ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.191
Committed: Fri Feb 22 00:58:05 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.190: +180 -136 lines
Log Message:
Spliterator updates

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152 jsr166 1.178 * </ul>
153 dl 1.137 * </li>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 jsr166 1.186 public class ConcurrentHashMap<K,V>
218     implements ConcurrentMap<K,V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 jsr166 1.170 /**
1887 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Internal traversals directly access these fields, as in:
2148 dl 1.191 * {@code while (it.advanceValue() != null) { process(it.nextKey); }}
2149 dl 1.119 *
2150     * Exported iterators must track whether the iterator has advanced
2151     * (in hasNext vs next) (by setting/checking/nulling field
2152     * nextVal), and then extract key, value, or key-value pairs as
2153     * return values of next().
2154     *
2155     * The iterator visits once each still-valid node that was
2156     * reachable upon iterator construction. It might miss some that
2157     * were added to a bin after the bin was visited, which is OK wrt
2158     * consistency guarantees. Maintaining this property in the face
2159     * of possible ongoing resizes requires a fair amount of
2160     * bookkeeping state that is difficult to optimize away amidst
2161     * volatile accesses. Even so, traversal maintains reasonable
2162     * throughput.
2163     *
2164     * Normally, iteration proceeds bin-by-bin traversing lists.
2165     * However, if the table has been resized, then all future steps
2166     * must traverse both the bin at the current index as well as at
2167     * (index + baseSize); and so on for further resizings. To
2168     * paranoically cope with potential sharing by users of iterators
2169     * across threads, iteration terminates if a bounds checks fails
2170     * for a table read.
2171     *
2172 dl 1.153 * This class supports both Spliterator-based traversal and
2173     * CountedCompleter-based bulk tasks. The same "batch" field is
2174     * used, but in slightly different ways, in the two cases. For
2175     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177     * size that halves down to zero for leaf tasks, that is only
2178     * computed upon execution of the task. (Tasks can be submitted to
2179     * any pool, of any size, so we don't know scale factors until
2180     * running.)
2181     *
2182 dl 1.146 * This class extends CountedCompleter to streamline parallel
2183     * iteration in bulk operations. This adds only a few fields of
2184     * space overhead, which is small enough in cases where it is not
2185     * needed to not worry about it. Because CountedCompleter is
2186     * Serializable, but iterators need not be, we need to add warning
2187     * suppressions.
2188 dl 1.119 */
2189 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190     extends CountedCompleter<R> {
2191 jsr166 1.186 final ConcurrentHashMap<K,V> map;
2192 dl 1.151 Node<V> next; // the next entry to use
2193 jsr166 1.168 K nextKey; // cached key field of next
2194 dl 1.151 V nextVal; // cached val field of next
2195     Node<V>[] tab; // current table; updated if resized
2196 dl 1.119 int index; // index of bin to use next
2197     int baseIndex; // current index of initial table
2198     int baseLimit; // index bound for initial table
2199 dl 1.130 int baseSize; // initial table size
2200 dl 1.146 int batch; // split control
2201 dl 1.119 /** Creates iterator for all entries in the table. */
2202 jsr166 1.186 Traverser(ConcurrentHashMap<K,V> map) {
2203 dl 1.130 this.map = map;
2204 dl 1.153 Node<V>[] t;
2205     if ((t = tab = map.table) != null)
2206     baseLimit = baseSize = t.length;
2207 dl 1.119 }
2208    
2209 dl 1.153 /** Task constructor */
2210 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211     super(it);
2212 dl 1.153 this.map = map;
2213     this.batch = batch; // -1 if unknown
2214     if (it == null) {
2215 dl 1.151 Node<V>[] t;
2216 dl 1.153 if ((t = tab = map.table) != null)
2217     baseLimit = baseSize = t.length;
2218     }
2219     else { // split parent
2220     this.tab = it.tab;
2221 dl 1.146 this.baseSize = it.baseSize;
2222     int hi = this.baseLimit = it.baseLimit;
2223     it.baseLimit = this.index = this.baseIndex =
2224     (hi + it.baseIndex + 1) >>> 1;
2225     }
2226 dl 1.119 }
2227    
2228 dl 1.153 /** Spliterator constructor */
2229     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230     super(it);
2231     this.map = map;
2232     if (it == null) {
2233     Node<V>[] t;
2234     if ((t = tab = map.table) != null)
2235     baseLimit = baseSize = t.length;
2236     long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245     (hi + it.baseIndex + 1) >>> 1;
2246     this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 dl 1.119 /**
2251     * Advances next; returns nextVal or null if terminated.
2252     * See above for explanation.
2253     */
2254 dl 1.191 @SuppressWarnings("unchecked") final V advanceValue() {
2255     V v;
2256 dl 1.151 Node<V> e = next;
2257 dl 1.119 outer: do {
2258     if (e != null) // advance past used/skipped node
2259     e = e.next;
2260     while (e == null) { // get to next non-null bin
2261 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2262 dl 1.191 if ((t = tab) == null || (n = t.length) <= (i = index) ||
2263     i < 0 || (b = baseIndex) >= baseLimit) {
2264     v = null;
2265 dl 1.130 break outer;
2266 dl 1.191 }
2267 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2268 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2269 dl 1.151 e = ((TreeBin<V>)ek).first;
2270 dl 1.119 else {
2271 dl 1.151 tab = (Node<V>[])ek;
2272 dl 1.119 continue; // restarts due to null val
2273     }
2274     } // visit upper slots if present
2275     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2276     }
2277 dl 1.191 nextKey = (K)e.key; // skip deleted or special nodes
2278     } while ((v = e.val) == null);
2279     next = e;
2280     return nextVal = v;
2281     }
2282    
2283     // Same idea, but with fewer accesses for key traversals
2284     @SuppressWarnings("unchecked") final K advanceKey() {
2285     K k;
2286     Node<V> e = next;
2287     outer: do {
2288     if (e != null)
2289     e = e.next;
2290     while (e == null) {
2291     Node<V>[] t; int b, i, n; Object ek;
2292     if ((t = tab) == null || (n = t.length) <= (i = index) ||
2293     i < 0 || (b = baseIndex) >= baseLimit) {
2294     nextVal = null;
2295     k = null;
2296     break outer;
2297     }
2298     if ((e = tabAt(t, i)) != null && e.hash < 0) {
2299     if ((ek = e.key) instanceof TreeBin)
2300     e = ((TreeBin<V>)ek).first;
2301     else {
2302     tab = (Node<V>[])ek;
2303     continue;
2304     }
2305     }
2306     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2307     }
2308     k = (K)e.key;
2309     } while ((nextVal = e.val) == null);
2310 dl 1.119 next = e;
2311 dl 1.191 return nextKey = k;
2312 dl 1.119 }
2313    
2314     public final void remove() {
2315 jsr166 1.168 K k = nextKey;
2316 dl 1.191 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2317 dl 1.119 throw new IllegalStateException();
2318 dl 1.137 map.internalReplace(k, null, null);
2319 dl 1.119 }
2320    
2321     public final boolean hasNext() {
2322 dl 1.191 return nextVal != null || advanceValue() != null;
2323 dl 1.119 }
2324    
2325     public final boolean hasMoreElements() { return hasNext(); }
2326 dl 1.146
2327     public void compute() { } // default no-op CountedCompleter body
2328    
2329     /**
2330     * Returns a batch value > 0 if this task should (and must) be
2331     * split, if so, adding to pending count, and in any case
2332     * updating batch value. The initial batch value is approx
2333     * exp2 of the number of times (minus one) to split task by
2334     * two before executing leaf action. This value is faster to
2335     * compute and more convenient to use as a guide to splitting
2336     * than is the depth, since it is used while dividing by two
2337     * anyway.
2338     */
2339     final int preSplit() {
2340 dl 1.153 int b; ForkJoinPool pool;
2341     if ((b = batch) < 0) { // force initialization
2342     int sp = (((pool = getPool()) == null) ?
2343     ForkJoinPool.getCommonPoolParallelism() :
2344     pool.getParallelism()) << 3; // slack of 8
2345     long n = map.sumCount();
2346     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2347 dl 1.146 }
2348 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2349 dl 1.146 if ((batch = b) > 0)
2350     addToPendingCount(1);
2351     return b;
2352     }
2353    
2354 dl 1.153 // spliterator support
2355    
2356     public long estimateSize() {
2357     return batch;
2358     }
2359 dl 1.191
2360 dl 1.119 }
2361    
2362     /* ---------------- Public operations -------------- */
2363    
2364     /**
2365     * Creates a new, empty map with the default initial table size (16).
2366     */
2367     public ConcurrentHashMap() {
2368     }
2369    
2370     /**
2371     * Creates a new, empty map with an initial table size
2372     * accommodating the specified number of elements without the need
2373     * to dynamically resize.
2374     *
2375     * @param initialCapacity The implementation performs internal
2376     * sizing to accommodate this many elements.
2377     * @throws IllegalArgumentException if the initial capacity of
2378     * elements is negative
2379     */
2380     public ConcurrentHashMap(int initialCapacity) {
2381     if (initialCapacity < 0)
2382     throw new IllegalArgumentException();
2383     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2384     MAXIMUM_CAPACITY :
2385     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2386     this.sizeCtl = cap;
2387     }
2388    
2389     /**
2390     * Creates a new map with the same mappings as the given map.
2391     *
2392     * @param m the map
2393     */
2394     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2395     this.sizeCtl = DEFAULT_CAPACITY;
2396     internalPutAll(m);
2397     }
2398    
2399     /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}) and
2402     * initial table density ({@code loadFactor}).
2403     *
2404     * @param initialCapacity the initial capacity. The implementation
2405     * performs internal sizing to accommodate this many elements,
2406     * given the specified load factor.
2407     * @param loadFactor the load factor (table density) for
2408     * establishing the initial table size
2409     * @throws IllegalArgumentException if the initial capacity of
2410     * elements is negative or the load factor is nonpositive
2411     *
2412     * @since 1.6
2413     */
2414     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2415     this(initialCapacity, loadFactor, 1);
2416     }
2417    
2418     /**
2419     * Creates a new, empty map with an initial table size based on
2420     * the given number of elements ({@code initialCapacity}), table
2421     * density ({@code loadFactor}), and number of concurrently
2422     * updating threads ({@code concurrencyLevel}).
2423     *
2424     * @param initialCapacity the initial capacity. The implementation
2425     * performs internal sizing to accommodate this many elements,
2426     * given the specified load factor.
2427     * @param loadFactor the load factor (table density) for
2428     * establishing the initial table size
2429     * @param concurrencyLevel the estimated number of concurrently
2430     * updating threads. The implementation may use this value as
2431     * a sizing hint.
2432     * @throws IllegalArgumentException if the initial capacity is
2433     * negative or the load factor or concurrencyLevel are
2434     * nonpositive
2435     */
2436     public ConcurrentHashMap(int initialCapacity,
2437     float loadFactor, int concurrencyLevel) {
2438     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2439     throw new IllegalArgumentException();
2440     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2441     initialCapacity = concurrencyLevel; // as estimated threads
2442     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2443     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2444     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2445     this.sizeCtl = cap;
2446     }
2447    
2448     /**
2449 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2450     * from the given type to {@code Boolean.TRUE}.
2451     *
2452     * @return the new set
2453     */
2454     public static <K> KeySetView<K,Boolean> newKeySet() {
2455 jsr166 1.184 return new KeySetView<K,Boolean>
2456     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2457 dl 1.137 }
2458    
2459     /**
2460     * Creates a new {@link Set} backed by a ConcurrentHashMap
2461     * from the given type to {@code Boolean.TRUE}.
2462     *
2463     * @param initialCapacity The implementation performs internal
2464     * sizing to accommodate this many elements.
2465     * @throws IllegalArgumentException if the initial capacity of
2466     * elements is negative
2467     * @return the new set
2468     */
2469     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2470 dl 1.149 return new KeySetView<K,Boolean>
2471     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2472 dl 1.137 }
2473    
2474     /**
2475 dl 1.119 * {@inheritDoc}
2476     */
2477     public boolean isEmpty() {
2478 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2479 dl 1.119 }
2480    
2481     /**
2482     * {@inheritDoc}
2483     */
2484     public int size() {
2485 dl 1.149 long n = sumCount();
2486 dl 1.119 return ((n < 0L) ? 0 :
2487     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2488     (int)n);
2489     }
2490    
2491     /**
2492     * Returns the number of mappings. This method should be used
2493     * instead of {@link #size} because a ConcurrentHashMap may
2494     * contain more mappings than can be represented as an int. The
2495 dl 1.146 * value returned is an estimate; the actual count may differ if
2496     * there are concurrent insertions or removals.
2497 dl 1.119 *
2498     * @return the number of mappings
2499     */
2500     public long mappingCount() {
2501 dl 1.149 long n = sumCount();
2502 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2503 dl 1.119 }
2504    
2505     /**
2506     * Returns the value to which the specified key is mapped,
2507     * or {@code null} if this map contains no mapping for the key.
2508     *
2509     * <p>More formally, if this map contains a mapping from a key
2510     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2511     * then this method returns {@code v}; otherwise it returns
2512     * {@code null}. (There can be at most one such mapping.)
2513     *
2514     * @throws NullPointerException if the specified key is null
2515     */
2516 dl 1.149 public V get(Object key) {
2517     return internalGet(key);
2518 dl 1.119 }
2519    
2520     /**
2521 dl 1.129 * Returns the value to which the specified key is mapped,
2522 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2523 dl 1.129 *
2524     * @param key the key
2525     * @param defaultValue the value to return if this map contains
2526 jsr166 1.134 * no mapping for the given key
2527 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2528     * @throws NullPointerException if the specified key is null
2529     */
2530 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2531     V v;
2532     return (v = internalGet(key)) == null ? defaultValue : v;
2533 dl 1.129 }
2534    
2535     /**
2536 dl 1.119 * Tests if the specified object is a key in this table.
2537     *
2538 jsr166 1.190 * @param key possible key
2539 dl 1.119 * @return {@code true} if and only if the specified object
2540     * is a key in this table, as determined by the
2541     * {@code equals} method; {@code false} otherwise
2542     * @throws NullPointerException if the specified key is null
2543     */
2544     public boolean containsKey(Object key) {
2545     return internalGet(key) != null;
2546     }
2547    
2548     /**
2549     * Returns {@code true} if this map maps one or more keys to the
2550     * specified value. Note: This method may require a full traversal
2551     * of the map, and is much slower than method {@code containsKey}.
2552     *
2553     * @param value value whose presence in this map is to be tested
2554     * @return {@code true} if this map maps one or more keys to the
2555     * specified value
2556     * @throws NullPointerException if the specified value is null
2557     */
2558     public boolean containsValue(Object value) {
2559     if (value == null)
2560     throw new NullPointerException();
2561 dl 1.151 V v;
2562 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2563 dl 1.191 while ((v = it.advanceValue()) != null) {
2564 dl 1.119 if (v == value || value.equals(v))
2565     return true;
2566     }
2567     return false;
2568     }
2569    
2570     /**
2571     * Legacy method testing if some key maps into the specified value
2572     * in this table. This method is identical in functionality to
2573 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2574 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2575     * which supported this method prior to introduction of the
2576     * Java Collections framework.
2577     *
2578     * @param value a value to search for
2579     * @return {@code true} if and only if some key maps to the
2580     * {@code value} argument in this table as
2581     * determined by the {@code equals} method;
2582     * {@code false} otherwise
2583     * @throws NullPointerException if the specified value is null
2584     */
2585 dl 1.151 @Deprecated public boolean contains(Object value) {
2586 dl 1.119 return containsValue(value);
2587     }
2588    
2589     /**
2590     * Maps the specified key to the specified value in this table.
2591     * Neither the key nor the value can be null.
2592     *
2593 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2594 dl 1.119 * with a key that is equal to the original key.
2595     *
2596     * @param key key with which the specified value is to be associated
2597     * @param value value to be associated with the specified key
2598     * @return the previous value associated with {@code key}, or
2599     * {@code null} if there was no mapping for {@code key}
2600     * @throws NullPointerException if the specified key or value is null
2601     */
2602 dl 1.149 public V put(K key, V value) {
2603     return internalPut(key, value, false);
2604 dl 1.119 }
2605    
2606     /**
2607     * {@inheritDoc}
2608     *
2609     * @return the previous value associated with the specified key,
2610     * or {@code null} if there was no mapping for the key
2611     * @throws NullPointerException if the specified key or value is null
2612     */
2613 dl 1.149 public V putIfAbsent(K key, V value) {
2614     return internalPut(key, value, true);
2615 dl 1.119 }
2616    
2617     /**
2618     * Copies all of the mappings from the specified map to this one.
2619     * These mappings replace any mappings that this map had for any of the
2620     * keys currently in the specified map.
2621     *
2622     * @param m mappings to be stored in this map
2623     */
2624     public void putAll(Map<? extends K, ? extends V> m) {
2625     internalPutAll(m);
2626     }
2627    
2628     /**
2629 dl 1.153 * If the specified key is not already associated with a value (or
2630     * is mapped to {@code null}), attempts to compute its value using
2631     * the given mapping function and enters it into this map unless
2632     * {@code null}. The entire method invocation is performed
2633     * atomically, so the function is applied at most once per key.
2634     * Some attempted update operations on this map by other threads
2635     * may be blocked while computation is in progress, so the
2636     * computation should be short and simple, and must not attempt to
2637     * update any other mappings of this Map.
2638 dl 1.119 *
2639     * @param key key with which the specified value is to be associated
2640     * @param mappingFunction the function to compute a value
2641     * @return the current (existing or computed) value associated with
2642 jsr166 1.134 * the specified key, or null if the computed value is null
2643 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2644     * is null
2645     * @throws IllegalStateException if the computation detectably
2646     * attempts a recursive update to this map that would
2647     * otherwise never complete
2648     * @throws RuntimeException or Error if the mappingFunction does so,
2649     * in which case the mapping is left unestablished
2650     */
2651 dl 1.149 public V computeIfAbsent
2652 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2653 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2654 dl 1.119 }
2655    
2656     /**
2657 dl 1.153 * If the value for the specified key is present and non-null,
2658     * attempts to compute a new mapping given the key and its current
2659     * mapped value. The entire method invocation is performed
2660     * atomically. Some attempted update operations on this map by
2661 dl 1.119 * other threads may be blocked while computation is in progress,
2662     * so the computation should be short and simple, and must not
2663 dl 1.153 * attempt to update any other mappings of this Map.
2664 dl 1.119 *
2665     * @param key key with which the specified value is to be associated
2666     * @param remappingFunction the function to compute a value
2667 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2668 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2669     * is null
2670     * @throws IllegalStateException if the computation detectably
2671     * attempts a recursive update to this map that would
2672     * otherwise never complete
2673     * @throws RuntimeException or Error if the remappingFunction does so,
2674     * in which case the mapping is unchanged
2675     */
2676 dl 1.149 public V computeIfPresent
2677 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2678 dl 1.149 return internalCompute(key, true, remappingFunction);
2679 dl 1.119 }
2680    
2681     /**
2682 dl 1.153 * Attempts to compute a mapping for the specified key and its
2683     * current mapped value (or {@code null} if there is no current
2684     * mapping). The entire method invocation is performed atomically.
2685     * Some attempted update operations on this map by other threads
2686     * may be blocked while computation is in progress, so the
2687     * computation should be short and simple, and must not attempt to
2688     * update any other mappings of this Map.
2689 dl 1.119 *
2690     * @param key key with which the specified value is to be associated
2691     * @param remappingFunction the function to compute a value
2692 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2693 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2694     * is null
2695     * @throws IllegalStateException if the computation detectably
2696     * attempts a recursive update to this map that would
2697     * otherwise never complete
2698     * @throws RuntimeException or Error if the remappingFunction does so,
2699     * in which case the mapping is unchanged
2700     */
2701 dl 1.149 public V compute
2702 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2703 dl 1.149 return internalCompute(key, false, remappingFunction);
2704 dl 1.119 }
2705    
2706     /**
2707 dl 1.153 * If the specified key is not already associated with a
2708     * (non-null) value, associates it with the given value.
2709     * Otherwise, replaces the value with the results of the given
2710     * remapping function, or removes if {@code null}. The entire
2711     * method invocation is performed atomically. Some attempted
2712     * update operations on this map by other threads may be blocked
2713     * while computation is in progress, so the computation should be
2714     * short and simple, and must not attempt to update any other
2715     * mappings of this Map.
2716     *
2717     * @param key key with which the specified value is to be associated
2718     * @param value the value to use if absent
2719     * @param remappingFunction the function to recompute a value if present
2720     * @return the new value associated with the specified key, or null if none
2721     * @throws NullPointerException if the specified key or the
2722     * remappingFunction is null
2723     * @throws RuntimeException or Error if the remappingFunction does so,
2724     * in which case the mapping is unchanged
2725 dl 1.119 */
2726 dl 1.149 public V merge
2727     (K key, V value,
2728 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2729 dl 1.149 return internalMerge(key, value, remappingFunction);
2730 dl 1.119 }
2731    
2732     /**
2733     * Removes the key (and its corresponding value) from this map.
2734     * This method does nothing if the key is not in the map.
