ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.249
Committed: Sun Sep 1 05:08:07 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.248: +2 -2 lines
Log Message:
javadoc style

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Comparator;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.119 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.208 import java.util.Map;
22 dl 1.119 import java.util.NoSuchElementException;
23 dl 1.208 import java.util.Set;
24     import java.util.Spliterator;
25 dl 1.119 import java.util.concurrent.ConcurrentMap;
26 dl 1.208 import java.util.concurrent.ForkJoinPool;
27     import java.util.concurrent.atomic.AtomicReference;
28 dl 1.222 import java.util.concurrent.locks.LockSupport;
29 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
30     import java.util.function.BiConsumer;
31     import java.util.function.BiFunction;
32     import java.util.function.BinaryOperator;
33     import java.util.function.Consumer;
34     import java.util.function.DoubleBinaryOperator;
35     import java.util.function.Function;
36     import java.util.function.IntBinaryOperator;
37     import java.util.function.LongBinaryOperator;
38     import java.util.function.ToDoubleBiFunction;
39     import java.util.function.ToDoubleFunction;
40     import java.util.function.ToIntBiFunction;
41     import java.util.function.ToIntFunction;
42     import java.util.function.ToLongBiFunction;
43     import java.util.function.ToLongFunction;
44 dl 1.210 import java.util.stream.Stream;
45 tim 1.1
46     /**
47 dl 1.4 * A hash table supporting full concurrency of retrievals and
48 dl 1.119 * high expected concurrency for updates. This class obeys the
49 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
50 dl 1.19 * includes versions of methods corresponding to each method of
51 dl 1.119 * {@code Hashtable}. However, even though all operations are
52 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
53     * and there is <em>not</em> any support for locking the entire table
54     * in a way that prevents all access. This class is fully
55 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
56 dl 1.4 * thread safety but not on its synchronization details.
57 tim 1.11 *
58 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
59 dl 1.119 * block, so may overlap with update operations (including {@code put}
60     * and {@code remove}). Retrievals reflect the results of the most
61     * recently <em>completed</em> update operations holding upon their
62 dl 1.126 * onset. (More formally, an update operation for a given key bears a
63     * <em>happens-before</em> relation with any (non-null) retrieval for
64     * that key reporting the updated value.) For aggregate operations
65     * such as {@code putAll} and {@code clear}, concurrent retrievals may
66     * reflect insertion or removal of only some entries. Similarly,
67 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
68     * state of the hash table at some point at or since the creation of the
69 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
70 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71     * However, iterators are designed to be used by only one thread at a time.
72     * Bear in mind that the results of aggregate status methods including
73     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74     * useful only when a map is not undergoing concurrent updates in other threads.
75 dl 1.126 * Otherwise the results of these methods reflect transient states
76     * that may be adequate for monitoring or estimation purposes, but not
77     * for program control.
78 tim 1.1 *
79 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
80 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
81     * the same slot modulo the table size), with the expected average
82     * effect of maintaining roughly two bins per mapping (corresponding
83     * to a 0.75 load factor threshold for resizing). There may be much
84     * variance around this average as mappings are added and removed, but
85     * overall, this maintains a commonly accepted time/space tradeoff for
86     * hash tables. However, resizing this or any other kind of hash
87     * table may be a relatively slow operation. When possible, it is a
88     * good idea to provide a size estimate as an optional {@code
89     * initialCapacity} constructor argument. An additional optional
90     * {@code loadFactor} constructor argument provides a further means of
91     * customizing initial table capacity by specifying the table density
92     * to be used in calculating the amount of space to allocate for the
93     * given number of elements. Also, for compatibility with previous
94     * versions of this class, constructors may optionally specify an
95     * expected {@code concurrencyLevel} as an additional hint for
96     * internal sizing. Note that using many keys with exactly the same
97     * {@code hashCode()} is a sure way to slow down performance of any
98 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
99     * this class may use comparison order among keys to help break ties.
100 tim 1.1 *
101 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103     * (using {@link #keySet(Object)} when only keys are of interest, and the
104     * mapped values are (perhaps transiently) not used or all take the
105     * same mapping value.
106     *
107 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 dl 1.153 * form of histogram or multiset) by using {@link
109     * java.util.concurrent.atomic.LongAdder} values and initializing via
110 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 dl 1.137 *
114 dl 1.45 * <p>This class and its views and iterators implement all of the
115     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116     * interfaces.
117 dl 1.23 *
118 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 tim 1.1 *
121 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122     * operations that, unlike most {@link Stream} methods, are designed
123     * to be safely, and often sensibly, applied even with maps that are
124     * being concurrently updated by other threads; for example, when
125     * computing a snapshot summary of the values in a shared registry.
126     * There are three kinds of operation, each with four forms, accepting
127     * functions with Keys, Values, Entries, and (Key, Value) arguments
128     * and/or return values. Because the elements of a ConcurrentHashMap
129     * are not ordered in any particular way, and may be processed in
130     * different orders in different parallel executions, the correctness
131     * of supplied functions should not depend on any ordering, or on any
132     * other objects or values that may transiently change while
133     * computation is in progress; and except for forEach actions, should
134 dl 1.235 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 dl 1.210 * objects do not support method {@code setValue}.
136 dl 1.137 *
137     * <ul>
138     * <li> forEach: Perform a given action on each element.
139     * A variant form applies a given transformation on each element
140     * before performing the action.</li>
141     *
142     * <li> search: Return the first available non-null result of
143     * applying a given function on each element; skipping further
144     * search when a result is found.</li>
145     *
146     * <li> reduce: Accumulate each element. The supplied reduction
147     * function cannot rely on ordering (more formally, it should be
148     * both associative and commutative). There are five variants:
149     *
150     * <ul>
151     *
152     * <li> Plain reductions. (There is not a form of this method for
153     * (key, value) function arguments since there is no corresponding
154     * return type.)</li>
155     *
156     * <li> Mapped reductions that accumulate the results of a given
157     * function applied to each element.</li>
158     *
159     * <li> Reductions to scalar doubles, longs, and ints, using a
160     * given basis value.</li>
161     *
162 jsr166 1.178 * </ul>
163 dl 1.137 * </li>
164     * </ul>
165     *
166 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
167     * argument. Methods proceed sequentially if the current map size is
168     * estimated to be less than the given threshold. Using a value of
169     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
171 dl 1.219 * enough subtasks to fully utilize the {@link
172     * ForkJoinPool#commonPool()} that is used for all parallel
173     * computations. Normally, you would initially choose one of these
174     * extreme values, and then measure performance of using in-between
175     * values that trade off overhead versus throughput.
176 dl 1.210 *
177 dl 1.137 * <p>The concurrency properties of bulk operations follow
178     * from those of ConcurrentHashMap: Any non-null result returned
179     * from {@code get(key)} and related access methods bears a
180     * happens-before relation with the associated insertion or
181     * update. The result of any bulk operation reflects the
182     * composition of these per-element relations (but is not
183     * necessarily atomic with respect to the map as a whole unless it
184     * is somehow known to be quiescent). Conversely, because keys
185     * and values in the map are never null, null serves as a reliable
186     * atomic indicator of the current lack of any result. To
187     * maintain this property, null serves as an implicit basis for
188     * all non-scalar reduction operations. For the double, long, and
189     * int versions, the basis should be one that, when combined with
190     * any other value, returns that other value (more formally, it
191     * should be the identity element for the reduction). Most common
192     * reductions have these properties; for example, computing a sum
193     * with basis 0 or a minimum with basis MAX_VALUE.
194     *
195     * <p>Search and transformation functions provided as arguments
196     * should similarly return null to indicate the lack of any result
197     * (in which case it is not used). In the case of mapped
198     * reductions, this also enables transformations to serve as
199     * filters, returning null (or, in the case of primitive
200     * specializations, the identity basis) if the element should not
201     * be combined. You can create compound transformations and
202     * filterings by composing them yourself under this "null means
203     * there is nothing there now" rule before using them in search or
204     * reduce operations.
205     *
206     * <p>Methods accepting and/or returning Entry arguments maintain
207     * key-value associations. They may be useful for example when
208     * finding the key for the greatest value. Note that "plain" Entry
209     * arguments can be supplied using {@code new
210     * AbstractMap.SimpleEntry(k,v)}.
211     *
212 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
213 dl 1.137 * exception encountered in the application of a supplied
214     * function. Bear in mind when handling such exceptions that other
215     * concurrently executing functions could also have thrown
216     * exceptions, or would have done so if the first exception had
217     * not occurred.
