ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.176
Committed: Mon Feb 11 08:45:31 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.175: +1 -1 lines
Log Message:
javadoc link readability

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152     * </li>
153     * </ul>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 jsr166 1.170 /**
1887 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Internal traversals directly access these fields, as in:
2148     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149     *
2150     * Exported iterators must track whether the iterator has advanced
2151     * (in hasNext vs next) (by setting/checking/nulling field
2152     * nextVal), and then extract key, value, or key-value pairs as
2153     * return values of next().
2154     *
2155     * The iterator visits once each still-valid node that was
2156     * reachable upon iterator construction. It might miss some that
2157     * were added to a bin after the bin was visited, which is OK wrt
2158     * consistency guarantees. Maintaining this property in the face
2159     * of possible ongoing resizes requires a fair amount of
2160     * bookkeeping state that is difficult to optimize away amidst
2161     * volatile accesses. Even so, traversal maintains reasonable
2162     * throughput.
2163     *
2164     * Normally, iteration proceeds bin-by-bin traversing lists.
2165     * However, if the table has been resized, then all future steps
2166     * must traverse both the bin at the current index as well as at
2167     * (index + baseSize); and so on for further resizings. To
2168     * paranoically cope with potential sharing by users of iterators
2169     * across threads, iteration terminates if a bounds checks fails
2170     * for a table read.
2171     *
2172 dl 1.153 * This class supports both Spliterator-based traversal and
2173     * CountedCompleter-based bulk tasks. The same "batch" field is
2174     * used, but in slightly different ways, in the two cases. For
2175     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177     * size that halves down to zero for leaf tasks, that is only
2178     * computed upon execution of the task. (Tasks can be submitted to
2179     * any pool, of any size, so we don't know scale factors until
2180     * running.)
2181     *
2182 dl 1.146 * This class extends CountedCompleter to streamline parallel
2183     * iteration in bulk operations. This adds only a few fields of
2184     * space overhead, which is small enough in cases where it is not
2185     * needed to not worry about it. Because CountedCompleter is
2186     * Serializable, but iterators need not be, we need to add warning
2187     * suppressions.
2188 dl 1.119 */
2189 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190     extends CountedCompleter<R> {
2191 dl 1.119 final ConcurrentHashMap<K, V> map;
2192 dl 1.151 Node<V> next; // the next entry to use
2193 jsr166 1.168 K nextKey; // cached key field of next
2194 dl 1.151 V nextVal; // cached val field of next
2195     Node<V>[] tab; // current table; updated if resized
2196 dl 1.119 int index; // index of bin to use next
2197     int baseIndex; // current index of initial table
2198     int baseLimit; // index bound for initial table
2199 dl 1.130 int baseSize; // initial table size
2200 dl 1.146 int batch; // split control
2201 dl 1.119 /** Creates iterator for all entries in the table. */
2202     Traverser(ConcurrentHashMap<K, V> map) {
2203 dl 1.130 this.map = map;
2204 dl 1.153 Node<V>[] t;
2205     if ((t = tab = map.table) != null)
2206     baseLimit = baseSize = t.length;
2207 dl 1.119 }
2208    
2209 dl 1.153 /** Task constructor */
2210 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211     super(it);
2212 dl 1.153 this.map = map;
2213     this.batch = batch; // -1 if unknown
2214     if (it == null) {
2215 dl 1.151 Node<V>[] t;
2216 dl 1.153 if ((t = tab = map.table) != null)
2217     baseLimit = baseSize = t.length;
2218     }
2219     else { // split parent
2220     this.tab = it.tab;
2221 dl 1.146 this.baseSize = it.baseSize;
2222     int hi = this.baseLimit = it.baseLimit;
2223     it.baseLimit = this.index = this.baseIndex =
2224     (hi + it.baseIndex + 1) >>> 1;
2225     }
2226 dl 1.119 }
2227    
2228 dl 1.153 /** Spliterator constructor */
2229     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230     super(it);
2231     this.map = map;
2232     if (it == null) {
2233     Node<V>[] t;
2234     if ((t = tab = map.table) != null)
2235     baseLimit = baseSize = t.length;
2236     long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245     (hi + it.baseIndex + 1) >>> 1;
2246     this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 dl 1.119 /**
2251     * Advances next; returns nextVal or null if terminated.
2252     * See above for explanation.
2253     */
2254 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2255     Node<V> e = next;
2256     V ev = null;
2257 dl 1.119 outer: do {
2258     if (e != null) // advance past used/skipped node
2259     e = e.next;
2260     while (e == null) { // get to next non-null bin
2261 dl 1.130 ConcurrentHashMap<K, V> m;
2262 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 dl 1.130 if ((t = tab) != null)
2264     n = t.length;
2265     else if ((m = map) != null && (t = tab = m.table) != null)
2266     n = baseLimit = baseSize = t.length;
2267     else
2268 dl 1.119 break outer;
2269 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2270     (i = index) < 0 || i >= n)
2271     break outer;
2272 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2274 dl 1.151 e = ((TreeBin<V>)ek).first;
2275 dl 1.119 else {
2276 dl 1.151 tab = (Node<V>[])ek;
2277 dl 1.119 continue; // restarts due to null val
2278     }
2279     } // visit upper slots if present
2280     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281     }
2282 jsr166 1.168 nextKey = (K)e.key;
2283 dl 1.119 } while ((ev = e.val) == null); // skip deleted or special nodes
2284     next = e;
2285     return nextVal = ev;
2286     }
2287    
2288     public final void remove() {
2289 jsr166 1.168 K k = nextKey;
2290 dl 1.137 if (k == null && (advance() == null || (k = nextKey) == null))
2291 dl 1.119 throw new IllegalStateException();
2292 dl 1.137 map.internalReplace(k, null, null);
2293 dl 1.119 }
2294    
2295     public final boolean hasNext() {
2296     return nextVal != null || advance() != null;
2297     }
2298    
2299     public final boolean hasMoreElements() { return hasNext(); }
2300 dl 1.146
2301     public void compute() { } // default no-op CountedCompleter body
2302    
2303     /**
2304     * Returns a batch value > 0 if this task should (and must) be
2305     * split, if so, adding to pending count, and in any case
2306     * updating batch value. The initial batch value is approx
2307     * exp2 of the number of times (minus one) to split task by
2308     * two before executing leaf action. This value is faster to
2309     * compute and more convenient to use as a guide to splitting
2310     * than is the depth, since it is used while dividing by two
2311     * anyway.
2312     */
2313     final int preSplit() {
2314 dl 1.153 int b; ForkJoinPool pool;
2315     if ((b = batch) < 0) { // force initialization
2316     int sp = (((pool = getPool()) == null) ?
2317     ForkJoinPool.getCommonPoolParallelism() :
2318     pool.getParallelism()) << 3; // slack of 8
2319     long n = map.sumCount();
2320     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 dl 1.146 }
2322 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 dl 1.146 if ((batch = b) > 0)
2324     addToPendingCount(1);
2325     return b;
2326     }
2327    
2328 dl 1.153 // spliterator support
2329    
2330 dl 1.160 public boolean hasExactSize() {
2331     return false;
2332 dl 1.153 }
2333    
2334     public boolean hasExactSplits() {
2335     return false;
2336     }
2337    
2338     public long estimateSize() {
2339     return batch;
2340     }
2341 dl 1.119 }
2342    
2343     /* ---------------- Public operations -------------- */
2344    
2345     /**
2346     * Creates a new, empty map with the default initial table size (16).
2347     */
2348     public ConcurrentHashMap() {
2349     }
2350    
2351     /**
2352     * Creates a new, empty map with an initial table size
2353     * accommodating the specified number of elements without the need
2354     * to dynamically resize.
2355     *
2356     * @param initialCapacity The implementation performs internal
2357     * sizing to accommodate this many elements.
2358     * @throws IllegalArgumentException if the initial capacity of
2359     * elements is negative
2360     */
2361     public ConcurrentHashMap(int initialCapacity) {
2362     if (initialCapacity < 0)
2363     throw new IllegalArgumentException();
2364     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365     MAXIMUM_CAPACITY :
2366     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367     this.sizeCtl = cap;
2368     }
2369    
2370     /**
2371     * Creates a new map with the same mappings as the given map.
2372     *
2373     * @param m the map
2374     */
2375     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376     this.sizeCtl = DEFAULT_CAPACITY;
2377     internalPutAll(m);
2378     }
2379    
2380     /**
2381     * Creates a new, empty map with an initial table size based on
2382     * the given number of elements ({@code initialCapacity}) and
2383     * initial table density ({@code loadFactor}).
2384     *
2385     * @param initialCapacity the initial capacity. The implementation
2386     * performs internal sizing to accommodate this many elements,
2387     * given the specified load factor.
2388     * @param loadFactor the load factor (table density) for
2389     * establishing the initial table size
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative or the load factor is nonpositive
2392     *
2393     * @since 1.6
2394     */
2395     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396     this(initialCapacity, loadFactor, 1);
2397     }
2398    
2399     /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}), table
2402     * density ({@code loadFactor}), and number of concurrently
2403     * updating threads ({@code concurrencyLevel}).
2404     *
2405     * @param initialCapacity the initial capacity. The implementation
2406     * performs internal sizing to accommodate this many elements,
2407     * given the specified load factor.
2408     * @param loadFactor the load factor (table density) for
2409     * establishing the initial table size
2410     * @param concurrencyLevel the estimated number of concurrently
2411     * updating threads. The implementation may use this value as
2412     * a sizing hint.
2413     * @throws IllegalArgumentException if the initial capacity is
2414     * negative or the load factor or concurrencyLevel are
2415     * nonpositive
2416     */
2417     public ConcurrentHashMap(int initialCapacity,
2418     float loadFactor, int concurrencyLevel) {
2419     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420     throw new IllegalArgumentException();
2421     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422     initialCapacity = concurrencyLevel; // as estimated threads
2423     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426     this.sizeCtl = cap;
2427     }
2428    
2429     /**
2430 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431     * from the given type to {@code Boolean.TRUE}.
2432     *
2433     * @return the new set
2434     */
2435     public static <K> KeySetView<K,Boolean> newKeySet() {
2436     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437     Boolean.TRUE);
2438     }
2439    
2440     /**
2441     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442     * from the given type to {@code Boolean.TRUE}.
2443     *
2444     * @param initialCapacity The implementation performs internal
2445     * sizing to accommodate this many elements.
2446     * @throws IllegalArgumentException if the initial capacity of
2447     * elements is negative
2448     * @return the new set
2449     */
2450     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 dl 1.149 return new KeySetView<K,Boolean>
2452     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 dl 1.137 }
2454    
2455     /**
2456 dl 1.119 * {@inheritDoc}
2457     */
2458     public boolean isEmpty() {
2459 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2460 dl 1.119 }
2461    
2462     /**
2463     * {@inheritDoc}
2464     */
2465     public int size() {
2466 dl 1.149 long n = sumCount();
2467 dl 1.119 return ((n < 0L) ? 0 :
2468     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469     (int)n);
2470     }
2471    
2472     /**
2473     * Returns the number of mappings. This method should be used
2474     * instead of {@link #size} because a ConcurrentHashMap may
2475     * contain more mappings than can be represented as an int. The
2476 dl 1.146 * value returned is an estimate; the actual count may differ if
2477     * there are concurrent insertions or removals.
2478 dl 1.119 *
2479     * @return the number of mappings
2480     */
2481     public long mappingCount() {
2482 dl 1.149 long n = sumCount();
2483 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 dl 1.119 }
2485    
2486     /**
2487     * Returns the value to which the specified key is mapped,
2488     * or {@code null} if this map contains no mapping for the key.
2489     *
2490     * <p>More formally, if this map contains a mapping from a key
2491     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492     * then this method returns {@code v}; otherwise it returns
2493     * {@code null}. (There can be at most one such mapping.)
2494     *
2495     * @throws NullPointerException if the specified key is null
2496     */
2497 dl 1.149 public V get(Object key) {
2498     return internalGet(key);
2499 dl 1.119 }
2500    
2501     /**
2502 dl 1.129 * Returns the value to which the specified key is mapped,
2503 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2504 dl 1.129 *
2505     * @param key the key
2506     * @param defaultValue the value to return if this map contains
2507 jsr166 1.134 * no mapping for the given key
2508 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2509     * @throws NullPointerException if the specified key is null
2510     */
2511 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2512     V v;
2513     return (v = internalGet(key)) == null ? defaultValue : v;
2514 dl 1.129 }
2515    
2516     /**
2517 dl 1.119 * Tests if the specified object is a key in this table.
2518     *
2519     * @param key possible key
2520     * @return {@code true} if and only if the specified object
2521     * is a key in this table, as determined by the
2522     * {@code equals} method; {@code false} otherwise
2523     * @throws NullPointerException if the specified key is null
2524     */
2525     public boolean containsKey(Object key) {
2526     return internalGet(key) != null;
2527     }
2528    
2529     /**
2530     * Returns {@code true} if this map maps one or more keys to the
2531     * specified value. Note: This method may require a full traversal
2532     * of the map, and is much slower than method {@code containsKey}.
2533     *
2534     * @param value value whose presence in this map is to be tested
2535     * @return {@code true} if this map maps one or more keys to the
2536     * specified value
2537     * @throws NullPointerException if the specified value is null
2538     */
2539     public boolean containsValue(Object value) {
2540     if (value == null)
2541     throw new NullPointerException();
2542 dl 1.151 V v;
2543 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544     while ((v = it.advance()) != null) {
2545     if (v == value || value.equals(v))
2546     return true;
2547     }
2548     return false;
2549     }
2550    
2551     /**
2552     * Legacy method testing if some key maps into the specified value
2553     * in this table. This method is identical in functionality to
2554 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2555 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2556     * which supported this method prior to introduction of the
2557     * Java Collections framework.
2558     *
2559     * @param value a value to search for
2560     * @return {@code true} if and only if some key maps to the
2561     * {@code value} argument in this table as
2562     * determined by the {@code equals} method;
2563     * {@code false} otherwise
2564     * @throws NullPointerException if the specified value is null
2565     */
2566 dl 1.151 @Deprecated public boolean contains(Object value) {
2567 dl 1.119 return containsValue(value);
2568     }
2569    
2570     /**
2571     * Maps the specified key to the specified value in this table.
2572     * Neither the key nor the value can be null.
2573     *
2574 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2575 dl 1.119 * with a key that is equal to the original key.
2576     *
2577     * @param key key with which the specified value is to be associated
2578     * @param value value to be associated with the specified key
2579     * @return the previous value associated with {@code key}, or
2580     * {@code null} if there was no mapping for {@code key}
2581     * @throws NullPointerException if the specified key or value is null
2582     */
2583 dl 1.149 public V put(K key, V value) {
2584     return internalPut(key, value, false);
2585 dl 1.119 }
2586    
2587     /**
2588     * {@inheritDoc}
2589     *
2590     * @return the previous value associated with the specified key,
2591     * or {@code null} if there was no mapping for the key
2592     * @throws NullPointerException if the specified key or value is null
2593     */
2594 dl 1.149 public V putIfAbsent(K key, V value) {
2595     return internalPut(key, value, true);
2596 dl 1.119 }
2597    
2598     /**
2599     * Copies all of the mappings from the specified map to this one.
2600     * These mappings replace any mappings that this map had for any of the
2601     * keys currently in the specified map.
2602     *
2603     * @param m mappings to be stored in this map
2604     */
2605     public void putAll(Map<? extends K, ? extends V> m) {
2606     internalPutAll(m);
2607     }
2608    
2609     /**
2610 dl 1.153 * If the specified key is not already associated with a value (or
2611     * is mapped to {@code null}), attempts to compute its value using
2612     * the given mapping function and enters it into this map unless
2613     * {@code null}. The entire method invocation is performed
2614     * atomically, so the function is applied at most once per key.
2615     * Some attempted update operations on this map by other threads
2616     * may be blocked while computation is in progress, so the
2617     * computation should be short and simple, and must not attempt to
2618     * update any other mappings of this Map.
2619 dl 1.119 *
2620     * @param key key with which the specified value is to be associated
2621     * @param mappingFunction the function to compute a value
2622     * @return the current (existing or computed) value associated with
2623 jsr166 1.134 * the specified key, or null if the computed value is null
2624 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2625     * is null
2626     * @throws IllegalStateException if the computation detectably
2627     * attempts a recursive update to this map that would
2628     * otherwise never complete
2629     * @throws RuntimeException or Error if the mappingFunction does so,
2630     * in which case the mapping is left unestablished
2631     */
2632 dl 1.149 public V computeIfAbsent
2633 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2635 dl 1.119 }
2636    
2637     /**
2638 dl 1.153 * If the value for the specified key is present and non-null,
2639     * attempts to compute a new mapping given the key and its current
2640     * mapped value. The entire method invocation is performed
2641     * atomically. Some attempted update operations on this map by
2642 dl 1.119 * other threads may be blocked while computation is in progress,
2643     * so the computation should be short and simple, and must not
2644 dl 1.153 * attempt to update any other mappings of this Map.
2645 dl 1.119 *
2646     * @param key key with which the specified value is to be associated
2647     * @param remappingFunction the function to compute a value
2648 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2649 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2650     * is null
2651     * @throws IllegalStateException if the computation detectably
2652     * attempts a recursive update to this map that would
2653     * otherwise never complete
2654     * @throws RuntimeException or Error if the remappingFunction does so,
2655     * in which case the mapping is unchanged
2656     */
2657 dl 1.149 public V computeIfPresent
2658 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 dl 1.149 return internalCompute(key, true, remappingFunction);
2660 dl 1.119 }
2661    
2662     /**
2663 dl 1.153 * Attempts to compute a mapping for the specified key and its
2664     * current mapped value (or {@code null} if there is no current
2665     * mapping). The entire method invocation is performed atomically.
2666     * Some attempted update operations on this map by other threads
2667     * may be blocked while computation is in progress, so the
2668     * computation should be short and simple, and must not attempt to
2669     * update any other mappings of this Map.
2670 dl 1.119 *
2671     * @param key key with which the specified value is to be associated
2672     * @param remappingFunction the function to compute a value
2673 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2674 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2675     * is null
2676     * @throws IllegalStateException if the computation detectably
2677     * attempts a recursive update to this map that would
2678     * otherwise never complete
2679     * @throws RuntimeException or Error if the remappingFunction does so,
2680     * in which case the mapping is unchanged
2681     */
2682 dl 1.149 public V compute
2683 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 dl 1.149 return internalCompute(key, false, remappingFunction);
2685 dl 1.119 }
2686    
2687     /**
2688 dl 1.153 * If the specified key is not already associated with a
2689     * (non-null) value, associates it with the given value.
2690     * Otherwise, replaces the value with the results of the given
2691     * remapping function, or removes if {@code null}. The entire
2692     * method invocation is performed atomically. Some attempted
2693     * update operations on this map by other threads may be blocked
2694     * while computation is in progress, so the computation should be
2695     * short and simple, and must not attempt to update any other
2696     * mappings of this Map.
2697     *
2698     * @param key key with which the specified value is to be associated
2699     * @param value the value to use if absent
2700     * @param remappingFunction the function to recompute a value if present
2701     * @return the new value associated with the specified key, or null if none
2702     * @throws NullPointerException if the specified key or the
2703     * remappingFunction is null
2704     * @throws RuntimeException or Error if the remappingFunction does so,
2705     * in which case the mapping is unchanged
2706 dl 1.119 */
2707 dl 1.149 public V merge
2708     (K key, V value,
2709 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 dl 1.149 return internalMerge(key, value, remappingFunction);
2711 dl 1.119 }
2712    
2713     /**
2714     * Removes the key (and its corresponding value) from this map.
2715     * This method does nothing if the key is not in the map.