2735     *
2736     * @param key the key that needs to be removed
2737     * @return the previous value associated with {@code key}, or
2738     * {@code null} if there was no mapping for {@code key}
2739     * @throws NullPointerException if the specified key is null
2740     */
2741 dl 1.149 public V remove(Object key) {
2742     return internalReplace(key, null, null);
2743 dl 1.119 }
2744    
2745     /**
2746     * {@inheritDoc}
2747     *
2748     * @throws NullPointerException if the specified key is null
2749     */
2750     public boolean remove(Object key, Object value) {
2751 dl 1.163 if (key == null)
2752     throw new NullPointerException();
2753 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2754 tim 1.1 }
2755 dl 1.31
2756     /**
2757 jsr166 1.68 * {@inheritDoc}
2758     *
2759     * @throws NullPointerException if any of the arguments are null
2760 dl 1.31 */
2761     public boolean replace(K key, V oldValue, V newValue) {
2762 dl 1.119 if (key == null || oldValue == null || newValue == null)
2763 dl 1.31 throw new NullPointerException();
2764 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2765 dl 1.32 }
2766    
2767     /**
2768 jsr166 1.68 * {@inheritDoc}
2769     *
2770     * @return the previous value associated with the specified key,
2771 dl 1.119 * or {@code null} if there was no mapping for the key
2772 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2773 dl 1.32 */
2774 dl 1.149 public V replace(K key, V value) {
2775 dl 1.119 if (key == null || value == null)
2776 dl 1.32 throw new NullPointerException();
2777 dl 1.149 return internalReplace(key, value, null);
2778 dl 1.31 }
2779    
2780 tim 1.1 /**
2781 jsr166 1.68 * Removes all of the mappings from this map.
2782 tim 1.1 */
2783     public void clear() {
2784 dl 1.119 internalClear();
2785 tim 1.1 }
2786    
2787     /**
2788 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2789     * The set is backed by the map, so changes to the map are
2790 dl 1.137 * reflected in the set, and vice-versa.
2791     *
2792     * @return the set view
2793     */
2794     public KeySetView<K,V> keySet() {
2795     KeySetView<K,V> ks = keySet;
2796     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2797     }
2798    
2799     /**
2800     * Returns a {@link Set} view of the keys in this map, using the
2801     * given common mapped value for any additions (i.e., {@link
2802 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2803     * This is of course only appropriate if it is acceptable to use
2804     * the same value for all additions from this view.
2805 jsr166 1.68 *
2806 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2807 dl 1.137 * @return the set view
2808     * @throws NullPointerException if the mappedValue is null
2809 tim 1.1 */
2810 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2811     if (mappedValue == null)
2812     throw new NullPointerException();
2813     return new KeySetView<K,V>(this, mappedValue);
2814 tim 1.1 }
2815    
2816     /**
2817 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2818     * The collection is backed by the map, so changes to the map are
2819 jsr166 1.143 * reflected in the collection, and vice-versa.
2820 jsr166 1.184 *
2821     * @return the collection view
2822 tim 1.1 */
2823 dl 1.142 public ValuesView<K,V> values() {
2824     ValuesView<K,V> vs = values;
2825     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2826 dl 1.119 }
2827    
2828     /**
2829     * Returns a {@link Set} view of the mappings contained in this map.
2830     * The set is backed by the map, so changes to the map are
2831     * reflected in the set, and vice-versa. The set supports element
2832     * removal, which removes the corresponding mapping from the map,
2833     * via the {@code Iterator.remove}, {@code Set.remove},
2834     * {@code removeAll}, {@code retainAll}, and {@code clear}
2835     * operations. It does not support the {@code add} or
2836     * {@code addAll} operations.
2837     *
2838     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2839     * that will never throw {@link ConcurrentModificationException},
2840     * and guarantees to traverse elements as they existed upon
2841     * construction of the iterator, and may (but is not guaranteed to)
2842     * reflect any modifications subsequent to construction.
2843 jsr166 1.184 *
2844     * @return the set view
2845 dl 1.119 */
2846     public Set<Map.Entry<K,V>> entrySet() {
2847 dl 1.142 EntrySetView<K,V> es = entrySet;
2848     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2849 dl 1.119 }
2850    
2851     /**
2852     * Returns an enumeration of the keys in this table.
2853     *
2854     * @return an enumeration of the keys in this table
2855     * @see #keySet()
2856     */
2857     public Enumeration<K> keys() {
2858     return new KeyIterator<K,V>(this);
2859     }
2860    
2861     /**
2862     * Returns an enumeration of the values in this table.
2863     *
2864     * @return an enumeration of the values in this table
2865     * @see #values()
2866     */
2867     public Enumeration<V> elements() {
2868     return new ValueIterator<K,V>(this);
2869     }
2870    
2871     /**
2872     * Returns the hash code value for this {@link Map}, i.e.,
2873     * the sum of, for each key-value pair in the map,
2874     * {@code key.hashCode() ^ value.hashCode()}.
2875     *
2876     * @return the hash code value for this map
2877     */
2878     public int hashCode() {
2879     int h = 0;
2880     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2881 dl 1.151 V v;
2882 dl 1.191 while ((v = it.advanceValue()) != null) {
2883 dl 1.119 h += it.nextKey.hashCode() ^ v.hashCode();
2884     }
2885     return h;
2886     }
2887    
2888     /**
2889     * Returns a string representation of this map. The string
2890     * representation consists of a list of key-value mappings (in no
2891     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2892     * mappings are separated by the characters {@code ", "} (comma
2893     * and space). Each key-value mapping is rendered as the key
2894     * followed by an equals sign ("{@code =}") followed by the
2895     * associated value.
2896     *
2897     * @return a string representation of this map
2898     */
2899     public String toString() {
2900     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2901     StringBuilder sb = new StringBuilder();
2902     sb.append('{');
2903 dl 1.151 V v;
2904 dl 1.191 if ((v = it.advanceValue()) != null) {
2905 dl 1.119 for (;;) {
2906 jsr166 1.168 K k = it.nextKey;
2907 dl 1.119 sb.append(k == this ? "(this Map)" : k);
2908     sb.append('=');
2909     sb.append(v == this ? "(this Map)" : v);
2910 dl 1.191 if ((v = it.advanceValue()) == null)
2911 dl 1.119 break;
2912     sb.append(',').append(' ');
2913     }
2914     }
2915     return sb.append('}').toString();
2916     }
2917    
2918     /**
2919     * Compares the specified object with this map for equality.
2920     * Returns {@code true} if the given object is a map with the same
2921     * mappings as this map. This operation may return misleading
2922     * results if either map is concurrently modified during execution
2923     * of this method.
2924     *
2925     * @param o object to be compared for equality with this map
2926     * @return {@code true} if the specified object is equal to this map
2927     */
2928     public boolean equals(Object o) {
2929     if (o != this) {
2930     if (!(o instanceof Map))
2931     return false;
2932     Map<?,?> m = (Map<?,?>) o;
2933     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2934 dl 1.151 V val;
2935 dl 1.191 while ((val = it.advanceValue()) != null) {
2936 dl 1.119 Object v = m.get(it.nextKey);
2937     if (v == null || (v != val && !v.equals(val)))
2938     return false;
2939     }
2940     for (Map.Entry<?,?> e : m.entrySet()) {
2941     Object mk, mv, v;
2942     if ((mk = e.getKey()) == null ||
2943     (mv = e.getValue()) == null ||
2944     (v = internalGet(mk)) == null ||
2945     (mv != v && !mv.equals(v)))
2946     return false;
2947     }
2948     }
2949     return true;
2950     }
2951    
2952     /* ----------------Iterators -------------- */
2953    
2954 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2955     extends Traverser<K,V,Object>
2956 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2957 jsr166 1.186 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
2958     KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
2959 dl 1.153 super(map, it);
2960 dl 1.119 }
2961 dl 1.155 public KeyIterator<K,V> trySplit() {
2962 dl 1.191 return (baseIndex == baseLimit) ? null :
2963     new KeyIterator<K,V>(map, this);
2964 dl 1.119 }
2965 jsr166 1.168 public final K next() {
2966 dl 1.191 K k;
2967     if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
2968 dl 1.119 throw new NoSuchElementException();
2969     nextVal = null;
2970 jsr166 1.168 return k;
2971 dl 1.119 }
2972    
2973     public final K nextElement() { return next(); }
2974 dl 1.153
2975 dl 1.162 public Iterator<K> iterator() { return this; }
2976 dl 1.153
2977 dl 1.171 public void forEach(Consumer<? super K> action) {
2978 dl 1.153 if (action == null) throw new NullPointerException();
2979 dl 1.191 K k;
2980     while ((k = advanceKey()) != null)
2981     action.accept(k);
2982 dl 1.153 }
2983 dl 1.160
2984 dl 1.171 public boolean tryAdvance(Consumer<? super K> block) {
2985 dl 1.160 if (block == null) throw new NullPointerException();
2986 dl 1.191 K k;
2987     if ((k = advanceKey()) == null)
2988 dl 1.160 return false;
2989 dl 1.191 block.accept(k);
2990 dl 1.160 return true;
2991     }
2992 dl 1.188
2993     public int characteristics() {
2994 jsr166 1.189 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2995 dl 1.188 Spliterator.NONNULL;
2996     }
2997    
2998 dl 1.119 }
2999    
3000 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3001     extends Traverser<K,V,Object>
3002 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3003 jsr166 1.186 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3004     ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3005 dl 1.153 super(map, it);
3006 dl 1.119 }
3007 dl 1.155 public ValueIterator<K,V> trySplit() {
3008 dl 1.191 return (baseIndex == baseLimit) ? null :
3009     new ValueIterator<K,V>(map, this);
3010 dl 1.119 }
3011    
3012 dl 1.151 public final V next() {
3013     V v;
3014 dl 1.191 if ((v = nextVal) == null && (v = advanceValue()) == null)
3015 dl 1.119 throw new NoSuchElementException();
3016     nextVal = null;
3017 dl 1.151 return v;
3018 dl 1.119 }
3019    
3020     public final V nextElement() { return next(); }
3021 dl 1.153
3022 dl 1.162 public Iterator<V> iterator() { return this; }
3023 dl 1.153
3024 dl 1.171 public void forEach(Consumer<? super V> action) {
3025 dl 1.153 if (action == null) throw new NullPointerException();
3026     V v;
3027 dl 1.191 while ((v = advanceValue()) != null)
3028 dl 1.153 action.accept(v);
3029     }
3030 dl 1.160
3031 dl 1.171 public boolean tryAdvance(Consumer<? super V> block) {
3032 dl 1.160 V v;
3033     if (block == null) throw new NullPointerException();
3034 dl 1.191 if ((v = advanceValue()) == null)
3035 dl 1.160 return false;
3036     block.accept(v);
3037     return true;
3038     }
3039 jsr166 1.161
3040 dl 1.188 public int characteristics() {
3041     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3042     }
3043 dl 1.119 }
3044    
3045 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3046     extends Traverser<K,V,Object>
3047 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3048 jsr166 1.186 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3049     EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3050 dl 1.153 super(map, it);
3051 dl 1.119 }
3052 dl 1.155 public EntryIterator<K,V> trySplit() {
3053 dl 1.191 return (baseIndex == baseLimit) ? null :
3054     new EntryIterator<K,V>(map, this);
3055 dl 1.119 }
3056    
3057 jsr166 1.168 public final Map.Entry<K,V> next() {
3058 dl 1.151 V v;
3059 dl 1.191 if ((v = nextVal) == null && (v = advanceValue()) == null)
3060 dl 1.119 throw new NoSuchElementException();
3061 jsr166 1.168 K k = nextKey;
3062 dl 1.119 nextVal = null;
3063 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3064 dl 1.119 }
3065 dl 1.153
3066 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3067 dl 1.153
3068 dl 1.171 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3069 dl 1.153 if (action == null) throw new NullPointerException();
3070     V v;
3071 dl 1.191 while ((v = advanceValue()) != null)
3072 jsr166 1.168 action.accept(entryFor(nextKey, v));
3073 dl 1.153 }
3074 dl 1.160
3075 dl 1.171 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3076 dl 1.160 V v;
3077     if (block == null) throw new NullPointerException();
3078 dl 1.191 if ((v = advanceValue()) == null)
3079 dl 1.160 return false;
3080 jsr166 1.168 block.accept(entryFor(nextKey, v));
3081 dl 1.160 return true;
3082     }
3083    
3084 dl 1.188 public int characteristics() {
3085 jsr166 1.189 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3086 dl 1.188 Spliterator.NONNULL;
3087     }
3088 dl 1.119 }
3089    
3090     /**
3091     * Exported Entry for iterators
3092     */
3093 jsr166 1.186 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3094 dl 1.119 final K key; // non-null
3095     V val; // non-null
3096 jsr166 1.186 final ConcurrentHashMap<K,V> map;
3097     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3098 dl 1.119 this.key = key;
3099     this.val = val;
3100     this.map = map;
3101     }
3102     public final K getKey() { return key; }
3103     public final V getValue() { return val; }
3104     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3105     public final String toString(){ return key + "=" + val; }
3106    
3107     public final boolean equals(Object o) {
3108     Object k, v; Map.Entry<?,?> e;
3109     return ((o instanceof Map.Entry) &&
3110     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3111     (v = e.getValue()) != null &&
3112     (k == key || k.equals(key)) &&
3113     (v == val || v.equals(val)));
3114     }
3115    
3116     /**
3117     * Sets our entry's value and writes through to the map. The
3118     * value to return is somewhat arbitrary here. Since we do not
3119     * necessarily track asynchronous changes, the most recent
3120     * "previous" value could be different from what we return (or
3121     * could even have been removed in which case the put will
3122     * re-establish). We do not and cannot guarantee more.
3123     */
3124     public final V setValue(V value) {
3125     if (value == null) throw new NullPointerException();
3126     V v = val;
3127     val = value;
3128     map.put(key, value);
3129     return v;
3130     }
3131     }
3132    
3133 dl 1.146 /**
3134     * Returns exportable snapshot entry for the given key and value
3135     * when write-through can't or shouldn't be used.
3136     */
3137     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3138     return new AbstractMap.SimpleEntry<K,V>(k, v);
3139     }
3140    
3141 dl 1.142 /* ---------------- Serialization Support -------------- */
3142 dl 1.119
3143     /**
3144 dl 1.142 * Stripped-down version of helper class used in previous version,
3145     * declared for the sake of serialization compatibility
3146 dl 1.119 */
3147 dl 1.142 static class Segment<K,V> implements Serializable {
3148     private static final long serialVersionUID = 2249069246763182397L;
3149     final float loadFactor;
3150     Segment(float lf) { this.loadFactor = lf; }
3151     }
3152 dl 1.119
3153 dl 1.142 /**
3154     * Saves the state of the {@code ConcurrentHashMap} instance to a
3155     * stream (i.e., serializes it).
3156     * @param s the stream
3157     * @serialData
3158     * the key (Object) and value (Object)
3159     * for each key-value mapping, followed by a null pair.
3160     * The key-value mappings are emitted in no particular order.
3161     */
3162 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3163     (java.io.ObjectOutputStream s)
3164 dl 1.142 throws java.io.IOException {
3165     if (segments == null) { // for serialization compatibility
3166     segments = (Segment<K,V>[])
3167     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3168     for (int i = 0; i < segments.length; ++i)
3169     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3170     }
3171     s.defaultWriteObject();
3172     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3173 dl 1.151 V v;
3174 dl 1.191 while ((v = it.advanceValue()) != null) {
3175 dl 1.142 s.writeObject(it.nextKey);
3176     s.writeObject(v);
3177     }
3178     s.writeObject(null);
3179     s.writeObject(null);
3180     segments = null; // throw away
3181     }
3182 dl 1.119
3183 dl 1.142 /**
3184     * Reconstitutes the instance from a stream (that is, deserializes it).
3185     * @param s the stream
3186     */
3187 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3188     (java.io.ObjectInputStream s)
3189 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3190     s.defaultReadObject();
3191     this.segments = null; // unneeded
3192 dl 1.119
3193 dl 1.142 // Create all nodes, then place in table once size is known
3194     long size = 0L;
3195 dl 1.151 Node<V> p = null;
3196 dl 1.142 for (;;) {
3197     K k = (K) s.readObject();
3198     V v = (V) s.readObject();
3199     if (k != null && v != null) {
3200     int h = spread(k.hashCode());
3201 dl 1.151 p = new Node<V>(h, k, v, p);
3202 dl 1.142 ++size;
3203 dl 1.119 }
3204 dl 1.142 else
3205     break;
3206 dl 1.119 }
3207 dl 1.142 if (p != null) {
3208     boolean init = false;
3209     int n;
3210     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3211     n = MAXIMUM_CAPACITY;
3212     else {
3213     int sz = (int)size;
3214     n = tableSizeFor(sz + (sz >>> 1) + 1);
3215     }
3216     int sc = sizeCtl;
3217     boolean collide = false;
3218     if (n > sc &&
3219 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3220 dl 1.142 try {
3221     if (table == null) {
3222     init = true;
3223 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3224     Node<V>[] tab = (Node<V>[])rt;
3225 dl 1.142 int mask = n - 1;
3226     while (p != null) {
3227     int j = p.hash & mask;
3228 dl 1.151 Node<V> next = p.next;
3229     Node<V> q = p.next = tabAt(tab, j);
3230 dl 1.142 setTabAt(tab, j, p);
3231     if (!collide && q != null && q.hash == p.hash)
3232     collide = true;
3233     p = next;
3234     }
3235     table = tab;
3236 dl 1.149 addCount(size, -1);
3237 dl 1.142 sc = n - (n >>> 2);
3238     }
3239     } finally {
3240     sizeCtl = sc;
3241     }
3242     if (collide) { // rescan and convert to TreeBins
3243 dl 1.151 Node<V>[] tab = table;
3244 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3245     int c = 0;
3246 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3247 dl 1.142 if (++c > TREE_THRESHOLD &&
3248     (e.key instanceof Comparable)) {
3249     replaceWithTreeBin(tab, i, e.key);
3250     break;
3251     }
3252     }
3253     }
3254 dl 1.119 }
3255     }
3256 dl 1.142 if (!init) { // Can only happen if unsafely published.
3257     while (p != null) {
3258 dl 1.151 internalPut((K)p.key, p.val, false);
3259 dl 1.142 p = p.next;
3260     }
3261 dl 1.119 }
3262     }
3263 dl 1.142 }
3264 dl 1.119
3265 dl 1.142 // -------------------------------------------------------
3266    
3267 dl 1.151 // Sequential bulk operations
3268    
3269 dl 1.119 /**
3270 dl 1.137 * Performs the given action for each (key, value).
3271 dl 1.119 *
3272 dl 1.137 * @param action the action
3273 dl 1.119 */
3274 jsr166 1.168 public void forEachSequentially
3275 dl 1.171 (BiConsumer<? super K, ? super V> action) {
3276 dl 1.151 if (action == null) throw new NullPointerException();
3277     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3278     V v;
3279 dl 1.191 while ((v = it.advanceValue()) != null)
3280 jsr166 1.168 action.accept(it.nextKey, v);
3281 dl 1.119 }
3282    
3283     /**
3284 dl 1.137 * Performs the given action for each non-null transformation
3285     * of each (key, value).
3286     *
3287     * @param transformer a function returning the transformation
3288 jsr166 1.169 * for an element, or null if there is no transformation (in
3289 jsr166 1.172 * which case the action is not applied)
3290 dl 1.137 * @param action the action
3291 dl 1.119 */
3292 jsr166 1.168 public <U> void forEachSequentially
3293 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3294 dl 1.171 Consumer<? super U> action) {
3295 dl 1.151 if (transformer == null || action == null)
3296     throw new NullPointerException();
3297     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3298     V v; U u;
3299 dl 1.191 while ((v = it.advanceValue()) != null) {
3300 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3301 dl 1.153 action.accept(u);
3302 dl 1.151 }
3303 dl 1.137 }
3304    
3305     /**
3306     * Returns a non-null result from applying the given search
3307 dl 1.151 * function on each (key, value), or null if none.
3308 dl 1.137 *
3309     * @param searchFunction a function returning a non-null
3310     * result on success, else null
3311     * @return a non-null result from applying the given search
3312     * function on each (key, value), or null if none
3313     */
3314 jsr166 1.168 public <U> U searchSequentially
3315 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3316 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3317     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318     V v; U u;
3319 dl 1.191 while ((v = it.advanceValue()) != null) {
3320 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3321 dl 1.151 return u;
3322     }
3323     return null;
3324 dl 1.137 }
3325    
3326     /**
3327     * Returns the result of accumulating the given transformation
3328     * of all (key, value) pairs using the given reducer to
3329     * combine values, or null if none.
3330     *
3331     * @param transformer a function returning the transformation
3332 jsr166 1.169 * for an element, or null if there is no transformation (in
3333 jsr166 1.172 * which case it is not combined)
3334 dl 1.137 * @param reducer a commutative associative combining function
3335     * @return the result of accumulating the given transformation
3336     * of all (key, value) pairs
3337     */
3338 jsr166 1.168 public <U> U reduceSequentially
3339 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3340     BiFunction<? super U, ? super U, ? extends U> reducer) {
3341 dl 1.151 if (transformer == null || reducer == null)
3342     throw new NullPointerException();
3343     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3344     U r = null, u; V v;
3345 dl 1.191 while ((v = it.advanceValue()) != null) {
3346 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3347 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3348     }
3349     return r;
3350 dl 1.137 }
3351    
3352     /**
3353     * Returns the result of accumulating the given transformation
3354     * of all (key, value) pairs using the given reducer to
3355     * combine values, and the given basis as an identity value.
