ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.169
Committed: Mon Jan 28 06:58:52 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.168: +16 -16 lines
Log Message:
typo

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98     * {@link #computeIfAbsent}. For example, to add a count to a {@code
99     * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100     * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152     * </li>
153     * </ul>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 dl 1.119 /*
1887     * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Internal traversals directly access these fields, as in:
2148     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149     *
2150     * Exported iterators must track whether the iterator has advanced
2151     * (in hasNext vs next) (by setting/checking/nulling field
2152     * nextVal), and then extract key, value, or key-value pairs as
2153     * return values of next().
2154     *
2155     * The iterator visits once each still-valid node that was
2156     * reachable upon iterator construction. It might miss some that
2157     * were added to a bin after the bin was visited, which is OK wrt
2158     * consistency guarantees. Maintaining this property in the face
2159     * of possible ongoing resizes requires a fair amount of
2160     * bookkeeping state that is difficult to optimize away amidst
2161     * volatile accesses. Even so, traversal maintains reasonable
2162     * throughput.
2163     *
2164     * Normally, iteration proceeds bin-by-bin traversing lists.
2165     * However, if the table has been resized, then all future steps
2166     * must traverse both the bin at the current index as well as at
2167     * (index + baseSize); and so on for further resizings. To
2168     * paranoically cope with potential sharing by users of iterators
2169     * across threads, iteration terminates if a bounds checks fails
2170     * for a table read.
2171     *
2172 dl 1.153 * This class supports both Spliterator-based traversal and
2173     * CountedCompleter-based bulk tasks. The same "batch" field is
2174     * used, but in slightly different ways, in the two cases. For
2175     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177     * size that halves down to zero for leaf tasks, that is only
2178     * computed upon execution of the task. (Tasks can be submitted to
2179     * any pool, of any size, so we don't know scale factors until
2180     * running.)
2181     *
2182 dl 1.146 * This class extends CountedCompleter to streamline parallel
2183     * iteration in bulk operations. This adds only a few fields of
2184     * space overhead, which is small enough in cases where it is not
2185     * needed to not worry about it. Because CountedCompleter is
2186     * Serializable, but iterators need not be, we need to add warning
2187     * suppressions.
2188 dl 1.119 */
2189 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190     extends CountedCompleter<R> {
2191 dl 1.119 final ConcurrentHashMap<K, V> map;
2192 dl 1.151 Node<V> next; // the next entry to use
2193 jsr166 1.168 K nextKey; // cached key field of next
2194 dl 1.151 V nextVal; // cached val field of next
2195     Node<V>[] tab; // current table; updated if resized
2196 dl 1.119 int index; // index of bin to use next
2197     int baseIndex; // current index of initial table
2198     int baseLimit; // index bound for initial table
2199 dl 1.130 int baseSize; // initial table size
2200 dl 1.146 int batch; // split control
2201 dl 1.119 /** Creates iterator for all entries in the table. */
2202     Traverser(ConcurrentHashMap<K, V> map) {
2203 dl 1.130 this.map = map;
2204 dl 1.153 Node<V>[] t;
2205     if ((t = tab = map.table) != null)
2206     baseLimit = baseSize = t.length;
2207 dl 1.119 }
2208    
2209 dl 1.153 /** Task constructor */
2210 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211     super(it);
2212 dl 1.153 this.map = map;
2213     this.batch = batch; // -1 if unknown
2214     if (it == null) {
2215 dl 1.151 Node<V>[] t;
2216 dl 1.153 if ((t = tab = map.table) != null)
2217     baseLimit = baseSize = t.length;
2218     }
2219     else { // split parent
2220     this.tab = it.tab;
2221 dl 1.146 this.baseSize = it.baseSize;
2222     int hi = this.baseLimit = it.baseLimit;
2223     it.baseLimit = this.index = this.baseIndex =
2224     (hi + it.baseIndex + 1) >>> 1;
2225     }
2226 dl 1.119 }
2227    
2228 dl 1.153 /** Spliterator constructor */
2229     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230     super(it);
2231     this.map = map;
2232     if (it == null) {
2233     Node<V>[] t;
2234     if ((t = tab = map.table) != null)
2235     baseLimit = baseSize = t.length;
2236     long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245     (hi + it.baseIndex + 1) >>> 1;
2246     this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 dl 1.119 /**
2251     * Advances next; returns nextVal or null if terminated.
2252     * See above for explanation.
2253     */
2254 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2255     Node<V> e = next;
2256     V ev = null;
2257 dl 1.119 outer: do {
2258     if (e != null) // advance past used/skipped node
2259     e = e.next;
2260     while (e == null) { // get to next non-null bin
2261 dl 1.130 ConcurrentHashMap<K, V> m;
2262 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 dl 1.130 if ((t = tab) != null)
2264     n = t.length;
2265     else if ((m = map) != null && (t = tab = m.table) != null)
2266     n = baseLimit = baseSize = t.length;
2267     else
2268 dl 1.119 break outer;
2269 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2270     (i = index) < 0 || i >= n)
2271     break outer;
2272 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2274 dl 1.151 e = ((TreeBin<V>)ek).first;
2275 dl 1.119 else {
2276 dl 1.151 tab = (Node<V>[])ek;
2277 dl 1.119 continue; // restarts due to null val
2278     }
2279     } // visit upper slots if present
2280     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281     }
2282 jsr166 1.168 nextKey = (K)e.key;
2283 dl 1.119 } while ((ev = e.val) == null); // skip deleted or special nodes
2284     next = e;
2285     return nextVal = ev;
2286     }
2287    
2288     public final void remove() {
2289 jsr166 1.168 K k = nextKey;
2290 dl 1.137 if (k == null && (advance() == null || (k = nextKey) == null))
2291 dl 1.119 throw new IllegalStateException();
2292 dl 1.137 map.internalReplace(k, null, null);
2293 dl 1.119 }
2294    
2295     public final boolean hasNext() {
2296     return nextVal != null || advance() != null;
2297     }
2298    
2299     public final boolean hasMoreElements() { return hasNext(); }
2300 dl 1.146
2301     public void compute() { } // default no-op CountedCompleter body
2302    
2303     /**
2304     * Returns a batch value > 0 if this task should (and must) be
2305     * split, if so, adding to pending count, and in any case
2306     * updating batch value. The initial batch value is approx
2307     * exp2 of the number of times (minus one) to split task by
2308     * two before executing leaf action. This value is faster to
2309     * compute and more convenient to use as a guide to splitting
2310     * than is the depth, since it is used while dividing by two
2311     * anyway.
2312     */
2313     final int preSplit() {
2314 dl 1.153 int b; ForkJoinPool pool;
2315     if ((b = batch) < 0) { // force initialization
2316     int sp = (((pool = getPool()) == null) ?
2317     ForkJoinPool.getCommonPoolParallelism() :
2318     pool.getParallelism()) << 3; // slack of 8
2319     long n = map.sumCount();
2320     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 dl 1.146 }
2322 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 dl 1.146 if ((batch = b) > 0)
2324     addToPendingCount(1);
2325     return b;
2326     }
2327    
2328 dl 1.153 // spliterator support
2329    
2330 dl 1.160 public boolean hasExactSize() {
2331     return false;
2332 dl 1.153 }
2333    
2334     public boolean hasExactSplits() {
2335     return false;
2336     }
2337    
2338     public long estimateSize() {
2339     return batch;
2340     }
2341 dl 1.119 }
2342    
2343     /* ---------------- Public operations -------------- */
2344    
2345     /**
2346     * Creates a new, empty map with the default initial table size (16).
2347     */
2348     public ConcurrentHashMap() {
2349     }
2350    
2351     /**
2352     * Creates a new, empty map with an initial table size
2353     * accommodating the specified number of elements without the need
2354     * to dynamically resize.
2355     *
2356     * @param initialCapacity The implementation performs internal
2357     * sizing to accommodate this many elements.
2358     * @throws IllegalArgumentException if the initial capacity of
2359     * elements is negative
2360     */
2361     public ConcurrentHashMap(int initialCapacity) {
2362     if (initialCapacity < 0)
2363     throw new IllegalArgumentException();
2364     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365     MAXIMUM_CAPACITY :
2366     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367     this.sizeCtl = cap;
2368     }
2369    
2370     /**
2371     * Creates a new map with the same mappings as the given map.
2372     *
2373     * @param m the map
2374     */
2375     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376     this.sizeCtl = DEFAULT_CAPACITY;
2377     internalPutAll(m);
2378     }
2379    
2380     /**
2381     * Creates a new, empty map with an initial table size based on
2382     * the given number of elements ({@code initialCapacity}) and
2383     * initial table density ({@code loadFactor}).
2384     *
2385     * @param initialCapacity the initial capacity. The implementation
2386     * performs internal sizing to accommodate this many elements,
2387     * given the specified load factor.
2388     * @param loadFactor the load factor (table density) for
2389     * establishing the initial table size
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative or the load factor is nonpositive
2392     *
2393     * @since 1.6
2394     */
2395     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396     this(initialCapacity, loadFactor, 1);
2397     }
2398    
2399     /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}), table
2402     * density ({@code loadFactor}), and number of concurrently
2403     * updating threads ({@code concurrencyLevel}).
2404     *
2405     * @param initialCapacity the initial capacity. The implementation
2406     * performs internal sizing to accommodate this many elements,
2407     * given the specified load factor.
2408     * @param loadFactor the load factor (table density) for
2409     * establishing the initial table size
2410     * @param concurrencyLevel the estimated number of concurrently
2411     * updating threads. The implementation may use this value as
2412     * a sizing hint.
2413     * @throws IllegalArgumentException if the initial capacity is
2414     * negative or the load factor or concurrencyLevel are
2415     * nonpositive
2416     */
2417     public ConcurrentHashMap(int initialCapacity,
2418     float loadFactor, int concurrencyLevel) {
2419     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420     throw new IllegalArgumentException();
2421     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422     initialCapacity = concurrencyLevel; // as estimated threads
2423     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426     this.sizeCtl = cap;
2427     }
2428    
2429     /**
2430 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431     * from the given type to {@code Boolean.TRUE}.
2432     *
2433     * @return the new set
2434     */
2435     public static <K> KeySetView<K,Boolean> newKeySet() {
2436     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437     Boolean.TRUE);
2438     }
2439    
2440     /**
2441     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442     * from the given type to {@code Boolean.TRUE}.
2443     *
2444     * @param initialCapacity The implementation performs internal
2445     * sizing to accommodate this many elements.
2446     * @throws IllegalArgumentException if the initial capacity of
2447     * elements is negative
2448     * @return the new set
2449     */
2450     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 dl 1.149 return new KeySetView<K,Boolean>
2452     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 dl 1.137 }
2454    
2455     /**
2456 dl 1.119 * {@inheritDoc}
2457     */
2458     public boolean isEmpty() {
2459 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2460 dl 1.119 }
2461    
2462     /**
2463     * {@inheritDoc}
2464     */
2465     public int size() {
2466 dl 1.149 long n = sumCount();
2467 dl 1.119 return ((n < 0L) ? 0 :
2468     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469     (int)n);
2470     }
2471    
2472     /**
2473     * Returns the number of mappings. This method should be used
2474     * instead of {@link #size} because a ConcurrentHashMap may
2475     * contain more mappings than can be represented as an int. The
2476 dl 1.146 * value returned is an estimate; the actual count may differ if
2477     * there are concurrent insertions or removals.
2478 dl 1.119 *
2479     * @return the number of mappings
2480     */
2481     public long mappingCount() {
2482 dl 1.149 long n = sumCount();
2483 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 dl 1.119 }
2485    
2486     /**
2487     * Returns the value to which the specified key is mapped,
2488     * or {@code null} if this map contains no mapping for the key.
2489     *
2490     * <p>More formally, if this map contains a mapping from a key
2491     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492     * then this method returns {@code v}; otherwise it returns
2493     * {@code null}. (There can be at most one such mapping.)
2494     *
2495     * @throws NullPointerException if the specified key is null
2496     */
2497 dl 1.149 public V get(Object key) {
2498     return internalGet(key);
2499 dl 1.119 }
2500    
2501     /**
2502 dl 1.129 * Returns the value to which the specified key is mapped,
2503 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2504 dl 1.129 *
2505     * @param key the key
2506     * @param defaultValue the value to return if this map contains
2507 jsr166 1.134 * no mapping for the given key
2508 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2509     * @throws NullPointerException if the specified key is null
2510     */
2511 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2512     V v;
2513     return (v = internalGet(key)) == null ? defaultValue : v;
2514 dl 1.129 }
2515    
2516     /**
2517 dl 1.119 * Tests if the specified object is a key in this table.
2518     *
2519     * @param key possible key
2520     * @return {@code true} if and only if the specified object
2521     * is a key in this table, as determined by the
2522     * {@code equals} method; {@code false} otherwise
2523     * @throws NullPointerException if the specified key is null
2524     */
2525     public boolean containsKey(Object key) {
2526     return internalGet(key) != null;
2527     }
2528    
2529     /**
2530     * Returns {@code true} if this map maps one or more keys to the
2531     * specified value. Note: This method may require a full traversal
2532     * of the map, and is much slower than method {@code containsKey}.
2533     *
2534     * @param value value whose presence in this map is to be tested
2535     * @return {@code true} if this map maps one or more keys to the
2536     * specified value
2537     * @throws NullPointerException if the specified value is null
2538     */
2539     public boolean containsValue(Object value) {
2540     if (value == null)
2541     throw new NullPointerException();
2542 dl 1.151 V v;
2543 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544     while ((v = it.advance()) != null) {
2545     if (v == value || value.equals(v))
2546     return true;
2547     }
2548     return false;
2549     }
2550    
2551     /**
2552     * Legacy method testing if some key maps into the specified value
2553     * in this table. This method is identical in functionality to
2554     * {@link #containsValue}, and exists solely to ensure
2555     * full compatibility with class {@link java.util.Hashtable},
2556     * which supported this method prior to introduction of the
2557     * Java Collections framework.
2558     *
2559     * @param value a value to search for
2560     * @return {@code true} if and only if some key maps to the
2561     * {@code value} argument in this table as
2562     * determined by the {@code equals} method;
2563     * {@code false} otherwise
2564     * @throws NullPointerException if the specified value is null
2565     */
2566 dl 1.151 @Deprecated public boolean contains(Object value) {
2567 dl 1.119 return containsValue(value);
2568     }
2569    
2570     /**
2571     * Maps the specified key to the specified value in this table.
2572     * Neither the key nor the value can be null.
2573     *
2574 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2575 dl 1.119 * with a key that is equal to the original key.
2576     *
2577     * @param key key with which the specified value is to be associated
2578     * @param value value to be associated with the specified key
2579     * @return the previous value associated with {@code key}, or
2580     * {@code null} if there was no mapping for {@code key}
2581     * @throws NullPointerException if the specified key or value is null
2582     */
2583 dl 1.149 public V put(K key, V value) {
2584     return internalPut(key, value, false);
2585 dl 1.119 }
2586    
2587     /**
2588     * {@inheritDoc}
2589     *
2590     * @return the previous value associated with the specified key,
2591     * or {@code null} if there was no mapping for the key
2592     * @throws NullPointerException if the specified key or value is null
2593     */
2594 dl 1.149 public V putIfAbsent(K key, V value) {
2595     return internalPut(key, value, true);
2596 dl 1.119 }
2597    
2598     /**
2599     * Copies all of the mappings from the specified map to this one.
2600     * These mappings replace any mappings that this map had for any of the
2601     * keys currently in the specified map.
2602     *
2603     * @param m mappings to be stored in this map
2604     */
2605     public void putAll(Map<? extends K, ? extends V> m) {
2606     internalPutAll(m);
2607     }
2608    
2609     /**
2610 dl 1.153 * If the specified key is not already associated with a value (or
2611     * is mapped to {@code null}), attempts to compute its value using
2612     * the given mapping function and enters it into this map unless
2613     * {@code null}. The entire method invocation is performed
2614     * atomically, so the function is applied at most once per key.
2615     * Some attempted update operations on this map by other threads
2616     * may be blocked while computation is in progress, so the
2617     * computation should be short and simple, and must not attempt to
2618     * update any other mappings of this Map.
2619 dl 1.119 *
2620     * @param key key with which the specified value is to be associated
2621     * @param mappingFunction the function to compute a value
2622     * @return the current (existing or computed) value associated with
2623 jsr166 1.134 * the specified key, or null if the computed value is null
2624 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2625     * is null
2626     * @throws IllegalStateException if the computation detectably
2627     * attempts a recursive update to this map that would
2628     * otherwise never complete
2629     * @throws RuntimeException or Error if the mappingFunction does so,
2630     * in which case the mapping is left unestablished
2631     */
2632 dl 1.149 public V computeIfAbsent
2633 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2635 dl 1.119 }
2636    
2637     /**
2638 dl 1.153 * If the value for the specified key is present and non-null,
2639     * attempts to compute a new mapping given the key and its current
2640     * mapped value. The entire method invocation is performed
2641     * atomically. Some attempted update operations on this map by
2642 dl 1.119 * other threads may be blocked while computation is in progress,
2643     * so the computation should be short and simple, and must not
2644 dl 1.153 * attempt to update any other mappings of this Map.
2645 dl 1.119 *
2646     * @param key key with which the specified value is to be associated
2647     * @param remappingFunction the function to compute a value
2648 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2649 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2650     * is null
2651     * @throws IllegalStateException if the computation detectably
2652     * attempts a recursive update to this map that would
2653     * otherwise never complete
2654     * @throws RuntimeException or Error if the remappingFunction does so,
2655     * in which case the mapping is unchanged
2656     */
2657 dl 1.149 public V computeIfPresent
2658 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 dl 1.149 return internalCompute(key, true, remappingFunction);
2660 dl 1.119 }
2661    
2662     /**
2663 dl 1.153 * Attempts to compute a mapping for the specified key and its
2664     * current mapped value (or {@code null} if there is no current
2665     * mapping). The entire method invocation is performed atomically.
2666     * Some attempted update operations on this map by other threads
2667     * may be blocked while computation is in progress, so the
2668     * computation should be short and simple, and must not attempt to
2669     * update any other mappings of this Map.
2670 dl 1.119 *
2671     * @param key key with which the specified value is to be associated
2672     * @param remappingFunction the function to compute a value
2673 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2674 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2675     * is null
2676     * @throws IllegalStateException if the computation detectably
2677     * attempts a recursive update to this map that would
2678     * otherwise never complete
2679     * @throws RuntimeException or Error if the remappingFunction does so,
2680     * in which case the mapping is unchanged
2681     */
2682 dl 1.149 public V compute
2683 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 dl 1.149 return internalCompute(key, false, remappingFunction);
2685 dl 1.119 }
2686    
2687     /**
2688 dl 1.153 * If the specified key is not already associated with a
2689     * (non-null) value, associates it with the given value.
2690     * Otherwise, replaces the value with the results of the given
2691     * remapping function, or removes if {@code null}. The entire
2692     * method invocation is performed atomically. Some attempted
2693     * update operations on this map by other threads may be blocked
2694     * while computation is in progress, so the computation should be
2695     * short and simple, and must not attempt to update any other
2696     * mappings of this Map.
2697     *
2698     * @param key key with which the specified value is to be associated
2699     * @param value the value to use if absent
2700     * @param remappingFunction the function to recompute a value if present
2701     * @return the new value associated with the specified key, or null if none
2702     * @throws NullPointerException if the specified key or the
2703     * remappingFunction is null
2704     * @throws RuntimeException or Error if the remappingFunction does so,
2705     * in which case the mapping is unchanged
2706 dl 1.119 */
2707 dl 1.149 public V merge
2708     (K key, V value,
2709 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 dl 1.149 return internalMerge(key, value, remappingFunction);
2711 dl 1.119 }
2712    
2713     /**
2714     * Removes the key (and its corresponding value) from this map.
2715     * This method does nothing if the key is not in the map.