2716     *
2717     * @param key the key that needs to be removed
2718     * @return the previous value associated with {@code key}, or
2719     * {@code null} if there was no mapping for {@code key}
2720     * @throws NullPointerException if the specified key is null
2721     */
2722 dl 1.149 public V remove(Object key) {
2723     return internalReplace(key, null, null);
2724 dl 1.119 }
2725    
2726     /**
2727     * {@inheritDoc}
2728     *
2729     * @throws NullPointerException if the specified key is null
2730     */
2731     public boolean remove(Object key, Object value) {
2732 dl 1.163 if (key == null)
2733     throw new NullPointerException();
2734 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2735 tim 1.1 }
2736 dl 1.31
2737     /**
2738 jsr166 1.68 * {@inheritDoc}
2739     *
2740     * @throws NullPointerException if any of the arguments are null
2741 dl 1.31 */
2742     public boolean replace(K key, V oldValue, V newValue) {
2743 dl 1.119 if (key == null || oldValue == null || newValue == null)
2744 dl 1.31 throw new NullPointerException();
2745 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2746 dl 1.32 }
2747    
2748     /**
2749 jsr166 1.68 * {@inheritDoc}
2750     *
2751     * @return the previous value associated with the specified key,
2752 dl 1.119 * or {@code null} if there was no mapping for the key
2753 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2754 dl 1.32 */
2755 dl 1.149 public V replace(K key, V value) {
2756 dl 1.119 if (key == null || value == null)
2757 dl 1.32 throw new NullPointerException();
2758 dl 1.149 return internalReplace(key, value, null);
2759 dl 1.31 }
2760    
2761 tim 1.1 /**
2762 jsr166 1.68 * Removes all of the mappings from this map.
2763 tim 1.1 */
2764     public void clear() {
2765 dl 1.119 internalClear();
2766 tim 1.1 }
2767    
2768     /**
2769 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2770     * The set is backed by the map, so changes to the map are
2771 dl 1.137 * reflected in the set, and vice-versa.
2772     *
2773     * @return the set view
2774     */
2775     public KeySetView<K,V> keySet() {
2776     KeySetView<K,V> ks = keySet;
2777     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778     }
2779    
2780     /**
2781     * Returns a {@link Set} view of the keys in this map, using the
2782     * given common mapped value for any additions (i.e., {@link
2783 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2784     * This is of course only appropriate if it is acceptable to use
2785     * the same value for all additions from this view.
2786 jsr166 1.68 *
2787 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2788 dl 1.137 * @return the set view
2789     * @throws NullPointerException if the mappedValue is null
2790 tim 1.1 */
2791 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2792     if (mappedValue == null)
2793     throw new NullPointerException();
2794     return new KeySetView<K,V>(this, mappedValue);
2795 tim 1.1 }
2796    
2797     /**
2798 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2799     * The collection is backed by the map, so changes to the map are
2800 jsr166 1.143 * reflected in the collection, and vice-versa.
2801 tim 1.1 */
2802 dl 1.142 public ValuesView<K,V> values() {
2803     ValuesView<K,V> vs = values;
2804     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2805 dl 1.119 }
2806    
2807     /**
2808     * Returns a {@link Set} view of the mappings contained in this map.
2809     * The set is backed by the map, so changes to the map are
2810     * reflected in the set, and vice-versa. The set supports element
2811     * removal, which removes the corresponding mapping from the map,
2812     * via the {@code Iterator.remove}, {@code Set.remove},
2813     * {@code removeAll}, {@code retainAll}, and {@code clear}
2814     * operations. It does not support the {@code add} or
2815     * {@code addAll} operations.
2816     *
2817     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2818     * that will never throw {@link ConcurrentModificationException},
2819     * and guarantees to traverse elements as they existed upon
2820     * construction of the iterator, and may (but is not guaranteed to)
2821     * reflect any modifications subsequent to construction.
2822     */
2823     public Set<Map.Entry<K,V>> entrySet() {
2824 dl 1.142 EntrySetView<K,V> es = entrySet;
2825     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2826 dl 1.119 }
2827    
2828     /**
2829     * Returns an enumeration of the keys in this table.
2830     *
2831     * @return an enumeration of the keys in this table
2832     * @see #keySet()
2833     */
2834     public Enumeration<K> keys() {
2835     return new KeyIterator<K,V>(this);
2836     }
2837    
2838     /**
2839     * Returns an enumeration of the values in this table.
2840     *
2841     * @return an enumeration of the values in this table
2842     * @see #values()
2843     */
2844     public Enumeration<V> elements() {
2845     return new ValueIterator<K,V>(this);
2846     }
2847    
2848     /**
2849     * Returns the hash code value for this {@link Map}, i.e.,
2850     * the sum of, for each key-value pair in the map,
2851     * {@code key.hashCode() ^ value.hashCode()}.
2852     *
2853     * @return the hash code value for this map
2854     */
2855     public int hashCode() {
2856     int h = 0;
2857     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2858 dl 1.151 V v;
2859 dl 1.119 while ((v = it.advance()) != null) {
2860     h += it.nextKey.hashCode() ^ v.hashCode();
2861     }
2862     return h;
2863     }
2864    
2865     /**
2866     * Returns a string representation of this map. The string
2867     * representation consists of a list of key-value mappings (in no
2868     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2869     * mappings are separated by the characters {@code ", "} (comma
2870     * and space). Each key-value mapping is rendered as the key
2871     * followed by an equals sign ("{@code =}") followed by the
2872     * associated value.
2873     *
2874     * @return a string representation of this map
2875     */
2876     public String toString() {
2877     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2878     StringBuilder sb = new StringBuilder();
2879     sb.append('{');
2880 dl 1.151 V v;
2881 dl 1.119 if ((v = it.advance()) != null) {
2882     for (;;) {
2883 jsr166 1.168 K k = it.nextKey;
2884 dl 1.119 sb.append(k == this ? "(this Map)" : k);
2885     sb.append('=');
2886     sb.append(v == this ? "(this Map)" : v);
2887     if ((v = it.advance()) == null)
2888     break;
2889     sb.append(',').append(' ');
2890     }
2891     }
2892     return sb.append('}').toString();
2893     }
2894    
2895     /**
2896     * Compares the specified object with this map for equality.
2897     * Returns {@code true} if the given object is a map with the same
2898     * mappings as this map. This operation may return misleading
2899     * results if either map is concurrently modified during execution
2900     * of this method.
2901     *
2902     * @param o object to be compared for equality with this map
2903     * @return {@code true} if the specified object is equal to this map
2904     */
2905     public boolean equals(Object o) {
2906     if (o != this) {
2907     if (!(o instanceof Map))
2908     return false;
2909     Map<?,?> m = (Map<?,?>) o;
2910     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2911 dl 1.151 V val;
2912 dl 1.119 while ((val = it.advance()) != null) {
2913     Object v = m.get(it.nextKey);
2914     if (v == null || (v != val && !v.equals(val)))
2915     return false;
2916     }
2917     for (Map.Entry<?,?> e : m.entrySet()) {
2918     Object mk, mv, v;
2919     if ((mk = e.getKey()) == null ||
2920     (mv = e.getValue()) == null ||
2921     (v = internalGet(mk)) == null ||
2922     (mv != v && !mv.equals(v)))
2923     return false;
2924     }
2925     }
2926     return true;
2927     }
2928    
2929     /* ----------------Iterators -------------- */
2930    
2931 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2932     extends Traverser<K,V,Object>
2933 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2934 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2935 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2936 dl 1.153 super(map, it);
2937 dl 1.119 }
2938 dl 1.155 public KeyIterator<K,V> trySplit() {
2939     if (tab != null && baseIndex == baseLimit)
2940     return null;
2941 dl 1.146 return new KeyIterator<K,V>(map, this);
2942 dl 1.119 }
2943 jsr166 1.168 public final K next() {
2944 dl 1.119 if (nextVal == null && advance() == null)
2945     throw new NoSuchElementException();
2946 jsr166 1.168 K k = nextKey;
2947 dl 1.119 nextVal = null;
2948 jsr166 1.168 return k;
2949 dl 1.119 }
2950    
2951     public final K nextElement() { return next(); }
2952 dl 1.153
2953 dl 1.162 public Iterator<K> iterator() { return this; }
2954 dl 1.153
2955 dl 1.171 public void forEach(Consumer<? super K> action) {
2956 dl 1.153 if (action == null) throw new NullPointerException();
2957     while (advance() != null)
2958 jsr166 1.168 action.accept(nextKey);
2959 dl 1.153 }
2960 dl 1.160
2961 dl 1.171 public boolean tryAdvance(Consumer<? super K> block) {
2962 dl 1.160 if (block == null) throw new NullPointerException();
2963     if (advance() == null)
2964     return false;
2965 jsr166 1.168 block.accept(nextKey);
2966 dl 1.160 return true;
2967     }
2968 dl 1.119 }
2969    
2970 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2971     extends Traverser<K,V,Object>
2972 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2973 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2974 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2975 dl 1.153 super(map, it);
2976 dl 1.119 }
2977 dl 1.155 public ValueIterator<K,V> trySplit() {
2978     if (tab != null && baseIndex == baseLimit)
2979     return null;
2980 dl 1.146 return new ValueIterator<K,V>(map, this);
2981 dl 1.119 }
2982    
2983 dl 1.151 public final V next() {
2984     V v;
2985 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
2986     throw new NoSuchElementException();
2987     nextVal = null;
2988 dl 1.151 return v;
2989 dl 1.119 }
2990    
2991     public final V nextElement() { return next(); }
2992 dl 1.153
2993 dl 1.162 public Iterator<V> iterator() { return this; }
2994 dl 1.153
2995 dl 1.171 public void forEach(Consumer<? super V> action) {
2996 dl 1.153 if (action == null) throw new NullPointerException();
2997     V v;
2998     while ((v = advance()) != null)
2999     action.accept(v);
3000     }
3001 dl 1.160
3002 dl 1.171 public boolean tryAdvance(Consumer<? super V> block) {
3003 dl 1.160 V v;
3004     if (block == null) throw new NullPointerException();
3005     if ((v = advance()) == null)
3006     return false;
3007     block.accept(v);
3008     return true;
3009     }
3010 jsr166 1.161
3011 dl 1.119 }
3012    
3013 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3014     extends Traverser<K,V,Object>
3015 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3016 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3017 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3018 dl 1.153 super(map, it);
3019 dl 1.119 }
3020 dl 1.155 public EntryIterator<K,V> trySplit() {
3021     if (tab != null && baseIndex == baseLimit)
3022     return null;
3023 dl 1.146 return new EntryIterator<K,V>(map, this);
3024 dl 1.119 }
3025    
3026 jsr166 1.168 public final Map.Entry<K,V> next() {
3027 dl 1.151 V v;
3028 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3029     throw new NoSuchElementException();
3030 jsr166 1.168 K k = nextKey;
3031 dl 1.119 nextVal = null;
3032 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3033 dl 1.119 }
3034 dl 1.153
3035 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3036 dl 1.153
3037 dl 1.171 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3038 dl 1.153 if (action == null) throw new NullPointerException();
3039     V v;
3040     while ((v = advance()) != null)
3041 jsr166 1.168 action.accept(entryFor(nextKey, v));
3042 dl 1.153 }
3043 dl 1.160
3044 dl 1.171 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3045 dl 1.160 V v;
3046     if (block == null) throw new NullPointerException();
3047     if ((v = advance()) == null)
3048     return false;
3049 jsr166 1.168 block.accept(entryFor(nextKey, v));
3050 dl 1.160 return true;
3051     }
3052    
3053 dl 1.119 }
3054    
3055     /**
3056     * Exported Entry for iterators
3057     */
3058     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3059     final K key; // non-null
3060     V val; // non-null
3061     final ConcurrentHashMap<K, V> map;
3062     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3063     this.key = key;
3064     this.val = val;
3065     this.map = map;
3066     }
3067     public final K getKey() { return key; }
3068     public final V getValue() { return val; }
3069     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3070     public final String toString(){ return key + "=" + val; }
3071    
3072     public final boolean equals(Object o) {
3073     Object k, v; Map.Entry<?,?> e;
3074     return ((o instanceof Map.Entry) &&
3075     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076     (v = e.getValue()) != null &&
3077     (k == key || k.equals(key)) &&
3078     (v == val || v.equals(val)));
3079     }
3080    
3081     /**
3082     * Sets our entry's value and writes through to the map. The
3083     * value to return is somewhat arbitrary here. Since we do not
3084     * necessarily track asynchronous changes, the most recent
3085     * "previous" value could be different from what we return (or
3086     * could even have been removed in which case the put will
3087     * re-establish). We do not and cannot guarantee more.
3088     */
3089     public final V setValue(V value) {
3090     if (value == null) throw new NullPointerException();
3091     V v = val;
3092     val = value;
3093     map.put(key, value);
3094     return v;
3095     }
3096     }
3097    
3098 dl 1.146 /**
3099     * Returns exportable snapshot entry for the given key and value
3100     * when write-through can't or shouldn't be used.
3101     */
3102     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3103     return new AbstractMap.SimpleEntry<K,V>(k, v);
3104     }
3105    
3106 dl 1.142 /* ---------------- Serialization Support -------------- */
3107 dl 1.119
3108     /**
3109 dl 1.142 * Stripped-down version of helper class used in previous version,
3110     * declared for the sake of serialization compatibility
3111 dl 1.119 */
3112 dl 1.142 static class Segment<K,V> implements Serializable {
3113     private static final long serialVersionUID = 2249069246763182397L;
3114     final float loadFactor;
3115     Segment(float lf) { this.loadFactor = lf; }
3116     }
3117 dl 1.119
3118 dl 1.142 /**
3119     * Saves the state of the {@code ConcurrentHashMap} instance to a
3120     * stream (i.e., serializes it).
3121     * @param s the stream
3122     * @serialData
3123     * the key (Object) and value (Object)
3124     * for each key-value mapping, followed by a null pair.
3125     * The key-value mappings are emitted in no particular order.
3126     */
3127 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3128     (java.io.ObjectOutputStream s)
3129 dl 1.142 throws java.io.IOException {
3130     if (segments == null) { // for serialization compatibility
3131     segments = (Segment<K,V>[])
3132     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3133     for (int i = 0; i < segments.length; ++i)
3134     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3135     }
3136     s.defaultWriteObject();
3137     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138 dl 1.151 V v;
3139 dl 1.142 while ((v = it.advance()) != null) {
3140     s.writeObject(it.nextKey);
3141     s.writeObject(v);
3142     }
3143     s.writeObject(null);
3144     s.writeObject(null);
3145     segments = null; // throw away
3146     }
3147 dl 1.119
3148 dl 1.142 /**
3149     * Reconstitutes the instance from a stream (that is, deserializes it).
3150     * @param s the stream
3151     */
3152 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3153     (java.io.ObjectInputStream s)
3154 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3155     s.defaultReadObject();
3156     this.segments = null; // unneeded
3157 dl 1.119
3158 dl 1.142 // Create all nodes, then place in table once size is known
3159     long size = 0L;
3160 dl 1.151 Node<V> p = null;
3161 dl 1.142 for (;;) {
3162     K k = (K) s.readObject();
3163     V v = (V) s.readObject();
3164     if (k != null && v != null) {
3165     int h = spread(k.hashCode());
3166 dl 1.151 p = new Node<V>(h, k, v, p);
3167 dl 1.142 ++size;
3168 dl 1.119 }
3169 dl 1.142 else
3170     break;
3171 dl 1.119 }
3172 dl 1.142 if (p != null) {
3173     boolean init = false;
3174     int n;
3175     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3176     n = MAXIMUM_CAPACITY;
3177     else {
3178     int sz = (int)size;
3179     n = tableSizeFor(sz + (sz >>> 1) + 1);
3180     }
3181     int sc = sizeCtl;
3182     boolean collide = false;
3183     if (n > sc &&
3184 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3185 dl 1.142 try {
3186     if (table == null) {
3187     init = true;
3188 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3189     Node<V>[] tab = (Node<V>[])rt;
3190 dl 1.142 int mask = n - 1;
3191     while (p != null) {
3192     int j = p.hash & mask;
3193 dl 1.151 Node<V> next = p.next;
3194     Node<V> q = p.next = tabAt(tab, j);
3195 dl 1.142 setTabAt(tab, j, p);
3196     if (!collide && q != null && q.hash == p.hash)
3197     collide = true;
3198     p = next;
3199     }
3200     table = tab;
3201 dl 1.149 addCount(size, -1);
3202 dl 1.142 sc = n - (n >>> 2);
3203     }
3204     } finally {
3205     sizeCtl = sc;
3206     }
3207     if (collide) { // rescan and convert to TreeBins
3208 dl 1.151 Node<V>[] tab = table;
3209 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3210     int c = 0;
3211 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3212 dl 1.142 if (++c > TREE_THRESHOLD &&
3213     (e.key instanceof Comparable)) {
3214     replaceWithTreeBin(tab, i, e.key);
3215     break;
3216     }
3217     }
3218     }
3219 dl 1.119 }
3220     }
3221 dl 1.142 if (!init) { // Can only happen if unsafely published.
3222     while (p != null) {
3223 dl 1.151 internalPut((K)p.key, p.val, false);
3224 dl 1.142 p = p.next;
3225     }
3226 dl 1.119 }
3227     }
3228 dl 1.142 }
3229 dl 1.119
3230 dl 1.142 // -------------------------------------------------------
3231    
3232 dl 1.151 // Sequential bulk operations
3233    
3234 dl 1.119 /**
3235 dl 1.137 * Performs the given action for each (key, value).
3236 dl 1.119 *
3237 dl 1.137 * @param action the action
3238 dl 1.119 */
3239 jsr166 1.168 public void forEachSequentially
3240 dl 1.171 (BiConsumer<? super K, ? super V> action) {
3241 dl 1.151 if (action == null) throw new NullPointerException();
3242     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3243     V v;
3244     while ((v = it.advance()) != null)
3245 jsr166 1.168 action.accept(it.nextKey, v);
3246 dl 1.119 }
3247    
3248     /**
3249 dl 1.137 * Performs the given action for each non-null transformation
3250     * of each (key, value).
3251     *
3252     * @param transformer a function returning the transformation
3253 jsr166 1.169 * for an element, or null if there is no transformation (in
3254 jsr166 1.172 * which case the action is not applied)
3255 dl 1.137 * @param action the action
3256 dl 1.119 */
3257 jsr166 1.168 public <U> void forEachSequentially
3258 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3259 dl 1.171 Consumer<? super U> action) {
3260 dl 1.151 if (transformer == null || action == null)
3261     throw new NullPointerException();
3262     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3263     V v; U u;
3264     while ((v = it.advance()) != null) {
3265 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3266 dl 1.153 action.accept(u);
3267 dl 1.151 }
3268 dl 1.137 }
3269    
3270     /**
3271     * Returns a non-null result from applying the given search
3272 dl 1.151 * function on each (key, value), or null if none.
3273 dl 1.137 *
3274     * @param searchFunction a function returning a non-null
3275     * result on success, else null
3276     * @return a non-null result from applying the given search
3277     * function on each (key, value), or null if none
3278     */
3279 jsr166 1.168 public <U> U searchSequentially
3280 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3281 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3282     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3283     V v; U u;
3284     while ((v = it.advance()) != null) {
3285 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3286 dl 1.151 return u;
3287     }
3288     return null;
3289 dl 1.137 }
3290    
3291     /**
3292     * Returns the result of accumulating the given transformation
3293     * of all (key, value) pairs using the given reducer to
3294     * combine values, or null if none.
3295     *
3296     * @param transformer a function returning the transformation
3297 jsr166 1.169 * for an element, or null if there is no transformation (in
3298 jsr166 1.172 * which case it is not combined)
3299 dl 1.137 * @param reducer a commutative associative combining function
3300     * @return the result of accumulating the given transformation
3301     * of all (key, value) pairs
3302     */
3303 jsr166 1.168 public <U> U reduceSequentially
3304 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3305     BiFunction<? super U, ? super U, ? extends U> reducer) {
3306 dl 1.151 if (transformer == null || reducer == null)
3307     throw new NullPointerException();
3308     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3309     U r = null, u; V v;
3310     while ((v = it.advance()) != null) {
3311 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3312 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3313     }
3314     return r;
3315 dl 1.137 }
3316    
3317     /**
3318     * Returns the result of accumulating the given transformation
3319     * of all (key, value) pairs using the given reducer to
3320     * combine values, and the given basis as an identity value.
3321     *
3322     * @param transformer a function returning the transformation
3323     * for an element
3324     * @param basis the identity (initial default value) for the reduction
3325     * @param reducer a commutative associative combining function
3326     * @return the result of accumulating the given transformation
3327     * of all (key, value) pairs
3328     */
3329 jsr166 1.168 public double reduceToDoubleSequentially
3330 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3331 dl 1.151 double basis,
3332 dl 1.153 DoubleBinaryOperator reducer) {
3333 dl 1.151 if (transformer == null || reducer == null)
3334     throw new NullPointerException();
3335     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3336     double r = basis; V v;
3337     while ((v = it.advance()) != null)
3338 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3339 dl 1.151 return r;
3340 dl 1.137 }
3341 dl 1.119
3342 dl 1.137 /**
3343     * Returns the result of accumulating the given transformation
3344     * of all (key, value) pairs using the given reducer to
3345     * combine values, and the given basis as an identity value.