3356     *
3357     * @param transformer a function returning the transformation
3358     * for an element
3359     * @param basis the identity (initial default value) for the reduction
3360     * @param reducer a commutative associative combining function
3361     * @return the result of accumulating the given transformation
3362     * of all (key, value) pairs
3363     */
3364 jsr166 1.168 public double reduceToDoubleSequentially
3365 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3366 dl 1.151 double basis,
3367 dl 1.153 DoubleBinaryOperator reducer) {
3368 dl 1.151 if (transformer == null || reducer == null)
3369     throw new NullPointerException();
3370     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3371     double r = basis; V v;
3372 dl 1.191 while ((v = it.advanceValue()) != null)
3373 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3374 dl 1.151 return r;
3375 dl 1.137 }
3376 dl 1.119
3377 dl 1.137 /**
3378     * Returns the result of accumulating the given transformation
3379     * of all (key, value) pairs using the given reducer to
3380     * combine values, and the given basis as an identity value.
3381     *
3382     * @param transformer a function returning the transformation
3383     * for an element
3384     * @param basis the identity (initial default value) for the reduction
3385     * @param reducer a commutative associative combining function
3386     * @return the result of accumulating the given transformation
3387     * of all (key, value) pairs
3388     */
3389 jsr166 1.168 public long reduceToLongSequentially
3390 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
3391 dl 1.151 long basis,
3392 dl 1.153 LongBinaryOperator reducer) {
3393 dl 1.151 if (transformer == null || reducer == null)
3394     throw new NullPointerException();
3395     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3396     long r = basis; V v;
3397 dl 1.191 while ((v = it.advanceValue()) != null)
3398 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3399 dl 1.151 return r;
3400 dl 1.137 }
3401    
3402     /**
3403     * Returns the result of accumulating the given transformation
3404     * of all (key, value) pairs using the given reducer to
3405     * combine values, and the given basis as an identity value.
3406     *
3407     * @param transformer a function returning the transformation
3408     * for an element
3409     * @param basis the identity (initial default value) for the reduction
3410     * @param reducer a commutative associative combining function
3411     * @return the result of accumulating the given transformation
3412     * of all (key, value) pairs
3413     */
3414 jsr166 1.168 public int reduceToIntSequentially
3415 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
3416 dl 1.151 int basis,
3417 dl 1.153 IntBinaryOperator reducer) {
3418 dl 1.151 if (transformer == null || reducer == null)
3419     throw new NullPointerException();
3420     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421     int r = basis; V v;
3422 dl 1.191 while ((v = it.advanceValue()) != null)
3423 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3424 dl 1.151 return r;
3425 dl 1.137 }
3426    
3427     /**
3428     * Performs the given action for each key.
3429     *
3430     * @param action the action
3431     */
3432 jsr166 1.168 public void forEachKeySequentially
3433 dl 1.171 (Consumer<? super K> action) {
3434 dl 1.151 if (action == null) throw new NullPointerException();
3435     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3436 dl 1.191 K k;
3437     while ((k = it.advanceKey()) != null)
3438     action.accept(k);
3439 dl 1.137 }
3440 dl 1.119
3441 dl 1.137 /**
3442     * Performs the given action for each non-null transformation
3443     * of each key.
3444     *
3445     * @param transformer a function returning the transformation
3446 jsr166 1.169 * for an element, or null if there is no transformation (in
3447 jsr166 1.172 * which case the action is not applied)
3448 dl 1.137 * @param action the action
3449     */
3450 jsr166 1.168 public <U> void forEachKeySequentially
3451 dl 1.153 (Function<? super K, ? extends U> transformer,
3452 dl 1.171 Consumer<? super U> action) {
3453 dl 1.151 if (transformer == null || action == null)
3454     throw new NullPointerException();
3455     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3456 dl 1.191 K k; U u;
3457     while ((k = it.advanceKey()) != null) {
3458     if ((u = transformer.apply(k)) != null)
3459 dl 1.153 action.accept(u);
3460 dl 1.151 }
3461 dl 1.137 ForkJoinTasks.forEachKey
3462     (this, transformer, action).invoke();
3463     }
3464 dl 1.119
3465 dl 1.137 /**
3466     * Returns a non-null result from applying the given search
3467 dl 1.151 * function on each key, or null if none.
3468 dl 1.137 *
3469     * @param searchFunction a function returning a non-null
3470     * result on success, else null
3471     * @return a non-null result from applying the given search
3472     * function on each key, or null if none
3473     */
3474 jsr166 1.168 public <U> U searchKeysSequentially
3475 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3476 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3477 dl 1.191 K k; U u;
3478     while ((k = it.advanceKey()) != null) {
3479     if ((u = searchFunction.apply(k)) != null)
3480 dl 1.151 return u;
3481     }
3482     return null;
3483 dl 1.137 }
3484 dl 1.119
3485 dl 1.137 /**
3486     * Returns the result of accumulating all keys using the given
3487     * reducer to combine values, or null if none.
3488     *
3489     * @param reducer a commutative associative combining function
3490     * @return the result of accumulating all keys using the given
3491     * reducer to combine values, or null if none
3492     */
3493 jsr166 1.168 public K reduceKeysSequentially
3494 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3495 dl 1.151 if (reducer == null) throw new NullPointerException();
3496     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3497 dl 1.191 K u, r = null;
3498     while ((u = it.advanceKey()) != null) {
3499 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3500     }
3501     return r;
3502 dl 1.137 }
3503 dl 1.119
3504 dl 1.137 /**
3505     * Returns the result of accumulating the given transformation
3506     * of all keys using the given reducer to combine values, or
3507     * null if none.
3508     *
3509     * @param transformer a function returning the transformation
3510 jsr166 1.169 * for an element, or null if there is no transformation (in
3511 jsr166 1.172 * which case it is not combined)
3512 dl 1.137 * @param reducer a commutative associative combining function
3513     * @return the result of accumulating the given transformation
3514     * of all keys
3515     */
3516 jsr166 1.168 public <U> U reduceKeysSequentially
3517 dl 1.153 (Function<? super K, ? extends U> transformer,
3518     BiFunction<? super U, ? super U, ? extends U> reducer) {
3519 dl 1.151 if (transformer == null || reducer == null)
3520     throw new NullPointerException();
3521     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 dl 1.191 K k; U r = null, u;
3523     while ((k = it.advanceKey()) != null) {
3524     if ((u = transformer.apply(k)) != null)
3525 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3526     }
3527     return r;
3528 dl 1.137 }
3529 dl 1.119
3530 dl 1.137 /**
3531     * Returns the result of accumulating the given transformation
3532     * of all keys using the given reducer to combine values, and
3533     * the given basis as an identity value.
3534     *
3535     * @param transformer a function returning the transformation
3536     * for an element
3537     * @param basis the identity (initial default value) for the reduction
3538     * @param reducer a commutative associative combining function
3539 jsr166 1.157 * @return the result of accumulating the given transformation
3540 dl 1.137 * of all keys
3541     */
3542 jsr166 1.168 public double reduceKeysToDoubleSequentially
3543 dl 1.171 (ToDoubleFunction<? super K> transformer,
3544 dl 1.151 double basis,
3545 dl 1.153 DoubleBinaryOperator reducer) {
3546 dl 1.151 if (transformer == null || reducer == null)
3547     throw new NullPointerException();
3548     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3549     double r = basis;
3550 dl 1.191 K k;
3551     while ((k = it.advanceKey()) != null)
3552     r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3553 dl 1.151 return r;
3554 dl 1.137 }
3555 dl 1.119
3556 dl 1.137 /**
3557     * Returns the result of accumulating the given transformation
3558     * of all keys using the given reducer to combine values, and
3559     * the given basis as an identity value.
3560     *
3561     * @param transformer a function returning the transformation
3562     * for an element
3563     * @param basis the identity (initial default value) for the reduction
3564     * @param reducer a commutative associative combining function
3565     * @return the result of accumulating the given transformation
3566     * of all keys
3567     */
3568 jsr166 1.168 public long reduceKeysToLongSequentially
3569 dl 1.171 (ToLongFunction<? super K> transformer,
3570 dl 1.151 long basis,
3571 dl 1.153 LongBinaryOperator reducer) {
3572 dl 1.151 if (transformer == null || reducer == null)
3573     throw new NullPointerException();
3574     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3575     long r = basis;
3576 dl 1.191 K k;
3577     while ((k = it.advanceKey()) != null)
3578     r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3579 dl 1.151 return r;
3580 dl 1.137 }
3581 dl 1.119
3582 dl 1.137 /**
3583     * Returns the result of accumulating the given transformation
3584     * of all keys using the given reducer to combine values, and
3585     * the given basis as an identity value.
3586     *
3587     * @param transformer a function returning the transformation
3588     * for an element
3589     * @param basis the identity (initial default value) for the reduction
3590     * @param reducer a commutative associative combining function
3591     * @return the result of accumulating the given transformation
3592     * of all keys
3593     */
3594 jsr166 1.168 public int reduceKeysToIntSequentially
3595 dl 1.171 (ToIntFunction<? super K> transformer,
3596 dl 1.151 int basis,
3597 dl 1.153 IntBinaryOperator reducer) {
3598 dl 1.151 if (transformer == null || reducer == null)
3599     throw new NullPointerException();
3600     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3601     int r = basis;
3602 dl 1.191 K k;
3603     while ((k = it.advanceKey()) != null)
3604     r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3605 dl 1.151 return r;
3606 dl 1.137 }
3607 dl 1.119
3608 dl 1.137 /**
3609     * Performs the given action for each value.
3610     *
3611     * @param action the action
3612     */
3613 dl 1.171 public void forEachValueSequentially(Consumer<? super V> action) {
3614 dl 1.151 if (action == null) throw new NullPointerException();
3615     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3616     V v;
3617 dl 1.191 while ((v = it.advanceValue()) != null)
3618 dl 1.153 action.accept(v);
3619 dl 1.137 }
3620 dl 1.119
3621 dl 1.137 /**
3622     * Performs the given action for each non-null transformation
3623     * of each value.
3624     *
3625     * @param transformer a function returning the transformation
3626 jsr166 1.169 * for an element, or null if there is no transformation (in
3627 jsr166 1.172 * which case the action is not applied)
3628 jsr166 1.179 * @param action the action
3629 dl 1.137 */
3630 dl 1.151 public <U> void forEachValueSequentially
3631 dl 1.153 (Function<? super V, ? extends U> transformer,
3632 dl 1.171 Consumer<? super U> action) {
3633 dl 1.151 if (transformer == null || action == null)
3634     throw new NullPointerException();
3635     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3636     V v; U u;
3637 dl 1.191 while ((v = it.advanceValue()) != null) {
3638 dl 1.151 if ((u = transformer.apply(v)) != null)
3639 dl 1.153 action.accept(u);
3640 dl 1.151 }
3641 dl 1.137 }
3642 dl 1.119
3643 dl 1.137 /**
3644     * Returns a non-null result from applying the given search
3645 dl 1.151 * function on each value, or null if none.
3646 dl 1.137 *
3647     * @param searchFunction a function returning a non-null
3648     * result on success, else null
3649     * @return a non-null result from applying the given search
3650     * function on each value, or null if none
3651     */
3652 dl 1.151 public <U> U searchValuesSequentially
3653 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3654 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3655     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3656     V v; U u;
3657 dl 1.191 while ((v = it.advanceValue()) != null) {
3658 dl 1.151 if ((u = searchFunction.apply(v)) != null)
3659     return u;
3660     }
3661     return null;
3662 dl 1.137 }
3663 dl 1.119
3664 dl 1.137 /**
3665     * Returns the result of accumulating all values using the
3666     * given reducer to combine values, or null if none.
3667     *
3668     * @param reducer a commutative associative combining function
3669 jsr166 1.157 * @return the result of accumulating all values
3670 dl 1.137 */
3671 dl 1.151 public V reduceValuesSequentially
3672 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3673 dl 1.151 if (reducer == null) throw new NullPointerException();
3674     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3675     V r = null; V v;
3676 dl 1.191 while ((v = it.advanceValue()) != null)
3677 dl 1.151 r = (r == null) ? v : reducer.apply(r, v);
3678     return r;
3679 dl 1.137 }
3680 dl 1.119
3681 dl 1.137 /**
3682     * Returns the result of accumulating the given transformation
3683     * of all values using the given reducer to combine values, or
3684     * null if none.
3685     *
3686     * @param transformer a function returning the transformation
3687 jsr166 1.169 * for an element, or null if there is no transformation (in
3688 jsr166 1.172 * which case it is not combined)
3689 dl 1.137 * @param reducer a commutative associative combining function
3690     * @return the result of accumulating the given transformation
3691     * of all values
3692     */
3693 dl 1.151 public <U> U reduceValuesSequentially
3694 dl 1.153 (Function<? super V, ? extends U> transformer,
3695     BiFunction<? super U, ? super U, ? extends U> reducer) {
3696 dl 1.151 if (transformer == null || reducer == null)
3697     throw new NullPointerException();
3698     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699     U r = null, u; V v;
3700 dl 1.191 while ((v = it.advanceValue()) != null) {
3701 dl 1.151 if ((u = transformer.apply(v)) != null)
3702     r = (r == null) ? u : reducer.apply(r, u);
3703     }
3704     return r;
3705 dl 1.137 }
3706 dl 1.119
3707 dl 1.137 /**
3708     * Returns the result of accumulating the given transformation
3709     * of all values using the given reducer to combine values,
3710     * and the given basis as an identity value.
3711     *
3712     * @param transformer a function returning the transformation
3713     * for an element
3714     * @param basis the identity (initial default value) for the reduction
3715     * @param reducer a commutative associative combining function
3716     * @return the result of accumulating the given transformation
3717     * of all values
3718     */
3719 dl 1.151 public double reduceValuesToDoubleSequentially
3720 dl 1.171 (ToDoubleFunction<? super V> transformer,
3721 dl 1.151 double basis,
3722 dl 1.153 DoubleBinaryOperator reducer) {
3723 dl 1.151 if (transformer == null || reducer == null)
3724     throw new NullPointerException();
3725     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3726     double r = basis; V v;
3727 dl 1.191 while ((v = it.advanceValue()) != null)
3728 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3729 dl 1.151 return r;
3730 dl 1.137 }
3731 dl 1.119
3732 dl 1.137 /**
3733     * Returns the result of accumulating the given transformation
3734     * of all values using the given reducer to combine values,
3735     * and the given basis as an identity value.
3736     *
3737     * @param transformer a function returning the transformation
3738     * for an element
3739     * @param basis the identity (initial default value) for the reduction
3740     * @param reducer a commutative associative combining function
3741     * @return the result of accumulating the given transformation
3742     * of all values
3743     */
3744 dl 1.151 public long reduceValuesToLongSequentially
3745 dl 1.171 (ToLongFunction<? super V> transformer,
3746 dl 1.151 long basis,
3747 dl 1.153 LongBinaryOperator reducer) {
3748 dl 1.151 if (transformer == null || reducer == null)
3749     throw new NullPointerException();
3750     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3751     long r = basis; V v;
3752 dl 1.191 while ((v = it.advanceValue()) != null)
3753 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3754 dl 1.151 return r;
3755 dl 1.137 }
3756 dl 1.119
3757 dl 1.137 /**
3758     * Returns the result of accumulating the given transformation
3759     * of all values using the given reducer to combine values,
3760     * and the given basis as an identity value.
3761     *
3762     * @param transformer a function returning the transformation
3763     * for an element
3764     * @param basis the identity (initial default value) for the reduction
3765     * @param reducer a commutative associative combining function
3766     * @return the result of accumulating the given transformation
3767     * of all values
3768     */
3769 dl 1.151 public int reduceValuesToIntSequentially
3770 dl 1.171 (ToIntFunction<? super V> transformer,
3771 dl 1.151 int basis,
3772 dl 1.153 IntBinaryOperator reducer) {
3773 dl 1.151 if (transformer == null || reducer == null)
3774     throw new NullPointerException();
3775     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3776     int r = basis; V v;
3777 dl 1.191 while ((v = it.advanceValue()) != null)
3778 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3779 dl 1.151 return r;
3780 dl 1.137 }
3781 dl 1.119
3782 dl 1.137 /**
3783     * Performs the given action for each entry.
3784     *
3785     * @param action the action
3786     */
3787 jsr166 1.168 public void forEachEntrySequentially
3788 dl 1.171 (Consumer<? super Map.Entry<K,V>> action) {
3789 dl 1.151 if (action == null) throw new NullPointerException();
3790     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3791     V v;
3792 dl 1.191 while ((v = it.advanceValue()) != null)
3793 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3794 dl 1.137 }
3795 dl 1.119
3796 dl 1.137 /**
3797     * Performs the given action for each non-null transformation
3798     * of each entry.
3799     *
3800     * @param transformer a function returning the transformation
3801 jsr166 1.169 * for an element, or null if there is no transformation (in
3802 jsr166 1.172 * which case the action is not applied)
3803 dl 1.137 * @param action the action
3804     */
3805 jsr166 1.168 public <U> void forEachEntrySequentially
3806 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3807 dl 1.171 Consumer<? super U> action) {
3808 dl 1.151 if (transformer == null || action == null)
3809     throw new NullPointerException();
3810     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3811     V v; U u;
3812 dl 1.191 while ((v = it.advanceValue()) != null) {
3813 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3814 dl 1.153 action.accept(u);
3815 dl 1.151 }
3816 dl 1.137 }
3817 dl 1.119
3818 dl 1.137 /**
3819     * Returns a non-null result from applying the given search
3820 dl 1.151 * function on each entry, or null if none.
3821 dl 1.137 *
3822     * @param searchFunction a function returning a non-null
3823     * result on success, else null
3824     * @return a non-null result from applying the given search
3825     * function on each entry, or null if none
3826     */
3827 jsr166 1.168 public <U> U searchEntriesSequentially
3828 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3829 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3830     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3831     V v; U u;
3832 dl 1.191 while ((v = it.advanceValue()) != null) {
3833 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3834 dl 1.151 return u;
3835     }
3836     return null;
3837 dl 1.137 }
3838 dl 1.119
3839 dl 1.137 /**
3840     * Returns the result of accumulating all entries using the
3841     * given reducer to combine values, or null if none.
3842     *
3843     * @param reducer a commutative associative combining function
3844     * @return the result of accumulating all entries
3845     */
3846 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3847 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3848 dl 1.151 if (reducer == null) throw new NullPointerException();
3849     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3850     Map.Entry<K,V> r = null; V v;
3851 dl 1.191 while ((v = it.advanceValue()) != null) {
3852 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3853 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3854     }
3855     return r;
3856 dl 1.137 }
3857 dl 1.119
3858 dl 1.137 /**
3859     * Returns the result of accumulating the given transformation
3860     * of all entries using the given reducer to combine values,
3861     * or null if none.
3862     *
3863     * @param transformer a function returning the transformation
3864 jsr166 1.169 * for an element, or null if there is no transformation (in
3865 jsr166 1.172 * which case it is not combined)
3866 dl 1.137 * @param reducer a commutative associative combining function
3867     * @return the result of accumulating the given transformation
3868     * of all entries
3869     */
3870 jsr166 1.168 public <U> U reduceEntriesSequentially
3871 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3872     BiFunction<? super U, ? super U, ? extends U> reducer) {
3873 dl 1.151 if (transformer == null || reducer == null)
3874     throw new NullPointerException();
3875     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3876     U r = null, u; V v;
3877 dl 1.191 while ((v = it.advanceValue()) != null) {
3878 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3879 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3880     }
3881     return r;
3882 dl 1.137 }
3883 dl 1.119
3884 dl 1.137 /**
3885     * Returns the result of accumulating the given transformation
3886     * of all entries using the given reducer to combine values,
3887     * and the given basis as an identity value.
3888     *
3889     * @param transformer a function returning the transformation
3890     * for an element
3891     * @param basis the identity (initial default value) for the reduction
3892     * @param reducer a commutative associative combining function
3893     * @return the result of accumulating the given transformation
3894     * of all entries
3895     */
3896 jsr166 1.168 public double reduceEntriesToDoubleSequentially
3897 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3898 dl 1.151 double basis,
3899 dl 1.153 DoubleBinaryOperator reducer) {
3900 dl 1.151 if (transformer == null || reducer == null)
3901     throw new NullPointerException();
3902     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3903     double r = basis; V v;
3904 dl 1.191 while ((v = it.advanceValue()) != null)
3905 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3906 dl 1.151 return r;
3907 dl 1.137 }
3908 dl 1.119
3909 dl 1.137 /**
3910     * Returns the result of accumulating the given transformation
3911     * of all entries using the given reducer to combine values,
3912     * and the given basis as an identity value.
3913     *
3914     * @param transformer a function returning the transformation
3915     * for an element
3916     * @param basis the identity (initial default value) for the reduction
3917     * @param reducer a commutative associative combining function
3918 jsr166 1.157 * @return the result of accumulating the given transformation
3919 dl 1.137 * of all entries
3920     */
3921 jsr166 1.168 public long reduceEntriesToLongSequentially
3922 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
3923 dl 1.151 long basis,
3924 dl 1.153 LongBinaryOperator reducer) {
3925 dl 1.151 if (transformer == null || reducer == null)
3926     throw new NullPointerException();
3927     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3928     long r = basis; V v;
3929 dl 1.191 while ((v = it.advanceValue()) != null)
3930 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3931 dl 1.151 return r;
3932 dl 1.137 }
3933 dl 1.119
3934 dl 1.137 /**
3935     * Returns the result of accumulating the given transformation
3936     * of all entries using the given reducer to combine values,
3937     * and the given basis as an identity value.