218     *
219 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
220     * but not guaranteed. Parallel operations involving brief functions
221     * on small maps may execute more slowly than sequential forms if the
222     * underlying work to parallelize the computation is more expensive
223     * than the computation itself. Similarly, parallelization may not
224     * lead to much actual parallelism if all processors are busy
225     * performing unrelated tasks.
226 dl 1.137 *
227 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
228 dl 1.137 *
229 dl 1.42 * <p>This class is a member of the
230 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 dl 1.42 * Java Collections Framework</a>.
232     *
233 dl 1.8 * @since 1.5
234     * @author Doug Lea
235 dl 1.27 * @param <K> the type of keys maintained by this map
236 jsr166 1.64 * @param <V> the type of mapped values
237 dl 1.8 */
238 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239     implements ConcurrentMap<K,V>, Serializable {
240 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
241 tim 1.1
242     /*
243 dl 1.119 * Overview:
244     *
245     * The primary design goal of this hash table is to maintain
246     * concurrent readability (typically method get(), but also
247     * iterators and related methods) while minimizing update
248     * contention. Secondary goals are to keep space consumption about
249     * the same or better than java.util.HashMap, and to support high
250     * initial insertion rates on an empty table by many threads.
251     *
252 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
253     * key-value mapping is held in a Node. Most nodes are instances
254     * of the basic Node class with hash, key, value, and next
255     * fields. However, various subclasses exist: TreeNodes are
256 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
257     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258     * of bins during resizing. ReservationNodes are used as
259     * placeholders while establishing values in computeIfAbsent and
260 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
261 dl 1.222 * ReservationNode do not hold normal user keys, values, or
262     * hashes, and are readily distinguishable during search etc
263     * because they have negative hash fields and null key and value
264     * fields. (These special nodes are either uncommon or transient,
265     * so the impact of carrying around some unused fields is
266 jsr166 1.232 * insignificant.)
267 dl 1.119 *
268     * The table is lazily initialized to a power-of-two size upon the
269     * first insertion. Each bin in the table normally contains a
270     * list of Nodes (most often, the list has only zero or one Node).
271     * Table accesses require volatile/atomic reads, writes, and
272     * CASes. Because there is no other way to arrange this without
273     * adding further indirections, we use intrinsics
274 dl 1.210 * (sun.misc.Unsafe) operations.
275 dl 1.119 *
276 dl 1.149 * We use the top (sign) bit of Node hash fields for control
277     * purposes -- it is available anyway because of addressing
278 dl 1.222 * constraints. Nodes with negative hash fields are specially
279     * handled or ignored in map methods.
280 dl 1.119 *
281     * Insertion (via put or its variants) of the first node in an
282     * empty bin is performed by just CASing it to the bin. This is
283     * by far the most common case for put operations under most
284     * key/hash distributions. Other update operations (insert,
285     * delete, and replace) require locks. We do not want to waste
286     * the space required to associate a distinct lock object with
287     * each bin, so instead use the first node of a bin list itself as
288 dl 1.149 * a lock. Locking support for these locks relies on builtin
289     * "synchronized" monitors.
290 dl 1.119 *
291     * Using the first node of a list as a lock does not by itself
292     * suffice though: When a node is locked, any update must first
293     * validate that it is still the first node after locking it, and
294     * retry if not. Because new nodes are always appended to lists,
295     * once a node is first in a bin, it remains first until deleted
296 dl 1.210 * or the bin becomes invalidated (upon resizing).
297 dl 1.119 *
298     * The main disadvantage of per-bin locks is that other update
299     * operations on other nodes in a bin list protected by the same
300     * lock can stall, for example when user equals() or mapping
301     * functions take a long time. However, statistically, under
302     * random hash codes, this is not a common problem. Ideally, the
303     * frequency of nodes in bins follows a Poisson distribution
304     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305     * parameter of about 0.5 on average, given the resizing threshold
306     * of 0.75, although with a large variance because of resizing
307     * granularity. Ignoring variance, the expected occurrences of
308     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309     * first values are:
310     *
311     * 0: 0.60653066
312     * 1: 0.30326533
313     * 2: 0.07581633
314     * 3: 0.01263606
315     * 4: 0.00157952
316     * 5: 0.00015795
317     * 6: 0.00001316
318     * 7: 0.00000094
319     * 8: 0.00000006
320     * more: less than 1 in ten million
321     *
322     * Lock contention probability for two threads accessing distinct
323     * elements is roughly 1 / (8 * #elements) under random hashes.
324     *
325     * Actual hash code distributions encountered in practice
326     * sometimes deviate significantly from uniform randomness. This
327     * includes the case when N > (1<<30), so some keys MUST collide.
328     * Similarly for dumb or hostile usages in which multiple keys are
329 dl 1.222 * designed to have identical hash codes or ones that differs only
330 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
331     * applies when the number of nodes in a bin exceeds a
332     * threshold. These TreeBins use a balanced tree to hold nodes (a
333     * specialized form of red-black trees), bounding search time to
334     * O(log N). Each search step in a TreeBin is at least twice as
335     * slow as in a regular list, but given that N cannot exceed
336     * (1<<64) (before running out of addresses) this bounds search
337     * steps, lock hold times, etc, to reasonable constants (roughly
338     * 100 nodes inspected per operation worst case) so long as keys
339     * are Comparable (which is very common -- String, Long, etc).
340 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
341     * traversal pointers as regular nodes, so can be traversed in
342     * iterators in the same way.
343     *
344     * The table is resized when occupancy exceeds a percentage
345 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
346     * noticing an overfull bin may assist in resizing after the
347 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
348     * However, rather than stalling, these other threads may proceed
349     * with insertions etc. The use of TreeBins shields us from the
350     * worst case effects of overfilling while resizes are in
351 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
352 dl 1.246 * from the table to the next table. However, threads claim small
353     * blocks of indices to transfer (via field transferIndex) before
354     * doing so, reducing contention. Because we are using
355     * power-of-two expansion, the elements from each bin must either
356     * stay at same index, or move with a power of two offset. We
357     * eliminate unnecessary node creation by catching cases where old
358     * nodes can be reused because their next fields won't change. On
359     * average, only about one-sixth of them need cloning when a table
360     * doubles. The nodes they replace will be garbage collectable as
361     * soon as they are no longer referenced by any reader thread that
362     * may be in the midst of concurrently traversing table. Upon
363     * transfer, the old table bin contains only a special forwarding
364     * node (with hash field "MOVED") that contains the next table as
365     * its key. On encountering a forwarding node, access and update
366     * operations restart, using the new table.
367 dl 1.149 *
368     * Each bin transfer requires its bin lock, which can stall
369     * waiting for locks while resizing. However, because other
370     * threads can join in and help resize rather than contend for
371     * locks, average aggregate waits become shorter as resizing
372     * progresses. The transfer operation must also ensure that all
373     * accessible bins in both the old and new table are usable by any
374 dl 1.246 * traversal. This is arranged in part by proceeding from the
375     * last bin (table.length - 1) up towards the first. Upon seeing
376     * a forwarding node, traversals (see class Traverser) arrange to
377     * move to the new table without revisiting nodes. To ensure that
378     * no intervening nodes are skipped even when moved out of order,
379     * a stack (see class TableStack) is created on first encounter of
380     * a forwarding node during a traversal, to maintain its place if
381     * later processing the current table. The need for these
382     * save/restore mechanics is relatively rare, but when one
383 jsr166 1.248 * forwarding node is encountered, typically many more will be.
384 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
385     * many new TableStack nodes. (Thanks to Peter Levart for
386     * suggesting use of a stack here.)
387 dl 1.119 *
388     * The traversal scheme also applies to partial traversals of
389     * ranges of bins (via an alternate Traverser constructor)
390     * to support partitioned aggregate operations. Also, read-only
391     * operations give up if ever forwarded to a null table, which
392     * provides support for shutdown-style clearing, which is also not
393     * currently implemented.
394     *
395     * Lazy table initialization minimizes footprint until first use,
396     * and also avoids resizings when the first operation is from a
397     * putAll, constructor with map argument, or deserialization.
398     * These cases attempt to override the initial capacity settings,
399     * but harmlessly fail to take effect in cases of races.