3346     *
3347     * @param transformer a function returning the transformation
3348     * for an element
3349     * @param basis the identity (initial default value) for the reduction
3350     * @param reducer a commutative associative combining function
3351     * @return the result of accumulating the given transformation
3352     * of all (key, value) pairs
3353     */
3354 jsr166 1.168 public long reduceToLongSequentially
3355 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
3356 dl 1.151 long basis,
3357 dl 1.153 LongBinaryOperator reducer) {
3358 dl 1.151 if (transformer == null || reducer == null)
3359     throw new NullPointerException();
3360     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3361     long r = basis; V v;
3362     while ((v = it.advance()) != null)
3363 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3364 dl 1.151 return r;
3365 dl 1.137 }
3366    
3367     /**
3368     * Returns the result of accumulating the given transformation
3369     * of all (key, value) pairs using the given reducer to
3370     * combine values, and the given basis as an identity value.
3371     *
3372     * @param transformer a function returning the transformation
3373     * for an element
3374     * @param basis the identity (initial default value) for the reduction
3375     * @param reducer a commutative associative combining function
3376     * @return the result of accumulating the given transformation
3377     * of all (key, value) pairs
3378     */
3379 jsr166 1.168 public int reduceToIntSequentially
3380 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
3381 dl 1.151 int basis,
3382 dl 1.153 IntBinaryOperator reducer) {
3383 dl 1.151 if (transformer == null || reducer == null)
3384     throw new NullPointerException();
3385     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386     int r = basis; V v;
3387     while ((v = it.advance()) != null)
3388 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3389 dl 1.151 return r;
3390 dl 1.137 }
3391    
3392     /**
3393     * Performs the given action for each key.
3394     *
3395     * @param action the action
3396     */
3397 jsr166 1.168 public void forEachKeySequentially
3398 dl 1.171 (Consumer<? super K> action) {
3399 dl 1.151 if (action == null) throw new NullPointerException();
3400     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3401     while (it.advance() != null)
3402 jsr166 1.168 action.accept(it.nextKey);
3403 dl 1.137 }
3404 dl 1.119
3405 dl 1.137 /**
3406     * Performs the given action for each non-null transformation
3407     * of each key.
3408     *
3409     * @param transformer a function returning the transformation
3410 jsr166 1.169 * for an element, or null if there is no transformation (in
3411 jsr166 1.172 * which case the action is not applied)
3412 dl 1.137 * @param action the action
3413     */
3414 jsr166 1.168 public <U> void forEachKeySequentially
3415 dl 1.153 (Function<? super K, ? extends U> transformer,
3416 dl 1.171 Consumer<? super U> action) {
3417 dl 1.151 if (transformer == null || action == null)
3418     throw new NullPointerException();
3419     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3420     U u;
3421     while (it.advance() != null) {
3422 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3423 dl 1.153 action.accept(u);
3424 dl 1.151 }
3425 dl 1.137 ForkJoinTasks.forEachKey
3426     (this, transformer, action).invoke();
3427     }
3428 dl 1.119
3429 dl 1.137 /**
3430     * Returns a non-null result from applying the given search
3431 dl 1.151 * function on each key, or null if none.
3432 dl 1.137 *
3433     * @param searchFunction a function returning a non-null
3434     * result on success, else null
3435     * @return a non-null result from applying the given search
3436     * function on each key, or null if none
3437     */
3438 jsr166 1.168 public <U> U searchKeysSequentially
3439 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3440 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3441     U u;
3442     while (it.advance() != null) {
3443 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey)) != null)
3444 dl 1.151 return u;
3445     }
3446     return null;
3447 dl 1.137 }
3448 dl 1.119
3449 dl 1.137 /**
3450     * Returns the result of accumulating all keys using the given
3451     * reducer to combine values, or null if none.
3452     *
3453     * @param reducer a commutative associative combining function
3454     * @return the result of accumulating all keys using the given
3455     * reducer to combine values, or null if none
3456     */
3457 jsr166 1.168 public K reduceKeysSequentially
3458 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3459 dl 1.151 if (reducer == null) throw new NullPointerException();
3460     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461     K r = null;
3462     while (it.advance() != null) {
3463 jsr166 1.168 K u = it.nextKey;
3464 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3465     }
3466     return r;
3467 dl 1.137 }
3468 dl 1.119
3469 dl 1.137 /**
3470     * Returns the result of accumulating the given transformation
3471     * of all keys using the given reducer to combine values, or
3472     * null if none.
3473     *
3474     * @param transformer a function returning the transformation
3475 jsr166 1.169 * for an element, or null if there is no transformation (in
3476 jsr166 1.172 * which case it is not combined)
3477 dl 1.137 * @param reducer a commutative associative combining function
3478     * @return the result of accumulating the given transformation
3479     * of all keys
3480     */
3481 jsr166 1.168 public <U> U reduceKeysSequentially
3482 dl 1.153 (Function<? super K, ? extends U> transformer,
3483     BiFunction<? super U, ? super U, ? extends U> reducer) {
3484 dl 1.151 if (transformer == null || reducer == null)
3485     throw new NullPointerException();
3486     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3487     U r = null, u;
3488     while (it.advance() != null) {
3489 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3490 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3491     }
3492     return r;
3493 dl 1.137 }
3494 dl 1.119
3495 dl 1.137 /**
3496     * Returns the result of accumulating the given transformation
3497     * of all keys using the given reducer to combine values, and
3498     * the given basis as an identity value.
3499     *
3500     * @param transformer a function returning the transformation
3501     * for an element
3502     * @param basis the identity (initial default value) for the reduction
3503     * @param reducer a commutative associative combining function
3504 jsr166 1.157 * @return the result of accumulating the given transformation
3505 dl 1.137 * of all keys
3506     */
3507 jsr166 1.168 public double reduceKeysToDoubleSequentially
3508 dl 1.171 (ToDoubleFunction<? super K> transformer,
3509 dl 1.151 double basis,
3510 dl 1.153 DoubleBinaryOperator reducer) {
3511 dl 1.151 if (transformer == null || reducer == null)
3512     throw new NullPointerException();
3513     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3514     double r = basis;
3515     while (it.advance() != null)
3516 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3517 dl 1.151 return r;
3518 dl 1.137 }
3519 dl 1.119
3520 dl 1.137 /**
3521     * Returns the result of accumulating the given transformation
3522     * of all keys using the given reducer to combine values, and
3523     * the given basis as an identity value.
3524     *
3525     * @param transformer a function returning the transformation
3526     * for an element
3527     * @param basis the identity (initial default value) for the reduction
3528     * @param reducer a commutative associative combining function
3529     * @return the result of accumulating the given transformation
3530     * of all keys
3531     */
3532 jsr166 1.168 public long reduceKeysToLongSequentially
3533 dl 1.171 (ToLongFunction<? super K> transformer,
3534 dl 1.151 long basis,
3535 dl 1.153 LongBinaryOperator reducer) {
3536 dl 1.151 if (transformer == null || reducer == null)
3537     throw new NullPointerException();
3538     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3539     long r = basis;
3540     while (it.advance() != null)
3541 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3542 dl 1.151 return r;
3543 dl 1.137 }
3544 dl 1.119
3545 dl 1.137 /**
3546     * Returns the result of accumulating the given transformation
3547     * of all keys using the given reducer to combine values, and
3548     * the given basis as an identity value.
3549     *
3550     * @param transformer a function returning the transformation
3551     * for an element
3552     * @param basis the identity (initial default value) for the reduction
3553     * @param reducer a commutative associative combining function
3554     * @return the result of accumulating the given transformation
3555     * of all keys
3556     */
3557 jsr166 1.168 public int reduceKeysToIntSequentially
3558 dl 1.171 (ToIntFunction<? super K> transformer,
3559 dl 1.151 int basis,
3560 dl 1.153 IntBinaryOperator reducer) {
3561 dl 1.151 if (transformer == null || reducer == null)
3562     throw new NullPointerException();
3563     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564     int r = basis;
3565     while (it.advance() != null)
3566 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3567 dl 1.151 return r;
3568 dl 1.137 }
3569 dl 1.119
3570 dl 1.137 /**
3571     * Performs the given action for each value.
3572     *
3573     * @param action the action
3574     */
3575 dl 1.171 public void forEachValueSequentially(Consumer<? super V> action) {
3576 dl 1.151 if (action == null) throw new NullPointerException();
3577     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3578     V v;
3579     while ((v = it.advance()) != null)
3580 dl 1.153 action.accept(v);
3581 dl 1.137 }
3582 dl 1.119
3583 dl 1.137 /**
3584     * Performs the given action for each non-null transformation
3585     * of each value.
3586     *
3587     * @param transformer a function returning the transformation
3588 jsr166 1.169 * for an element, or null if there is no transformation (in
3589 jsr166 1.172 * which case the action is not applied)
3590 dl 1.137 */
3591 dl 1.151 public <U> void forEachValueSequentially
3592 dl 1.153 (Function<? super V, ? extends U> transformer,
3593 dl 1.171 Consumer<? super U> action) {
3594 dl 1.151 if (transformer == null || action == null)
3595     throw new NullPointerException();
3596     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3597     V v; U u;
3598     while ((v = it.advance()) != null) {
3599     if ((u = transformer.apply(v)) != null)
3600 dl 1.153 action.accept(u);
3601 dl 1.151 }
3602 dl 1.137 }
3603 dl 1.119
3604 dl 1.137 /**
3605     * Returns a non-null result from applying the given search
3606 dl 1.151 * function on each value, or null if none.
3607 dl 1.137 *
3608     * @param searchFunction a function returning a non-null
3609     * result on success, else null
3610     * @return a non-null result from applying the given search
3611     * function on each value, or null if none
3612     */
3613 dl 1.151 public <U> U searchValuesSequentially
3614 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3615 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3616     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3617     V v; U u;
3618     while ((v = it.advance()) != null) {
3619     if ((u = searchFunction.apply(v)) != null)
3620     return u;
3621     }
3622     return null;
3623 dl 1.137 }
3624 dl 1.119
3625 dl 1.137 /**
3626     * Returns the result of accumulating all values using the
3627     * given reducer to combine values, or null if none.
3628     *
3629     * @param reducer a commutative associative combining function
3630 jsr166 1.157 * @return the result of accumulating all values
3631 dl 1.137 */
3632 dl 1.151 public V reduceValuesSequentially
3633 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3634 dl 1.151 if (reducer == null) throw new NullPointerException();
3635     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3636     V r = null; V v;
3637     while ((v = it.advance()) != null)
3638     r = (r == null) ? v : reducer.apply(r, v);
3639     return r;
3640 dl 1.137 }
3641 dl 1.119
3642 dl 1.137 /**
3643     * Returns the result of accumulating the given transformation
3644     * of all values using the given reducer to combine values, or
3645     * null if none.
3646     *
3647     * @param transformer a function returning the transformation
3648 jsr166 1.169 * for an element, or null if there is no transformation (in
3649 jsr166 1.172 * which case it is not combined)
3650 dl 1.137 * @param reducer a commutative associative combining function
3651     * @return the result of accumulating the given transformation
3652     * of all values
3653     */
3654 dl 1.151 public <U> U reduceValuesSequentially
3655 dl 1.153 (Function<? super V, ? extends U> transformer,
3656     BiFunction<? super U, ? super U, ? extends U> reducer) {
3657 dl 1.151 if (transformer == null || reducer == null)
3658     throw new NullPointerException();
3659     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660     U r = null, u; V v;
3661     while ((v = it.advance()) != null) {
3662     if ((u = transformer.apply(v)) != null)
3663     r = (r == null) ? u : reducer.apply(r, u);
3664     }
3665     return r;
3666 dl 1.137 }
3667 dl 1.119
3668 dl 1.137 /**
3669     * Returns the result of accumulating the given transformation
3670     * of all values using the given reducer to combine values,
3671     * and the given basis as an identity value.
3672     *
3673     * @param transformer a function returning the transformation
3674     * for an element
3675     * @param basis the identity (initial default value) for the reduction
3676     * @param reducer a commutative associative combining function
3677     * @return the result of accumulating the given transformation
3678     * of all values
3679     */
3680 dl 1.151 public double reduceValuesToDoubleSequentially
3681 dl 1.171 (ToDoubleFunction<? super V> transformer,
3682 dl 1.151 double basis,
3683 dl 1.153 DoubleBinaryOperator reducer) {
3684 dl 1.151 if (transformer == null || reducer == null)
3685     throw new NullPointerException();
3686     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3687     double r = basis; V v;
3688     while ((v = it.advance()) != null)
3689 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3690 dl 1.151 return r;
3691 dl 1.137 }
3692 dl 1.119
3693 dl 1.137 /**
3694     * Returns the result of accumulating the given transformation
3695     * of all values using the given reducer to combine values,
3696     * and the given basis as an identity value.
3697     *
3698     * @param transformer a function returning the transformation
3699     * for an element
3700     * @param basis the identity (initial default value) for the reduction
3701     * @param reducer a commutative associative combining function
3702     * @return the result of accumulating the given transformation
3703     * of all values
3704     */
3705 dl 1.151 public long reduceValuesToLongSequentially
3706 dl 1.171 (ToLongFunction<? super V> transformer,
3707 dl 1.151 long basis,
3708 dl 1.153 LongBinaryOperator reducer) {
3709 dl 1.151 if (transformer == null || reducer == null)
3710     throw new NullPointerException();
3711     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3712     long r = basis; V v;
3713     while ((v = it.advance()) != null)
3714 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3715 dl 1.151 return r;
3716 dl 1.137 }
3717 dl 1.119
3718 dl 1.137 /**
3719     * Returns the result of accumulating the given transformation
3720     * of all values using the given reducer to combine values,
3721     * and the given basis as an identity value.
3722     *
3723     * @param transformer a function returning the transformation
3724     * for an element
3725     * @param basis the identity (initial default value) for the reduction
3726     * @param reducer a commutative associative combining function
3727     * @return the result of accumulating the given transformation
3728     * of all values
3729     */
3730 dl 1.151 public int reduceValuesToIntSequentially
3731 dl 1.171 (ToIntFunction<? super V> transformer,
3732 dl 1.151 int basis,
3733 dl 1.153 IntBinaryOperator reducer) {
3734 dl 1.151 if (transformer == null || reducer == null)
3735     throw new NullPointerException();
3736     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3737     int r = basis; V v;
3738     while ((v = it.advance()) != null)
3739 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3740 dl 1.151 return r;
3741 dl 1.137 }
3742 dl 1.119
3743 dl 1.137 /**
3744     * Performs the given action for each entry.
3745     *
3746     * @param action the action
3747     */
3748 jsr166 1.168 public void forEachEntrySequentially
3749 dl 1.171 (Consumer<? super Map.Entry<K,V>> action) {
3750 dl 1.151 if (action == null) throw new NullPointerException();
3751     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3752     V v;
3753     while ((v = it.advance()) != null)
3754 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3755 dl 1.137 }
3756 dl 1.119
3757 dl 1.137 /**
3758     * Performs the given action for each non-null transformation
3759     * of each entry.
3760     *
3761     * @param transformer a function returning the transformation
3762 jsr166 1.169 * for an element, or null if there is no transformation (in
3763 jsr166 1.172 * which case the action is not applied)
3764 dl 1.137 * @param action the action
3765     */
3766 jsr166 1.168 public <U> void forEachEntrySequentially
3767 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3768 dl 1.171 Consumer<? super U> action) {
3769 dl 1.151 if (transformer == null || action == null)
3770     throw new NullPointerException();
3771     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3772     V v; U u;
3773     while ((v = it.advance()) != null) {
3774 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3775 dl 1.153 action.accept(u);
3776 dl 1.151 }
3777 dl 1.137 }
3778 dl 1.119
3779 dl 1.137 /**
3780     * Returns a non-null result from applying the given search
3781 dl 1.151 * function on each entry, or null if none.
3782 dl 1.137 *
3783     * @param searchFunction a function returning a non-null
3784     * result on success, else null
3785     * @return a non-null result from applying the given search
3786     * function on each entry, or null if none
3787     */
3788 jsr166 1.168 public <U> U searchEntriesSequentially
3789 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3790 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3791     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3792     V v; U u;
3793     while ((v = it.advance()) != null) {
3794 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3795 dl 1.151 return u;
3796     }
3797     return null;
3798 dl 1.137 }
3799 dl 1.119
3800 dl 1.137 /**
3801     * Returns the result of accumulating all entries using the
3802     * given reducer to combine values, or null if none.
3803     *
3804     * @param reducer a commutative associative combining function
3805     * @return the result of accumulating all entries
3806     */
3807 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3808 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3809 dl 1.151 if (reducer == null) throw new NullPointerException();
3810     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3811     Map.Entry<K,V> r = null; V v;
3812     while ((v = it.advance()) != null) {
3813 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3814 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3815     }
3816     return r;
3817 dl 1.137 }
3818 dl 1.119
3819 dl 1.137 /**
3820     * Returns the result of accumulating the given transformation
3821     * of all entries using the given reducer to combine values,
3822     * or null if none.
3823     *
3824     * @param transformer a function returning the transformation
3825 jsr166 1.169 * for an element, or null if there is no transformation (in
3826 jsr166 1.172 * which case it is not combined)
3827 dl 1.137 * @param reducer a commutative associative combining function
3828     * @return the result of accumulating the given transformation
3829     * of all entries
3830     */
3831 jsr166 1.168 public <U> U reduceEntriesSequentially
3832 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3833     BiFunction<? super U, ? super U, ? extends U> reducer) {
3834 dl 1.151 if (transformer == null || reducer == null)
3835     throw new NullPointerException();
3836     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3837     U r = null, u; V v;
3838     while ((v = it.advance()) != null) {
3839 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3840 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3841     }
3842     return r;
3843 dl 1.137 }
3844 dl 1.119
3845 dl 1.137 /**
3846     * Returns the result of accumulating the given transformation
3847     * of all entries using the given reducer to combine values,
3848     * and the given basis as an identity value.
3849     *
3850     * @param transformer a function returning the transformation
3851     * for an element
3852     * @param basis the identity (initial default value) for the reduction
3853     * @param reducer a commutative associative combining function
3854     * @return the result of accumulating the given transformation
3855     * of all entries
3856     */
3857 jsr166 1.168 public double reduceEntriesToDoubleSequentially
3858 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3859 dl 1.151 double basis,
3860 dl 1.153 DoubleBinaryOperator reducer) {
3861 dl 1.151 if (transformer == null || reducer == null)
3862     throw new NullPointerException();
3863     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3864     double r = basis; V v;
3865     while ((v = it.advance()) != null)
3866 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3867 dl 1.151 return r;
3868 dl 1.137 }
3869 dl 1.119
3870 dl 1.137 /**
3871     * Returns the result of accumulating the given transformation
3872     * of all entries using the given reducer to combine values,
3873     * and the given basis as an identity value.
3874     *
3875     * @param transformer a function returning the transformation
3876     * for an element
3877     * @param basis the identity (initial default value) for the reduction
3878     * @param reducer a commutative associative combining function
3879 jsr166 1.157 * @return the result of accumulating the given transformation
3880 dl 1.137 * of all entries
3881     */
3882 jsr166 1.168 public long reduceEntriesToLongSequentially
3883 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
3884 dl 1.151 long basis,
3885 dl 1.153 LongBinaryOperator reducer) {
3886 dl 1.151 if (transformer == null || reducer == null)
3887     throw new NullPointerException();
3888     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3889     long r = basis; V v;
3890     while ((v = it.advance()) != null)
3891 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3892 dl 1.151 return r;
3893 dl 1.137 }
3894 dl 1.119
3895 dl 1.137 /**
3896     * Returns the result of accumulating the given transformation
3897     * of all entries using the given reducer to combine values,
3898     * and the given basis as an identity value.
3899     *
3900     * @param transformer a function returning the transformation
3901     * for an element
3902     * @param basis the identity (initial default value) for the reduction
3903     * @param reducer a commutative associative combining function
3904     * @return the result of accumulating the given transformation
3905     * of all entries
3906     */
3907 jsr166 1.168 public int reduceEntriesToIntSequentially
3908 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
3909 dl 1.151 int basis,
3910 dl 1.153 IntBinaryOperator reducer) {
3911 dl 1.151 if (transformer == null || reducer == null)
3912     throw new NullPointerException();
3913     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3914     int r = basis; V v;
3915     while ((v = it.advance()) != null)
3916 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3917 dl 1.151 return r;
3918 dl 1.119 }
3919    
3920 dl 1.151 // Parallel bulk operations
3921 dl 1.142
3922     /**
3923 dl 1.151 * Performs the given action for each (key, value).