3938     *
3939     * @param transformer a function returning the transformation
3940     * for an element
3941     * @param basis the identity (initial default value) for the reduction
3942     * @param reducer a commutative associative combining function
3943     * @return the result of accumulating the given transformation
3944     * of all entries
3945     */
3946 jsr166 1.168 public int reduceEntriesToIntSequentially
3947 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
3948 dl 1.151 int basis,
3949 dl 1.153 IntBinaryOperator reducer) {
3950 dl 1.151 if (transformer == null || reducer == null)
3951     throw new NullPointerException();
3952     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3953     int r = basis; V v;
3954 dl 1.191 while ((v = it.advanceValue()) != null)
3955 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3956 dl 1.151 return r;
3957 dl 1.119 }
3958    
3959 dl 1.151 // Parallel bulk operations
3960 dl 1.142
3961     /**
3962 dl 1.151 * Performs the given action for each (key, value).
3963     *
3964     * @param action the action
3965 dl 1.142 */
3966 dl 1.171 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3967 dl 1.151 ForkJoinTasks.forEach
3968     (this, action).invoke();
3969     }
3970 dl 1.142
3971 dl 1.151 /**
3972     * Performs the given action for each non-null transformation
3973     * of each (key, value).
3974     *
3975     * @param transformer a function returning the transformation
3976 jsr166 1.169 * for an element, or null if there is no transformation (in
3977 jsr166 1.172 * which case the action is not applied)
3978 dl 1.151 * @param action the action
3979     */
3980     public <U> void forEachInParallel
3981 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3982 dl 1.171 Consumer<? super U> action) {
3983 dl 1.151 ForkJoinTasks.forEach
3984     (this, transformer, action).invoke();
3985     }
3986 dl 1.142
3987 dl 1.151 /**
3988     * Returns a non-null result from applying the given search
3989     * function on each (key, value), or null if none. Upon
3990     * success, further element processing is suppressed and the
3991     * results of any other parallel invocations of the search
3992     * function are ignored.
3993     *
3994     * @param searchFunction a function returning a non-null
3995     * result on success, else null
3996     * @return a non-null result from applying the given search
3997     * function on each (key, value), or null if none
3998     */
3999     public <U> U searchInParallel
4000 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4001 dl 1.151 return ForkJoinTasks.search
4002     (this, searchFunction).invoke();
4003     }
4004 dl 1.142
4005 dl 1.151 /**
4006     * Returns the result of accumulating the given transformation
4007     * of all (key, value) pairs using the given reducer to
4008     * combine values, or null if none.
4009     *
4010     * @param transformer a function returning the transformation
4011 jsr166 1.169 * for an element, or null if there is no transformation (in
4012 jsr166 1.172 * which case it is not combined)
4013 dl 1.151 * @param reducer a commutative associative combining function
4014     * @return the result of accumulating the given transformation
4015     * of all (key, value) pairs
4016     */
4017     public <U> U reduceInParallel
4018 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
4019     BiFunction<? super U, ? super U, ? extends U> reducer) {
4020 dl 1.151 return ForkJoinTasks.reduce
4021     (this, transformer, reducer).invoke();
4022     }
4023 dl 1.142
4024 dl 1.151 /**
4025     * Returns the result of accumulating the given transformation
4026     * of all (key, value) pairs using the given reducer to
4027     * combine values, and the given basis as an identity value.
4028     *
4029     * @param transformer a function returning the transformation
4030     * for an element
4031     * @param basis the identity (initial default value) for the reduction
4032     * @param reducer a commutative associative combining function
4033     * @return the result of accumulating the given transformation
4034     * of all (key, value) pairs
4035     */
4036     public double reduceToDoubleInParallel
4037 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
4038 dl 1.151 double basis,
4039 dl 1.153 DoubleBinaryOperator reducer) {
4040 dl 1.151 return ForkJoinTasks.reduceToDouble
4041     (this, transformer, basis, reducer).invoke();
4042     }
4043    
4044     /**
4045     * Returns the result of accumulating the given transformation
4046     * of all (key, value) pairs using the given reducer to
4047     * combine values, and the given basis as an identity value.
4048     *
4049     * @param transformer a function returning the transformation
4050     * for an element
4051     * @param basis the identity (initial default value) for the reduction
4052     * @param reducer a commutative associative combining function
4053     * @return the result of accumulating the given transformation
4054     * of all (key, value) pairs
4055     */
4056     public long reduceToLongInParallel
4057 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
4058 dl 1.151 long basis,
4059 dl 1.153 LongBinaryOperator reducer) {
4060 dl 1.151 return ForkJoinTasks.reduceToLong
4061     (this, transformer, basis, reducer).invoke();
4062     }
4063    
4064     /**
4065     * Returns the result of accumulating the given transformation
4066     * of all (key, value) pairs using the given reducer to
4067     * combine values, and the given basis as an identity value.
4068     *
4069     * @param transformer a function returning the transformation
4070     * for an element
4071     * @param basis the identity (initial default value) for the reduction
4072     * @param reducer a commutative associative combining function
4073     * @return the result of accumulating the given transformation
4074     * of all (key, value) pairs
4075     */
4076     public int reduceToIntInParallel
4077 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
4078 dl 1.151 int basis,
4079 dl 1.153 IntBinaryOperator reducer) {
4080 dl 1.151 return ForkJoinTasks.reduceToInt
4081     (this, transformer, basis, reducer).invoke();
4082     }
4083    
4084     /**
4085     * Performs the given action for each key.
4086     *
4087     * @param action the action
4088     */
4089 dl 1.171 public void forEachKeyInParallel(Consumer<? super K> action) {
4090 dl 1.151 ForkJoinTasks.forEachKey
4091     (this, action).invoke();
4092     }
4093    
4094     /**
4095     * Performs the given action for each non-null transformation
4096     * of each key.
4097     *
4098     * @param transformer a function returning the transformation
4099 jsr166 1.169 * for an element, or null if there is no transformation (in
4100 jsr166 1.172 * which case the action is not applied)
4101 dl 1.151 * @param action the action
4102     */
4103     public <U> void forEachKeyInParallel
4104 dl 1.153 (Function<? super K, ? extends U> transformer,
4105 dl 1.171 Consumer<? super U> action) {
4106 dl 1.151 ForkJoinTasks.forEachKey
4107     (this, transformer, action).invoke();
4108     }
4109    
4110     /**
4111     * Returns a non-null result from applying the given search
4112     * function on each key, or null if none. Upon success,
4113     * further element processing is suppressed and the results of
4114     * any other parallel invocations of the search function are
4115     * ignored.
4116     *
4117     * @param searchFunction a function returning a non-null
4118     * result on success, else null
4119     * @return a non-null result from applying the given search
4120     * function on each key, or null if none
4121     */
4122     public <U> U searchKeysInParallel
4123 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4124 dl 1.151 return ForkJoinTasks.searchKeys
4125     (this, searchFunction).invoke();
4126     }
4127    
4128     /**
4129     * Returns the result of accumulating all keys using the given
4130     * reducer to combine values, or null if none.
4131     *
4132     * @param reducer a commutative associative combining function
4133     * @return the result of accumulating all keys using the given
4134     * reducer to combine values, or null if none
4135     */
4136     public K reduceKeysInParallel
4137 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4138 dl 1.151 return ForkJoinTasks.reduceKeys
4139     (this, reducer).invoke();
4140     }
4141    
4142     /**
4143     * Returns the result of accumulating the given transformation
4144     * of all keys using the given reducer to combine values, or
4145     * null if none.
4146     *
4147     * @param transformer a function returning the transformation
4148 jsr166 1.169 * for an element, or null if there is no transformation (in
4149 jsr166 1.172 * which case it is not combined)
4150 dl 1.151 * @param reducer a commutative associative combining function
4151     * @return the result of accumulating the given transformation
4152     * of all keys
4153     */
4154     public <U> U reduceKeysInParallel
4155 dl 1.153 (Function<? super K, ? extends U> transformer,
4156     BiFunction<? super U, ? super U, ? extends U> reducer) {
4157 dl 1.151 return ForkJoinTasks.reduceKeys
4158     (this, transformer, reducer).invoke();
4159     }
4160    
4161     /**
4162     * Returns the result of accumulating the given transformation
4163     * of all keys using the given reducer to combine values, and
4164     * the given basis as an identity value.
4165     *
4166     * @param transformer a function returning the transformation
4167     * for an element
4168     * @param basis the identity (initial default value) for the reduction
4169     * @param reducer a commutative associative combining function
4170 jsr166 1.157 * @return the result of accumulating the given transformation
4171 dl 1.151 * of all keys
4172     */
4173     public double reduceKeysToDoubleInParallel
4174 dl 1.171 (ToDoubleFunction<? super K> transformer,
4175 dl 1.151 double basis,
4176 dl 1.153 DoubleBinaryOperator reducer) {
4177 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4178     (this, transformer, basis, reducer).invoke();
4179     }
4180    
4181     /**
4182     * Returns the result of accumulating the given transformation
4183     * of all keys using the given reducer to combine values, and
4184     * the given basis as an identity value.
4185     *
4186     * @param transformer a function returning the transformation
4187     * for an element
4188     * @param basis the identity (initial default value) for the reduction
4189     * @param reducer a commutative associative combining function
4190     * @return the result of accumulating the given transformation
4191     * of all keys
4192     */
4193     public long reduceKeysToLongInParallel
4194 dl 1.171 (ToLongFunction<? super K> transformer,
4195 dl 1.151 long basis,
4196 dl 1.153 LongBinaryOperator reducer) {
4197 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4198     (this, transformer, basis, reducer).invoke();
4199     }
4200    
4201     /**
4202     * Returns the result of accumulating the given transformation
4203     * of all keys using the given reducer to combine values, and
4204     * the given basis as an identity value.
4205     *
4206     * @param transformer a function returning the transformation
4207     * for an element
4208     * @param basis the identity (initial default value) for the reduction
4209     * @param reducer a commutative associative combining function
4210     * @return the result of accumulating the given transformation
4211     * of all keys
4212     */
4213     public int reduceKeysToIntInParallel
4214 dl 1.171 (ToIntFunction<? super K> transformer,
4215 dl 1.151 int basis,
4216 dl 1.153 IntBinaryOperator reducer) {
4217 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4218     (this, transformer, basis, reducer).invoke();
4219     }
4220    
4221     /**
4222     * Performs the given action for each value.
4223     *
4224     * @param action the action
4225     */
4226 dl 1.171 public void forEachValueInParallel(Consumer<? super V> action) {
4227 dl 1.151 ForkJoinTasks.forEachValue
4228     (this, action).invoke();
4229     }
4230    
4231     /**
4232     * Performs the given action for each non-null transformation
4233     * of each value.
4234     *
4235     * @param transformer a function returning the transformation
4236 jsr166 1.169 * for an element, or null if there is no transformation (in
4237 jsr166 1.172 * which case the action is not applied)
4238 jsr166 1.179 * @param action the action
4239 dl 1.151 */
4240     public <U> void forEachValueInParallel
4241 dl 1.153 (Function<? super V, ? extends U> transformer,
4242 dl 1.171 Consumer<? super U> action) {
4243 dl 1.151 ForkJoinTasks.forEachValue
4244     (this, transformer, action).invoke();
4245     }
4246    
4247     /**
4248     * Returns a non-null result from applying the given search
4249     * function on each value, or null if none. Upon success,
4250     * further element processing is suppressed and the results of
4251     * any other parallel invocations of the search function are
4252     * ignored.
4253     *
4254     * @param searchFunction a function returning a non-null
4255     * result on success, else null
4256     * @return a non-null result from applying the given search
4257     * function on each value, or null if none
4258     */
4259     public <U> U searchValuesInParallel
4260 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4261 dl 1.151 return ForkJoinTasks.searchValues
4262     (this, searchFunction).invoke();
4263     }
4264    
4265     /**
4266     * Returns the result of accumulating all values using the
4267     * given reducer to combine values, or null if none.
4268     *
4269     * @param reducer a commutative associative combining function
4270 jsr166 1.157 * @return the result of accumulating all values
4271 dl 1.151 */
4272     public V reduceValuesInParallel
4273 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4274 dl 1.151 return ForkJoinTasks.reduceValues
4275     (this, reducer).invoke();
4276     }
4277    
4278     /**
4279     * Returns the result of accumulating the given transformation
4280     * of all values using the given reducer to combine values, or
4281     * null if none.
4282     *
4283     * @param transformer a function returning the transformation
4284 jsr166 1.169 * for an element, or null if there is no transformation (in
4285 jsr166 1.172 * which case it is not combined)
4286 dl 1.151 * @param reducer a commutative associative combining function
4287     * @return the result of accumulating the given transformation
4288     * of all values
4289     */
4290     public <U> U reduceValuesInParallel
4291 dl 1.153 (Function<? super V, ? extends U> transformer,
4292     BiFunction<? super U, ? super U, ? extends U> reducer) {
4293 dl 1.151 return ForkJoinTasks.reduceValues
4294     (this, transformer, reducer).invoke();
4295     }
4296    
4297     /**
4298     * Returns the result of accumulating the given transformation
4299     * of all values using the given reducer to combine values,
4300     * and the given basis as an identity value.
4301     *
4302     * @param transformer a function returning the transformation
4303     * for an element
4304     * @param basis the identity (initial default value) for the reduction
4305     * @param reducer a commutative associative combining function
4306     * @return the result of accumulating the given transformation
4307     * of all values
4308     */
4309     public double reduceValuesToDoubleInParallel
4310 dl 1.171 (ToDoubleFunction<? super V> transformer,
4311 dl 1.151 double basis,
4312 dl 1.153 DoubleBinaryOperator reducer) {
4313 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4314     (this, transformer, basis, reducer).invoke();
4315     }
4316    
4317     /**
4318     * Returns the result of accumulating the given transformation
4319     * of all values using the given reducer to combine values,
4320     * and the given basis as an identity value.
4321     *
4322     * @param transformer a function returning the transformation
4323     * for an element
4324     * @param basis the identity (initial default value) for the reduction
4325     * @param reducer a commutative associative combining function
4326     * @return the result of accumulating the given transformation
4327     * of all values
4328     */
4329     public long reduceValuesToLongInParallel
4330 dl 1.171 (ToLongFunction<? super V> transformer,
4331 dl 1.151 long basis,
4332 dl 1.153 LongBinaryOperator reducer) {
4333 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4334     (this, transformer, basis, reducer).invoke();
4335     }
4336    
4337     /**
4338     * Returns the result of accumulating the given transformation
4339     * of all values using the given reducer to combine values,
4340     * and the given basis as an identity value.
4341     *
4342     * @param transformer a function returning the transformation
4343     * for an element
4344     * @param basis the identity (initial default value) for the reduction
4345     * @param reducer a commutative associative combining function
4346     * @return the result of accumulating the given transformation
4347     * of all values
4348     */
4349     public int reduceValuesToIntInParallel
4350 dl 1.171 (ToIntFunction<? super V> transformer,
4351 dl 1.151 int basis,
4352 dl 1.153 IntBinaryOperator reducer) {
4353 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4354     (this, transformer, basis, reducer).invoke();
4355     }
4356    
4357     /**
4358     * Performs the given action for each entry.
4359     *
4360     * @param action the action
4361     */
4362 dl 1.171 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4363 dl 1.151 ForkJoinTasks.forEachEntry
4364     (this, action).invoke();
4365     }
4366    
4367     /**
4368     * Performs the given action for each non-null transformation
4369     * of each entry.
4370     *
4371     * @param transformer a function returning the transformation
4372 jsr166 1.169 * for an element, or null if there is no transformation (in
4373 jsr166 1.172 * which case the action is not applied)
4374 dl 1.151 * @param action the action
4375     */
4376     public <U> void forEachEntryInParallel
4377 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4378 dl 1.171 Consumer<? super U> action) {
4379 dl 1.151 ForkJoinTasks.forEachEntry
4380     (this, transformer, action).invoke();
4381     }
4382    
4383     /**
4384     * Returns a non-null result from applying the given search
4385     * function on each entry, or null if none. Upon success,
4386     * further element processing is suppressed and the results of
4387     * any other parallel invocations of the search function are
4388     * ignored.
4389     *
4390     * @param searchFunction a function returning a non-null
4391     * result on success, else null
4392     * @return a non-null result from applying the given search
4393     * function on each entry, or null if none
4394     */
4395     public <U> U searchEntriesInParallel
4396 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4397 dl 1.151 return ForkJoinTasks.searchEntries
4398     (this, searchFunction).invoke();
4399     }
4400    
4401     /**
4402     * Returns the result of accumulating all entries using the
4403     * given reducer to combine values, or null if none.
4404     *
4405     * @param reducer a commutative associative combining function
4406     * @return the result of accumulating all entries
4407     */
4408     public Map.Entry<K,V> reduceEntriesInParallel
4409 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4410 dl 1.151 return ForkJoinTasks.reduceEntries
4411     (this, reducer).invoke();
4412     }
4413    
4414     /**
4415     * Returns the result of accumulating the given transformation
4416     * of all entries using the given reducer to combine values,
4417     * or null if none.
4418     *
4419     * @param transformer a function returning the transformation
4420 jsr166 1.169 * for an element, or null if there is no transformation (in
4421 jsr166 1.172 * which case it is not combined)
4422 dl 1.151 * @param reducer a commutative associative combining function
4423     * @return the result of accumulating the given transformation
4424     * of all entries
4425     */
4426     public <U> U reduceEntriesInParallel
4427 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4428     BiFunction<? super U, ? super U, ? extends U> reducer) {
4429 dl 1.151 return ForkJoinTasks.reduceEntries
4430     (this, transformer, reducer).invoke();
4431     }
4432    
4433     /**
4434     * Returns the result of accumulating the given transformation
4435     * of all entries using the given reducer to combine values,
4436     * and the given basis as an identity value.
4437     *
4438     * @param transformer a function returning the transformation
4439     * for an element
4440     * @param basis the identity (initial default value) for the reduction
4441     * @param reducer a commutative associative combining function
4442     * @return the result of accumulating the given transformation
4443     * of all entries
4444     */
4445     public double reduceEntriesToDoubleInParallel
4446 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4447 dl 1.151 double basis,
4448 dl 1.153 DoubleBinaryOperator reducer) {
4449 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4450     (this, transformer, basis, reducer).invoke();
4451     }
4452    
4453     /**
4454     * Returns the result of accumulating the given transformation
4455     * of all entries using the given reducer to combine values,
4456     * and the given basis as an identity value.
4457     *
4458     * @param transformer a function returning the transformation
4459     * for an element
4460     * @param basis the identity (initial default value) for the reduction
4461     * @param reducer a commutative associative combining function
4462 jsr166 1.157 * @return the result of accumulating the given transformation
4463 dl 1.151 * of all entries
4464     */
4465     public long reduceEntriesToLongInParallel
4466 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4467 dl 1.151 long basis,
4468 dl 1.153 LongBinaryOperator reducer) {
4469 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4470     (this, transformer, basis, reducer).invoke();
4471     }
4472    
4473     /**
4474     * Returns the result of accumulating the given transformation
4475     * of all entries using the given reducer to combine values,
4476     * and the given basis as an identity value.
4477     *
4478     * @param transformer a function returning the transformation
4479     * for an element
4480     * @param basis the identity (initial default value) for the reduction
4481     * @param reducer a commutative associative combining function
4482     * @return the result of accumulating the given transformation
4483     * of all entries
4484     */
4485     public int reduceEntriesToIntInParallel
4486 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4487 dl 1.151 int basis,
4488 dl 1.153 IntBinaryOperator reducer) {
4489 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4490     (this, transformer, basis, reducer).invoke();
4491     }
4492    
4493    
4494     /* ----------------Views -------------- */
4495    
4496     /**
4497     * Base class for views.
4498     */
4499 jsr166 1.187 abstract static class CHMCollectionView<K,V,E>
4500 jsr166 1.184 implements Collection<E>, java.io.Serializable {
4501 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4502 jsr166 1.186 final ConcurrentHashMap<K,V> map;
4503     CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4504 dl 1.151
4505     /**
4506     * Returns the map backing this view.
4507     *
4508     * @return the map backing this view
4509     */
4510     public ConcurrentHashMap<K,V> getMap() { return map; }
4511    
4512 jsr166 1.184 /**
4513     * Removes all of the elements from this view, by removing all
4514     * the mappings from the map backing this view.
4515     */
4516     public final void clear() { map.clear(); }
4517     public final int size() { return map.size(); }
4518     public final boolean isEmpty() { return map.isEmpty(); }
4519 dl 1.151
4520     // implementations below rely on concrete classes supplying these
4521 jsr166 1.184 // abstract methods
4522     /**
4523     * Returns a "weakly consistent" iterator that will never
4524     * throw {@link ConcurrentModificationException}, and
4525     * guarantees to traverse elements as they existed upon
4526     * construction of the iterator, and may (but is not
4527     * guaranteed to) reflect any modifications subsequent to
4528     * construction.