2716     *
2717     * @param key the key that needs to be removed
2718     * @return the previous value associated with {@code key}, or
2719     * {@code null} if there was no mapping for {@code key}
2720     * @throws NullPointerException if the specified key is null
2721     */
2722 dl 1.149 public V remove(Object key) {
2723     return internalReplace(key, null, null);
2724 dl 1.119 }
2725    
2726     /**
2727     * {@inheritDoc}
2728     *
2729     * @throws NullPointerException if the specified key is null
2730     */
2731     public boolean remove(Object key, Object value) {
2732 dl 1.163 if (key == null)
2733     throw new NullPointerException();
2734 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2735 tim 1.1 }
2736 dl 1.31
2737     /**
2738 jsr166 1.68 * {@inheritDoc}
2739     *
2740     * @throws NullPointerException if any of the arguments are null
2741 dl 1.31 */
2742     public boolean replace(K key, V oldValue, V newValue) {
2743 dl 1.119 if (key == null || oldValue == null || newValue == null)
2744 dl 1.31 throw new NullPointerException();
2745 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2746 dl 1.32 }
2747    
2748     /**
2749 jsr166 1.68 * {@inheritDoc}
2750     *
2751     * @return the previous value associated with the specified key,
2752 dl 1.119 * or {@code null} if there was no mapping for the key
2753 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2754 dl 1.32 */
2755 dl 1.149 public V replace(K key, V value) {
2756 dl 1.119 if (key == null || value == null)
2757 dl 1.32 throw new NullPointerException();
2758 dl 1.149 return internalReplace(key, value, null);
2759 dl 1.31 }
2760    
2761 tim 1.1 /**
2762 jsr166 1.68 * Removes all of the mappings from this map.
2763 tim 1.1 */
2764     public void clear() {
2765 dl 1.119 internalClear();
2766 tim 1.1 }
2767    
2768     /**
2769 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2770     * The set is backed by the map, so changes to the map are
2771 dl 1.137 * reflected in the set, and vice-versa.
2772     *
2773     * @return the set view
2774     */
2775     public KeySetView<K,V> keySet() {
2776     KeySetView<K,V> ks = keySet;
2777     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778     }
2779    
2780     /**
2781     * Returns a {@link Set} view of the keys in this map, using the
2782     * given common mapped value for any additions (i.e., {@link
2783     * Collection#add} and {@link Collection#addAll}). This is of
2784     * course only appropriate if it is acceptable to use the same
2785     * value for all additions from this view.
2786 jsr166 1.68 *
2787 dl 1.137 * @param mappedValue the mapped value to use for any
2788     * additions.
2789     * @return the set view
2790     * @throws NullPointerException if the mappedValue is null
2791 tim 1.1 */
2792 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2793     if (mappedValue == null)
2794     throw new NullPointerException();
2795     return new KeySetView<K,V>(this, mappedValue);
2796 tim 1.1 }
2797    
2798     /**
2799 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2800     * The collection is backed by the map, so changes to the map are
2801 jsr166 1.143 * reflected in the collection, and vice-versa.
2802 tim 1.1 */
2803 dl 1.142 public ValuesView<K,V> values() {
2804     ValuesView<K,V> vs = values;
2805     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2806 dl 1.119 }
2807    
2808     /**
2809     * Returns a {@link Set} view of the mappings contained in this map.
2810     * The set is backed by the map, so changes to the map are
2811     * reflected in the set, and vice-versa. The set supports element
2812     * removal, which removes the corresponding mapping from the map,
2813     * via the {@code Iterator.remove}, {@code Set.remove},
2814     * {@code removeAll}, {@code retainAll}, and {@code clear}
2815     * operations. It does not support the {@code add} or
2816     * {@code addAll} operations.
2817     *
2818     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2819     * that will never throw {@link ConcurrentModificationException},
2820     * and guarantees to traverse elements as they existed upon
2821     * construction of the iterator, and may (but is not guaranteed to)
2822     * reflect any modifications subsequent to construction.
2823     */
2824     public Set<Map.Entry<K,V>> entrySet() {
2825 dl 1.142 EntrySetView<K,V> es = entrySet;
2826     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2827 dl 1.119 }
2828    
2829     /**
2830     * Returns an enumeration of the keys in this table.
2831     *
2832     * @return an enumeration of the keys in this table
2833     * @see #keySet()
2834     */
2835     public Enumeration<K> keys() {
2836     return new KeyIterator<K,V>(this);
2837     }
2838    
2839     /**
2840     * Returns an enumeration of the values in this table.
2841     *
2842     * @return an enumeration of the values in this table
2843     * @see #values()
2844     */
2845     public Enumeration<V> elements() {
2846     return new ValueIterator<K,V>(this);
2847     }
2848    
2849     /**
2850     * Returns the hash code value for this {@link Map}, i.e.,
2851     * the sum of, for each key-value pair in the map,
2852     * {@code key.hashCode() ^ value.hashCode()}.
2853     *
2854     * @return the hash code value for this map
2855     */
2856     public int hashCode() {
2857     int h = 0;
2858     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2859 dl 1.151 V v;
2860 dl 1.119 while ((v = it.advance()) != null) {
2861     h += it.nextKey.hashCode() ^ v.hashCode();
2862     }
2863     return h;
2864     }
2865    
2866     /**
2867     * Returns a string representation of this map. The string
2868     * representation consists of a list of key-value mappings (in no
2869     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2870     * mappings are separated by the characters {@code ", "} (comma
2871     * and space). Each key-value mapping is rendered as the key
2872     * followed by an equals sign ("{@code =}") followed by the
2873     * associated value.
2874     *
2875     * @return a string representation of this map
2876     */
2877     public String toString() {
2878     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2879     StringBuilder sb = new StringBuilder();
2880     sb.append('{');
2881 dl 1.151 V v;
2882 dl 1.119 if ((v = it.advance()) != null) {
2883     for (;;) {
2884 jsr166 1.168 K k = it.nextKey;
2885 dl 1.119 sb.append(k == this ? "(this Map)" : k);
2886     sb.append('=');
2887     sb.append(v == this ? "(this Map)" : v);
2888     if ((v = it.advance()) == null)
2889     break;
2890     sb.append(',').append(' ');
2891     }
2892     }
2893     return sb.append('}').toString();
2894     }
2895    
2896     /**
2897     * Compares the specified object with this map for equality.
2898     * Returns {@code true} if the given object is a map with the same
2899     * mappings as this map. This operation may return misleading
2900     * results if either map is concurrently modified during execution
2901     * of this method.
2902     *
2903     * @param o object to be compared for equality with this map
2904     * @return {@code true} if the specified object is equal to this map
2905     */
2906     public boolean equals(Object o) {
2907     if (o != this) {
2908     if (!(o instanceof Map))
2909     return false;
2910     Map<?,?> m = (Map<?,?>) o;
2911     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2912 dl 1.151 V val;
2913 dl 1.119 while ((val = it.advance()) != null) {
2914     Object v = m.get(it.nextKey);
2915     if (v == null || (v != val && !v.equals(val)))
2916     return false;
2917     }
2918     for (Map.Entry<?,?> e : m.entrySet()) {
2919     Object mk, mv, v;
2920     if ((mk = e.getKey()) == null ||
2921     (mv = e.getValue()) == null ||
2922     (v = internalGet(mk)) == null ||
2923     (mv != v && !mv.equals(v)))
2924     return false;
2925     }
2926     }
2927     return true;
2928     }
2929    
2930     /* ----------------Iterators -------------- */
2931    
2932 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2933     extends Traverser<K,V,Object>
2934 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2935 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2936 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2937 dl 1.153 super(map, it);
2938 dl 1.119 }
2939 dl 1.155 public KeyIterator<K,V> trySplit() {
2940     if (tab != null && baseIndex == baseLimit)
2941     return null;
2942 dl 1.146 return new KeyIterator<K,V>(map, this);
2943 dl 1.119 }
2944 jsr166 1.168 public final K next() {
2945 dl 1.119 if (nextVal == null && advance() == null)
2946     throw new NoSuchElementException();
2947 jsr166 1.168 K k = nextKey;
2948 dl 1.119 nextVal = null;
2949 jsr166 1.168 return k;
2950 dl 1.119 }
2951    
2952     public final K nextElement() { return next(); }
2953 dl 1.153
2954 dl 1.162 public Iterator<K> iterator() { return this; }
2955 dl 1.153
2956     public void forEach(Block<? super K> action) {
2957     if (action == null) throw new NullPointerException();
2958     while (advance() != null)
2959 jsr166 1.168 action.accept(nextKey);
2960 dl 1.153 }
2961 dl 1.160
2962     public boolean tryAdvance(Block<? super K> block) {
2963     if (block == null) throw new NullPointerException();
2964     if (advance() == null)
2965     return false;
2966 jsr166 1.168 block.accept(nextKey);
2967 dl 1.160 return true;
2968     }
2969 dl 1.119 }
2970    
2971 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2972     extends Traverser<K,V,Object>
2973 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2974 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2975 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2976 dl 1.153 super(map, it);
2977 dl 1.119 }
2978 dl 1.155 public ValueIterator<K,V> trySplit() {
2979     if (tab != null && baseIndex == baseLimit)
2980     return null;
2981 dl 1.146 return new ValueIterator<K,V>(map, this);
2982 dl 1.119 }
2983    
2984 dl 1.151 public final V next() {
2985     V v;
2986 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
2987     throw new NoSuchElementException();
2988     nextVal = null;
2989 dl 1.151 return v;
2990 dl 1.119 }
2991    
2992     public final V nextElement() { return next(); }
2993 dl 1.153
2994 dl 1.162 public Iterator<V> iterator() { return this; }
2995 dl 1.153
2996     public void forEach(Block<? super V> action) {
2997     if (action == null) throw new NullPointerException();
2998     V v;
2999     while ((v = advance()) != null)
3000     action.accept(v);
3001     }
3002 dl 1.160
3003     public boolean tryAdvance(Block<? super V> block) {
3004     V v;
3005     if (block == null) throw new NullPointerException();
3006     if ((v = advance()) == null)
3007     return false;
3008     block.accept(v);
3009     return true;
3010     }
3011 jsr166 1.161
3012 dl 1.119 }
3013    
3014 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3015     extends Traverser<K,V,Object>
3016 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3017 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3018 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3019 dl 1.153 super(map, it);
3020 dl 1.119 }
3021 dl 1.155 public EntryIterator<K,V> trySplit() {
3022     if (tab != null && baseIndex == baseLimit)
3023     return null;
3024 dl 1.146 return new EntryIterator<K,V>(map, this);
3025 dl 1.119 }
3026    
3027 jsr166 1.168 public final Map.Entry<K,V> next() {
3028 dl 1.151 V v;
3029 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3030     throw new NoSuchElementException();
3031 jsr166 1.168 K k = nextKey;
3032 dl 1.119 nextVal = null;
3033 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3034 dl 1.119 }
3035 dl 1.153
3036 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3037 dl 1.153
3038     public void forEach(Block<? super Map.Entry<K,V>> action) {
3039     if (action == null) throw new NullPointerException();
3040     V v;
3041     while ((v = advance()) != null)
3042 jsr166 1.168 action.accept(entryFor(nextKey, v));
3043 dl 1.153 }
3044 dl 1.160
3045     public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3046     V v;
3047     if (block == null) throw new NullPointerException();
3048     if ((v = advance()) == null)
3049     return false;
3050 jsr166 1.168 block.accept(entryFor(nextKey, v));
3051 dl 1.160 return true;
3052     }
3053    
3054 dl 1.119 }
3055    
3056     /**
3057     * Exported Entry for iterators
3058     */
3059     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3060     final K key; // non-null
3061     V val; // non-null
3062     final ConcurrentHashMap<K, V> map;
3063     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3064     this.key = key;
3065     this.val = val;
3066     this.map = map;
3067     }
3068     public final K getKey() { return key; }
3069     public final V getValue() { return val; }
3070     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3071     public final String toString(){ return key + "=" + val; }
3072    
3073     public final boolean equals(Object o) {
3074     Object k, v; Map.Entry<?,?> e;
3075     return ((o instanceof Map.Entry) &&
3076     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3077     (v = e.getValue()) != null &&
3078     (k == key || k.equals(key)) &&
3079     (v == val || v.equals(val)));
3080     }
3081    
3082     /**
3083     * Sets our entry's value and writes through to the map. The
3084     * value to return is somewhat arbitrary here. Since we do not
3085     * necessarily track asynchronous changes, the most recent
3086     * "previous" value could be different from what we return (or
3087     * could even have been removed in which case the put will
3088     * re-establish). We do not and cannot guarantee more.
3089     */
3090     public final V setValue(V value) {
3091     if (value == null) throw new NullPointerException();
3092     V v = val;
3093     val = value;
3094     map.put(key, value);
3095     return v;
3096     }
3097     }
3098    
3099 dl 1.146 /**
3100     * Returns exportable snapshot entry for the given key and value
3101     * when write-through can't or shouldn't be used.
3102     */
3103     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3104     return new AbstractMap.SimpleEntry<K,V>(k, v);
3105     }
3106    
3107 dl 1.142 /* ---------------- Serialization Support -------------- */
3108 dl 1.119
3109     /**
3110 dl 1.142 * Stripped-down version of helper class used in previous version,
3111     * declared for the sake of serialization compatibility
3112 dl 1.119 */
3113 dl 1.142 static class Segment<K,V> implements Serializable {
3114     private static final long serialVersionUID = 2249069246763182397L;
3115     final float loadFactor;
3116     Segment(float lf) { this.loadFactor = lf; }
3117     }
3118 dl 1.119
3119 dl 1.142 /**
3120     * Saves the state of the {@code ConcurrentHashMap} instance to a
3121     * stream (i.e., serializes it).
3122     * @param s the stream
3123     * @serialData
3124     * the key (Object) and value (Object)
3125     * for each key-value mapping, followed by a null pair.
3126     * The key-value mappings are emitted in no particular order.
3127     */
3128 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3129     (java.io.ObjectOutputStream s)
3130 dl 1.142 throws java.io.IOException {
3131     if (segments == null) { // for serialization compatibility
3132     segments = (Segment<K,V>[])
3133     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3134     for (int i = 0; i < segments.length; ++i)
3135     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3136     }
3137     s.defaultWriteObject();
3138     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3139 dl 1.151 V v;
3140 dl 1.142 while ((v = it.advance()) != null) {
3141     s.writeObject(it.nextKey);
3142     s.writeObject(v);
3143     }
3144     s.writeObject(null);
3145     s.writeObject(null);
3146     segments = null; // throw away
3147     }
3148 dl 1.119
3149 dl 1.142 /**
3150     * Reconstitutes the instance from a stream (that is, deserializes it).
3151     * @param s the stream
3152     */
3153 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3154     (java.io.ObjectInputStream s)
3155 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3156     s.defaultReadObject();
3157     this.segments = null; // unneeded
3158 dl 1.119
3159 dl 1.142 // Create all nodes, then place in table once size is known
3160     long size = 0L;
3161 dl 1.151 Node<V> p = null;
3162 dl 1.142 for (;;) {
3163     K k = (K) s.readObject();
3164     V v = (V) s.readObject();
3165     if (k != null && v != null) {
3166     int h = spread(k.hashCode());
3167 dl 1.151 p = new Node<V>(h, k, v, p);
3168 dl 1.142 ++size;
3169 dl 1.119 }
3170 dl 1.142 else
3171     break;
3172 dl 1.119 }
3173 dl 1.142 if (p != null) {
3174     boolean init = false;
3175     int n;
3176     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3177     n = MAXIMUM_CAPACITY;
3178     else {
3179     int sz = (int)size;
3180     n = tableSizeFor(sz + (sz >>> 1) + 1);
3181     }
3182     int sc = sizeCtl;
3183     boolean collide = false;
3184     if (n > sc &&
3185 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3186 dl 1.142 try {
3187     if (table == null) {
3188     init = true;
3189 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3190     Node<V>[] tab = (Node<V>[])rt;
3191 dl 1.142 int mask = n - 1;
3192     while (p != null) {
3193     int j = p.hash & mask;
3194 dl 1.151 Node<V> next = p.next;
3195     Node<V> q = p.next = tabAt(tab, j);
3196 dl 1.142 setTabAt(tab, j, p);
3197     if (!collide && q != null && q.hash == p.hash)
3198     collide = true;
3199     p = next;
3200     }
3201     table = tab;
3202 dl 1.149 addCount(size, -1);
3203 dl 1.142 sc = n - (n >>> 2);
3204     }
3205     } finally {
3206     sizeCtl = sc;
3207     }
3208     if (collide) { // rescan and convert to TreeBins
3209 dl 1.151 Node<V>[] tab = table;
3210 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3211     int c = 0;
3212 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3213 dl 1.142 if (++c > TREE_THRESHOLD &&
3214     (e.key instanceof Comparable)) {
3215     replaceWithTreeBin(tab, i, e.key);
3216     break;
3217     }
3218     }
3219     }
3220 dl 1.119 }
3221     }
3222 dl 1.142 if (!init) { // Can only happen if unsafely published.
3223     while (p != null) {
3224 dl 1.151 internalPut((K)p.key, p.val, false);
3225 dl 1.142 p = p.next;
3226     }
3227 dl 1.119 }
3228     }
3229 dl 1.142 }
3230 dl 1.119
3231 dl 1.142 // -------------------------------------------------------
3232    
3233 dl 1.151 // Sequential bulk operations
3234    
3235 dl 1.119 /**
3236 dl 1.137 * Performs the given action for each (key, value).
3237 dl 1.119 *
3238 dl 1.137 * @param action the action
3239 dl 1.119 */
3240 jsr166 1.168 public void forEachSequentially
3241 dl 1.153 (BiBlock<? super K, ? super V> action) {
3242 dl 1.151 if (action == null) throw new NullPointerException();
3243     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3244     V v;
3245     while ((v = it.advance()) != null)
3246 jsr166 1.168 action.accept(it.nextKey, v);
3247 dl 1.119 }
3248    
3249     /**
3250 dl 1.137 * Performs the given action for each non-null transformation
3251     * of each (key, value).
3252     *
3253     * @param transformer a function returning the transformation
3254 jsr166 1.169 * for an element, or null if there is no transformation (in
3255 dl 1.137 * which case the action is not applied).
3256     * @param action the action
3257 dl 1.119 */
3258 jsr166 1.168 public <U> void forEachSequentially
3259 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3260     Block<? super U> action) {
3261 dl 1.151 if (transformer == null || action == null)
3262     throw new NullPointerException();
3263     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3264     V v; U u;
3265     while ((v = it.advance()) != null) {
3266 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3267 dl 1.153 action.accept(u);
3268 dl 1.151 }
3269 dl 1.137 }
3270    
3271     /**
3272     * Returns a non-null result from applying the given search
3273 dl 1.151 * function on each (key, value), or null if none.
3274 dl 1.137 *
3275     * @param searchFunction a function returning a non-null
3276     * result on success, else null
3277     * @return a non-null result from applying the given search
3278     * function on each (key, value), or null if none
3279     */
3280 jsr166 1.168 public <U> U searchSequentially
3281 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3282 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3283     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3284     V v; U u;
3285     while ((v = it.advance()) != null) {
3286 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3287 dl 1.151 return u;
3288     }
3289     return null;
3290 dl 1.137 }
3291    
3292     /**
3293     * Returns the result of accumulating the given transformation
3294     * of all (key, value) pairs using the given reducer to
3295     * combine values, or null if none.
3296     *
3297     * @param transformer a function returning the transformation
3298 jsr166 1.169 * for an element, or null if there is no transformation (in
3299 dl 1.137 * which case it is not combined).
3300     * @param reducer a commutative associative combining function
3301     * @return the result of accumulating the given transformation
3302     * of all (key, value) pairs
3303     */
3304 jsr166 1.168 public <U> U reduceSequentially
3305 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3306     BiFunction<? super U, ? super U, ? extends U> reducer) {
3307 dl 1.151 if (transformer == null || reducer == null)
3308     throw new NullPointerException();
3309     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3310     U r = null, u; V v;
3311     while ((v = it.advance()) != null) {
3312 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3313 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3314     }
3315     return r;
3316 dl 1.137 }
3317    
3318     /**
3319     * Returns the result of accumulating the given transformation
3320     * of all (key, value) pairs using the given reducer to
3321     * combine values, and the given basis as an identity value.