400     *
401 dl 1.149 * The element count is maintained using a specialization of
402     * LongAdder. We need to incorporate a specialization rather than
403     * just use a LongAdder in order to access implicit
404     * contention-sensing that leads to creation of multiple
405 dl 1.222 * CounterCells. The counter mechanics avoid contention on
406 dl 1.149 * updates but can encounter cache thrashing if read too
407     * frequently during concurrent access. To avoid reading so often,
408     * resizing under contention is attempted only upon adding to a
409     * bin already holding two or more nodes. Under uniform hash
410     * distributions, the probability of this occurring at threshold
411     * is around 13%, meaning that only about 1 in 8 puts check
412 dl 1.222 * threshold (and after resizing, many fewer do so).
413     *
414     * TreeBins use a special form of comparison for search and
415     * related operations (which is the main reason we cannot use
416     * existing collections such as TreeMaps). TreeBins contain
417     * Comparable elements, but may contain others, as well as
418 dl 1.240 * elements that are Comparable but not necessarily Comparable for
419     * the same T, so we cannot invoke compareTo among them. To handle
420     * this, the tree is ordered primarily by hash value, then by
421     * Comparable.compareTo order if applicable. On lookup at a node,
422     * if elements are not comparable or compare as 0 then both left
423     * and right children may need to be searched in the case of tied
424     * hash values. (This corresponds to the full list search that
425     * would be necessary if all elements were non-Comparable and had
426     * tied hashes.) On insertion, to keep a total ordering (or as
427     * close as is required here) across rebalancings, we compare
428     * classes and identityHashCodes as tie-breakers. The red-black
429     * balancing code is updated from pre-jdk-collections
430 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432     * Algorithms" (CLR).
433     *
434     * TreeBins also require an additional locking mechanism. While
435 dl 1.224 * list traversal is always possible by readers even during
436 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
437 dl 1.222 * that may change the root node and/or its linkages. TreeBins
438     * include a simple read-write lock mechanism parasitic on the
439     * main bin-synchronization strategy: Structural adjustments
440     * associated with an insertion or removal are already bin-locked
441     * (and so cannot conflict with other writers) but must wait for
442     * ongoing readers to finish. Since there can be only one such
443     * waiter, we use a simple scheme using a single "waiter" field to
444     * block writers. However, readers need never block. If the root
445     * lock is held, they proceed along the slow traversal path (via
446     * next-pointers) until the lock becomes available or the list is
447     * exhausted, whichever comes first. These cases are not fast, but
448     * maximize aggregate expected throughput.
449 dl 1.119 *
450     * Maintaining API and serialization compatibility with previous
451     * versions of this class introduces several oddities. Mainly: We
452     * leave untouched but unused constructor arguments refering to
453     * concurrencyLevel. We accept a loadFactor constructor argument,
454     * but apply it only to initial table capacity (which is the only
455     * time that we can guarantee to honor it.) We also declare an
456     * unused "Segment" class that is instantiated in minimal form
457     * only when serializing.
458 dl 1.222 *
459 dl 1.240 * Also, solely for compatibility with previous versions of this
460     * class, it extends AbstractMap, even though all of its methods
461     * are overridden, so it is just useless baggage.
462     *
463 dl 1.222 * This file is organized to make things a little easier to follow
464 dl 1.224 * while reading than they might otherwise: First the main static
465 dl 1.222 * declarations and utilities, then fields, then main public
466     * methods (with a few factorings of multiple public methods into
467     * internal ones), then sizing methods, trees, traversers, and
468     * bulk operations.
469 dl 1.4 */
470 tim 1.1
471 dl 1.4 /* ---------------- Constants -------------- */
472 tim 1.11
473 dl 1.4 /**
474 dl 1.119 * The largest possible table capacity. This value must be
475     * exactly 1<<30 to stay within Java array allocation and indexing
476     * bounds for power of two table sizes, and is further required
477     * because the top two bits of 32bit hash fields are used for
478     * control purposes.
479 dl 1.4 */
480 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
481 dl 1.56
482     /**
483 dl 1.119 * The default initial table capacity. Must be a power of 2
484     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 dl 1.56 */
486 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
487 dl 1.56
488     /**
489 dl 1.119 * The largest possible (non-power of two) array size.
490     * Needed by toArray and related methods.
491 jsr166 1.59 */
492 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493 tim 1.1
494     /**
495 dl 1.119 * The default concurrency level for this table. Unused but
496     * defined for compatibility with previous versions of this class.
497 dl 1.4 */
498 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499 tim 1.11
500 tim 1.1 /**
501 dl 1.119 * The load factor for this table. Overrides of this value in
502     * constructors affect only the initial table capacity. The
503     * actual floating point value isn't normally used -- it is
504     * simpler to use expressions such as {@code n - (n >>> 2)} for
505     * the associated resizing threshold.
506 dl 1.99 */
507 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
508 dl 1.99
509     /**
510 dl 1.119 * The bin count threshold for using a tree rather than list for a
511 dl 1.222 * bin. Bins are converted to trees when adding an element to a
512 dl 1.224 * bin with at least this many nodes. The value must be greater
513     * than 2, and should be at least 8 to mesh with assumptions in
514     * tree removal about conversion back to plain bins upon
515     * shrinkage.
516 dl 1.222 */
517     static final int TREEIFY_THRESHOLD = 8;
518    
519     /**
520     * The bin count threshold for untreeifying a (split) bin during a
521     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522     * most 6 to mesh with shrinkage detection under removal.
523     */
524     static final int UNTREEIFY_THRESHOLD = 6;
525    
526     /**
527     * The smallest table capacity for which bins may be treeified.
528     * (Otherwise the table is resized if too many nodes in a bin.)
529 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530     * conflicts between resizing and treeification thresholds.
531 dl 1.119 */
532 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
533 dl 1.119
534 dl 1.149 /**
535     * Minimum number of rebinnings per transfer step. Ranges are
536     * subdivided to allow multiple resizer threads. This value
537     * serves as a lower bound to avoid resizers encountering
538     * excessive memory contention. The value should be at least
539     * DEFAULT_CAPACITY.
540     */
541     private static final int MIN_TRANSFER_STRIDE = 16;
542    
543 dl 1.119 /*
544 dl 1.149 * Encodings for Node hash fields. See above for explanation.
545 dl 1.46 */
546 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
547     static final int TREEBIN = -2; // hash for roots of trees
548     static final int RESERVED = -3; // hash for transient reservations
549 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
550    
551     /** Number of CPUS, to place bounds on some sizings */
552     static final int NCPU = Runtime.getRuntime().availableProcessors();
553    
554 dl 1.208 /** For serialization compatibility. */
555     private static final ObjectStreamField[] serialPersistentFields = {
556 dl 1.209 new ObjectStreamField("segments", Segment[].class),
557     new ObjectStreamField("segmentMask", Integer.TYPE),
558     new ObjectStreamField("segmentShift", Integer.TYPE)
559 dl 1.208 };
560    
561 dl 1.222 /* ---------------- Nodes -------------- */
562    
563     /**
564     * Key-value entry. This class is never exported out as a
565     * user-mutable Map.Entry (i.e., one supporting setValue; see
566     * MapEntry below), but can be used for read-only traversals used
567 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
568 dl 1.224 * are special, and contain null keys and values (but are never
569     * exported). Otherwise, keys and vals are never null.
570 dl 1.222 */
571     static class Node<K,V> implements Map.Entry<K,V> {
572     final int hash;
573     final K key;
574     volatile V val;
575 dl 1.233 volatile Node<K,V> next;
576 dl 1.222
577     Node(int hash, K key, V val, Node<K,V> next) {
578     this.hash = hash;
579     this.key = key;
580     this.val = val;
581     this.next = next;
582     }
583    
584     public final K getKey() { return key; }
585     public final V getValue() { return val; }
586     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
587     public final String toString(){ return key + "=" + val; }
588     public final V setValue(V value) {
589     throw new UnsupportedOperationException();
590     }
591    
592     public final boolean equals(Object o) {
593     Object k, v, u; Map.Entry<?,?> e;
594     return ((o instanceof Map.Entry) &&
595     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
596     (v = e.getValue()) != null &&
597     (k == key || k.equals(key)) &&
598     (v == (u = val) || v.equals(u)));
599     }
600    
601 dl 1.224 /**
602     * Virtualized support for map.get(); overridden in subclasses.