4529     */
4530     public abstract Iterator<E> iterator();
4531 jsr166 1.165 public abstract boolean contains(Object o);
4532     public abstract boolean remove(Object o);
4533 dl 1.151
4534     private static final String oomeMsg = "Required array size too large";
4535 dl 1.142
4536     public final Object[] toArray() {
4537     long sz = map.mappingCount();
4538 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4539 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4540     int n = (int)sz;
4541     Object[] r = new Object[n];
4542     int i = 0;
4543 jsr166 1.184 for (E e : this) {
4544 dl 1.142 if (i == n) {
4545     if (n >= MAX_ARRAY_SIZE)
4546     throw new OutOfMemoryError(oomeMsg);
4547     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4548     n = MAX_ARRAY_SIZE;
4549     else
4550     n += (n >>> 1) + 1;
4551     r = Arrays.copyOf(r, n);
4552     }
4553 jsr166 1.184 r[i++] = e;
4554 dl 1.142 }
4555     return (i == n) ? r : Arrays.copyOf(r, i);
4556     }
4557    
4558 jsr166 1.184 @SuppressWarnings("unchecked")
4559     public final <T> T[] toArray(T[] a) {
4560 dl 1.142 long sz = map.mappingCount();
4561 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4562 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4563     int m = (int)sz;
4564     T[] r = (a.length >= m) ? a :
4565     (T[])java.lang.reflect.Array
4566     .newInstance(a.getClass().getComponentType(), m);
4567     int n = r.length;
4568     int i = 0;
4569 jsr166 1.184 for (E e : this) {
4570 dl 1.142 if (i == n) {
4571     if (n >= MAX_ARRAY_SIZE)
4572     throw new OutOfMemoryError(oomeMsg);
4573     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4574     n = MAX_ARRAY_SIZE;
4575     else
4576     n += (n >>> 1) + 1;
4577     r = Arrays.copyOf(r, n);
4578     }
4579 jsr166 1.184 r[i++] = (T)e;
4580 dl 1.142 }
4581     if (a == r && i < n) {
4582     r[i] = null; // null-terminate
4583     return r;
4584     }
4585     return (i == n) ? r : Arrays.copyOf(r, i);
4586     }
4587    
4588 jsr166 1.184 /**
4589     * Returns a string representation of this collection.
4590     * The string representation consists of the string representations
4591     * of the collection's elements in the order they are returned by
4592     * its iterator, enclosed in square brackets ({@code "[]"}).
4593     * Adjacent elements are separated by the characters {@code ", "}
4594     * (comma and space). Elements are converted to strings as by
4595     * {@link String#valueOf(Object)}.
4596     *
4597     * @return a string representation of this collection
4598     */
4599 dl 1.142 public final String toString() {
4600     StringBuilder sb = new StringBuilder();
4601     sb.append('[');
4602 jsr166 1.184 Iterator<E> it = iterator();
4603 dl 1.142 if (it.hasNext()) {
4604     for (;;) {
4605     Object e = it.next();
4606     sb.append(e == this ? "(this Collection)" : e);
4607     if (!it.hasNext())
4608     break;
4609     sb.append(',').append(' ');
4610     }
4611     }
4612     return sb.append(']').toString();
4613     }
4614    
4615     public final boolean containsAll(Collection<?> c) {
4616     if (c != this) {
4617 jsr166 1.184 for (Object e : c) {
4618 dl 1.142 if (e == null || !contains(e))
4619     return false;
4620     }
4621     }
4622     return true;
4623     }
4624    
4625     public final boolean removeAll(Collection<?> c) {
4626     boolean modified = false;
4627 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4628 dl 1.142 if (c.contains(it.next())) {
4629     it.remove();
4630     modified = true;
4631     }
4632     }
4633     return modified;
4634     }
4635    
4636     public final boolean retainAll(Collection<?> c) {
4637     boolean modified = false;
4638 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4639 dl 1.142 if (!c.contains(it.next())) {
4640     it.remove();
4641     modified = true;
4642     }
4643     }
4644     return modified;
4645     }
4646    
4647     }
4648    
4649 jsr166 1.187 abstract static class CHMSetView<K,V,E>
4650     extends CHMCollectionView<K,V,E>
4651 jsr166 1.184 implements Set<E>, java.io.Serializable {
4652     private static final long serialVersionUID = 7249069246763182397L;
4653 jsr166 1.186 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4654 jsr166 1.184
4655     // Implement Set API
4656    
4657     /**
4658     * Implements {@link Set#hashCode()}.
4659     * @return the hash code value for this set
4660     */
4661     public final int hashCode() {
4662     int h = 0;
4663     for (E e : this)
4664     h += e.hashCode();
4665     return h;
4666     }
4667    
4668     /**
4669     * Implements {@link Set#equals(Object)}.
4670     * @param o object to be compared for equality with this set
4671     * @return {@code true} if the specified object is equal to this set
4672     */
4673     public final boolean equals(Object o) {
4674     Set<?> c;
4675     return ((o instanceof Set) &&
4676     ((c = (Set<?>)o) == this ||
4677     (containsAll(c) && c.containsAll(this))));
4678     }
4679     }
4680    
4681 dl 1.142 /**
4682     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4683     * which additions may optionally be enabled by mapping to a
4684 jsr166 1.185 * common value. This class cannot be directly instantiated.
4685     * See {@link #keySet() keySet()},
4686     * {@link #keySet(Object) keySet(V)},
4687     * {@link #newKeySet() newKeySet()},
4688     * {@link #newKeySet(int) newKeySet(int)}.
4689 dl 1.142 */
4690 jsr166 1.184 public static class KeySetView<K,V>
4691     extends CHMSetView<K,V,K>
4692     implements Set<K>, java.io.Serializable {
4693 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4694     private final V value;
4695 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4696 dl 1.142 super(map);
4697     this.value = value;
4698     }
4699    
4700     /**
4701     * Returns the default mapped value for additions,
4702     * or {@code null} if additions are not supported.
4703     *
4704     * @return the default mapped value for additions, or {@code null}
4705 jsr166 1.172 * if not supported
4706 dl 1.142 */
4707     public V getMappedValue() { return value; }
4708    
4709 jsr166 1.184 /**
4710     * {@inheritDoc}
4711     * @throws NullPointerException if the specified key is null
4712     */
4713     public boolean contains(Object o) { return map.containsKey(o); }
4714 dl 1.142
4715 jsr166 1.184 /**
4716     * Removes the key from this map view, by removing the key (and its
4717     * corresponding value) from the backing map. This method does
4718     * nothing if the key is not in the map.
4719     *
4720     * @param o the key to be removed from the backing map
4721     * @return {@code true} if the backing map contained the specified key
4722     * @throws NullPointerException if the specified key is null
4723     */
4724     public boolean remove(Object o) { return map.remove(o) != null; }
4725    
4726     /**
4727     * @return an iterator over the keys of the backing map
4728     */
4729     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4730 dl 1.142
4731     /**
4732 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4733     * the default mapped value in the backing map, if defined.
4734 dl 1.142 *
4735 jsr166 1.184 * @param e key to be added
4736     * @return {@code true} if this set changed as a result of the call
4737     * @throws NullPointerException if the specified key is null
4738     * @throws UnsupportedOperationException if no default mapped value
4739     * for additions was provided
4740 dl 1.142 */
4741     public boolean add(K e) {
4742     V v;
4743     if ((v = value) == null)
4744     throw new UnsupportedOperationException();
4745 dl 1.149 return map.internalPut(e, v, true) == null;
4746 dl 1.142 }
4747 jsr166 1.184
4748     /**
4749     * Adds all of the elements in the specified collection to this set,
4750     * as if by calling {@link #add} on each one.
4751     *
4752     * @param c the elements to be inserted into this set
4753     * @return {@code true} if this set changed as a result of the call
4754     * @throws NullPointerException if the collection or any of its
4755     * elements are {@code null}
4756     * @throws UnsupportedOperationException if no default mapped value
4757     * for additions was provided
4758     */
4759 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4760     boolean added = false;
4761     V v;
4762     if ((v = value) == null)
4763     throw new UnsupportedOperationException();
4764     for (K e : c) {
4765 dl 1.149 if (map.internalPut(e, v, true) == null)
4766 dl 1.142 added = true;
4767     }
4768     return added;
4769     }
4770 dl 1.153
4771 dl 1.191 Spliterator<K> spliterator() {
4772     return new KeyIterator<>(map, null);
4773     }
4774    
4775 dl 1.153 public Stream<K> stream() {
4776 dl 1.191 return Streams.stream(spliterator());
4777 dl 1.153 }
4778     public Stream<K> parallelStream() {
4779 dl 1.191 return Streams.parallelStream(spliterator());
4780 dl 1.153 }
4781 dl 1.142 }
4782    
4783     /**
4784     * A view of a ConcurrentHashMap as a {@link Collection} of
4785     * values, in which additions are disabled. This class cannot be
4786 jsr166 1.181 * directly instantiated. See {@link #values()}.
4787 dl 1.142 *
4788     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789     * that will never throw {@link ConcurrentModificationException},
4790     * and guarantees to traverse elements as they existed upon
4791     * construction of the iterator, and may (but is not guaranteed to)
4792     * reflect any modifications subsequent to construction.
4793     */
4794 jsr166 1.184 public static final class ValuesView<K,V>
4795     extends CHMCollectionView<K,V,V>
4796     implements Collection<V>, java.io.Serializable {
4797 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4798 jsr166 1.186 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4799 jsr166 1.184 public final boolean contains(Object o) {
4800     return map.containsValue(o);
4801     }
4802 dl 1.142 public final boolean remove(Object o) {
4803     if (o != null) {
4804 jsr166 1.184 for (Iterator<V> it = iterator(); it.hasNext();) {
4805 dl 1.142 if (o.equals(it.next())) {
4806     it.remove();
4807     return true;
4808     }
4809     }
4810     }
4811     return false;
4812     }
4813    
4814     /**
4815 jsr166 1.184 * @return an iterator over the values of the backing map
4816 dl 1.142 */
4817     public final Iterator<V> iterator() {
4818     return new ValueIterator<K,V>(map);
4819     }
4820 jsr166 1.184
4821     /** Always throws {@link UnsupportedOperationException}. */
4822 dl 1.142 public final boolean add(V e) {
4823     throw new UnsupportedOperationException();
4824     }
4825 jsr166 1.184 /** Always throws {@link UnsupportedOperationException}. */
4826 dl 1.142 public final boolean addAll(Collection<? extends V> c) {
4827     throw new UnsupportedOperationException();
4828     }
4829    
4830 dl 1.191 Spliterator<V> spliterator() {
4831     return new ValueIterator<K,V>(map, null);
4832     }
4833    
4834 dl 1.153 public Stream<V> stream() {
4835 dl 1.191 return Streams.stream(spliterator());
4836 dl 1.153 }
4837    
4838     public Stream<V> parallelStream() {
4839 dl 1.191 return Streams.parallelStream(spliterator());
4840 dl 1.153 }
4841    
4842 dl 1.142 }
4843    
4844     /**
4845     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4846     * entries. This class cannot be directly instantiated. See
4847 jsr166 1.180 * {@link #entrySet()}.
4848 dl 1.142 */
4849 jsr166 1.184 public static final class EntrySetView<K,V>
4850     extends CHMSetView<K,V,Map.Entry<K,V>>
4851     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4852 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4853 jsr166 1.186 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4854 jsr166 1.184
4855 dl 1.142 public final boolean contains(Object o) {
4856     Object k, v, r; Map.Entry<?,?> e;
4857     return ((o instanceof Map.Entry) &&
4858     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4859     (r = map.get(k)) != null &&
4860     (v = e.getValue()) != null &&
4861     (v == r || v.equals(r)));
4862     }
4863     public final boolean remove(Object o) {
4864     Object k, v; Map.Entry<?,?> e;
4865     return ((o instanceof Map.Entry) &&
4866     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4867     (v = e.getValue()) != null &&
4868     map.remove(k, v));
4869     }
4870    
4871     /**
4872 jsr166 1.184 * @return an iterator over the entries of the backing map
4873 dl 1.142 */
4874     public final Iterator<Map.Entry<K,V>> iterator() {
4875     return new EntryIterator<K,V>(map);
4876     }
4877    
4878 jsr166 1.184 /**
4879     * Adds the specified mapping to this view.
4880     *
4881     * @param e mapping to be added
4882     * @return {@code true} if this set changed as a result of the call
4883     * @throws NullPointerException if the entry, its key, or its
4884     * value is null
4885     */
4886 dl 1.142 public final boolean add(Entry<K,V> e) {
4887 jsr166 1.182 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4888 dl 1.142 }
4889 jsr166 1.184 /**
4890     * Adds all of the mappings in the specified collection to this
4891     * set, as if by calling {@link #add(Map.Entry)} on each one.
4892     * @param c the mappings to be inserted into this set
4893     * @return {@code true} if this set changed as a result of the call
4894     * @throws NullPointerException if the collection or any of its
4895     * entries, keys, or values are null
4896     */
4897 dl 1.142 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4898     boolean added = false;
4899     for (Entry<K,V> e : c) {
4900     if (add(e))
4901     added = true;
4902     }
4903     return added;
4904     }
4905 dl 1.153
4906 dl 1.191 Spliterator<Map.Entry<K,V>> spliterator() {
4907     return new EntryIterator<K,V>(map, null);
4908     }
4909    
4910 dl 1.153 public Stream<Map.Entry<K,V>> stream() {
4911 dl 1.191 return Streams.stream(spliterator());
4912 dl 1.153 }
4913    
4914     public Stream<Map.Entry<K,V>> parallelStream() {
4915 dl 1.191 return Streams.parallelStream(spliterator());
4916 dl 1.153 }
4917 dl 1.142 }
4918    
4919 dl 1.119 // ---------------------------------------------------------------------
4920    
4921     /**
4922     * Predefined tasks for performing bulk parallel operations on
4923     * ConcurrentHashMaps. These tasks follow the forms and rules used
4924 dl 1.137 * for bulk operations. Each method has the same name, but returns
4925     * a task rather than invoking it. These methods may be useful in
4926     * custom applications such as submitting a task without waiting
4927     * for completion, using a custom pool, or combining with other
4928     * tasks.
4929 dl 1.119 */
4930     public static class ForkJoinTasks {
4931     private ForkJoinTasks() {}
4932    
4933     /**
4934     * Returns a task that when invoked, performs the given
4935     * action for each (key, value)
4936     *
4937     * @param map the map
4938     * @param action the action
4939     * @return the task
4940     */
4941 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4942 dl 1.119 (ConcurrentHashMap<K,V> map,
4943 dl 1.171 BiConsumer<? super K, ? super V> action) {
4944 dl 1.119 if (action == null) throw new NullPointerException();
4945 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4946 dl 1.119 }
4947    
4948     /**
4949     * Returns a task that when invoked, performs the given
4950     * action for each non-null transformation of each (key, value)
4951     *
4952     * @param map the map
4953     * @param transformer a function returning the transformation
4954 jsr166 1.135 * for an element, or null if there is no transformation (in
4955 jsr166 1.134 * which case the action is not applied)
4956 dl 1.119 * @param action the action
4957     * @return the task
4958     */
4959 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4960 dl 1.119 (ConcurrentHashMap<K,V> map,
4961 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4962 dl 1.171 Consumer<? super U> action) {
4963 dl 1.119 if (transformer == null || action == null)
4964     throw new NullPointerException();
4965     return new ForEachTransformedMappingTask<K,V,U>
4966 dl 1.146 (map, null, -1, transformer, action);
4967 dl 1.119 }
4968    
4969     /**
4970 dl 1.126 * Returns a task that when invoked, returns a non-null result
4971     * from applying the given search function on each (key,
4972     * value), or null if none. Upon success, further element
4973     * processing is suppressed and the results of any other
4974     * parallel invocations of the search function are ignored.
4975 dl 1.119 *
4976     * @param map the map
4977     * @param searchFunction a function returning a non-null
4978     * result on success, else null
4979     * @return the task
4980     */
4981     public static <K,V,U> ForkJoinTask<U> search
4982     (ConcurrentHashMap<K,V> map,
4983 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4984 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4985     return new SearchMappingsTask<K,V,U>
4986 dl 1.146 (map, null, -1, searchFunction,
4987 dl 1.119 new AtomicReference<U>());
4988     }
4989    
4990     /**
4991     * Returns a task that when invoked, returns the result of
4992     * accumulating the given transformation of all (key, value) pairs
4993     * using the given reducer to combine values, or null if none.
4994     *
4995     * @param map the map
4996     * @param transformer a function returning the transformation
4997 jsr166 1.135 * for an element, or null if there is no transformation (in
4998 jsr166 1.172 * which case it is not combined)
4999 dl 1.119 * @param reducer a commutative associative combining function
5000     * @return the task
5001     */
5002     public static <K,V,U> ForkJoinTask<U> reduce
5003     (ConcurrentHashMap<K,V> map,
5004 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5005     BiFunction<? super U, ? super U, ? extends U> reducer) {
5006 dl 1.119 if (transformer == null || reducer == null)
5007     throw new NullPointerException();
5008     return new MapReduceMappingsTask<K,V,U>
5009 dl 1.130 (map, null, -1, null, transformer, reducer);
5010 dl 1.119 }
5011    
5012     /**
5013     * Returns a task that when invoked, returns the result of
5014     * accumulating the given transformation of all (key, value) pairs
5015     * using the given reducer to combine values, and the given
5016     * basis as an identity value.
5017     *
5018     * @param map the map
5019     * @param transformer a function returning the transformation
5020     * for an element
5021     * @param basis the identity (initial default value) for the reduction
5022     * @param reducer a commutative associative combining function
5023     * @return the task
5024     */
5025     public static <K,V> ForkJoinTask<Double> reduceToDouble
5026     (ConcurrentHashMap<K,V> map,
5027 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5028 dl 1.119 double basis,
5029 dl 1.153 DoubleBinaryOperator reducer) {
5030 dl 1.119 if (transformer == null || reducer == null)
5031     throw new NullPointerException();
5032     return new MapReduceMappingsToDoubleTask<K,V>
5033 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5034 dl 1.119 }
5035    
5036     /**
5037     * Returns a task that when invoked, returns the result of
5038     * accumulating the given transformation of all (key, value) pairs
5039     * using the given reducer to combine values, and the given
5040     * basis as an identity value.
5041     *
5042     * @param map the map
5043     * @param transformer a function returning the transformation
5044     * for an element
5045     * @param basis the identity (initial default value) for the reduction
5046     * @param reducer a commutative associative combining function
5047     * @return the task
5048     */
5049     public static <K,V> ForkJoinTask<Long> reduceToLong
5050     (ConcurrentHashMap<K,V> map,
5051 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5052 dl 1.119 long basis,
5053 dl 1.153 LongBinaryOperator reducer) {
5054 dl 1.119 if (transformer == null || reducer == null)
5055     throw new NullPointerException();
5056     return new MapReduceMappingsToLongTask<K,V>
5057 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5058 dl 1.119 }
5059    
5060     /**
5061     * Returns a task that when invoked, returns the result of
5062     * accumulating the given transformation of all (key, value) pairs
5063     * using the given reducer to combine values, and the given
5064     * basis as an identity value.
5065     *
5066 jsr166 1.179 * @param map the map
5067 dl 1.119 * @param transformer a function returning the transformation
5068     * for an element
5069     * @param basis the identity (initial default value) for the reduction
5070     * @param reducer a commutative associative combining function
5071     * @return the task
5072     */
5073     public static <K,V> ForkJoinTask<Integer> reduceToInt
5074     (ConcurrentHashMap<K,V> map,
5075 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
5076 dl 1.119 int basis,
5077 dl 1.153 IntBinaryOperator reducer) {
5078 dl 1.119 if (transformer == null || reducer == null)
5079     throw new NullPointerException();
5080     return new MapReduceMappingsToIntTask<K,V>
5081 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5082 dl 1.119 }
5083    
5084     /**
5085     * Returns a task that when invoked, performs the given action
5086 jsr166 1.123 * for each key.
5087 dl 1.119 *
5088     * @param map the map
5089     * @param action the action
5090     * @return the task
5091     */
5092 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
5093 dl 1.119 (ConcurrentHashMap<K,V> map,
5094 dl 1.171 Consumer<? super K> action) {
5095 dl 1.119 if (action == null) throw new NullPointerException();
5096 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
5097 dl 1.119 }
5098    
5099     /**
5100     * Returns a task that when invoked, performs the given action
5101 jsr166 1.123 * for each non-null transformation of each key.
5102 dl 1.119 *
5103     * @param map the map
5104     * @param transformer a function returning the transformation
5105 jsr166 1.135 * for an element, or null if there is no transformation (in
5106 jsr166 1.134 * which case the action is not applied)
5107 dl 1.119 * @param action the action
5108     * @return the task
5109     */
5110 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
5111 dl 1.119 (ConcurrentHashMap<K,V> map,
5112 dl 1.153 Function<? super K, ? extends U> transformer,
5113 dl 1.171 Consumer<? super U> action) {
5114 dl 1.119 if (transformer == null || action == null)
5115     throw new NullPointerException();
5116     return new ForEachTransformedKeyTask<K,V,U>
5117 dl 1.146 (map, null, -1, transformer, action);
5118 dl 1.119 }
5119    
5120     /**
5121     * Returns a task that when invoked, returns a non-null result
5122     * from applying the given search function on each key, or
5123 dl 1.126 * null if none. Upon success, further element processing is
5124     * suppressed and the results of any other parallel
5125     * invocations of the search function are ignored.
5126 dl 1.119 *
5127     * @param map the map
5128     * @param searchFunction a function returning a non-null
5129     * result on success, else null
5130     * @return the task
5131     */
5132     public static <K,V,U> ForkJoinTask<U> searchKeys
5133     (ConcurrentHashMap<K,V> map,
5134 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5135 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5136     return new SearchKeysTask<K,V,U>
5137 dl 1.146 (map, null, -1, searchFunction,
5138 dl 1.119 new AtomicReference<U>());
5139     }
5140    
5141     /**
5142     * Returns a task that when invoked, returns the result of
5143     * accumulating all keys using the given reducer to combine
5144     * values, or null if none.