3322     *
3323     * @param transformer a function returning the transformation
3324     * for an element
3325     * @param basis the identity (initial default value) for the reduction
3326     * @param reducer a commutative associative combining function
3327     * @return the result of accumulating the given transformation
3328     * of all (key, value) pairs
3329     */
3330 jsr166 1.168 public double reduceToDoubleSequentially
3331 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
3332 dl 1.151 double basis,
3333 dl 1.153 DoubleBinaryOperator reducer) {
3334 dl 1.151 if (transformer == null || reducer == null)
3335     throw new NullPointerException();
3336     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3337     double r = basis; V v;
3338     while ((v = it.advance()) != null)
3339 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3340 dl 1.151 return r;
3341 dl 1.137 }
3342 dl 1.119
3343 dl 1.137 /**
3344     * Returns the result of accumulating the given transformation
3345     * of all (key, value) pairs using the given reducer to
3346     * combine values, and the given basis as an identity value.
3347     *
3348     * @param transformer a function returning the transformation
3349     * for an element
3350     * @param basis the identity (initial default value) for the reduction
3351     * @param reducer a commutative associative combining function
3352     * @return the result of accumulating the given transformation
3353     * of all (key, value) pairs
3354     */
3355 jsr166 1.168 public long reduceToLongSequentially
3356 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
3357 dl 1.151 long basis,
3358 dl 1.153 LongBinaryOperator reducer) {
3359 dl 1.151 if (transformer == null || reducer == null)
3360     throw new NullPointerException();
3361     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3362     long r = basis; V v;
3363     while ((v = it.advance()) != null)
3364 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3365 dl 1.151 return r;
3366 dl 1.137 }
3367    
3368     /**
3369     * Returns the result of accumulating the given transformation
3370     * of all (key, value) pairs using the given reducer to
3371     * combine values, and the given basis as an identity value.
3372     *
3373     * @param transformer a function returning the transformation
3374     * for an element
3375     * @param basis the identity (initial default value) for the reduction
3376     * @param reducer a commutative associative combining function
3377     * @return the result of accumulating the given transformation
3378     * of all (key, value) pairs
3379     */
3380 jsr166 1.168 public int reduceToIntSequentially
3381 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
3382 dl 1.151 int basis,
3383 dl 1.153 IntBinaryOperator reducer) {
3384 dl 1.151 if (transformer == null || reducer == null)
3385     throw new NullPointerException();
3386     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3387     int r = basis; V v;
3388     while ((v = it.advance()) != null)
3389 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3390 dl 1.151 return r;
3391 dl 1.137 }
3392    
3393     /**
3394     * Performs the given action for each key.
3395     *
3396     * @param action the action
3397     */
3398 jsr166 1.168 public void forEachKeySequentially
3399 dl 1.153 (Block<? super K> action) {
3400 dl 1.151 if (action == null) throw new NullPointerException();
3401     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3402     while (it.advance() != null)
3403 jsr166 1.168 action.accept(it.nextKey);
3404 dl 1.137 }
3405 dl 1.119
3406 dl 1.137 /**
3407     * Performs the given action for each non-null transformation
3408     * of each key.
3409     *
3410     * @param transformer a function returning the transformation
3411 jsr166 1.169 * for an element, or null if there is no transformation (in
3412 dl 1.137 * which case the action is not applied).
3413     * @param action the action
3414     */
3415 jsr166 1.168 public <U> void forEachKeySequentially
3416 dl 1.153 (Function<? super K, ? extends U> transformer,
3417     Block<? super U> action) {
3418 dl 1.151 if (transformer == null || action == null)
3419     throw new NullPointerException();
3420     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421     U u;
3422     while (it.advance() != null) {
3423 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3424 dl 1.153 action.accept(u);
3425 dl 1.151 }
3426 dl 1.137 ForkJoinTasks.forEachKey
3427     (this, transformer, action).invoke();
3428     }
3429 dl 1.119
3430 dl 1.137 /**
3431     * Returns a non-null result from applying the given search
3432 dl 1.151 * function on each key, or null if none.
3433 dl 1.137 *
3434     * @param searchFunction a function returning a non-null
3435     * result on success, else null
3436     * @return a non-null result from applying the given search
3437     * function on each key, or null if none
3438     */
3439 jsr166 1.168 public <U> U searchKeysSequentially
3440 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3441 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3442     U u;
3443     while (it.advance() != null) {
3444 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey)) != null)
3445 dl 1.151 return u;
3446     }
3447     return null;
3448 dl 1.137 }
3449 dl 1.119
3450 dl 1.137 /**
3451     * Returns the result of accumulating all keys using the given
3452     * reducer to combine values, or null if none.
3453     *
3454     * @param reducer a commutative associative combining function
3455     * @return the result of accumulating all keys using the given
3456     * reducer to combine values, or null if none
3457     */
3458 jsr166 1.168 public K reduceKeysSequentially
3459 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3460 dl 1.151 if (reducer == null) throw new NullPointerException();
3461     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3462     K r = null;
3463     while (it.advance() != null) {
3464 jsr166 1.168 K u = it.nextKey;
3465 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3466     }
3467     return r;
3468 dl 1.137 }
3469 dl 1.119
3470 dl 1.137 /**
3471     * Returns the result of accumulating the given transformation
3472     * of all keys using the given reducer to combine values, or
3473     * null if none.
3474     *
3475     * @param transformer a function returning the transformation
3476 jsr166 1.169 * for an element, or null if there is no transformation (in
3477 dl 1.137 * which case it is not combined).
3478     * @param reducer a commutative associative combining function
3479     * @return the result of accumulating the given transformation
3480     * of all keys
3481     */
3482 jsr166 1.168 public <U> U reduceKeysSequentially
3483 dl 1.153 (Function<? super K, ? extends U> transformer,
3484     BiFunction<? super U, ? super U, ? extends U> reducer) {
3485 dl 1.151 if (transformer == null || reducer == null)
3486     throw new NullPointerException();
3487     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488     U r = null, u;
3489     while (it.advance() != null) {
3490 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3491 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3492     }
3493     return r;
3494 dl 1.137 }
3495 dl 1.119
3496 dl 1.137 /**
3497     * Returns the result of accumulating the given transformation
3498     * of all keys using the given reducer to combine values, and
3499     * the given basis as an identity value.
3500     *
3501     * @param transformer a function returning the transformation
3502     * for an element
3503     * @param basis the identity (initial default value) for the reduction
3504     * @param reducer a commutative associative combining function
3505 jsr166 1.157 * @return the result of accumulating the given transformation
3506 dl 1.137 * of all keys
3507     */
3508 jsr166 1.168 public double reduceKeysToDoubleSequentially
3509 dl 1.153 (DoubleFunction<? super K> transformer,
3510 dl 1.151 double basis,
3511 dl 1.153 DoubleBinaryOperator reducer) {
3512 dl 1.151 if (transformer == null || reducer == null)
3513     throw new NullPointerException();
3514     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3515     double r = basis;
3516     while (it.advance() != null)
3517 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3518 dl 1.151 return r;
3519 dl 1.137 }
3520 dl 1.119
3521 dl 1.137 /**
3522     * Returns the result of accumulating the given transformation
3523     * of all keys using the given reducer to combine values, and
3524     * the given basis as an identity value.
3525     *
3526     * @param transformer a function returning the transformation
3527     * for an element
3528     * @param basis the identity (initial default value) for the reduction
3529     * @param reducer a commutative associative combining function
3530     * @return the result of accumulating the given transformation
3531     * of all keys
3532     */
3533 jsr166 1.168 public long reduceKeysToLongSequentially
3534 dl 1.153 (LongFunction<? super K> transformer,
3535 dl 1.151 long basis,
3536 dl 1.153 LongBinaryOperator reducer) {
3537 dl 1.151 if (transformer == null || reducer == null)
3538     throw new NullPointerException();
3539     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3540     long r = basis;
3541     while (it.advance() != null)
3542 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3543 dl 1.151 return r;
3544 dl 1.137 }
3545 dl 1.119
3546 dl 1.137 /**
3547     * Returns the result of accumulating the given transformation
3548     * of all keys using the given reducer to combine values, and
3549     * the given basis as an identity value.
3550     *
3551     * @param transformer a function returning the transformation
3552     * for an element
3553     * @param basis the identity (initial default value) for the reduction
3554     * @param reducer a commutative associative combining function
3555     * @return the result of accumulating the given transformation
3556     * of all keys
3557     */
3558 jsr166 1.168 public int reduceKeysToIntSequentially
3559 dl 1.153 (IntFunction<? super K> transformer,
3560 dl 1.151 int basis,
3561 dl 1.153 IntBinaryOperator reducer) {
3562 dl 1.151 if (transformer == null || reducer == null)
3563     throw new NullPointerException();
3564     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3565     int r = basis;
3566     while (it.advance() != null)
3567 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3568 dl 1.151 return r;
3569 dl 1.137 }
3570 dl 1.119
3571 dl 1.137 /**
3572     * Performs the given action for each value.
3573     *
3574     * @param action the action
3575     */
3576 dl 1.153 public void forEachValueSequentially(Block<? super V> action) {
3577 dl 1.151 if (action == null) throw new NullPointerException();
3578     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3579     V v;
3580     while ((v = it.advance()) != null)
3581 dl 1.153 action.accept(v);
3582 dl 1.137 }
3583 dl 1.119
3584 dl 1.137 /**
3585     * Performs the given action for each non-null transformation
3586     * of each value.
3587     *
3588     * @param transformer a function returning the transformation
3589 jsr166 1.169 * for an element, or null if there is no transformation (in
3590 dl 1.137 * which case the action is not applied).
3591     */
3592 dl 1.151 public <U> void forEachValueSequentially
3593 dl 1.153 (Function<? super V, ? extends U> transformer,
3594     Block<? super U> action) {
3595 dl 1.151 if (transformer == null || action == null)
3596     throw new NullPointerException();
3597     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598     V v; U u;
3599     while ((v = it.advance()) != null) {
3600     if ((u = transformer.apply(v)) != null)
3601 dl 1.153 action.accept(u);
3602 dl 1.151 }
3603 dl 1.137 }
3604 dl 1.119
3605 dl 1.137 /**
3606     * Returns a non-null result from applying the given search
3607 dl 1.151 * function on each value, or null if none.
3608 dl 1.137 *
3609     * @param searchFunction a function returning a non-null
3610     * result on success, else null
3611     * @return a non-null result from applying the given search
3612     * function on each value, or null if none
3613     */
3614 dl 1.151 public <U> U searchValuesSequentially
3615 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3616 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3617     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618     V v; U u;
3619     while ((v = it.advance()) != null) {
3620     if ((u = searchFunction.apply(v)) != null)
3621     return u;
3622     }
3623     return null;
3624 dl 1.137 }
3625 dl 1.119
3626 dl 1.137 /**
3627     * Returns the result of accumulating all values using the
3628     * given reducer to combine values, or null if none.
3629     *
3630     * @param reducer a commutative associative combining function
3631 jsr166 1.157 * @return the result of accumulating all values
3632 dl 1.137 */
3633 dl 1.151 public V reduceValuesSequentially
3634 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 dl 1.151 if (reducer == null) throw new NullPointerException();
3636     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637     V r = null; V v;
3638     while ((v = it.advance()) != null)
3639     r = (r == null) ? v : reducer.apply(r, v);
3640     return r;
3641 dl 1.137 }
3642 dl 1.119
3643 dl 1.137 /**
3644     * Returns the result of accumulating the given transformation
3645     * of all values using the given reducer to combine values, or
3646     * null if none.
3647     *
3648     * @param transformer a function returning the transformation
3649 jsr166 1.169 * for an element, or null if there is no transformation (in
3650 dl 1.137 * which case it is not combined).
3651     * @param reducer a commutative associative combining function
3652     * @return the result of accumulating the given transformation
3653     * of all values
3654     */
3655 dl 1.151 public <U> U reduceValuesSequentially
3656 dl 1.153 (Function<? super V, ? extends U> transformer,
3657     BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 dl 1.151 if (transformer == null || reducer == null)
3659     throw new NullPointerException();
3660     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661     U r = null, u; V v;
3662     while ((v = it.advance()) != null) {
3663     if ((u = transformer.apply(v)) != null)
3664     r = (r == null) ? u : reducer.apply(r, u);
3665     }
3666     return r;
3667 dl 1.137 }
3668 dl 1.119
3669 dl 1.137 /**
3670     * Returns the result of accumulating the given transformation
3671     * of all values using the given reducer to combine values,
3672     * and the given basis as an identity value.
3673     *
3674     * @param transformer a function returning the transformation
3675     * for an element
3676     * @param basis the identity (initial default value) for the reduction
3677     * @param reducer a commutative associative combining function
3678     * @return the result of accumulating the given transformation
3679     * of all values
3680     */
3681 dl 1.151 public double reduceValuesToDoubleSequentially
3682 dl 1.153 (DoubleFunction<? super V> transformer,
3683 dl 1.151 double basis,
3684 dl 1.153 DoubleBinaryOperator reducer) {
3685 dl 1.151 if (transformer == null || reducer == null)
3686     throw new NullPointerException();
3687     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688     double r = basis; V v;
3689     while ((v = it.advance()) != null)
3690 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 dl 1.151 return r;
3692 dl 1.137 }
3693 dl 1.119
3694 dl 1.137 /**
3695     * Returns the result of accumulating the given transformation
3696     * of all values using the given reducer to combine values,
3697     * and the given basis as an identity value.
3698     *
3699     * @param transformer a function returning the transformation
3700     * for an element
3701     * @param basis the identity (initial default value) for the reduction
3702     * @param reducer a commutative associative combining function
3703     * @return the result of accumulating the given transformation
3704     * of all values
3705     */
3706 dl 1.151 public long reduceValuesToLongSequentially
3707 dl 1.153 (LongFunction<? super V> transformer,
3708 dl 1.151 long basis,
3709 dl 1.153 LongBinaryOperator reducer) {
3710 dl 1.151 if (transformer == null || reducer == null)
3711     throw new NullPointerException();
3712     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713     long r = basis; V v;
3714     while ((v = it.advance()) != null)
3715 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 dl 1.151 return r;
3717 dl 1.137 }
3718 dl 1.119
3719 dl 1.137 /**
3720     * Returns the result of accumulating the given transformation
3721     * of all values using the given reducer to combine values,
3722     * and the given basis as an identity value.
3723     *
3724     * @param transformer a function returning the transformation
3725     * for an element
3726     * @param basis the identity (initial default value) for the reduction
3727     * @param reducer a commutative associative combining function
3728     * @return the result of accumulating the given transformation
3729     * of all values
3730     */
3731 dl 1.151 public int reduceValuesToIntSequentially
3732 dl 1.153 (IntFunction<? super V> transformer,
3733 dl 1.151 int basis,
3734 dl 1.153 IntBinaryOperator reducer) {
3735 dl 1.151 if (transformer == null || reducer == null)
3736     throw new NullPointerException();
3737     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738     int r = basis; V v;
3739     while ((v = it.advance()) != null)
3740 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 dl 1.151 return r;
3742 dl 1.137 }
3743 dl 1.119
3744 dl 1.137 /**
3745     * Performs the given action for each entry.
3746     *
3747     * @param action the action
3748     */
3749 jsr166 1.168 public void forEachEntrySequentially
3750 dl 1.153 (Block<? super Map.Entry<K,V>> action) {
3751 dl 1.151 if (action == null) throw new NullPointerException();
3752     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753     V v;
3754     while ((v = it.advance()) != null)
3755 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3756 dl 1.137 }
3757 dl 1.119
3758 dl 1.137 /**
3759     * Performs the given action for each non-null transformation
3760     * of each entry.
3761     *
3762     * @param transformer a function returning the transformation
3763 jsr166 1.169 * for an element, or null if there is no transformation (in
3764 dl 1.137 * which case the action is not applied).
3765     * @param action the action
3766     */
3767 jsr166 1.168 public <U> void forEachEntrySequentially
3768 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3769     Block<? super U> action) {
3770 dl 1.151 if (transformer == null || action == null)
3771     throw new NullPointerException();
3772     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773     V v; U u;
3774     while ((v = it.advance()) != null) {
3775 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 dl 1.153 action.accept(u);
3777 dl 1.151 }
3778 dl 1.137 }
3779 dl 1.119
3780 dl 1.137 /**
3781     * Returns a non-null result from applying the given search
3782 dl 1.151 * function on each entry, or null if none.
3783 dl 1.137 *
3784     * @param searchFunction a function returning a non-null
3785     * result on success, else null
3786     * @return a non-null result from applying the given search
3787     * function on each entry, or null if none
3788     */
3789 jsr166 1.168 public <U> U searchEntriesSequentially
3790 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3792     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793     V v; U u;
3794     while ((v = it.advance()) != null) {
3795 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 dl 1.151 return u;
3797     }
3798     return null;
3799 dl 1.137 }
3800 dl 1.119
3801 dl 1.137 /**
3802     * Returns the result of accumulating all entries using the
3803     * given reducer to combine values, or null if none.
3804     *
3805     * @param reducer a commutative associative combining function
3806     * @return the result of accumulating all entries
3807     */
3808 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3809 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 dl 1.151 if (reducer == null) throw new NullPointerException();
3811     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812     Map.Entry<K,V> r = null; V v;
3813     while ((v = it.advance()) != null) {
3814 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3816     }
3817     return r;
3818 dl 1.137 }
3819 dl 1.119
3820 dl 1.137 /**
3821     * Returns the result of accumulating the given transformation
3822     * of all entries using the given reducer to combine values,
3823     * or null if none.
3824     *
3825     * @param transformer a function returning the transformation
3826 jsr166 1.169 * for an element, or null if there is no transformation (in
3827 dl 1.137 * which case it is not combined).
3828     * @param reducer a commutative associative combining function
3829     * @return the result of accumulating the given transformation
3830     * of all entries
3831     */
3832 jsr166 1.168 public <U> U reduceEntriesSequentially
3833 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3834     BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 dl 1.151 if (transformer == null || reducer == null)
3836     throw new NullPointerException();
3837     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838     U r = null, u; V v;
3839     while ((v = it.advance()) != null) {
3840 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3842     }
3843     return r;
3844 dl 1.137 }
3845 dl 1.119
3846 dl 1.137 /**
3847     * Returns the result of accumulating the given transformation
3848     * of all entries using the given reducer to combine values,
3849     * and the given basis as an identity value.
3850     *
3851     * @param transformer a function returning the transformation
3852     * for an element
3853     * @param basis the identity (initial default value) for the reduction
3854     * @param reducer a commutative associative combining function
3855     * @return the result of accumulating the given transformation
3856     * of all entries
3857     */
3858 jsr166 1.168 public double reduceEntriesToDoubleSequentially
3859 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
3860 dl 1.151 double basis,
3861 dl 1.153 DoubleBinaryOperator reducer) {
3862 dl 1.151 if (transformer == null || reducer == null)
3863     throw new NullPointerException();
3864     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865     double r = basis; V v;
3866     while ((v = it.advance()) != null)
3867 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 dl 1.151 return r;
3869 dl 1.137 }
3870 dl 1.119
3871 dl 1.137 /**
3872     * Returns the result of accumulating the given transformation
3873     * of all entries using the given reducer to combine values,
3874     * and the given basis as an identity value.
3875     *
3876     * @param transformer a function returning the transformation
3877     * for an element
3878     * @param basis the identity (initial default value) for the reduction
3879     * @param reducer a commutative associative combining function
3880 jsr166 1.157 * @return the result of accumulating the given transformation
3881 dl 1.137 * of all entries
3882     */
3883 jsr166 1.168 public long reduceEntriesToLongSequentially
3884 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
3885 dl 1.151 long basis,
3886 dl 1.153 LongBinaryOperator reducer) {
3887 dl 1.151 if (transformer == null || reducer == null)
3888     throw new NullPointerException();
3889     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890     long r = basis; V v;
3891     while ((v = it.advance()) != null)
3892 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 dl 1.151 return r;
3894 dl 1.137 }
3895 dl 1.119
3896 dl 1.137 /**
3897     * Returns the result of accumulating the given transformation
3898     * of all entries using the given reducer to combine values,
3899     * and the given basis as an identity value.
