing to accommodate this many elements,
2385     * given the specified load factor.
2386     * @param loadFactor the load factor (table density) for
2387     * establishing the initial table size
2388     * @throws IllegalArgumentException if the initial capacity of
2389     * elements is negative or the load factor is nonpositive
2390     *
2391     * @since 1.6
2392     */
2393     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2394     this(initialCapacity, loadFactor, 1);
2395     }
2396    
2397     /**
2398     * Creates a new, empty map with an initial table size based on
2399     * the given number of elements ({@code initialCapacity}), table
2400     * density ({@code loadFactor}), and number of concurrently
2401     * updating threads ({@code concurrencyLevel}).
2402     *
2403     * @param initialCapacity the initial capacity. The implementation
2404     * performs internal sizing to accommodate this many elements,
2405     * given the specified load factor.
2406     * @param loadFactor the load factor (table density) for
2407     * establishing the initial table size
2408     * @param concurrencyLevel the estimated number of concurrently
2409     * updating threads. The implementation may use this value as
2410     * a sizing hint.
2411     * @throws IllegalArgumentException if the initial capacity is
2412     * negative or the load factor or concurrencyLevel are
2413     * nonpositive
2414     */
2415     public ConcurrentHashMap(int initialCapacity,
2416     float loadFactor, int concurrencyLevel) {
2417     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2418     throw new IllegalArgumentException();
2419     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2420     initialCapacity = concurrencyLevel; // as estimated threads
2421     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2422     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2423     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2424     this.sizeCtl = cap;
2425     }
2426    
2427     /**
2428 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2429     * from the given type to {@code Boolean.TRUE}.
2430     *
2431     * @return the new set
2432     */
2433     public static <K> KeySetView<K,Boolean> newKeySet() {
2434     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2435     Boolean.TRUE);
2436     }
2437    
2438     /**
2439     * Creates a new {@link Set} backed by a ConcurrentHashMap
2440     * from the given type to {@code Boolean.TRUE}.
2441     *
2442     * @param initialCapacity The implementation performs internal
2443     * sizing to accommodate this many elements.
2444     * @throws IllegalArgumentException if the initial capacity of
2445     * elements is negative
2446     * @return the new set
2447     */
2448     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2449 dl 1.149 return new KeySetView<K,Boolean>
2450     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2451 dl 1.137 }
2452    
2453     /**
2454 dl 1.119 * {@inheritDoc}
2455     */
2456     public boolean isEmpty() {
2457 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2458 dl 1.119 }
2459    
2460     /**
2461     * {@inheritDoc}
2462     */
2463     public int size() {
2464 dl 1.149 long n = sumCount();
2465 dl 1.119 return ((n < 0L) ? 0 :
2466     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2467     (int)n);
2468     }
2469    
2470     /**
2471     * Returns the number of mappings. This method should be used
2472     * instead of {@link #size} because a ConcurrentHashMap may
2473     * contain more mappings than can be represented as an int. The
2474 dl 1.146 * value returned is an estimate; the actual count may differ if
2475     * there are concurrent insertions or removals.
2476 dl 1.119 *
2477     * @return the number of mappings
2478     */
2479     public long mappingCount() {
2480 dl 1.149 long n = sumCount();
2481 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2482 dl 1.119 }
2483    
2484     /**
2485     * Returns the value to which the specified key is mapped,
2486     * or {@code null} if this map contains no mapping for the key.
2487     *
2488     * <p>More formally, if this map contains a mapping from a key
2489     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2490     * then this method returns {@code v}; otherwise it returns
2491     * {@code null}. (There can be at most one such mapping.)
2492     *
2493     * @throws NullPointerException if the specified key is null
2494     */
2495 dl 1.149 public V get(Object key) {
2496     return internalGet(key);
2497 dl 1.119 }
2498    
2499     /**
2500 dl 1.129 * Returns the value to which the specified key is mapped,
2501 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2502 dl 1.129 *
2503     * @param key the key
2504     * @param defaultValue the value to return if this map contains
2505 jsr166 1.134 * no mapping for the given key
2506 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2507     * @throws NullPointerException if the specified key is null
2508     */
2509 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2510     V v;
2511     return (v = internalGet(key)) == null ? defaultValue : v;
2512 dl 1.129 }
2513    
2514     /**
2515 dl 1.119 * Tests if the specified object is a key in this table.
2516     *
2517     * @param key possible key
2518     * @return {@code true} if and only if the specified object
2519     * is a key in this table, as determined by the
2520     * {@code equals} method; {@code false} otherwise
2521     * @throws NullPointerException if the specified key is null
2522     */
2523     public boolean containsKey(Object key) {
2524     return internalGet(key) != null;
2525     }
2526    
2527     /**
2528     * Returns {@code true} if this map maps one or more keys to the
2529     * specified value. Note: This method may require a full traversal
2530     * of the map, and is much slower than method {@code containsKey}.
2531     *
2532     * @param value value whose presence in this map is to be tested
2533     * @return {@code true} if this map maps one or more keys to the
2534     * specified value
2535     * @throws NullPointerException if the specified value is null
2536     */
2537     public boolean containsValue(Object value) {
2538     if (value == null)
2539     throw new NullPointerException();
2540 dl 1.151 V v;
2541 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2542     while ((v = it.advance()) != null) {
2543     if (v == value || value.equals(v))
2544     return true;
2545     }
2546     return false;
2547     }
2548    
2549     /**
2550     * Legacy method testing if some key maps into the specified value
2551     * in this table. This method is identical in functionality to
2552     * {@link #containsValue}, and exists solely to ensure
2553     * full compatibility with class {@link java.util.Hashtable},
2554     * which supported this method prior to introduction of the
2555     * Java Collections framework.
2556     *
2557     * @param value a value to search for
2558     * @return {@code true} if and only if some key maps to the
2559     * {@code value} argument in this table as
2560     * determined by the {@code equals} method;
2561     * {@code false} otherwise
2562     * @throws NullPointerException if the specified value is null
2563     */
2564 dl 1.151 @Deprecated public boolean contains(Object value) {
2565 dl 1.119 return containsValue(value);
2566     }
2567    
2568     /**
2569     * Maps the specified key to the specified value in this table.
2570     * Neither the key nor the value can be null.
2571     *
2572 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2573 dl 1.119 * with a key that is equal to the original key.
2574     *
2575     * @param key key with which the specified value is to be associated
2576     * @param value value to be associated with the specified key
2577     * @return the previous value associated with {@code key}, or
2578     * {@code null} if there was no mapping for {@code key}
2579     * @throws NullPointerException if the specified key or value is null
2580     */
2581 dl 1.149 public V put(K key, V value) {
2582     return internalPut(key, value, false);
2583 dl 1.119 }
2584    
2585     /**
2586     * {@inheritDoc}
2587     *
2588     * @return the previous value associated with the specified key,
2589     * or {@code null} if there was no mapping for the key
2590     * @throws NullPointerException if the specified key or value is null
2591     */
2592 dl 1.149 public V putIfAbsent(K key, V value) {
2593     return internalPut(key, value, true);
2594 dl 1.119 }
2595    
2596     /**
2597     * Copies all of the mappings from the specified map to this one.
2598     * These mappings replace any mappings that this map had for any of the
2599     * keys currently in the specified map.
2600     *
2601     * @param m mappings to be stored in this map
2602     */
2603     public void putAll(Map<? extends K, ? extends V> m) {
2604     internalPutAll(m);
2605     }
2606    
2607     /**
2608 dl 1.153 * If the specified key is not already associated with a value (or
2609     * is mapped to {@code null}), attempts to compute its value using
2610     * the given mapping function and enters it into this map unless
2611     * {@code null}. The entire method invocation is performed
2612     * atomically, so the function is applied at most once per key.
2613     * Some attempted update operations on this map by other threads
2614     * may be blocked while computation is in progress, so the
2615     * computation should be short and simple, and must not attempt to
2616     * update any other mappings of this Map.
2617 dl 1.119 *
2618     * @param key key with which the specified value is to be associated
2619     * @param mappingFunction the function to compute a value
2620     * @return the current (existing or computed) value associated with
2621 jsr166 1.134 * the specified key, or null if the computed value is null
2622 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2623     * is null
2624     * @throws IllegalStateException if the computation detectably
2625     * attempts a recursive update to this map that would
2626     * otherwise never complete
2627     * @throws RuntimeException or Error if the mappingFunction does so,
2628     * in which case the mapping is left unestablished
2629     */
2630 dl 1.149 public V computeIfAbsent
2631 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2632 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2633 dl 1.119 }
2634    
2635     /**
2636 dl 1.153 * If the value for the specified key is present and non-null,
2637     * attempts to compute a new mapping given the key and its current
2638     * mapped value. The entire method invocation is performed
2639     * atomically. Some attempted update operations on this map by
2640 dl 1.119 * other threads may be blocked while computation is in progress,
2641     * so the computation should be short and simple, and must not
2642 dl 1.153 * attempt to update any other mappings of this Map.
2643 dl 1.119 *
2644     * @param key key with which the specified value is to be associated
2645     * @param remappingFunction the function to compute a value
2646 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2647 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2648     * is null
2649     * @throws IllegalStateException if the computation detectably
2650     * attempts a recursive update to this map that would
2651     * otherwise never complete
2652     * @throws RuntimeException or Error if the remappingFunction does so,
2653     * in which case the mapping is unchanged
2654     */
2655 dl 1.149 public V computeIfPresent
2656 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2657 dl 1.149 return internalCompute(key, true, remappingFunction);
2658 dl 1.119 }
2659    
2660     /**
2661 dl 1.153 * Attempts to compute a mapping for the specified key and its
2662     * current mapped value (or {@code null} if there is no current
2663     * mapping). The entire method invocation is performed atomically.
2664     * Some attempted update operations on this map by other threads
2665     * may be blocked while computation is in progress, so the
2666     * computation should be short and simple, and must not attempt to
2667     * update any other mappings of this Map.
2668 dl 1.119 *
2669     * @param key key with which the specified value is to be associated
2670     * @param remappingFunction the function to compute a value
2671 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2672 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2673     * is null
2674     * @throws IllegalStateException if the computation detectably
2675     * attempts a recursive update to this map that would
2676     * otherwise never complete
2677     * @throws RuntimeException or Error if the remappingFunction does so,
2678     * in which case the mapping is unchanged
2679     */
2680 dl 1.149 public V compute
2681 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2682 dl 1.149 return internalCompute(key, false, remappingFunction);
2683 dl 1.119 }
2684    
2685     /**
2686 dl 1.153 * If the specified key is not already associated with a
2687     * (non-null) value, associates it with the given value.
2688     * Otherwise, replaces the value with the results of the given
2689     * remapping function, or removes if {@code null}. The entire
2690     * method invocation is performed atomically. Some attempted
2691     * update operations on this map by other threads may be blocked
2692     * while computation is in progress, so the computation should be
2693     * short and simple, and must not attempt to update any other
2694     * mappings of this Map.
2695     *
2696     * @param key key with which the specified value is to be associated
2697     * @param value the value to use if absent
2698     * @param remappingFunction the function to recompute a value if present
2699     * @return the new value associated with the specified key, or null if none
2700     * @throws NullPointerException if the specified key or the
2701     * remappingFunction is null
2702     * @throws RuntimeException or Error if the remappingFunction does so,
2703     * in which case the mapping is unchanged
2704 dl 1.119 */
2705 dl 1.149 public V merge
2706     (K key, V value,
2707 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2708 dl 1.149 return internalMerge(key, value, remappingFunction);
2709 dl 1.119 }
2710    
2711     /**
2712     * Removes the key (and its corresponding value) from this map.
2713     * This method does nothing if the key is not in the map.
2714     *
2715     * @param key the key that needs to be removed
2716     * @return the previous value associated with {@code key}, or
2717     * {@code null} if there was no mapping for {@code key}
2718     * @throws NullPointerException if the specified key is null
2719     */
2720 dl 1.149 public V remove(Object key) {
2721     return internalReplace(key, null, null);
2722 dl 1.119 }
2723    
2724     /**
2725     * {@inheritDoc}
2726     *
2727     * @throws NullPointerException if the specified key is null
2728     */
2729     public boolean remove(Object key, Object value) {
2730 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2731 tim 1.1 }
2732 dl 1.31
2733     /**
2734 jsr166 1.68 * {@inheritDoc}
2735     *
2736     * @throws NullPointerException if any of the arguments are null
2737 dl 1.31 */
2738     public boolean replace(K key, V oldValue, V newValue) {
2739 dl 1.119 if (key == null || oldValue == null || newValue == null)
2740 dl 1.31 throw new NullPointerException();
2741 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2742 dl 1.32 }
2743    
2744     /**
2745 jsr166 1.68 * {@inheritDoc}
2746     *
2747     * @return the previous value associated with the specified key,
2748 dl 1.119 * or {@code null} if there was no mapping for the key
2749 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2750 dl 1.32 */
2751 dl 1.149 public V replace(K key, V value) {
2752 dl 1.119 if (key == null || value == null)
2753 dl 1.32 throw new NullPointerException();
2754 dl 1.149 return internalReplace(key, value, null);
2755 dl 1.31 }
2756    
2757 tim 1.1 /**
2758 jsr166 1.68 * Removes all of the mappings from this map.
2759 tim 1.1 */
2760     public void clear() {
2761 dl 1.119 internalClear();
2762 tim 1.1 }
2763    
2764     /**
2765 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2766     * The set is backed by the map, so changes to the map are
2767 dl 1.137 * reflected in the set, and vice-versa.
2768     *
2769     * @return the set view
2770     */
2771     public KeySetView<K,V> keySet() {
2772     KeySetView<K,V> ks = keySet;
2773     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2774     }
2775    
2776     /**
2777     * Returns a {@link Set} view of the keys in this map, using the
2778     * given common mapped value for any additions (i.e., {@link
2779     * Collection#add} and {@link Collection#addAll}). This is of
2780     * course only appropriate if it is acceptable to use the same
2781     * value for all additions from this view.
2782 jsr166 1.68 *
2783 dl 1.137 * @param mappedValue the mapped value to use for any
2784     * additions.
2785     * @return the set view
2786     * @throws NullPointerException if the mappedValue is null
2787 tim 1.1 */
2788 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2789     if (mappedValue == null)
2790     throw new NullPointerException();
2791     return new KeySetView<K,V>(this, mappedValue);
2792 tim 1.1 }
2793    
2794     /**
2795 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2796     * The collection is backed by the map, so changes to the map are
2797 jsr166 1.143 * reflected in the collection, and vice-versa.
2798 tim 1.1 */
2799 dl 1.142 public ValuesView<K,V> values() {
2800     ValuesView<K,V> vs = values;
2801     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2802 dl 1.119 }
2803    
2804     /**
2805     * Returns a {@link Set} view of the mappings contained in this map.
2806     * The set is backed by the map, so changes to the map are
2807     * reflected in the set, and vice-versa. The set supports element
2808     * removal, which removes the corresponding mapping from the map,
2809     * via the {@code Iterator.remove}, {@code Set.remove},
2810     * {@code removeAll}, {@code retainAll}, and {@code clear}
2811     * operations. It does not support the {@code add} or
2812     * {@code addAll} operations.
2813     *
2814     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2815     * that will never throw {@link ConcurrentModificationException},
2816     * and guarantees to traverse elements as they existed upon
2817     * construction of the iterator, and may (but is not guaranteed to)
2818     * reflect any modifications subsequent to construction.
2819     */
2820     public Set<Map.Entry<K,V>> entrySet() {
2821 dl 1.142 EntrySetView<K,V> es = entrySet;
2822     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2823 dl 1.119 }
2824    
2825     /**
2826     * Returns an enumeration of the keys in this table.
2827     *
2828     * @return an enumeration of the keys in this table
2829     * @see #keySet()
2830     */
2831     public Enumeration<K> keys() {
2832     return new KeyIterator<K,V>(this);
2833     }
2834    
2835     /**
2836     * Returns an enumeration of the values in this table.
2837     *
2838     * @return an enumeration of the values in this table
2839     * @see #values()
2840     */
2841     public Enumeration<V> elements() {
2842     return new ValueIterator<K,V>(this);
2843     }
2844    
2845     /**
2846     * Returns the hash code value for this {@link Map}, i.e.,
2847     * the sum of, for each key-value pair in the map,
2848     * {@code key.hashCode() ^ value.hashCode()}.
2849     *
2850     * @return the hash code value for this map
2851     */
2852     public int hashCode() {
2853     int h = 0;
2854     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2855 dl 1.151 V v;
2856 dl 1.119 while ((v = it.advance()) != null) {
2857     h += it.nextKey.hashCode() ^ v.hashCode();
2858     }
2859     return h;
2860     }
2861    
2862     /**
2863     * Returns a string representation of this map. The string
2864     * representation consists of a list of key-value mappings (in no
2865     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2866     * mappings are separated by the characters {@code ", "} (comma
2867     * and space). Each key-value mapping is rendered as the key
2868     * followed by an equals sign ("{@code =}") followed by the
2869     * associated value.
2870     *
2871     * @return a string representation of this map
2872     */
2873     public String toString() {
2874     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2875     StringBuilder sb = new StringBuilder();
2876     sb.append('{');
2877 dl 1.151 V v;
2878 dl 1.119 if ((v = it.advance()) != null) {
2879     for (;;) {
2880     Object k = it.nextKey;
2881     sb.append(k == this ? "(this Map)" : k);
2882     sb.append('=');
2883     sb.append(v == this ? "(this Map)" : v);
2884     if ((v = it.advance()) == null)
2885     break;
2886     sb.append(',').append(' ');
2887     }
2888     }
2889     return sb.append('}').toString();
2890     }
2891    
2892     /**
2893     * Compares the specified object with this map for equality.
2894     * Returns {@code true} if the given object is a map with the same
2895     * mappings as this map. This operation may return misleading
2896     * results if either map is concurrently modified during execution
2897     * of this method.