5145     *
5146     * @param map the map
5147     * @param reducer a commutative associative combining function
5148     * @return the task
5149     */
5150     public static <K,V> ForkJoinTask<K> reduceKeys
5151     (ConcurrentHashMap<K,V> map,
5152 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5153 dl 1.119 if (reducer == null) throw new NullPointerException();
5154     return new ReduceKeysTask<K,V>
5155 dl 1.130 (map, null, -1, null, reducer);
5156 dl 1.119 }
5157 jsr166 1.125
5158 dl 1.119 /**
5159     * Returns a task that when invoked, returns the result of
5160     * accumulating the given transformation of all keys using the given
5161     * reducer to combine values, or null if none.
5162     *
5163     * @param map the map
5164     * @param transformer a function returning the transformation
5165 jsr166 1.135 * for an element, or null if there is no transformation (in
5166 jsr166 1.172 * which case it is not combined)
5167 dl 1.119 * @param reducer a commutative associative combining function
5168     * @return the task
5169     */
5170     public static <K,V,U> ForkJoinTask<U> reduceKeys
5171     (ConcurrentHashMap<K,V> map,
5172 dl 1.153 Function<? super K, ? extends U> transformer,
5173     BiFunction<? super U, ? super U, ? extends U> reducer) {
5174 dl 1.119 if (transformer == null || reducer == null)
5175     throw new NullPointerException();
5176     return new MapReduceKeysTask<K,V,U>
5177 dl 1.130 (map, null, -1, null, transformer, reducer);
5178 dl 1.119 }
5179    
5180     /**
5181     * Returns a task that when invoked, returns the result of
5182     * accumulating the given transformation of all keys using the given
5183     * reducer to combine values, and the given basis as an
5184     * identity value.
5185     *
5186     * @param map the map
5187     * @param transformer a function returning the transformation
5188     * for an element
5189     * @param basis the identity (initial default value) for the reduction
5190     * @param reducer a commutative associative combining function
5191     * @return the task
5192     */
5193     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5194     (ConcurrentHashMap<K,V> map,
5195 dl 1.171 ToDoubleFunction<? super K> transformer,
5196 dl 1.119 double basis,
5197 dl 1.153 DoubleBinaryOperator reducer) {
5198 dl 1.119 if (transformer == null || reducer == null)
5199     throw new NullPointerException();
5200     return new MapReduceKeysToDoubleTask<K,V>
5201 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5202 dl 1.119 }
5203    
5204     /**
5205     * Returns a task that when invoked, returns the result of
5206     * accumulating the given transformation of all keys using the given
5207     * reducer to combine values, and the given basis as an
5208     * identity value.
5209     *
5210     * @param map the map
5211     * @param transformer a function returning the transformation
5212     * for an element
5213     * @param basis the identity (initial default value) for the reduction
5214     * @param reducer a commutative associative combining function
5215     * @return the task
5216     */
5217     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5218     (ConcurrentHashMap<K,V> map,
5219 dl 1.171 ToLongFunction<? super K> transformer,
5220 dl 1.119 long basis,
5221 dl 1.153 LongBinaryOperator reducer) {
5222 dl 1.119 if (transformer == null || reducer == null)
5223     throw new NullPointerException();
5224     return new MapReduceKeysToLongTask<K,V>
5225 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5226 dl 1.119 }
5227    
5228     /**
5229     * Returns a task that when invoked, returns the result of
5230     * accumulating the given transformation of all keys using the given
5231     * reducer to combine values, and the given basis as an
5232     * identity value.
5233     *
5234     * @param map the map
5235     * @param transformer a function returning the transformation
5236     * for an element
5237     * @param basis the identity (initial default value) for the reduction
5238     * @param reducer a commutative associative combining function
5239     * @return the task
5240     */
5241     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5242     (ConcurrentHashMap<K,V> map,
5243 dl 1.171 ToIntFunction<? super K> transformer,
5244 dl 1.119 int basis,
5245 dl 1.153 IntBinaryOperator reducer) {
5246 dl 1.119 if (transformer == null || reducer == null)
5247     throw new NullPointerException();
5248     return new MapReduceKeysToIntTask<K,V>
5249 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5250 dl 1.119 }
5251    
5252     /**
5253     * Returns a task that when invoked, performs the given action
5254 jsr166 1.123 * for each value.
5255 dl 1.119 *
5256     * @param map the map
5257     * @param action the action
5258 jsr166 1.173 * @return the task
5259 dl 1.119 */
5260 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5261 dl 1.119 (ConcurrentHashMap<K,V> map,
5262 dl 1.171 Consumer<? super V> action) {
5263 dl 1.119 if (action == null) throw new NullPointerException();
5264 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5265 dl 1.119 }
5266    
5267     /**
5268     * Returns a task that when invoked, performs the given action
5269 jsr166 1.123 * for each non-null transformation of each value.
5270 dl 1.119 *
5271     * @param map the map
5272     * @param transformer a function returning the transformation
5273 jsr166 1.135 * for an element, or null if there is no transformation (in
5274 jsr166 1.134 * which case the action is not applied)
5275 dl 1.119 * @param action the action
5276 jsr166 1.173 * @return the task
5277 dl 1.119 */
5278 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5279 dl 1.119 (ConcurrentHashMap<K,V> map,
5280 dl 1.153 Function<? super V, ? extends U> transformer,
5281 dl 1.171 Consumer<? super U> action) {
5282 dl 1.119 if (transformer == null || action == null)
5283     throw new NullPointerException();
5284     return new ForEachTransformedValueTask<K,V,U>
5285 dl 1.146 (map, null, -1, transformer, action);
5286 dl 1.119 }
5287    
5288     /**
5289     * Returns a task that when invoked, returns a non-null result
5290     * from applying the given search function on each value, or
5291 dl 1.126 * null if none. Upon success, further element processing is
5292     * suppressed and the results of any other parallel
5293     * invocations of the search function are ignored.
5294 dl 1.119 *
5295     * @param map the map
5296     * @param searchFunction a function returning a non-null
5297     * result on success, else null
5298     * @return the task
5299     */
5300     public static <K,V,U> ForkJoinTask<U> searchValues
5301     (ConcurrentHashMap<K,V> map,
5302 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5303 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5304     return new SearchValuesTask<K,V,U>
5305 dl 1.146 (map, null, -1, searchFunction,
5306 dl 1.119 new AtomicReference<U>());
5307     }
5308    
5309     /**
5310     * Returns a task that when invoked, returns the result of
5311     * accumulating all values using the given reducer to combine
5312     * values, or null if none.
5313     *
5314     * @param map the map
5315     * @param reducer a commutative associative combining function
5316     * @return the task
5317     */
5318     public static <K,V> ForkJoinTask<V> reduceValues
5319     (ConcurrentHashMap<K,V> map,
5320 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5321 dl 1.119 if (reducer == null) throw new NullPointerException();
5322     return new ReduceValuesTask<K,V>
5323 dl 1.130 (map, null, -1, null, reducer);
5324 dl 1.119 }
5325    
5326     /**
5327     * Returns a task that when invoked, returns the result of
5328     * accumulating the given transformation of all values using the
5329     * given reducer to combine values, or null if none.
5330     *
5331     * @param map the map
5332     * @param transformer a function returning the transformation
5333 jsr166 1.135 * for an element, or null if there is no transformation (in
5334 jsr166 1.172 * which case it is not combined)
5335 dl 1.119 * @param reducer a commutative associative combining function
5336     * @return the task
5337     */
5338     public static <K,V,U> ForkJoinTask<U> reduceValues
5339     (ConcurrentHashMap<K,V> map,
5340 dl 1.153 Function<? super V, ? extends U> transformer,
5341     BiFunction<? super U, ? super U, ? extends U> reducer) {
5342 dl 1.119 if (transformer == null || reducer == null)
5343     throw new NullPointerException();
5344     return new MapReduceValuesTask<K,V,U>
5345 dl 1.130 (map, null, -1, null, transformer, reducer);
5346 dl 1.119 }
5347    
5348     /**
5349     * Returns a task that when invoked, returns the result of
5350     * accumulating the given transformation of all values using the
5351     * given reducer to combine values, and the given basis as an
5352     * identity value.
5353     *
5354     * @param map the map
5355     * @param transformer a function returning the transformation
5356     * for an element
5357     * @param basis the identity (initial default value) for the reduction
5358     * @param reducer a commutative associative combining function
5359     * @return the task
5360     */
5361     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5362     (ConcurrentHashMap<K,V> map,
5363 dl 1.171 ToDoubleFunction<? super V> transformer,
5364 dl 1.119 double basis,
5365 dl 1.153 DoubleBinaryOperator reducer) {
5366 dl 1.119 if (transformer == null || reducer == null)
5367     throw new NullPointerException();
5368     return new MapReduceValuesToDoubleTask<K,V>
5369 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5370 dl 1.119 }
5371    
5372     /**
5373     * Returns a task that when invoked, returns the result of
5374     * accumulating the given transformation of all values using the
5375     * given reducer to combine values, and the given basis as an
5376     * identity value.
5377     *
5378     * @param map the map
5379     * @param transformer a function returning the transformation
5380     * for an element
5381     * @param basis the identity (initial default value) for the reduction
5382     * @param reducer a commutative associative combining function
5383     * @return the task
5384     */
5385     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5386     (ConcurrentHashMap<K,V> map,
5387 dl 1.171 ToLongFunction<? super V> transformer,
5388 dl 1.119 long basis,
5389 dl 1.153 LongBinaryOperator reducer) {
5390 dl 1.119 if (transformer == null || reducer == null)
5391     throw new NullPointerException();
5392     return new MapReduceValuesToLongTask<K,V>
5393 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5394 dl 1.119 }
5395    
5396     /**
5397     * Returns a task that when invoked, returns the result of
5398     * accumulating the given transformation of all values using the
5399     * given reducer to combine values, and the given basis as an
5400     * identity value.
5401     *
5402     * @param map the map
5403     * @param transformer a function returning the transformation
5404     * for an element
5405     * @param basis the identity (initial default value) for the reduction
5406     * @param reducer a commutative associative combining function
5407     * @return the task
5408     */
5409     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5410     (ConcurrentHashMap<K,V> map,
5411 dl 1.171 ToIntFunction<? super V> transformer,
5412 dl 1.119 int basis,
5413 dl 1.153 IntBinaryOperator reducer) {
5414 dl 1.119 if (transformer == null || reducer == null)
5415     throw new NullPointerException();
5416     return new MapReduceValuesToIntTask<K,V>
5417 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5418 dl 1.119 }
5419    
5420     /**
5421     * Returns a task that when invoked, perform the given action
5422 jsr166 1.123 * for each entry.
5423 dl 1.119 *
5424     * @param map the map
5425     * @param action the action
5426 jsr166 1.173 * @return the task
5427 dl 1.119 */
5428 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5429 dl 1.119 (ConcurrentHashMap<K,V> map,
5430 dl 1.171 Consumer<? super Map.Entry<K,V>> action) {
5431 dl 1.119 if (action == null) throw new NullPointerException();
5432 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5433 dl 1.119 }
5434    
5435     /**
5436     * Returns a task that when invoked, perform the given action
5437 jsr166 1.123 * for each non-null transformation of each entry.
5438 dl 1.119 *
5439     * @param map the map
5440     * @param transformer a function returning the transformation
5441 jsr166 1.135 * for an element, or null if there is no transformation (in
5442 jsr166 1.134 * which case the action is not applied)
5443 dl 1.119 * @param action the action
5444 jsr166 1.173 * @return the task
5445 dl 1.119 */
5446 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5447 dl 1.119 (ConcurrentHashMap<K,V> map,
5448 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5449 dl 1.171 Consumer<? super U> action) {
5450 dl 1.119 if (transformer == null || action == null)
5451     throw new NullPointerException();
5452     return new ForEachTransformedEntryTask<K,V,U>
5453 dl 1.146 (map, null, -1, transformer, action);
5454 dl 1.119 }
5455    
5456     /**
5457     * Returns a task that when invoked, returns a non-null result
5458     * from applying the given search function on each entry, or
5459 dl 1.126 * null if none. Upon success, further element processing is
5460     * suppressed and the results of any other parallel
5461     * invocations of the search function are ignored.
5462 dl 1.119 *
5463     * @param map the map
5464     * @param searchFunction a function returning a non-null
5465     * result on success, else null
5466     * @return the task
5467     */
5468     public static <K,V,U> ForkJoinTask<U> searchEntries
5469     (ConcurrentHashMap<K,V> map,
5470 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5471 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5472     return new SearchEntriesTask<K,V,U>
5473 dl 1.146 (map, null, -1, searchFunction,
5474 dl 1.119 new AtomicReference<U>());
5475     }
5476    
5477     /**
5478     * Returns a task that when invoked, returns the result of
5479     * accumulating all entries using the given reducer to combine
5480     * values, or null if none.
5481     *
5482     * @param map the map
5483     * @param reducer a commutative associative combining function
5484     * @return the task
5485     */
5486     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5487     (ConcurrentHashMap<K,V> map,
5488 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5489 dl 1.119 if (reducer == null) throw new NullPointerException();
5490     return new ReduceEntriesTask<K,V>
5491 dl 1.130 (map, null, -1, null, reducer);
5492 dl 1.119 }
5493    
5494     /**
5495     * Returns a task that when invoked, returns the result of
5496     * accumulating the given transformation of all entries using the
5497     * given reducer to combine values, or null if none.
5498     *
5499     * @param map the map
5500     * @param transformer a function returning the transformation
5501 jsr166 1.135 * for an element, or null if there is no transformation (in
5502 jsr166 1.172 * which case it is not combined)
5503 dl 1.119 * @param reducer a commutative associative combining function
5504     * @return the task
5505     */
5506     public static <K,V,U> ForkJoinTask<U> reduceEntries
5507     (ConcurrentHashMap<K,V> map,
5508 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5509     BiFunction<? super U, ? super U, ? extends U> reducer) {
5510 dl 1.119 if (transformer == null || reducer == null)
5511     throw new NullPointerException();
5512     return new MapReduceEntriesTask<K,V,U>
5513 dl 1.130 (map, null, -1, null, transformer, reducer);
5514 dl 1.119 }
5515    
5516     /**
5517     * Returns a task that when invoked, returns the result of
5518     * accumulating the given transformation of all entries using the
5519     * given reducer to combine values, and the given basis as an
5520     * identity value.
5521     *
5522     * @param map the map
5523     * @param transformer a function returning the transformation
5524     * for an element
5525     * @param basis the identity (initial default value) for the reduction
5526     * @param reducer a commutative associative combining function
5527     * @return the task
5528     */
5529     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5530     (ConcurrentHashMap<K,V> map,
5531 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5532 dl 1.119 double basis,
5533 dl 1.153 DoubleBinaryOperator reducer) {
5534 dl 1.119 if (transformer == null || reducer == null)
5535     throw new NullPointerException();
5536     return new MapReduceEntriesToDoubleTask<K,V>
5537 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5538 dl 1.119 }
5539    
5540     /**
5541     * Returns a task that when invoked, returns the result of
5542     * accumulating the given transformation of all entries using the
5543     * given reducer to combine values, and the given basis as an
5544     * identity value.
5545     *
5546     * @param map the map
5547     * @param transformer a function returning the transformation
5548     * for an element
5549     * @param basis the identity (initial default value) for the reduction
5550     * @param reducer a commutative associative combining function
5551     * @return the task
5552     */
5553     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5554     (ConcurrentHashMap<K,V> map,
5555 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5556 dl 1.119 long basis,
5557 dl 1.153 LongBinaryOperator reducer) {
5558 dl 1.119 if (transformer == null || reducer == null)
5559     throw new NullPointerException();
5560     return new MapReduceEntriesToLongTask<K,V>
5561 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5562 dl 1.119 }
5563    
5564     /**
5565     * Returns a task that when invoked, returns the result of
5566     * accumulating the given transformation of all entries using the
5567     * given reducer to combine values, and the given basis as an
5568     * identity value.
5569     *
5570     * @param map the map
5571     * @param transformer a function returning the transformation
5572     * for an element
5573     * @param basis the identity (initial default value) for the reduction
5574     * @param reducer a commutative associative combining function
5575     * @return the task
5576     */
5577     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5578     (ConcurrentHashMap<K,V> map,
5579 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5580 dl 1.119 int basis,
5581 dl 1.153 IntBinaryOperator reducer) {
5582 dl 1.119 if (transformer == null || reducer == null)
5583     throw new NullPointerException();
5584     return new MapReduceEntriesToIntTask<K,V>
5585 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5586 dl 1.119 }
5587     }
5588    
5589     // -------------------------------------------------------
5590    
5591     /*
5592     * Task classes. Coded in a regular but ugly format/style to
5593     * simplify checks that each variant differs in the right way from
5594 dl 1.149 * others. The null screenings exist because compilers cannot tell
5595     * that we've already null-checked task arguments, so we force
5596     * simplest hoisted bypass to help avoid convoluted traps.