3900     *
3901     * @param transformer a function returning the transformation
3902     * for an element
3903     * @param basis the identity (initial default value) for the reduction
3904     * @param reducer a commutative associative combining function
3905     * @return the result of accumulating the given transformation
3906     * of all entries
3907     */
3908 jsr166 1.168 public int reduceEntriesToIntSequentially
3909 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
3910 dl 1.151 int basis,
3911 dl 1.153 IntBinaryOperator reducer) {
3912 dl 1.151 if (transformer == null || reducer == null)
3913     throw new NullPointerException();
3914     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915     int r = basis; V v;
3916     while ((v = it.advance()) != null)
3917 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 dl 1.151 return r;
3919 dl 1.119 }
3920    
3921 dl 1.151 // Parallel bulk operations
3922 dl 1.142
3923     /**
3924 dl 1.151 * Performs the given action for each (key, value).
3925     *
3926     * @param action the action
3927 dl 1.142 */
3928 dl 1.153 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3929 dl 1.151 ForkJoinTasks.forEach
3930     (this, action).invoke();
3931     }
3932 dl 1.142
3933 dl 1.151 /**
3934     * Performs the given action for each non-null transformation
3935     * of each (key, value).
3936     *
3937     * @param transformer a function returning the transformation
3938 jsr166 1.169 * for an element, or null if there is no transformation (in
3939 dl 1.151 * which case the action is not applied).
3940     * @param action the action
3941     */
3942     public <U> void forEachInParallel
3943 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3944     Block<? super U> action) {
3945 dl 1.151 ForkJoinTasks.forEach
3946     (this, transformer, action).invoke();
3947     }
3948 dl 1.142
3949 dl 1.151 /**
3950     * Returns a non-null result from applying the given search
3951     * function on each (key, value), or null if none. Upon
3952     * success, further element processing is suppressed and the
3953     * results of any other parallel invocations of the search
3954     * function are ignored.
3955     *
3956     * @param searchFunction a function returning a non-null
3957     * result on success, else null
3958     * @return a non-null result from applying the given search
3959     * function on each (key, value), or null if none
3960     */
3961     public <U> U searchInParallel
3962 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 dl 1.151 return ForkJoinTasks.search
3964     (this, searchFunction).invoke();
3965     }
3966 dl 1.142
3967 dl 1.151 /**
3968     * Returns the result of accumulating the given transformation
3969     * of all (key, value) pairs using the given reducer to
3970     * combine values, or null if none.
3971     *
3972     * @param transformer a function returning the transformation
3973 jsr166 1.169 * for an element, or null if there is no transformation (in
3974 dl 1.151 * which case it is not combined).
3975     * @param reducer a commutative associative combining function
3976     * @return the result of accumulating the given transformation
3977     * of all (key, value) pairs
3978     */
3979     public <U> U reduceInParallel
3980 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3981     BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 dl 1.151 return ForkJoinTasks.reduce
3983     (this, transformer, reducer).invoke();
3984     }
3985 dl 1.142
3986 dl 1.151 /**
3987     * Returns the result of accumulating the given transformation
3988     * of all (key, value) pairs using the given reducer to
3989     * combine values, and the given basis as an identity value.
3990     *
3991     * @param transformer a function returning the transformation
3992     * for an element
3993     * @param basis the identity (initial default value) for the reduction
3994     * @param reducer a commutative associative combining function
3995     * @return the result of accumulating the given transformation
3996     * of all (key, value) pairs
3997     */
3998     public double reduceToDoubleInParallel
3999 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
4000 dl 1.151 double basis,
4001 dl 1.153 DoubleBinaryOperator reducer) {
4002 dl 1.151 return ForkJoinTasks.reduceToDouble
4003     (this, transformer, basis, reducer).invoke();
4004     }
4005    
4006     /**
4007     * Returns the result of accumulating the given transformation
4008     * of all (key, value) pairs using the given reducer to
4009     * combine values, and the given basis as an identity value.
4010     *
4011     * @param transformer a function returning the transformation
4012     * for an element
4013     * @param basis the identity (initial default value) for the reduction
4014     * @param reducer a commutative associative combining function
4015     * @return the result of accumulating the given transformation
4016     * of all (key, value) pairs
4017     */
4018     public long reduceToLongInParallel
4019 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
4020 dl 1.151 long basis,
4021 dl 1.153 LongBinaryOperator reducer) {
4022 dl 1.151 return ForkJoinTasks.reduceToLong
4023     (this, transformer, basis, reducer).invoke();
4024     }
4025    
4026     /**
4027     * Returns the result of accumulating the given transformation
4028     * of all (key, value) pairs using the given reducer to
4029     * combine values, and the given basis as an identity value.
4030     *
4031     * @param transformer a function returning the transformation
4032     * for an element
4033     * @param basis the identity (initial default value) for the reduction
4034     * @param reducer a commutative associative combining function
4035     * @return the result of accumulating the given transformation
4036     * of all (key, value) pairs
4037     */
4038     public int reduceToIntInParallel
4039 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
4040 dl 1.151 int basis,
4041 dl 1.153 IntBinaryOperator reducer) {
4042 dl 1.151 return ForkJoinTasks.reduceToInt
4043     (this, transformer, basis, reducer).invoke();
4044     }
4045    
4046     /**
4047     * Performs the given action for each key.
4048     *
4049     * @param action the action
4050     */
4051 dl 1.153 public void forEachKeyInParallel(Block<? super K> action) {
4052 dl 1.151 ForkJoinTasks.forEachKey
4053     (this, action).invoke();
4054     }
4055    
4056     /**
4057     * Performs the given action for each non-null transformation
4058     * of each key.
4059     *
4060     * @param transformer a function returning the transformation
4061 jsr166 1.169 * for an element, or null if there is no transformation (in
4062 dl 1.151 * which case the action is not applied).
4063     * @param action the action
4064     */
4065     public <U> void forEachKeyInParallel
4066 dl 1.153 (Function<? super K, ? extends U> transformer,
4067     Block<? super U> action) {
4068 dl 1.151 ForkJoinTasks.forEachKey
4069     (this, transformer, action).invoke();
4070     }
4071    
4072     /**
4073     * Returns a non-null result from applying the given search
4074     * function on each key, or null if none. Upon success,
4075     * further element processing is suppressed and the results of
4076     * any other parallel invocations of the search function are
4077     * ignored.
4078     *
4079     * @param searchFunction a function returning a non-null
4080     * result on success, else null
4081     * @return a non-null result from applying the given search
4082     * function on each key, or null if none
4083     */
4084     public <U> U searchKeysInParallel
4085 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4086 dl 1.151 return ForkJoinTasks.searchKeys
4087     (this, searchFunction).invoke();
4088     }
4089    
4090     /**
4091     * Returns the result of accumulating all keys using the given
4092     * reducer to combine values, or null if none.
4093     *
4094     * @param reducer a commutative associative combining function
4095     * @return the result of accumulating all keys using the given
4096     * reducer to combine values, or null if none
4097     */
4098     public K reduceKeysInParallel
4099 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 dl 1.151 return ForkJoinTasks.reduceKeys
4101     (this, reducer).invoke();
4102     }
4103    
4104     /**
4105     * Returns the result of accumulating the given transformation
4106     * of all keys using the given reducer to combine values, or
4107     * null if none.
4108     *
4109     * @param transformer a function returning the transformation
4110 jsr166 1.169 * for an element, or null if there is no transformation (in
4111 dl 1.151 * which case it is not combined).
4112     * @param reducer a commutative associative combining function
4113     * @return the result of accumulating the given transformation
4114     * of all keys
4115     */
4116     public <U> U reduceKeysInParallel
4117 dl 1.153 (Function<? super K, ? extends U> transformer,
4118     BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 dl 1.151 return ForkJoinTasks.reduceKeys
4120     (this, transformer, reducer).invoke();
4121     }
4122    
4123     /**
4124     * Returns the result of accumulating the given transformation
4125     * of all keys using the given reducer to combine values, and
4126     * the given basis as an identity value.
4127     *
4128     * @param transformer a function returning the transformation
4129     * for an element
4130     * @param basis the identity (initial default value) for the reduction
4131     * @param reducer a commutative associative combining function
4132 jsr166 1.157 * @return the result of accumulating the given transformation
4133 dl 1.151 * of all keys
4134     */
4135     public double reduceKeysToDoubleInParallel
4136 dl 1.153 (DoubleFunction<? super K> transformer,
4137 dl 1.151 double basis,
4138 dl 1.153 DoubleBinaryOperator reducer) {
4139 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4140     (this, transformer, basis, reducer).invoke();
4141     }
4142    
4143     /**
4144     * Returns the result of accumulating the given transformation
4145     * of all keys using the given reducer to combine values, and
4146     * the given basis as an identity value.
4147     *
4148     * @param transformer a function returning the transformation
4149     * for an element
4150     * @param basis the identity (initial default value) for the reduction
4151     * @param reducer a commutative associative combining function
4152     * @return the result of accumulating the given transformation
4153     * of all keys
4154     */
4155     public long reduceKeysToLongInParallel
4156 dl 1.153 (LongFunction<? super K> transformer,
4157 dl 1.151 long basis,
4158 dl 1.153 LongBinaryOperator reducer) {
4159 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4160     (this, transformer, basis, reducer).invoke();
4161     }
4162    
4163     /**
4164     * Returns the result of accumulating the given transformation
4165     * of all keys using the given reducer to combine values, and
4166     * the given basis as an identity value.
4167     *
4168     * @param transformer a function returning the transformation
4169     * for an element
4170     * @param basis the identity (initial default value) for the reduction
4171     * @param reducer a commutative associative combining function
4172     * @return the result of accumulating the given transformation
4173     * of all keys
4174     */
4175     public int reduceKeysToIntInParallel
4176 dl 1.153 (IntFunction<? super K> transformer,
4177 dl 1.151 int basis,
4178 dl 1.153 IntBinaryOperator reducer) {
4179 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4180     (this, transformer, basis, reducer).invoke();
4181     }
4182    
4183     /**
4184     * Performs the given action for each value.
4185     *
4186     * @param action the action
4187     */
4188 dl 1.153 public void forEachValueInParallel(Block<? super V> action) {
4189 dl 1.151 ForkJoinTasks.forEachValue
4190     (this, action).invoke();
4191     }
4192    
4193     /**
4194     * Performs the given action for each non-null transformation
4195     * of each value.
4196     *
4197     * @param transformer a function returning the transformation
4198 jsr166 1.169 * for an element, or null if there is no transformation (in
4199 dl 1.151 * which case the action is not applied).
4200     */
4201     public <U> void forEachValueInParallel
4202 dl 1.153 (Function<? super V, ? extends U> transformer,
4203     Block<? super U> action) {
4204 dl 1.151 ForkJoinTasks.forEachValue
4205     (this, transformer, action).invoke();
4206     }
4207    
4208     /**
4209     * Returns a non-null result from applying the given search
4210     * function on each value, or null if none. Upon success,
4211     * further element processing is suppressed and the results of
4212     * any other parallel invocations of the search function are
4213     * ignored.
4214     *
4215     * @param searchFunction a function returning a non-null
4216     * result on success, else null
4217     * @return a non-null result from applying the given search
4218     * function on each value, or null if none
4219     */
4220     public <U> U searchValuesInParallel
4221 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4222 dl 1.151 return ForkJoinTasks.searchValues
4223     (this, searchFunction).invoke();
4224     }
4225    
4226     /**
4227     * Returns the result of accumulating all values using the
4228     * given reducer to combine values, or null if none.
4229     *
4230     * @param reducer a commutative associative combining function
4231 jsr166 1.157 * @return the result of accumulating all values
4232 dl 1.151 */
4233     public V reduceValuesInParallel
4234 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4235 dl 1.151 return ForkJoinTasks.reduceValues
4236     (this, reducer).invoke();
4237     }
4238    
4239     /**
4240     * Returns the result of accumulating the given transformation
4241     * of all values using the given reducer to combine values, or
4242     * null if none.
4243     *
4244     * @param transformer a function returning the transformation
4245 jsr166 1.169 * for an element, or null if there is no transformation (in
4246 dl 1.151 * which case it is not combined).
4247     * @param reducer a commutative associative combining function
4248     * @return the result of accumulating the given transformation
4249     * of all values
4250     */
4251     public <U> U reduceValuesInParallel
4252 dl 1.153 (Function<? super V, ? extends U> transformer,
4253     BiFunction<? super U, ? super U, ? extends U> reducer) {
4254 dl 1.151 return ForkJoinTasks.reduceValues
4255     (this, transformer, reducer).invoke();
4256     }
4257    
4258     /**
4259     * Returns the result of accumulating the given transformation
4260     * of all values using the given reducer to combine values,
4261     * and the given basis as an identity value.
4262     *
4263     * @param transformer a function returning the transformation
4264     * for an element
4265     * @param basis the identity (initial default value) for the reduction
4266     * @param reducer a commutative associative combining function
4267     * @return the result of accumulating the given transformation
4268     * of all values
4269     */
4270     public double reduceValuesToDoubleInParallel
4271 dl 1.153 (DoubleFunction<? super V> transformer,
4272 dl 1.151 double basis,
4273 dl 1.153 DoubleBinaryOperator reducer) {
4274 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4275     (this, transformer, basis, reducer).invoke();
4276     }
4277    
4278     /**
4279     * Returns the result of accumulating the given transformation
4280     * of all values using the given reducer to combine values,
4281     * and the given basis as an identity value.
4282     *
4283     * @param transformer a function returning the transformation
4284     * for an element
4285     * @param basis the identity (initial default value) for the reduction
4286     * @param reducer a commutative associative combining function
4287     * @return the result of accumulating the given transformation
4288     * of all values
4289     */
4290     public long reduceValuesToLongInParallel
4291 dl 1.153 (LongFunction<? super V> transformer,
4292 dl 1.151 long basis,
4293 dl 1.153 LongBinaryOperator reducer) {
4294 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4295     (this, transformer, basis, reducer).invoke();
4296     }
4297    
4298     /**
4299     * Returns the result of accumulating the given transformation
4300     * of all values using the given reducer to combine values,
4301     * and the given basis as an identity value.
4302     *
4303     * @param transformer a function returning the transformation
4304     * for an element
4305     * @param basis the identity (initial default value) for the reduction
4306     * @param reducer a commutative associative combining function
4307     * @return the result of accumulating the given transformation
4308     * of all values
4309     */
4310     public int reduceValuesToIntInParallel
4311 dl 1.153 (IntFunction<? super V> transformer,
4312 dl 1.151 int basis,
4313 dl 1.153 IntBinaryOperator reducer) {
4314 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4315     (this, transformer, basis, reducer).invoke();
4316     }
4317    
4318     /**
4319     * Performs the given action for each entry.
4320     *
4321     * @param action the action
4322     */
4323 dl 1.153 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4324 dl 1.151 ForkJoinTasks.forEachEntry
4325     (this, action).invoke();
4326     }
4327    
4328     /**
4329     * Performs the given action for each non-null transformation
4330     * of each entry.
4331     *
4332     * @param transformer a function returning the transformation
4333 jsr166 1.169 * for an element, or null if there is no transformation (in
4334 dl 1.151 * which case the action is not applied).
4335     * @param action the action
4336     */
4337     public <U> void forEachEntryInParallel
4338 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4339     Block<? super U> action) {
4340 dl 1.151 ForkJoinTasks.forEachEntry
4341     (this, transformer, action).invoke();
4342     }
4343    
4344     /**
4345     * Returns a non-null result from applying the given search
4346     * function on each entry, or null if none. Upon success,
4347     * further element processing is suppressed and the results of
4348     * any other parallel invocations of the search function are
4349     * ignored.
4350     *
4351     * @param searchFunction a function returning a non-null
4352     * result on success, else null
4353     * @return a non-null result from applying the given search
4354     * function on each entry, or null if none
4355     */
4356     public <U> U searchEntriesInParallel
4357 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4358 dl 1.151 return ForkJoinTasks.searchEntries
4359     (this, searchFunction).invoke();
4360     }
4361    
4362     /**
4363     * Returns the result of accumulating all entries using the
4364     * given reducer to combine values, or null if none.
4365     *
4366     * @param reducer a commutative associative combining function
4367     * @return the result of accumulating all entries
4368     */
4369     public Map.Entry<K,V> reduceEntriesInParallel
4370 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4371 dl 1.151 return ForkJoinTasks.reduceEntries
4372     (this, reducer).invoke();
4373     }
4374    
4375     /**
4376     * Returns the result of accumulating the given transformation
4377     * of all entries using the given reducer to combine values,
4378     * or null if none.
4379     *
4380     * @param transformer a function returning the transformation
4381 jsr166 1.169 * for an element, or null if there is no transformation (in
4382 dl 1.151 * which case it is not combined).
4383     * @param reducer a commutative associative combining function
4384     * @return the result of accumulating the given transformation
4385     * of all entries
4386     */
4387     public <U> U reduceEntriesInParallel
4388 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4389     BiFunction<? super U, ? super U, ? extends U> reducer) {
4390 dl 1.151 return ForkJoinTasks.reduceEntries
4391     (this, transformer, reducer).invoke();
4392     }
4393    
4394     /**
4395     * Returns the result of accumulating the given transformation
4396     * of all entries using the given reducer to combine values,
4397     * and the given basis as an identity value.
4398     *
4399     * @param transformer a function returning the transformation
4400     * for an element
4401     * @param basis the identity (initial default value) for the reduction
4402     * @param reducer a commutative associative combining function
4403     * @return the result of accumulating the given transformation
4404     * of all entries
4405     */
4406     public double reduceEntriesToDoubleInParallel
4407 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
4408 dl 1.151 double basis,
4409 dl 1.153 DoubleBinaryOperator reducer) {
4410 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4411     (this, transformer, basis, reducer).invoke();
4412     }
4413    
4414     /**
4415     * Returns the result of accumulating the given transformation
4416     * of all entries using the given reducer to combine values,
4417     * and the given basis as an identity value.
4418     *
4419     * @param transformer a function returning the transformation
4420     * for an element
4421     * @param basis the identity (initial default value) for the reduction
4422     * @param reducer a commutative associative combining function
4423 jsr166 1.157 * @return the result of accumulating the given transformation
4424 dl 1.151 * of all entries
4425     */
4426     public long reduceEntriesToLongInParallel
4427 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
4428 dl 1.151 long basis,
4429 dl 1.153 LongBinaryOperator reducer) {
4430 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4431     (this, transformer, basis, reducer).invoke();
4432     }
4433    
4434     /**
4435     * Returns the result of accumulating the given transformation
4436     * of all entries using the given reducer to combine values,
4437     * and the given basis as an identity value.
4438     *
4439     * @param transformer a function returning the transformation
4440     * for an element
4441     * @param basis the identity (initial default value) for the reduction
4442     * @param reducer a commutative associative combining function
4443     * @return the result of accumulating the given transformation
4444     * of all entries
4445     */
4446     public int reduceEntriesToIntInParallel
4447 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
4448 dl 1.151 int basis,
4449 dl 1.153 IntBinaryOperator reducer) {
4450 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4451     (this, transformer, basis, reducer).invoke();
4452     }
4453    
4454    
4455     /* ----------------Views -------------- */
4456    
4457     /**
4458     * Base class for views.
4459     */
4460 jsr166 1.165 abstract static class CHMView<K, V> implements java.io.Serializable {
4461 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4462 dl 1.151 final ConcurrentHashMap<K, V> map;
4463     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4464    
4465     /**
4466     * Returns the map backing this view.