2898     *
2899     * @param o object to be compared for equality with this map
2900     * @return {@code true} if the specified object is equal to this map
2901     */
2902     public boolean equals(Object o) {
2903     if (o != this) {
2904     if (!(o instanceof Map))
2905     return false;
2906     Map<?,?> m = (Map<?,?>) o;
2907     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2908 dl 1.151 V val;
2909 dl 1.119 while ((val = it.advance()) != null) {
2910     Object v = m.get(it.nextKey);
2911     if (v == null || (v != val && !v.equals(val)))
2912     return false;
2913     }
2914     for (Map.Entry<?,?> e : m.entrySet()) {
2915     Object mk, mv, v;
2916     if ((mk = e.getKey()) == null ||
2917     (mv = e.getValue()) == null ||
2918     (v = internalGet(mk)) == null ||
2919     (mv != v && !mv.equals(v)))
2920     return false;
2921     }
2922     }
2923     return true;
2924     }
2925    
2926     /* ----------------Iterators -------------- */
2927    
2928 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2929     extends Traverser<K,V,Object>
2930 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2931 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2932 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2933 dl 1.153 super(map, it);
2934 dl 1.119 }
2935 dl 1.155 public KeyIterator<K,V> trySplit() {
2936     if (tab != null && baseIndex == baseLimit)
2937     return null;
2938 dl 1.146 return new KeyIterator<K,V>(map, this);
2939 dl 1.119 }
2940 dl 1.128 @SuppressWarnings("unchecked") public final K next() {
2941 dl 1.119 if (nextVal == null && advance() == null)
2942     throw new NoSuchElementException();
2943     Object k = nextKey;
2944     nextVal = null;
2945     return (K) k;
2946     }
2947    
2948     public final K nextElement() { return next(); }
2949 dl 1.153
2950 dl 1.162 public Iterator<K> iterator() { return this; }
2951 dl 1.153
2952     public void forEach(Block<? super K> action) {
2953     if (action == null) throw new NullPointerException();
2954     while (advance() != null)
2955     action.accept((K)nextKey);
2956     }
2957 dl 1.160
2958     public boolean tryAdvance(Block<? super K> block) {
2959     if (block == null) throw new NullPointerException();
2960     if (advance() == null)
2961     return false;
2962     block.accept((K)nextKey);
2963     return true;
2964     }
2965 dl 1.119 }
2966    
2967 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2968     extends Traverser<K,V,Object>
2969 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2970 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2971 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2972 dl 1.153 super(map, it);
2973 dl 1.119 }
2974 dl 1.155 public ValueIterator<K,V> trySplit() {
2975     if (tab != null && baseIndex == baseLimit)
2976     return null;
2977 dl 1.146 return new ValueIterator<K,V>(map, this);
2978 dl 1.119 }
2979    
2980 dl 1.151 public final V next() {
2981     V v;
2982 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
2983     throw new NoSuchElementException();
2984     nextVal = null;
2985 dl 1.151 return v;
2986 dl 1.119 }
2987    
2988     public final V nextElement() { return next(); }
2989 dl 1.153
2990 dl 1.162 public Iterator<V> iterator() { return this; }
2991 dl 1.153
2992     public void forEach(Block<? super V> action) {
2993     if (action == null) throw new NullPointerException();
2994     V v;
2995     while ((v = advance()) != null)
2996     action.accept(v);
2997     }
2998 dl 1.160
2999     public boolean tryAdvance(Block<? super V> block) {
3000     V v;
3001     if (block == null) throw new NullPointerException();
3002     if ((v = advance()) == null)
3003     return false;
3004     block.accept(v);
3005     return true;
3006     }
3007 jsr166 1.161
3008 dl 1.119 }
3009    
3010 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3011     extends Traverser<K,V,Object>
3012 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3013 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3014 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3015 dl 1.153 super(map, it);
3016 dl 1.119 }
3017 dl 1.155 public EntryIterator<K,V> trySplit() {
3018     if (tab != null && baseIndex == baseLimit)
3019     return null;
3020 dl 1.146 return new EntryIterator<K,V>(map, this);
3021 dl 1.119 }
3022    
3023 dl 1.128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3024 dl 1.151 V v;
3025 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3026     throw new NoSuchElementException();
3027     Object k = nextKey;
3028     nextVal = null;
3029 dl 1.151 return new MapEntry<K,V>((K)k, v, map);
3030 dl 1.119 }
3031 dl 1.153
3032 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3033 dl 1.153
3034     public void forEach(Block<? super Map.Entry<K,V>> action) {
3035     if (action == null) throw new NullPointerException();
3036     V v;
3037     while ((v = advance()) != null)
3038     action.accept(entryFor((K)nextKey, v));
3039     }
3040 dl 1.160
3041     public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3042     V v;
3043     if (block == null) throw new NullPointerException();
3044     if ((v = advance()) == null)
3045     return false;
3046     block.accept(entryFor((K)nextKey, v));
3047     return true;
3048     }
3049    
3050 dl 1.119 }
3051    
3052     /**
3053     * Exported Entry for iterators
3054     */
3055     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3056     final K key; // non-null
3057     V val; // non-null
3058     final ConcurrentHashMap<K, V> map;
3059     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3060     this.key = key;
3061     this.val = val;
3062     this.map = map;
3063     }
3064     public final K getKey() { return key; }
3065     public final V getValue() { return val; }
3066     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3067     public final String toString(){ return key + "=" + val; }
3068    
3069     public final boolean equals(Object o) {
3070     Object k, v; Map.Entry<?,?> e;
3071     return ((o instanceof Map.Entry) &&
3072     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3073     (v = e.getValue()) != null &&
3074     (k == key || k.equals(key)) &&
3075     (v == val || v.equals(val)));
3076     }
3077    
3078     /**
3079     * Sets our entry's value and writes through to the map. The
3080     * value to return is somewhat arbitrary here. Since we do not
3081     * necessarily track asynchronous changes, the most recent
3082     * "previous" value could be different from what we return (or
3083     * could even have been removed in which case the put will
3084     * re-establish). We do not and cannot guarantee more.
3085     */
3086     public final V setValue(V value) {
3087     if (value == null) throw new NullPointerException();
3088     V v = val;
3089     val = value;
3090     map.put(key, value);
3091     return v;
3092     }
3093     }
3094    
3095 dl 1.146 /**
3096     * Returns exportable snapshot entry for the given key and value
3097     * when write-through can't or shouldn't be used.
3098     */
3099     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3100     return new AbstractMap.SimpleEntry<K,V>(k, v);
3101     }
3102    
3103 dl 1.142 /* ---------------- Serialization Support -------------- */
3104 dl 1.119
3105     /**
3106 dl 1.142 * Stripped-down version of helper class used in previous version,
3107     * declared for the sake of serialization compatibility
3108 dl 1.119 */
3109 dl 1.142 static class Segment<K,V> implements Serializable {
3110     private static final long serialVersionUID = 2249069246763182397L;
3111     final float loadFactor;
3112     Segment(float lf) { this.loadFactor = lf; }
3113     }
3114 dl 1.119
3115 dl 1.142 /**
3116     * Saves the state of the {@code ConcurrentHashMap} instance to a
3117     * stream (i.e., serializes it).
3118     * @param s the stream
3119     * @serialData
3120     * the key (Object) and value (Object)
3121     * for each key-value mapping, followed by a null pair.
3122     * The key-value mappings are emitted in no particular order.
3123     */
3124 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3125     (java.io.ObjectOutputStream s)
3126 dl 1.142 throws java.io.IOException {
3127     if (segments == null) { // for serialization compatibility
3128     segments = (Segment<K,V>[])
3129     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3130     for (int i = 0; i < segments.length; ++i)
3131     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3132     }
3133     s.defaultWriteObject();
3134     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3135 dl 1.151 V v;
3136 dl 1.142 while ((v = it.advance()) != null) {
3137     s.writeObject(it.nextKey);
3138     s.writeObject(v);
3139     }
3140     s.writeObject(null);
3141     s.writeObject(null);
3142     segments = null; // throw away
3143     }
3144 dl 1.119
3145 dl 1.142 /**
3146     * Reconstitutes the instance from a stream (that is, deserializes it).
3147     * @param s the stream
3148     */
3149 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3150     (java.io.ObjectInputStream s)
3151 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3152     s.defaultReadObject();
3153     this.segments = null; // unneeded
3154 dl 1.119
3155 dl 1.142 // Create all nodes, then place in table once size is known
3156     long size = 0L;
3157 dl 1.151 Node<V> p = null;
3158 dl 1.142 for (;;) {
3159     K k = (K) s.readObject();
3160     V v = (V) s.readObject();
3161     if (k != null && v != null) {
3162     int h = spread(k.hashCode());
3163 dl 1.151 p = new Node<V>(h, k, v, p);
3164 dl 1.142 ++size;
3165 dl 1.119 }
3166 dl 1.142 else
3167     break;
3168 dl 1.119 }
3169 dl 1.142 if (p != null) {
3170     boolean init = false;
3171     int n;
3172     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3173     n = MAXIMUM_CAPACITY;
3174     else {
3175     int sz = (int)size;
3176     n = tableSizeFor(sz + (sz >>> 1) + 1);
3177     }
3178     int sc = sizeCtl;
3179     boolean collide = false;
3180     if (n > sc &&
3181 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3182 dl 1.142 try {
3183     if (table == null) {
3184     init = true;
3185 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3186     Node<V>[] tab = (Node<V>[])rt;
3187 dl 1.142 int mask = n - 1;
3188     while (p != null) {
3189     int j = p.hash & mask;
3190 dl 1.151 Node<V> next = p.next;
3191     Node<V> q = p.next = tabAt(tab, j);
3192 dl 1.142 setTabAt(tab, j, p);
3193     if (!collide && q != null && q.hash == p.hash)
3194     collide = true;
3195     p = next;
3196     }
3197     table = tab;
3198 dl 1.149 addCount(size, -1);
3199 dl 1.142 sc = n - (n >>> 2);
3200     }
3201     } finally {
3202     sizeCtl = sc;
3203     }
3204     if (collide) { // rescan and convert to TreeBins
3205 dl 1.151 Node<V>[] tab = table;
3206 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3207     int c = 0;
3208 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3209 dl 1.142 if (++c > TREE_THRESHOLD &&
3210     (e.key instanceof Comparable)) {
3211     replaceWithTreeBin(tab, i, e.key);
3212     break;
3213     }
3214     }
3215     }
3216 dl 1.119 }
3217     }
3218 dl 1.142 if (!init) { // Can only happen if unsafely published.
3219     while (p != null) {
3220 dl 1.151 internalPut((K)p.key, p.val, false);
3221 dl 1.142 p = p.next;
3222     }
3223 dl 1.119 }
3224     }
3225 dl 1.142 }
3226 dl 1.119
3227 dl 1.142 // -------------------------------------------------------
3228    
3229 dl 1.151 // Sequential bulk operations
3230    
3231 dl 1.119 /**
3232 dl 1.137 * Performs the given action for each (key, value).
3233 dl 1.119 *
3234 dl 1.137 * @param action the action
3235 dl 1.119 */
3236 dl 1.151 @SuppressWarnings("unchecked") public void forEachSequentially
3237 dl 1.153 (BiBlock<? super K, ? super V> action) {
3238 dl 1.151 if (action == null) throw new NullPointerException();
3239     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3240     V v;
3241     while ((v = it.advance()) != null)
3242 dl 1.153 action.accept((K)it.nextKey, v);
3243 dl 1.119 }
3244    
3245     /**
3246 dl 1.137 * Performs the given action for each non-null transformation
3247     * of each (key, value).
3248     *
3249     * @param transformer a function returning the transformation
3250     * for an element, or null of there is no transformation (in
3251     * which case the action is not applied).
3252     * @param action the action
3253 dl 1.119 */
3254 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3255 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3256     Block<? super U> action) {
3257 dl 1.151 if (transformer == null || action == null)
3258     throw new NullPointerException();
3259     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3260     V v; U u;
3261     while ((v = it.advance()) != null) {
3262     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3263 dl 1.153 action.accept(u);
3264 dl 1.151 }
3265 dl 1.137 }
3266    
3267     /**
3268     * Returns a non-null result from applying the given search
3269 dl 1.151 * function on each (key, value), or null if none.
3270 dl 1.137 *
3271     * @param searchFunction a function returning a non-null
3272     * result on success, else null
3273     * @return a non-null result from applying the given search
3274     * function on each (key, value), or null if none
3275     */
3276 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchSequentially
3277 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3278 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3279     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3280     V v; U u;
3281     while ((v = it.advance()) != null) {
3282     if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3283     return u;
3284     }
3285     return null;
3286 dl 1.137 }
3287    
3288     /**
3289     * Returns the result of accumulating the given transformation
3290     * of all (key, value) pairs using the given reducer to
3291     * combine values, or null if none.
3292     *
3293     * @param transformer a function returning the transformation
3294     * for an element, or null of there is no transformation (in
3295     * which case it is not combined).
3296     * @param reducer a commutative associative combining function
3297     * @return the result of accumulating the given transformation
3298     * of all (key, value) pairs
3299     */
3300 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3301 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3302     BiFunction<? super U, ? super U, ? extends U> reducer) {
3303 dl 1.151 if (transformer == null || reducer == null)
3304     throw new NullPointerException();
3305     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3306     U r = null, u; V v;
3307     while ((v = it.advance()) != null) {
3308     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3309     r = (r == null) ? u : reducer.apply(r, u);
3310     }
3311     return r;
3312 dl 1.137 }
3313    
3314     /**
3315     * Returns the result of accumulating the given transformation
3316     * of all (key, value) pairs using the given reducer to
3317     * combine values, and the given basis as an identity value.
3318     *
3319     * @param transformer a function returning the transformation
3320     * for an element
3321     * @param basis the identity (initial default value) for the reduction
3322     * @param reducer a commutative associative combining function
3323     * @return the result of accumulating the given transformation
3324     * of all (key, value) pairs
3325     */
3326 dl 1.151 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3327 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
3328 dl 1.151 double basis,
3329 dl 1.153 DoubleBinaryOperator reducer) {
3330 dl 1.151 if (transformer == null || reducer == null)
3331     throw new NullPointerException();
3332     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3333     double r = basis; V v;
3334     while ((v = it.advance()) != null)
3335 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3336 dl 1.151 return r;
3337 dl 1.137 }
3338 dl 1.119
3339 dl 1.137 /**
3340     * Returns the result of accumulating the given transformation
3341     * of all (key, value) pairs using the given reducer to
3342     * combine values, and the given basis as an identity value.
3343     *
3344     * @param transformer a function returning the transformation
3345     * for an element
3346     * @param basis the identity (initial default value) for the reduction
3347     * @param reducer a commutative associative combining function
3348     * @return the result of accumulating the given transformation
3349     * of all (key, value) pairs
3350     */
3351 dl 1.151 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3352 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
3353 dl 1.151 long basis,
3354 dl 1.153 LongBinaryOperator reducer) {
3355 dl 1.151 if (transformer == null || reducer == null)
3356     throw new NullPointerException();
3357     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3358     long r = basis; V v;
3359     while ((v = it.advance()) != null)
3360 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3361 dl 1.151 return r;
3362 dl 1.137 }
3363    
3364     /**
3365     * Returns the result of accumulating the given transformation
3366     * of all (key, value) pairs using the given reducer to
3367     * combine values, and the given basis as an identity value.
3368     *
3369     * @param transformer a function returning the transformation
3370     * for an element
3371     * @param basis the identity (initial default value) for the reduction
3372     * @param reducer a commutative associative combining function
3373     * @return the result of accumulating the given transformation
3374     * of all (key, value) pairs
3375     */
3376 dl 1.151 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3377 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
3378 dl 1.151 int basis,
3379 dl 1.153 IntBinaryOperator reducer) {
3380 dl 1.151 if (transformer == null || reducer == null)
3381     throw new NullPointerException();
3382     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383     int r = basis; V v;
3384     while ((v = it.advance()) != null)
3385 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3386 dl 1.151 return r;
3387 dl 1.137 }
3388    
3389     /**
3390     * Performs the given action for each key.
3391     *
3392     * @param action the action
3393     */
3394 dl 1.151 @SuppressWarnings("unchecked") public void forEachKeySequentially
3395 dl 1.153 (Block<? super K> action) {
3396 dl 1.151 if (action == null) throw new NullPointerException();
3397     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3398     while (it.advance() != null)
3399 dl 1.153 action.accept((K)it.nextKey);
3400 dl 1.137 }
3401 dl 1.119
3402 dl 1.137 /**
3403     * Performs the given action for each non-null transformation
3404     * of each key.
3405     *
3406     * @param transformer a function returning the transformation
3407     * for an element, or null of there is no transformation (in
3408     * which case the action is not applied).
3409     * @param action the action
3410     */
3411 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3412 dl 1.153 (Function<? super K, ? extends U> transformer,
3413     Block<? super U> action) {
3414 dl 1.151 if (transformer == null || action == null)
3415     throw new NullPointerException();
3416     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3417     U u;
3418     while (it.advance() != null) {
3419     if ((u = transformer.apply((K)it.nextKey)) != null)
3420 dl 1.153 action.accept(u);
3421 dl 1.151 }
3422 dl 1.137 ForkJoinTasks.forEachKey
3423     (this, transformer, action).invoke();
3424     }
3425 dl 1.119
3426 dl 1.137 /**
3427     * Returns a non-null result from applying the given search
3428 dl 1.151 * function on each key, or null if none.
3429 dl 1.137 *
3430     * @param searchFunction a function returning a non-null
3431     * result on success, else null
3432     * @return a non-null result from applying the given search
3433     * function on each key, or null if none
3434     */
3435 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3436 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3437 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3438     U u;
3439     while (it.advance() != null) {
3440     if ((u = searchFunction.apply((K)it.nextKey)) != null)
3441     return u;
3442     }
3443     return null;
3444 dl 1.137 }
3445 dl 1.119
3446 dl 1.137 /**
3447     * Returns the result of accumulating all keys using the given
3448     * reducer to combine values, or null if none.
3449     *
3450     * @param reducer a commutative associative combining function
3451     * @return the result of accumulating all keys using the given
3452     * reducer to combine values, or null if none
3453     */
3454 dl 1.151 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3455 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3456 dl 1.151 if (reducer == null) throw new NullPointerException();
3457     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3458     K r = null;
3459     while (it.advance() != null) {
3460     K u = (K)it.nextKey;
3461     r = (r == null) ? u : reducer.apply(r, u);
3462     }
3463     return r;
3464 dl 1.137 }
3465 dl 1.119
3466 dl 1.137 /**
3467     * Returns the result of accumulating the given transformation
3468     * of all keys using the given reducer to combine values, or
3469     * null if none.
3470     *
3471     * @param transformer a function returning the transformation
3472     * for an element, or null of there is no transformation (in
3473     * which case it is not combined).
3474     * @param reducer a commutative associative combining function
3475     * @return the result of accumulating the given transformation
3476     * of all keys
3477     */
3478 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3479 dl 1.153 (Function<? super K, ? extends U> transformer,
3480     BiFunction<? super U, ? super U, ? extends U> reducer) {
3481 dl 1.151 if (transformer == null || reducer == null)
3482     throw new NullPointerException();
3483     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3484     U r = null, u;
3485     while (it.advance() != null) {
3486     if ((u = transformer.apply((K)it.nextKey)) != null)
3487     r = (r == null) ? u : reducer.apply(r, u);
3488     }
3489     return r;
3490 dl 1.137 }
3491 dl 1.119
3492 dl 1.137 /**
3493     * Returns the result of accumulating the given transformation
3494     * of all keys using the given reducer to combine values, and
3495     * the given basis as an identity value.
3496     *
3497     * @param transformer a function returning the transformation
3498     * for an element
3499     * @param basis the identity (initial default value) for the reduction
3500     * @param reducer a commutative associative combining function
3501 jsr166 1.157 * @return the result of accumulating the given transformation
3502 dl 1.137 * of all keys
3503     */
3504 dl 1.151 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3505 dl 1.153 (DoubleFunction<? super K> transformer,
3506 dl 1.151 double basis,
3507 dl 1.153 DoubleBinaryOperator reducer) {
3508 dl 1.151 if (transformer == null || reducer == null)
3509     throw new NullPointerException();
3510     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3511     double r = basis;
3512     while (it.advance() != null)
3513 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3514 dl 1.151 return r;
3515 dl 1.137 }
3516 dl 1.119
3517 dl 1.137 /**
3518     * Returns the result of accumulating the given transformation
3519     * of all keys using the given reducer to combine values, and
3520     * the given basis as an identity value.