3924     *
3925     * @param action the action
3926 dl 1.142 */
3927 dl 1.171 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3928 dl 1.151 ForkJoinTasks.forEach
3929     (this, action).invoke();
3930     }
3931 dl 1.142
3932 dl 1.151 /**
3933     * Performs the given action for each non-null transformation
3934     * of each (key, value).
3935     *
3936     * @param transformer a function returning the transformation
3937 jsr166 1.169 * for an element, or null if there is no transformation (in
3938 jsr166 1.172 * which case the action is not applied)
3939 dl 1.151 * @param action the action
3940     */
3941     public <U> void forEachInParallel
3942 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3943 dl 1.171 Consumer<? super U> action) {
3944 dl 1.151 ForkJoinTasks.forEach
3945     (this, transformer, action).invoke();
3946     }
3947 dl 1.142
3948 dl 1.151 /**
3949     * Returns a non-null result from applying the given search
3950     * function on each (key, value), or null if none. Upon
3951     * success, further element processing is suppressed and the
3952     * results of any other parallel invocations of the search
3953     * function are ignored.
3954     *
3955     * @param searchFunction a function returning a non-null
3956     * result on success, else null
3957     * @return a non-null result from applying the given search
3958     * function on each (key, value), or null if none
3959     */
3960     public <U> U searchInParallel
3961 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3962 dl 1.151 return ForkJoinTasks.search
3963     (this, searchFunction).invoke();
3964     }
3965 dl 1.142
3966 dl 1.151 /**
3967     * Returns the result of accumulating the given transformation
3968     * of all (key, value) pairs using the given reducer to
3969     * combine values, or null if none.
3970     *
3971     * @param transformer a function returning the transformation
3972 jsr166 1.169 * for an element, or null if there is no transformation (in
3973 jsr166 1.172 * which case it is not combined)
3974 dl 1.151 * @param reducer a commutative associative combining function
3975     * @return the result of accumulating the given transformation
3976     * of all (key, value) pairs
3977     */
3978     public <U> U reduceInParallel
3979 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3980     BiFunction<? super U, ? super U, ? extends U> reducer) {
3981 dl 1.151 return ForkJoinTasks.reduce
3982     (this, transformer, reducer).invoke();
3983     }
3984 dl 1.142
3985 dl 1.151 /**
3986     * Returns the result of accumulating the given transformation
3987     * of all (key, value) pairs using the given reducer to
3988     * combine values, and the given basis as an identity value.
3989     *
3990     * @param transformer a function returning the transformation
3991     * for an element
3992     * @param basis the identity (initial default value) for the reduction
3993     * @param reducer a commutative associative combining function
3994     * @return the result of accumulating the given transformation
3995     * of all (key, value) pairs
3996     */
3997     public double reduceToDoubleInParallel
3998 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3999 dl 1.151 double basis,
4000 dl 1.153 DoubleBinaryOperator reducer) {
4001 dl 1.151 return ForkJoinTasks.reduceToDouble
4002     (this, transformer, basis, reducer).invoke();
4003     }
4004    
4005     /**
4006     * Returns the result of accumulating the given transformation
4007     * of all (key, value) pairs using the given reducer to
4008     * combine values, and the given basis as an identity value.
4009     *
4010     * @param transformer a function returning the transformation
4011     * for an element
4012     * @param basis the identity (initial default value) for the reduction
4013     * @param reducer a commutative associative combining function
4014     * @return the result of accumulating the given transformation
4015     * of all (key, value) pairs
4016     */
4017     public long reduceToLongInParallel
4018 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
4019 dl 1.151 long basis,
4020 dl 1.153 LongBinaryOperator reducer) {
4021 dl 1.151 return ForkJoinTasks.reduceToLong
4022     (this, transformer, basis, reducer).invoke();
4023     }
4024    
4025     /**
4026     * Returns the result of accumulating the given transformation
4027     * of all (key, value) pairs using the given reducer to
4028     * combine values, and the given basis as an identity value.
4029     *
4030     * @param transformer a function returning the transformation
4031     * for an element
4032     * @param basis the identity (initial default value) for the reduction
4033     * @param reducer a commutative associative combining function
4034     * @return the result of accumulating the given transformation
4035     * of all (key, value) pairs
4036     */
4037     public int reduceToIntInParallel
4038 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
4039 dl 1.151 int basis,
4040 dl 1.153 IntBinaryOperator reducer) {
4041 dl 1.151 return ForkJoinTasks.reduceToInt
4042     (this, transformer, basis, reducer).invoke();
4043     }
4044    
4045     /**
4046     * Performs the given action for each key.
4047     *
4048     * @param action the action
4049     */
4050 dl 1.171 public void forEachKeyInParallel(Consumer<? super K> action) {
4051 dl 1.151 ForkJoinTasks.forEachKey
4052     (this, action).invoke();
4053     }
4054    
4055     /**
4056     * Performs the given action for each non-null transformation
4057     * of each key.
4058     *
4059     * @param transformer a function returning the transformation
4060 jsr166 1.169 * for an element, or null if there is no transformation (in
4061 jsr166 1.172 * which case the action is not applied)
4062 dl 1.151 * @param action the action
4063     */
4064     public <U> void forEachKeyInParallel
4065 dl 1.153 (Function<? super K, ? extends U> transformer,
4066 dl 1.171 Consumer<? super U> action) {
4067 dl 1.151 ForkJoinTasks.forEachKey
4068     (this, transformer, action).invoke();
4069     }
4070    
4071     /**
4072     * Returns a non-null result from applying the given search
4073     * function on each key, or null if none. Upon success,
4074     * further element processing is suppressed and the results of
4075     * any other parallel invocations of the search function are
4076     * ignored.
4077     *
4078     * @param searchFunction a function returning a non-null
4079     * result on success, else null
4080     * @return a non-null result from applying the given search
4081     * function on each key, or null if none
4082     */
4083     public <U> U searchKeysInParallel
4084 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4085 dl 1.151 return ForkJoinTasks.searchKeys
4086     (this, searchFunction).invoke();
4087     }
4088    
4089     /**
4090     * Returns the result of accumulating all keys using the given
4091     * reducer to combine values, or null if none.
4092     *
4093     * @param reducer a commutative associative combining function
4094     * @return the result of accumulating all keys using the given
4095     * reducer to combine values, or null if none
4096     */
4097     public K reduceKeysInParallel
4098 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4099 dl 1.151 return ForkJoinTasks.reduceKeys
4100     (this, reducer).invoke();
4101     }
4102    
4103     /**
4104     * Returns the result of accumulating the given transformation
4105     * of all keys using the given reducer to combine values, or
4106     * null if none.
4107     *
4108     * @param transformer a function returning the transformation
4109 jsr166 1.169 * for an element, or null if there is no transformation (in
4110 jsr166 1.172 * which case it is not combined)
4111 dl 1.151 * @param reducer a commutative associative combining function
4112     * @return the result of accumulating the given transformation
4113     * of all keys
4114     */
4115     public <U> U reduceKeysInParallel
4116 dl 1.153 (Function<? super K, ? extends U> transformer,
4117     BiFunction<? super U, ? super U, ? extends U> reducer) {
4118 dl 1.151 return ForkJoinTasks.reduceKeys
4119     (this, transformer, reducer).invoke();
4120     }
4121    
4122     /**
4123     * Returns the result of accumulating the given transformation
4124     * of all keys using the given reducer to combine values, and
4125     * the given basis as an identity value.
4126     *
4127     * @param transformer a function returning the transformation
4128     * for an element
4129     * @param basis the identity (initial default value) for the reduction
4130     * @param reducer a commutative associative combining function
4131 jsr166 1.157 * @return the result of accumulating the given transformation
4132 dl 1.151 * of all keys
4133     */
4134     public double reduceKeysToDoubleInParallel
4135 dl 1.171 (ToDoubleFunction<? super K> transformer,
4136 dl 1.151 double basis,
4137 dl 1.153 DoubleBinaryOperator reducer) {
4138 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4139     (this, transformer, basis, reducer).invoke();
4140     }
4141    
4142     /**
4143     * Returns the result of accumulating the given transformation
4144     * of all keys using the given reducer to combine values, and
4145     * the given basis as an identity value.
4146     *
4147     * @param transformer a function returning the transformation
4148     * for an element
4149     * @param basis the identity (initial default value) for the reduction
4150     * @param reducer a commutative associative combining function
4151     * @return the result of accumulating the given transformation
4152     * of all keys
4153     */
4154     public long reduceKeysToLongInParallel
4155 dl 1.171 (ToLongFunction<? super K> transformer,
4156 dl 1.151 long basis,
4157 dl 1.153 LongBinaryOperator reducer) {
4158 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4159     (this, transformer, basis, reducer).invoke();
4160     }
4161    
4162     /**
4163     * Returns the result of accumulating the given transformation
4164     * of all keys using the given reducer to combine values, and
4165     * the given basis as an identity value.
4166     *
4167     * @param transformer a function returning the transformation
4168     * for an element
4169     * @param basis the identity (initial default value) for the reduction
4170     * @param reducer a commutative associative combining function
4171     * @return the result of accumulating the given transformation
4172     * of all keys
4173     */
4174     public int reduceKeysToIntInParallel
4175 dl 1.171 (ToIntFunction<? super K> transformer,
4176 dl 1.151 int basis,
4177 dl 1.153 IntBinaryOperator reducer) {
4178 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4179     (this, transformer, basis, reducer).invoke();
4180     }
4181    
4182     /**
4183     * Performs the given action for each value.
4184     *
4185     * @param action the action
4186     */
4187 dl 1.171 public void forEachValueInParallel(Consumer<? super V> action) {
4188 dl 1.151 ForkJoinTasks.forEachValue
4189     (this, action).invoke();
4190     }
4191    
4192     /**
4193     * Performs the given action for each non-null transformation
4194     * of each value.
4195     *
4196     * @param transformer a function returning the transformation
4197 jsr166 1.169 * for an element, or null if there is no transformation (in
4198 jsr166 1.172 * which case the action is not applied)
4199 dl 1.151 */
4200     public <U> void forEachValueInParallel
4201 dl 1.153 (Function<? super V, ? extends U> transformer,
4202 dl 1.171 Consumer<? super U> action) {
4203 dl 1.151 ForkJoinTasks.forEachValue
4204     (this, transformer, action).invoke();
4205     }
4206    
4207     /**
4208     * Returns a non-null result from applying the given search
4209     * function on each value, or null if none. Upon success,
4210     * further element processing is suppressed and the results of
4211     * any other parallel invocations of the search function are
4212     * ignored.
4213     *
4214     * @param searchFunction a function returning a non-null
4215     * result on success, else null
4216     * @return a non-null result from applying the given search
4217     * function on each value, or null if none
4218     */
4219     public <U> U searchValuesInParallel
4220 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4221 dl 1.151 return ForkJoinTasks.searchValues
4222     (this, searchFunction).invoke();
4223     }
4224    
4225     /**
4226     * Returns the result of accumulating all values using the
4227     * given reducer to combine values, or null if none.
4228     *
4229     * @param reducer a commutative associative combining function
4230 jsr166 1.157 * @return the result of accumulating all values
4231 dl 1.151 */
4232     public V reduceValuesInParallel
4233 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4234 dl 1.151 return ForkJoinTasks.reduceValues
4235     (this, reducer).invoke();
4236     }
4237    
4238     /**
4239     * Returns the result of accumulating the given transformation
4240     * of all values using the given reducer to combine values, or
4241     * null if none.
4242     *
4243     * @param transformer a function returning the transformation
4244 jsr166 1.169 * for an element, or null if there is no transformation (in
4245 jsr166 1.172 * which case it is not combined)
4246 dl 1.151 * @param reducer a commutative associative combining function
4247     * @return the result of accumulating the given transformation
4248     * of all values
4249     */
4250     public <U> U reduceValuesInParallel
4251 dl 1.153 (Function<? super V, ? extends U> transformer,
4252     BiFunction<? super U, ? super U, ? extends U> reducer) {
4253 dl 1.151 return ForkJoinTasks.reduceValues
4254     (this, transformer, reducer).invoke();
4255     }
4256    
4257     /**
4258     * Returns the result of accumulating the given transformation
4259     * of all values using the given reducer to combine values,
4260     * and the given basis as an identity value.
4261     *
4262     * @param transformer a function returning the transformation
4263     * for an element
4264     * @param basis the identity (initial default value) for the reduction
4265     * @param reducer a commutative associative combining function
4266     * @return the result of accumulating the given transformation
4267     * of all values
4268     */
4269     public double reduceValuesToDoubleInParallel
4270 dl 1.171 (ToDoubleFunction<? super V> transformer,
4271 dl 1.151 double basis,
4272 dl 1.153 DoubleBinaryOperator reducer) {
4273 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4274     (this, transformer, basis, reducer).invoke();
4275     }
4276    
4277     /**
4278     * Returns the result of accumulating the given transformation
4279     * of all values using the given reducer to combine values,
4280     * and the given basis as an identity value.
4281     *
4282     * @param transformer a function returning the transformation
4283     * for an element
4284     * @param basis the identity (initial default value) for the reduction
4285     * @param reducer a commutative associative combining function
4286     * @return the result of accumulating the given transformation
4287     * of all values
4288     */
4289     public long reduceValuesToLongInParallel
4290 dl 1.171 (ToLongFunction<? super V> transformer,
4291 dl 1.151 long basis,
4292 dl 1.153 LongBinaryOperator reducer) {
4293 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4294     (this, transformer, basis, reducer).invoke();
4295     }
4296    
4297     /**
4298     * Returns the result of accumulating the given transformation
4299     * of all values using the given reducer to combine values,
4300     * and the given basis as an identity value.
4301     *
4302     * @param transformer a function returning the transformation
4303     * for an element
4304     * @param basis the identity (initial default value) for the reduction
4305     * @param reducer a commutative associative combining function
4306     * @return the result of accumulating the given transformation
4307     * of all values
4308     */
4309     public int reduceValuesToIntInParallel
4310 dl 1.171 (ToIntFunction<? super V> transformer,
4311 dl 1.151 int basis,
4312 dl 1.153 IntBinaryOperator reducer) {
4313 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4314     (this, transformer, basis, reducer).invoke();
4315     }
4316    
4317     /**
4318     * Performs the given action for each entry.
4319     *
4320     * @param action the action
4321     */
4322 dl 1.171 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4323 dl 1.151 ForkJoinTasks.forEachEntry
4324     (this, action).invoke();
4325     }
4326    
4327     /**
4328     * Performs the given action for each non-null transformation
4329     * of each entry.
4330     *
4331     * @param transformer a function returning the transformation
4332 jsr166 1.169 * for an element, or null if there is no transformation (in
4333 jsr166 1.172 * which case the action is not applied)
4334 dl 1.151 * @param action the action
4335     */
4336     public <U> void forEachEntryInParallel
4337 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4338 dl 1.171 Consumer<? super U> action) {
4339 dl 1.151 ForkJoinTasks.forEachEntry
4340     (this, transformer, action).invoke();
4341     }
4342    
4343     /**
4344     * Returns a non-null result from applying the given search
4345     * function on each entry, or null if none. Upon success,
4346     * further element processing is suppressed and the results of
4347     * any other parallel invocations of the search function are
4348     * ignored.
4349     *
4350     * @param searchFunction a function returning a non-null
4351     * result on success, else null
4352     * @return a non-null result from applying the given search
4353     * function on each entry, or null if none
4354     */
4355     public <U> U searchEntriesInParallel
4356 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4357 dl 1.151 return ForkJoinTasks.searchEntries
4358     (this, searchFunction).invoke();
4359     }
4360    
4361     /**
4362     * Returns the result of accumulating all entries using the
4363     * given reducer to combine values, or null if none.
4364     *
4365     * @param reducer a commutative associative combining function
4366     * @return the result of accumulating all entries
4367     */
4368     public Map.Entry<K,V> reduceEntriesInParallel
4369 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4370 dl 1.151 return ForkJoinTasks.reduceEntries
4371     (this, reducer).invoke();
4372     }
4373    
4374     /**
4375     * Returns the result of accumulating the given transformation
4376     * of all entries using the given reducer to combine values,
4377     * or null if none.
4378     *
4379     * @param transformer a function returning the transformation
4380 jsr166 1.169 * for an element, or null if there is no transformation (in
4381 jsr166 1.172 * which case it is not combined)
4382 dl 1.151 * @param reducer a commutative associative combining function
4383     * @return the result of accumulating the given transformation
4384     * of all entries
4385     */
4386     public <U> U reduceEntriesInParallel
4387 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4388     BiFunction<? super U, ? super U, ? extends U> reducer) {
4389 dl 1.151 return ForkJoinTasks.reduceEntries
4390     (this, transformer, reducer).invoke();
4391     }
4392    
4393     /**
4394     * Returns the result of accumulating the given transformation
4395     * of all entries using the given reducer to combine values,
4396     * and the given basis as an identity value.
4397     *
4398     * @param transformer a function returning the transformation
4399     * for an element
4400     * @param basis the identity (initial default value) for the reduction
4401     * @param reducer a commutative associative combining function
4402     * @return the result of accumulating the given transformation
4403     * of all entries
4404     */
4405     public double reduceEntriesToDoubleInParallel
4406 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4407 dl 1.151 double basis,
4408 dl 1.153 DoubleBinaryOperator reducer) {
4409 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4410     (this, transformer, basis, reducer).invoke();
4411     }
4412    
4413     /**
4414     * Returns the result of accumulating the given transformation
4415     * of all entries using the given reducer to combine values,
4416     * and the given basis as an identity value.
4417     *
4418     * @param transformer a function returning the transformation
4419     * for an element
4420     * @param basis the identity (initial default value) for the reduction
4421     * @param reducer a commutative associative combining function
4422 jsr166 1.157 * @return the result of accumulating the given transformation
4423 dl 1.151 * of all entries
4424     */
4425     public long reduceEntriesToLongInParallel
4426 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4427 dl 1.151 long basis,
4428 dl 1.153 LongBinaryOperator reducer) {
4429 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4430     (this, transformer, basis, reducer).invoke();
4431     }
4432    
4433     /**
4434     * Returns the result of accumulating the given transformation
4435     * of all entries using the given reducer to combine values,
4436     * and the given basis as an identity value.
4437     *
4438     * @param transformer a function returning the transformation
4439     * for an element
4440     * @param basis the identity (initial default value) for the reduction
4441     * @param reducer a commutative associative combining function
4442     * @return the result of accumulating the given transformation
4443     * of all entries
4444     */
4445     public int reduceEntriesToIntInParallel
4446 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4447 dl 1.151 int basis,
4448 dl 1.153 IntBinaryOperator reducer) {
4449 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4450     (this, transformer, basis, reducer).invoke();
4451     }
4452    
4453    
4454     /* ----------------Views -------------- */
4455    
4456     /**
4457     * Base class for views.
4458     */
4459 jsr166 1.165 abstract static class CHMView<K, V> implements java.io.Serializable {
4460 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4461 dl 1.151 final ConcurrentHashMap<K, V> map;
4462     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4463    
4464     /**
4465     * Returns the map backing this view.