4467     *
4468     * @return the map backing this view
4469     */
4470     public ConcurrentHashMap<K,V> getMap() { return map; }
4471    
4472     public final int size() { return map.size(); }
4473     public final boolean isEmpty() { return map.isEmpty(); }
4474     public final void clear() { map.clear(); }
4475    
4476     // implementations below rely on concrete classes supplying these
4477 jsr166 1.165 public abstract Iterator<?> iterator();
4478     public abstract boolean contains(Object o);
4479     public abstract boolean remove(Object o);
4480 dl 1.151
4481     private static final String oomeMsg = "Required array size too large";
4482 dl 1.142
4483     public final Object[] toArray() {
4484     long sz = map.mappingCount();
4485     if (sz > (long)(MAX_ARRAY_SIZE))
4486     throw new OutOfMemoryError(oomeMsg);
4487     int n = (int)sz;
4488     Object[] r = new Object[n];
4489     int i = 0;
4490     Iterator<?> it = iterator();
4491     while (it.hasNext()) {
4492     if (i == n) {
4493     if (n >= MAX_ARRAY_SIZE)
4494     throw new OutOfMemoryError(oomeMsg);
4495     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4496     n = MAX_ARRAY_SIZE;
4497     else
4498     n += (n >>> 1) + 1;
4499     r = Arrays.copyOf(r, n);
4500     }
4501     r[i++] = it.next();
4502     }
4503     return (i == n) ? r : Arrays.copyOf(r, i);
4504     }
4505    
4506     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4507     long sz = map.mappingCount();
4508     if (sz > (long)(MAX_ARRAY_SIZE))
4509     throw new OutOfMemoryError(oomeMsg);
4510     int m = (int)sz;
4511     T[] r = (a.length >= m) ? a :
4512     (T[])java.lang.reflect.Array
4513     .newInstance(a.getClass().getComponentType(), m);
4514     int n = r.length;
4515     int i = 0;
4516     Iterator<?> it = iterator();
4517     while (it.hasNext()) {
4518     if (i == n) {
4519     if (n >= MAX_ARRAY_SIZE)
4520     throw new OutOfMemoryError(oomeMsg);
4521     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4522     n = MAX_ARRAY_SIZE;
4523     else
4524     n += (n >>> 1) + 1;
4525     r = Arrays.copyOf(r, n);
4526     }
4527     r[i++] = (T)it.next();
4528     }
4529     if (a == r && i < n) {
4530     r[i] = null; // null-terminate
4531     return r;
4532     }
4533     return (i == n) ? r : Arrays.copyOf(r, i);
4534     }
4535    
4536     public final int hashCode() {
4537     int h = 0;
4538     for (Iterator<?> it = iterator(); it.hasNext();)
4539     h += it.next().hashCode();
4540     return h;
4541     }
4542    
4543     public final String toString() {
4544     StringBuilder sb = new StringBuilder();
4545     sb.append('[');
4546     Iterator<?> it = iterator();
4547     if (it.hasNext()) {
4548     for (;;) {
4549     Object e = it.next();
4550     sb.append(e == this ? "(this Collection)" : e);
4551     if (!it.hasNext())
4552     break;
4553     sb.append(',').append(' ');
4554     }
4555     }
4556     return sb.append(']').toString();
4557     }
4558    
4559     public final boolean containsAll(Collection<?> c) {
4560     if (c != this) {
4561     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4562     Object e = it.next();
4563     if (e == null || !contains(e))
4564     return false;
4565     }
4566     }
4567     return true;
4568     }
4569    
4570     public final boolean removeAll(Collection<?> c) {
4571     boolean modified = false;
4572     for (Iterator<?> it = iterator(); it.hasNext();) {
4573     if (c.contains(it.next())) {
4574     it.remove();
4575     modified = true;
4576     }
4577     }
4578     return modified;
4579     }
4580    
4581     public final boolean retainAll(Collection<?> c) {
4582     boolean modified = false;
4583     for (Iterator<?> it = iterator(); it.hasNext();) {
4584     if (!c.contains(it.next())) {
4585     it.remove();
4586     modified = true;
4587     }
4588     }
4589     return modified;
4590     }
4591    
4592     }
4593    
4594     /**
4595     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4596     * which additions may optionally be enabled by mapping to a
4597     * common value. This class cannot be directly instantiated. See
4598     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4599     * {@link #newKeySet(int)}.
4600     */
4601 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4602     implements Set<K>, java.io.Serializable {
4603 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4604     private final V value;
4605     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4606     super(map);
4607     this.value = value;
4608     }
4609    
4610     /**
4611     * Returns the default mapped value for additions,
4612     * or {@code null} if additions are not supported.
4613     *
4614     * @return the default mapped value for additions, or {@code null}
4615     * if not supported.
4616     */
4617     public V getMappedValue() { return value; }
4618    
4619     // implement Set API
4620    
4621     public boolean contains(Object o) { return map.containsKey(o); }
4622     public boolean remove(Object o) { return map.remove(o) != null; }
4623    
4624     /**
4625     * Returns a "weakly consistent" iterator that will never
4626     * throw {@link ConcurrentModificationException}, and
4627     * guarantees to traverse elements as they existed upon
4628     * construction of the iterator, and may (but is not
4629     * guaranteed to) reflect any modifications subsequent to
4630     * construction.
4631     *
4632     * @return an iterator over the keys of this map
4633     */
4634     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4635     public boolean add(K e) {
4636     V v;
4637     if ((v = value) == null)
4638     throw new UnsupportedOperationException();
4639     if (e == null)
4640     throw new NullPointerException();
4641 dl 1.149 return map.internalPut(e, v, true) == null;
4642 dl 1.142 }
4643     public boolean addAll(Collection<? extends K> c) {
4644     boolean added = false;
4645     V v;
4646     if ((v = value) == null)
4647     throw new UnsupportedOperationException();
4648     for (K e : c) {
4649     if (e == null)
4650     throw new NullPointerException();
4651 dl 1.149 if (map.internalPut(e, v, true) == null)
4652 dl 1.142 added = true;
4653     }
4654     return added;
4655     }
4656     public boolean equals(Object o) {
4657     Set<?> c;
4658     return ((o instanceof Set) &&
4659     ((c = (Set<?>)o) == this ||
4660     (containsAll(c) && c.containsAll(this))));
4661     }
4662 dl 1.153
4663     public Stream<K> stream() {
4664     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4665     }
4666     public Stream<K> parallelStream() {
4667     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4668     0);
4669     }
4670 dl 1.142 }
4671    
4672     /**
4673     * A view of a ConcurrentHashMap as a {@link Collection} of
4674     * values, in which additions are disabled. This class cannot be
4675     * directly instantiated. See {@link #values},
4676     *
4677     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4678     * that will never throw {@link ConcurrentModificationException},
4679     * and guarantees to traverse elements as they existed upon
4680     * construction of the iterator, and may (but is not guaranteed to)
4681     * reflect any modifications subsequent to construction.
4682     */
4683     public static final class ValuesView<K,V> extends CHMView<K,V>
4684     implements Collection<V> {
4685 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4686 dl 1.142 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4687     public final boolean contains(Object o) { return map.containsValue(o); }
4688     public final boolean remove(Object o) {
4689     if (o != null) {
4690     Iterator<V> it = new ValueIterator<K,V>(map);
4691     while (it.hasNext()) {
4692     if (o.equals(it.next())) {
4693     it.remove();
4694     return true;
4695     }
4696     }
4697     }
4698     return false;
4699     }
4700    
4701     /**
4702     * Returns a "weakly consistent" iterator that will never
4703     * throw {@link ConcurrentModificationException}, and
4704     * guarantees to traverse elements as they existed upon
4705     * construction of the iterator, and may (but is not
4706     * guaranteed to) reflect any modifications subsequent to
4707     * construction.
4708     *
4709     * @return an iterator over the values of this map
4710     */
4711     public final Iterator<V> iterator() {
4712     return new ValueIterator<K,V>(map);
4713     }
4714     public final boolean add(V e) {
4715     throw new UnsupportedOperationException();
4716     }
4717     public final boolean addAll(Collection<? extends V> c) {
4718     throw new UnsupportedOperationException();
4719     }
4720    
4721 dl 1.153 public Stream<V> stream() {
4722     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4723     }
4724    
4725     public Stream<V> parallelStream() {
4726     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4727     0);
4728     }
4729    
4730 dl 1.142 }
4731    
4732     /**
4733     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4734     * entries. This class cannot be directly instantiated. See
4735     * {@link #entrySet}.
4736     */
4737     public static final class EntrySetView<K,V> extends CHMView<K,V>
4738     implements Set<Map.Entry<K,V>> {
4739 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4740 dl 1.142 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4741     public final boolean contains(Object o) {
4742     Object k, v, r; Map.Entry<?,?> e;
4743     return ((o instanceof Map.Entry) &&
4744     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4745     (r = map.get(k)) != null &&
4746     (v = e.getValue()) != null &&
4747     (v == r || v.equals(r)));
4748     }
4749     public final boolean remove(Object o) {
4750     Object k, v; Map.Entry<?,?> e;
4751     return ((o instanceof Map.Entry) &&
4752     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4753     (v = e.getValue()) != null &&
4754     map.remove(k, v));
4755     }
4756    
4757     /**
4758     * Returns a "weakly consistent" iterator that will never
4759     * throw {@link ConcurrentModificationException}, and
4760     * guarantees to traverse elements as they existed upon
4761     * construction of the iterator, and may (but is not
4762     * guaranteed to) reflect any modifications subsequent to
4763     * construction.
4764     *
4765     * @return an iterator over the entries of this map
4766     */
4767     public final Iterator<Map.Entry<K,V>> iterator() {
4768     return new EntryIterator<K,V>(map);
4769     }
4770    
4771     public final boolean add(Entry<K,V> e) {
4772     K key = e.getKey();
4773     V value = e.getValue();
4774     if (key == null || value == null)
4775     throw new NullPointerException();
4776 dl 1.149 return map.internalPut(key, value, false) == null;
4777 dl 1.142 }
4778     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4779     boolean added = false;
4780     for (Entry<K,V> e : c) {
4781     if (add(e))
4782     added = true;
4783     }
4784     return added;
4785     }
4786     public boolean equals(Object o) {
4787     Set<?> c;
4788     return ((o instanceof Set) &&
4789     ((c = (Set<?>)o) == this ||
4790     (containsAll(c) && c.containsAll(this))));
4791     }
4792 dl 1.153
4793     public Stream<Map.Entry<K,V>> stream() {
4794     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4795     }
4796    
4797     public Stream<Map.Entry<K,V>> parallelStream() {
4798     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4799     0);
4800     }
4801 dl 1.142 }
4802    
4803 dl 1.119 // ---------------------------------------------------------------------
4804    
4805     /**
4806     * Predefined tasks for performing bulk parallel operations on
4807     * ConcurrentHashMaps. These tasks follow the forms and rules used
4808 dl 1.137 * for bulk operations. Each method has the same name, but returns
4809     * a task rather than invoking it. These methods may be useful in
4810     * custom applications such as submitting a task without waiting
4811     * for completion, using a custom pool, or combining with other
4812     * tasks.
4813 dl 1.119 */
4814     public static class ForkJoinTasks {
4815     private ForkJoinTasks() {}
4816    
4817     /**
4818     * Returns a task that when invoked, performs the given
4819     * action for each (key, value)
4820     *
4821     * @param map the map
4822     * @param action the action
4823     * @return the task
4824     */
4825 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4826 dl 1.119 (ConcurrentHashMap<K,V> map,
4827 dl 1.153 BiBlock<? super K, ? super V> action) {
4828 dl 1.119 if (action == null) throw new NullPointerException();
4829 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4830 dl 1.119 }
4831    
4832     /**
4833     * Returns a task that when invoked, performs the given
4834     * action for each non-null transformation of each (key, value)
4835     *
4836     * @param map the map
4837     * @param transformer a function returning the transformation
4838 jsr166 1.135 * for an element, or null if there is no transformation (in
4839 jsr166 1.134 * which case the action is not applied)
4840 dl 1.119 * @param action the action
4841     * @return the task
4842     */
4843 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4844 dl 1.119 (ConcurrentHashMap<K,V> map,
4845 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4846     Block<? super U> action) {
4847 dl 1.119 if (transformer == null || action == null)
4848     throw new NullPointerException();
4849     return new ForEachTransformedMappingTask<K,V,U>
4850 dl 1.146 (map, null, -1, transformer, action);
4851 dl 1.119 }
4852    
4853     /**
4854 dl 1.126 * Returns a task that when invoked, returns a non-null result
4855     * from applying the given search function on each (key,
4856     * value), or null if none. Upon success, further element
4857     * processing is suppressed and the results of any other
4858     * parallel invocations of the search function are ignored.
4859 dl 1.119 *
4860     * @param map the map
4861     * @param searchFunction a function returning a non-null
4862     * result on success, else null
4863     * @return the task
4864     */
4865     public static <K,V,U> ForkJoinTask<U> search
4866     (ConcurrentHashMap<K,V> map,
4867 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4868 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4869     return new SearchMappingsTask<K,V,U>
4870 dl 1.146 (map, null, -1, searchFunction,
4871 dl 1.119 new AtomicReference<U>());
4872     }
4873    
4874     /**
4875     * Returns a task that when invoked, returns the result of
4876     * accumulating the given transformation of all (key, value) pairs
4877     * using the given reducer to combine values, or null if none.
4878     *
4879     * @param map the map
4880     * @param transformer a function returning the transformation
4881 jsr166 1.135 * for an element, or null if there is no transformation (in
4882 dl 1.119 * which case it is not combined).
4883     * @param reducer a commutative associative combining function
4884     * @return the task
4885     */
4886     public static <K,V,U> ForkJoinTask<U> reduce
4887     (ConcurrentHashMap<K,V> map,
4888 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4889     BiFunction<? super U, ? super U, ? extends U> reducer) {
4890 dl 1.119 if (transformer == null || reducer == null)
4891     throw new NullPointerException();
4892     return new MapReduceMappingsTask<K,V,U>
4893 dl 1.130 (map, null, -1, null, transformer, reducer);
4894 dl 1.119 }
4895    
4896     /**
4897     * Returns a task that when invoked, returns the result of
4898     * accumulating the given transformation of all (key, value) pairs
4899     * using the given reducer to combine values, and the given
4900     * basis as an identity value.
4901     *
4902     * @param map the map
4903     * @param transformer a function returning the transformation
4904     * for an element
4905     * @param basis the identity (initial default value) for the reduction
4906     * @param reducer a commutative associative combining function
4907     * @return the task
4908     */
4909     public static <K,V> ForkJoinTask<Double> reduceToDouble
4910     (ConcurrentHashMap<K,V> map,
4911 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
4912 dl 1.119 double basis,
4913 dl 1.153 DoubleBinaryOperator reducer) {
4914 dl 1.119 if (transformer == null || reducer == null)
4915     throw new NullPointerException();
4916     return new MapReduceMappingsToDoubleTask<K,V>
4917 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4918 dl 1.119 }
4919    
4920     /**
4921     * Returns a task that when invoked, returns the result of
4922     * accumulating the given transformation of all (key, value) pairs
4923     * using the given reducer to combine values, and the given
4924     * basis as an identity value.
4925     *
4926     * @param map the map
4927     * @param transformer a function returning the transformation
4928     * for an element
4929     * @param basis the identity (initial default value) for the reduction
4930     * @param reducer a commutative associative combining function
4931     * @return the task
4932     */
4933     public static <K,V> ForkJoinTask<Long> reduceToLong
4934     (ConcurrentHashMap<K,V> map,
4935 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
4936 dl 1.119 long basis,
4937 dl 1.153 LongBinaryOperator reducer) {
4938 dl 1.119 if (transformer == null || reducer == null)
4939     throw new NullPointerException();
4940     return new MapReduceMappingsToLongTask<K,V>
4941 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4942 dl 1.119 }
4943    
4944     /**
4945     * Returns a task that when invoked, returns the result of
4946     * accumulating the given transformation of all (key, value) pairs
4947     * using the given reducer to combine values, and the given
4948     * basis as an identity value.
4949     *
4950     * @param transformer a function returning the transformation
4951     * for an element
4952     * @param basis the identity (initial default value) for the reduction
4953     * @param reducer a commutative associative combining function
4954     * @return the task
4955     */
4956     public static <K,V> ForkJoinTask<Integer> reduceToInt
4957     (ConcurrentHashMap<K,V> map,
4958 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
4959 dl 1.119 int basis,
4960 dl 1.153 IntBinaryOperator reducer) {
4961 dl 1.119 if (transformer == null || reducer == null)
4962     throw new NullPointerException();
4963     return new MapReduceMappingsToIntTask<K,V>
4964 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4965 dl 1.119 }
4966    
4967     /**
4968     * Returns a task that when invoked, performs the given action
4969 jsr166 1.123 * for each key.
4970 dl 1.119 *
4971     * @param map the map
4972     * @param action the action
4973     * @return the task
4974     */
4975 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4976 dl 1.119 (ConcurrentHashMap<K,V> map,
4977 dl 1.153 Block<? super K> action) {
4978 dl 1.119 if (action == null) throw new NullPointerException();
4979 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4980 dl 1.119 }
4981    
4982     /**
4983     * Returns a task that when invoked, performs the given action
4984 jsr166 1.123 * for each non-null transformation of each key.
4985 dl 1.119 *
4986     * @param map the map
4987     * @param transformer a function returning the transformation
4988 jsr166 1.135 * for an element, or null if there is no transformation (in
4989 jsr166 1.134 * which case the action is not applied)
4990 dl 1.119 * @param action the action
4991     * @return the task
4992     */
4993 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4994 dl 1.119 (ConcurrentHashMap<K,V> map,
4995 dl 1.153 Function<? super K, ? extends U> transformer,
4996     Block<? super U> action) {
4997 dl 1.119 if (transformer == null || action == null)
4998     throw new NullPointerException();
4999     return new ForEachTransformedKeyTask<K,V,U>
5000 dl 1.146 (map, null, -1, transformer, action);
5001 dl 1.119 }
5002    
5003     /**
5004     * Returns a task that when invoked, returns a non-null result
5005     * from applying the given search function on each key, or
5006 dl 1.126 * null if none. Upon success, further element processing is
5007     * suppressed and the results of any other parallel
5008     * invocations of the search function are ignored.
5009 dl 1.119 *
5010     * @param map the map
5011     * @param searchFunction a function returning a non-null
5012     * result on success, else null
5013     * @return the task
5014     */
5015     public static <K,V,U> ForkJoinTask<U> searchKeys
5016     (ConcurrentHashMap<K,V> map,
5017 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5018 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5019     return new SearchKeysTask<K,V,U>
5020 dl 1.146 (map, null, -1, searchFunction,
5021 dl 1.119 new AtomicReference<U>());
5022     }
5023    
5024     /**
5025     * Returns a task that when invoked, returns the result of
5026     * accumulating all keys using the given reducer to combine
5027     * values, or null if none.
5028     *
5029     * @param map the map
5030     * @param reducer a commutative associative combining function
5031     * @return the task
5032     */
5033     public static <K,V> ForkJoinTask<K> reduceKeys
5034     (ConcurrentHashMap<K,V> map,
5035 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5036 dl 1.119 if (reducer == null) throw new NullPointerException();
5037     return new ReduceKeysTask<K,V>
5038 dl 1.130 (map, null, -1, null, reducer);
5039 dl 1.119 }
5040 jsr166 1.125
5041 dl 1.119 /**
5042     * Returns a task that when invoked, returns the result of
5043     * accumulating the given transformation of all keys using the given
5044     * reducer to combine values, or null if none.
5045     *
5046     * @param map the map
5047     * @param transformer a function returning the transformation
5048 jsr166 1.135 * for an element, or null if there is no transformation (in
5049 dl 1.119 * which case it is not combined).
5050     * @param reducer a commutative associative combining function
5051     * @return the task
5052     */
5053     public static <K,V,U> ForkJoinTask<U> reduceKeys
5054     (ConcurrentHashMap<K,V> map,
5055 dl 1.153 Function<? super K, ? extends U> transformer,
5056     BiFunction<? super U, ? super U, ? extends U> reducer) {
5057 dl 1.119 if (transformer == null || reducer == null)
5058     throw new NullPointerException();
5059     return new MapReduceKeysTask<K,V,U>
5060 dl 1.130 (map, null, -1, null, transformer, reducer);
5061 dl 1.119 }
5062    
5063     /**
5064     * Returns a task that when invoked, returns the result of
5065     * accumulating the given transformation of all keys using the given
5066     * reducer to combine values, and the given basis as an
5067     * identity value.