3521     *
3522     * @param transformer a function returning the transformation
3523     * for an element
3524     * @param basis the identity (initial default value) for the reduction
3525     * @param reducer a commutative associative combining function
3526     * @return the result of accumulating the given transformation
3527     * of all keys
3528     */
3529 dl 1.151 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3530 dl 1.153 (LongFunction<? super K> transformer,
3531 dl 1.151 long basis,
3532 dl 1.153 LongBinaryOperator reducer) {
3533 dl 1.151 if (transformer == null || reducer == null)
3534     throw new NullPointerException();
3535     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3536     long r = basis;
3537     while (it.advance() != null)
3538 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3539 dl 1.151 return r;
3540 dl 1.137 }
3541 dl 1.119
3542 dl 1.137 /**
3543     * Returns the result of accumulating the given transformation
3544     * of all keys using the given reducer to combine values, and
3545     * the given basis as an identity value.
3546     *
3547     * @param transformer a function returning the transformation
3548     * for an element
3549     * @param basis the identity (initial default value) for the reduction
3550     * @param reducer a commutative associative combining function
3551     * @return the result of accumulating the given transformation
3552     * of all keys
3553     */
3554 dl 1.151 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3555 dl 1.153 (IntFunction<? super K> transformer,
3556 dl 1.151 int basis,
3557 dl 1.153 IntBinaryOperator reducer) {
3558 dl 1.151 if (transformer == null || reducer == null)
3559     throw new NullPointerException();
3560     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3561     int r = basis;
3562     while (it.advance() != null)
3563 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3564 dl 1.151 return r;
3565 dl 1.137 }
3566 dl 1.119
3567 dl 1.137 /**
3568     * Performs the given action for each value.
3569     *
3570     * @param action the action
3571     */
3572 dl 1.153 public void forEachValueSequentially(Block<? super V> action) {
3573 dl 1.151 if (action == null) throw new NullPointerException();
3574     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3575     V v;
3576     while ((v = it.advance()) != null)
3577 dl 1.153 action.accept(v);
3578 dl 1.137 }
3579 dl 1.119
3580 dl 1.137 /**
3581     * Performs the given action for each non-null transformation
3582     * of each value.
3583     *
3584     * @param transformer a function returning the transformation
3585     * for an element, or null of there is no transformation (in
3586     * which case the action is not applied).
3587     */
3588 dl 1.151 public <U> void forEachValueSequentially
3589 dl 1.153 (Function<? super V, ? extends U> transformer,
3590     Block<? super U> action) {
3591 dl 1.151 if (transformer == null || action == null)
3592     throw new NullPointerException();
3593     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3594     V v; U u;
3595     while ((v = it.advance()) != null) {
3596     if ((u = transformer.apply(v)) != null)
3597 dl 1.153 action.accept(u);
3598 dl 1.151 }
3599 dl 1.137 }
3600 dl 1.119
3601 dl 1.137 /**
3602     * Returns a non-null result from applying the given search
3603 dl 1.151 * function on each value, or null if none.
3604 dl 1.137 *
3605     * @param searchFunction a function returning a non-null
3606     * result on success, else null
3607     * @return a non-null result from applying the given search
3608     * function on each value, or null if none
3609     */
3610 dl 1.151 public <U> U searchValuesSequentially
3611 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3612 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3613     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3614     V v; U u;
3615     while ((v = it.advance()) != null) {
3616     if ((u = searchFunction.apply(v)) != null)
3617     return u;
3618     }
3619     return null;
3620 dl 1.137 }
3621 dl 1.119
3622 dl 1.137 /**
3623     * Returns the result of accumulating all values using the
3624     * given reducer to combine values, or null if none.
3625     *
3626     * @param reducer a commutative associative combining function
3627 jsr166 1.157 * @return the result of accumulating all values
3628 dl 1.137 */
3629 dl 1.151 public V reduceValuesSequentially
3630 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3631 dl 1.151 if (reducer == null) throw new NullPointerException();
3632     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3633     V r = null; V v;
3634     while ((v = it.advance()) != null)
3635     r = (r == null) ? v : reducer.apply(r, v);
3636     return r;
3637 dl 1.137 }
3638 dl 1.119
3639 dl 1.137 /**
3640     * Returns the result of accumulating the given transformation
3641     * of all values using the given reducer to combine values, or
3642     * null if none.
3643     *
3644     * @param transformer a function returning the transformation
3645     * for an element, or null of there is no transformation (in
3646     * which case it is not combined).
3647     * @param reducer a commutative associative combining function
3648     * @return the result of accumulating the given transformation
3649     * of all values
3650     */
3651 dl 1.151 public <U> U reduceValuesSequentially
3652 dl 1.153 (Function<? super V, ? extends U> transformer,
3653     BiFunction<? super U, ? super U, ? extends U> reducer) {
3654 dl 1.151 if (transformer == null || reducer == null)
3655     throw new NullPointerException();
3656     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3657     U r = null, u; V v;
3658     while ((v = it.advance()) != null) {
3659     if ((u = transformer.apply(v)) != null)
3660     r = (r == null) ? u : reducer.apply(r, u);
3661     }
3662     return r;
3663 dl 1.137 }
3664 dl 1.119
3665 dl 1.137 /**
3666     * Returns the result of accumulating the given transformation
3667     * of all values using the given reducer to combine values,
3668     * and the given basis as an identity value.
3669     *
3670     * @param transformer a function returning the transformation
3671     * for an element
3672     * @param basis the identity (initial default value) for the reduction
3673     * @param reducer a commutative associative combining function
3674     * @return the result of accumulating the given transformation
3675     * of all values
3676     */
3677 dl 1.151 public double reduceValuesToDoubleSequentially
3678 dl 1.153 (DoubleFunction<? super V> transformer,
3679 dl 1.151 double basis,
3680 dl 1.153 DoubleBinaryOperator reducer) {
3681 dl 1.151 if (transformer == null || reducer == null)
3682     throw new NullPointerException();
3683     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3684     double r = basis; V v;
3685     while ((v = it.advance()) != null)
3686 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3687 dl 1.151 return r;
3688 dl 1.137 }
3689 dl 1.119
3690 dl 1.137 /**
3691     * Returns the result of accumulating the given transformation
3692     * of all values using the given reducer to combine values,
3693     * and the given basis as an identity value.
3694     *
3695     * @param transformer a function returning the transformation
3696     * for an element
3697     * @param basis the identity (initial default value) for the reduction
3698     * @param reducer a commutative associative combining function
3699     * @return the result of accumulating the given transformation
3700     * of all values
3701     */
3702 dl 1.151 public long reduceValuesToLongSequentially
3703 dl 1.153 (LongFunction<? super V> transformer,
3704 dl 1.151 long basis,
3705 dl 1.153 LongBinaryOperator reducer) {
3706 dl 1.151 if (transformer == null || reducer == null)
3707     throw new NullPointerException();
3708     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3709     long r = basis; V v;
3710     while ((v = it.advance()) != null)
3711 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3712 dl 1.151 return r;
3713 dl 1.137 }
3714 dl 1.119
3715 dl 1.137 /**
3716     * Returns the result of accumulating the given transformation
3717     * of all values using the given reducer to combine values,
3718     * and the given basis as an identity value.
3719     *
3720     * @param transformer a function returning the transformation
3721     * for an element
3722     * @param basis the identity (initial default value) for the reduction
3723     * @param reducer a commutative associative combining function
3724     * @return the result of accumulating the given transformation
3725     * of all values
3726     */
3727 dl 1.151 public int reduceValuesToIntSequentially
3728 dl 1.153 (IntFunction<? super V> transformer,
3729 dl 1.151 int basis,
3730 dl 1.153 IntBinaryOperator reducer) {
3731 dl 1.151 if (transformer == null || reducer == null)
3732     throw new NullPointerException();
3733     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3734     int r = basis; V v;
3735     while ((v = it.advance()) != null)
3736 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3737 dl 1.151 return r;
3738 dl 1.137 }
3739 dl 1.119
3740 dl 1.137 /**
3741     * Performs the given action for each entry.
3742     *
3743     * @param action the action
3744     */
3745 dl 1.151 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3746 dl 1.153 (Block<? super Map.Entry<K,V>> action) {
3747 dl 1.151 if (action == null) throw new NullPointerException();
3748     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3749     V v;
3750     while ((v = it.advance()) != null)
3751 dl 1.153 action.accept(entryFor((K)it.nextKey, v));
3752 dl 1.137 }
3753 dl 1.119
3754 dl 1.137 /**
3755     * Performs the given action for each non-null transformation
3756     * of each entry.
3757     *
3758     * @param transformer a function returning the transformation
3759     * for an element, or null of there is no transformation (in
3760     * which case the action is not applied).
3761     * @param action the action
3762     */
3763 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3764 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3765     Block<? super U> action) {
3766 dl 1.151 if (transformer == null || action == null)
3767     throw new NullPointerException();
3768     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3769     V v; U u;
3770     while ((v = it.advance()) != null) {
3771     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3772 dl 1.153 action.accept(u);
3773 dl 1.151 }
3774 dl 1.137 }
3775 dl 1.119
3776 dl 1.137 /**
3777     * Returns a non-null result from applying the given search
3778 dl 1.151 * function on each entry, or null if none.
3779 dl 1.137 *
3780     * @param searchFunction a function returning a non-null
3781     * result on success, else null
3782     * @return a non-null result from applying the given search
3783     * function on each entry, or null if none
3784     */
3785 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3786 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3787 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3788     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3789     V v; U u;
3790     while ((v = it.advance()) != null) {
3791     if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3792     return u;
3793     }
3794     return null;
3795 dl 1.137 }
3796 dl 1.119
3797 dl 1.137 /**
3798     * Returns the result of accumulating all entries using the
3799     * given reducer to combine values, or null if none.
3800     *
3801     * @param reducer a commutative associative combining function
3802     * @return the result of accumulating all entries
3803     */
3804 dl 1.151 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3805 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3806 dl 1.151 if (reducer == null) throw new NullPointerException();
3807     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808     Map.Entry<K,V> r = null; V v;
3809     while ((v = it.advance()) != null) {
3810     Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3811     r = (r == null) ? u : reducer.apply(r, u);
3812     }
3813     return r;
3814 dl 1.137 }
3815 dl 1.119
3816 dl 1.137 /**
3817     * Returns the result of accumulating the given transformation
3818     * of all entries using the given reducer to combine values,
3819     * or null if none.
3820     *
3821     * @param transformer a function returning the transformation
3822     * for an element, or null of there is no transformation (in
3823     * which case it is not combined).
3824     * @param reducer a commutative associative combining function
3825     * @return the result of accumulating the given transformation
3826     * of all entries
3827     */
3828 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3829 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3830     BiFunction<? super U, ? super U, ? extends U> reducer) {
3831 dl 1.151 if (transformer == null || reducer == null)
3832     throw new NullPointerException();
3833     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3834     U r = null, u; V v;
3835     while ((v = it.advance()) != null) {
3836     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3837     r = (r == null) ? u : reducer.apply(r, u);
3838     }
3839     return r;
3840 dl 1.137 }
3841 dl 1.119
3842 dl 1.137 /**
3843     * Returns the result of accumulating the given transformation
3844     * of all entries using the given reducer to combine values,
3845     * and the given basis as an identity value.
3846     *
3847     * @param transformer a function returning the transformation
3848     * for an element
3849     * @param basis the identity (initial default value) for the reduction
3850     * @param reducer a commutative associative combining function
3851     * @return the result of accumulating the given transformation
3852     * of all entries
3853     */
3854 dl 1.151 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3855 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
3856 dl 1.151 double basis,
3857 dl 1.153 DoubleBinaryOperator reducer) {
3858 dl 1.151 if (transformer == null || reducer == null)
3859     throw new NullPointerException();
3860     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3861     double r = basis; V v;
3862     while ((v = it.advance()) != null)
3863 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3864 dl 1.151 return r;
3865 dl 1.137 }
3866 dl 1.119
3867 dl 1.137 /**
3868     * Returns the result of accumulating the given transformation
3869     * of all entries using the given reducer to combine values,
3870     * and the given basis as an identity value.
3871     *
3872     * @param transformer a function returning the transformation
3873     * for an element
3874     * @param basis the identity (initial default value) for the reduction
3875     * @param reducer a commutative associative combining function
3876 jsr166 1.157 * @return the result of accumulating the given transformation
3877 dl 1.137 * of all entries
3878     */
3879 dl 1.151 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3880 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
3881 dl 1.151 long basis,
3882 dl 1.153 LongBinaryOperator reducer) {
3883 dl 1.151 if (transformer == null || reducer == null)
3884     throw new NullPointerException();
3885     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3886     long r = basis; V v;
3887     while ((v = it.advance()) != null)
3888 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3889 dl 1.151 return r;
3890 dl 1.137 }
3891 dl 1.119
3892 dl 1.137 /**
3893     * Returns the result of accumulating the given transformation
3894     * of all entries using the given reducer to combine values,
3895     * and the given basis as an identity value.
3896     *
3897     * @param transformer a function returning the transformation
3898     * for an element
3899     * @param basis the identity (initial default value) for the reduction
3900     * @param reducer a commutative associative combining function
3901     * @return the result of accumulating the given transformation
3902     * of all entries
3903     */
3904 dl 1.151 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3905 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
3906 dl 1.151 int basis,
3907 dl 1.153 IntBinaryOperator reducer) {
3908 dl 1.151 if (transformer == null || reducer == null)
3909     throw new NullPointerException();
3910     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3911     int r = basis; V v;
3912     while ((v = it.advance()) != null)
3913 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3914 dl 1.151 return r;
3915 dl 1.119 }
3916    
3917 dl 1.151 // Parallel bulk operations
3918 dl 1.142
3919     /**
3920 dl 1.151 * Performs the given action for each (key, value).
3921     *
3922     * @param action the action
3923 dl 1.142 */
3924 dl 1.153 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3925 dl 1.151 ForkJoinTasks.forEach
3926     (this, action).invoke();
3927     }
3928 dl 1.142
3929 dl 1.151 /**
3930     * Performs the given action for each non-null transformation
3931     * of each (key, value).
3932     *
3933     * @param transformer a function returning the transformation
3934     * for an element, or null of there is no transformation (in
3935     * which case the action is not applied).
3936     * @param action the action
3937     */
3938     public <U> void forEachInParallel
3939 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3940     Block<? super U> action) {
3941 dl 1.151 ForkJoinTasks.forEach
3942     (this, transformer, action).invoke();
3943     }
3944 dl 1.142
3945 dl 1.151 /**
3946     * Returns a non-null result from applying the given search
3947     * function on each (key, value), or null if none. Upon
3948     * success, further element processing is suppressed and the
3949     * results of any other parallel invocations of the search
3950     * function are ignored.
3951     *
3952     * @param searchFunction a function returning a non-null
3953     * result on success, else null
3954     * @return a non-null result from applying the given search
3955     * function on each (key, value), or null if none
3956     */
3957     public <U> U searchInParallel
3958 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3959 dl 1.151 return ForkJoinTasks.search
3960     (this, searchFunction).invoke();
3961     }
3962 dl 1.142
3963 dl 1.151 /**
3964     * Returns the result of accumulating the given transformation
3965     * of all (key, value) pairs using the given reducer to
3966     * combine values, or null if none.
3967     *
3968     * @param transformer a function returning the transformation
3969     * for an element, or null of there is no transformation (in
3970     * which case it is not combined).
3971     * @param reducer a commutative associative combining function
3972     * @return the result of accumulating the given transformation
3973     * of all (key, value) pairs
3974     */
3975     public <U> U reduceInParallel
3976 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3977     BiFunction<? super U, ? super U, ? extends U> reducer) {
3978 dl 1.151 return ForkJoinTasks.reduce
3979     (this, transformer, reducer).invoke();
3980     }
3981 dl 1.142
3982 dl 1.151 /**
3983     * Returns the result of accumulating the given transformation
3984     * of all (key, value) pairs using the given reducer to
3985     * combine values, and the given basis as an identity value.
3986     *
3987     * @param transformer a function returning the transformation
3988     * for an element
3989     * @param basis the identity (initial default value) for the reduction
3990     * @param reducer a commutative associative combining function
3991     * @return the result of accumulating the given transformation
3992     * of all (key, value) pairs
3993     */
3994     public double reduceToDoubleInParallel
3995 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
3996 dl 1.151 double basis,
3997 dl 1.153 DoubleBinaryOperator reducer) {
3998 dl 1.151 return ForkJoinTasks.reduceToDouble
3999     (this, transformer, basis, reducer).invoke();
4000     }
4001    
4002     /**
4003     * Returns the result of accumulating the given transformation
4004     * of all (key, value) pairs using the given reducer to
4005     * combine values, and the given basis as an identity value.
4006     *
4007     * @param transformer a function returning the transformation
4008     * for an element
4009     * @param basis the identity (initial default value) for the reduction
4010     * @param reducer a commutative associative combining function
4011     * @return the result of accumulating the given transformation
4012     * of all (key, value) pairs
4013     */
4014     public long reduceToLongInParallel
4015 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
4016 dl 1.151 long basis,
4017 dl 1.153 LongBinaryOperator reducer) {
4018 dl 1.151 return ForkJoinTasks.reduceToLong
4019     (this, transformer, basis, reducer).invoke();
4020     }
4021    
4022     /**
4023     * Returns the result of accumulating the given transformation
4024     * of all (key, value) pairs using the given reducer to
4025     * combine values, and the given basis as an identity value.
4026     *
4027     * @param transformer a function returning the transformation
4028     * for an element
4029     * @param basis the identity (initial default value) for the reduction
4030     * @param reducer a commutative associative combining function
4031     * @return the result of accumulating the given transformation
4032     * of all (key, value) pairs
4033     */
4034     public int reduceToIntInParallel
4035 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
4036 dl 1.151 int basis,
4037 dl 1.153 IntBinaryOperator reducer) {
4038 dl 1.151 return ForkJoinTasks.reduceToInt
4039     (this, transformer, basis, reducer).invoke();
4040     }
4041    
4042     /**
4043     * Performs the given action for each key.
4044     *
4045     * @param action the action
4046     */
4047 dl 1.153 public void forEachKeyInParallel(Block<? super K> action) {
4048 dl 1.151 ForkJoinTasks.forEachKey
4049     (this, action).invoke();
4050     }
4051    
4052     /**
4053     * Performs the given action for each non-null transformation
4054     * of each key.
4055     *
4056     * @param transformer a function returning the transformation
4057     * for an element, or null of there is no transformation (in
4058     * which case the action is not applied).