4466     *
4467     * @return the map backing this view
4468     */
4469     public ConcurrentHashMap<K,V> getMap() { return map; }
4470    
4471     public final int size() { return map.size(); }
4472     public final boolean isEmpty() { return map.isEmpty(); }
4473     public final void clear() { map.clear(); }
4474    
4475     // implementations below rely on concrete classes supplying these
4476 jsr166 1.165 public abstract Iterator<?> iterator();
4477     public abstract boolean contains(Object o);
4478     public abstract boolean remove(Object o);
4479 dl 1.151
4480     private static final String oomeMsg = "Required array size too large";
4481 dl 1.142
4482     public final Object[] toArray() {
4483     long sz = map.mappingCount();
4484     if (sz > (long)(MAX_ARRAY_SIZE))
4485     throw new OutOfMemoryError(oomeMsg);
4486     int n = (int)sz;
4487     Object[] r = new Object[n];
4488     int i = 0;
4489     Iterator<?> it = iterator();
4490     while (it.hasNext()) {
4491     if (i == n) {
4492     if (n >= MAX_ARRAY_SIZE)
4493     throw new OutOfMemoryError(oomeMsg);
4494     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4495     n = MAX_ARRAY_SIZE;
4496     else
4497     n += (n >>> 1) + 1;
4498     r = Arrays.copyOf(r, n);
4499     }
4500     r[i++] = it.next();
4501     }
4502     return (i == n) ? r : Arrays.copyOf(r, i);
4503     }
4504    
4505     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4506     long sz = map.mappingCount();
4507     if (sz > (long)(MAX_ARRAY_SIZE))
4508     throw new OutOfMemoryError(oomeMsg);
4509     int m = (int)sz;
4510     T[] r = (a.length >= m) ? a :
4511     (T[])java.lang.reflect.Array
4512     .newInstance(a.getClass().getComponentType(), m);
4513     int n = r.length;
4514     int i = 0;
4515     Iterator<?> it = iterator();
4516     while (it.hasNext()) {
4517     if (i == n) {
4518     if (n >= MAX_ARRAY_SIZE)
4519     throw new OutOfMemoryError(oomeMsg);
4520     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4521     n = MAX_ARRAY_SIZE;
4522     else
4523     n += (n >>> 1) + 1;
4524     r = Arrays.copyOf(r, n);
4525     }
4526     r[i++] = (T)it.next();
4527     }
4528     if (a == r && i < n) {
4529     r[i] = null; // null-terminate
4530     return r;
4531     }
4532     return (i == n) ? r : Arrays.copyOf(r, i);
4533     }
4534    
4535     public final int hashCode() {
4536     int h = 0;
4537     for (Iterator<?> it = iterator(); it.hasNext();)
4538     h += it.next().hashCode();
4539     return h;
4540     }
4541    
4542     public final String toString() {
4543     StringBuilder sb = new StringBuilder();
4544     sb.append('[');
4545     Iterator<?> it = iterator();
4546     if (it.hasNext()) {
4547     for (;;) {
4548     Object e = it.next();
4549     sb.append(e == this ? "(this Collection)" : e);
4550     if (!it.hasNext())
4551     break;
4552     sb.append(',').append(' ');
4553     }
4554     }
4555     return sb.append(']').toString();
4556     }
4557    
4558     public final boolean containsAll(Collection<?> c) {
4559     if (c != this) {
4560     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4561     Object e = it.next();
4562     if (e == null || !contains(e))
4563     return false;
4564     }
4565     }
4566     return true;
4567     }
4568    
4569     public final boolean removeAll(Collection<?> c) {
4570     boolean modified = false;
4571     for (Iterator<?> it = iterator(); it.hasNext();) {
4572     if (c.contains(it.next())) {
4573     it.remove();
4574     modified = true;
4575     }
4576     }
4577     return modified;
4578     }
4579    
4580     public final boolean retainAll(Collection<?> c) {
4581     boolean modified = false;
4582     for (Iterator<?> it = iterator(); it.hasNext();) {
4583     if (!c.contains(it.next())) {
4584     it.remove();
4585     modified = true;
4586     }
4587     }
4588     return modified;
4589     }
4590    
4591     }
4592    
4593     /**
4594     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4595     * which additions may optionally be enabled by mapping to a
4596     * common value. This class cannot be directly instantiated. See
4597     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4598     * {@link #newKeySet(int)}.
4599     */
4600 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4601     implements Set<K>, java.io.Serializable {
4602 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4603     private final V value;
4604     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4605     super(map);
4606     this.value = value;
4607     }
4608    
4609     /**
4610     * Returns the default mapped value for additions,
4611     * or {@code null} if additions are not supported.
4612     *
4613     * @return the default mapped value for additions, or {@code null}
4614 jsr166 1.172 * if not supported
4615 dl 1.142 */
4616     public V getMappedValue() { return value; }
4617    
4618     // implement Set API
4619    
4620     public boolean contains(Object o) { return map.containsKey(o); }
4621     public boolean remove(Object o) { return map.remove(o) != null; }
4622    
4623     /**
4624     * Returns a "weakly consistent" iterator that will never
4625     * throw {@link ConcurrentModificationException}, and
4626     * guarantees to traverse elements as they existed upon
4627     * construction of the iterator, and may (but is not
4628     * guaranteed to) reflect any modifications subsequent to
4629     * construction.
4630     *
4631     * @return an iterator over the keys of this map
4632     */
4633     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4634     public boolean add(K e) {
4635     V v;
4636     if ((v = value) == null)
4637     throw new UnsupportedOperationException();
4638     if (e == null)
4639     throw new NullPointerException();
4640 dl 1.149 return map.internalPut(e, v, true) == null;
4641 dl 1.142 }
4642     public boolean addAll(Collection<? extends K> c) {
4643     boolean added = false;
4644     V v;
4645     if ((v = value) == null)
4646     throw new UnsupportedOperationException();
4647     for (K e : c) {
4648     if (e == null)
4649     throw new NullPointerException();
4650 dl 1.149 if (map.internalPut(e, v, true) == null)
4651 dl 1.142 added = true;
4652     }
4653     return added;
4654     }
4655     public boolean equals(Object o) {
4656     Set<?> c;
4657     return ((o instanceof Set) &&
4658     ((c = (Set<?>)o) == this ||
4659     (containsAll(c) && c.containsAll(this))));
4660     }
4661 dl 1.153
4662     public Stream<K> stream() {
4663     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4664     }
4665     public Stream<K> parallelStream() {
4666     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4667     0);
4668     }
4669 dl 1.142 }
4670    
4671     /**
4672     * A view of a ConcurrentHashMap as a {@link Collection} of
4673     * values, in which additions are disabled. This class cannot be
4674     * directly instantiated. See {@link #values},
4675     *
4676     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4677     * that will never throw {@link ConcurrentModificationException},
4678     * and guarantees to traverse elements as they existed upon
4679     * construction of the iterator, and may (but is not guaranteed to)
4680     * reflect any modifications subsequent to construction.
4681     */
4682     public static final class ValuesView<K,V> extends CHMView<K,V>
4683     implements Collection<V> {
4684 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4685 dl 1.142 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4686     public final boolean contains(Object o) { return map.containsValue(o); }
4687     public final boolean remove(Object o) {
4688     if (o != null) {
4689     Iterator<V> it = new ValueIterator<K,V>(map);
4690     while (it.hasNext()) {
4691     if (o.equals(it.next())) {
4692     it.remove();
4693     return true;
4694     }
4695     }
4696     }
4697     return false;
4698     }
4699    
4700     /**
4701     * Returns a "weakly consistent" iterator that will never
4702     * throw {@link ConcurrentModificationException}, and
4703     * guarantees to traverse elements as they existed upon
4704     * construction of the iterator, and may (but is not
4705     * guaranteed to) reflect any modifications subsequent to
4706     * construction.
4707     *
4708     * @return an iterator over the values of this map
4709     */
4710     public final Iterator<V> iterator() {
4711     return new ValueIterator<K,V>(map);
4712     }
4713     public final boolean add(V e) {
4714     throw new UnsupportedOperationException();
4715     }
4716     public final boolean addAll(Collection<? extends V> c) {
4717     throw new UnsupportedOperationException();
4718     }
4719    
4720 dl 1.153 public Stream<V> stream() {
4721     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4722     }
4723    
4724     public Stream<V> parallelStream() {
4725     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4726     0);
4727     }
4728    
4729 dl 1.142 }
4730    
4731     /**
4732     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4733     * entries. This class cannot be directly instantiated. See
4734     * {@link #entrySet}.
4735     */
4736     public static final class EntrySetView<K,V> extends CHMView<K,V>
4737     implements Set<Map.Entry<K,V>> {
4738 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4739 dl 1.142 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4740     public final boolean contains(Object o) {
4741     Object k, v, r; Map.Entry<?,?> e;
4742     return ((o instanceof Map.Entry) &&
4743     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4744     (r = map.get(k)) != null &&
4745     (v = e.getValue()) != null &&
4746     (v == r || v.equals(r)));
4747     }
4748     public final boolean remove(Object o) {
4749     Object k, v; Map.Entry<?,?> e;
4750     return ((o instanceof Map.Entry) &&
4751     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4752     (v = e.getValue()) != null &&
4753     map.remove(k, v));
4754     }
4755    
4756     /**
4757     * Returns a "weakly consistent" iterator that will never
4758     * throw {@link ConcurrentModificationException}, and
4759     * guarantees to traverse elements as they existed upon
4760     * construction of the iterator, and may (but is not
4761     * guaranteed to) reflect any modifications subsequent to
4762     * construction.
4763     *
4764     * @return an iterator over the entries of this map
4765     */
4766     public final Iterator<Map.Entry<K,V>> iterator() {
4767     return new EntryIterator<K,V>(map);
4768     }
4769    
4770     public final boolean add(Entry<K,V> e) {
4771     K key = e.getKey();
4772     V value = e.getValue();
4773     if (key == null || value == null)
4774     throw new NullPointerException();
4775 dl 1.149 return map.internalPut(key, value, false) == null;
4776 dl 1.142 }
4777     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4778     boolean added = false;
4779     for (Entry<K,V> e : c) {
4780     if (add(e))
4781     added = true;
4782     }
4783     return added;
4784     }
4785     public boolean equals(Object o) {
4786     Set<?> c;
4787     return ((o instanceof Set) &&
4788     ((c = (Set<?>)o) == this ||
4789     (containsAll(c) && c.containsAll(this))));
4790     }
4791 dl 1.153
4792     public Stream<Map.Entry<K,V>> stream() {
4793     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4794     }
4795    
4796     public Stream<Map.Entry<K,V>> parallelStream() {
4797     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4798     0);
4799     }
4800 dl 1.142 }
4801    
4802 dl 1.119 // ---------------------------------------------------------------------
4803    
4804     /**
4805     * Predefined tasks for performing bulk parallel operations on
4806     * ConcurrentHashMaps. These tasks follow the forms and rules used
4807 dl 1.137 * for bulk operations. Each method has the same name, but returns
4808     * a task rather than invoking it. These methods may be useful in
4809     * custom applications such as submitting a task without waiting
4810     * for completion, using a custom pool, or combining with other
4811     * tasks.
4812 dl 1.119 */
4813     public static class ForkJoinTasks {
4814     private ForkJoinTasks() {}
4815    
4816     /**
4817     * Returns a task that when invoked, performs the given
4818     * action for each (key, value)
4819     *
4820     * @param map the map
4821     * @param action the action
4822     * @return the task
4823     */
4824 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4825 dl 1.119 (ConcurrentHashMap<K,V> map,
4826 dl 1.171 BiConsumer<? super K, ? super V> action) {
4827 dl 1.119 if (action == null) throw new NullPointerException();
4828 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4829 dl 1.119 }
4830    
4831     /**
4832     * Returns a task that when invoked, performs the given
4833     * action for each non-null transformation of each (key, value)
4834     *
4835     * @param map the map
4836     * @param transformer a function returning the transformation
4837 jsr166 1.135 * for an element, or null if there is no transformation (in
4838 jsr166 1.134 * which case the action is not applied)
4839 dl 1.119 * @param action the action
4840     * @return the task
4841     */
4842 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4843 dl 1.119 (ConcurrentHashMap<K,V> map,
4844 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4845 dl 1.171 Consumer<? super U> action) {
4846 dl 1.119 if (transformer == null || action == null)
4847     throw new NullPointerException();
4848     return new ForEachTransformedMappingTask<K,V,U>
4849 dl 1.146 (map, null, -1, transformer, action);
4850 dl 1.119 }
4851    
4852     /**
4853 dl 1.126 * Returns a task that when invoked, returns a non-null result
4854     * from applying the given search function on each (key,
4855     * value), or null if none. Upon success, further element
4856     * processing is suppressed and the results of any other
4857     * parallel invocations of the search function are ignored.
4858 dl 1.119 *
4859     * @param map the map
4860     * @param searchFunction a function returning a non-null
4861     * result on success, else null
4862     * @return the task
4863     */
4864     public static <K,V,U> ForkJoinTask<U> search
4865     (ConcurrentHashMap<K,V> map,
4866 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4867 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4868     return new SearchMappingsTask<K,V,U>
4869 dl 1.146 (map, null, -1, searchFunction,
4870 dl 1.119 new AtomicReference<U>());
4871     }
4872    
4873     /**
4874     * Returns a task that when invoked, returns the result of
4875     * accumulating the given transformation of all (key, value) pairs
4876     * using the given reducer to combine values, or null if none.
4877     *
4878     * @param map the map
4879     * @param transformer a function returning the transformation
4880 jsr166 1.135 * for an element, or null if there is no transformation (in
4881 jsr166 1.172 * which case it is not combined)
4882 dl 1.119 * @param reducer a commutative associative combining function
4883     * @return the task
4884     */
4885     public static <K,V,U> ForkJoinTask<U> reduce
4886     (ConcurrentHashMap<K,V> map,
4887 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4888     BiFunction<? super U, ? super U, ? extends U> reducer) {
4889 dl 1.119 if (transformer == null || reducer == null)
4890     throw new NullPointerException();
4891     return new MapReduceMappingsTask<K,V,U>
4892 dl 1.130 (map, null, -1, null, transformer, reducer);
4893 dl 1.119 }
4894    
4895     /**
4896     * Returns a task that when invoked, returns the result of
4897     * accumulating the given transformation of all (key, value) pairs
4898     * using the given reducer to combine values, and the given
4899     * basis as an identity value.
4900     *
4901     * @param map the map
4902     * @param transformer a function returning the transformation
4903     * for an element
4904     * @param basis the identity (initial default value) for the reduction
4905     * @param reducer a commutative associative combining function
4906     * @return the task
4907     */
4908     public static <K,V> ForkJoinTask<Double> reduceToDouble
4909     (ConcurrentHashMap<K,V> map,
4910 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
4911 dl 1.119 double basis,
4912 dl 1.153 DoubleBinaryOperator reducer) {
4913 dl 1.119 if (transformer == null || reducer == null)
4914     throw new NullPointerException();
4915     return new MapReduceMappingsToDoubleTask<K,V>
4916 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4917 dl 1.119 }
4918    
4919     /**
4920     * Returns a task that when invoked, returns the result of
4921     * accumulating the given transformation of all (key, value) pairs
4922     * using the given reducer to combine values, and the given
4923     * basis as an identity value.
4924     *
4925     * @param map the map
4926     * @param transformer a function returning the transformation
4927     * for an element
4928     * @param basis the identity (initial default value) for the reduction
4929     * @param reducer a commutative associative combining function
4930     * @return the task
4931     */
4932     public static <K,V> ForkJoinTask<Long> reduceToLong
4933     (ConcurrentHashMap<K,V> map,
4934 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
4935 dl 1.119 long basis,
4936 dl 1.153 LongBinaryOperator reducer) {
4937 dl 1.119 if (transformer == null || reducer == null)
4938     throw new NullPointerException();
4939     return new MapReduceMappingsToLongTask<K,V>
4940 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4941 dl 1.119 }
4942    
4943     /**
4944     * Returns a task that when invoked, returns the result of
4945     * accumulating the given transformation of all (key, value) pairs
4946     * using the given reducer to combine values, and the given
4947     * basis as an identity value.
4948     *
4949     * @param transformer a function returning the transformation
4950     * for an element
4951     * @param basis the identity (initial default value) for the reduction
4952     * @param reducer a commutative associative combining function
4953     * @return the task
4954     */
4955     public static <K,V> ForkJoinTask<Integer> reduceToInt
4956     (ConcurrentHashMap<K,V> map,
4957 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
4958 dl 1.119 int basis,
4959 dl 1.153 IntBinaryOperator reducer) {
4960 dl 1.119 if (transformer == null || reducer == null)
4961     throw new NullPointerException();
4962     return new MapReduceMappingsToIntTask<K,V>
4963 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4964 dl 1.119 }
4965    
4966     /**
4967     * Returns a task that when invoked, performs the given action
4968 jsr166 1.123 * for each key.
4969 dl 1.119 *
4970     * @param map the map
4971     * @param action the action
4972     * @return the task
4973     */
4974 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4975 dl 1.119 (ConcurrentHashMap<K,V> map,
4976 dl 1.171 Consumer<? super K> action) {
4977 dl 1.119 if (action == null) throw new NullPointerException();
4978 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4979 dl 1.119 }
4980    
4981     /**
4982     * Returns a task that when invoked, performs the given action
4983 jsr166 1.123 * for each non-null transformation of each key.
4984 dl 1.119 *
4985     * @param map the map
4986     * @param transformer a function returning the transformation
4987 jsr166 1.135 * for an element, or null if there is no transformation (in
4988 jsr166 1.134 * which case the action is not applied)
4989 dl 1.119 * @param action the action
4990     * @return the task
4991     */
4992 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4993 dl 1.119 (ConcurrentHashMap<K,V> map,
4994 dl 1.153 Function<? super K, ? extends U> transformer,
4995 dl 1.171 Consumer<? super U> action) {
4996 dl 1.119 if (transformer == null || action == null)
4997     throw new NullPointerException();
4998     return new ForEachTransformedKeyTask<K,V,U>
4999 dl 1.146 (map, null, -1, transformer, action);
5000 dl 1.119 }
5001    
5002     /**
5003     * Returns a task that when invoked, returns a non-null result
5004     * from applying the given search function on each key, or
5005 dl 1.126 * null if none. Upon success, further element processing is
5006     * suppressed and the results of any other parallel
5007     * invocations of the search function are ignored.
5008 dl 1.119 *
5009     * @param map the map
5010     * @param searchFunction a function returning a non-null
5011     * result on success, else null
5012     * @return the task
5013     */
5014     public static <K,V,U> ForkJoinTask<U> searchKeys
5015     (ConcurrentHashMap<K,V> map,
5016 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5017 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5018     return new SearchKeysTask<K,V,U>
5019 dl 1.146 (map, null, -1, searchFunction,
5020 dl 1.119 new AtomicReference<U>());
5021     }
5022    
5023     /**
5024     * Returns a task that when invoked, returns the result of
5025     * accumulating all keys using the given reducer to combine
5026     * values, or null if none.
5027     *
5028     * @param map the map
5029     * @param reducer a commutative associative combining function
5030     * @return the task
5031     */
5032     public static <K,V> ForkJoinTask<K> reduceKeys
5033     (ConcurrentHashMap<K,V> map,
5034 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5035 dl 1.119 if (reducer == null) throw new NullPointerException();
5036     return new ReduceKeysTask<K,V>
5037 dl 1.130 (map, null, -1, null, reducer);
5038 dl 1.119 }
5039 jsr166 1.125
5040 dl 1.119 /**
5041     * Returns a task that when invoked, returns the result of
5042     * accumulating the given transformation of all keys using the given
5043     * reducer to combine values, or null if none.
5044     *
5045     * @param map the map
5046     * @param transformer a function returning the transformation
5047 jsr166 1.135 * for an element, or null if there is no transformation (in
5048 jsr166 1.172 * which case it is not combined)
5049 dl 1.119 * @param reducer a commutative associative combining function
5050     * @return the task
5051     */
5052     public static <K,V,U> ForkJoinTask<U> reduceKeys
5053     (ConcurrentHashMap<K,V> map,
5054 dl 1.153 Function<? super K, ? extends U> transformer,
5055     BiFunction<? super U, ? super U, ? extends U> reducer) {
5056 dl 1.119 if (transformer == null || reducer == null)
5057     throw new NullPointerException();
5058     return new MapReduceKeysTask<K,V,U>
5059 dl 1.130 (map, null, -1, null, transformer, reducer);
5060 dl 1.119 }
5061    
5062     /**
5063     * Returns a task that when invoked, returns the result of
5064     * accumulating the given transformation of all keys using the given
5065     * reducer to combine values, and the given basis as an
5066     * identity value.
5067     *
5068     * @param map the map
5069     * @param transformer a function returning the transformation
5070     * for an element
5071     * @param basis the identity (initial default value) for the reduction
5072     * @param reducer a commutative associative combining function
5073     * @return the task
5074     */
5075     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5076     (ConcurrentHashMap<K,V> map,
5077 dl 1.171 ToDoubleFunction<? super K> transformer,
5078 dl 1.119 double basis,
5079 dl 1.153 DoubleBinaryOperator reducer) {
5080 dl 1.119 if (transformer == null || reducer == null)
5081     throw new NullPointerException();
5082     return new MapReduceKeysToDoubleTask<K,V>
5083 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5084 dl 1.119 }
5085    
5086     /**
5087     * Returns a task that when invoked, returns the result of
5088     * accumulating the given transformation of all keys using the given
5089     * reducer to combine values, and the given basis as an
5090     * identity value.