5597 dl 1.119 */
5598    
5599 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5600 dl 1.146 extends Traverser<K,V,Void> {
5601 dl 1.171 final Consumer<? super K> action;
5602 dl 1.119 ForEachKeyTask
5603 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5604 dl 1.171 Consumer<? super K> action) {
5605 dl 1.146 super(m, p, b);
5606 dl 1.119 this.action = action;
5607     }
5608 jsr166 1.168 public final void compute() {
5609 dl 1.171 final Consumer<? super K> action;
5610 dl 1.149 if ((action = this.action) != null) {
5611     for (int b; (b = preSplit()) > 0;)
5612     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5613 dl 1.191 K k;
5614     while ((k = advanceKey()) != null)
5615     action.accept(k);
5616 dl 1.149 propagateCompletion();
5617     }
5618 dl 1.119 }
5619     }
5620    
5621 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5622 dl 1.146 extends Traverser<K,V,Void> {
5623 dl 1.171 final Consumer<? super V> action;
5624 dl 1.119 ForEachValueTask
5625 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5626 dl 1.171 Consumer<? super V> action) {
5627 dl 1.146 super(m, p, b);
5628 dl 1.119 this.action = action;
5629     }
5630 jsr166 1.168 public final void compute() {
5631 dl 1.171 final Consumer<? super V> action;
5632 dl 1.149 if ((action = this.action) != null) {
5633     for (int b; (b = preSplit()) > 0;)
5634     new ForEachValueTask<K,V>(map, this, b, action).fork();
5635 dl 1.151 V v;
5636 dl 1.191 while ((v = advanceValue()) != null)
5637 dl 1.153 action.accept(v);
5638 dl 1.149 propagateCompletion();
5639     }
5640 dl 1.119 }
5641     }
5642    
5643 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5644 dl 1.146 extends Traverser<K,V,Void> {
5645 dl 1.171 final Consumer<? super Entry<K,V>> action;
5646 dl 1.119 ForEachEntryTask
5647 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5648 dl 1.171 Consumer<? super Entry<K,V>> action) {
5649 dl 1.146 super(m, p, b);
5650 dl 1.119 this.action = action;
5651     }
5652 jsr166 1.168 public final void compute() {
5653 dl 1.171 final Consumer<? super Entry<K,V>> action;
5654 dl 1.149 if ((action = this.action) != null) {
5655     for (int b; (b = preSplit()) > 0;)
5656     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5657 dl 1.151 V v;
5658 dl 1.191 while ((v = advanceValue()) != null)
5659 jsr166 1.168 action.accept(entryFor(nextKey, v));
5660 dl 1.149 propagateCompletion();
5661     }
5662 dl 1.119 }
5663     }
5664    
5665 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5666 dl 1.146 extends Traverser<K,V,Void> {
5667 dl 1.171 final BiConsumer<? super K, ? super V> action;
5668 dl 1.119 ForEachMappingTask
5669 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5670 dl 1.171 BiConsumer<? super K,? super V> action) {
5671 dl 1.146 super(m, p, b);
5672 dl 1.119 this.action = action;
5673     }
5674 jsr166 1.168 public final void compute() {
5675 dl 1.171 final BiConsumer<? super K, ? super V> action;
5676 dl 1.149 if ((action = this.action) != null) {
5677     for (int b; (b = preSplit()) > 0;)
5678     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5679 dl 1.151 V v;
5680 dl 1.191 while ((v = advanceValue()) != null)
5681 jsr166 1.168 action.accept(nextKey, v);
5682 dl 1.149 propagateCompletion();
5683     }
5684 dl 1.119 }
5685     }
5686    
5687 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5688 dl 1.146 extends Traverser<K,V,Void> {
5689 dl 1.153 final Function<? super K, ? extends U> transformer;
5690 dl 1.171 final Consumer<? super U> action;
5691 dl 1.119 ForEachTransformedKeyTask
5692 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5693 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5694 dl 1.146 super(m, p, b);
5695     this.transformer = transformer; this.action = action;
5696     }
5697 jsr166 1.168 public final void compute() {
5698 dl 1.153 final Function<? super K, ? extends U> transformer;
5699 dl 1.171 final Consumer<? super U> action;
5700 dl 1.149 if ((transformer = this.transformer) != null &&
5701     (action = this.action) != null) {
5702     for (int b; (b = preSplit()) > 0;)
5703     new ForEachTransformedKeyTask<K,V,U>
5704     (map, this, b, transformer, action).fork();
5705 dl 1.191 K k; U u;
5706     while ((k = advanceKey()) != null) {
5707     if ((u = transformer.apply(k)) != null)
5708 dl 1.153 action.accept(u);
5709 dl 1.149 }
5710     propagateCompletion();
5711 dl 1.119 }
5712     }
5713     }
5714    
5715 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5716 dl 1.146 extends Traverser<K,V,Void> {
5717 dl 1.153 final Function<? super V, ? extends U> transformer;
5718 dl 1.171 final Consumer<? super U> action;
5719 dl 1.119 ForEachTransformedValueTask
5720 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5721 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5722 dl 1.146 super(m, p, b);
5723     this.transformer = transformer; this.action = action;
5724     }
5725 jsr166 1.168 public final void compute() {
5726 dl 1.153 final Function<? super V, ? extends U> transformer;
5727 dl 1.171 final Consumer<? super U> action;
5728 dl 1.149 if ((transformer = this.transformer) != null &&
5729     (action = this.action) != null) {
5730     for (int b; (b = preSplit()) > 0;)
5731     new ForEachTransformedValueTask<K,V,U>
5732     (map, this, b, transformer, action).fork();
5733 dl 1.151 V v; U u;
5734 dl 1.191 while ((v = advanceValue()) != null) {
5735 dl 1.151 if ((u = transformer.apply(v)) != null)
5736 dl 1.153 action.accept(u);
5737 dl 1.149 }
5738     propagateCompletion();
5739 dl 1.119 }
5740     }
5741 tim 1.1 }
5742    
5743 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5744 dl 1.146 extends Traverser<K,V,Void> {
5745 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5746 dl 1.171 final Consumer<? super U> action;
5747 dl 1.119 ForEachTransformedEntryTask
5748 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5749 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5750 dl 1.146 super(m, p, b);
5751     this.transformer = transformer; this.action = action;
5752     }
5753 jsr166 1.168 public final void compute() {
5754 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5755 dl 1.171 final Consumer<? super U> action;
5756 dl 1.149 if ((transformer = this.transformer) != null &&
5757     (action = this.action) != null) {
5758     for (int b; (b = preSplit()) > 0;)
5759     new ForEachTransformedEntryTask<K,V,U>
5760     (map, this, b, transformer, action).fork();
5761 dl 1.151 V v; U u;
5762 dl 1.191 while ((v = advanceValue()) != null) {
5763 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5764 dl 1.151 v))) != null)
5765 dl 1.153 action.accept(u);
5766 dl 1.149 }
5767     propagateCompletion();
5768 dl 1.119 }
5769     }
5770 tim 1.1 }
5771    
5772 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5773 dl 1.146 extends Traverser<K,V,Void> {
5774 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5775 dl 1.171 final Consumer<? super U> action;
5776 dl 1.119 ForEachTransformedMappingTask
5777 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5778 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5779 dl 1.171 Consumer<? super U> action) {
5780 dl 1.146 super(m, p, b);
5781     this.transformer = transformer; this.action = action;
5782 dl 1.119 }
5783 jsr166 1.168 public final void compute() {
5784 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5785 dl 1.171 final Consumer<? super U> action;
5786 dl 1.149 if ((transformer = this.transformer) != null &&
5787     (action = this.action) != null) {
5788     for (int b; (b = preSplit()) > 0;)
5789     new ForEachTransformedMappingTask<K,V,U>
5790     (map, this, b, transformer, action).fork();
5791 dl 1.151 V v; U u;
5792 dl 1.191 while ((v = advanceValue()) != null) {
5793 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5794 dl 1.153 action.accept(u);
5795 dl 1.149 }
5796     propagateCompletion();
5797 dl 1.119 }
5798     }
5799 tim 1.1 }
5800    
5801 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5802 dl 1.146 extends Traverser<K,V,U> {
5803 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5804 dl 1.119 final AtomicReference<U> result;
5805     SearchKeysTask
5806 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5807 dl 1.153 Function<? super K, ? extends U> searchFunction,
5808 dl 1.119 AtomicReference<U> result) {
5809 dl 1.146 super(m, p, b);
5810 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5811     }
5812 dl 1.146 public final U getRawResult() { return result.get(); }
5813 jsr166 1.168 public final void compute() {
5814 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5815 dl 1.146 final AtomicReference<U> result;
5816 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5817     (result = this.result) != null) {
5818     for (int b;;) {
5819     if (result.get() != null)
5820     return;
5821     if ((b = preSplit()) <= 0)
5822     break;
5823     new SearchKeysTask<K,V,U>
5824     (map, this, b, searchFunction, result).fork();
5825 dl 1.128 }
5826 dl 1.149 while (result.get() == null) {
5827 dl 1.191 K k; U u;
5828     if ((k = advanceKey()) == null) {
5829 dl 1.149 propagateCompletion();
5830     break;
5831     }
5832 dl 1.191 if ((u = searchFunction.apply(k)) != null) {
5833 dl 1.149 if (result.compareAndSet(null, u))
5834     quietlyCompleteRoot();
5835     break;
5836     }
5837 dl 1.119 }
5838     }
5839     }
5840 tim 1.1 }
5841    
5842 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5843 dl 1.146 extends Traverser<K,V,U> {
5844 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5845 dl 1.119 final AtomicReference<U> result;
5846     SearchValuesTask
5847 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5848 dl 1.153 Function<? super V, ? extends U> searchFunction,
5849 dl 1.119 AtomicReference<U> result) {
5850 dl 1.146 super(m, p, b);
5851 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5852     }
5853 dl 1.146 public final U getRawResult() { return result.get(); }
5854 jsr166 1.168 public final void compute() {
5855 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5856 dl 1.146 final AtomicReference<U> result;
5857 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5858     (result = this.result) != null) {
5859     for (int b;;) {
5860     if (result.get() != null)
5861     return;
5862     if ((b = preSplit()) <= 0)
5863     break;
5864     new SearchValuesTask<K,V,U>
5865     (map, this, b, searchFunction, result).fork();
5866 dl 1.128 }
5867 dl 1.149 while (result.get() == null) {
5868 dl 1.151 V v; U u;
5869 dl 1.191 if ((v = advanceValue()) == null) {
5870 dl 1.149 propagateCompletion();
5871     break;
5872     }
5873 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5874 dl 1.149 if (result.compareAndSet(null, u))
5875     quietlyCompleteRoot();
5876     break;
5877     }
5878 dl 1.119 }
5879     }
5880     }
5881     }
5882 tim 1.11
5883 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5884 dl 1.146 extends Traverser<K,V,U> {
5885 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5886 dl 1.119 final AtomicReference<U> result;
5887     SearchEntriesTask
5888 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5889 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5890 dl 1.119 AtomicReference<U> result) {
5891 dl 1.146 super(m, p, b);
5892 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5893     }
5894 dl 1.146 public final U getRawResult() { return result.get(); }
5895 jsr166 1.168 public final void compute() {
5896 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5897 dl 1.146 final AtomicReference<U> result;
5898 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5899     (result = this.result) != null) {
5900     for (int b;;) {
5901     if (result.get() != null)
5902     return;
5903     if ((b = preSplit()) <= 0)
5904     break;
5905     new SearchEntriesTask<K,V,U>
5906     (map, this, b, searchFunction, result).fork();
5907 dl 1.128 }
5908 dl 1.149 while (result.get() == null) {
5909 dl 1.151 V v; U u;
5910 dl 1.191 if ((v = advanceValue()) == null) {
5911 dl 1.149 propagateCompletion();
5912     break;
5913     }
5914 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5915 dl 1.151 v))) != null) {
5916 dl 1.149 if (result.compareAndSet(null, u))
5917     quietlyCompleteRoot();
5918     return;
5919     }
5920 dl 1.119 }
5921     }
5922     }
5923     }
5924 tim 1.1
5925 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5926 dl 1.146 extends Traverser<K,V,U> {
5927 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5928 dl 1.119 final AtomicReference<U> result;
5929     SearchMappingsTask
5930 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5931 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5932 dl 1.119 AtomicReference<U> result) {
5933 dl 1.146 super(m, p, b);
5934 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5935     }
5936 dl 1.146 public final U getRawResult() { return result.get(); }
5937 jsr166 1.168 public final void compute() {
5938 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5939 dl 1.146 final AtomicReference<U> result;
5940 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5941     (result = this.result) != null) {
5942     for (int b;;) {
5943     if (result.get() != null)
5944     return;
5945     if ((b = preSplit()) <= 0)
5946     break;
5947     new SearchMappingsTask<K,V,U>
5948     (map, this, b, searchFunction, result).fork();
5949 dl 1.128 }
5950 dl 1.149 while (result.get() == null) {
5951 dl 1.151 V v; U u;
5952 dl 1.191 if ((v = advanceValue()) == null) {
5953 dl 1.149 propagateCompletion();
5954     break;
5955     }
5956 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
5957 dl 1.149 if (result.compareAndSet(null, u))
5958     quietlyCompleteRoot();
5959     break;
5960     }
5961 dl 1.119 }
5962     }
5963 tim 1.1 }
5964 dl 1.119 }
5965 tim 1.1
5966 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5967 dl 1.146 extends Traverser<K,V,K> {
5968 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5969 dl 1.119 K result;
5970 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5971 dl 1.119 ReduceKeysTask
5972 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5973 dl 1.128 ReduceKeysTask<K,V> nextRight,
5974 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5975 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5976 dl 1.119 this.reducer = reducer;
5977     }
5978 dl 1.146 public final K getRawResult() { return result; }
5979     @SuppressWarnings("unchecked") public final void compute() {
5980 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5981 dl 1.149 if ((reducer = this.reducer) != null) {
5982     for (int b; (b = preSplit()) > 0;)
5983     (rights = new ReduceKeysTask<K,V>
5984     (map, this, b, rights, reducer)).fork();
5985 dl 1.191 K u, r = null;
5986     while ((u = advanceKey()) != null) {
5987 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5988 dl 1.149 }
5989     result = r;
5990     CountedCompleter<?> c;
5991     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992     ReduceKeysTask<K,V>
5993     t = (ReduceKeysTask<K,V>)c,
5994     s = t.rights;
5995     while (s != null) {
5996     K tr, sr;
5997     if ((sr = s.result) != null)
5998     t.result = (((tr = t.result) == null) ? sr :
5999     reducer.apply(tr, sr));
6000     s = t.rights = s.nextRight;
6001     }
6002 dl 1.99 }
6003 dl 1.138 }
6004 tim 1.1 }
6005 dl 1.119 }
6006 tim 1.1
6007 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6008 dl 1.146 extends Traverser<K,V,V> {
6009 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
6010 dl 1.119 V result;
6011 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
6012 dl 1.119 ReduceValuesTask
6013 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6014 dl 1.128 ReduceValuesTask<K,V> nextRight,
6015 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
6016 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6017 dl 1.119 this.reducer = reducer;
6018     }
6019 dl 1.146 public final V getRawResult() { return result; }
6020     @SuppressWarnings("unchecked") public final void compute() {
6021 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
6022 dl 1.149 if ((reducer = this.reducer) != null) {
6023     for (int b; (b = preSplit()) > 0;)
6024     (rights = new ReduceValuesTask<K,V>
6025     (map, this, b, rights, reducer)).fork();
6026 dl 1.153 V r = null, v;
6027 dl 1.191 while ((v = advanceValue()) != null)
6028 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
6029 dl 1.149 result = r;
6030     CountedCompleter<?> c;
6031     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6032     ReduceValuesTask<K,V>
6033     t = (ReduceValuesTask<K,V>)c,
6034     s = t.rights;
6035     while (s != null) {
6036     V tr, sr;
6037     if ((sr = s.result) != null)
6038     t.result = (((tr = t.result) == null) ? sr :
6039     reducer.apply(tr, sr));
6040     s = t.rights = s.nextRight;
6041     }
6042 dl 1.119 }
6043     }
6044 tim 1.1 }
6045 dl 1.119 }
6046 tim 1.1
6047 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6048 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
6049 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6050 dl 1.119 Map.Entry<K,V> result;
6051 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
6052 dl 1.119 ReduceEntriesTask
6053 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6054 dl 1.130 ReduceEntriesTask<K,V> nextRight,
6055 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6056 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6057 dl 1.119 this.reducer = reducer;
6058     }
6059 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
6060     @SuppressWarnings("unchecked") public final void compute() {
6061 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6062 dl 1.149 if ((reducer = this.reducer) != null) {
6063     for (int b; (b = preSplit()) > 0;)
6064     (rights = new ReduceEntriesTask<K,V>
6065     (map, this, b, rights, reducer)).fork();
6066     Map.Entry<K,V> r = null;
6067 dl 1.151 V v;
6068 dl 1.191 while ((v = advanceValue()) != null) {
6069 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
6070 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6071     }
6072     result = r;
6073     CountedCompleter<?> c;
6074     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6075     ReduceEntriesTask<K,V>
6076     t = (ReduceEntriesTask<K,V>)c,
6077     s = t.rights;
6078     while (s != null) {
6079     Map.Entry<K,V> tr, sr;
6080     if ((sr = s.result) != null)
6081     t.result = (((tr = t.result) == null) ? sr :
6082     reducer.apply(tr, sr));
6083     s = t.rights = s.nextRight;
6084     }
6085 dl 1.119 }
6086 dl 1.138 }
6087 dl 1.119 }
6088     }
6089 dl 1.99
6090 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6091 dl 1.146 extends Traverser<K,V,U> {
6092 dl 1.153 final Function<? super K, ? extends U> transformer;
6093     final BiFunction<? super U, ? super U, ? extends U> reducer;
6094 dl 1.119 U result;
6095 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
6096 dl 1.119 MapReduceKeysTask
6097 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6098 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
6099 dl 1.153 Function<? super K, ? extends U> transformer,
6100     BiFunction<? super U, ? super U, ? extends U> reducer) {
6101 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6102 dl 1.119 this.transformer = transformer;
6103     this.reducer = reducer;
6104     }
6105 dl 1.146 public final U getRawResult() { return result; }
6106     @SuppressWarnings("unchecked") public final void compute() {
6107 dl 1.153 final Function<? super K, ? extends U> transformer;
6108     final BiFunction<? super U, ? super U, ? extends U> reducer;
6109 dl 1.149 if ((transformer = this.transformer) != null &&
6110     (reducer = this.reducer) != null) {
6111     for (int b; (b = preSplit()) > 0;)
6112     (rights = new MapReduceKeysTask<K,V,U>
6113     (map, this, b, rights, transformer, reducer)).fork();
6114 dl 1.191 K k; U r = null, u;
6115     while ((k = advanceKey()) != null) {
6116     if ((u = transformer.apply(k)) != null)
6117 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6118     }
6119     result = r;
6120     CountedCompleter<?> c;
6121     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6122     MapReduceKeysTask<K,V,U>
6123     t = (MapReduceKeysTask<K,V,U>)c,
6124     s = t.rights;
6125     while (s != null) {
6126     U tr, sr;
6127     if ((sr = s.result) != null)
6128     t.result = (((tr = t.result) == null) ? sr :
6129     reducer.apply(tr, sr));
6130     s = t.rights = s.nextRight;
6131     }
6132 dl 1.119 }
6133 dl 1.138 }
6134 tim 1.1 }
6135 dl 1.4 }
6136    
6137 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6138 dl 1.146 extends Traverser<K,V,U> {
6139 dl 1.153 final Function<? super V, ? extends U> transformer;
6140     final BiFunction<? super U, ? super U, ? extends U> reducer;
6141 dl 1.119 U result;
6142 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6143 dl 1.119 MapReduceValuesTask
6144 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6145 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6146 dl 1.153 Function<? super V, ? extends U> transformer,
6147     BiFunction<? super U, ? super U, ? extends U> reducer) {
6148 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6149 dl 1.119 this.transformer = transformer;
6150     this.reducer = reducer;
6151     }
6152 dl 1.146 public final U getRawResult() { return result; }
6153     @SuppressWarnings("unchecked") public final void compute() {
6154 dl 1.153 final Function<? super V, ? extends U> transformer;
6155     final BiFunction<? super U, ? super U, ? extends U> reducer;
6156 dl 1.149 if ((transformer = this.transformer) != null &&
6157     (reducer = this.reducer) != null) {
6158     for (int b; (b = preSplit()) > 0;)
6159     (rights = new MapReduceValuesTask<K,V,U>
6160     (map, this, b, rights, transformer, reducer)).fork();
6161     U r = null, u;
6162 dl 1.151 V v;
6163 dl 1.191 while ((v = advanceValue()) != null) {
6164 dl 1.151 if ((u = transformer.apply(v)) != null)
6165 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6166     }
6167     result = r;
6168     CountedCompleter<?> c;
6169     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6170     MapReduceValuesTask<K,V,U>
6171     t = (MapReduceValuesTask<K,V,U>)c,
6172     s = t.rights;
6173     while (s != null) {
6174     U tr, sr;
6175     if ((sr = s.result) != null)
6176     t.result = (((tr = t.result) == null) ? sr :
6177     reducer.apply(tr, sr));
6178     s = t.rights = s.nextRight;
6179     }
6180 dl 1.119 }
6181     }
6182     }
6183 dl 1.4 }
6184    
6185 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6186 dl 1.146 extends Traverser<K,V,U> {
6187 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6188     final BiFunction<? super U, ? super U, ? extends U> reducer;
6189 dl 1.119 U result;
6190 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6191 dl 1.119 MapReduceEntriesTask
6192 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6193 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6194 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6195     BiFunction<? super U, ? super U, ? extends U> reducer) {
6196 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6197 dl 1.119 this.transformer = transformer;
6198     this.reducer = reducer;
6199     }
6200 dl 1.146 public final U getRawResult() { return result; }
6201     @SuppressWarnings("unchecked") public final void compute() {
6202 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6203     final BiFunction<? super U, ? super U, ? extends U> reducer;
6204 dl 1.149 if ((transformer = this.transformer) != null &&
6205     (reducer = this.reducer) != null) {
6206     for (int b; (b = preSplit()) > 0;)
6207     (rights = new MapReduceEntriesTask<K,V,U>
6208     (map, this, b, rights, transformer, reducer)).fork();
6209     U r = null, u;
6210 dl 1.151 V v;
6211 dl 1.191 while ((v = advanceValue()) != null) {
6212 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6213 dl 1.151 v))) != null)
6214 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6215     }
6216     result = r;
6217     CountedCompleter<?> c;
6218     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6219     MapReduceEntriesTask<K,V,U>
6220     t = (MapReduceEntriesTask<K,V,U>)c,
6221     s = t.rights;
6222     while (s != null) {
6223     U tr, sr;
6224     if ((sr = s.result) != null)
6225     t.result = (((tr = t.result) == null) ? sr :
6226     reducer.apply(tr, sr));
6227     s = t.rights = s.nextRight;
6228     }
6229 dl 1.119 }
6230 dl 1.138 }
6231 dl 1.119 }
6232 dl 1.4 }
6233 tim 1.1
6234 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6235 dl 1.146 extends Traverser<K,V,U> {
6236 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6237     final BiFunction<? super U, ? super U, ? extends U> reducer;
6238 dl 1.119 U result;
6239 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6240 dl 1.119 MapReduceMappingsTask
6241 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6242 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6243 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6244     BiFunction<? super U, ? super U, ? extends U> reducer) {
6245 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6246 dl 1.119 this.transformer = transformer;
6247     this.reducer = reducer;
6248     }
6249 dl 1.146 public final U getRawResult() { return result; }
6250     @SuppressWarnings("unchecked") public final void compute() {