4059     * @param action the action
4060     */
4061     public <U> void forEachKeyInParallel
4062 dl 1.153 (Function<? super K, ? extends U> transformer,
4063     Block<? super U> action) {
4064 dl 1.151 ForkJoinTasks.forEachKey
4065     (this, transformer, action).invoke();
4066     }
4067    
4068     /**
4069     * Returns a non-null result from applying the given search
4070     * function on each key, or null if none. Upon success,
4071     * further element processing is suppressed and the results of
4072     * any other parallel invocations of the search function are
4073     * ignored.
4074     *
4075     * @param searchFunction a function returning a non-null
4076     * result on success, else null
4077     * @return a non-null result from applying the given search
4078     * function on each key, or null if none
4079     */
4080     public <U> U searchKeysInParallel
4081 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4082 dl 1.151 return ForkJoinTasks.searchKeys
4083     (this, searchFunction).invoke();
4084     }
4085    
4086     /**
4087     * Returns the result of accumulating all keys using the given
4088     * reducer to combine values, or null if none.
4089     *
4090     * @param reducer a commutative associative combining function
4091     * @return the result of accumulating all keys using the given
4092     * reducer to combine values, or null if none
4093     */
4094     public K reduceKeysInParallel
4095 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4096 dl 1.151 return ForkJoinTasks.reduceKeys
4097     (this, reducer).invoke();
4098     }
4099    
4100     /**
4101     * Returns the result of accumulating the given transformation
4102     * of all keys using the given reducer to combine values, or
4103     * null if none.
4104     *
4105     * @param transformer a function returning the transformation
4106     * for an element, or null of there is no transformation (in
4107     * which case it is not combined).
4108     * @param reducer a commutative associative combining function
4109     * @return the result of accumulating the given transformation
4110     * of all keys
4111     */
4112     public <U> U reduceKeysInParallel
4113 dl 1.153 (Function<? super K, ? extends U> transformer,
4114     BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 dl 1.151 return ForkJoinTasks.reduceKeys
4116     (this, transformer, reducer).invoke();
4117     }
4118    
4119     /**
4120     * Returns the result of accumulating the given transformation
4121     * of all keys using the given reducer to combine values, and
4122     * the given basis as an identity value.
4123     *
4124     * @param transformer a function returning the transformation
4125     * for an element
4126     * @param basis the identity (initial default value) for the reduction
4127     * @param reducer a commutative associative combining function
4128 jsr166 1.157 * @return the result of accumulating the given transformation
4129 dl 1.151 * of all keys
4130     */
4131     public double reduceKeysToDoubleInParallel
4132 dl 1.153 (DoubleFunction<? super K> transformer,
4133 dl 1.151 double basis,
4134 dl 1.153 DoubleBinaryOperator reducer) {
4135 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4136     (this, transformer, basis, reducer).invoke();
4137     }
4138    
4139     /**
4140     * Returns the result of accumulating the given transformation
4141     * of all keys using the given reducer to combine values, and
4142     * the given basis as an identity value.
4143     *
4144     * @param transformer a function returning the transformation
4145     * for an element
4146     * @param basis the identity (initial default value) for the reduction
4147     * @param reducer a commutative associative combining function
4148     * @return the result of accumulating the given transformation
4149     * of all keys
4150     */
4151     public long reduceKeysToLongInParallel
4152 dl 1.153 (LongFunction<? super K> transformer,
4153 dl 1.151 long basis,
4154 dl 1.153 LongBinaryOperator reducer) {
4155 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4156     (this, transformer, basis, reducer).invoke();
4157     }
4158    
4159     /**
4160     * Returns the result of accumulating the given transformation
4161     * of all keys using the given reducer to combine values, and
4162     * the given basis as an identity value.
4163     *
4164     * @param transformer a function returning the transformation
4165     * for an element
4166     * @param basis the identity (initial default value) for the reduction
4167     * @param reducer a commutative associative combining function
4168     * @return the result of accumulating the given transformation
4169     * of all keys
4170     */
4171     public int reduceKeysToIntInParallel
4172 dl 1.153 (IntFunction<? super K> transformer,
4173 dl 1.151 int basis,
4174 dl 1.153 IntBinaryOperator reducer) {
4175 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4176     (this, transformer, basis, reducer).invoke();
4177     }
4178    
4179     /**
4180     * Performs the given action for each value.
4181     *
4182     * @param action the action
4183     */
4184 dl 1.153 public void forEachValueInParallel(Block<? super V> action) {
4185 dl 1.151 ForkJoinTasks.forEachValue
4186     (this, action).invoke();
4187     }
4188    
4189     /**
4190     * Performs the given action for each non-null transformation
4191     * of each value.
4192     *
4193     * @param transformer a function returning the transformation
4194     * for an element, or null of there is no transformation (in
4195     * which case the action is not applied).
4196     */
4197     public <U> void forEachValueInParallel
4198 dl 1.153 (Function<? super V, ? extends U> transformer,
4199     Block<? super U> action) {
4200 dl 1.151 ForkJoinTasks.forEachValue
4201     (this, transformer, action).invoke();
4202     }
4203    
4204     /**
4205     * Returns a non-null result from applying the given search
4206     * function on each value, or null if none. Upon success,
4207     * further element processing is suppressed and the results of
4208     * any other parallel invocations of the search function are
4209     * ignored.
4210     *
4211     * @param searchFunction a function returning a non-null
4212     * result on success, else null
4213     * @return a non-null result from applying the given search
4214     * function on each value, or null if none
4215     */
4216     public <U> U searchValuesInParallel
4217 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4218 dl 1.151 return ForkJoinTasks.searchValues
4219     (this, searchFunction).invoke();
4220     }
4221    
4222     /**
4223     * Returns the result of accumulating all values using the
4224     * given reducer to combine values, or null if none.
4225     *
4226     * @param reducer a commutative associative combining function
4227 jsr166 1.157 * @return the result of accumulating all values
4228 dl 1.151 */
4229     public V reduceValuesInParallel
4230 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4231 dl 1.151 return ForkJoinTasks.reduceValues
4232     (this, reducer).invoke();
4233     }
4234    
4235     /**
4236     * Returns the result of accumulating the given transformation
4237     * of all values using the given reducer to combine values, or
4238     * null if none.
4239     *
4240     * @param transformer a function returning the transformation
4241     * for an element, or null of there is no transformation (in
4242     * which case it is not combined).
4243     * @param reducer a commutative associative combining function
4244     * @return the result of accumulating the given transformation
4245     * of all values
4246     */
4247     public <U> U reduceValuesInParallel
4248 dl 1.153 (Function<? super V, ? extends U> transformer,
4249     BiFunction<? super U, ? super U, ? extends U> reducer) {
4250 dl 1.151 return ForkJoinTasks.reduceValues
4251     (this, transformer, reducer).invoke();
4252     }
4253    
4254     /**
4255     * Returns the result of accumulating the given transformation
4256     * of all values using the given reducer to combine values,
4257     * and the given basis as an identity value.
4258     *
4259     * @param transformer a function returning the transformation
4260     * for an element
4261     * @param basis the identity (initial default value) for the reduction
4262     * @param reducer a commutative associative combining function
4263     * @return the result of accumulating the given transformation
4264     * of all values
4265     */
4266     public double reduceValuesToDoubleInParallel
4267 dl 1.153 (DoubleFunction<? super V> transformer,
4268 dl 1.151 double basis,
4269 dl 1.153 DoubleBinaryOperator reducer) {
4270 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4271     (this, transformer, basis, reducer).invoke();
4272     }
4273    
4274     /**
4275     * Returns the result of accumulating the given transformation
4276     * of all values using the given reducer to combine values,
4277     * and the given basis as an identity value.
4278     *
4279     * @param transformer a function returning the transformation
4280     * for an element
4281     * @param basis the identity (initial default value) for the reduction
4282     * @param reducer a commutative associative combining function
4283     * @return the result of accumulating the given transformation
4284     * of all values
4285     */
4286     public long reduceValuesToLongInParallel
4287 dl 1.153 (LongFunction<? super V> transformer,
4288 dl 1.151 long basis,
4289 dl 1.153 LongBinaryOperator reducer) {
4290 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4291     (this, transformer, basis, reducer).invoke();
4292     }
4293    
4294     /**
4295     * Returns the result of accumulating the given transformation
4296     * of all values using the given reducer to combine values,
4297     * and the given basis as an identity value.
4298     *
4299     * @param transformer a function returning the transformation
4300     * for an element
4301     * @param basis the identity (initial default value) for the reduction
4302     * @param reducer a commutative associative combining function
4303     * @return the result of accumulating the given transformation
4304     * of all values
4305     */
4306     public int reduceValuesToIntInParallel
4307 dl 1.153 (IntFunction<? super V> transformer,
4308 dl 1.151 int basis,
4309 dl 1.153 IntBinaryOperator reducer) {
4310 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4311     (this, transformer, basis, reducer).invoke();
4312     }
4313    
4314     /**
4315     * Performs the given action for each entry.
4316     *
4317     * @param action the action
4318     */
4319 dl 1.153 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4320 dl 1.151 ForkJoinTasks.forEachEntry
4321     (this, action).invoke();
4322     }
4323    
4324     /**
4325     * Performs the given action for each non-null transformation
4326     * of each entry.
4327     *
4328     * @param transformer a function returning the transformation
4329     * for an element, or null of there is no transformation (in
4330     * which case the action is not applied).
4331     * @param action the action
4332     */
4333     public <U> void forEachEntryInParallel
4334 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4335     Block<? super U> action) {
4336 dl 1.151 ForkJoinTasks.forEachEntry
4337     (this, transformer, action).invoke();
4338     }
4339    
4340     /**
4341     * Returns a non-null result from applying the given search
4342     * function on each entry, or null if none. Upon success,
4343     * further element processing is suppressed and the results of
4344     * any other parallel invocations of the search function are
4345     * ignored.
4346     *
4347     * @param searchFunction a function returning a non-null
4348     * result on success, else null
4349     * @return a non-null result from applying the given search
4350     * function on each entry, or null if none
4351     */
4352     public <U> U searchEntriesInParallel
4353 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4354 dl 1.151 return ForkJoinTasks.searchEntries
4355     (this, searchFunction).invoke();
4356     }
4357    
4358     /**
4359     * Returns the result of accumulating all entries using the
4360     * given reducer to combine values, or null if none.
4361     *
4362     * @param reducer a commutative associative combining function
4363     * @return the result of accumulating all entries
4364     */
4365     public Map.Entry<K,V> reduceEntriesInParallel
4366 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4367 dl 1.151 return ForkJoinTasks.reduceEntries
4368     (this, reducer).invoke();
4369     }
4370    
4371     /**
4372     * Returns the result of accumulating the given transformation
4373     * of all entries using the given reducer to combine values,
4374     * or null if none.
4375     *
4376     * @param transformer a function returning the transformation
4377     * for an element, or null of there is no transformation (in
4378     * which case it is not combined).
4379     * @param reducer a commutative associative combining function
4380     * @return the result of accumulating the given transformation
4381     * of all entries
4382     */
4383     public <U> U reduceEntriesInParallel
4384 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4385     BiFunction<? super U, ? super U, ? extends U> reducer) {
4386 dl 1.151 return ForkJoinTasks.reduceEntries
4387     (this, transformer, reducer).invoke();
4388     }
4389    
4390     /**
4391     * Returns the result of accumulating the given transformation
4392     * of all entries using the given reducer to combine values,
4393     * and the given basis as an identity value.
4394     *
4395     * @param transformer a function returning the transformation
4396     * for an element
4397     * @param basis the identity (initial default value) for the reduction
4398     * @param reducer a commutative associative combining function
4399     * @return the result of accumulating the given transformation
4400     * of all entries
4401     */
4402     public double reduceEntriesToDoubleInParallel
4403 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
4404 dl 1.151 double basis,
4405 dl 1.153 DoubleBinaryOperator reducer) {
4406 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4407     (this, transformer, basis, reducer).invoke();
4408     }
4409    
4410     /**
4411     * Returns the result of accumulating the given transformation
4412     * of all entries using the given reducer to combine values,
4413     * and the given basis as an identity value.
4414     *
4415     * @param transformer a function returning the transformation
4416     * for an element
4417     * @param basis the identity (initial default value) for the reduction
4418     * @param reducer a commutative associative combining function
4419 jsr166 1.157 * @return the result of accumulating the given transformation
4420 dl 1.151 * of all entries
4421     */
4422     public long reduceEntriesToLongInParallel
4423 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
4424 dl 1.151 long basis,
4425 dl 1.153 LongBinaryOperator reducer) {
4426 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4427     (this, transformer, basis, reducer).invoke();
4428     }
4429    
4430     /**
4431     * Returns the result of accumulating the given transformation
4432     * of all entries using the given reducer to combine values,
4433     * and the given basis as an identity value.
4434     *
4435     * @param transformer a function returning the transformation
4436     * for an element
4437     * @param basis the identity (initial default value) for the reduction
4438     * @param reducer a commutative associative combining function
4439     * @return the result of accumulating the given transformation
4440     * of all entries
4441     */
4442     public int reduceEntriesToIntInParallel
4443 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
4444 dl 1.151 int basis,
4445 dl 1.153 IntBinaryOperator reducer) {
4446 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4447     (this, transformer, basis, reducer).invoke();
4448     }
4449    
4450    
4451     /* ----------------Views -------------- */
4452    
4453     /**
4454     * Base class for views.
4455     */
4456     static abstract class CHMView<K, V> {
4457     final ConcurrentHashMap<K, V> map;
4458     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4459    
4460     /**
4461     * Returns the map backing this view.
4462     *
4463     * @return the map backing this view
4464     */
4465     public ConcurrentHashMap<K,V> getMap() { return map; }
4466    
4467     public final int size() { return map.size(); }
4468     public final boolean isEmpty() { return map.isEmpty(); }
4469     public final void clear() { map.clear(); }
4470    
4471     // implementations below rely on concrete classes supplying these
4472     abstract public Iterator<?> iterator();
4473     abstract public boolean contains(Object o);
4474     abstract public boolean remove(Object o);
4475    
4476     private static final String oomeMsg = "Required array size too large";
4477 dl 1.142
4478     public final Object[] toArray() {
4479     long sz = map.mappingCount();
4480     if (sz > (long)(MAX_ARRAY_SIZE))
4481     throw new OutOfMemoryError(oomeMsg);
4482     int n = (int)sz;
4483     Object[] r = new Object[n];
4484     int i = 0;
4485     Iterator<?> it = iterator();
4486     while (it.hasNext()) {
4487     if (i == n) {
4488     if (n >= MAX_ARRAY_SIZE)
4489     throw new OutOfMemoryError(oomeMsg);
4490     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4491     n = MAX_ARRAY_SIZE;
4492     else
4493     n += (n >>> 1) + 1;
4494     r = Arrays.copyOf(r, n);
4495     }
4496     r[i++] = it.next();
4497     }
4498     return (i == n) ? r : Arrays.copyOf(r, i);
4499     }
4500    
4501     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4502     long sz = map.mappingCount();
4503     if (sz > (long)(MAX_ARRAY_SIZE))
4504     throw new OutOfMemoryError(oomeMsg);
4505     int m = (int)sz;
4506     T[] r = (a.length >= m) ? a :
4507     (T[])java.lang.reflect.Array
4508     .newInstance(a.getClass().getComponentType(), m);
4509     int n = r.length;
4510     int i = 0;
4511     Iterator<?> it = iterator();
4512     while (it.hasNext()) {
4513     if (i == n) {
4514     if (n >= MAX_ARRAY_SIZE)
4515     throw new OutOfMemoryError(oomeMsg);
4516     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4517     n = MAX_ARRAY_SIZE;
4518     else
4519     n += (n >>> 1) + 1;
4520     r = Arrays.copyOf(r, n);
4521     }
4522     r[i++] = (T)it.next();
4523     }
4524     if (a == r && i < n) {
4525     r[i] = null; // null-terminate
4526     return r;
4527     }
4528     return (i == n) ? r : Arrays.copyOf(r, i);
4529     }
4530    
4531     public final int hashCode() {
4532     int h = 0;
4533     for (Iterator<?> it = iterator(); it.hasNext();)
4534     h += it.next().hashCode();
4535     return h;
4536     }
4537    
4538     public final String toString() {
4539     StringBuilder sb = new StringBuilder();
4540     sb.append('[');
4541     Iterator<?> it = iterator();
4542     if (it.hasNext()) {
4543     for (;;) {
4544     Object e = it.next();
4545     sb.append(e == this ? "(this Collection)" : e);
4546     if (!it.hasNext())
4547     break;
4548     sb.append(',').append(' ');
4549     }
4550     }
4551     return sb.append(']').toString();
4552     }
4553    
4554     public final boolean containsAll(Collection<?> c) {
4555     if (c != this) {
4556     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4557     Object e = it.next();
4558     if (e == null || !contains(e))
4559     return false;
4560     }
4561     }
4562     return true;
4563     }
4564    
4565     public final boolean removeAll(Collection<?> c) {
4566     boolean modified = false;
4567     for (Iterator<?> it = iterator(); it.hasNext();) {
4568     if (c.contains(it.next())) {
4569     it.remove();
4570     modified = true;
4571     }
4572     }
4573     return modified;
4574     }
4575    
4576     public final boolean retainAll(Collection<?> c) {
4577     boolean modified = false;
4578     for (Iterator<?> it = iterator(); it.hasNext();) {
4579     if (!c.contains(it.next())) {
4580     it.remove();
4581     modified = true;
4582     }
4583     }
4584     return modified;
4585     }
4586    
4587     }
4588    
4589     /**
4590     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4591     * which additions may optionally be enabled by mapping to a
4592     * common value. This class cannot be directly instantiated. See
4593     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4594     * {@link #newKeySet(int)}.
4595     */
4596 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4597     implements Set<K>, java.io.Serializable {
4598 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4599     private final V value;
4600     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4601     super(map);
4602     this.value = value;
4603     }
4604    
4605     /**
4606     * Returns the default mapped value for additions,
4607     * or {@code null} if additions are not supported.
4608     *
4609     * @return the default mapped value for additions, or {@code null}
4610     * if not supported.
4611     */
4612     public V getMappedValue() { return value; }
4613    
4614     // implement Set API
4615    
4616     public boolean contains(Object o) { return map.containsKey(o); }
4617     public boolean remove(Object o) { return map.remove(o) != null; }
4618    
4619     /**
4620     * Returns a "weakly consistent" iterator that will never
4621     * throw {@link ConcurrentModificationException}, and
4622     * guarantees to traverse elements as they existed upon
4623     * construction of the iterator, and may (but is not
4624     * guaranteed to) reflect any modifications subsequent to
4625     * construction.