5091     *
5092     * @param map the map
5093     * @param transformer a function returning the transformation
5094     * for an element
5095     * @param basis the identity (initial default value) for the reduction
5096     * @param reducer a commutative associative combining function
5097     * @return the task
5098     */
5099     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5100     (ConcurrentHashMap<K,V> map,
5101 dl 1.171 ToLongFunction<? super K> transformer,
5102 dl 1.119 long basis,
5103 dl 1.153 LongBinaryOperator reducer) {
5104 dl 1.119 if (transformer == null || reducer == null)
5105     throw new NullPointerException();
5106     return new MapReduceKeysToLongTask<K,V>
5107 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5108 dl 1.119 }
5109    
5110     /**
5111     * Returns a task that when invoked, returns the result of
5112     * accumulating the given transformation of all keys using the given
5113     * reducer to combine values, and the given basis as an
5114     * identity value.
5115     *
5116     * @param map the map
5117     * @param transformer a function returning the transformation
5118     * for an element
5119     * @param basis the identity (initial default value) for the reduction
5120     * @param reducer a commutative associative combining function
5121     * @return the task
5122     */
5123     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5124     (ConcurrentHashMap<K,V> map,
5125 dl 1.171 ToIntFunction<? super K> transformer,
5126 dl 1.119 int basis,
5127 dl 1.153 IntBinaryOperator reducer) {
5128 dl 1.119 if (transformer == null || reducer == null)
5129     throw new NullPointerException();
5130     return new MapReduceKeysToIntTask<K,V>
5131 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5132 dl 1.119 }
5133    
5134     /**
5135     * Returns a task that when invoked, performs the given action
5136 jsr166 1.123 * for each value.
5137 dl 1.119 *
5138     * @param map the map
5139     * @param action the action
5140 jsr166 1.173 * @return the task
5141 dl 1.119 */
5142 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5143 dl 1.119 (ConcurrentHashMap<K,V> map,
5144 dl 1.171 Consumer<? super V> action) {
5145 dl 1.119 if (action == null) throw new NullPointerException();
5146 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5147 dl 1.119 }
5148    
5149     /**
5150     * Returns a task that when invoked, performs the given action
5151 jsr166 1.123 * for each non-null transformation of each value.
5152 dl 1.119 *
5153     * @param map the map
5154     * @param transformer a function returning the transformation
5155 jsr166 1.135 * for an element, or null if there is no transformation (in
5156 jsr166 1.134 * which case the action is not applied)
5157 dl 1.119 * @param action the action
5158 jsr166 1.173 * @return the task
5159 dl 1.119 */
5160 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5161 dl 1.119 (ConcurrentHashMap<K,V> map,
5162 dl 1.153 Function<? super V, ? extends U> transformer,
5163 dl 1.171 Consumer<? super U> action) {
5164 dl 1.119 if (transformer == null || action == null)
5165     throw new NullPointerException();
5166     return new ForEachTransformedValueTask<K,V,U>
5167 dl 1.146 (map, null, -1, transformer, action);
5168 dl 1.119 }
5169    
5170     /**
5171     * Returns a task that when invoked, returns a non-null result
5172     * from applying the given search function on each value, or
5173 dl 1.126 * null if none. Upon success, further element processing is
5174     * suppressed and the results of any other parallel
5175     * invocations of the search function are ignored.
5176 dl 1.119 *
5177     * @param map the map
5178     * @param searchFunction a function returning a non-null
5179     * result on success, else null
5180     * @return the task
5181     */
5182     public static <K,V,U> ForkJoinTask<U> searchValues
5183     (ConcurrentHashMap<K,V> map,
5184 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5185 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5186     return new SearchValuesTask<K,V,U>
5187 dl 1.146 (map, null, -1, searchFunction,
5188 dl 1.119 new AtomicReference<U>());
5189     }
5190    
5191     /**
5192     * Returns a task that when invoked, returns the result of
5193     * accumulating all values using the given reducer to combine
5194     * values, or null if none.
5195     *
5196     * @param map the map
5197     * @param reducer a commutative associative combining function
5198     * @return the task
5199     */
5200     public static <K,V> ForkJoinTask<V> reduceValues
5201     (ConcurrentHashMap<K,V> map,
5202 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5203 dl 1.119 if (reducer == null) throw new NullPointerException();
5204     return new ReduceValuesTask<K,V>
5205 dl 1.130 (map, null, -1, null, reducer);
5206 dl 1.119 }
5207    
5208     /**
5209     * Returns a task that when invoked, returns the result of
5210     * accumulating the given transformation of all values using the
5211     * given reducer to combine values, or null if none.
5212     *
5213     * @param map the map
5214     * @param transformer a function returning the transformation
5215 jsr166 1.135 * for an element, or null if there is no transformation (in
5216 jsr166 1.172 * which case it is not combined)
5217 dl 1.119 * @param reducer a commutative associative combining function
5218     * @return the task
5219     */
5220     public static <K,V,U> ForkJoinTask<U> reduceValues
5221     (ConcurrentHashMap<K,V> map,
5222 dl 1.153 Function<? super V, ? extends U> transformer,
5223     BiFunction<? super U, ? super U, ? extends U> reducer) {
5224 dl 1.119 if (transformer == null || reducer == null)
5225     throw new NullPointerException();
5226     return new MapReduceValuesTask<K,V,U>
5227 dl 1.130 (map, null, -1, null, transformer, reducer);
5228 dl 1.119 }
5229    
5230     /**
5231     * Returns a task that when invoked, returns the result of
5232     * accumulating the given transformation of all values using the
5233     * given reducer to combine values, and the given basis as an
5234     * identity value.
5235     *
5236     * @param map the map
5237     * @param transformer a function returning the transformation
5238     * for an element
5239     * @param basis the identity (initial default value) for the reduction
5240     * @param reducer a commutative associative combining function
5241     * @return the task
5242     */
5243     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5244     (ConcurrentHashMap<K,V> map,
5245 dl 1.171 ToDoubleFunction<? super V> transformer,
5246 dl 1.119 double basis,
5247 dl 1.153 DoubleBinaryOperator reducer) {
5248 dl 1.119 if (transformer == null || reducer == null)
5249     throw new NullPointerException();
5250     return new MapReduceValuesToDoubleTask<K,V>
5251 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5252 dl 1.119 }
5253    
5254     /**
5255     * Returns a task that when invoked, returns the result of
5256     * accumulating the given transformation of all values using the
5257     * given reducer to combine values, and the given basis as an
5258     * identity value.
5259     *
5260     * @param map the map
5261     * @param transformer a function returning the transformation
5262     * for an element
5263     * @param basis the identity (initial default value) for the reduction
5264     * @param reducer a commutative associative combining function
5265     * @return the task
5266     */
5267     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5268     (ConcurrentHashMap<K,V> map,
5269 dl 1.171 ToLongFunction<? super V> transformer,
5270 dl 1.119 long basis,
5271 dl 1.153 LongBinaryOperator reducer) {
5272 dl 1.119 if (transformer == null || reducer == null)
5273     throw new NullPointerException();
5274     return new MapReduceValuesToLongTask<K,V>
5275 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5276 dl 1.119 }
5277    
5278     /**
5279     * Returns a task that when invoked, returns the result of
5280     * accumulating the given transformation of all values using the
5281     * given reducer to combine values, and the given basis as an
5282     * identity value.
5283     *
5284     * @param map the map
5285     * @param transformer a function returning the transformation
5286     * for an element
5287     * @param basis the identity (initial default value) for the reduction
5288     * @param reducer a commutative associative combining function
5289     * @return the task
5290     */
5291     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5292     (ConcurrentHashMap<K,V> map,
5293 dl 1.171 ToIntFunction<? super V> transformer,
5294 dl 1.119 int basis,
5295 dl 1.153 IntBinaryOperator reducer) {
5296 dl 1.119 if (transformer == null || reducer == null)
5297     throw new NullPointerException();
5298     return new MapReduceValuesToIntTask<K,V>
5299 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5300 dl 1.119 }
5301    
5302     /**
5303     * Returns a task that when invoked, perform the given action
5304 jsr166 1.123 * for each entry.
5305 dl 1.119 *
5306     * @param map the map
5307     * @param action the action
5308 jsr166 1.173 * @return the task
5309 dl 1.119 */
5310 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5311 dl 1.119 (ConcurrentHashMap<K,V> map,
5312 dl 1.171 Consumer<? super Map.Entry<K,V>> action) {
5313 dl 1.119 if (action == null) throw new NullPointerException();
5314 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5315 dl 1.119 }
5316    
5317     /**
5318     * Returns a task that when invoked, perform the given action
5319 jsr166 1.123 * for each non-null transformation of each entry.
5320 dl 1.119 *
5321     * @param map the map
5322     * @param transformer a function returning the transformation
5323 jsr166 1.135 * for an element, or null if there is no transformation (in
5324 jsr166 1.134 * which case the action is not applied)
5325 dl 1.119 * @param action the action
5326 jsr166 1.173 * @return the task
5327 dl 1.119 */
5328 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5329 dl 1.119 (ConcurrentHashMap<K,V> map,
5330 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5331 dl 1.171 Consumer<? super U> action) {
5332 dl 1.119 if (transformer == null || action == null)
5333     throw new NullPointerException();
5334     return new ForEachTransformedEntryTask<K,V,U>
5335 dl 1.146 (map, null, -1, transformer, action);
5336 dl 1.119 }
5337    
5338     /**
5339     * Returns a task that when invoked, returns a non-null result
5340     * from applying the given search function on each entry, or
5341 dl 1.126 * null if none. Upon success, further element processing is
5342     * suppressed and the results of any other parallel
5343     * invocations of the search function are ignored.
5344 dl 1.119 *
5345     * @param map the map
5346     * @param searchFunction a function returning a non-null
5347     * result on success, else null
5348     * @return the task
5349     */
5350     public static <K,V,U> ForkJoinTask<U> searchEntries
5351     (ConcurrentHashMap<K,V> map,
5352 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5353 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5354     return new SearchEntriesTask<K,V,U>
5355 dl 1.146 (map, null, -1, searchFunction,
5356 dl 1.119 new AtomicReference<U>());
5357     }
5358    
5359     /**
5360     * Returns a task that when invoked, returns the result of
5361     * accumulating all entries using the given reducer to combine
5362     * values, or null if none.
5363     *
5364     * @param map the map
5365     * @param reducer a commutative associative combining function
5366     * @return the task
5367     */
5368     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5369     (ConcurrentHashMap<K,V> map,
5370 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5371 dl 1.119 if (reducer == null) throw new NullPointerException();
5372     return new ReduceEntriesTask<K,V>
5373 dl 1.130 (map, null, -1, null, reducer);
5374 dl 1.119 }
5375    
5376     /**
5377     * Returns a task that when invoked, returns the result of
5378     * accumulating the given transformation of all entries using the
5379     * given reducer to combine values, or null if none.
5380     *
5381     * @param map the map
5382     * @param transformer a function returning the transformation
5383 jsr166 1.135 * for an element, or null if there is no transformation (in
5384 jsr166 1.172 * which case it is not combined)
5385 dl 1.119 * @param reducer a commutative associative combining function
5386     * @return the task
5387     */
5388     public static <K,V,U> ForkJoinTask<U> reduceEntries
5389     (ConcurrentHashMap<K,V> map,
5390 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5391     BiFunction<? super U, ? super U, ? extends U> reducer) {
5392 dl 1.119 if (transformer == null || reducer == null)
5393     throw new NullPointerException();
5394     return new MapReduceEntriesTask<K,V,U>
5395 dl 1.130 (map, null, -1, null, transformer, reducer);
5396 dl 1.119 }
5397    
5398     /**
5399     * Returns a task that when invoked, returns the result of
5400     * accumulating the given transformation of all entries using the
5401     * given reducer to combine values, and the given basis as an
5402     * identity value.
5403     *
5404     * @param map the map
5405     * @param transformer a function returning the transformation
5406     * for an element
5407     * @param basis the identity (initial default value) for the reduction
5408     * @param reducer a commutative associative combining function
5409     * @return the task
5410     */
5411     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5412     (ConcurrentHashMap<K,V> map,
5413 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5414 dl 1.119 double basis,
5415 dl 1.153 DoubleBinaryOperator reducer) {
5416 dl 1.119 if (transformer == null || reducer == null)
5417     throw new NullPointerException();
5418     return new MapReduceEntriesToDoubleTask<K,V>
5419 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5420 dl 1.119 }
5421    
5422     /**
5423     * Returns a task that when invoked, returns the result of
5424     * accumulating the given transformation of all entries using the
5425     * given reducer to combine values, and the given basis as an
5426     * identity value.
5427     *
5428     * @param map the map
5429     * @param transformer a function returning the transformation
5430     * for an element
5431     * @param basis the identity (initial default value) for the reduction
5432     * @param reducer a commutative associative combining function
5433     * @return the task
5434     */
5435     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5436     (ConcurrentHashMap<K,V> map,
5437 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5438 dl 1.119 long basis,
5439 dl 1.153 LongBinaryOperator reducer) {
5440 dl 1.119 if (transformer == null || reducer == null)
5441     throw new NullPointerException();
5442     return new MapReduceEntriesToLongTask<K,V>
5443 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5444 dl 1.119 }
5445    
5446     /**
5447     * Returns a task that when invoked, returns the result of
5448     * accumulating the given transformation of all entries using the
5449     * given reducer to combine values, and the given basis as an
5450     * identity value.
5451     *
5452     * @param map the map
5453     * @param transformer a function returning the transformation
5454     * for an element
5455     * @param basis the identity (initial default value) for the reduction
5456     * @param reducer a commutative associative combining function
5457     * @return the task
5458     */
5459     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5460     (ConcurrentHashMap<K,V> map,
5461 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5462 dl 1.119 int basis,
5463 dl 1.153 IntBinaryOperator reducer) {
5464 dl 1.119 if (transformer == null || reducer == null)
5465     throw new NullPointerException();
5466     return new MapReduceEntriesToIntTask<K,V>
5467 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5468 dl 1.119 }
5469     }
5470    
5471     // -------------------------------------------------------
5472    
5473     /*
5474     * Task classes. Coded in a regular but ugly format/style to
5475     * simplify checks that each variant differs in the right way from
5476 dl 1.149 * others. The null screenings exist because compilers cannot tell
5477     * that we've already null-checked task arguments, so we force
5478     * simplest hoisted bypass to help avoid convoluted traps.