6251 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6252     final BiFunction<? super U, ? super U, ? extends U> reducer;
6253 dl 1.149 if ((transformer = this.transformer) != null &&
6254     (reducer = this.reducer) != null) {
6255     for (int b; (b = preSplit()) > 0;)
6256     (rights = new MapReduceMappingsTask<K,V,U>
6257     (map, this, b, rights, transformer, reducer)).fork();
6258     U r = null, u;
6259 dl 1.151 V v;
6260 dl 1.191 while ((v = advanceValue()) != null) {
6261 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6262 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6263     }
6264     result = r;
6265     CountedCompleter<?> c;
6266     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6267     MapReduceMappingsTask<K,V,U>
6268     t = (MapReduceMappingsTask<K,V,U>)c,
6269     s = t.rights;
6270     while (s != null) {
6271     U tr, sr;
6272     if ((sr = s.result) != null)
6273     t.result = (((tr = t.result) == null) ? sr :
6274     reducer.apply(tr, sr));
6275     s = t.rights = s.nextRight;
6276     }
6277 dl 1.119 }
6278     }
6279     }
6280     }
6281 jsr166 1.114
6282 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6283 dl 1.146 extends Traverser<K,V,Double> {
6284 dl 1.171 final ToDoubleFunction<? super K> transformer;
6285 dl 1.153 final DoubleBinaryOperator reducer;
6286 dl 1.119 final double basis;
6287     double result;
6288 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6289 dl 1.119 MapReduceKeysToDoubleTask
6290 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6291 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6292 dl 1.171 ToDoubleFunction<? super K> transformer,
6293 dl 1.119 double basis,
6294 dl 1.153 DoubleBinaryOperator reducer) {
6295 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6296 dl 1.119 this.transformer = transformer;
6297     this.basis = basis; this.reducer = reducer;
6298     }
6299 dl 1.146 public final Double getRawResult() { return result; }
6300     @SuppressWarnings("unchecked") public final void compute() {
6301 dl 1.171 final ToDoubleFunction<? super K> transformer;
6302 dl 1.153 final DoubleBinaryOperator reducer;
6303 dl 1.149 if ((transformer = this.transformer) != null &&
6304     (reducer = this.reducer) != null) {
6305     double r = this.basis;
6306     for (int b; (b = preSplit()) > 0;)
6307     (rights = new MapReduceKeysToDoubleTask<K,V>
6308     (map, this, b, rights, transformer, r, reducer)).fork();
6309 dl 1.191 K k;
6310     while ((k = advanceKey()) != null)
6311     r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6312 dl 1.149 result = r;
6313     CountedCompleter<?> c;
6314     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6315     MapReduceKeysToDoubleTask<K,V>
6316     t = (MapReduceKeysToDoubleTask<K,V>)c,
6317     s = t.rights;
6318     while (s != null) {
6319 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6320 dl 1.149 s = t.rights = s.nextRight;
6321     }
6322 dl 1.119 }
6323 dl 1.138 }
6324 dl 1.79 }
6325 dl 1.119 }
6326 dl 1.79
6327 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6328 dl 1.146 extends Traverser<K,V,Double> {
6329 dl 1.171 final ToDoubleFunction<? super V> transformer;
6330 dl 1.153 final DoubleBinaryOperator reducer;
6331 dl 1.119 final double basis;
6332     double result;
6333 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6334 dl 1.119 MapReduceValuesToDoubleTask
6335 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6336 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6337 dl 1.171 ToDoubleFunction<? super V> transformer,
6338 dl 1.119 double basis,
6339 dl 1.153 DoubleBinaryOperator reducer) {
6340 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6341 dl 1.119 this.transformer = transformer;
6342     this.basis = basis; this.reducer = reducer;
6343     }
6344 dl 1.146 public final Double getRawResult() { return result; }
6345     @SuppressWarnings("unchecked") public final void compute() {
6346 dl 1.171 final ToDoubleFunction<? super V> transformer;
6347 dl 1.153 final DoubleBinaryOperator reducer;
6348 dl 1.149 if ((transformer = this.transformer) != null &&
6349     (reducer = this.reducer) != null) {
6350     double r = this.basis;
6351     for (int b; (b = preSplit()) > 0;)
6352     (rights = new MapReduceValuesToDoubleTask<K,V>
6353     (map, this, b, rights, transformer, r, reducer)).fork();
6354 dl 1.151 V v;
6355 dl 1.191 while ((v = advanceValue()) != null)
6356 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6357 dl 1.149 result = r;
6358     CountedCompleter<?> c;
6359     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6360     MapReduceValuesToDoubleTask<K,V>
6361     t = (MapReduceValuesToDoubleTask<K,V>)c,
6362     s = t.rights;
6363     while (s != null) {
6364 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6365 dl 1.149 s = t.rights = s.nextRight;
6366     }
6367 dl 1.119 }
6368     }
6369 dl 1.30 }
6370 dl 1.79 }
6371 dl 1.30
6372 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6373 dl 1.146 extends Traverser<K,V,Double> {
6374 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6375 dl 1.153 final DoubleBinaryOperator reducer;
6376 dl 1.119 final double basis;
6377     double result;
6378 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6379 dl 1.119 MapReduceEntriesToDoubleTask
6380 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6381 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6382 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
6383 dl 1.119 double basis,
6384 dl 1.153 DoubleBinaryOperator reducer) {
6385 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6386 dl 1.119 this.transformer = transformer;
6387     this.basis = basis; this.reducer = reducer;
6388     }
6389 dl 1.146 public final Double getRawResult() { return result; }
6390     @SuppressWarnings("unchecked") public final void compute() {
6391 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6392 dl 1.153 final DoubleBinaryOperator reducer;
6393 dl 1.149 if ((transformer = this.transformer) != null &&
6394     (reducer = this.reducer) != null) {
6395     double r = this.basis;
6396     for (int b; (b = preSplit()) > 0;)
6397     (rights = new MapReduceEntriesToDoubleTask<K,V>
6398     (map, this, b, rights, transformer, r, reducer)).fork();
6399 dl 1.151 V v;
6400 dl 1.191 while ((v = advanceValue()) != null)
6401 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6402 dl 1.151 v)));
6403 dl 1.149 result = r;
6404     CountedCompleter<?> c;
6405     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6406     MapReduceEntriesToDoubleTask<K,V>
6407     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6408     s = t.rights;
6409     while (s != null) {
6410 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6411 dl 1.149 s = t.rights = s.nextRight;
6412     }
6413 dl 1.119 }
6414 dl 1.138 }
6415 dl 1.30 }
6416 tim 1.1 }
6417    
6418 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6419 dl 1.146 extends Traverser<K,V,Double> {
6420 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6421 dl 1.153 final DoubleBinaryOperator reducer;
6422 dl 1.119 final double basis;
6423     double result;
6424 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6425 dl 1.119 MapReduceMappingsToDoubleTask
6426 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6427 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6428 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
6429 dl 1.119 double basis,
6430 dl 1.153 DoubleBinaryOperator reducer) {
6431 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6432 dl 1.119 this.transformer = transformer;
6433     this.basis = basis; this.reducer = reducer;
6434     }
6435 dl 1.146 public final Double getRawResult() { return result; }
6436     @SuppressWarnings("unchecked") public final void compute() {
6437 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6438 dl 1.153 final DoubleBinaryOperator reducer;
6439 dl 1.149 if ((transformer = this.transformer) != null &&
6440     (reducer = this.reducer) != null) {
6441     double r = this.basis;
6442     for (int b; (b = preSplit()) > 0;)
6443     (rights = new MapReduceMappingsToDoubleTask<K,V>
6444     (map, this, b, rights, transformer, r, reducer)).fork();
6445 dl 1.151 V v;
6446 dl 1.191 while ((v = advanceValue()) != null)
6447 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6448 dl 1.149 result = r;
6449     CountedCompleter<?> c;
6450     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6451     MapReduceMappingsToDoubleTask<K,V>
6452     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6453     s = t.rights;
6454     while (s != null) {
6455 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6456 dl 1.149 s = t.rights = s.nextRight;
6457     }
6458 dl 1.119 }
6459     }
6460 dl 1.4 }
6461 dl 1.119 }
6462    
6463 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6464 dl 1.146 extends Traverser<K,V,Long> {
6465 dl 1.171 final ToLongFunction<? super K> transformer;
6466 dl 1.153 final LongBinaryOperator reducer;
6467 dl 1.119 final long basis;
6468     long result;
6469 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6470 dl 1.119 MapReduceKeysToLongTask
6471 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6472 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6473 dl 1.171 ToLongFunction<? super K> transformer,
6474 dl 1.119 long basis,
6475 dl 1.153 LongBinaryOperator reducer) {
6476 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6477 dl 1.119 this.transformer = transformer;
6478     this.basis = basis; this.reducer = reducer;
6479     }
6480 dl 1.146 public final Long getRawResult() { return result; }
6481     @SuppressWarnings("unchecked") public final void compute() {
6482 dl 1.171 final ToLongFunction<? super K> transformer;
6483 dl 1.153 final LongBinaryOperator reducer;
6484 dl 1.149 if ((transformer = this.transformer) != null &&
6485     (reducer = this.reducer) != null) {
6486     long r = this.basis;
6487     for (int b; (b = preSplit()) > 0;)
6488     (rights = new MapReduceKeysToLongTask<K,V>
6489     (map, this, b, rights, transformer, r, reducer)).fork();
6490 dl 1.191 K k;
6491     while ((k = advanceKey()) != null)
6492     r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6493 dl 1.149 result = r;
6494     CountedCompleter<?> c;
6495     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6496     MapReduceKeysToLongTask<K,V>
6497     t = (MapReduceKeysToLongTask<K,V>)c,
6498     s = t.rights;
6499     while (s != null) {
6500 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6501 dl 1.149 s = t.rights = s.nextRight;
6502     }
6503 dl 1.119 }
6504 dl 1.138 }
6505 dl 1.4 }
6506 dl 1.119 }
6507    
6508 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6509 dl 1.146 extends Traverser<K,V,Long> {
6510 dl 1.171 final ToLongFunction<? super V> transformer;
6511 dl 1.153 final LongBinaryOperator reducer;
6512 dl 1.119 final long basis;
6513     long result;
6514 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6515 dl 1.119 MapReduceValuesToLongTask
6516 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6517 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6518 dl 1.171 ToLongFunction<? super V> transformer,
6519 dl 1.119 long basis,
6520 dl 1.153 LongBinaryOperator reducer) {
6521 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6522 dl 1.119 this.transformer = transformer;
6523     this.basis = basis; this.reducer = reducer;
6524     }
6525 dl 1.146 public final Long getRawResult() { return result; }
6526     @SuppressWarnings("unchecked") public final void compute() {
6527 dl 1.171 final ToLongFunction<? super V> transformer;
6528 dl 1.153 final LongBinaryOperator reducer;
6529 dl 1.149 if ((transformer = this.transformer) != null &&
6530     (reducer = this.reducer) != null) {
6531     long r = this.basis;
6532     for (int b; (b = preSplit()) > 0;)
6533     (rights = new MapReduceValuesToLongTask<K,V>
6534     (map, this, b, rights, transformer, r, reducer)).fork();
6535 dl 1.151 V v;
6536 dl 1.191 while ((v = advanceValue()) != null)
6537 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6538 dl 1.149 result = r;
6539     CountedCompleter<?> c;
6540     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6541     MapReduceValuesToLongTask<K,V>
6542     t = (MapReduceValuesToLongTask<K,V>)c,
6543     s = t.rights;
6544     while (s != null) {
6545 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6546 dl 1.149 s = t.rights = s.nextRight;
6547     }
6548 dl 1.119 }
6549     }
6550 jsr166 1.95 }
6551 dl 1.119 }
6552    
6553 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6554 dl 1.146 extends Traverser<K,V,Long> {
6555 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6556 dl 1.153 final LongBinaryOperator reducer;
6557 dl 1.119 final long basis;
6558     long result;
6559 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6560 dl 1.119 MapReduceEntriesToLongTask
6561 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6562 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6563 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6564 dl 1.119 long basis,
6565 dl 1.153 LongBinaryOperator reducer) {
6566 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6567 dl 1.119 this.transformer = transformer;
6568     this.basis = basis; this.reducer = reducer;
6569     }
6570 dl 1.146 public final Long getRawResult() { return result; }
6571     @SuppressWarnings("unchecked") public final void compute() {
6572 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6573 dl 1.153 final LongBinaryOperator reducer;
6574 dl 1.149 if ((transformer = this.transformer) != null &&
6575     (reducer = this.reducer) != null) {
6576     long r = this.basis;
6577     for (int b; (b = preSplit()) > 0;)
6578     (rights = new MapReduceEntriesToLongTask<K,V>
6579     (map, this, b, rights, transformer, r, reducer)).fork();
6580 dl 1.151 V v;
6581 dl 1.191 while ((v = advanceValue()) != null)
6582 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6583 dl 1.149 result = r;
6584     CountedCompleter<?> c;
6585     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6586     MapReduceEntriesToLongTask<K,V>
6587     t = (MapReduceEntriesToLongTask<K,V>)c,
6588     s = t.rights;
6589     while (s != null) {
6590 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6591 dl 1.149 s = t.rights = s.nextRight;
6592     }
6593 dl 1.119 }
6594 dl 1.138 }
6595 dl 1.4 }
6596 tim 1.1 }
6597    
6598 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6599 dl 1.146 extends Traverser<K,V,Long> {
6600 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6601 dl 1.153 final LongBinaryOperator reducer;
6602 dl 1.119 final long basis;
6603     long result;
6604 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6605 dl 1.119 MapReduceMappingsToLongTask
6606 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6607 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6608 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6609 dl 1.119 long basis,
6610 dl 1.153 LongBinaryOperator reducer) {
6611 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6612 dl 1.119 this.transformer = transformer;
6613     this.basis = basis; this.reducer = reducer;
6614     }
6615 dl 1.146 public final Long getRawResult() { return result; }
6616     @SuppressWarnings("unchecked") public final void compute() {
6617 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6618 dl 1.153 final LongBinaryOperator reducer;
6619 dl 1.149 if ((transformer = this.transformer) != null &&
6620     (reducer = this.reducer) != null) {
6621     long r = this.basis;
6622     for (int b; (b = preSplit()) > 0;)
6623     (rights = new MapReduceMappingsToLongTask<K,V>
6624     (map, this, b, rights, transformer, r, reducer)).fork();
6625 dl 1.151 V v;
6626 dl 1.191 while ((v = advanceValue()) != null)
6627 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6628 dl 1.149 result = r;
6629     CountedCompleter<?> c;
6630     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6631     MapReduceMappingsToLongTask<K,V>
6632     t = (MapReduceMappingsToLongTask<K,V>)c,
6633     s = t.rights;
6634     while (s != null) {
6635 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6636 dl 1.149 s = t.rights = s.nextRight;
6637     }
6638 dl 1.119 }
6639     }
6640 dl 1.4 }
6641 tim 1.1 }
6642    
6643 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6644 dl 1.146 extends Traverser<K,V,Integer> {
6645 dl 1.171 final ToIntFunction<? super K> transformer;
6646 dl 1.153 final IntBinaryOperator reducer;
6647 dl 1.119 final int basis;
6648     int result;
6649 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6650 dl 1.119 MapReduceKeysToIntTask
6651 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6652 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6653 dl 1.171 ToIntFunction<? super K> transformer,
6654 dl 1.119 int basis,
6655 dl 1.153 IntBinaryOperator reducer) {
6656 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6657 dl 1.119 this.transformer = transformer;
6658     this.basis = basis; this.reducer = reducer;
6659     }
6660 dl 1.146 public final Integer getRawResult() { return result; }
6661     @SuppressWarnings("unchecked") public final void compute() {
6662 dl 1.171 final ToIntFunction<? super K> transformer;
6663 dl 1.153 final IntBinaryOperator reducer;
6664 dl 1.149 if ((transformer = this.transformer) != null &&
6665     (reducer = this.reducer) != null) {
6666     int r = this.basis;
6667     for (int b; (b = preSplit()) > 0;)
6668     (rights = new MapReduceKeysToIntTask<K,V>
6669     (map, this, b, rights, transformer, r, reducer)).fork();
6670 dl 1.191 K k;
6671     while ((k = advanceKey()) != null)
6672     r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6673 dl 1.149 result = r;
6674     CountedCompleter<?> c;
6675     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6676     MapReduceKeysToIntTask<K,V>
6677     t = (MapReduceKeysToIntTask<K,V>)c,
6678     s = t.rights;
6679     while (s != null) {
6680 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6681 dl 1.149 s = t.rights = s.nextRight;
6682     }
6683 dl 1.119 }
6684 dl 1.138 }
6685 dl 1.30 }
6686     }
6687    
6688 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6689 dl 1.146 extends Traverser<K,V,Integer> {
6690 dl 1.171 final ToIntFunction<? super V> transformer;
6691 dl 1.153 final IntBinaryOperator reducer;
6692 dl 1.119 final int basis;
6693     int result;
6694 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6695 dl 1.119 MapReduceValuesToIntTask
6696 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6697 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6698 dl 1.171 ToIntFunction<? super V> transformer,
6699 dl 1.119 int basis,
6700 dl 1.153 IntBinaryOperator reducer) {
6701 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6702 dl 1.119 this.transformer = transformer;
6703     this.basis = basis; this.reducer = reducer;
6704     }
6705 dl 1.146 public final Integer getRawResult() { return result; }
6706     @SuppressWarnings("unchecked") public final void compute() {
6707 dl 1.171 final ToIntFunction<? super V> transformer;
6708 dl 1.153 final IntBinaryOperator reducer;
6709 dl 1.149 if ((transformer = this.transformer) != null &&
6710     (reducer = this.reducer) != null) {
6711     int r = this.basis;
6712     for (int b; (b = preSplit()) > 0;)
6713     (rights = new MapReduceValuesToIntTask<K,V>
6714     (map, this, b, rights, transformer, r, reducer)).fork();
6715 dl 1.151 V v;
6716 dl 1.191 while ((v = advanceValue()) != null)
6717 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6718 dl 1.149 result = r;
6719     CountedCompleter<?> c;
6720     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6721     MapReduceValuesToIntTask<K,V>
6722     t = (MapReduceValuesToIntTask<K,V>)c,
6723     s = t.rights;
6724     while (s != null) {
6725 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6726 dl 1.149 s = t.rights = s.nextRight;
6727     }
6728 dl 1.119 }
6729 dl 1.2 }
6730 tim 1.1 }
6731     }
6732    
6733 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6734 dl 1.146 extends Traverser<K,V,Integer> {
6735 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6736 dl 1.153 final IntBinaryOperator reducer;
6737 dl 1.119 final int basis;
6738     int result;
6739 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6740 dl 1.119 MapReduceEntriesToIntTask
6741 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6742 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6743 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6744 dl 1.119 int basis,
6745 dl 1.153 IntBinaryOperator reducer) {
6746 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6747 dl 1.119 this.transformer = transformer;
6748     this.basis = basis; this.reducer = reducer;
6749     }
6750 dl 1.146 public final Integer getRawResult() { return result; }
6751     @SuppressWarnings("unchecked") public final void compute() {
6752 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6753 dl 1.153 final IntBinaryOperator reducer;
6754 dl 1.149 if ((transformer = this.transformer) != null &&
6755     (reducer = this.reducer) != null) {
6756     int r = this.basis;
6757     for (int b; (b = preSplit()) > 0;)
6758     (rights = new MapReduceEntriesToIntTask<K,V>
6759     (map, this, b, rights, transformer, r, reducer)).fork();
6760 dl 1.151 V v;
6761 dl 1.191 while ((v = advanceValue()) != null)
6762 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6763 dl 1.151 v)));
6764 dl 1.149 result = r;
6765     CountedCompleter<?> c;
6766     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6767     MapReduceEntriesToIntTask<K,V>
6768     t = (MapReduceEntriesToIntTask<K,V>)c,
6769     s = t.rights;
6770     while (s != null) {
6771 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6772 dl 1.149 s = t.rights = s.nextRight;
6773     }
6774 dl 1.119 }
6775 dl 1.138 }
6776 dl 1.4 }
6777 dl 1.119 }
6778 tim 1.1
6779 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6780 dl 1.146 extends Traverser<K,V,Integer> {
6781 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6782 dl 1.153 final IntBinaryOperator reducer;
6783 dl 1.119 final int basis;
6784     int result;
6785 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6786 dl 1.119 MapReduceMappingsToIntTask
6787 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6788     MapReduceMappingsToIntTask<K,V> nextRight,
6789 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6790 dl 1.119 int basis,
6791 dl 1.153 IntBinaryOperator reducer) {
6792 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6793 dl 1.119 this.transformer = transformer;
6794     this.basis = basis; this.reducer = reducer;
6795     }
6796 dl 1.146 public final Integer getRawResult() { return result; }
6797     @SuppressWarnings("unchecked") public final void compute() {
6798 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6799 dl 1.153 final IntBinaryOperator reducer;
6800 dl 1.149 if ((transformer = this.transformer) != null &&
6801     (reducer = this.reducer) != null) {
6802     int r = this.basis;
6803     for (int b; (b = preSplit()) > 0;)
6804     (rights = new MapReduceMappingsToIntTask<K,V>
6805     (map, this, b, rights, transformer, r, reducer)).fork();
6806 dl 1.151 V v;
6807 dl 1.191 while ((v = advanceValue()) != null)
6808 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6809 dl 1.149 result = r;
6810     CountedCompleter<?> c;
6811     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6812     MapReduceMappingsToIntTask<K,V>
6813     t = (MapReduceMappingsToIntTask<K,V>)c,
6814     s = t.rights;
6815     while (s != null) {
6816 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6817 dl 1.149 s = t.rights = s.nextRight;
6818     }
6819 dl 1.119 }
6820 dl 1.138 }
6821 tim 1.1 }
6822     }
6823 dl 1.99
6824     // Unsafe mechanics
6825 dl 1.149 private static final sun.misc.Unsafe U;
6826     private static final long SIZECTL;
6827     private static final long TRANSFERINDEX;
6828     private static final long TRANSFERORIGIN;
6829     private static final long BASECOUNT;
6830 dl 1.153 private static final long CELLSBUSY;
6831 dl 1.149 private static final long CELLVALUE;
6832 dl 1.119 private static final long ABASE;
6833     private static final int ASHIFT;
6834 dl 1.99
6835     static {
6836     try {
6837 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6838 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6839 dl 1.149 SIZECTL = U.objectFieldOffset
6840 dl 1.119 (k.getDeclaredField("sizeCtl"));
6841 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6842     (k.getDeclaredField("transferIndex"));
6843     TRANSFERORIGIN = U.objectFieldOffset
6844     (k.getDeclaredField("transferOrigin"));
6845     BASECOUNT = U.objectFieldOffset
6846     (k.getDeclaredField("baseCount"));
6847 dl 1.153 CELLSBUSY = U.objectFieldOffset
6848     (k.getDeclaredField("cellsBusy"));
6849     Class<?> ck = Cell.class;
6850 dl 1.149 CELLVALUE = U.objectFieldOffset
6851     (ck.getDeclaredField("value"));
6852 dl 1.119 Class<?> sc = Node[].class;
6853 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6854 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6855     if ((scale & (scale - 1)) != 0)
6856     throw new Error("data type scale not a power of two");
6857     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6858 dl 1.99 } catch (Exception e) {
6859     throw new Error(e);
6860     }
6861     }
6862 jsr166 1.152
6863     }