4626     *
4627     * @return an iterator over the keys of this map
4628     */
4629     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4630     public boolean add(K e) {
4631     V v;
4632     if ((v = value) == null)
4633     throw new UnsupportedOperationException();
4634     if (e == null)
4635     throw new NullPointerException();
4636 dl 1.149 return map.internalPut(e, v, true) == null;
4637 dl 1.142 }
4638     public boolean addAll(Collection<? extends K> c) {
4639     boolean added = false;
4640     V v;
4641     if ((v = value) == null)
4642     throw new UnsupportedOperationException();
4643     for (K e : c) {
4644     if (e == null)
4645     throw new NullPointerException();
4646 dl 1.149 if (map.internalPut(e, v, true) == null)
4647 dl 1.142 added = true;
4648     }
4649     return added;
4650     }
4651     public boolean equals(Object o) {
4652     Set<?> c;
4653     return ((o instanceof Set) &&
4654     ((c = (Set<?>)o) == this ||
4655     (containsAll(c) && c.containsAll(this))));
4656     }
4657 dl 1.153
4658     public Stream<K> stream() {
4659     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4660     }
4661     public Stream<K> parallelStream() {
4662     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4663     0);
4664     }
4665 dl 1.142 }
4666    
4667     /**
4668     * A view of a ConcurrentHashMap as a {@link Collection} of
4669     * values, in which additions are disabled. This class cannot be
4670     * directly instantiated. See {@link #values},
4671     *
4672     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4673     * that will never throw {@link ConcurrentModificationException},
4674     * and guarantees to traverse elements as they existed upon
4675     * construction of the iterator, and may (but is not guaranteed to)
4676     * reflect any modifications subsequent to construction.
4677     */
4678     public static final class ValuesView<K,V> extends CHMView<K,V>
4679     implements Collection<V> {
4680     ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4681     public final boolean contains(Object o) { return map.containsValue(o); }
4682     public final boolean remove(Object o) {
4683     if (o != null) {
4684     Iterator<V> it = new ValueIterator<K,V>(map);
4685     while (it.hasNext()) {
4686     if (o.equals(it.next())) {
4687     it.remove();
4688     return true;
4689     }
4690     }
4691     }
4692     return false;
4693     }
4694    
4695     /**
4696     * Returns a "weakly consistent" iterator that will never
4697     * throw {@link ConcurrentModificationException}, and
4698     * guarantees to traverse elements as they existed upon
4699     * construction of the iterator, and may (but is not
4700     * guaranteed to) reflect any modifications subsequent to
4701     * construction.
4702     *
4703     * @return an iterator over the values of this map
4704     */
4705     public final Iterator<V> iterator() {
4706     return new ValueIterator<K,V>(map);
4707     }
4708     public final boolean add(V e) {
4709     throw new UnsupportedOperationException();
4710     }
4711     public final boolean addAll(Collection<? extends V> c) {
4712     throw new UnsupportedOperationException();
4713     }
4714    
4715 dl 1.153 public Stream<V> stream() {
4716     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4717     }
4718    
4719     public Stream<V> parallelStream() {
4720     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4721     0);
4722     }
4723    
4724 dl 1.142 }
4725    
4726     /**
4727     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4728     * entries. This class cannot be directly instantiated. See
4729     * {@link #entrySet}.
4730     */
4731     public static final class EntrySetView<K,V> extends CHMView<K,V>
4732     implements Set<Map.Entry<K,V>> {
4733     EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4734     public final boolean contains(Object o) {
4735     Object k, v, r; Map.Entry<?,?> e;
4736     return ((o instanceof Map.Entry) &&
4737     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4738     (r = map.get(k)) != null &&
4739     (v = e.getValue()) != null &&
4740     (v == r || v.equals(r)));
4741     }
4742     public final boolean remove(Object o) {
4743     Object k, v; Map.Entry<?,?> e;
4744     return ((o instanceof Map.Entry) &&
4745     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4746     (v = e.getValue()) != null &&
4747     map.remove(k, v));
4748     }
4749    
4750     /**
4751     * Returns a "weakly consistent" iterator that will never
4752     * throw {@link ConcurrentModificationException}, and
4753     * guarantees to traverse elements as they existed upon
4754     * construction of the iterator, and may (but is not
4755     * guaranteed to) reflect any modifications subsequent to
4756     * construction.
4757     *
4758     * @return an iterator over the entries of this map
4759     */
4760     public final Iterator<Map.Entry<K,V>> iterator() {
4761     return new EntryIterator<K,V>(map);
4762     }
4763    
4764     public final boolean add(Entry<K,V> e) {
4765     K key = e.getKey();
4766     V value = e.getValue();
4767     if (key == null || value == null)
4768     throw new NullPointerException();
4769 dl 1.149 return map.internalPut(key, value, false) == null;
4770 dl 1.142 }
4771     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4772     boolean added = false;
4773     for (Entry<K,V> e : c) {
4774     if (add(e))
4775     added = true;
4776     }
4777     return added;
4778     }
4779     public boolean equals(Object o) {
4780     Set<?> c;
4781     return ((o instanceof Set) &&
4782     ((c = (Set<?>)o) == this ||
4783     (containsAll(c) && c.containsAll(this))));
4784     }
4785 dl 1.153
4786     public Stream<Map.Entry<K,V>> stream() {
4787     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4788     }
4789    
4790     public Stream<Map.Entry<K,V>> parallelStream() {
4791     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4792     0);
4793     }
4794 dl 1.142 }
4795    
4796 dl 1.119 // ---------------------------------------------------------------------
4797    
4798     /**
4799     * Predefined tasks for performing bulk parallel operations on
4800     * ConcurrentHashMaps. These tasks follow the forms and rules used
4801 dl 1.137 * for bulk operations. Each method has the same name, but returns
4802     * a task rather than invoking it. These methods may be useful in
4803     * custom applications such as submitting a task without waiting
4804     * for completion, using a custom pool, or combining with other
4805     * tasks.
4806 dl 1.119 */
4807     public static class ForkJoinTasks {
4808     private ForkJoinTasks() {}
4809    
4810     /**
4811     * Returns a task that when invoked, performs the given
4812     * action for each (key, value)
4813     *
4814     * @param map the map
4815     * @param action the action
4816     * @return the task
4817     */
4818 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4819 dl 1.119 (ConcurrentHashMap<K,V> map,
4820 dl 1.153 BiBlock<? super K, ? super V> action) {
4821 dl 1.119 if (action == null) throw new NullPointerException();
4822 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4823 dl 1.119 }
4824    
4825     /**
4826     * Returns a task that when invoked, performs the given
4827     * action for each non-null transformation of each (key, value)
4828     *
4829     * @param map the map
4830     * @param transformer a function returning the transformation
4831 jsr166 1.135 * for an element, or null if there is no transformation (in
4832 jsr166 1.134 * which case the action is not applied)
4833 dl 1.119 * @param action the action
4834     * @return the task
4835     */
4836 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4837 dl 1.119 (ConcurrentHashMap<K,V> map,
4838 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4839     Block<? super U> action) {
4840 dl 1.119 if (transformer == null || action == null)
4841     throw new NullPointerException();
4842     return new ForEachTransformedMappingTask<K,V,U>
4843 dl 1.146 (map, null, -1, transformer, action);
4844 dl 1.119 }
4845    
4846     /**
4847 dl 1.126 * Returns a task that when invoked, returns a non-null result
4848     * from applying the given search function on each (key,
4849     * value), or null if none. Upon success, further element
4850     * processing is suppressed and the results of any other
4851     * parallel invocations of the search function are ignored.
4852 dl 1.119 *
4853     * @param map the map
4854     * @param searchFunction a function returning a non-null
4855     * result on success, else null
4856     * @return the task
4857     */
4858     public static <K,V,U> ForkJoinTask<U> search
4859     (ConcurrentHashMap<K,V> map,
4860 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4861 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4862     return new SearchMappingsTask<K,V,U>
4863 dl 1.146 (map, null, -1, searchFunction,
4864 dl 1.119 new AtomicReference<U>());
4865     }
4866    
4867     /**
4868     * Returns a task that when invoked, returns the result of
4869     * accumulating the given transformation of all (key, value) pairs
4870     * using the given reducer to combine values, or null if none.
4871     *
4872     * @param map the map
4873     * @param transformer a function returning the transformation
4874 jsr166 1.135 * for an element, or null if there is no transformation (in
4875 dl 1.119 * which case it is not combined).
4876     * @param reducer a commutative associative combining function
4877     * @return the task
4878     */
4879     public static <K,V,U> ForkJoinTask<U> reduce
4880     (ConcurrentHashMap<K,V> map,
4881 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4882     BiFunction<? super U, ? super U, ? extends U> reducer) {
4883 dl 1.119 if (transformer == null || reducer == null)
4884     throw new NullPointerException();
4885     return new MapReduceMappingsTask<K,V,U>
4886 dl 1.130 (map, null, -1, null, transformer, reducer);
4887 dl 1.119 }
4888    
4889     /**
4890     * Returns a task that when invoked, returns the result of
4891     * accumulating the given transformation of all (key, value) pairs
4892     * using the given reducer to combine values, and the given
4893     * basis as an identity value.
4894     *
4895     * @param map the map
4896     * @param transformer a function returning the transformation
4897     * for an element
4898     * @param basis the identity (initial default value) for the reduction
4899     * @param reducer a commutative associative combining function
4900     * @return the task
4901     */
4902     public static <K,V> ForkJoinTask<Double> reduceToDouble
4903     (ConcurrentHashMap<K,V> map,
4904 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
4905 dl 1.119 double basis,
4906 dl 1.153 DoubleBinaryOperator reducer) {
4907 dl 1.119 if (transformer == null || reducer == null)
4908     throw new NullPointerException();
4909     return new MapReduceMappingsToDoubleTask<K,V>
4910 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4911 dl 1.119 }
4912    
4913     /**
4914     * Returns a task that when invoked, returns the result of
4915     * accumulating the given transformation of all (key, value) pairs
4916     * using the given reducer to combine values, and the given
4917     * basis as an identity value.
4918     *
4919     * @param map the map
4920     * @param transformer a function returning the transformation
4921     * for an element
4922     * @param basis the identity (initial default value) for the reduction
4923     * @param reducer a commutative associative combining function
4924     * @return the task
4925     */
4926     public static <K,V> ForkJoinTask<Long> reduceToLong
4927     (ConcurrentHashMap<K,V> map,
4928 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
4929 dl 1.119 long basis,
4930 dl 1.153 LongBinaryOperator reducer) {
4931 dl 1.119 if (transformer == null || reducer == null)
4932     throw new NullPointerException();
4933     return new MapReduceMappingsToLongTask<K,V>
4934 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4935 dl 1.119 }
4936    
4937     /**
4938     * Returns a task that when invoked, returns the result of
4939     * accumulating the given transformation of all (key, value) pairs
4940     * using the given reducer to combine values, and the given
4941     * basis as an identity value.
4942     *
4943     * @param transformer a function returning the transformation
4944     * for an element
4945     * @param basis the identity (initial default value) for the reduction
4946     * @param reducer a commutative associative combining function
4947     * @return the task
4948     */
4949     public static <K,V> ForkJoinTask<Integer> reduceToInt
4950     (ConcurrentHashMap<K,V> map,
4951 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
4952 dl 1.119 int basis,
4953 dl 1.153 IntBinaryOperator reducer) {
4954 dl 1.119 if (transformer == null || reducer == null)
4955     throw new NullPointerException();
4956     return new MapReduceMappingsToIntTask<K,V>
4957 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4958 dl 1.119 }
4959    
4960     /**
4961     * Returns a task that when invoked, performs the given action
4962 jsr166 1.123 * for each key.
4963 dl 1.119 *
4964     * @param map the map
4965     * @param action the action
4966     * @return the task
4967     */
4968 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4969 dl 1.119 (ConcurrentHashMap<K,V> map,
4970 dl 1.153 Block<? super K> action) {
4971 dl 1.119 if (action == null) throw new NullPointerException();
4972 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4973 dl 1.119 }
4974    
4975     /**
4976     * Returns a task that when invoked, performs the given action
4977 jsr166 1.123 * for each non-null transformation of each key.
4978 dl 1.119 *
4979     * @param map the map
4980     * @param transformer a function returning the transformation
4981 jsr166 1.135 * for an element, or null if there is no transformation (in
4982 jsr166 1.134 * which case the action is not applied)
4983 dl 1.119 * @param action the action
4984     * @return the task
4985     */
4986 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4987 dl 1.119 (ConcurrentHashMap<K,V> map,
4988 dl 1.153 Function<? super K, ? extends U> transformer,
4989     Block<? super U> action) {
4990 dl 1.119 if (transformer == null || action == null)
4991     throw new NullPointerException();
4992     return new ForEachTransformedKeyTask<K,V,U>
4993 dl 1.146 (map, null, -1, transformer, action);
4994 dl 1.119 }
4995    
4996     /**
4997     * Returns a task that when invoked, returns a non-null result
4998     * from applying the given search function on each key, or
4999 dl 1.126 * null if none. Upon success, further element processing is
5000     * suppressed and the results of any other parallel
5001     * invocations of the search function are ignored.
5002 dl 1.119 *
5003     * @param map the map
5004     * @param searchFunction a function returning a non-null
5005     * result on success, else null
5006     * @return the task
5007     */
5008     public static <K,V,U> ForkJoinTask<U> searchKeys
5009     (ConcurrentHashMap<K,V> map,
5010 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5011 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5012     return new SearchKeysTask<K,V,U>
5013 dl 1.146 (map, null, -1, searchFunction,
5014 dl 1.119 new AtomicReference<U>());
5015     }
5016    
5017     /**
5018     * Returns a task that when invoked, returns the result of
5019     * accumulating all keys using the given reducer to combine
5020     * values, or null if none.
5021     *
5022     * @param map the map
5023     * @param reducer a commutative associative combining function
5024     * @return the task
5025     */
5026     public static <K,V> ForkJoinTask<K> reduceKeys
5027     (ConcurrentHashMap<K,V> map,
5028 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5029 dl 1.119 if (reducer == null) throw new NullPointerException();
5030     return new ReduceKeysTask<K,V>
5031 dl 1.130 (map, null, -1, null, reducer);
5032 dl 1.119 }
5033 jsr166 1.125
5034 dl 1.119 /**
5035     * Returns a task that when invoked, returns the result of
5036     * accumulating the given transformation of all keys using the given
5037     * reducer to combine values, or null if none.
5038     *
5039     * @param map the map
5040     * @param transformer a function returning the transformation
5041 jsr166 1.135 * for an element, or null if there is no transformation (in
5042 dl 1.119 * which case it is not combined).
5043     * @param reducer a commutative associative combining function
5044     * @return the task
5045     */
5046     public static <K,V,U> ForkJoinTask<U> reduceKeys
5047     (ConcurrentHashMap<K,V> map,
5048 dl 1.153 Function<? super K, ? extends U> transformer,
5049     BiFunction<? super U, ? super U, ? extends U> reducer) {
5050 dl 1.119 if (transformer == null || reducer == null)
5051     throw new NullPointerException();
5052     return new MapReduceKeysTask<K,V,U>
5053 dl 1.130 (map, null, -1, null, transformer, reducer);
5054 dl 1.119 }
5055    
5056     /**
5057     * Returns a task that when invoked, returns the result of
5058     * accumulating the given transformation of all keys using the given
5059     * reducer to combine values, and the given basis as an
5060     * identity value.
5061     *
5062     * @param map the map
5063     * @param transformer a function returning the transformation
5064     * for an element
5065     * @param basis the identity (initial default value) for the reduction
5066     * @param reducer a commutative associative combining function
5067     * @return the task
5068     */
5069     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5070     (ConcurrentHashMap<K,V> map,
5071 dl 1.153 DoubleFunction<? super K> transformer,
5072 dl 1.119 double basis,
5073 dl 1.153 DoubleBinaryOperator reducer) {
5074 dl 1.119 if (transformer == null || reducer == null)
5075     throw new NullPointerException();
5076     return new MapReduceKeysToDoubleTask<K,V>
5077 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5078 dl 1.119 }
5079    
5080     /**
5081     * Returns a task that when invoked, returns the result of
5082     * accumulating the given transformation of all keys using the given
5083     * reducer to combine values, and the given basis as an
5084     * identity value.
5085     *
5086     * @param map the map
5087     * @param transformer a function returning the transformation
5088     * for an element
5089     * @param basis the identity (initial default value) for the reduction
5090     * @param reducer a commutative associative combining function
5091     * @return the task
5092     */
5093     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5094     (ConcurrentHashMap<K,V> map,
5095 dl 1.153 LongFunction<? super K> transformer,
5096 dl 1.119 long basis,
5097 dl 1.153 LongBinaryOperator reducer) {
5098 dl 1.119 if (transformer == null || reducer == null)
5099     throw new NullPointerException();
5100     return new MapReduceKeysToLongTask<K,V>
5101 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5102 dl 1.119 }
5103    
5104     /**
5105     * Returns a task that when invoked, returns the result of
5106     * accumulating the given transformation of all keys using the given
5107     * reducer to combine values, and the given basis as an
5108     * identity value.
5109     *
5110     * @param map the map
5111     * @param transformer a function returning the transformation
5112     * for an element
5113     * @param basis the identity (initial default value) for the reduction
5114     * @param reducer a commutative associative combining function
5115     * @return the task
5116     */
5117     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5118     (ConcurrentHashMap<K,V> map,
5119 dl 1.153 IntFunction<? super K> transformer,
5120 dl 1.119 int basis,
5121 dl 1.153 IntBinaryOperator reducer) {
5122 dl 1.119 if (transformer == null || reducer == null)
5123     throw new NullPointerException();
5124     return new MapReduceKeysToIntTask<K,V>
5125 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5126 dl 1.119 }
5127    
5128     /**
5129     * Returns a task that when invoked, performs the given action
5130 jsr166 1.123 * for each value.
5131 dl 1.119 *
5132     * @param map the map
5133     * @param action the action
5134     */
5135 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5136 dl 1.119 (ConcurrentHashMap<K,V> map,
5137 dl 1.153 Block<? super V> action) {
5138 dl 1.119 if (action == null) throw new NullPointerException();
5139 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5140 dl 1.119 }
5141    
5142     /**
5143     * Returns a task that when invoked, performs the given action
5144 jsr166 1.123 * for each non-null transformation of each value.
5145 dl 1.119 *
5146     * @param map the map
5147     * @param transformer a function returning the transformation
5148 jsr166 1.135 * for an element, or null if there is no transformation (in
5149 jsr166 1.134 * which case the action is not applied)
5150 dl 1.119 * @param action the action
5151     */
5152 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5153 dl 1.119 (ConcurrentHashMap<K,V> map,
5154 dl 1.153 Function<? super V, ? extends U> transformer,
5155     Block<? super U> action) {
5156 dl 1.119 if (transformer == null || action == null)
5157     throw new NullPointerException();
5158     return new ForEachTransformedValueTask<K,V,U>
5159 dl 1.146 (map, null, -1, transformer, action);
5160 dl 1.119 }
5161    
5162     /**
5163     * Returns a task that when invoked, returns a non-null result
5164     * from applying the given search function on each value, or
5165 dl 1.126 * null if none. Upon success, further element processing is
5166     * suppressed and the results of any other parallel
5167     * invocations of the search function are ignored.