603     */
604 dl 1.222 Node<K,V> find(int h, Object k) {
605     Node<K,V> e = this;
606     if (k != null) {
607     do {
608     K ek;
609     if (e.hash == h &&
610     ((ek = e.key) == k || (ek != null && k.equals(ek))))
611     return e;
612     } while ((e = e.next) != null);
613     }
614     return null;
615     }
616     }
617    
618     /* ---------------- Static utilities -------------- */
619    
620     /**
621     * Spreads (XORs) higher bits of hash to lower and also forces top
622     * bit to 0. Because the table uses power-of-two masking, sets of
623     * hashes that vary only in bits above the current mask will
624     * always collide. (Among known examples are sets of Float keys
625     * holding consecutive whole numbers in small tables.) So we
626     * apply a transform that spreads the impact of higher bits
627     * downward. There is a tradeoff between speed, utility, and
628     * quality of bit-spreading. Because many common sets of hashes
629     * are already reasonably distributed (so don't benefit from
630     * spreading), and because we use trees to handle large sets of
631     * collisions in bins, we just XOR some shifted bits in the
632     * cheapest possible way to reduce systematic lossage, as well as
633     * to incorporate impact of the highest bits that would otherwise
634     * never be used in index calculations because of table bounds.
635     */
636     static final int spread(int h) {
637     return (h ^ (h >>> 16)) & HASH_BITS;
638     }
639    
640     /**
641     * Returns a power of two table size for the given desired capacity.
642     * See Hackers Delight, sec 3.2
643     */
644     private static final int tableSizeFor(int c) {
645     int n = c - 1;
646     n |= n >>> 1;
647     n |= n >>> 2;
648     n |= n >>> 4;
649     n |= n >>> 8;
650     n |= n >>> 16;
651     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
652     }
653    
654     /**
655     * Returns x's Class if it is of the form "class C implements
656     * Comparable<C>", else null.
657     */
658     static Class<?> comparableClassFor(Object x) {
659     if (x instanceof Comparable) {
660     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
661     if ((c = x.getClass()) == String.class) // bypass checks
662     return c;
663     if ((ts = c.getGenericInterfaces()) != null) {
664     for (int i = 0; i < ts.length; ++i) {
665     if (((t = ts[i]) instanceof ParameterizedType) &&
666     ((p = (ParameterizedType)t).getRawType() ==
667     Comparable.class) &&
668     (as = p.getActualTypeArguments()) != null &&
669     as.length == 1 && as[0] == c) // type arg is c
670     return c;
671     }
672     }
673     }
674     return null;
675     }
676    
677 dl 1.210 /**
678 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
679     * class), else 0.
680     */
681     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
682     static int compareComparables(Class<?> kc, Object k, Object x) {
683     return (x == null || x.getClass() != kc ? 0 :
684     ((Comparable)k).compareTo(x));
685     }
686    
687     /* ---------------- Table element access -------------- */
688    
689     /*
690     * Volatile access methods are used for table elements as well as
691     * elements of in-progress next table while resizing. All uses of
692     * the tab arguments must be null checked by callers. All callers
693     * also paranoically precheck that tab's length is not zero (or an
694     * equivalent check), thus ensuring that any index argument taking
695     * the form of a hash value anded with (length - 1) is a valid
696     * index. Note that, to be correct wrt arbitrary concurrency
697     * errors by users, these checks must operate on local variables,
698     * which accounts for some odd-looking inline assignments below.
699     * Note that calls to setTabAt always occur within locked regions,
700 dl 1.233 * and so in principle require only release ordering, not need
701     * full volatile semantics, but are currently coded as volatile
702     * writes to be conservative.
703 dl 1.210 */
704 dl 1.222
705     @SuppressWarnings("unchecked")
706     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
707     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
708     }
709    
710     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
711     Node<K,V> c, Node<K,V> v) {
712     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
713     }
714    
715     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
716 dl 1.233 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
717 dl 1.149 }
718    
719 dl 1.4 /* ---------------- Fields -------------- */
720 tim 1.1
721     /**
722 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
723     * Size is always a power of two. Accessed directly by iterators.
724 jsr166 1.59 */
725 dl 1.210 transient volatile Node<K,V>[] table;
726 tim 1.1
727     /**
728 dl 1.149 * The next table to use; non-null only while resizing.
729 jsr166 1.59 */
730 dl 1.210 private transient volatile Node<K,V>[] nextTable;
731 dl 1.149
732     /**
733     * Base counter value, used mainly when there is no contention,
734     * but also as a fallback during table initialization
735     * races. Updated via CAS.
736     */
737     private transient volatile long baseCount;
738 tim 1.1
739     /**
740 dl 1.119 * Table initialization and resizing control. When negative, the
741 dl 1.149 * table is being initialized or resized: -1 for initialization,
742     * else -(1 + the number of active resizing threads). Otherwise,
743     * when table is null, holds the initial table size to use upon
744     * creation, or 0 for default. After initialization, holds the
745     * next element count value upon which to resize the table.
746 tim 1.1 */
747 dl 1.119 private transient volatile int sizeCtl;
748 dl 1.4
749 dl 1.149 /**
750     * The next table index (plus one) to split while resizing.
751     */
752     private transient volatile int transferIndex;
753    
754     /**
755 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
756 dl 1.149 */
757 dl 1.153 private transient volatile int cellsBusy;
758 dl 1.149
759     /**
760     * Table of counter cells. When non-null, size is a power of 2.
761     */
762 dl 1.222 private transient volatile CounterCell[] counterCells;
763 dl 1.149
764 dl 1.119 // views
765 dl 1.137 private transient KeySetView<K,V> keySet;
766 dl 1.142 private transient ValuesView<K,V> values;
767     private transient EntrySetView<K,V> entrySet;
768 dl 1.119
769    
770 dl 1.222 /* ---------------- Public operations -------------- */
771    
772     /**
773     * Creates a new, empty map with the default initial table size (16).
774 dl 1.119 */
775 dl 1.222 public ConcurrentHashMap() {
776     }
777 dl 1.119
778 dl 1.222 /**
779     * Creates a new, empty map with an initial table size
780     * accommodating the specified number of elements without the need
781     * to dynamically resize.
782     *
783     * @param initialCapacity The implementation performs internal
784     * sizing to accommodate this many elements.
785     * @throws IllegalArgumentException if the initial capacity of
786     * elements is negative
787     */
788     public ConcurrentHashMap(int initialCapacity) {
789     if (initialCapacity < 0)
790     throw new IllegalArgumentException();
791     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
792     MAXIMUM_CAPACITY :
793     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
794     this.sizeCtl = cap;
795 dl 1.119 }
796    
797 dl 1.222 /**
798     * Creates a new map with the same mappings as the given map.
799     *
800     * @param m the map
801     */
802     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
803     this.sizeCtl = DEFAULT_CAPACITY;
804     putAll(m);
805 dl 1.119 }
806    
807 dl 1.222 /**
808     * Creates a new, empty map with an initial table size based on
809     * the given number of elements ({@code initialCapacity}) and
810     * initial table density ({@code loadFactor}).
811     *
812     * @param initialCapacity the initial capacity. The implementation
813     * performs internal sizing to accommodate this many elements,
814     * given the specified load factor.
815     * @param loadFactor the load factor (table density) for
816     * establishing the initial table size
817     * @throws IllegalArgumentException if the initial capacity of
818     * elements is negative or the load factor is nonpositive
819     *
820     * @since 1.6
821     */
822     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
823     this(initialCapacity, loadFactor, 1);
824 dl 1.119 }
825    
826 dl 1.99 /**
827 dl 1.222 * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}), table
829     * density ({@code loadFactor}), and number of concurrently
830     * updating threads ({@code concurrencyLevel}).
831     *
832     * @param initialCapacity the initial capacity. The implementation
833     * performs internal sizing to accommodate this many elements,
834     * given the specified load factor.
835     * @param loadFactor the load factor (table density) for
836     * establishing the initial table size
837     * @param concurrencyLevel the estimated number of concurrently
838     * updating threads. The implementation may use this value as
839     * a sizing hint.
840     * @throws IllegalArgumentException if the initial capacity is
841     * negative or the load factor or concurrencyLevel are
842     * nonpositive
843 dl 1.99 */
844 dl 1.222 public ConcurrentHashMap(int initialCapacity,
845     float loadFactor, int concurrencyLevel) {
846     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
847     throw new IllegalArgumentException();
848     if (initialCapacity < concurrencyLevel) // Use at least as many bins
849     initialCapacity = concurrencyLevel; // as estimated threads
850     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
851     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
852     MAXIMUM_CAPACITY : tableSizeFor((int)size);
853     this.sizeCtl = cap;
854     }
855 dl 1.99
856 dl 1.222 // Original (since JDK1.2) Map methods
857 dl 1.210
858 dl 1.222 /**
859     * {@inheritDoc}
860     */
861     public int size() {
862     long n = sumCount();
863     return ((n < 0L) ? 0 :
864     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
865     (int)n);
866     }
867 dl 1.210
868 dl 1.222 /**
869     * {@inheritDoc}
870     */
871     public boolean isEmpty() {
872     return sumCount() <= 0L; // ignore transient negative values
873 dl 1.210 }
874    
875     /**
876 dl 1.222 * Returns the value to which the specified key is mapped,
877     * or {@code null} if this map contains no mapping for the key.