5479 dl 1.119 */
5480    
5481 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5482 dl 1.146 extends Traverser<K,V,Void> {
5483 dl 1.171 final Consumer<? super K> action;
5484 dl 1.119 ForEachKeyTask
5485 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5486 dl 1.171 Consumer<? super K> action) {
5487 dl 1.146 super(m, p, b);
5488 dl 1.119 this.action = action;
5489     }
5490 jsr166 1.168 public final void compute() {
5491 dl 1.171 final Consumer<? super K> action;
5492 dl 1.149 if ((action = this.action) != null) {
5493     for (int b; (b = preSplit()) > 0;)
5494     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5495     while (advance() != null)
5496 jsr166 1.168 action.accept(nextKey);
5497 dl 1.149 propagateCompletion();
5498     }
5499 dl 1.119 }
5500     }
5501    
5502 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5503 dl 1.146 extends Traverser<K,V,Void> {
5504 dl 1.171 final Consumer<? super V> action;
5505 dl 1.119 ForEachValueTask
5506 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5507 dl 1.171 Consumer<? super V> action) {
5508 dl 1.146 super(m, p, b);
5509 dl 1.119 this.action = action;
5510     }
5511 jsr166 1.168 public final void compute() {
5512 dl 1.171 final Consumer<? super V> action;
5513 dl 1.149 if ((action = this.action) != null) {
5514     for (int b; (b = preSplit()) > 0;)
5515     new ForEachValueTask<K,V>(map, this, b, action).fork();
5516 dl 1.151 V v;
5517 dl 1.149 while ((v = advance()) != null)
5518 dl 1.153 action.accept(v);
5519 dl 1.149 propagateCompletion();
5520     }
5521 dl 1.119 }
5522     }
5523    
5524 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5525 dl 1.146 extends Traverser<K,V,Void> {
5526 dl 1.171 final Consumer<? super Entry<K,V>> action;
5527 dl 1.119 ForEachEntryTask
5528 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5529 dl 1.171 Consumer<? super Entry<K,V>> action) {
5530 dl 1.146 super(m, p, b);
5531 dl 1.119 this.action = action;
5532     }
5533 jsr166 1.168 public final void compute() {
5534 dl 1.171 final Consumer<? super Entry<K,V>> action;
5535 dl 1.149 if ((action = this.action) != null) {
5536     for (int b; (b = preSplit()) > 0;)
5537     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5538 dl 1.151 V v;
5539 dl 1.149 while ((v = advance()) != null)
5540 jsr166 1.168 action.accept(entryFor(nextKey, v));
5541 dl 1.149 propagateCompletion();
5542     }
5543 dl 1.119 }
5544     }
5545    
5546 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5547 dl 1.146 extends Traverser<K,V,Void> {
5548 dl 1.171 final BiConsumer<? super K, ? super V> action;
5549 dl 1.119 ForEachMappingTask
5550 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5551 dl 1.171 BiConsumer<? super K,? super V> action) {
5552 dl 1.146 super(m, p, b);
5553 dl 1.119 this.action = action;
5554     }
5555 jsr166 1.168 public final void compute() {
5556 dl 1.171 final BiConsumer<? super K, ? super V> action;
5557 dl 1.149 if ((action = this.action) != null) {
5558     for (int b; (b = preSplit()) > 0;)
5559     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5560 dl 1.151 V v;
5561 dl 1.149 while ((v = advance()) != null)
5562 jsr166 1.168 action.accept(nextKey, v);
5563 dl 1.149 propagateCompletion();
5564     }
5565 dl 1.119 }
5566     }
5567    
5568 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5569 dl 1.146 extends Traverser<K,V,Void> {
5570 dl 1.153 final Function<? super K, ? extends U> transformer;
5571 dl 1.171 final Consumer<? super U> action;
5572 dl 1.119 ForEachTransformedKeyTask
5573 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5574 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5575 dl 1.146 super(m, p, b);
5576     this.transformer = transformer; this.action = action;
5577     }
5578 jsr166 1.168 public final void compute() {
5579 dl 1.153 final Function<? super K, ? extends U> transformer;
5580 dl 1.171 final Consumer<? super U> action;
5581 dl 1.149 if ((transformer = this.transformer) != null &&
5582     (action = this.action) != null) {
5583     for (int b; (b = preSplit()) > 0;)
5584     new ForEachTransformedKeyTask<K,V,U>
5585     (map, this, b, transformer, action).fork();
5586     U u;
5587     while (advance() != null) {
5588 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5589 dl 1.153 action.accept(u);
5590 dl 1.149 }
5591     propagateCompletion();
5592 dl 1.119 }
5593     }
5594     }
5595    
5596 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5597 dl 1.146 extends Traverser<K,V,Void> {
5598 dl 1.153 final Function<? super V, ? extends U> transformer;
5599 dl 1.171 final Consumer<? super U> action;
5600 dl 1.119 ForEachTransformedValueTask
5601 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5602 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5603 dl 1.146 super(m, p, b);
5604     this.transformer = transformer; this.action = action;
5605     }
5606 jsr166 1.168 public final void compute() {
5607 dl 1.153 final Function<? super V, ? extends U> transformer;
5608 dl 1.171 final Consumer<? super U> action;
5609 dl 1.149 if ((transformer = this.transformer) != null &&
5610     (action = this.action) != null) {
5611     for (int b; (b = preSplit()) > 0;)
5612     new ForEachTransformedValueTask<K,V,U>
5613     (map, this, b, transformer, action).fork();
5614 dl 1.151 V v; U u;
5615 dl 1.149 while ((v = advance()) != null) {
5616 dl 1.151 if ((u = transformer.apply(v)) != null)
5617 dl 1.153 action.accept(u);
5618 dl 1.149 }
5619     propagateCompletion();
5620 dl 1.119 }
5621     }
5622 tim 1.1 }
5623    
5624 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5625 dl 1.146 extends Traverser<K,V,Void> {
5626 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5627 dl 1.171 final Consumer<? super U> action;
5628 dl 1.119 ForEachTransformedEntryTask
5629 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5630 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5631 dl 1.146 super(m, p, b);
5632     this.transformer = transformer; this.action = action;
5633     }
5634 jsr166 1.168 public final void compute() {
5635 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5636 dl 1.171 final Consumer<? super U> action;
5637 dl 1.149 if ((transformer = this.transformer) != null &&
5638     (action = this.action) != null) {
5639     for (int b; (b = preSplit()) > 0;)
5640     new ForEachTransformedEntryTask<K,V,U>
5641     (map, this, b, transformer, action).fork();
5642 dl 1.151 V v; U u;
5643 dl 1.149 while ((v = advance()) != null) {
5644 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5645 dl 1.151 v))) != null)
5646 dl 1.153 action.accept(u);
5647 dl 1.149 }
5648     propagateCompletion();
5649 dl 1.119 }
5650     }
5651 tim 1.1 }
5652    
5653 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5654 dl 1.146 extends Traverser<K,V,Void> {
5655 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5656 dl 1.171 final Consumer<? super U> action;
5657 dl 1.119 ForEachTransformedMappingTask
5658 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5659 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5660 dl 1.171 Consumer<? super U> action) {
5661 dl 1.146 super(m, p, b);
5662     this.transformer = transformer; this.action = action;
5663 dl 1.119 }
5664 jsr166 1.168 public final void compute() {
5665 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5666 dl 1.171 final Consumer<? super U> action;
5667 dl 1.149 if ((transformer = this.transformer) != null &&
5668     (action = this.action) != null) {
5669     for (int b; (b = preSplit()) > 0;)
5670     new ForEachTransformedMappingTask<K,V,U>
5671     (map, this, b, transformer, action).fork();
5672 dl 1.151 V v; U u;
5673 dl 1.149 while ((v = advance()) != null) {
5674 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5675 dl 1.153 action.accept(u);
5676 dl 1.149 }
5677     propagateCompletion();
5678 dl 1.119 }
5679     }
5680 tim 1.1 }
5681    
5682 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5683 dl 1.146 extends Traverser<K,V,U> {
5684 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5685 dl 1.119 final AtomicReference<U> result;
5686     SearchKeysTask
5687 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5688 dl 1.153 Function<? super K, ? extends U> searchFunction,
5689 dl 1.119 AtomicReference<U> result) {
5690 dl 1.146 super(m, p, b);
5691 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5692     }
5693 dl 1.146 public final U getRawResult() { return result.get(); }
5694 jsr166 1.168 public final void compute() {
5695 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5696 dl 1.146 final AtomicReference<U> result;
5697 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5698     (result = this.result) != null) {
5699     for (int b;;) {
5700     if (result.get() != null)
5701     return;
5702     if ((b = preSplit()) <= 0)
5703     break;
5704     new SearchKeysTask<K,V,U>
5705     (map, this, b, searchFunction, result).fork();
5706 dl 1.128 }
5707 dl 1.149 while (result.get() == null) {
5708     U u;
5709     if (advance() == null) {
5710     propagateCompletion();
5711     break;
5712     }
5713 jsr166 1.168 if ((u = searchFunction.apply(nextKey)) != null) {
5714 dl 1.149 if (result.compareAndSet(null, u))
5715     quietlyCompleteRoot();
5716     break;
5717     }
5718 dl 1.119 }
5719     }
5720     }
5721 tim 1.1 }
5722    
5723 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5724 dl 1.146 extends Traverser<K,V,U> {
5725 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5726 dl 1.119 final AtomicReference<U> result;
5727     SearchValuesTask
5728 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5729 dl 1.153 Function<? super V, ? extends U> searchFunction,
5730 dl 1.119 AtomicReference<U> result) {
5731 dl 1.146 super(m, p, b);
5732 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5733     }
5734 dl 1.146 public final U getRawResult() { return result.get(); }
5735 jsr166 1.168 public final void compute() {
5736 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5737 dl 1.146 final AtomicReference<U> result;
5738 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5739     (result = this.result) != null) {
5740     for (int b;;) {
5741     if (result.get() != null)
5742     return;
5743     if ((b = preSplit()) <= 0)
5744     break;
5745     new SearchValuesTask<K,V,U>
5746     (map, this, b, searchFunction, result).fork();
5747 dl 1.128 }
5748 dl 1.149 while (result.get() == null) {
5749 dl 1.151 V v; U u;
5750 dl 1.149 if ((v = advance()) == null) {
5751     propagateCompletion();
5752     break;
5753     }
5754 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5755 dl 1.149 if (result.compareAndSet(null, u))
5756     quietlyCompleteRoot();
5757     break;
5758     }
5759 dl 1.119 }
5760     }
5761     }
5762     }
5763 tim 1.11
5764 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5765 dl 1.146 extends Traverser<K,V,U> {
5766 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5767 dl 1.119 final AtomicReference<U> result;
5768     SearchEntriesTask
5769 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5770 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5771 dl 1.119 AtomicReference<U> result) {
5772 dl 1.146 super(m, p, b);
5773 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5774     }
5775 dl 1.146 public final U getRawResult() { return result.get(); }
5776 jsr166 1.168 public final void compute() {
5777 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5778 dl 1.146 final AtomicReference<U> result;
5779 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5780     (result = this.result) != null) {
5781     for (int b;;) {
5782     if (result.get() != null)
5783     return;
5784     if ((b = preSplit()) <= 0)
5785     break;
5786     new SearchEntriesTask<K,V,U>
5787     (map, this, b, searchFunction, result).fork();
5788 dl 1.128 }
5789 dl 1.149 while (result.get() == null) {
5790 dl 1.151 V v; U u;
5791 dl 1.149 if ((v = advance()) == null) {
5792     propagateCompletion();
5793     break;
5794     }
5795 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5796 dl 1.151 v))) != null) {
5797 dl 1.149 if (result.compareAndSet(null, u))
5798     quietlyCompleteRoot();
5799     return;
5800     }
5801 dl 1.119 }
5802     }
5803     }
5804     }
5805 tim 1.1
5806 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5807 dl 1.146 extends Traverser<K,V,U> {
5808 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5809 dl 1.119 final AtomicReference<U> result;
5810     SearchMappingsTask
5811 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5812 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5813 dl 1.119 AtomicReference<U> result) {
5814 dl 1.146 super(m, p, b);
5815 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5816     }
5817 dl 1.146 public final U getRawResult() { return result.get(); }
5818 jsr166 1.168 public final void compute() {
5819 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5820 dl 1.146 final AtomicReference<U> result;
5821 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5822     (result = this.result) != null) {
5823     for (int b;;) {
5824     if (result.get() != null)
5825     return;
5826     if ((b = preSplit()) <= 0)
5827     break;
5828     new SearchMappingsTask<K,V,U>
5829     (map, this, b, searchFunction, result).fork();
5830 dl 1.128 }
5831 dl 1.149 while (result.get() == null) {
5832 dl 1.151 V v; U u;
5833 dl 1.149 if ((v = advance()) == null) {
5834     propagateCompletion();
5835     break;
5836     }
5837 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
5838 dl 1.149 if (result.compareAndSet(null, u))
5839     quietlyCompleteRoot();
5840     break;
5841     }
5842 dl 1.119 }
5843     }
5844 tim 1.1 }
5845 dl 1.119 }
5846 tim 1.1
5847 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5848 dl 1.146 extends Traverser<K,V,K> {
5849 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5850 dl 1.119 K result;
5851 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5852 dl 1.119 ReduceKeysTask
5853 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5854 dl 1.128 ReduceKeysTask<K,V> nextRight,
5855 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5856 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5857 dl 1.119 this.reducer = reducer;
5858     }
5859 dl 1.146 public final K getRawResult() { return result; }
5860     @SuppressWarnings("unchecked") public final void compute() {
5861 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5862 dl 1.149 if ((reducer = this.reducer) != null) {
5863     for (int b; (b = preSplit()) > 0;)
5864     (rights = new ReduceKeysTask<K,V>
5865     (map, this, b, rights, reducer)).fork();
5866     K r = null;
5867     while (advance() != null) {
5868 jsr166 1.168 K u = nextKey;
5869 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5870 dl 1.149 }
5871     result = r;
5872     CountedCompleter<?> c;
5873     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5874     ReduceKeysTask<K,V>
5875     t = (ReduceKeysTask<K,V>)c,
5876     s = t.rights;
5877     while (s != null) {
5878     K tr, sr;
5879     if ((sr = s.result) != null)
5880     t.result = (((tr = t.result) == null) ? sr :
5881     reducer.apply(tr, sr));
5882     s = t.rights = s.nextRight;
5883     }
5884 dl 1.99 }
5885 dl 1.138 }
5886 tim 1.1 }
5887 dl 1.119 }
5888 tim 1.1
5889 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5890 dl 1.146 extends Traverser<K,V,V> {
5891 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5892 dl 1.119 V result;
5893 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5894 dl 1.119 ReduceValuesTask
5895 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5896 dl 1.128 ReduceValuesTask<K,V> nextRight,
5897 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5898 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5899 dl 1.119 this.reducer = reducer;
5900     }
5901 dl 1.146 public final V getRawResult() { return result; }
5902     @SuppressWarnings("unchecked") public final void compute() {
5903 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5904 dl 1.149 if ((reducer = this.reducer) != null) {
5905     for (int b; (b = preSplit()) > 0;)
5906     (rights = new ReduceValuesTask<K,V>
5907     (map, this, b, rights, reducer)).fork();
5908 dl 1.153 V r = null, v;
5909     while ((v = advance()) != null)
5910 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5911 dl 1.149 result = r;
5912     CountedCompleter<?> c;
5913     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5914     ReduceValuesTask<K,V>
5915     t = (ReduceValuesTask<K,V>)c,
5916     s = t.rights;
5917     while (s != null) {
5918     V tr, sr;
5919     if ((sr = s.result) != null)
5920     t.result = (((tr = t.result) == null) ? sr :
5921     reducer.apply(tr, sr));
5922     s = t.rights = s.nextRight;
5923     }
5924 dl 1.119 }
5925     }
5926 tim 1.1 }
5927 dl 1.119 }
5928 tim 1.1
5929 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5930 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5931 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5932 dl 1.119 Map.Entry<K,V> result;
5933 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5934 dl 1.119 ReduceEntriesTask
5935 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5936 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5937 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5938 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5939 dl 1.119 this.reducer = reducer;
5940     }
5941 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5942     @SuppressWarnings("unchecked") public final void compute() {
5943 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5944 dl 1.149 if ((reducer = this.reducer) != null) {
5945     for (int b; (b = preSplit()) > 0;)
5946     (rights = new ReduceEntriesTask<K,V>
5947     (map, this, b, rights, reducer)).fork();
5948     Map.Entry<K,V> r = null;
5949 dl 1.151 V v;
5950 dl 1.149 while ((v = advance()) != null) {
5951 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
5952 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5953     }
5954     result = r;
5955     CountedCompleter<?> c;
5956     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5957     ReduceEntriesTask<K,V>
5958     t = (ReduceEntriesTask<K,V>)c,
5959     s = t.rights;
5960     while (s != null) {
5961     Map.Entry<K,V> tr, sr;
5962     if ((sr = s.result) != null)
5963     t.result = (((tr = t.result) == null) ? sr :
5964     reducer.apply(tr, sr));
5965     s = t.rights = s.nextRight;
5966     }
5967 dl 1.119 }
5968 dl 1.138 }
5969 dl 1.119 }
5970     }
5971 dl 1.99
5972 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5973 dl 1.146 extends Traverser<K,V,U> {
5974 dl 1.153 final Function<? super K, ? extends U> transformer;
5975     final BiFunction<? super U, ? super U, ? extends U> reducer;
5976 dl 1.119 U result;
5977 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5978 dl 1.119 MapReduceKeysTask
5979 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5980 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5981 dl 1.153 Function<? super K, ? extends U> transformer,
5982     BiFunction<? super U, ? super U, ? extends U> reducer) {
5983 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5984 dl 1.119 this.transformer = transformer;
5985     this.reducer = reducer;
5986     }
5987 dl 1.146 public final U getRawResult() { return result; }
5988     @SuppressWarnings("unchecked") public final void compute() {
5989 dl 1.153 final Function<? super K, ? extends U> transformer;
5990     final BiFunction<? super U, ? super U, ? extends U> reducer;
5991 dl 1.149 if ((transformer = this.transformer) != null &&
5992     (reducer = this.reducer) != null) {
5993     for (int b; (b = preSplit()) > 0;)
5994     (rights = new MapReduceKeysTask<K,V,U>
5995     (map, this, b, rights, transformer, reducer)).fork();
5996     U r = null, u;
5997     while (advance() != null) {
5998 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5999 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6000     }
6001     result = r;
6002     CountedCompleter<?> c;
6003     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6004     MapReduceKeysTask<K,V,U>
6005     t = (MapReduceKeysTask<K,V,U>)c,
6006     s = t.rights;
6007     while (s != null) {
6008     U tr, sr;
6009     if ((sr = s.result) != null)
6010     t.result = (((tr = t.result) == null) ? sr :
6011     reducer.apply(tr, sr));
6012     s = t.rights = s.nextRight;
6013     }
6014 dl 1.119 }
6015 dl 1.138 }
6016 tim 1.1 }
6017 dl 1.4 }
6018    
6019 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6020 dl 1.146 extends Traverser<K,V,U> {
6021 dl 1.153 final Function<? super V, ? extends U> transformer;
6022     final BiFunction<? super U, ? super U, ? extends U> reducer;
6023 dl 1.119 U result;
6024 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6025 dl 1.119 MapReduceValuesTask
6026 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6027 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6028 dl 1.153 Function<? super V, ? extends U> transformer,
6029     BiFunction<? super U, ? super U, ? extends U> reducer) {
6030 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6031 dl 1.119 this.transformer = transformer;
6032     this.reducer = reducer;
6033     }
6034 dl 1.146 public final U getRawResult() { return result; }
6035     @SuppressWarnings("unchecked") public final void compute() {
6036 dl 1.153 final Function<? super V, ? extends U> transformer;
6037     final BiFunction<? super U, ? super U, ? extends U> reducer;
6038 dl 1.149 if ((transformer = this.transformer) != null &&
6039     (reducer = this.reducer) != null) {
6040     for (int b; (b = preSplit()) > 0;)
6041     (rights = new MapReduceValuesTask<K,V,U>
6042     (map, this, b, rights, transformer, reducer)).fork();
6043     U r = null, u;
6044 dl 1.151 V v;
6045 dl 1.149 while ((v = advance()) != null) {
6046 dl 1.151 if ((u = transformer.apply(v)) != null)
6047 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6048     }
6049     result = r;
6050     CountedCompleter<?> c;
6051     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6052     MapReduceValuesTask<K,V,U>
6053     t = (MapReduceValuesTask<K,V,U>)c,
6054     s = t.rights;
6055     while (s != null) {
6056     U tr, sr;
6057     if ((sr = s.result) != null)
6058     t.result = (((tr = t.result) == null) ? sr :
6059     reducer.apply(tr, sr));
6060     s = t.rights = s.nextRight;
6061     }
6062 dl 1.119 }
6063     }
6064     }
6065 dl 1.4 }
6066    
6067 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6068 dl 1.146 extends Traverser<K,V,U> {
6069 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6070     final BiFunction<? super U, ? super U, ? extends U> reducer;
6071 dl 1.119 U result;
6072 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6073 dl 1.119 MapReduceEntriesTask
6074 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6075 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6076 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6077     BiFunction<? super U, ? super U, ? extends U> reducer) {
6078 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6079 dl 1.119 this.transformer = transformer;
6080     this.reducer = reducer;
6081     }
6082 dl 1.146 public final U getRawResult() { return result; }
6083     @SuppressWarnings("unchecked") public final void compute() {
6084 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6085     final BiFunction<? super U, ? super U, ? extends U> reducer;
6086 dl 1.149 if ((transformer = this.transformer) != null &&
6087     (reducer = this.reducer) != null) {
6088     for (int b; (b = preSplit()) > 0;)
6089     (rights = new MapReduceEntriesTask<K,V,U>
6090     (map, this, b, rights, transformer, reducer)).fork();
6091     U r = null, u;
6092 dl 1.151 V v;
6093 dl 1.149 while ((v = advance()) != null) {
6094 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6095 dl 1.151 v))) != null)
6096 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6097     }
6098     result = r;
6099     CountedCompleter<?> c;
6100     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6101     MapReduceEntriesTask<K,V,U>
6102     t = (MapReduceEntriesTask<K,V,U>)c,
6103     s = t.rights;
6104     while (s != null) {
6105     U tr, sr;
6106     if ((sr = s.result) != null)
6107     t.result = (((tr = t.result) == null) ? sr :
6108     reducer.apply(tr, sr));
6109     s = t.rights = s.nextRight;
6110     }
6111 dl 1.119 }
6112 dl 1.138 }
6113 dl 1.119 }
6114 dl 1.4 }
6115 tim 1.1
6116 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6117 dl 1.146 extends Traverser<K,V,U> {
6118 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6119     final BiFunction<? super U, ? super U, ? extends U> reducer;
6120 dl 1.119 U result;
6121 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6122 dl 1.119 MapReduceMappingsTask
6123 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6124 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6125 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6126     BiFunction<? super U, ? super U, ? extends U> reducer) {
6127 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6128 dl 1.119 this.transformer = transformer;
6129     this.reducer = reducer;
6130     }
6131 dl 1.146 public final U getRawResult() { return result; }
6132     @SuppressWarnings("unchecked") public final void compute() {