5168 dl 1.119 *
5169     * @param map the map
5170     * @param searchFunction a function returning a non-null
5171     * result on success, else null
5172     * @return the task
5173     */
5174     public static <K,V,U> ForkJoinTask<U> searchValues
5175     (ConcurrentHashMap<K,V> map,
5176 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5177 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5178     return new SearchValuesTask<K,V,U>
5179 dl 1.146 (map, null, -1, searchFunction,
5180 dl 1.119 new AtomicReference<U>());
5181     }
5182    
5183     /**
5184     * Returns a task that when invoked, returns the result of
5185     * accumulating all values using the given reducer to combine
5186     * values, or null if none.
5187     *
5188     * @param map the map
5189     * @param reducer a commutative associative combining function
5190     * @return the task
5191     */
5192     public static <K,V> ForkJoinTask<V> reduceValues
5193     (ConcurrentHashMap<K,V> map,
5194 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5195 dl 1.119 if (reducer == null) throw new NullPointerException();
5196     return new ReduceValuesTask<K,V>
5197 dl 1.130 (map, null, -1, null, reducer);
5198 dl 1.119 }
5199    
5200     /**
5201     * Returns a task that when invoked, returns the result of
5202     * accumulating the given transformation of all values using the
5203     * given reducer to combine values, or null if none.
5204     *
5205     * @param map the map
5206     * @param transformer a function returning the transformation
5207 jsr166 1.135 * for an element, or null if there is no transformation (in
5208 dl 1.119 * which case it is not combined).
5209     * @param reducer a commutative associative combining function
5210     * @return the task
5211     */
5212     public static <K,V,U> ForkJoinTask<U> reduceValues
5213     (ConcurrentHashMap<K,V> map,
5214 dl 1.153 Function<? super V, ? extends U> transformer,
5215     BiFunction<? super U, ? super U, ? extends U> reducer) {
5216 dl 1.119 if (transformer == null || reducer == null)
5217     throw new NullPointerException();
5218     return new MapReduceValuesTask<K,V,U>
5219 dl 1.130 (map, null, -1, null, transformer, reducer);
5220 dl 1.119 }
5221    
5222     /**
5223     * Returns a task that when invoked, returns the result of
5224     * accumulating the given transformation of all values using the
5225     * given reducer to combine values, and the given basis as an
5226     * identity value.
5227     *
5228     * @param map the map
5229     * @param transformer a function returning the transformation
5230     * for an element
5231     * @param basis the identity (initial default value) for the reduction
5232     * @param reducer a commutative associative combining function
5233     * @return the task
5234     */
5235     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5236     (ConcurrentHashMap<K,V> map,
5237 dl 1.153 DoubleFunction<? super V> transformer,
5238 dl 1.119 double basis,
5239 dl 1.153 DoubleBinaryOperator reducer) {
5240 dl 1.119 if (transformer == null || reducer == null)
5241     throw new NullPointerException();
5242     return new MapReduceValuesToDoubleTask<K,V>
5243 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5244 dl 1.119 }
5245    
5246     /**
5247     * Returns a task that when invoked, returns the result of
5248     * accumulating the given transformation of all values using the
5249     * given reducer to combine values, and the given basis as an
5250     * identity value.
5251     *
5252     * @param map the map
5253     * @param transformer a function returning the transformation
5254     * for an element
5255     * @param basis the identity (initial default value) for the reduction
5256     * @param reducer a commutative associative combining function
5257     * @return the task
5258     */
5259     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5260     (ConcurrentHashMap<K,V> map,
5261 dl 1.153 LongFunction<? super V> transformer,
5262 dl 1.119 long basis,
5263 dl 1.153 LongBinaryOperator reducer) {
5264 dl 1.119 if (transformer == null || reducer == null)
5265     throw new NullPointerException();
5266     return new MapReduceValuesToLongTask<K,V>
5267 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5268 dl 1.119 }
5269    
5270     /**
5271     * Returns a task that when invoked, returns the result of
5272     * accumulating the given transformation of all values using the
5273     * given reducer to combine values, and the given basis as an
5274     * identity value.
5275     *
5276     * @param map the map
5277     * @param transformer a function returning the transformation
5278     * for an element
5279     * @param basis the identity (initial default value) for the reduction
5280     * @param reducer a commutative associative combining function
5281     * @return the task
5282     */
5283     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5284     (ConcurrentHashMap<K,V> map,
5285 dl 1.153 IntFunction<? super V> transformer,
5286 dl 1.119 int basis,
5287 dl 1.153 IntBinaryOperator reducer) {
5288 dl 1.119 if (transformer == null || reducer == null)
5289     throw new NullPointerException();
5290     return new MapReduceValuesToIntTask<K,V>
5291 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5292 dl 1.119 }
5293    
5294     /**
5295     * Returns a task that when invoked, perform the given action
5296 jsr166 1.123 * for each entry.
5297 dl 1.119 *
5298     * @param map the map
5299     * @param action the action
5300     */
5301 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5302 dl 1.119 (ConcurrentHashMap<K,V> map,
5303 dl 1.153 Block<? super Map.Entry<K,V>> action) {
5304 dl 1.119 if (action == null) throw new NullPointerException();
5305 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5306 dl 1.119 }
5307    
5308     /**
5309     * Returns a task that when invoked, perform the given action
5310 jsr166 1.123 * for each non-null transformation of each entry.
5311 dl 1.119 *
5312     * @param map the map
5313     * @param transformer a function returning the transformation
5314 jsr166 1.135 * for an element, or null if there is no transformation (in
5315 jsr166 1.134 * which case the action is not applied)
5316 dl 1.119 * @param action the action
5317     */
5318 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5319 dl 1.119 (ConcurrentHashMap<K,V> map,
5320 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5321     Block<? super U> action) {
5322 dl 1.119 if (transformer == null || action == null)
5323     throw new NullPointerException();
5324     return new ForEachTransformedEntryTask<K,V,U>
5325 dl 1.146 (map, null, -1, transformer, action);
5326 dl 1.119 }
5327    
5328     /**
5329     * Returns a task that when invoked, returns a non-null result
5330     * from applying the given search function on each entry, or
5331 dl 1.126 * null if none. Upon success, further element processing is
5332     * suppressed and the results of any other parallel
5333     * invocations of the search function are ignored.
5334 dl 1.119 *
5335     * @param map the map
5336     * @param searchFunction a function returning a non-null
5337     * result on success, else null
5338     * @return the task
5339     */
5340     public static <K,V,U> ForkJoinTask<U> searchEntries
5341     (ConcurrentHashMap<K,V> map,
5342 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5343 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5344     return new SearchEntriesTask<K,V,U>
5345 dl 1.146 (map, null, -1, searchFunction,
5346 dl 1.119 new AtomicReference<U>());
5347     }
5348    
5349     /**
5350     * Returns a task that when invoked, returns the result of
5351     * accumulating all entries using the given reducer to combine
5352     * values, or null if none.
5353     *
5354     * @param map the map
5355     * @param reducer a commutative associative combining function
5356     * @return the task
5357     */
5358     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5359     (ConcurrentHashMap<K,V> map,
5360 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5361 dl 1.119 if (reducer == null) throw new NullPointerException();
5362     return new ReduceEntriesTask<K,V>
5363 dl 1.130 (map, null, -1, null, reducer);
5364 dl 1.119 }
5365    
5366     /**
5367     * Returns a task that when invoked, returns the result of
5368     * accumulating the given transformation of all entries using the
5369     * given reducer to combine values, or null if none.
5370     *
5371     * @param map the map
5372     * @param transformer a function returning the transformation
5373 jsr166 1.135 * for an element, or null if there is no transformation (in
5374 dl 1.119 * which case it is not combined).
5375     * @param reducer a commutative associative combining function
5376     * @return the task
5377     */
5378     public static <K,V,U> ForkJoinTask<U> reduceEntries
5379     (ConcurrentHashMap<K,V> map,
5380 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5381     BiFunction<? super U, ? super U, ? extends U> reducer) {
5382 dl 1.119 if (transformer == null || reducer == null)
5383     throw new NullPointerException();
5384     return new MapReduceEntriesTask<K,V,U>
5385 dl 1.130 (map, null, -1, null, transformer, reducer);
5386 dl 1.119 }
5387    
5388     /**
5389     * Returns a task that when invoked, returns the result of
5390     * accumulating the given transformation of all entries using the
5391     * given reducer to combine values, and the given basis as an
5392     * identity value.
5393     *
5394     * @param map the map
5395     * @param transformer a function returning the transformation
5396     * for an element
5397     * @param basis the identity (initial default value) for the reduction
5398     * @param reducer a commutative associative combining function
5399     * @return the task
5400     */
5401     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5402     (ConcurrentHashMap<K,V> map,
5403 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
5404 dl 1.119 double basis,
5405 dl 1.153 DoubleBinaryOperator reducer) {
5406 dl 1.119 if (transformer == null || reducer == null)
5407     throw new NullPointerException();
5408     return new MapReduceEntriesToDoubleTask<K,V>
5409 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5410 dl 1.119 }
5411    
5412     /**
5413     * Returns a task that when invoked, returns the result of
5414     * accumulating the given transformation of all entries using the
5415     * given reducer to combine values, and the given basis as an
5416     * identity value.
5417     *
5418     * @param map the map
5419     * @param transformer a function returning the transformation
5420     * for an element
5421     * @param basis the identity (initial default value) for the reduction
5422     * @param reducer a commutative associative combining function
5423     * @return the task
5424     */
5425     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5426     (ConcurrentHashMap<K,V> map,
5427 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
5428 dl 1.119 long basis,
5429 dl 1.153 LongBinaryOperator reducer) {
5430 dl 1.119 if (transformer == null || reducer == null)
5431     throw new NullPointerException();
5432     return new MapReduceEntriesToLongTask<K,V>
5433 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5434 dl 1.119 }
5435    
5436     /**
5437     * Returns a task that when invoked, returns the result of
5438     * accumulating the given transformation of all entries using the
5439     * given reducer to combine values, and the given basis as an
5440     * identity value.
5441     *
5442     * @param map the map
5443     * @param transformer a function returning the transformation
5444     * for an element
5445     * @param basis the identity (initial default value) for the reduction
5446     * @param reducer a commutative associative combining function
5447     * @return the task
5448     */
5449     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5450     (ConcurrentHashMap<K,V> map,
5451 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
5452 dl 1.119 int basis,
5453 dl 1.153 IntBinaryOperator reducer) {
5454 dl 1.119 if (transformer == null || reducer == null)
5455     throw new NullPointerException();
5456     return new MapReduceEntriesToIntTask<K,V>
5457 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5458 dl 1.119 }
5459     }
5460    
5461     // -------------------------------------------------------
5462    
5463     /*
5464     * Task classes. Coded in a regular but ugly format/style to
5465     * simplify checks that each variant differs in the right way from
5466 dl 1.149 * others. The null screenings exist because compilers cannot tell
5467     * that we've already null-checked task arguments, so we force
5468     * simplest hoisted bypass to help avoid convoluted traps.
5469 dl 1.119 */
5470    
5471 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5472 dl 1.146 extends Traverser<K,V,Void> {
5473 dl 1.153 final Block<? super K> action;
5474 dl 1.119 ForEachKeyTask
5475 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5476 dl 1.153 Block<? super K> action) {
5477 dl 1.146 super(m, p, b);
5478 dl 1.119 this.action = action;
5479     }
5480 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5481 dl 1.153 final Block<? super K> action;
5482 dl 1.149 if ((action = this.action) != null) {
5483     for (int b; (b = preSplit()) > 0;)
5484     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5485     while (advance() != null)
5486 dl 1.153 action.accept((K)nextKey);
5487 dl 1.149 propagateCompletion();
5488     }
5489 dl 1.119 }
5490     }
5491    
5492 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5493 dl 1.146 extends Traverser<K,V,Void> {
5494 dl 1.153 final Block<? super V> action;
5495 dl 1.119 ForEachValueTask
5496 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5497 dl 1.153 Block<? super V> action) {
5498 dl 1.146 super(m, p, b);
5499 dl 1.119 this.action = action;
5500     }
5501 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5502 dl 1.153 final Block<? super V> action;
5503 dl 1.149 if ((action = this.action) != null) {
5504     for (int b; (b = preSplit()) > 0;)
5505     new ForEachValueTask<K,V>(map, this, b, action).fork();
5506 dl 1.151 V v;
5507 dl 1.149 while ((v = advance()) != null)
5508 dl 1.153 action.accept(v);
5509 dl 1.149 propagateCompletion();
5510     }
5511 dl 1.119 }
5512     }
5513    
5514 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5515 dl 1.146 extends Traverser<K,V,Void> {
5516 dl 1.153 final Block<? super Entry<K,V>> action;
5517 dl 1.119 ForEachEntryTask
5518 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5519 dl 1.153 Block<? super Entry<K,V>> action) {
5520 dl 1.146 super(m, p, b);
5521 dl 1.119 this.action = action;
5522     }
5523 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5524 dl 1.153 final Block<? super Entry<K,V>> action;
5525 dl 1.149 if ((action = this.action) != null) {
5526     for (int b; (b = preSplit()) > 0;)
5527     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5528 dl 1.151 V v;
5529 dl 1.149 while ((v = advance()) != null)
5530 dl 1.153 action.accept(entryFor((K)nextKey, v));
5531 dl 1.149 propagateCompletion();
5532     }
5533 dl 1.119 }
5534     }
5535    
5536 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5537 dl 1.146 extends Traverser<K,V,Void> {
5538 dl 1.153 final BiBlock<? super K, ? super V> action;
5539 dl 1.119 ForEachMappingTask
5540 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5541 dl 1.153 BiBlock<? super K,? super V> action) {
5542 dl 1.146 super(m, p, b);
5543 dl 1.119 this.action = action;
5544     }
5545 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5546 dl 1.153 final BiBlock<? super K, ? super V> action;
5547 dl 1.149 if ((action = this.action) != null) {
5548     for (int b; (b = preSplit()) > 0;)
5549     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5550 dl 1.151 V v;
5551 dl 1.149 while ((v = advance()) != null)
5552 dl 1.153 action.accept((K)nextKey, v);
5553 dl 1.149 propagateCompletion();
5554     }
5555 dl 1.119 }
5556     }
5557    
5558 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5559 dl 1.146 extends Traverser<K,V,Void> {
5560 dl 1.153 final Function<? super K, ? extends U> transformer;
5561     final Block<? super U> action;
5562 dl 1.119 ForEachTransformedKeyTask
5563 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5564 dl 1.153 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5565 dl 1.146 super(m, p, b);
5566     this.transformer = transformer; this.action = action;
5567     }
5568     @SuppressWarnings("unchecked") public final void compute() {
5569 dl 1.153 final Function<? super K, ? extends U> transformer;
5570     final Block<? super U> action;
5571 dl 1.149 if ((transformer = this.transformer) != null &&
5572     (action = this.action) != null) {
5573     for (int b; (b = preSplit()) > 0;)
5574     new ForEachTransformedKeyTask<K,V,U>
5575     (map, this, b, transformer, action).fork();
5576     U u;
5577     while (advance() != null) {
5578     if ((u = transformer.apply((K)nextKey)) != null)
5579 dl 1.153 action.accept(u);
5580 dl 1.149 }
5581     propagateCompletion();
5582 dl 1.119 }
5583     }
5584     }
5585    
5586 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5587 dl 1.146 extends Traverser<K,V,Void> {
5588 dl 1.153 final Function<? super V, ? extends U> transformer;
5589     final Block<? super U> action;
5590 dl 1.119 ForEachTransformedValueTask
5591 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5592 dl 1.153 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5593 dl 1.146 super(m, p, b);
5594     this.transformer = transformer; this.action = action;
5595     }
5596     @SuppressWarnings("unchecked") public final void compute() {
5597 dl 1.153 final Function<? super V, ? extends U> transformer;
5598     final Block<? super U> action;
5599 dl 1.149 if ((transformer = this.transformer) != null &&
5600     (action = this.action) != null) {
5601     for (int b; (b = preSplit()) > 0;)
5602     new ForEachTransformedValueTask<K,V,U>
5603     (map, this, b, transformer, action).fork();
5604 dl 1.151 V v; U u;
5605 dl 1.149 while ((v = advance()) != null) {
5606 dl 1.151 if ((u = transformer.apply(v)) != null)
5607 dl 1.153 action.accept(u);
5608 dl 1.149 }
5609     propagateCompletion();
5610 dl 1.119 }
5611     }
5612 tim 1.1 }
5613    
5614 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5615 dl 1.146 extends Traverser<K,V,Void> {
5616 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5617     final Block<? super U> action;
5618 dl 1.119 ForEachTransformedEntryTask
5619 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5620 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5621 dl 1.146 super(m, p, b);
5622     this.transformer = transformer; this.action = action;
5623     }
5624     @SuppressWarnings("unchecked") public final void compute() {
5625 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5626     final Block<? super U> action;
5627 dl 1.149 if ((transformer = this.transformer) != null &&
5628     (action = this.action) != null) {
5629     for (int b; (b = preSplit()) > 0;)
5630     new ForEachTransformedEntryTask<K,V,U>
5631     (map, this, b, transformer, action).fork();
5632 dl 1.151 V v; U u;
5633 dl 1.149 while ((v = advance()) != null) {
5634     if ((u = transformer.apply(entryFor((K)nextKey,
5635 dl 1.151 v))) != null)
5636 dl 1.153 action.accept(u);
5637 dl 1.149 }
5638     propagateCompletion();
5639 dl 1.119 }
5640     }
5641 tim 1.1 }
5642    
5643 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5644 dl 1.146 extends Traverser<K,V,Void> {
5645 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5646     final Block<? super U> action;
5647 dl 1.119 ForEachTransformedMappingTask
5648 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5649 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5650     Block<? super U> action) {
5651 dl 1.146 super(m, p, b);
5652     this.transformer = transformer; this.action = action;
5653 dl 1.119 }
5654 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5655 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5656     final Block<? super U> action;
5657 dl 1.149 if ((transformer = this.transformer) != null &&
5658     (action = this.action) != null) {
5659     for (int b; (b = preSplit()) > 0;)
5660     new ForEachTransformedMappingTask<K,V,U>
5661     (map, this, b, transformer, action).fork();
5662 dl 1.151 V v; U u;
5663 dl 1.149 while ((v = advance()) != null) {
5664 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
5665 dl 1.153 action.accept(u);
5666 dl 1.149 }
5667     propagateCompletion();
5668 dl 1.119 }
5669     }
5670 tim 1.1 }
5671    
5672 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5673 dl 1.146 extends Traverser<K,V,U> {
5674 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5675 dl 1.119 final AtomicReference<U> result;
5676     SearchKeysTask
5677 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5678 dl 1.153 Function<? super K, ? extends U> searchFunction,