5068     *
5069     * @param map the map
5070     * @param transformer a function returning the transformation
5071     * for an element
5072     * @param basis the identity (initial default value) for the reduction
5073     * @param reducer a commutative associative combining function
5074     * @return the task
5075     */
5076     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5077     (ConcurrentHashMap<K,V> map,
5078 dl 1.153 DoubleFunction<? super K> transformer,
5079 dl 1.119 double basis,
5080 dl 1.153 DoubleBinaryOperator reducer) {
5081 dl 1.119 if (transformer == null || reducer == null)
5082     throw new NullPointerException();
5083     return new MapReduceKeysToDoubleTask<K,V>
5084 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5085 dl 1.119 }
5086    
5087     /**
5088     * Returns a task that when invoked, returns the result of
5089     * accumulating the given transformation of all keys using the given
5090     * reducer to combine values, and the given basis as an
5091     * identity value.
5092     *
5093     * @param map the map
5094     * @param transformer a function returning the transformation
5095     * for an element
5096     * @param basis the identity (initial default value) for the reduction
5097     * @param reducer a commutative associative combining function
5098     * @return the task
5099     */
5100     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5101     (ConcurrentHashMap<K,V> map,
5102 dl 1.153 LongFunction<? super K> transformer,
5103 dl 1.119 long basis,
5104 dl 1.153 LongBinaryOperator reducer) {
5105 dl 1.119 if (transformer == null || reducer == null)
5106     throw new NullPointerException();
5107     return new MapReduceKeysToLongTask<K,V>
5108 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5109 dl 1.119 }
5110    
5111     /**
5112     * Returns a task that when invoked, returns the result of
5113     * accumulating the given transformation of all keys using the given
5114     * reducer to combine values, and the given basis as an
5115     * identity value.
5116     *
5117     * @param map the map
5118     * @param transformer a function returning the transformation
5119     * for an element
5120     * @param basis the identity (initial default value) for the reduction
5121     * @param reducer a commutative associative combining function
5122     * @return the task
5123     */
5124     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5125     (ConcurrentHashMap<K,V> map,
5126 dl 1.153 IntFunction<? super K> transformer,
5127 dl 1.119 int basis,
5128 dl 1.153 IntBinaryOperator reducer) {
5129 dl 1.119 if (transformer == null || reducer == null)
5130     throw new NullPointerException();
5131     return new MapReduceKeysToIntTask<K,V>
5132 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5133 dl 1.119 }
5134    
5135     /**
5136     * Returns a task that when invoked, performs the given action
5137 jsr166 1.123 * for each value.
5138 dl 1.119 *
5139     * @param map the map
5140     * @param action the action
5141     */
5142 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5143 dl 1.119 (ConcurrentHashMap<K,V> map,
5144 dl 1.153 Block<? super V> action) {
5145 dl 1.119 if (action == null) throw new NullPointerException();
5146 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5147 dl 1.119 }
5148    
5149     /**
5150     * Returns a task that when invoked, performs the given action
5151 jsr166 1.123 * for each non-null transformation of each value.
5152 dl 1.119 *
5153     * @param map the map
5154     * @param transformer a function returning the transformation
5155 jsr166 1.135 * for an element, or null if there is no transformation (in
5156 jsr166 1.134 * which case the action is not applied)
5157 dl 1.119 * @param action the action
5158     */
5159 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5160 dl 1.119 (ConcurrentHashMap<K,V> map,
5161 dl 1.153 Function<? super V, ? extends U> transformer,
5162     Block<? super U> action) {
5163 dl 1.119 if (transformer == null || action == null)
5164     throw new NullPointerException();
5165     return new ForEachTransformedValueTask<K,V,U>
5166 dl 1.146 (map, null, -1, transformer, action);
5167 dl 1.119 }
5168    
5169     /**
5170     * Returns a task that when invoked, returns a non-null result
5171     * from applying the given search function on each value, or
5172 dl 1.126 * null if none. Upon success, further element processing is
5173     * suppressed and the results of any other parallel
5174     * invocations of the search function are ignored.
5175 dl 1.119 *
5176     * @param map the map
5177     * @param searchFunction a function returning a non-null
5178     * result on success, else null
5179     * @return the task
5180     */
5181     public static <K,V,U> ForkJoinTask<U> searchValues
5182     (ConcurrentHashMap<K,V> map,
5183 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5184 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5185     return new SearchValuesTask<K,V,U>
5186 dl 1.146 (map, null, -1, searchFunction,
5187 dl 1.119 new AtomicReference<U>());
5188     }
5189    
5190     /**
5191     * Returns a task that when invoked, returns the result of
5192     * accumulating all values using the given reducer to combine
5193     * values, or null if none.
5194     *
5195     * @param map the map
5196     * @param reducer a commutative associative combining function
5197     * @return the task
5198     */
5199     public static <K,V> ForkJoinTask<V> reduceValues
5200     (ConcurrentHashMap<K,V> map,
5201 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5202 dl 1.119 if (reducer == null) throw new NullPointerException();
5203     return new ReduceValuesTask<K,V>
5204 dl 1.130 (map, null, -1, null, reducer);
5205 dl 1.119 }
5206    
5207     /**
5208     * Returns a task that when invoked, returns the result of
5209     * accumulating the given transformation of all values using the
5210     * given reducer to combine values, or null if none.
5211     *
5212     * @param map the map
5213     * @param transformer a function returning the transformation
5214 jsr166 1.135 * for an element, or null if there is no transformation (in
5215 dl 1.119 * which case it is not combined).
5216     * @param reducer a commutative associative combining function
5217     * @return the task
5218     */
5219     public static <K,V,U> ForkJoinTask<U> reduceValues
5220     (ConcurrentHashMap<K,V> map,
5221 dl 1.153 Function<? super V, ? extends U> transformer,
5222     BiFunction<? super U, ? super U, ? extends U> reducer) {
5223 dl 1.119 if (transformer == null || reducer == null)
5224     throw new NullPointerException();
5225     return new MapReduceValuesTask<K,V,U>
5226 dl 1.130 (map, null, -1, null, transformer, reducer);
5227 dl 1.119 }
5228    
5229     /**
5230     * Returns a task that when invoked, returns the result of
5231     * accumulating the given transformation of all values using the
5232     * given reducer to combine values, and the given basis as an
5233     * identity value.
5234     *
5235     * @param map the map
5236     * @param transformer a function returning the transformation
5237     * for an element
5238     * @param basis the identity (initial default value) for the reduction
5239     * @param reducer a commutative associative combining function
5240     * @return the task
5241     */
5242     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5243     (ConcurrentHashMap<K,V> map,
5244 dl 1.153 DoubleFunction<? super V> transformer,
5245 dl 1.119 double basis,
5246 dl 1.153 DoubleBinaryOperator reducer) {
5247 dl 1.119 if (transformer == null || reducer == null)
5248     throw new NullPointerException();
5249     return new MapReduceValuesToDoubleTask<K,V>
5250 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5251 dl 1.119 }
5252    
5253     /**
5254     * Returns a task that when invoked, returns the result of
5255     * accumulating the given transformation of all values using the
5256     * given reducer to combine values, and the given basis as an
5257     * identity value.
5258     *
5259     * @param map the map
5260     * @param transformer a function returning the transformation
5261     * for an element
5262     * @param basis the identity (initial default value) for the reduction
5263     * @param reducer a commutative associative combining function
5264     * @return the task
5265     */
5266     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5267     (ConcurrentHashMap<K,V> map,
5268 dl 1.153 LongFunction<? super V> transformer,
5269 dl 1.119 long basis,
5270 dl 1.153 LongBinaryOperator reducer) {
5271 dl 1.119 if (transformer == null || reducer == null)
5272     throw new NullPointerException();
5273     return new MapReduceValuesToLongTask<K,V>
5274 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5275 dl 1.119 }
5276    
5277     /**
5278     * Returns a task that when invoked, returns the result of
5279     * accumulating the given transformation of all values using the
5280     * given reducer to combine values, and the given basis as an
5281     * identity value.
5282     *
5283     * @param map the map
5284     * @param transformer a function returning the transformation
5285     * for an element
5286     * @param basis the identity (initial default value) for the reduction
5287     * @param reducer a commutative associative combining function
5288     * @return the task
5289     */
5290     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5291     (ConcurrentHashMap<K,V> map,
5292 dl 1.153 IntFunction<? super V> transformer,
5293 dl 1.119 int basis,
5294 dl 1.153 IntBinaryOperator reducer) {
5295 dl 1.119 if (transformer == null || reducer == null)
5296     throw new NullPointerException();
5297     return new MapReduceValuesToIntTask<K,V>
5298 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5299 dl 1.119 }
5300    
5301     /**
5302     * Returns a task that when invoked, perform the given action
5303 jsr166 1.123 * for each entry.
5304 dl 1.119 *
5305     * @param map the map
5306     * @param action the action
5307     */
5308 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5309 dl 1.119 (ConcurrentHashMap<K,V> map,
5310 dl 1.153 Block<? super Map.Entry<K,V>> action) {
5311 dl 1.119 if (action == null) throw new NullPointerException();
5312 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5313 dl 1.119 }
5314    
5315     /**
5316     * Returns a task that when invoked, perform the given action
5317 jsr166 1.123 * for each non-null transformation of each entry.
5318 dl 1.119 *
5319     * @param map the map
5320     * @param transformer a function returning the transformation
5321 jsr166 1.135 * for an element, or null if there is no transformation (in
5322 jsr166 1.134 * which case the action is not applied)
5323 dl 1.119 * @param action the action
5324     */
5325 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5326 dl 1.119 (ConcurrentHashMap<K,V> map,
5327 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5328     Block<? super U> action) {
5329 dl 1.119 if (transformer == null || action == null)
5330     throw new NullPointerException();
5331     return new ForEachTransformedEntryTask<K,V,U>
5332 dl 1.146 (map, null, -1, transformer, action);
5333 dl 1.119 }
5334    
5335     /**
5336     * Returns a task that when invoked, returns a non-null result
5337     * from applying the given search function on each entry, or
5338 dl 1.126 * null if none. Upon success, further element processing is
5339     * suppressed and the results of any other parallel
5340     * invocations of the search function are ignored.
5341 dl 1.119 *
5342     * @param map the map
5343     * @param searchFunction a function returning a non-null
5344     * result on success, else null
5345     * @return the task
5346     */
5347     public static <K,V,U> ForkJoinTask<U> searchEntries
5348     (ConcurrentHashMap<K,V> map,
5349 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5350 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5351     return new SearchEntriesTask<K,V,U>
5352 dl 1.146 (map, null, -1, searchFunction,
5353 dl 1.119 new AtomicReference<U>());
5354     }
5355    
5356     /**
5357     * Returns a task that when invoked, returns the result of
5358     * accumulating all entries using the given reducer to combine
5359     * values, or null if none.
5360     *
5361     * @param map the map
5362     * @param reducer a commutative associative combining function
5363     * @return the task
5364     */
5365     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5366     (ConcurrentHashMap<K,V> map,
5367 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5368 dl 1.119 if (reducer == null) throw new NullPointerException();
5369     return new ReduceEntriesTask<K,V>
5370 dl 1.130 (map, null, -1, null, reducer);
5371 dl 1.119 }
5372    
5373     /**
5374     * Returns a task that when invoked, returns the result of
5375     * accumulating the given transformation of all entries using the
5376     * given reducer to combine values, or null if none.
5377     *
5378     * @param map the map
5379     * @param transformer a function returning the transformation
5380 jsr166 1.135 * for an element, or null if there is no transformation (in
5381 dl 1.119 * which case it is not combined).
5382     * @param reducer a commutative associative combining function
5383     * @return the task
5384     */
5385     public static <K,V,U> ForkJoinTask<U> reduceEntries
5386     (ConcurrentHashMap<K,V> map,
5387 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5388     BiFunction<? super U, ? super U, ? extends U> reducer) {
5389 dl 1.119 if (transformer == null || reducer == null)
5390     throw new NullPointerException();
5391     return new MapReduceEntriesTask<K,V,U>
5392 dl 1.130 (map, null, -1, null, transformer, reducer);
5393 dl 1.119 }
5394    
5395     /**
5396     * Returns a task that when invoked, returns the result of
5397     * accumulating the given transformation of all entries using the
5398     * given reducer to combine values, and the given basis as an
5399     * identity value.
5400     *
5401     * @param map the map
5402     * @param transformer a function returning the transformation
5403     * for an element
5404     * @param basis the identity (initial default value) for the reduction
5405     * @param reducer a commutative associative combining function
5406     * @return the task
5407     */
5408     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5409     (ConcurrentHashMap<K,V> map,
5410 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
5411 dl 1.119 double basis,
5412 dl 1.153 DoubleBinaryOperator reducer) {
5413 dl 1.119 if (transformer == null || reducer == null)
5414     throw new NullPointerException();
5415     return new MapReduceEntriesToDoubleTask<K,V>
5416 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5417 dl 1.119 }
5418    
5419     /**
5420     * Returns a task that when invoked, returns the result of
5421     * accumulating the given transformation of all entries using the
5422     * given reducer to combine values, and the given basis as an
5423     * identity value.
5424     *
5425     * @param map the map
5426     * @param transformer a function returning the transformation
5427     * for an element
5428     * @param basis the identity (initial default value) for the reduction
5429     * @param reducer a commutative associative combining function
5430     * @return the task
5431     */
5432     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5433     (ConcurrentHashMap<K,V> map,
5434 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
5435 dl 1.119 long basis,
5436 dl 1.153 LongBinaryOperator reducer) {
5437 dl 1.119 if (transformer == null || reducer == null)
5438     throw new NullPointerException();
5439     return new MapReduceEntriesToLongTask<K,V>
5440 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5441 dl 1.119 }
5442    
5443     /**
5444     * Returns a task that when invoked, returns the result of
5445     * accumulating the given transformation of all entries using the
5446     * given reducer to combine values, and the given basis as an
5447     * identity value.
5448     *
5449     * @param map the map
5450     * @param transformer a function returning the transformation
5451     * for an element
5452     * @param basis the identity (initial default value) for the reduction
5453     * @param reducer a commutative associative combining function
5454     * @return the task
5455     */
5456     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5457     (ConcurrentHashMap<K,V> map,
5458 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
5459 dl 1.119 int basis,
5460 dl 1.153 IntBinaryOperator reducer) {
5461 dl 1.119 if (transformer == null || reducer == null)
5462     throw new NullPointerException();
5463     return new MapReduceEntriesToIntTask<K,V>
5464 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5465 dl 1.119 }
5466     }
5467    
5468     // -------------------------------------------------------
5469    
5470     /*
5471     * Task classes. Coded in a regular but ugly format/style to
5472     * simplify checks that each variant differs in the right way from
5473 dl 1.149 * others. The null screenings exist because compilers cannot tell
5474     * that we've already null-checked task arguments, so we force
5475     * simplest hoisted bypass to help avoid convoluted traps.