878     *
879     * <p>More formally, if this map contains a mapping from a key
880     * {@code k} to a value {@code v} such that {@code key.equals(k)},
881     * then this method returns {@code v}; otherwise it returns
882     * {@code null}. (There can be at most one such mapping.)
883     *
884     * @throws NullPointerException if the specified key is null
885 dl 1.210 */
886 dl 1.222 public V get(Object key) {
887     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
888     int h = spread(key.hashCode());
889     if ((tab = table) != null && (n = tab.length) > 0 &&
890     (e = tabAt(tab, (n - 1) & h)) != null) {
891     if ((eh = e.hash) == h) {
892     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
893     return e.val;
894     }
895     else if (eh < 0)
896     return (p = e.find(h, key)) != null ? p.val : null;
897     while ((e = e.next) != null) {
898     if (e.hash == h &&
899     ((ek = e.key) == key || (ek != null && key.equals(ek))))
900     return e.val;
901     }
902 dl 1.210 }
903 dl 1.222 return null;
904 dl 1.99 }
905    
906     /**
907 dl 1.222 * Tests if the specified object is a key in this table.
908     *
909     * @param key possible key
910     * @return {@code true} if and only if the specified object
911     * is a key in this table, as determined by the
912     * {@code equals} method; {@code false} otherwise
913     * @throws NullPointerException if the specified key is null
914 dl 1.99 */
915 dl 1.222 public boolean containsKey(Object key) {
916     return get(key) != null;
917 dl 1.99 }
918 tim 1.1
919 dl 1.201 /**
920 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
921     * specified value. Note: This method may require a full traversal
922     * of the map, and is much slower than method {@code containsKey}.
923     *
924     * @param value value whose presence in this map is to be tested
925     * @return {@code true} if this map maps one or more keys to the
926     * specified value
927     * @throws NullPointerException if the specified value is null
928     */
929     public boolean containsValue(Object value) {
930     if (value == null)
931     throw new NullPointerException();
932     Node<K,V>[] t;
933     if ((t = table) != null) {
934     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
935     for (Node<K,V> p; (p = it.advance()) != null; ) {
936     V v;
937     if ((v = p.val) == value || (v != null && value.equals(v)))
938     return true;
939 dl 1.201 }
940     }
941 dl 1.222 return false;
942 dl 1.201 }
943    
944 tim 1.1 /**
945 dl 1.222 * Maps the specified key to the specified value in this table.
946     * Neither the key nor the value can be null.
947 dl 1.119 *
948 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
949     * with a key that is equal to the original key.
950 dl 1.119 *
951 dl 1.222 * @param key key with which the specified value is to be associated
952     * @param value value to be associated with the specified key
953     * @return the previous value associated with {@code key}, or
954     * {@code null} if there was no mapping for {@code key}
955     * @throws NullPointerException if the specified key or value is null
956 dl 1.119 */
957 dl 1.222 public V put(K key, V value) {
958     return putVal(key, value, false);
959     }
960 dl 1.119
961 dl 1.222 /** Implementation for put and putIfAbsent */
962     final V putVal(K key, V value, boolean onlyIfAbsent) {
963     if (key == null || value == null) throw new NullPointerException();
964     int hash = spread(key.hashCode());
965     int binCount = 0;
966     for (Node<K,V>[] tab = table;;) {
967     Node<K,V> f; int n, i, fh;
968     if (tab == null || (n = tab.length) == 0)
969     tab = initTable();
970     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
971     if (casTabAt(tab, i, null,
972     new Node<K,V>(hash, key, value, null)))
973     break; // no lock when adding to empty bin
974 dl 1.119 }
975 dl 1.222 else if ((fh = f.hash) == MOVED)
976     tab = helpTransfer(tab, f);
977     else {
978     V oldVal = null;
979     synchronized (f) {
980     if (tabAt(tab, i) == f) {
981     if (fh >= 0) {
982     binCount = 1;
983     for (Node<K,V> e = f;; ++binCount) {
984     K ek;
985     if (e.hash == hash &&
986     ((ek = e.key) == key ||
987     (ek != null && key.equals(ek)))) {
988     oldVal = e.val;
989     if (!onlyIfAbsent)
990     e.val = value;
991     break;
992     }
993     Node<K,V> pred = e;
994     if ((e = e.next) == null) {
995     pred.next = new Node<K,V>(hash, key,
996     value, null);
997     break;
998     }
999     }
1000     }
1001     else if (f instanceof TreeBin) {
1002     Node<K,V> p;
1003     binCount = 2;
1004     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1005     value)) != null) {
1006     oldVal = p.val;
1007     if (!onlyIfAbsent)
1008     p.val = value;
1009     }
1010     }
1011 dl 1.99 }
1012     }
1013 dl 1.222 if (binCount != 0) {
1014     if (binCount >= TREEIFY_THRESHOLD)
1015     treeifyBin(tab, i);
1016     if (oldVal != null)
1017     return oldVal;
1018 dl 1.99 break;
1019     }
1020     }
1021     }
1022 dl 1.222 addCount(1L, binCount);
1023     return null;
1024     }
1025    
1026     /**
1027     * Copies all of the mappings from the specified map to this one.
1028     * These mappings replace any mappings that this map had for any of the
1029     * keys currently in the specified map.
1030     *
1031     * @param m mappings to be stored in this map
1032     */
1033     public void putAll(Map<? extends K, ? extends V> m) {
1034     tryPresize(m.size());
1035     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1036     putVal(e.getKey(), e.getValue(), false);
1037     }
1038 dl 1.99
1039 dl 1.222 /**
1040     * Removes the key (and its corresponding value) from this map.
1041     * This method does nothing if the key is not in the map.
1042     *
1043     * @param key the key that needs to be removed
1044     * @return the previous value associated with {@code key}, or
1045     * {@code null} if there was no mapping for {@code key}
1046     * @throws NullPointerException if the specified key is null
1047     */
1048     public V remove(Object key) {
1049     return replaceNode(key, null, null);
1050     }
1051 dl 1.99
1052 dl 1.222 /**
1053     * Implementation for the four public remove/replace methods:
1054     * Replaces node value with v, conditional upon match of cv if
1055     * non-null. If resulting value is null, delete.
1056     */
1057     final V replaceNode(Object key, V value, Object cv) {
1058     int hash = spread(key.hashCode());
1059     for (Node<K,V>[] tab = table;;) {
1060     Node<K,V> f; int n, i, fh;
1061     if (tab == null || (n = tab.length) == 0 ||
1062     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1063     break;
1064     else if ((fh = f.hash) == MOVED)
1065     tab = helpTransfer(tab, f);
1066     else {
1067     V oldVal = null;
1068     boolean validated = false;
1069     synchronized (f) {
1070     if (tabAt(tab, i) == f) {
1071     if (fh >= 0) {
1072     validated = true;
1073     for (Node<K,V> e = f, pred = null;;) {
1074     K ek;
1075     if (e.hash == hash &&
1076     ((ek = e.key) == key ||
1077     (ek != null && key.equals(ek)))) {
1078     V ev = e.val;
1079     if (cv == null || cv == ev ||
1080     (ev != null && cv.equals(ev))) {
1081     oldVal = ev;
1082     if (value != null)
1083     e.val = value;
1084     else if (pred != null)
1085     pred.next = e.next;
1086     else
1087     setTabAt(tab, i, e.next);
1088     }
1089     break;
1090 dl 1.119 }
1091 dl 1.222 pred = e;
1092     if ((e = e.next) == null)
1093     break;
1094 dl 1.119 }
1095     }
1096 dl 1.222 else if (f instanceof TreeBin) {
1097     validated = true;
1098     TreeBin<K,V> t = (TreeBin<K,V>)f;
1099     TreeNode<K,V> r, p;
1100     if ((r = t.root) != null &&
1101     (p = r.findTreeNode(hash, key, null)) != null) {
1102     V pv = p.val;
1103     if (cv == null || cv == pv ||
1104     (pv != null && cv.equals(pv))) {
1105     oldVal = pv;
1106     if (value != null)
1107     p.val = value;
1108     else if (t.removeTreeNode(p))
1109     setTabAt(tab, i, untreeify(t.first));
1110 dl 1.119 }
1111     }
1112 dl 1.99 }
1113     }
1114     }
1115 dl 1.222 if (validated) {
1116     if (oldVal != null) {
1117     if (value == null)
1118     addCount(-1L, -1);
1119     return oldVal;
1120     }
1121     break;
1122     }
1123 dl 1.99 }
1124     }
1125 dl 1.222 return null;
1126     }
1127 dl 1.45
1128 dl 1.222 /**
1129     * Removes all of the mappings from this map.