5679 dl 1.119 AtomicReference<U> result) {
5680 dl 1.146 super(m, p, b);
5681 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5682     }
5683 dl 1.146 public final U getRawResult() { return result.get(); }
5684     @SuppressWarnings("unchecked") public final void compute() {
5685 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5686 dl 1.146 final AtomicReference<U> result;
5687 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5688     (result = this.result) != null) {
5689     for (int b;;) {
5690     if (result.get() != null)
5691     return;
5692     if ((b = preSplit()) <= 0)
5693     break;
5694     new SearchKeysTask<K,V,U>
5695     (map, this, b, searchFunction, result).fork();
5696 dl 1.128 }
5697 dl 1.149 while (result.get() == null) {
5698     U u;
5699     if (advance() == null) {
5700     propagateCompletion();
5701     break;
5702     }
5703     if ((u = searchFunction.apply((K)nextKey)) != null) {
5704     if (result.compareAndSet(null, u))
5705     quietlyCompleteRoot();
5706     break;
5707     }
5708 dl 1.119 }
5709     }
5710     }
5711 tim 1.1 }
5712    
5713 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5714 dl 1.146 extends Traverser<K,V,U> {
5715 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5716 dl 1.119 final AtomicReference<U> result;
5717     SearchValuesTask
5718 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5719 dl 1.153 Function<? super V, ? extends U> searchFunction,
5720 dl 1.119 AtomicReference<U> result) {
5721 dl 1.146 super(m, p, b);
5722 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5723     }
5724 dl 1.146 public final U getRawResult() { return result.get(); }
5725     @SuppressWarnings("unchecked") public final void compute() {
5726 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5727 dl 1.146 final AtomicReference<U> result;
5728 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5729     (result = this.result) != null) {
5730     for (int b;;) {
5731     if (result.get() != null)
5732     return;
5733     if ((b = preSplit()) <= 0)
5734     break;
5735     new SearchValuesTask<K,V,U>
5736     (map, this, b, searchFunction, result).fork();
5737 dl 1.128 }
5738 dl 1.149 while (result.get() == null) {
5739 dl 1.151 V v; U u;
5740 dl 1.149 if ((v = advance()) == null) {
5741     propagateCompletion();
5742     break;
5743     }
5744 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5745 dl 1.149 if (result.compareAndSet(null, u))
5746     quietlyCompleteRoot();
5747     break;
5748     }
5749 dl 1.119 }
5750     }
5751     }
5752     }
5753 tim 1.11
5754 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5755 dl 1.146 extends Traverser<K,V,U> {
5756 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5757 dl 1.119 final AtomicReference<U> result;
5758     SearchEntriesTask
5759 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5760 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5761 dl 1.119 AtomicReference<U> result) {
5762 dl 1.146 super(m, p, b);
5763 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5764     }
5765 dl 1.146 public final U getRawResult() { return result.get(); }
5766     @SuppressWarnings("unchecked") public final void compute() {
5767 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5768 dl 1.146 final AtomicReference<U> result;
5769 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5770     (result = this.result) != null) {
5771     for (int b;;) {
5772     if (result.get() != null)
5773     return;
5774     if ((b = preSplit()) <= 0)
5775     break;
5776     new SearchEntriesTask<K,V,U>
5777     (map, this, b, searchFunction, result).fork();
5778 dl 1.128 }
5779 dl 1.149 while (result.get() == null) {
5780 dl 1.151 V v; U u;
5781 dl 1.149 if ((v = advance()) == null) {
5782     propagateCompletion();
5783     break;
5784     }
5785     if ((u = searchFunction.apply(entryFor((K)nextKey,
5786 dl 1.151 v))) != null) {
5787 dl 1.149 if (result.compareAndSet(null, u))
5788     quietlyCompleteRoot();
5789     return;
5790     }
5791 dl 1.119 }
5792     }
5793     }
5794     }
5795 tim 1.1
5796 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5797 dl 1.146 extends Traverser<K,V,U> {
5798 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5799 dl 1.119 final AtomicReference<U> result;
5800     SearchMappingsTask
5801 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5803 dl 1.119 AtomicReference<U> result) {
5804 dl 1.146 super(m, p, b);
5805 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5806     }
5807 dl 1.146 public final U getRawResult() { return result.get(); }
5808     @SuppressWarnings("unchecked") public final void compute() {
5809 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5810 dl 1.146 final AtomicReference<U> result;
5811 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5812     (result = this.result) != null) {
5813     for (int b;;) {
5814     if (result.get() != null)
5815     return;
5816     if ((b = preSplit()) <= 0)
5817     break;
5818     new SearchMappingsTask<K,V,U>
5819     (map, this, b, searchFunction, result).fork();
5820 dl 1.128 }
5821 dl 1.149 while (result.get() == null) {
5822 dl 1.151 V v; U u;
5823 dl 1.149 if ((v = advance()) == null) {
5824     propagateCompletion();
5825     break;
5826     }
5827 dl 1.151 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5828 dl 1.149 if (result.compareAndSet(null, u))
5829     quietlyCompleteRoot();
5830     break;
5831     }
5832 dl 1.119 }
5833     }
5834 tim 1.1 }
5835 dl 1.119 }
5836 tim 1.1
5837 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5838 dl 1.146 extends Traverser<K,V,K> {
5839 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5840 dl 1.119 K result;
5841 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5842 dl 1.119 ReduceKeysTask
5843 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5844 dl 1.128 ReduceKeysTask<K,V> nextRight,
5845 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5846 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5847 dl 1.119 this.reducer = reducer;
5848     }
5849 dl 1.146 public final K getRawResult() { return result; }
5850     @SuppressWarnings("unchecked") public final void compute() {
5851 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5852 dl 1.149 if ((reducer = this.reducer) != null) {
5853     for (int b; (b = preSplit()) > 0;)
5854     (rights = new ReduceKeysTask<K,V>
5855     (map, this, b, rights, reducer)).fork();
5856     K r = null;
5857     while (advance() != null) {
5858     K u = (K)nextKey;
5859 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5860 dl 1.149 }
5861     result = r;
5862     CountedCompleter<?> c;
5863     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5864     ReduceKeysTask<K,V>
5865     t = (ReduceKeysTask<K,V>)c,
5866     s = t.rights;
5867     while (s != null) {
5868     K tr, sr;
5869     if ((sr = s.result) != null)
5870     t.result = (((tr = t.result) == null) ? sr :
5871     reducer.apply(tr, sr));
5872     s = t.rights = s.nextRight;
5873     }
5874 dl 1.99 }
5875 dl 1.138 }
5876 tim 1.1 }
5877 dl 1.119 }
5878 tim 1.1
5879 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5880 dl 1.146 extends Traverser<K,V,V> {
5881 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5882 dl 1.119 V result;
5883 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5884 dl 1.119 ReduceValuesTask
5885 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5886 dl 1.128 ReduceValuesTask<K,V> nextRight,
5887 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5888 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5889 dl 1.119 this.reducer = reducer;
5890     }
5891 dl 1.146 public final V getRawResult() { return result; }
5892     @SuppressWarnings("unchecked") public final void compute() {
5893 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5894 dl 1.149 if ((reducer = this.reducer) != null) {
5895     for (int b; (b = preSplit()) > 0;)
5896     (rights = new ReduceValuesTask<K,V>
5897     (map, this, b, rights, reducer)).fork();
5898 dl 1.153 V r = null, v;
5899     while ((v = advance()) != null)
5900 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5901 dl 1.149 result = r;
5902     CountedCompleter<?> c;
5903     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904     ReduceValuesTask<K,V>
5905     t = (ReduceValuesTask<K,V>)c,
5906     s = t.rights;
5907     while (s != null) {
5908     V tr, sr;
5909     if ((sr = s.result) != null)
5910     t.result = (((tr = t.result) == null) ? sr :
5911     reducer.apply(tr, sr));
5912     s = t.rights = s.nextRight;
5913     }
5914 dl 1.119 }
5915     }
5916 tim 1.1 }
5917 dl 1.119 }
5918 tim 1.1
5919 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5920 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5921 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5922 dl 1.119 Map.Entry<K,V> result;
5923 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5924 dl 1.119 ReduceEntriesTask
5925 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5926 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5927 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5928 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5929 dl 1.119 this.reducer = reducer;
5930     }
5931 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5932     @SuppressWarnings("unchecked") public final void compute() {
5933 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5934 dl 1.149 if ((reducer = this.reducer) != null) {
5935     for (int b; (b = preSplit()) > 0;)
5936     (rights = new ReduceEntriesTask<K,V>
5937     (map, this, b, rights, reducer)).fork();
5938     Map.Entry<K,V> r = null;
5939 dl 1.151 V v;
5940 dl 1.149 while ((v = advance()) != null) {
5941 dl 1.151 Map.Entry<K,V> u = entryFor((K)nextKey, v);
5942 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5943     }
5944     result = r;
5945     CountedCompleter<?> c;
5946     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5947     ReduceEntriesTask<K,V>
5948     t = (ReduceEntriesTask<K,V>)c,
5949     s = t.rights;
5950     while (s != null) {
5951     Map.Entry<K,V> tr, sr;
5952     if ((sr = s.result) != null)
5953     t.result = (((tr = t.result) == null) ? sr :
5954     reducer.apply(tr, sr));
5955     s = t.rights = s.nextRight;
5956     }
5957 dl 1.119 }
5958 dl 1.138 }
5959 dl 1.119 }
5960     }
5961 dl 1.99
5962 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5963 dl 1.146 extends Traverser<K,V,U> {
5964 dl 1.153 final Function<? super K, ? extends U> transformer;
5965     final BiFunction<? super U, ? super U, ? extends U> reducer;
5966 dl 1.119 U result;
5967 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5968 dl 1.119 MapReduceKeysTask
5969 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5970 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5971 dl 1.153 Function<? super K, ? extends U> transformer,
5972     BiFunction<? super U, ? super U, ? extends U> reducer) {
5973 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5974 dl 1.119 this.transformer = transformer;
5975     this.reducer = reducer;
5976     }
5977 dl 1.146 public final U getRawResult() { return result; }
5978     @SuppressWarnings("unchecked") public final void compute() {
5979 dl 1.153 final Function<? super K, ? extends U> transformer;
5980     final BiFunction<? super U, ? super U, ? extends U> reducer;
5981 dl 1.149 if ((transformer = this.transformer) != null &&
5982     (reducer = this.reducer) != null) {
5983     for (int b; (b = preSplit()) > 0;)
5984     (rights = new MapReduceKeysTask<K,V,U>
5985     (map, this, b, rights, transformer, reducer)).fork();
5986     U r = null, u;
5987     while (advance() != null) {
5988     if ((u = transformer.apply((K)nextKey)) != null)
5989     r = (r == null) ? u : reducer.apply(r, u);
5990     }
5991     result = r;
5992     CountedCompleter<?> c;
5993     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5994     MapReduceKeysTask<K,V,U>
5995     t = (MapReduceKeysTask<K,V,U>)c,
5996     s = t.rights;
5997     while (s != null) {
5998     U tr, sr;
5999     if ((sr = s.result) != null)
6000     t.result = (((tr = t.result) == null) ? sr :
6001     reducer.apply(tr, sr));
6002     s = t.rights = s.nextRight;
6003     }
6004 dl 1.119 }
6005 dl 1.138 }
6006 tim 1.1 }
6007 dl 1.4 }
6008    
6009 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6010 dl 1.146 extends Traverser<K,V,U> {
6011 dl 1.153 final Function<? super V, ? extends U> transformer;
6012     final BiFunction<? super U, ? super U, ? extends U> reducer;
6013 dl 1.119 U result;
6014 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6015 dl 1.119 MapReduceValuesTask
6016 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6017 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6018 dl 1.153 Function<? super V, ? extends U> transformer,
6019     BiFunction<? super U, ? super U, ? extends U> reducer) {
6020 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6021 dl 1.119 this.transformer = transformer;
6022     this.reducer = reducer;
6023     }
6024 dl 1.146 public final U getRawResult() { return result; }
6025     @SuppressWarnings("unchecked") public final void compute() {
6026 dl 1.153 final Function<? super V, ? extends U> transformer;
6027     final BiFunction<? super U, ? super U, ? extends U> reducer;
6028 dl 1.149 if ((transformer = this.transformer) != null &&
6029     (reducer = this.reducer) != null) {
6030     for (int b; (b = preSplit()) > 0;)
6031     (rights = new MapReduceValuesTask<K,V,U>
6032     (map, this, b, rights, transformer, reducer)).fork();
6033     U r = null, u;
6034 dl 1.151 V v;
6035 dl 1.149 while ((v = advance()) != null) {
6036 dl 1.151 if ((u = transformer.apply(v)) != null)
6037 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6038     }
6039     result = r;
6040     CountedCompleter<?> c;
6041     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6042     MapReduceValuesTask<K,V,U>
6043     t = (MapReduceValuesTask<K,V,U>)c,
6044     s = t.rights;
6045     while (s != null) {
6046     U tr, sr;
6047     if ((sr = s.result) != null)
6048     t.result = (((tr = t.result) == null) ? sr :
6049     reducer.apply(tr, sr));
6050     s = t.rights = s.nextRight;
6051     }
6052 dl 1.119 }
6053     }
6054     }
6055 dl 1.4 }
6056    
6057 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6058 dl 1.146 extends Traverser<K,V,U> {
6059 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6060     final BiFunction<? super U, ? super U, ? extends U> reducer;
6061 dl 1.119 U result;
6062 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6063 dl 1.119 MapReduceEntriesTask
6064 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6065 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6066 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6067     BiFunction<? super U, ? super U, ? extends U> reducer) {
6068 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6069 dl 1.119 this.transformer = transformer;
6070     this.reducer = reducer;
6071     }
6072 dl 1.146 public final U getRawResult() { return result; }
6073     @SuppressWarnings("unchecked") public final void compute() {
6074 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6075     final BiFunction<? super U, ? super U, ? extends U> reducer;
6076 dl 1.149 if ((transformer = this.transformer) != null &&
6077     (reducer = this.reducer) != null) {
6078     for (int b; (b = preSplit()) > 0;)
6079     (rights = new MapReduceEntriesTask<K,V,U>
6080     (map, this, b, rights, transformer, reducer)).fork();
6081     U r = null, u;
6082 dl 1.151 V v;
6083 dl 1.149 while ((v = advance()) != null) {
6084     if ((u = transformer.apply(entryFor((K)nextKey,
6085 dl 1.151 v))) != null)
6086 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6087     }
6088     result = r;
6089     CountedCompleter<?> c;
6090     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091     MapReduceEntriesTask<K,V,U>
6092     t = (MapReduceEntriesTask<K,V,U>)c,
6093     s = t.rights;
6094     while (s != null) {
6095     U tr, sr;
6096     if ((sr = s.result) != null)
6097     t.result = (((tr = t.result) == null) ? sr :
6098     reducer.apply(tr, sr));
6099     s = t.rights = s.nextRight;
6100     }
6101 dl 1.119 }
6102 dl 1.138 }
6103 dl 1.119 }
6104 dl 1.4 }
6105 tim 1.1
6106 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6107 dl 1.146 extends Traverser<K,V,U> {
6108 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6109     final BiFunction<? super U, ? super U, ? extends U> reducer;
6110 dl 1.119 U result;
6111 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6112 dl 1.119 MapReduceMappingsTask
6113 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6114 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6115 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6116     BiFunction<? super U, ? super U, ? extends U> reducer) {
6117 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6118 dl 1.119 this.transformer = transformer;
6119     this.reducer = reducer;
6120     }
6121 dl 1.146 public final U getRawResult() { return result; }
6122     @SuppressWarnings("unchecked") public final void compute() {
6123 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6124     final BiFunction<? super U, ? super U, ? extends U> reducer;
6125 dl 1.149 if ((transformer = this.transformer) != null &&
6126     (reducer = this.reducer) != null) {
6127     for (int b; (b = preSplit()) > 0;)
6128     (rights = new MapReduceMappingsTask<K,V,U>
6129     (map, this, b, rights, transformer, reducer)).fork();
6130     U r = null, u;
6131 dl 1.151 V v;
6132 dl 1.149 while ((v = advance()) != null) {
6133 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
6134 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6135     }
6136     result = r;
6137     CountedCompleter<?> c;
6138     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6139     MapReduceMappingsTask<K,V,U>
6140     t = (MapReduceMappingsTask<K,V,U>)c,
6141     s = t.rights;
6142     while (s != null) {
6143     U tr, sr;
6144     if ((sr = s.result) != null)
6145     t.result = (((tr = t.result) == null) ? sr :
6146     reducer.apply(tr, sr));
6147     s = t.rights = s.nextRight;
6148     }
6149 dl 1.119 }
6150     }
6151     }
6152     }
6153 jsr166 1.114
6154 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6155 dl 1.146 extends Traverser<K,V,Double> {
6156 dl 1.153 final DoubleFunction<? super K> transformer;
6157     final DoubleBinaryOperator reducer;
6158 dl 1.119 final double basis;
6159     double result;
6160 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6161 dl 1.119 MapReduceKeysToDoubleTask
6162 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6163 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6164 dl 1.153 DoubleFunction<? super K> transformer,
6165 dl 1.119 double basis,
6166 dl 1.153 DoubleBinaryOperator reducer) {
6167 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6168 dl 1.119 this.transformer = transformer;
6169     this.basis = basis; this.reducer = reducer;
6170     }
6171 dl 1.146 public final Double getRawResult() { return result; }
6172     @SuppressWarnings("unchecked") public final void compute() {
6173 dl 1.153 final DoubleFunction<? super K> transformer;
6174     final DoubleBinaryOperator reducer;
6175 dl 1.149 if ((transformer = this.transformer) != null &&
6176     (reducer = this.reducer) != null) {
6177     double r = this.basis;
6178     for (int b; (b = preSplit()) > 0;)
6179     (rights = new MapReduceKeysToDoubleTask<K,V>
6180     (map, this, b, rights, transformer, r, reducer)).fork();
6181     while (advance() != null)
6182 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6183 dl 1.149 result = r;
6184     CountedCompleter<?> c;
6185     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6186     MapReduceKeysToDoubleTask<K,V>
6187     t = (MapReduceKeysToDoubleTask<K,V>)c,
6188     s = t.rights;
6189     while (s != null) {
6190 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6191 dl 1.149 s = t.rights = s.nextRight;
6192     }
6193 dl 1.119 }
6194 dl 1.138 }
6195 dl 1.79 }
6196 dl 1.119 }
6197 dl 1.79
6198 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6199 dl 1.146 extends Traverser<K,V,Double> {
6200 dl 1.153 final DoubleFunction<? super V> transformer;
6201     final DoubleBinaryOperator reducer;
6202 dl 1.119 final double basis;
6203     double result;
6204 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6205 dl 1.119 MapReduceValuesToDoubleTask
6206 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6207 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6208 dl 1.153 DoubleFunction<? super V> transformer,
6209 dl 1.119 double basis,
6210 dl 1.153 DoubleBinaryOperator reducer) {
6211 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6212 dl 1.119 this.transformer = transformer;
6213     this.basis = basis; this.reducer = reducer;
6214     }
6215 dl 1.146 public final Double getRawResult() { return result; }
6216     @SuppressWarnings("unchecked") public final void compute() {
6217 dl 1.153 final DoubleFunction<? super V> transformer;
6218     final DoubleBinaryOperator reducer;