6133 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6134     final BiFunction<? super U, ? super U, ? extends U> reducer;
6135 dl 1.149 if ((transformer = this.transformer) != null &&
6136     (reducer = this.reducer) != null) {
6137     for (int b; (b = preSplit()) > 0;)
6138     (rights = new MapReduceMappingsTask<K,V,U>
6139     (map, this, b, rights, transformer, reducer)).fork();
6140     U r = null, u;
6141 dl 1.151 V v;
6142 dl 1.149 while ((v = advance()) != null) {
6143 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6144 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6145     }
6146     result = r;
6147     CountedCompleter<?> c;
6148     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6149     MapReduceMappingsTask<K,V,U>
6150     t = (MapReduceMappingsTask<K,V,U>)c,
6151     s = t.rights;
6152     while (s != null) {
6153     U tr, sr;
6154     if ((sr = s.result) != null)
6155     t.result = (((tr = t.result) == null) ? sr :
6156     reducer.apply(tr, sr));
6157     s = t.rights = s.nextRight;
6158     }
6159 dl 1.119 }
6160     }
6161     }
6162     }
6163 jsr166 1.114
6164 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6165 dl 1.146 extends Traverser<K,V,Double> {
6166 dl 1.171 final ToDoubleFunction<? super K> transformer;
6167 dl 1.153 final DoubleBinaryOperator reducer;
6168 dl 1.119 final double basis;
6169     double result;
6170 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6171 dl 1.119 MapReduceKeysToDoubleTask
6172 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6173 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6174 dl 1.171 ToDoubleFunction<? super K> transformer,
6175 dl 1.119 double basis,
6176 dl 1.153 DoubleBinaryOperator reducer) {
6177 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6178 dl 1.119 this.transformer = transformer;
6179     this.basis = basis; this.reducer = reducer;
6180     }
6181 dl 1.146 public final Double getRawResult() { return result; }
6182     @SuppressWarnings("unchecked") public final void compute() {
6183 dl 1.171 final ToDoubleFunction<? super K> transformer;
6184 dl 1.153 final DoubleBinaryOperator reducer;
6185 dl 1.149 if ((transformer = this.transformer) != null &&
6186     (reducer = this.reducer) != null) {
6187     double r = this.basis;
6188     for (int b; (b = preSplit()) > 0;)
6189     (rights = new MapReduceKeysToDoubleTask<K,V>
6190     (map, this, b, rights, transformer, r, reducer)).fork();
6191     while (advance() != null)
6192 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6193 dl 1.149 result = r;
6194     CountedCompleter<?> c;
6195     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6196     MapReduceKeysToDoubleTask<K,V>
6197     t = (MapReduceKeysToDoubleTask<K,V>)c,
6198     s = t.rights;
6199     while (s != null) {
6200 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6201 dl 1.149 s = t.rights = s.nextRight;
6202     }
6203 dl 1.119 }
6204 dl 1.138 }
6205 dl 1.79 }
6206 dl 1.119 }
6207 dl 1.79
6208 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6209 dl 1.146 extends Traverser<K,V,Double> {
6210 dl 1.171 final ToDoubleFunction<? super V> transformer;
6211 dl 1.153 final DoubleBinaryOperator reducer;
6212 dl 1.119 final double basis;
6213     double result;
6214 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6215 dl 1.119 MapReduceValuesToDoubleTask
6216 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6217 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6218 dl 1.171 ToDoubleFunction<? super V> transformer,
6219 dl 1.119 double basis,
6220 dl 1.153 DoubleBinaryOperator reducer) {
6221 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6222 dl 1.119 this.transformer = transformer;
6223     this.basis = basis; this.reducer = reducer;
6224     }
6225 dl 1.146 public final Double getRawResult() { return result; }
6226     @SuppressWarnings("unchecked") public final void compute() {
6227 dl 1.171 final ToDoubleFunction<? super V> transformer;
6228 dl 1.153 final DoubleBinaryOperator reducer;
6229 dl 1.149 if ((transformer = this.transformer) != null &&
6230     (reducer = this.reducer) != null) {
6231     double r = this.basis;
6232     for (int b; (b = preSplit()) > 0;)
6233     (rights = new MapReduceValuesToDoubleTask<K,V>
6234     (map, this, b, rights, transformer, r, reducer)).fork();
6235 dl 1.151 V v;
6236 dl 1.149 while ((v = advance()) != null)
6237 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6238 dl 1.149 result = r;
6239     CountedCompleter<?> c;
6240     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241     MapReduceValuesToDoubleTask<K,V>
6242     t = (MapReduceValuesToDoubleTask<K,V>)c,
6243     s = t.rights;
6244     while (s != null) {
6245 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6246 dl 1.149 s = t.rights = s.nextRight;
6247     }
6248 dl 1.119 }
6249     }
6250 dl 1.30 }
6251 dl 1.79 }
6252 dl 1.30
6253 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6254 dl 1.146 extends Traverser<K,V,Double> {
6255 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6256 dl 1.153 final DoubleBinaryOperator reducer;
6257 dl 1.119 final double basis;
6258     double result;
6259 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6260 dl 1.119 MapReduceEntriesToDoubleTask
6261 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6262 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6263 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
6264 dl 1.119 double basis,
6265 dl 1.153 DoubleBinaryOperator reducer) {
6266 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6267 dl 1.119 this.transformer = transformer;
6268     this.basis = basis; this.reducer = reducer;
6269     }
6270 dl 1.146 public final Double getRawResult() { return result; }
6271     @SuppressWarnings("unchecked") public final void compute() {
6272 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6273 dl 1.153 final DoubleBinaryOperator reducer;
6274 dl 1.149 if ((transformer = this.transformer) != null &&
6275     (reducer = this.reducer) != null) {
6276     double r = this.basis;
6277     for (int b; (b = preSplit()) > 0;)
6278     (rights = new MapReduceEntriesToDoubleTask<K,V>
6279     (map, this, b, rights, transformer, r, reducer)).fork();
6280 dl 1.151 V v;
6281 dl 1.149 while ((v = advance()) != null)
6282 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6283 dl 1.151 v)));
6284 dl 1.149 result = r;
6285     CountedCompleter<?> c;
6286     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287     MapReduceEntriesToDoubleTask<K,V>
6288     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6289     s = t.rights;
6290     while (s != null) {
6291 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6292 dl 1.149 s = t.rights = s.nextRight;
6293     }
6294 dl 1.119 }
6295 dl 1.138 }
6296 dl 1.30 }
6297 tim 1.1 }
6298    
6299 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6300 dl 1.146 extends Traverser<K,V,Double> {
6301 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6302 dl 1.153 final DoubleBinaryOperator reducer;
6303 dl 1.119 final double basis;
6304     double result;
6305 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6306 dl 1.119 MapReduceMappingsToDoubleTask
6307 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6308 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6309 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
6310 dl 1.119 double basis,
6311 dl 1.153 DoubleBinaryOperator reducer) {
6312 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6313 dl 1.119 this.transformer = transformer;
6314     this.basis = basis; this.reducer = reducer;
6315     }
6316 dl 1.146 public final Double getRawResult() { return result; }
6317     @SuppressWarnings("unchecked") public final void compute() {
6318 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6319 dl 1.153 final DoubleBinaryOperator reducer;
6320 dl 1.149 if ((transformer = this.transformer) != null &&
6321     (reducer = this.reducer) != null) {
6322     double r = this.basis;
6323     for (int b; (b = preSplit()) > 0;)
6324     (rights = new MapReduceMappingsToDoubleTask<K,V>
6325     (map, this, b, rights, transformer, r, reducer)).fork();
6326 dl 1.151 V v;
6327 dl 1.149 while ((v = advance()) != null)
6328 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6329 dl 1.149 result = r;
6330     CountedCompleter<?> c;
6331     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332     MapReduceMappingsToDoubleTask<K,V>
6333     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6334     s = t.rights;
6335     while (s != null) {
6336 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6337 dl 1.149 s = t.rights = s.nextRight;
6338     }
6339 dl 1.119 }
6340     }
6341 dl 1.4 }
6342 dl 1.119 }
6343    
6344 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6345 dl 1.146 extends Traverser<K,V,Long> {
6346 dl 1.171 final ToLongFunction<? super K> transformer;
6347 dl 1.153 final LongBinaryOperator reducer;
6348 dl 1.119 final long basis;
6349     long result;
6350 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6351 dl 1.119 MapReduceKeysToLongTask
6352 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6353 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6354 dl 1.171 ToLongFunction<? super K> transformer,
6355 dl 1.119 long basis,
6356 dl 1.153 LongBinaryOperator reducer) {
6357 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6358 dl 1.119 this.transformer = transformer;
6359     this.basis = basis; this.reducer = reducer;
6360     }
6361 dl 1.146 public final Long getRawResult() { return result; }
6362     @SuppressWarnings("unchecked") public final void compute() {
6363 dl 1.171 final ToLongFunction<? super K> transformer;
6364 dl 1.153 final LongBinaryOperator reducer;
6365 dl 1.149 if ((transformer = this.transformer) != null &&
6366     (reducer = this.reducer) != null) {
6367     long r = this.basis;
6368     for (int b; (b = preSplit()) > 0;)
6369     (rights = new MapReduceKeysToLongTask<K,V>
6370     (map, this, b, rights, transformer, r, reducer)).fork();
6371     while (advance() != null)
6372 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6373 dl 1.149 result = r;
6374     CountedCompleter<?> c;
6375     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6376     MapReduceKeysToLongTask<K,V>
6377     t = (MapReduceKeysToLongTask<K,V>)c,
6378     s = t.rights;
6379     while (s != null) {
6380 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6381 dl 1.149 s = t.rights = s.nextRight;
6382     }
6383 dl 1.119 }
6384 dl 1.138 }
6385 dl 1.4 }
6386 dl 1.119 }
6387    
6388 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6389 dl 1.146 extends Traverser<K,V,Long> {
6390 dl 1.171 final ToLongFunction<? super V> transformer;
6391 dl 1.153 final LongBinaryOperator reducer;
6392 dl 1.119 final long basis;
6393     long result;
6394 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6395 dl 1.119 MapReduceValuesToLongTask
6396 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6397 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6398 dl 1.171 ToLongFunction<? super V> transformer,
6399 dl 1.119 long basis,
6400 dl 1.153 LongBinaryOperator reducer) {
6401 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6402 dl 1.119 this.transformer = transformer;
6403     this.basis = basis; this.reducer = reducer;
6404     }
6405 dl 1.146 public final Long getRawResult() { return result; }
6406     @SuppressWarnings("unchecked") public final void compute() {
6407 dl 1.171 final ToLongFunction<? super V> transformer;
6408 dl 1.153 final LongBinaryOperator reducer;
6409 dl 1.149 if ((transformer = this.transformer) != null &&
6410     (reducer = this.reducer) != null) {
6411     long r = this.basis;
6412     for (int b; (b = preSplit()) > 0;)
6413     (rights = new MapReduceValuesToLongTask<K,V>
6414     (map, this, b, rights, transformer, r, reducer)).fork();
6415 dl 1.151 V v;
6416 dl 1.149 while ((v = advance()) != null)
6417 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6418 dl 1.149 result = r;
6419     CountedCompleter<?> c;
6420     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6421     MapReduceValuesToLongTask<K,V>
6422     t = (MapReduceValuesToLongTask<K,V>)c,
6423     s = t.rights;
6424     while (s != null) {
6425 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6426 dl 1.149 s = t.rights = s.nextRight;
6427     }
6428 dl 1.119 }
6429     }
6430 jsr166 1.95 }
6431 dl 1.119 }
6432    
6433 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6434 dl 1.146 extends Traverser<K,V,Long> {
6435 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6436 dl 1.153 final LongBinaryOperator reducer;
6437 dl 1.119 final long basis;
6438     long result;
6439 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6440 dl 1.119 MapReduceEntriesToLongTask
6441 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6442 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6443 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6444 dl 1.119 long basis,
6445 dl 1.153 LongBinaryOperator reducer) {
6446 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6447 dl 1.119 this.transformer = transformer;
6448     this.basis = basis; this.reducer = reducer;
6449     }
6450 dl 1.146 public final Long getRawResult() { return result; }
6451     @SuppressWarnings("unchecked") public final void compute() {
6452 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6453 dl 1.153 final LongBinaryOperator reducer;
6454 dl 1.149 if ((transformer = this.transformer) != null &&
6455     (reducer = this.reducer) != null) {
6456     long r = this.basis;
6457     for (int b; (b = preSplit()) > 0;)
6458     (rights = new MapReduceEntriesToLongTask<K,V>
6459     (map, this, b, rights, transformer, r, reducer)).fork();
6460 dl 1.151 V v;
6461 dl 1.149 while ((v = advance()) != null)
6462 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6463 dl 1.149 result = r;
6464     CountedCompleter<?> c;
6465     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6466     MapReduceEntriesToLongTask<K,V>
6467     t = (MapReduceEntriesToLongTask<K,V>)c,
6468     s = t.rights;
6469     while (s != null) {
6470 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6471 dl 1.149 s = t.rights = s.nextRight;
6472     }
6473 dl 1.119 }
6474 dl 1.138 }
6475 dl 1.4 }
6476 tim 1.1 }
6477    
6478 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6479 dl 1.146 extends Traverser<K,V,Long> {
6480 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6481 dl 1.153 final LongBinaryOperator reducer;
6482 dl 1.119 final long basis;
6483     long result;
6484 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6485 dl 1.119 MapReduceMappingsToLongTask
6486 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6487 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6488 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6489 dl 1.119 long basis,
6490 dl 1.153 LongBinaryOperator reducer) {
6491 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6492 dl 1.119 this.transformer = transformer;
6493     this.basis = basis; this.reducer = reducer;
6494     }
6495 dl 1.146 public final Long getRawResult() { return result; }
6496     @SuppressWarnings("unchecked") public final void compute() {
6497 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6498 dl 1.153 final LongBinaryOperator reducer;
6499 dl 1.149 if ((transformer = this.transformer) != null &&
6500     (reducer = this.reducer) != null) {
6501     long r = this.basis;
6502     for (int b; (b = preSplit()) > 0;)
6503     (rights = new MapReduceMappingsToLongTask<K,V>
6504     (map, this, b, rights, transformer, r, reducer)).fork();
6505 dl 1.151 V v;
6506 dl 1.149 while ((v = advance()) != null)
6507 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6508 dl 1.149 result = r;
6509     CountedCompleter<?> c;
6510     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6511     MapReduceMappingsToLongTask<K,V>
6512     t = (MapReduceMappingsToLongTask<K,V>)c,
6513     s = t.rights;
6514     while (s != null) {
6515 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6516 dl 1.149 s = t.rights = s.nextRight;
6517     }
6518 dl 1.119 }
6519     }
6520 dl 1.4 }
6521 tim 1.1 }
6522    
6523 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6524 dl 1.146 extends Traverser<K,V,Integer> {
6525 dl 1.171 final ToIntFunction<? super K> transformer;
6526 dl 1.153 final IntBinaryOperator reducer;
6527 dl 1.119 final int basis;
6528     int result;
6529 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6530 dl 1.119 MapReduceKeysToIntTask
6531 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6532 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6533 dl 1.171 ToIntFunction<? super K> transformer,
6534 dl 1.119 int basis,
6535 dl 1.153 IntBinaryOperator reducer) {
6536 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6537 dl 1.119 this.transformer = transformer;
6538     this.basis = basis; this.reducer = reducer;
6539     }
6540 dl 1.146 public final Integer getRawResult() { return result; }
6541     @SuppressWarnings("unchecked") public final void compute() {
6542 dl 1.171 final ToIntFunction<? super K> transformer;
6543 dl 1.153 final IntBinaryOperator reducer;
6544 dl 1.149 if ((transformer = this.transformer) != null &&
6545     (reducer = this.reducer) != null) {
6546     int r = this.basis;
6547     for (int b; (b = preSplit()) > 0;)
6548     (rights = new MapReduceKeysToIntTask<K,V>
6549     (map, this, b, rights, transformer, r, reducer)).fork();
6550     while (advance() != null)
6551 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6552 dl 1.149 result = r;
6553     CountedCompleter<?> c;
6554     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6555     MapReduceKeysToIntTask<K,V>
6556     t = (MapReduceKeysToIntTask<K,V>)c,
6557     s = t.rights;
6558     while (s != null) {
6559 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6560 dl 1.149 s = t.rights = s.nextRight;
6561     }
6562 dl 1.119 }
6563 dl 1.138 }
6564 dl 1.30 }
6565     }
6566    
6567 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6568 dl 1.146 extends Traverser<K,V,Integer> {
6569 dl 1.171 final ToIntFunction<? super V> transformer;
6570 dl 1.153 final IntBinaryOperator reducer;
6571 dl 1.119 final int basis;
6572     int result;
6573 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6574 dl 1.119 MapReduceValuesToIntTask
6575 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6576 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6577 dl 1.171 ToIntFunction<? super V> transformer,
6578 dl 1.119 int basis,
6579 dl 1.153 IntBinaryOperator reducer) {
6580 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6581 dl 1.119 this.transformer = transformer;
6582     this.basis = basis; this.reducer = reducer;
6583     }
6584 dl 1.146 public final Integer getRawResult() { return result; }
6585     @SuppressWarnings("unchecked") public final void compute() {
6586 dl 1.171 final ToIntFunction<? super V> transformer;
6587 dl 1.153 final IntBinaryOperator reducer;
6588 dl 1.149 if ((transformer = this.transformer) != null &&
6589     (reducer = this.reducer) != null) {
6590     int r = this.basis;
6591     for (int b; (b = preSplit()) > 0;)
6592     (rights = new MapReduceValuesToIntTask<K,V>
6593     (map, this, b, rights, transformer, r, reducer)).fork();
6594 dl 1.151 V v;
6595 dl 1.149 while ((v = advance()) != null)
6596 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6597 dl 1.149 result = r;
6598     CountedCompleter<?> c;
6599     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6600     MapReduceValuesToIntTask<K,V>
6601     t = (MapReduceValuesToIntTask<K,V>)c,
6602     s = t.rights;
6603     while (s != null) {
6604 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6605 dl 1.149 s = t.rights = s.nextRight;
6606     }
6607 dl 1.119 }
6608 dl 1.2 }
6609 tim 1.1 }
6610     }
6611    
6612 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6613 dl 1.146 extends Traverser<K,V,Integer> {
6614 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6615 dl 1.153 final IntBinaryOperator reducer;
6616 dl 1.119 final int basis;
6617     int result;
6618 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6619 dl 1.119 MapReduceEntriesToIntTask
6620 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6621 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6622 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6623 dl 1.119 int basis,
6624 dl 1.153 IntBinaryOperator reducer) {
6625 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6626 dl 1.119 this.transformer = transformer;
6627     this.basis = basis; this.reducer = reducer;
6628     }
6629 dl 1.146 public final Integer getRawResult() { return result; }
6630     @SuppressWarnings("unchecked") public final void compute() {
6631 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6632 dl 1.153 final IntBinaryOperator reducer;
6633 dl 1.149 if ((transformer = this.transformer) != null &&
6634     (reducer = this.reducer) != null) {
6635     int r = this.basis;
6636     for (int b; (b = preSplit()) > 0;)
6637     (rights = new MapReduceEntriesToIntTask<K,V>
6638     (map, this, b, rights, transformer, r, reducer)).fork();
6639 dl 1.151 V v;
6640 dl 1.149 while ((v = advance()) != null)
6641 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6642 dl 1.151 v)));
6643 dl 1.149 result = r;
6644     CountedCompleter<?> c;
6645     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6646     MapReduceEntriesToIntTask<K,V>
6647     t = (MapReduceEntriesToIntTask<K,V>)c,
6648     s = t.rights;
6649     while (s != null) {
6650 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6651 dl 1.149 s = t.rights = s.nextRight;
6652     }
6653 dl 1.119 }
6654 dl 1.138 }
6655 dl 1.4 }
6656 dl 1.119 }
6657 tim 1.1
6658 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6659 dl 1.146 extends Traverser<K,V,Integer> {
6660 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6661 dl 1.153 final IntBinaryOperator reducer;
6662 dl 1.119 final int basis;
6663     int result;
6664 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6665 dl 1.119 MapReduceMappingsToIntTask
6666 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6667     MapReduceMappingsToIntTask<K,V> nextRight,
6668 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6669 dl 1.119 int basis,
6670 dl 1.153 IntBinaryOperator reducer) {
6671 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6672 dl 1.119 this.transformer = transformer;
6673     this.basis = basis; this.reducer = reducer;
6674     }
6675 dl 1.146 public final Integer getRawResult() { return result; }
6676     @SuppressWarnings("unchecked") public final void compute() {
6677 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6678 dl 1.153 final IntBinaryOperator reducer;
6679 dl 1.149 if ((transformer = this.transformer) != null &&
6680     (reducer = this.reducer) != null) {
6681     int r = this.basis;
6682     for (int b; (b = preSplit()) > 0;)
6683     (rights = new MapReduceMappingsToIntTask<K,V>
6684     (map, this, b, rights, transformer, r, reducer)).fork();
6685 dl 1.151 V v;
6686 dl 1.149 while ((v = advance()) != null)
6687 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6688 dl 1.149 result = r;
6689     CountedCompleter<?> c;
6690     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6691     MapReduceMappingsToIntTask<K,V>
6692     t = (MapReduceMappingsToIntTask<K,V>)c,
6693     s = t.rights;
6694     while (s != null) {
6695 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6696 dl 1.149 s = t.rights = s.nextRight;
6697     }
6698 dl 1.119 }
6699 dl 1.138 }
6700 tim 1.1 }
6701     }
6702 dl 1.99
6703     // Unsafe mechanics
6704 dl 1.149 private static final sun.misc.Unsafe U;
6705     private static final long SIZECTL;
6706     private static final long TRANSFERINDEX;
6707     private static final long TRANSFERORIGIN;
6708     private static final long BASECOUNT;
6709 dl 1.153 private static final long CELLSBUSY;
6710 dl 1.149 private static final long CELLVALUE;
6711 dl 1.119 private static final long ABASE;
6712     private static final int ASHIFT;
6713 dl 1.99
6714     static {
6715     try {
6716 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6717 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6718 dl 1.149 SIZECTL = U.objectFieldOffset
6719 dl 1.119 (k.getDeclaredField("sizeCtl"));
6720 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6721     (k.getDeclaredField("transferIndex"));
6722     TRANSFERORIGIN = U.objectFieldOffset
6723     (k.getDeclaredField("transferOrigin"));
6724     BASECOUNT = U.objectFieldOffset
6725     (k.getDeclaredField("baseCount"));
6726 dl 1.153 CELLSBUSY = U.objectFieldOffset
6727     (k.getDeclaredField("cellsBusy"));
6728     Class<?> ck = Cell.class;
6729 dl 1.149 CELLVALUE = U.objectFieldOffset
6730     (ck.getDeclaredField("value"));
6731 dl 1.119 Class<?> sc = Node[].class;
6732 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6733 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6734     if ((scale & (scale - 1)) != 0)
6735     throw new Error("data type scale not a power of two");
6736     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6737 dl 1.99 } catch (Exception e) {
6738     throw new Error(e);
6739     }
6740     }
6741 jsr166 1.152
6742     }