1130     */
1131     public void clear() {
1132     long delta = 0L; // negative number of deletions
1133     int i = 0;
1134     Node<K,V>[] tab = table;
1135     while (tab != null && i < tab.length) {
1136     int fh;
1137     Node<K,V> f = tabAt(tab, i);
1138     if (f == null)
1139     ++i;
1140     else if ((fh = f.hash) == MOVED) {
1141     tab = helpTransfer(tab, f);
1142     i = 0; // restart
1143 dl 1.217 }
1144 dl 1.222 else {
1145     synchronized (f) {
1146     if (tabAt(tab, i) == f) {
1147     Node<K,V> p = (fh >= 0 ? f :
1148     (f instanceof TreeBin) ?
1149     ((TreeBin<K,V>)f).first : null);
1150     while (p != null) {
1151     --delta;
1152     p = p.next;
1153 dl 1.119 }
1154 dl 1.222 setTabAt(tab, i++, null);
1155 dl 1.119 }
1156 dl 1.45 }
1157 dl 1.4 }
1158 dl 1.217 }
1159 dl 1.222 if (delta != 0L)
1160     addCount(delta, -1);
1161     }
1162 dl 1.217
1163 dl 1.222 /**
1164     * Returns a {@link Set} view of the keys contained in this map.
1165     * The set is backed by the map, so changes to the map are
1166     * reflected in the set, and vice-versa. The set supports element
1167     * removal, which removes the corresponding mapping from this map,
1168     * via the {@code Iterator.remove}, {@code Set.remove},
1169     * {@code removeAll}, {@code retainAll}, and {@code clear}
1170     * operations. It does not support the {@code add} or
1171     * {@code addAll} operations.
1172     *
1173 jsr166 1.242 * <p>The view's iterators and spliterators are
1174     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1175 dl 1.222 *
1176 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1177     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1178     *
1179 dl 1.222 * @return the set view
1180     */
1181     public KeySetView<K,V> keySet() {
1182     KeySetView<K,V> ks;
1183     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1184     }
1185 dl 1.217
1186 dl 1.222 /**
1187     * Returns a {@link Collection} view of the values contained in this map.
1188     * The collection is backed by the map, so changes to the map are
1189     * reflected in the collection, and vice-versa. The collection
1190     * supports element removal, which removes the corresponding
1191     * mapping from this map, via the {@code Iterator.remove},
1192     * {@code Collection.remove}, {@code removeAll},
1193     * {@code retainAll}, and {@code clear} operations. It does not
1194     * support the {@code add} or {@code addAll} operations.
1195     *
1196 jsr166 1.242 * <p>The view's iterators and spliterators are
1197     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 dl 1.222 *
1199 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1200     * and {@link Spliterator#NONNULL}.
1201     *
1202 dl 1.222 * @return the collection view
1203     */
1204     public Collection<V> values() {
1205     ValuesView<K,V> vs;
1206     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1207 tim 1.1 }
1208    
1209 dl 1.99 /**
1210 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1211     * The set is backed by the map, so changes to the map are
1212     * reflected in the set, and vice-versa. The set supports element
1213     * removal, which removes the corresponding mapping from the map,
1214     * via the {@code Iterator.remove}, {@code Set.remove},
1215     * {@code removeAll}, {@code retainAll}, and {@code clear}
1216     * operations.
1217     *
1218 jsr166 1.242 * <p>The view's iterators and spliterators are
1219     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 dl 1.222 *
1221 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1222     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1223     *
1224 dl 1.222 * @return the set view
1225 dl 1.119 */
1226 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1227     EntrySetView<K,V> es;
1228     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1229 dl 1.99 }
1230    
1231     /**
1232 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1233     * the sum of, for each key-value pair in the map,
1234     * {@code key.hashCode() ^ value.hashCode()}.
1235     *
1236     * @return the hash code value for this map
1237 dl 1.119 */
1238 dl 1.222 public int hashCode() {
1239     int h = 0;
1240     Node<K,V>[] t;
1241     if ((t = table) != null) {
1242     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1243     for (Node<K,V> p; (p = it.advance()) != null; )
1244     h += p.key.hashCode() ^ p.val.hashCode();
1245 dl 1.119 }
1246 dl 1.222 return h;
1247 dl 1.99 }
1248 tim 1.11
1249 dl 1.222 /**
1250     * Returns a string representation of this map. The string
1251     * representation consists of a list of key-value mappings (in no
1252     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1253     * mappings are separated by the characters {@code ", "} (comma
1254     * and space). Each key-value mapping is rendered as the key
1255     * followed by an equals sign ("{@code =}") followed by the
1256     * associated value.
1257     *
1258     * @return a string representation of this map
1259     */
1260     public String toString() {
1261     Node<K,V>[] t;
1262     int f = (t = table) == null ? 0 : t.length;
1263     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1264     StringBuilder sb = new StringBuilder();
1265     sb.append('{');
1266     Node<K,V> p;
1267     if ((p = it.advance()) != null) {
1268 dl 1.210 for (;;) {
1269 dl 1.222 K k = p.key;
1270     V v = p.val;
1271     sb.append(k == this ? "(this Map)" : k);
1272     sb.append('=');
1273     sb.append(v == this ? "(this Map)" : v);
1274     if ((p = it.advance()) == null)
1275 dl 1.210 break;
1276 dl 1.222 sb.append(',').append(' ');
1277 dl 1.119 }
1278     }
1279 dl 1.222 return sb.append('}').toString();
1280 tim 1.1 }
1281    
1282     /**
1283 dl 1.222 * Compares the specified object with this map for equality.
1284     * Returns {@code true} if the given object is a map with the same
1285     * mappings as this map. This operation may return misleading
1286     * results if either map is concurrently modified during execution
1287     * of this method.
1288     *
1289     * @param o object to be compared for equality with this map
1290     * @return {@code true} if the specified object is equal to this map
1291 dl 1.119 */
1292 dl 1.222 public boolean equals(Object o) {
1293     if (o != this) {
1294     if (!(o instanceof Map))
1295     return false;
1296     Map<?,?> m = (Map<?,?>) o;
1297     Node<K,V>[] t;
1298     int f = (t = table) == null ? 0 : t.length;
1299     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300     for (Node<K,V> p; (p = it.advance()) != null; ) {
1301     V val = p.val;
1302     Object v = m.get(p.key);
1303     if (v == null || (v != val && !v.equals(val)))
1304     return false;
1305 dl 1.119 }
1306 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1307     Object mk, mv, v;
1308     if ((mk = e.getKey()) == null ||
1309     (mv = e.getValue()) == null ||
1310     (v = get(mk)) == null ||
1311     (mv != v && !mv.equals(v)))
1312     return false;
1313     }
1314     }
1315     return true;
1316     }
1317    
1318     /**
1319     * Stripped-down version of helper class used in previous version,
1320     * declared for the sake of serialization compatibility
1321     */
1322     static class Segment<K,V> extends ReentrantLock implements Serializable {
1323     private static final long serialVersionUID = 2249069246763182397L;
1324     final float loadFactor;
1325     Segment(float lf) { this.loadFactor = lf; }
1326     }
1327    
1328     /**
1329     * Saves the state of the {@code ConcurrentHashMap} instance to a
1330     * stream (i.e., serializes it).
1331     * @param s the stream
1332 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1333 dl 1.222 * @serialData
1334     * the key (Object) and value (Object)
1335     * for each key-value mapping, followed by a null pair.
1336     * The key-value mappings are emitted in no particular order.