5476 dl 1.119 */
5477    
5478 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5479 dl 1.146 extends Traverser<K,V,Void> {
5480 dl 1.153 final Block<? super K> action;
5481 dl 1.119 ForEachKeyTask
5482 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5483 dl 1.153 Block<? super K> action) {
5484 dl 1.146 super(m, p, b);
5485 dl 1.119 this.action = action;
5486     }
5487 jsr166 1.168 public final void compute() {
5488 dl 1.153 final Block<? super K> action;
5489 dl 1.149 if ((action = this.action) != null) {
5490     for (int b; (b = preSplit()) > 0;)
5491     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5492     while (advance() != null)
5493 jsr166 1.168 action.accept(nextKey);
5494 dl 1.149 propagateCompletion();
5495     }
5496 dl 1.119 }
5497     }
5498    
5499 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5500 dl 1.146 extends Traverser<K,V,Void> {
5501 dl 1.153 final Block<? super V> action;
5502 dl 1.119 ForEachValueTask
5503 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5504 dl 1.153 Block<? super V> action) {
5505 dl 1.146 super(m, p, b);
5506 dl 1.119 this.action = action;
5507     }
5508 jsr166 1.168 public final void compute() {
5509 dl 1.153 final Block<? super V> action;
5510 dl 1.149 if ((action = this.action) != null) {
5511     for (int b; (b = preSplit()) > 0;)
5512     new ForEachValueTask<K,V>(map, this, b, action).fork();
5513 dl 1.151 V v;
5514 dl 1.149 while ((v = advance()) != null)
5515 dl 1.153 action.accept(v);
5516 dl 1.149 propagateCompletion();
5517     }
5518 dl 1.119 }
5519     }
5520    
5521 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5522 dl 1.146 extends Traverser<K,V,Void> {
5523 dl 1.153 final Block<? super Entry<K,V>> action;
5524 dl 1.119 ForEachEntryTask
5525 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5526 dl 1.153 Block<? super Entry<K,V>> action) {
5527 dl 1.146 super(m, p, b);
5528 dl 1.119 this.action = action;
5529     }
5530 jsr166 1.168 public final void compute() {
5531 dl 1.153 final Block<? super Entry<K,V>> action;
5532 dl 1.149 if ((action = this.action) != null) {
5533     for (int b; (b = preSplit()) > 0;)
5534     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5535 dl 1.151 V v;
5536 dl 1.149 while ((v = advance()) != null)
5537 jsr166 1.168 action.accept(entryFor(nextKey, v));
5538 dl 1.149 propagateCompletion();
5539     }
5540 dl 1.119 }
5541     }
5542    
5543 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5544 dl 1.146 extends Traverser<K,V,Void> {
5545 dl 1.153 final BiBlock<? super K, ? super V> action;
5546 dl 1.119 ForEachMappingTask
5547 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 dl 1.153 BiBlock<? super K,? super V> action) {
5549 dl 1.146 super(m, p, b);
5550 dl 1.119 this.action = action;
5551     }
5552 jsr166 1.168 public final void compute() {
5553 dl 1.153 final BiBlock<? super K, ? super V> action;
5554 dl 1.149 if ((action = this.action) != null) {
5555     for (int b; (b = preSplit()) > 0;)
5556     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5557 dl 1.151 V v;
5558 dl 1.149 while ((v = advance()) != null)
5559 jsr166 1.168 action.accept(nextKey, v);
5560 dl 1.149 propagateCompletion();
5561     }
5562 dl 1.119 }
5563     }
5564    
5565 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5566 dl 1.146 extends Traverser<K,V,Void> {
5567 dl 1.153 final Function<? super K, ? extends U> transformer;
5568     final Block<? super U> action;
5569 dl 1.119 ForEachTransformedKeyTask
5570 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5571 dl 1.153 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5572 dl 1.146 super(m, p, b);
5573     this.transformer = transformer; this.action = action;
5574     }
5575 jsr166 1.168 public final void compute() {
5576 dl 1.153 final Function<? super K, ? extends U> transformer;
5577     final Block<? super U> action;
5578 dl 1.149 if ((transformer = this.transformer) != null &&
5579     (action = this.action) != null) {
5580     for (int b; (b = preSplit()) > 0;)
5581     new ForEachTransformedKeyTask<K,V,U>
5582     (map, this, b, transformer, action).fork();
5583     U u;
5584     while (advance() != null) {
5585 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5586 dl 1.153 action.accept(u);
5587 dl 1.149 }
5588     propagateCompletion();
5589 dl 1.119 }
5590     }
5591     }
5592    
5593 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5594 dl 1.146 extends Traverser<K,V,Void> {
5595 dl 1.153 final Function<? super V, ? extends U> transformer;
5596     final Block<? super U> action;
5597 dl 1.119 ForEachTransformedValueTask
5598 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5599 dl 1.153 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5600 dl 1.146 super(m, p, b);
5601     this.transformer = transformer; this.action = action;
5602     }
5603 jsr166 1.168 public final void compute() {
5604 dl 1.153 final Function<? super V, ? extends U> transformer;
5605     final Block<? super U> action;
5606 dl 1.149 if ((transformer = this.transformer) != null &&
5607     (action = this.action) != null) {
5608     for (int b; (b = preSplit()) > 0;)
5609     new ForEachTransformedValueTask<K,V,U>
5610     (map, this, b, transformer, action).fork();
5611 dl 1.151 V v; U u;
5612 dl 1.149 while ((v = advance()) != null) {
5613 dl 1.151 if ((u = transformer.apply(v)) != null)
5614 dl 1.153 action.accept(u);
5615 dl 1.149 }
5616     propagateCompletion();
5617 dl 1.119 }
5618     }
5619 tim 1.1 }
5620    
5621 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5622 dl 1.146 extends Traverser<K,V,Void> {
5623 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5624     final Block<? super U> action;
5625 dl 1.119 ForEachTransformedEntryTask
5626 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5627 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5628 dl 1.146 super(m, p, b);
5629     this.transformer = transformer; this.action = action;
5630     }
5631 jsr166 1.168 public final void compute() {
5632 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5633     final Block<? super U> action;
5634 dl 1.149 if ((transformer = this.transformer) != null &&
5635     (action = this.action) != null) {
5636     for (int b; (b = preSplit()) > 0;)
5637     new ForEachTransformedEntryTask<K,V,U>
5638     (map, this, b, transformer, action).fork();
5639 dl 1.151 V v; U u;
5640 dl 1.149 while ((v = advance()) != null) {
5641 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5642 dl 1.151 v))) != null)
5643 dl 1.153 action.accept(u);
5644 dl 1.149 }
5645     propagateCompletion();
5646 dl 1.119 }
5647     }
5648 tim 1.1 }
5649    
5650 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5651 dl 1.146 extends Traverser<K,V,Void> {
5652 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5653     final Block<? super U> action;
5654 dl 1.119 ForEachTransformedMappingTask
5655 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5656 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5657     Block<? super U> action) {
5658 dl 1.146 super(m, p, b);
5659     this.transformer = transformer; this.action = action;
5660 dl 1.119 }
5661 jsr166 1.168 public final void compute() {
5662 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5663     final Block<? super U> action;
5664 dl 1.149 if ((transformer = this.transformer) != null &&
5665     (action = this.action) != null) {
5666     for (int b; (b = preSplit()) > 0;)
5667     new ForEachTransformedMappingTask<K,V,U>
5668     (map, this, b, transformer, action).fork();
5669 dl 1.151 V v; U u;
5670 dl 1.149 while ((v = advance()) != null) {
5671 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5672 dl 1.153 action.accept(u);
5673 dl 1.149 }
5674     propagateCompletion();
5675 dl 1.119 }
5676     }
5677 tim 1.1 }
5678    
5679 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5680 dl 1.146 extends Traverser<K,V,U> {
5681 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5682 dl 1.119 final AtomicReference<U> result;
5683     SearchKeysTask
5684 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5685 dl 1.153 Function<? super K, ? extends U> searchFunction,
5686 dl 1.119 AtomicReference<U> result) {
5687 dl 1.146 super(m, p, b);
5688 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5689     }
5690 dl 1.146 public final U getRawResult() { return result.get(); }
5691 jsr166 1.168 public final void compute() {
5692 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5693 dl 1.146 final AtomicReference<U> result;
5694 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5695     (result = this.result) != null) {
5696     for (int b;;) {
5697     if (result.get() != null)
5698     return;
5699     if ((b = preSplit()) <= 0)
5700     break;
5701     new SearchKeysTask<K,V,U>
5702     (map, this, b, searchFunction, result).fork();
5703 dl 1.128 }
5704 dl 1.149 while (result.get() == null) {
5705     U u;
5706     if (advance() == null) {
5707     propagateCompletion();
5708     break;
5709     }
5710 jsr166 1.168 if ((u = searchFunction.apply(nextKey)) != null) {
5711 dl 1.149 if (result.compareAndSet(null, u))
5712     quietlyCompleteRoot();
5713     break;
5714     }
5715 dl 1.119 }
5716     }
5717     }
5718 tim 1.1 }
5719    
5720 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5721 dl 1.146 extends Traverser<K,V,U> {
5722 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5723 dl 1.119 final AtomicReference<U> result;
5724     SearchValuesTask
5725 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5726 dl 1.153 Function<? super V, ? extends U> searchFunction,
5727 dl 1.119 AtomicReference<U> result) {
5728 dl 1.146 super(m, p, b);
5729 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5730     }
5731 dl 1.146 public final U getRawResult() { return result.get(); }
5732 jsr166 1.168 public final void compute() {
5733 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5734 dl 1.146 final AtomicReference<U> result;
5735 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5736     (result = this.result) != null) {
5737     for (int b;;) {
5738     if (result.get() != null)
5739     return;
5740     if ((b = preSplit()) <= 0)
5741     break;
5742     new SearchValuesTask<K,V,U>
5743     (map, this, b, searchFunction, result).fork();
5744 dl 1.128 }
5745 dl 1.149 while (result.get() == null) {
5746 dl 1.151 V v; U u;
5747 dl 1.149 if ((v = advance()) == null) {
5748     propagateCompletion();
5749     break;
5750     }
5751 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5752 dl 1.149 if (result.compareAndSet(null, u))
5753     quietlyCompleteRoot();
5754     break;
5755     }
5756 dl 1.119 }
5757     }
5758     }
5759     }
5760 tim 1.11
5761 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5762 dl 1.146 extends Traverser<K,V,U> {
5763 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5764 dl 1.119 final AtomicReference<U> result;
5765     SearchEntriesTask
5766 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5767 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5768 dl 1.119 AtomicReference<U> result) {
5769 dl 1.146 super(m, p, b);
5770 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5771     }
5772 dl 1.146 public final U getRawResult() { return result.get(); }
5773 jsr166 1.168 public final void compute() {
5774 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5775 dl 1.146 final AtomicReference<U> result;
5776 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5777     (result = this.result) != null) {
5778     for (int b;;) {
5779     if (result.get() != null)
5780     return;
5781     if ((b = preSplit()) <= 0)
5782     break;
5783     new SearchEntriesTask<K,V,U>
5784     (map, this, b, searchFunction, result).fork();
5785 dl 1.128 }
5786 dl 1.149 while (result.get() == null) {
5787 dl 1.151 V v; U u;
5788 dl 1.149 if ((v = advance()) == null) {
5789     propagateCompletion();
5790     break;
5791     }
5792 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5793 dl 1.151 v))) != null) {
5794 dl 1.149 if (result.compareAndSet(null, u))
5795     quietlyCompleteRoot();
5796     return;
5797     }
5798 dl 1.119 }
5799     }
5800     }
5801     }
5802 tim 1.1
5803 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5804 dl 1.146 extends Traverser<K,V,U> {
5805 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5806 dl 1.119 final AtomicReference<U> result;
5807     SearchMappingsTask
5808 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5809 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5810 dl 1.119 AtomicReference<U> result) {
5811 dl 1.146 super(m, p, b);
5812 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5813     }
5814 dl 1.146 public final U getRawResult() { return result.get(); }
5815 jsr166 1.168 public final void compute() {
5816 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5817 dl 1.146 final AtomicReference<U> result;
5818 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5819     (result = this.result) != null) {
5820     for (int b;;) {
5821     if (result.get() != null)
5822     return;
5823     if ((b = preSplit()) <= 0)
5824     break;
5825     new SearchMappingsTask<K,V,U>
5826     (map, this, b, searchFunction, result).fork();
5827 dl 1.128 }
5828 dl 1.149 while (result.get() == null) {
5829 dl 1.151 V v; U u;
5830 dl 1.149 if ((v = advance()) == null) {
5831     propagateCompletion();
5832     break;
5833     }
5834 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
5835 dl 1.149 if (result.compareAndSet(null, u))
5836     quietlyCompleteRoot();
5837     break;
5838     }
5839 dl 1.119 }
5840     }
5841 tim 1.1 }
5842 dl 1.119 }
5843 tim 1.1
5844 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5845 dl 1.146 extends Traverser<K,V,K> {
5846 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5847 dl 1.119 K result;
5848 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5849 dl 1.119 ReduceKeysTask
5850 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5851 dl 1.128 ReduceKeysTask<K,V> nextRight,
5852 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5853 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5854 dl 1.119 this.reducer = reducer;
5855     }
5856 dl 1.146 public final K getRawResult() { return result; }
5857     @SuppressWarnings("unchecked") public final void compute() {
5858 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5859 dl 1.149 if ((reducer = this.reducer) != null) {
5860     for (int b; (b = preSplit()) > 0;)
5861     (rights = new ReduceKeysTask<K,V>
5862     (map, this, b, rights, reducer)).fork();
5863     K r = null;
5864     while (advance() != null) {
5865 jsr166 1.168 K u = nextKey;
5866 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5867 dl 1.149 }
5868     result = r;
5869     CountedCompleter<?> c;
5870     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5871     ReduceKeysTask<K,V>
5872     t = (ReduceKeysTask<K,V>)c,
5873     s = t.rights;
5874     while (s != null) {
5875     K tr, sr;
5876     if ((sr = s.result) != null)
5877     t.result = (((tr = t.result) == null) ? sr :
5878     reducer.apply(tr, sr));
5879     s = t.rights = s.nextRight;
5880     }
5881 dl 1.99 }
5882 dl 1.138 }
5883 tim 1.1 }
5884 dl 1.119 }
5885 tim 1.1
5886 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5887 dl 1.146 extends Traverser<K,V,V> {
5888 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5889 dl 1.119 V result;
5890 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5891 dl 1.119 ReduceValuesTask
5892 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5893 dl 1.128 ReduceValuesTask<K,V> nextRight,
5894 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5895 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5896 dl 1.119 this.reducer = reducer;
5897     }
5898 dl 1.146 public final V getRawResult() { return result; }
5899     @SuppressWarnings("unchecked") public final void compute() {
5900 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5901 dl 1.149 if ((reducer = this.reducer) != null) {
5902     for (int b; (b = preSplit()) > 0;)
5903     (rights = new ReduceValuesTask<K,V>
5904     (map, this, b, rights, reducer)).fork();
5905 dl 1.153 V r = null, v;
5906     while ((v = advance()) != null)
5907 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5908 dl 1.149 result = r;
5909     CountedCompleter<?> c;
5910     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911     ReduceValuesTask<K,V>
5912     t = (ReduceValuesTask<K,V>)c,
5913     s = t.rights;
5914     while (s != null) {
5915     V tr, sr;
5916     if ((sr = s.result) != null)
5917     t.result = (((tr = t.result) == null) ? sr :
5918     reducer.apply(tr, sr));
5919     s = t.rights = s.nextRight;
5920     }
5921 dl 1.119 }
5922     }
5923 tim 1.1 }
5924 dl 1.119 }
5925 tim 1.1
5926 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5927 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5928 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5929 dl 1.119 Map.Entry<K,V> result;
5930 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5931 dl 1.119 ReduceEntriesTask
5932 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5933 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5934 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5935 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5936 dl 1.119 this.reducer = reducer;
5937     }
5938 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5939     @SuppressWarnings("unchecked") public final void compute() {
5940 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5941 dl 1.149 if ((reducer = this.reducer) != null) {
5942     for (int b; (b = preSplit()) > 0;)
5943     (rights = new ReduceEntriesTask<K,V>
5944     (map, this, b, rights, reducer)).fork();
5945     Map.Entry<K,V> r = null;
5946 dl 1.151 V v;
5947 dl 1.149 while ((v = advance()) != null) {
5948 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
5949 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5950     }
5951     result = r;
5952     CountedCompleter<?> c;
5953     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954     ReduceEntriesTask<K,V>
5955     t = (ReduceEntriesTask<K,V>)c,
5956     s = t.rights;
5957     while (s != null) {
5958     Map.Entry<K,V> tr, sr;
5959     if ((sr = s.result) != null)
5960     t.result = (((tr = t.result) == null) ? sr :
5961     reducer.apply(tr, sr));
5962     s = t.rights = s.nextRight;
5963     }
5964 dl 1.119 }
5965 dl 1.138 }
5966 dl 1.119 }
5967     }
5968 dl 1.99
5969 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5970 dl 1.146 extends Traverser<K,V,U> {
5971 dl 1.153 final Function<? super K, ? extends U> transformer;
5972     final BiFunction<? super U, ? super U, ? extends U> reducer;
5973 dl 1.119 U result;
5974 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5975 dl 1.119 MapReduceKeysTask
5976 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5977 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5978 dl 1.153 Function<? super K, ? extends U> transformer,
5979     BiFunction<? super U, ? super U, ? extends U> reducer) {
5980 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5981 dl 1.119 this.transformer = transformer;
5982     this.reducer = reducer;
5983     }
5984 dl 1.146 public final U getRawResult() { return result; }
5985     @SuppressWarnings("unchecked") public final void compute() {
5986 dl 1.153 final Function<? super K, ? extends U> transformer;
5987     final BiFunction<? super U, ? super U, ? extends U> reducer;
5988 dl 1.149 if ((transformer = this.transformer) != null &&
5989     (reducer = this.reducer) != null) {
5990     for (int b; (b = preSplit()) > 0;)
5991     (rights = new MapReduceKeysTask<K,V,U>
5992     (map, this, b, rights, transformer, reducer)).fork();
5993     U r = null, u;
5994     while (advance() != null) {
5995 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5996 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5997     }
5998     result = r;
5999     CountedCompleter<?> c;
6000     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001     MapReduceKeysTask<K,V,U>
6002     t = (MapReduceKeysTask<K,V,U>)c,
6003     s = t.rights;
6004     while (s != null) {
6005     U tr, sr;
6006     if ((sr = s.result) != null)
6007     t.result = (((tr = t.result) == null) ? sr :
6008     reducer.apply(tr, sr));
6009     s = t.rights = s.nextRight;
6010     }
6011 dl 1.119 }
6012 dl 1.138 }
6013 tim 1.1 }
6014 dl 1.4 }
6015    
6016 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6017 dl 1.146 extends Traverser<K,V,U> {
6018 dl 1.153 final Function<? super V, ? extends U> transformer;
6019     final BiFunction<? super U, ? super U, ? extends U> reducer;
6020 dl 1.119 U result;
6021 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6022 dl 1.119 MapReduceValuesTask
6023 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6024 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6025 dl 1.153 Function<? super V, ? extends U> transformer,
6026     BiFunction<? super U, ? super U, ? extends U> reducer) {
6027 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6028 dl 1.119 this.transformer = transformer;
6029     this.reducer = reducer;
6030     }
6031 dl 1.146 public final U getRawResult() { return result; }
6032     @SuppressWarnings("unchecked") public final void compute() {
6033 dl 1.153 final Function<? super V, ? extends U> transformer;
6034     final BiFunction<? super U, ? super U, ? extends U> reducer;
6035 dl 1.149 if ((transformer = this.transformer) != null &&
6036     (reducer = this.reducer) != null) {
6037     for (int b; (b = preSplit()) > 0;)
6038     (rights = new MapReduceValuesTask<K,V,U>
6039     (map, this, b, rights, transformer, reducer)).fork();
6040     U r = null, u;
6041 dl 1.151 V v;
6042 dl 1.149 while ((v = advance()) != null) {
6043 dl 1.151 if ((u = transformer.apply(v)) != null)
6044 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6045     }
6046     result = r;
6047     CountedCompleter<?> c;
6048     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6049     MapReduceValuesTask<K,V,U>
6050     t = (MapReduceValuesTask<K,V,U>)c,
6051     s = t.rights;
6052     while (s != null) {
6053     U tr, sr;
6054     if ((sr = s.result) != null)
6055     t.result = (((tr = t.result) == null) ? sr :
6056     reducer.apply(tr, sr));
6057     s = t.rights = s.nextRight;
6058     }
6059 dl 1.119 }
6060     }
6061     }
6062 dl 1.4 }
6063    
6064 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6065 dl 1.146 extends Traverser<K,V,U> {
6066 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6067     final BiFunction<? super U, ? super U, ? extends U> reducer;
6068 dl 1.119 U result;
6069 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6070 dl 1.119 MapReduceEntriesTask
6071 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6072 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6073 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6074     BiFunction<? super U, ? super U, ? extends U> reducer) {
6075 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6076 dl 1.119 this.transformer = transformer;
6077     this.reducer = reducer;
6078     }
6079 dl 1.146 public final U getRawResult() { return result; }
6080     @SuppressWarnings("unchecked") public final void compute() {
6081 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6082     final BiFunction<? super U, ? super U, ? extends U> reducer;
6083 dl 1.149 if ((transformer = this.transformer) != null &&
6084     (reducer = this.reducer) != null) {
6085     for (int b; (b = preSplit()) > 0;)
6086     (rights = new MapReduceEntriesTask<K,V,U>
6087     (map, this, b, rights, transformer, reducer)).fork();
6088     U r = null, u;
6089 dl 1.151 V v;
6090 dl 1.149 while ((v = advance()) != null) {
6091 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6092 dl 1.151 v))) != null)
6093 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6094     }
6095     result = r;
6096     CountedCompleter<?> c;
6097     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6098     MapReduceEntriesTask<K,V,U>
6099     t = (MapReduceEntriesTask<K,V,U>)c,
6100     s = t.rights;
6101     while (s != null) {
6102     U tr, sr;
6103     if ((sr = s.result) != null)
6104     t.result = (((tr = t.result) == null) ? sr :
6105     reducer.apply(tr, sr));
6106     s = t.rights = s.nextRight;
6107     }
6108 dl 1.119 }
6109 dl 1.138 }
6110 dl 1.119 }
6111 dl 1.4 }
6112 tim 1.1
6113 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6114 dl 1.146 extends Traverser<K,V,U> {
6115 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6116     final BiFunction<? super U, ? super U, ? extends U> reducer;
6117 dl 1.119 U result;
6118 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6119 dl 1.119 MapReduceMappingsTask
6120 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6121 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6122 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6123     BiFunction<? super U, ? super U, ? extends U> reducer) {
6124 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6125 dl 1.119 this.transformer = transformer;
6126     this.reducer = reducer;
6127     }
6128 dl 1.146 public final U getRawResult() { return result; }