6219 dl 1.149 if ((transformer = this.transformer) != null &&
6220     (reducer = this.reducer) != null) {
6221     double r = this.basis;
6222     for (int b; (b = preSplit()) > 0;)
6223     (rights = new MapReduceValuesToDoubleTask<K,V>
6224     (map, this, b, rights, transformer, r, reducer)).fork();
6225 dl 1.151 V v;
6226 dl 1.149 while ((v = advance()) != null)
6227 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6228 dl 1.149 result = r;
6229     CountedCompleter<?> c;
6230     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6231     MapReduceValuesToDoubleTask<K,V>
6232     t = (MapReduceValuesToDoubleTask<K,V>)c,
6233     s = t.rights;
6234     while (s != null) {
6235 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6236 dl 1.149 s = t.rights = s.nextRight;
6237     }
6238 dl 1.119 }
6239     }
6240 dl 1.30 }
6241 dl 1.79 }
6242 dl 1.30
6243 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6244 dl 1.146 extends Traverser<K,V,Double> {
6245 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6246     final DoubleBinaryOperator reducer;
6247 dl 1.119 final double basis;
6248     double result;
6249 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6250 dl 1.119 MapReduceEntriesToDoubleTask
6251 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6252 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6253 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
6254 dl 1.119 double basis,
6255 dl 1.153 DoubleBinaryOperator reducer) {
6256 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6257 dl 1.119 this.transformer = transformer;
6258     this.basis = basis; this.reducer = reducer;
6259     }
6260 dl 1.146 public final Double getRawResult() { return result; }
6261     @SuppressWarnings("unchecked") public final void compute() {
6262 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6263     final DoubleBinaryOperator reducer;
6264 dl 1.149 if ((transformer = this.transformer) != null &&
6265     (reducer = this.reducer) != null) {
6266     double r = this.basis;
6267     for (int b; (b = preSplit()) > 0;)
6268     (rights = new MapReduceEntriesToDoubleTask<K,V>
6269     (map, this, b, rights, transformer, r, reducer)).fork();
6270 dl 1.151 V v;
6271 dl 1.149 while ((v = advance()) != null)
6272 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6273 dl 1.151 v)));
6274 dl 1.149 result = r;
6275     CountedCompleter<?> c;
6276     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6277     MapReduceEntriesToDoubleTask<K,V>
6278     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6279     s = t.rights;
6280     while (s != null) {
6281 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6282 dl 1.149 s = t.rights = s.nextRight;
6283     }
6284 dl 1.119 }
6285 dl 1.138 }
6286 dl 1.30 }
6287 tim 1.1 }
6288    
6289 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6290 dl 1.146 extends Traverser<K,V,Double> {
6291 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6292     final DoubleBinaryOperator reducer;
6293 dl 1.119 final double basis;
6294     double result;
6295 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6296 dl 1.119 MapReduceMappingsToDoubleTask
6297 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6298 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6299 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
6300 dl 1.119 double basis,
6301 dl 1.153 DoubleBinaryOperator reducer) {
6302 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6303 dl 1.119 this.transformer = transformer;
6304     this.basis = basis; this.reducer = reducer;
6305     }
6306 dl 1.146 public final Double getRawResult() { return result; }
6307     @SuppressWarnings("unchecked") public final void compute() {
6308 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6309     final DoubleBinaryOperator reducer;
6310 dl 1.149 if ((transformer = this.transformer) != null &&
6311     (reducer = this.reducer) != null) {
6312     double r = this.basis;
6313     for (int b; (b = preSplit()) > 0;)
6314     (rights = new MapReduceMappingsToDoubleTask<K,V>
6315     (map, this, b, rights, transformer, r, reducer)).fork();
6316 dl 1.151 V v;
6317 dl 1.149 while ((v = advance()) != null)
6318 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6319 dl 1.149 result = r;
6320     CountedCompleter<?> c;
6321     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6322     MapReduceMappingsToDoubleTask<K,V>
6323     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6324     s = t.rights;
6325     while (s != null) {
6326 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6327 dl 1.149 s = t.rights = s.nextRight;
6328     }
6329 dl 1.119 }
6330     }
6331 dl 1.4 }
6332 dl 1.119 }
6333    
6334 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6335 dl 1.146 extends Traverser<K,V,Long> {
6336 dl 1.153 final LongFunction<? super K> transformer;
6337     final LongBinaryOperator reducer;
6338 dl 1.119 final long basis;
6339     long result;
6340 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6341 dl 1.119 MapReduceKeysToLongTask
6342 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6343 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6344 dl 1.153 LongFunction<? super K> transformer,
6345 dl 1.119 long basis,
6346 dl 1.153 LongBinaryOperator reducer) {
6347 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6348 dl 1.119 this.transformer = transformer;
6349     this.basis = basis; this.reducer = reducer;
6350     }
6351 dl 1.146 public final Long getRawResult() { return result; }
6352     @SuppressWarnings("unchecked") public final void compute() {
6353 dl 1.153 final LongFunction<? super K> transformer;
6354     final LongBinaryOperator reducer;
6355 dl 1.149 if ((transformer = this.transformer) != null &&
6356     (reducer = this.reducer) != null) {
6357     long r = this.basis;
6358     for (int b; (b = preSplit()) > 0;)
6359     (rights = new MapReduceKeysToLongTask<K,V>
6360     (map, this, b, rights, transformer, r, reducer)).fork();
6361     while (advance() != null)
6362 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6363 dl 1.149 result = r;
6364     CountedCompleter<?> c;
6365     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6366     MapReduceKeysToLongTask<K,V>
6367     t = (MapReduceKeysToLongTask<K,V>)c,
6368     s = t.rights;
6369     while (s != null) {
6370 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6371 dl 1.149 s = t.rights = s.nextRight;
6372     }
6373 dl 1.119 }
6374 dl 1.138 }
6375 dl 1.4 }
6376 dl 1.119 }
6377    
6378 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6379 dl 1.146 extends Traverser<K,V,Long> {
6380 dl 1.153 final LongFunction<? super V> transformer;
6381     final LongBinaryOperator reducer;
6382 dl 1.119 final long basis;
6383     long result;
6384 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6385 dl 1.119 MapReduceValuesToLongTask
6386 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6387 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6388 dl 1.153 LongFunction<? super V> transformer,
6389 dl 1.119 long basis,
6390 dl 1.153 LongBinaryOperator reducer) {
6391 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6392 dl 1.119 this.transformer = transformer;
6393     this.basis = basis; this.reducer = reducer;
6394     }
6395 dl 1.146 public final Long getRawResult() { return result; }
6396     @SuppressWarnings("unchecked") public final void compute() {
6397 dl 1.153 final LongFunction<? super V> transformer;
6398     final LongBinaryOperator reducer;
6399 dl 1.149 if ((transformer = this.transformer) != null &&
6400     (reducer = this.reducer) != null) {
6401     long r = this.basis;
6402     for (int b; (b = preSplit()) > 0;)
6403     (rights = new MapReduceValuesToLongTask<K,V>
6404     (map, this, b, rights, transformer, r, reducer)).fork();
6405 dl 1.151 V v;
6406 dl 1.149 while ((v = advance()) != null)
6407 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6408 dl 1.149 result = r;
6409     CountedCompleter<?> c;
6410     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6411     MapReduceValuesToLongTask<K,V>
6412     t = (MapReduceValuesToLongTask<K,V>)c,
6413     s = t.rights;
6414     while (s != null) {
6415 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6416 dl 1.149 s = t.rights = s.nextRight;
6417     }
6418 dl 1.119 }
6419     }
6420 jsr166 1.95 }
6421 dl 1.119 }
6422    
6423 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6424 dl 1.146 extends Traverser<K,V,Long> {
6425 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6426     final LongBinaryOperator reducer;
6427 dl 1.119 final long basis;
6428     long result;
6429 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6430 dl 1.119 MapReduceEntriesToLongTask
6431 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6432 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6433 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
6434 dl 1.119 long basis,
6435 dl 1.153 LongBinaryOperator reducer) {
6436 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6437 dl 1.119 this.transformer = transformer;
6438     this.basis = basis; this.reducer = reducer;
6439     }
6440 dl 1.146 public final Long getRawResult() { return result; }
6441     @SuppressWarnings("unchecked") public final void compute() {
6442 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6443     final LongBinaryOperator reducer;
6444 dl 1.149 if ((transformer = this.transformer) != null &&
6445     (reducer = this.reducer) != null) {
6446     long r = this.basis;
6447     for (int b; (b = preSplit()) > 0;)
6448     (rights = new MapReduceEntriesToLongTask<K,V>
6449     (map, this, b, rights, transformer, r, reducer)).fork();
6450 dl 1.151 V v;
6451 dl 1.149 while ((v = advance()) != null)
6452 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6453 dl 1.149 result = r;
6454     CountedCompleter<?> c;
6455     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6456     MapReduceEntriesToLongTask<K,V>
6457     t = (MapReduceEntriesToLongTask<K,V>)c,
6458     s = t.rights;
6459     while (s != null) {
6460 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6461 dl 1.149 s = t.rights = s.nextRight;
6462     }
6463 dl 1.119 }
6464 dl 1.138 }
6465 dl 1.4 }
6466 tim 1.1 }
6467    
6468 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6469 dl 1.146 extends Traverser<K,V,Long> {
6470 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6471     final LongBinaryOperator reducer;
6472 dl 1.119 final long basis;
6473     long result;
6474 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6475 dl 1.119 MapReduceMappingsToLongTask
6476 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6477 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6478 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
6479 dl 1.119 long basis,
6480 dl 1.153 LongBinaryOperator reducer) {
6481 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6482 dl 1.119 this.transformer = transformer;
6483     this.basis = basis; this.reducer = reducer;
6484     }
6485 dl 1.146 public final Long getRawResult() { return result; }
6486     @SuppressWarnings("unchecked") public final void compute() {
6487 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6488     final LongBinaryOperator reducer;
6489 dl 1.149 if ((transformer = this.transformer) != null &&
6490     (reducer = this.reducer) != null) {
6491     long r = this.basis;
6492     for (int b; (b = preSplit()) > 0;)
6493     (rights = new MapReduceMappingsToLongTask<K,V>
6494     (map, this, b, rights, transformer, r, reducer)).fork();
6495 dl 1.151 V v;
6496 dl 1.149 while ((v = advance()) != null)
6497 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6498 dl 1.149 result = r;
6499     CountedCompleter<?> c;
6500     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6501     MapReduceMappingsToLongTask<K,V>
6502     t = (MapReduceMappingsToLongTask<K,V>)c,
6503     s = t.rights;
6504     while (s != null) {
6505 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6506 dl 1.149 s = t.rights = s.nextRight;
6507     }
6508 dl 1.119 }
6509     }
6510 dl 1.4 }
6511 tim 1.1 }
6512    
6513 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6514 dl 1.146 extends Traverser<K,V,Integer> {
6515 dl 1.153 final IntFunction<? super K> transformer;
6516     final IntBinaryOperator reducer;
6517 dl 1.119 final int basis;
6518     int result;
6519 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6520 dl 1.119 MapReduceKeysToIntTask
6521 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6522 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6523 dl 1.153 IntFunction<? super K> transformer,
6524 dl 1.119 int basis,
6525 dl 1.153 IntBinaryOperator reducer) {
6526 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6527 dl 1.119 this.transformer = transformer;
6528     this.basis = basis; this.reducer = reducer;
6529     }
6530 dl 1.146 public final Integer getRawResult() { return result; }
6531     @SuppressWarnings("unchecked") public final void compute() {
6532 dl 1.153 final IntFunction<? super K> transformer;
6533     final IntBinaryOperator reducer;
6534 dl 1.149 if ((transformer = this.transformer) != null &&
6535     (reducer = this.reducer) != null) {
6536     int r = this.basis;
6537     for (int b; (b = preSplit()) > 0;)
6538     (rights = new MapReduceKeysToIntTask<K,V>
6539     (map, this, b, rights, transformer, r, reducer)).fork();
6540     while (advance() != null)
6541 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6542 dl 1.149 result = r;
6543     CountedCompleter<?> c;
6544     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6545     MapReduceKeysToIntTask<K,V>
6546     t = (MapReduceKeysToIntTask<K,V>)c,
6547     s = t.rights;
6548     while (s != null) {
6549 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6550 dl 1.149 s = t.rights = s.nextRight;
6551     }
6552 dl 1.119 }
6553 dl 1.138 }
6554 dl 1.30 }
6555     }
6556    
6557 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6558 dl 1.146 extends Traverser<K,V,Integer> {
6559 dl 1.153 final IntFunction<? super V> transformer;
6560     final IntBinaryOperator reducer;
6561 dl 1.119 final int basis;
6562     int result;
6563 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6564 dl 1.119 MapReduceValuesToIntTask
6565 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6566 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6567 dl 1.153 IntFunction<? super V> transformer,
6568 dl 1.119 int basis,
6569 dl 1.153 IntBinaryOperator reducer) {
6570 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6571 dl 1.119 this.transformer = transformer;
6572     this.basis = basis; this.reducer = reducer;
6573     }
6574 dl 1.146 public final Integer getRawResult() { return result; }
6575     @SuppressWarnings("unchecked") public final void compute() {
6576 dl 1.153 final IntFunction<? super V> transformer;
6577     final IntBinaryOperator reducer;
6578 dl 1.149 if ((transformer = this.transformer) != null &&
6579     (reducer = this.reducer) != null) {
6580     int r = this.basis;
6581     for (int b; (b = preSplit()) > 0;)
6582     (rights = new MapReduceValuesToIntTask<K,V>
6583     (map, this, b, rights, transformer, r, reducer)).fork();
6584 dl 1.151 V v;
6585 dl 1.149 while ((v = advance()) != null)
6586 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6587 dl 1.149 result = r;
6588     CountedCompleter<?> c;
6589     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6590     MapReduceValuesToIntTask<K,V>
6591     t = (MapReduceValuesToIntTask<K,V>)c,
6592     s = t.rights;
6593     while (s != null) {
6594 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6595 dl 1.149 s = t.rights = s.nextRight;
6596     }
6597 dl 1.119 }
6598 dl 1.2 }
6599 tim 1.1 }
6600     }
6601    
6602 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6603 dl 1.146 extends Traverser<K,V,Integer> {
6604 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6605     final IntBinaryOperator reducer;
6606 dl 1.119 final int basis;
6607     int result;
6608 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6609 dl 1.119 MapReduceEntriesToIntTask
6610 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6611 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6612 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
6613 dl 1.119 int basis,
6614 dl 1.153 IntBinaryOperator reducer) {
6615 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6616 dl 1.119 this.transformer = transformer;
6617     this.basis = basis; this.reducer = reducer;
6618     }
6619 dl 1.146 public final Integer getRawResult() { return result; }
6620     @SuppressWarnings("unchecked") public final void compute() {
6621 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6622     final IntBinaryOperator reducer;
6623 dl 1.149 if ((transformer = this.transformer) != null &&
6624     (reducer = this.reducer) != null) {
6625     int r = this.basis;
6626     for (int b; (b = preSplit()) > 0;)
6627     (rights = new MapReduceEntriesToIntTask<K,V>
6628     (map, this, b, rights, transformer, r, reducer)).fork();
6629 dl 1.151 V v;
6630 dl 1.149 while ((v = advance()) != null)
6631 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6632 dl 1.151 v)));
6633 dl 1.149 result = r;
6634     CountedCompleter<?> c;
6635     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6636     MapReduceEntriesToIntTask<K,V>
6637     t = (MapReduceEntriesToIntTask<K,V>)c,
6638     s = t.rights;
6639     while (s != null) {
6640 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6641 dl 1.149 s = t.rights = s.nextRight;
6642     }
6643 dl 1.119 }
6644 dl 1.138 }
6645 dl 1.4 }
6646 dl 1.119 }
6647 tim 1.1
6648 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6649 dl 1.146 extends Traverser<K,V,Integer> {
6650 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6651     final IntBinaryOperator reducer;
6652 dl 1.119 final int basis;
6653     int result;
6654 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6655 dl 1.119 MapReduceMappingsToIntTask
6656 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6657     MapReduceMappingsToIntTask<K,V> nextRight,
6658 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
6659 dl 1.119 int basis,
6660 dl 1.153 IntBinaryOperator reducer) {
6661 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6662 dl 1.119 this.transformer = transformer;
6663     this.basis = basis; this.reducer = reducer;
6664     }
6665 dl 1.146 public final Integer getRawResult() { return result; }
6666     @SuppressWarnings("unchecked") public final void compute() {
6667 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6668     final IntBinaryOperator reducer;
6669 dl 1.149 if ((transformer = this.transformer) != null &&
6670     (reducer = this.reducer) != null) {
6671     int r = this.basis;
6672     for (int b; (b = preSplit()) > 0;)
6673     (rights = new MapReduceMappingsToIntTask<K,V>
6674     (map, this, b, rights, transformer, r, reducer)).fork();
6675 dl 1.151 V v;
6676 dl 1.149 while ((v = advance()) != null)
6677 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6678 dl 1.149 result = r;
6679     CountedCompleter<?> c;
6680     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6681     MapReduceMappingsToIntTask<K,V>
6682     t = (MapReduceMappingsToIntTask<K,V>)c,
6683     s = t.rights;
6684     while (s != null) {
6685 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6686 dl 1.149 s = t.rights = s.nextRight;
6687     }
6688 dl 1.119 }
6689 dl 1.138 }
6690 tim 1.1 }
6691     }
6692 dl 1.99
6693     // Unsafe mechanics
6694 dl 1.149 private static final sun.misc.Unsafe U;
6695     private static final long SIZECTL;
6696     private static final long TRANSFERINDEX;
6697     private static final long TRANSFERORIGIN;
6698     private static final long BASECOUNT;
6699 dl 1.153 private static final long CELLSBUSY;
6700 dl 1.149 private static final long CELLVALUE;
6701 dl 1.119 private static final long ABASE;
6702     private static final int ASHIFT;
6703 dl 1.99
6704     static {
6705 dl 1.119 int ss;
6706 dl 1.99 try {
6707 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6708 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6709 dl 1.149 SIZECTL = U.objectFieldOffset
6710 dl 1.119 (k.getDeclaredField("sizeCtl"));
6711 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6712     (k.getDeclaredField("transferIndex"));
6713     TRANSFERORIGIN = U.objectFieldOffset
6714     (k.getDeclaredField("transferOrigin"));
6715     BASECOUNT = U.objectFieldOffset
6716     (k.getDeclaredField("baseCount"));
6717 dl 1.153 CELLSBUSY = U.objectFieldOffset
6718     (k.getDeclaredField("cellsBusy"));
6719     Class<?> ck = Cell.class;
6720 dl 1.149 CELLVALUE = U.objectFieldOffset
6721     (ck.getDeclaredField("value"));
6722 dl 1.119 Class<?> sc = Node[].class;
6723 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6724     ss = U.arrayIndexScale(sc);
6725     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6726 dl 1.99 } catch (Exception e) {
6727     throw new Error(e);
6728     }
6729 dl 1.119 if ((ss & (ss-1)) != 0)
6730 dl 1.99 throw new Error("data type scale not a power of two");
6731     }
6732 jsr166 1.152
6733     }