1337     */
1338     private void writeObject(java.io.ObjectOutputStream s)
1339     throws java.io.IOException {
1340     // For serialization compatibility
1341     // Emulate segment calculation from previous version of this class
1342     int sshift = 0;
1343     int ssize = 1;
1344     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1345     ++sshift;
1346     ssize <<= 1;
1347     }
1348     int segmentShift = 32 - sshift;
1349     int segmentMask = ssize - 1;
1350 dl 1.246 @SuppressWarnings("unchecked")
1351     Segment<K,V>[] segments = (Segment<K,V>[])
1352 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1353     for (int i = 0; i < segments.length; ++i)
1354     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1355     s.putFields().put("segments", segments);
1356     s.putFields().put("segmentShift", segmentShift);
1357     s.putFields().put("segmentMask", segmentMask);
1358     s.writeFields();
1359    
1360     Node<K,V>[] t;
1361     if ((t = table) != null) {
1362     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1363     for (Node<K,V> p; (p = it.advance()) != null; ) {
1364     s.writeObject(p.key);
1365     s.writeObject(p.val);
1366     }
1367     }
1368     s.writeObject(null);
1369     s.writeObject(null);
1370     segments = null; // throw away
1371     }
1372    
1373     /**
1374     * Reconstitutes the instance from a stream (that is, deserializes it).
1375     * @param s the stream
1376 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1377     * could not be found
1378     * @throws java.io.IOException if an I/O error occurs
1379 dl 1.222 */
1380     private void readObject(java.io.ObjectInputStream s)
1381     throws java.io.IOException, ClassNotFoundException {
1382     /*
1383     * To improve performance in typical cases, we create nodes
1384     * while reading, then place in table once size is known.
1385     * However, we must also validate uniqueness and deal with
1386     * overpopulated bins while doing so, which requires
1387     * specialized versions of putVal mechanics.
1388     */
1389     sizeCtl = -1; // force exclusion for table construction
1390     s.defaultReadObject();
1391     long size = 0L;
1392     Node<K,V> p = null;
1393     for (;;) {
1394 dl 1.246 @SuppressWarnings("unchecked")
1395     K k = (K) s.readObject();
1396     @SuppressWarnings("unchecked")
1397     V v = (V) s.readObject();
1398 dl 1.222 if (k != null && v != null) {
1399     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1400     ++size;
1401     }
1402     else
1403     break;
1404     }
1405     if (size == 0L)
1406     sizeCtl = 0;
1407     else {
1408     int n;
1409     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1410     n = MAXIMUM_CAPACITY;
1411 dl 1.149 else {
1412 dl 1.222 int sz = (int)size;
1413     n = tableSizeFor(sz + (sz >>> 1) + 1);
1414     }
1415 jsr166 1.245 @SuppressWarnings("unchecked")
1416 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1417 dl 1.222 int mask = n - 1;
1418     long added = 0L;
1419     while (p != null) {
1420     boolean insertAtFront;
1421     Node<K,V> next = p.next, first;
1422     int h = p.hash, j = h & mask;
1423     if ((first = tabAt(tab, j)) == null)
1424     insertAtFront = true;
1425     else {
1426     K k = p.key;
1427     if (first.hash < 0) {
1428     TreeBin<K,V> t = (TreeBin<K,V>)first;
1429     if (t.putTreeVal(h, k, p.val) == null)
1430     ++added;
1431     insertAtFront = false;
1432     }
1433     else {
1434     int binCount = 0;
1435     insertAtFront = true;
1436     Node<K,V> q; K qk;
1437     for (q = first; q != null; q = q.next) {
1438     if (q.hash == h &&
1439     ((qk = q.key) == k ||
1440     (qk != null && k.equals(qk)))) {
1441     insertAtFront = false;
1442 dl 1.119 break;
1443     }
1444 dl 1.222 ++binCount;
1445     }
1446     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1447     insertAtFront = false;
1448     ++added;
1449     p.next = first;
1450     TreeNode<K,V> hd = null, tl = null;
1451     for (q = p; q != null; q = q.next) {
1452     TreeNode<K,V> t = new TreeNode<K,V>
1453     (q.hash, q.key, q.val, null, null);
1454     if ((t.prev = tl) == null)
1455     hd = t;
1456     else
1457     tl.next = t;
1458     tl = t;
1459     }
1460     setTabAt(tab, j, new TreeBin<K,V>(hd));
1461 dl 1.119 }
1462     }
1463     }
1464 dl 1.222 if (insertAtFront) {
1465     ++added;
1466     p.next = first;
1467     setTabAt(tab, j, p);
1468 dl 1.119 }
1469 dl 1.222 p = next;
1470 dl 1.119 }
1471 dl 1.222 table = tab;
1472     sizeCtl = n - (n >>> 2);
1473     baseCount = added;
1474 dl 1.119 }
1475 dl 1.55 }
1476    
1477 dl 1.222 // ConcurrentMap methods
1478    
1479     /**
1480     * {@inheritDoc}
1481     *
1482     * @return the previous value associated with the specified key,
1483     * or {@code null} if there was no mapping for the key
1484     * @throws NullPointerException if the specified key or value is null
1485     */
1486     public V putIfAbsent(K key, V value) {
1487     return putVal(key, value, true);
1488     }
1489    
1490     /**
1491     * {@inheritDoc}
1492     *
1493     * @throws NullPointerException if the specified key is null
1494     */
1495     public boolean remove(Object key, Object value) {
1496     if (key == null)
1497     throw new NullPointerException();
1498     return value != null && replaceNode(key, null, value) != null;
1499     }
1500    
1501     /**
1502     * {@inheritDoc}
1503     *
1504     * @throws NullPointerException if any of the arguments are null
1505     */
1506     public boolean replace(K key, V oldValue, V newValue) {
1507     if (key == null || oldValue == null || newValue == null)
1508     throw new NullPointerException();
1509     return replaceNode(key, newValue, oldValue) != null;
1510     }
1511    
1512     /**
1513     * {@inheritDoc}
1514     *
1515     * @return the previous value associated with the specified key,
1516     * or {@code null} if there was no mapping for the key
1517     * @throws NullPointerException if the specified key or value is null
1518     */
1519     public V replace(K key, V value) {
1520     if (key == null || value == null)
1521     throw new NullPointerException();
1522     return replaceNode(key, value, null);
1523     }
1524    
1525     // Overrides of JDK8+ Map extension method defaults
1526    
1527     /**
1528     * Returns the value to which the specified key is mapped, or the
1529     * given default value if this map contains no mapping for the
1530     * key.
1531     *
1532     * @param key the key whose associated value is to be returned
1533     * @param defaultValue the value to return if this map contains
1534     * no mapping for the given key
1535     * @return the mapping for the key, if present; else the default value
1536     * @throws NullPointerException if the specified key is null
1537 tim 1.1 */
1538 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1539     V v;
1540     return (v = get(key)) == null ? defaultValue : v;
1541     }
1542 tim 1.1
1543 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1544     if (action == null) throw new NullPointerException();
1545     Node<K,V>[] t;
1546     if ((t = table) != null) {
1547     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1548     for (Node<K,V> p; (p = it.advance()) != null; ) {
1549     action.accept(p.key, p.val);
1550 dl 1.99 }
1551 dl 1.222 }
1552     }
1553    
1554     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1555     if (function == null) throw new NullPointerException();
1556     Node<K,V>[] t;
1557     if ((t = table) != null) {
1558     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1559     for (Node<K,V> p; (p = it.advance()) != null; ) {
1560     V oldValue = p.val;
1561     for (K key = p.key;;) {
1562     V newValue = function.apply(key, oldValue);
1563     if (newValue == null)
1564     throw new NullPointerException();
1565     if (replaceNode(key, newValue, oldValue) != null ||
1566     (oldValue = get(key)) == null)
1567 dl 1.119 break;
1568     }
1569     }
1570 dl 1.45 }
1571 dl 1.21 }
1572    
1573 dl 1.222 /**
1574     * If the specified key is not already associated with a value,
1575     * attempts to compute its value using the given mapping function
1576     * and enters it into this map unless {@code null}. The entire
1577     * method invocation is performed atomically, so the function is
1578     * applied at most once per key. Some attempted update operations
1579     * on this map by other threads may be blocked while computation
1580     * is in progress, so the computation should be short and simple,
1581     * and must not attempt to update any other mappings of this map.