6129     @SuppressWarnings("unchecked") public final void compute() {
6130 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6131     final BiFunction<? super U, ? super U, ? extends U> reducer;
6132 dl 1.149 if ((transformer = this.transformer) != null &&
6133     (reducer = this.reducer) != null) {
6134     for (int b; (b = preSplit()) > 0;)
6135     (rights = new MapReduceMappingsTask<K,V,U>
6136     (map, this, b, rights, transformer, reducer)).fork();
6137     U r = null, u;
6138 dl 1.151 V v;
6139 dl 1.149 while ((v = advance()) != null) {
6140 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6141 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6142     }
6143     result = r;
6144     CountedCompleter<?> c;
6145     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6146     MapReduceMappingsTask<K,V,U>
6147     t = (MapReduceMappingsTask<K,V,U>)c,
6148     s = t.rights;
6149     while (s != null) {
6150     U tr, sr;
6151     if ((sr = s.result) != null)
6152     t.result = (((tr = t.result) == null) ? sr :
6153     reducer.apply(tr, sr));
6154     s = t.rights = s.nextRight;
6155     }
6156 dl 1.119 }
6157     }
6158     }
6159     }
6160 jsr166 1.114
6161 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6162 dl 1.146 extends Traverser<K,V,Double> {
6163 dl 1.153 final DoubleFunction<? super K> transformer;
6164     final DoubleBinaryOperator reducer;
6165 dl 1.119 final double basis;
6166     double result;
6167 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6168 dl 1.119 MapReduceKeysToDoubleTask
6169 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6170 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6171 dl 1.153 DoubleFunction<? super K> transformer,
6172 dl 1.119 double basis,
6173 dl 1.153 DoubleBinaryOperator reducer) {
6174 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6175 dl 1.119 this.transformer = transformer;
6176     this.basis = basis; this.reducer = reducer;
6177     }
6178 dl 1.146 public final Double getRawResult() { return result; }
6179     @SuppressWarnings("unchecked") public final void compute() {
6180 dl 1.153 final DoubleFunction<? super K> transformer;
6181     final DoubleBinaryOperator reducer;
6182 dl 1.149 if ((transformer = this.transformer) != null &&
6183     (reducer = this.reducer) != null) {
6184     double r = this.basis;
6185     for (int b; (b = preSplit()) > 0;)
6186     (rights = new MapReduceKeysToDoubleTask<K,V>
6187     (map, this, b, rights, transformer, r, reducer)).fork();
6188     while (advance() != null)
6189 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6190 dl 1.149 result = r;
6191     CountedCompleter<?> c;
6192     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193     MapReduceKeysToDoubleTask<K,V>
6194     t = (MapReduceKeysToDoubleTask<K,V>)c,
6195     s = t.rights;
6196     while (s != null) {
6197 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6198 dl 1.149 s = t.rights = s.nextRight;
6199     }
6200 dl 1.119 }
6201 dl 1.138 }
6202 dl 1.79 }
6203 dl 1.119 }
6204 dl 1.79
6205 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6206 dl 1.146 extends Traverser<K,V,Double> {
6207 dl 1.153 final DoubleFunction<? super V> transformer;
6208     final DoubleBinaryOperator reducer;
6209 dl 1.119 final double basis;
6210     double result;
6211 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6212 dl 1.119 MapReduceValuesToDoubleTask
6213 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6214 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6215 dl 1.153 DoubleFunction<? super V> transformer,
6216 dl 1.119 double basis,
6217 dl 1.153 DoubleBinaryOperator reducer) {
6218 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6219 dl 1.119 this.transformer = transformer;
6220     this.basis = basis; this.reducer = reducer;
6221     }
6222 dl 1.146 public final Double getRawResult() { return result; }
6223     @SuppressWarnings("unchecked") public final void compute() {
6224 dl 1.153 final DoubleFunction<? super V> transformer;
6225     final DoubleBinaryOperator reducer;
6226 dl 1.149 if ((transformer = this.transformer) != null &&
6227     (reducer = this.reducer) != null) {
6228     double r = this.basis;
6229     for (int b; (b = preSplit()) > 0;)
6230     (rights = new MapReduceValuesToDoubleTask<K,V>
6231     (map, this, b, rights, transformer, r, reducer)).fork();
6232 dl 1.151 V v;
6233 dl 1.149 while ((v = advance()) != null)
6234 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6235 dl 1.149 result = r;
6236     CountedCompleter<?> c;
6237     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238     MapReduceValuesToDoubleTask<K,V>
6239     t = (MapReduceValuesToDoubleTask<K,V>)c,
6240     s = t.rights;
6241     while (s != null) {
6242 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6243 dl 1.149 s = t.rights = s.nextRight;
6244     }
6245 dl 1.119 }
6246     }
6247 dl 1.30 }
6248 dl 1.79 }
6249 dl 1.30
6250 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6251 dl 1.146 extends Traverser<K,V,Double> {
6252 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6253     final DoubleBinaryOperator reducer;
6254 dl 1.119 final double basis;
6255     double result;
6256 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6257 dl 1.119 MapReduceEntriesToDoubleTask
6258 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6259 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6260 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
6261 dl 1.119 double basis,
6262 dl 1.153 DoubleBinaryOperator reducer) {
6263 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6264 dl 1.119 this.transformer = transformer;
6265     this.basis = basis; this.reducer = reducer;
6266     }
6267 dl 1.146 public final Double getRawResult() { return result; }
6268     @SuppressWarnings("unchecked") public final void compute() {
6269 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6270     final DoubleBinaryOperator reducer;
6271 dl 1.149 if ((transformer = this.transformer) != null &&
6272     (reducer = this.reducer) != null) {
6273     double r = this.basis;
6274     for (int b; (b = preSplit()) > 0;)
6275     (rights = new MapReduceEntriesToDoubleTask<K,V>
6276     (map, this, b, rights, transformer, r, reducer)).fork();
6277 dl 1.151 V v;
6278 dl 1.149 while ((v = advance()) != null)
6279 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6280 dl 1.151 v)));
6281 dl 1.149 result = r;
6282     CountedCompleter<?> c;
6283     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6284     MapReduceEntriesToDoubleTask<K,V>
6285     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6286     s = t.rights;
6287     while (s != null) {
6288 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6289 dl 1.149 s = t.rights = s.nextRight;
6290     }
6291 dl 1.119 }
6292 dl 1.138 }
6293 dl 1.30 }
6294 tim 1.1 }
6295    
6296 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6297 dl 1.146 extends Traverser<K,V,Double> {
6298 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6299     final DoubleBinaryOperator reducer;
6300 dl 1.119 final double basis;
6301     double result;
6302 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6303 dl 1.119 MapReduceMappingsToDoubleTask
6304 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6305 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6306 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
6307 dl 1.119 double basis,
6308 dl 1.153 DoubleBinaryOperator reducer) {
6309 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6310 dl 1.119 this.transformer = transformer;
6311     this.basis = basis; this.reducer = reducer;
6312     }
6313 dl 1.146 public final Double getRawResult() { return result; }
6314     @SuppressWarnings("unchecked") public final void compute() {
6315 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6316     final DoubleBinaryOperator reducer;
6317 dl 1.149 if ((transformer = this.transformer) != null &&
6318     (reducer = this.reducer) != null) {
6319     double r = this.basis;
6320     for (int b; (b = preSplit()) > 0;)
6321     (rights = new MapReduceMappingsToDoubleTask<K,V>
6322     (map, this, b, rights, transformer, r, reducer)).fork();
6323 dl 1.151 V v;
6324 dl 1.149 while ((v = advance()) != null)
6325 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6326 dl 1.149 result = r;
6327     CountedCompleter<?> c;
6328     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6329     MapReduceMappingsToDoubleTask<K,V>
6330     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6331     s = t.rights;
6332     while (s != null) {
6333 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6334 dl 1.149 s = t.rights = s.nextRight;
6335     }
6336 dl 1.119 }
6337     }
6338 dl 1.4 }
6339 dl 1.119 }
6340    
6341 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6342 dl 1.146 extends Traverser<K,V,Long> {
6343 dl 1.153 final LongFunction<? super K> transformer;
6344     final LongBinaryOperator reducer;
6345 dl 1.119 final long basis;
6346     long result;
6347 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6348 dl 1.119 MapReduceKeysToLongTask
6349 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6350 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6351 dl 1.153 LongFunction<? super K> transformer,
6352 dl 1.119 long basis,
6353 dl 1.153 LongBinaryOperator reducer) {
6354 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6355 dl 1.119 this.transformer = transformer;
6356     this.basis = basis; this.reducer = reducer;
6357     }
6358 dl 1.146 public final Long getRawResult() { return result; }
6359     @SuppressWarnings("unchecked") public final void compute() {
6360 dl 1.153 final LongFunction<? super K> transformer;
6361     final LongBinaryOperator reducer;
6362 dl 1.149 if ((transformer = this.transformer) != null &&
6363     (reducer = this.reducer) != null) {
6364     long r = this.basis;
6365     for (int b; (b = preSplit()) > 0;)
6366     (rights = new MapReduceKeysToLongTask<K,V>
6367     (map, this, b, rights, transformer, r, reducer)).fork();
6368     while (advance() != null)
6369 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6370 dl 1.149 result = r;
6371     CountedCompleter<?> c;
6372     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6373     MapReduceKeysToLongTask<K,V>
6374     t = (MapReduceKeysToLongTask<K,V>)c,
6375     s = t.rights;
6376     while (s != null) {
6377 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6378 dl 1.149 s = t.rights = s.nextRight;
6379     }
6380 dl 1.119 }
6381 dl 1.138 }
6382 dl 1.4 }
6383 dl 1.119 }
6384    
6385 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6386 dl 1.146 extends Traverser<K,V,Long> {
6387 dl 1.153 final LongFunction<? super V> transformer;
6388     final LongBinaryOperator reducer;
6389 dl 1.119 final long basis;
6390     long result;
6391 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6392 dl 1.119 MapReduceValuesToLongTask
6393 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6394 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6395 dl 1.153 LongFunction<? super V> transformer,
6396 dl 1.119 long basis,
6397 dl 1.153 LongBinaryOperator reducer) {
6398 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6399 dl 1.119 this.transformer = transformer;
6400     this.basis = basis; this.reducer = reducer;
6401     }
6402 dl 1.146 public final Long getRawResult() { return result; }
6403     @SuppressWarnings("unchecked") public final void compute() {
6404 dl 1.153 final LongFunction<? super V> transformer;
6405     final LongBinaryOperator reducer;
6406 dl 1.149 if ((transformer = this.transformer) != null &&
6407     (reducer = this.reducer) != null) {
6408     long r = this.basis;
6409     for (int b; (b = preSplit()) > 0;)
6410     (rights = new MapReduceValuesToLongTask<K,V>
6411     (map, this, b, rights, transformer, r, reducer)).fork();
6412 dl 1.151 V v;
6413 dl 1.149 while ((v = advance()) != null)
6414 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6415 dl 1.149 result = r;
6416     CountedCompleter<?> c;
6417     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6418     MapReduceValuesToLongTask<K,V>
6419     t = (MapReduceValuesToLongTask<K,V>)c,
6420     s = t.rights;
6421     while (s != null) {
6422 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6423 dl 1.149 s = t.rights = s.nextRight;
6424     }
6425 dl 1.119 }
6426     }
6427 jsr166 1.95 }
6428 dl 1.119 }
6429    
6430 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6431 dl 1.146 extends Traverser<K,V,Long> {
6432 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6433     final LongBinaryOperator reducer;
6434 dl 1.119 final long basis;
6435     long result;
6436 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6437 dl 1.119 MapReduceEntriesToLongTask
6438 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6439 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6440 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
6441 dl 1.119 long basis,
6442 dl 1.153 LongBinaryOperator reducer) {
6443 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6444 dl 1.119 this.transformer = transformer;
6445     this.basis = basis; this.reducer = reducer;
6446     }
6447 dl 1.146 public final Long getRawResult() { return result; }
6448     @SuppressWarnings("unchecked") public final void compute() {
6449 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6450     final LongBinaryOperator reducer;
6451 dl 1.149 if ((transformer = this.transformer) != null &&
6452     (reducer = this.reducer) != null) {
6453     long r = this.basis;
6454     for (int b; (b = preSplit()) > 0;)
6455     (rights = new MapReduceEntriesToLongTask<K,V>
6456     (map, this, b, rights, transformer, r, reducer)).fork();
6457 dl 1.151 V v;
6458 dl 1.149 while ((v = advance()) != null)
6459 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6460 dl 1.149 result = r;
6461     CountedCompleter<?> c;
6462     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6463     MapReduceEntriesToLongTask<K,V>
6464     t = (MapReduceEntriesToLongTask<K,V>)c,
6465     s = t.rights;
6466     while (s != null) {
6467 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6468 dl 1.149 s = t.rights = s.nextRight;
6469     }
6470 dl 1.119 }
6471 dl 1.138 }
6472 dl 1.4 }
6473 tim 1.1 }
6474    
6475 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6476 dl 1.146 extends Traverser<K,V,Long> {
6477 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6478     final LongBinaryOperator reducer;
6479 dl 1.119 final long basis;
6480     long result;
6481 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6482 dl 1.119 MapReduceMappingsToLongTask
6483 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6484 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6485 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
6486 dl 1.119 long basis,
6487 dl 1.153 LongBinaryOperator reducer) {
6488 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6489 dl 1.119 this.transformer = transformer;
6490     this.basis = basis; this.reducer = reducer;
6491     }
6492 dl 1.146 public final Long getRawResult() { return result; }
6493     @SuppressWarnings("unchecked") public final void compute() {
6494 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6495     final LongBinaryOperator reducer;
6496 dl 1.149 if ((transformer = this.transformer) != null &&
6497     (reducer = this.reducer) != null) {
6498     long r = this.basis;
6499     for (int b; (b = preSplit()) > 0;)
6500     (rights = new MapReduceMappingsToLongTask<K,V>
6501     (map, this, b, rights, transformer, r, reducer)).fork();
6502 dl 1.151 V v;
6503 dl 1.149 while ((v = advance()) != null)
6504 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6505 dl 1.149 result = r;
6506     CountedCompleter<?> c;
6507     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6508     MapReduceMappingsToLongTask<K,V>
6509     t = (MapReduceMappingsToLongTask<K,V>)c,
6510     s = t.rights;
6511     while (s != null) {
6512 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6513 dl 1.149 s = t.rights = s.nextRight;
6514     }
6515 dl 1.119 }
6516     }
6517 dl 1.4 }
6518 tim 1.1 }
6519    
6520 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6521 dl 1.146 extends Traverser<K,V,Integer> {
6522 dl 1.153 final IntFunction<? super K> transformer;
6523     final IntBinaryOperator reducer;
6524 dl 1.119 final int basis;
6525     int result;
6526 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6527 dl 1.119 MapReduceKeysToIntTask
6528 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6529 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6530 dl 1.153 IntFunction<? super K> transformer,
6531 dl 1.119 int basis,
6532 dl 1.153 IntBinaryOperator reducer) {
6533 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6534 dl 1.119 this.transformer = transformer;
6535     this.basis = basis; this.reducer = reducer;
6536     }
6537 dl 1.146 public final Integer getRawResult() { return result; }
6538     @SuppressWarnings("unchecked") public final void compute() {
6539 dl 1.153 final IntFunction<? super K> transformer;
6540     final IntBinaryOperator reducer;
6541 dl 1.149 if ((transformer = this.transformer) != null &&
6542     (reducer = this.reducer) != null) {
6543     int r = this.basis;
6544     for (int b; (b = preSplit()) > 0;)
6545     (rights = new MapReduceKeysToIntTask<K,V>
6546     (map, this, b, rights, transformer, r, reducer)).fork();
6547     while (advance() != null)
6548 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6549 dl 1.149 result = r;
6550     CountedCompleter<?> c;
6551     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6552     MapReduceKeysToIntTask<K,V>
6553     t = (MapReduceKeysToIntTask<K,V>)c,
6554     s = t.rights;
6555     while (s != null) {
6556 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6557 dl 1.149 s = t.rights = s.nextRight;
6558     }
6559 dl 1.119 }
6560 dl 1.138 }
6561 dl 1.30 }
6562     }
6563    
6564 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6565 dl 1.146 extends Traverser<K,V,Integer> {
6566 dl 1.153 final IntFunction<? super V> transformer;
6567     final IntBinaryOperator reducer;
6568 dl 1.119 final int basis;
6569     int result;
6570 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6571 dl 1.119 MapReduceValuesToIntTask
6572 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6573 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6574 dl 1.153 IntFunction<? super V> transformer,
6575 dl 1.119 int basis,
6576 dl 1.153 IntBinaryOperator reducer) {
6577 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6578 dl 1.119 this.transformer = transformer;
6579     this.basis = basis; this.reducer = reducer;
6580     }
6581 dl 1.146 public final Integer getRawResult() { return result; }
6582     @SuppressWarnings("unchecked") public final void compute() {
6583 dl 1.153 final IntFunction<? super V> transformer;
6584     final IntBinaryOperator reducer;
6585 dl 1.149 if ((transformer = this.transformer) != null &&
6586     (reducer = this.reducer) != null) {
6587     int r = this.basis;
6588     for (int b; (b = preSplit()) > 0;)
6589     (rights = new MapReduceValuesToIntTask<K,V>
6590     (map, this, b, rights, transformer, r, reducer)).fork();
6591 dl 1.151 V v;
6592 dl 1.149 while ((v = advance()) != null)
6593 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6594 dl 1.149 result = r;
6595     CountedCompleter<?> c;
6596     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6597     MapReduceValuesToIntTask<K,V>
6598     t = (MapReduceValuesToIntTask<K,V>)c,
6599     s = t.rights;
6600     while (s != null) {
6601 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6602 dl 1.149 s = t.rights = s.nextRight;
6603     }
6604 dl 1.119 }
6605 dl 1.2 }
6606 tim 1.1 }
6607     }
6608    
6609 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6610 dl 1.146 extends Traverser<K,V,Integer> {
6611 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6612     final IntBinaryOperator reducer;
6613 dl 1.119 final int basis;
6614     int result;
6615 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6616 dl 1.119 MapReduceEntriesToIntTask
6617 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6618 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6619 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
6620 dl 1.119 int basis,
6621 dl 1.153 IntBinaryOperator reducer) {
6622 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6623 dl 1.119 this.transformer = transformer;
6624     this.basis = basis; this.reducer = reducer;
6625     }
6626 dl 1.146 public final Integer getRawResult() { return result; }
6627     @SuppressWarnings("unchecked") public final void compute() {
6628 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6629     final IntBinaryOperator reducer;
6630 dl 1.149 if ((transformer = this.transformer) != null &&
6631     (reducer = this.reducer) != null) {
6632     int r = this.basis;
6633     for (int b; (b = preSplit()) > 0;)
6634     (rights = new MapReduceEntriesToIntTask<K,V>
6635     (map, this, b, rights, transformer, r, reducer)).fork();
6636 dl 1.151 V v;
6637 dl 1.149 while ((v = advance()) != null)
6638 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6639 dl 1.151 v)));
6640 dl 1.149 result = r;
6641     CountedCompleter<?> c;
6642     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6643     MapReduceEntriesToIntTask<K,V>
6644     t = (MapReduceEntriesToIntTask<K,V>)c,
6645     s = t.rights;
6646     while (s != null) {
6647 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6648 dl 1.149 s = t.rights = s.nextRight;
6649     }
6650 dl 1.119 }
6651 dl 1.138 }
6652 dl 1.4 }
6653 dl 1.119 }
6654 tim 1.1
6655 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6656 dl 1.146 extends Traverser<K,V,Integer> {
6657 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6658     final IntBinaryOperator reducer;
6659 dl 1.119 final int basis;
6660     int result;
6661 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6662 dl 1.119 MapReduceMappingsToIntTask
6663 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6664     MapReduceMappingsToIntTask<K,V> nextRight,
6665 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
6666 dl 1.119 int basis,
6667 dl 1.153 IntBinaryOperator reducer) {
6668 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6669 dl 1.119 this.transformer = transformer;
6670     this.basis = basis; this.reducer = reducer;
6671     }
6672 dl 1.146 public final Integer getRawResult() { return result; }
6673     @SuppressWarnings("unchecked") public final void compute() {
6674 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6675     final IntBinaryOperator reducer;
6676 dl 1.149 if ((transformer = this.transformer) != null &&
6677     (reducer = this.reducer) != null) {
6678     int r = this.basis;
6679     for (int b; (b = preSplit()) > 0;)
6680     (rights = new MapReduceMappingsToIntTask<K,V>
6681     (map, this, b, rights, transformer, r, reducer)).fork();
6682 dl 1.151 V v;
6683 dl 1.149 while ((v = advance()) != null)
6684 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6685 dl 1.149 result = r;
6686     CountedCompleter<?> c;
6687     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6688     MapReduceMappingsToIntTask<K,V>
6689     t = (MapReduceMappingsToIntTask<K,V>)c,
6690     s = t.rights;
6691     while (s != null) {
6692 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6693 dl 1.149 s = t.rights = s.nextRight;
6694     }
6695 dl 1.119 }
6696 dl 1.138 }
6697 tim 1.1 }
6698     }
6699 dl 1.99
6700     // Unsafe mechanics
6701 dl 1.149 private static final sun.misc.Unsafe U;
6702     private static final long SIZECTL;
6703     private static final long TRANSFERINDEX;
6704     private static final long TRANSFERORIGIN;
6705     private static final long BASECOUNT;
6706 dl 1.153 private static final long CELLSBUSY;
6707 dl 1.149 private static final long CELLVALUE;
6708 dl 1.119 private static final long ABASE;
6709     private static final int ASHIFT;
6710 dl 1.99
6711     static {
6712     try {
6713 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6714 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6715 dl 1.149 SIZECTL = U.objectFieldOffset
6716 dl 1.119 (k.getDeclaredField("sizeCtl"));
6717 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6718     (k.getDeclaredField("transferIndex"));
6719     TRANSFERORIGIN = U.objectFieldOffset
6720     (k.getDeclaredField("transferOrigin"));
6721     BASECOUNT = U.objectFieldOffset
6722     (k.getDeclaredField("baseCount"));
6723 dl 1.153 CELLSBUSY = U.objectFieldOffset
6724     (k.getDeclaredField("cellsBusy"));
6725     Class<?> ck = Cell.class;
6726 dl 1.149 CELLVALUE = U.objectFieldOffset
6727     (ck.getDeclaredField("value"));
6728 dl 1.119 Class<?> sc = Node[].class;
6729 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6730 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6731     if ((scale & (scale - 1)) != 0)
6732     throw new Error("data type scale not a power of two");
6733     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6734 dl 1.99 } catch (Exception e) {
6735     throw new Error(e);
6736     }
6737     }
6738 jsr166 1.152
6739     }