1582     *
1583     * @param key key with which the specified value is to be associated
1584     * @param mappingFunction the function to compute a value
1585     * @return the current (existing or computed) value associated with
1586     * the specified key, or null if the computed value is null
1587     * @throws NullPointerException if the specified key or mappingFunction
1588     * is null
1589     * @throws IllegalStateException if the computation detectably
1590     * attempts a recursive update to this map that would
1591     * otherwise never complete
1592     * @throws RuntimeException or Error if the mappingFunction does so,
1593     * in which case the mapping is left unestablished
1594     */
1595     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1596     if (key == null || mappingFunction == null)
1597 dl 1.149 throw new NullPointerException();
1598 dl 1.222 int h = spread(key.hashCode());
1599 dl 1.151 V val = null;
1600 dl 1.222 int binCount = 0;
1601 dl 1.210 for (Node<K,V>[] tab = table;;) {
1602 dl 1.222 Node<K,V> f; int n, i, fh;
1603     if (tab == null || (n = tab.length) == 0)
1604 dl 1.119 tab = initTable();
1605 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1606     Node<K,V> r = new ReservationNode<K,V>();
1607     synchronized (r) {
1608     if (casTabAt(tab, i, null, r)) {
1609     binCount = 1;
1610     Node<K,V> node = null;
1611 dl 1.149 try {
1612 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1613     node = new Node<K,V>(h, key, val, null);
1614 dl 1.149 } finally {
1615 dl 1.222 setTabAt(tab, i, node);
1616 dl 1.119 }
1617     }
1618     }
1619 dl 1.222 if (binCount != 0)
1620 dl 1.119 break;
1621     }
1622 dl 1.222 else if ((fh = f.hash) == MOVED)
1623     tab = helpTransfer(tab, f);
1624 dl 1.119 else {
1625 dl 1.149 boolean added = false;
1626 jsr166 1.150 synchronized (f) {
1627 dl 1.149 if (tabAt(tab, i) == f) {
1628 dl 1.222 if (fh >= 0) {
1629     binCount = 1;
1630     for (Node<K,V> e = f;; ++binCount) {
1631     K ek; V ev;
1632     if (e.hash == h &&
1633     ((ek = e.key) == key ||
1634     (ek != null && key.equals(ek)))) {
1635     val = e.val;
1636     break;
1637     }
1638     Node<K,V> pred = e;
1639     if ((e = e.next) == null) {
1640     if ((val = mappingFunction.apply(key)) != null) {
1641     added = true;
1642     pred.next = new Node<K,V>(h, key, val, null);
1643     }
1644     break;
1645     }
1646 dl 1.149 }
1647 dl 1.222 }
1648     else if (f instanceof TreeBin) {
1649     binCount = 2;
1650     TreeBin<K,V> t = (TreeBin<K,V>)f;
1651     TreeNode<K,V> r, p;
1652     if ((r = t.root) != null &&
1653     (p = r.findTreeNode(h, key, null)) != null)
1654     val = p.val;
1655     else if ((val = mappingFunction.apply(key)) != null) {
1656     added = true;
1657     t.putTreeVal(h, key, val);
1658 dl 1.119 }
1659     }
1660     }
1661 dl 1.149 }
1662 dl 1.222 if (binCount != 0) {
1663     if (binCount >= TREEIFY_THRESHOLD)
1664     treeifyBin(tab, i);
1665 dl 1.149 if (!added)
1666 dl 1.151 return val;
1667 dl 1.149 break;
1668 dl 1.119 }
1669 dl 1.105 }
1670 dl 1.99 }
1671 dl 1.149 if (val != null)
1672 dl 1.222 addCount(1L, binCount);
1673 dl 1.151 return val;
1674 tim 1.1 }
1675    
1676 dl 1.222 /**
1677     * If the value for the specified key is present, attempts to
1678     * compute a new mapping given the key and its current mapped
1679     * value. The entire method invocation is performed atomically.
1680     * Some attempted update operations on this map by other threads
1681     * may be blocked while computation is in progress, so the
1682     * computation should be short and simple, and must not attempt to
1683     * update any other mappings of this map.
1684     *
1685     * @param key key with which a value may be associated
1686     * @param remappingFunction the function to compute a value
1687     * @return the new value associated with the specified key, or null if none
1688     * @throws NullPointerException if the specified key or remappingFunction
1689     * is null
1690     * @throws IllegalStateException if the computation detectably
1691     * attempts a recursive update to this map that would
1692     * otherwise never complete
1693     * @throws RuntimeException or Error if the remappingFunction does so,
1694     * in which case the mapping is unchanged
1695     */
1696     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1697     if (key == null || remappingFunction == null)
1698 dl 1.149 throw new NullPointerException();
1699 dl 1.222 int h = spread(key.hashCode());
1700 dl 1.151 V val = null;
1701 dl 1.119 int delta = 0;
1702 dl 1.222 int binCount = 0;
1703 dl 1.210 for (Node<K,V>[] tab = table;;) {
1704 dl 1.222 Node<K,V> f; int n, i, fh;
1705     if (tab == null || (n = tab.length) == 0)
1706 dl 1.119 tab = initTable();
1707 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1708     break;
1709     else if ((fh = f.hash) == MOVED)
1710     tab = helpTransfer(tab, f);
1711     else {
1712     synchronized (f) {
1713     if (tabAt(tab, i) == f) {
1714     if (fh >= 0) {
1715     binCount = 1;
1716     for (Node<K,V> e = f, pred = null;; ++binCount) {
1717     K ek;
1718     if (e.hash == h &&
1719     ((ek = e.key) == key ||
1720     (ek != null && key.equals(ek)))) {
1721     val = remappingFunction.apply(key, e.val);
1722     if (val != null)
1723     e.val = val;
1724 dl 1.210 else {
1725 dl 1.222 delta = -1;
1726     Node<K,V> en = e.next;
1727     if (pred != null)
1728     pred.next = en;
1729     else
1730     setTabAt(tab, i, en);
1731 dl 1.210 }
1732 dl 1.222 break;
1733 dl 1.210 }
1734 dl 1.222 pred = e;
1735     if ((e = e.next) == null)
1736     break;
1737 dl 1.119 }
1738     }
1739 dl 1.222 else if (f instanceof TreeBin) {
1740     binCount = 2;
1741     TreeBin<K,V> t = (TreeBin<K,V>)f;
1742     TreeNode<K,V> r, p;
1743     if ((r = t.root) != null &&
1744     (p = r.findTreeNode(h, key, null)) != null) {
1745     val = remappingFunction.apply(key, p.val);
1746 dl 1.119 if (val != null)
1747 dl 1.222 p.val = val;
1748 dl 1.119 else {
1749     delta = -1;
1750 dl 1.222 if (t.removeTreeNode(p))
1751     setTabAt(tab, i, untreeify(t.first));
1752 dl 1.119 }
1753     }
1754     }
1755     }
1756     }
1757 dl 1.222 if (binCount != 0)
1758 dl 1.119 break;
1759     }
1760     }
1761 dl 1.149 if (delta != 0)
1762 dl 1.222 addCount((long)delta, binCount);
1763 dl 1.151 return val;
1764 dl 1.119 }
1765    
1766 dl 1.222 /**
1767     * Attempts to compute a mapping for the specified key and its
1768     * current mapped value (or {@code null} if there is no current
1769     * mapping). The entire method invocation is performed atomically.
1770     * Some attempted update operations on this map by other threads
1771     * may be blocked while computation is in progress, so the
1772     * computation should be short and simple, and must not attempt to
1773     * update any other mappings of this Map.
1774     *
1775     * @param key key with which the specified value is to be associated
1776     * @param remappingFunction the function to compute a value
1777     * @return the new value associated with the specified key, or null if none
1778     * @throws NullPointerException if the specified key or remappingFunction
1779     * is null
1780     * @throws IllegalStateException if the computation detectably
1781     * attempts a recursive update to this map that would
1782     * otherwise never complete
1783     * @throws RuntimeException or Error if the remappingFunction does so,
1784     * in which case the mapping is unchanged
1785     */
1786     public V compute(K key,
1787     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1788     if (key == null || remappingFunction == null)
1789 dl 1.149 throw new NullPointerException();
1790 dl 1.222 int h = spread(key.hashCode());
1791 dl 1.151 V val = null;
1792 dl 1.119 int delta = 0;
1793 dl 1.222 int binCount = 0;
1794 dl 1.210 for (Node<K,V>[] tab = table;;) {
1795 dl 1.222 Node<K,V> f; int n, i, fh;
1796     if (tab == null || (n = tab.length) == 0)
1797 dl 1.119 tab = initTable();
1798 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1799     Node<K,V> r = new ReservationNode<K,V>();
1800     synchronized (r) {
1801     if (casTabAt(tab, i, null, r)) {
1802     binCount = 1;
1803     Node<K,V> node = null;
1804     try {
1805     if ((val = remappingFunction.apply(key, null)) != null) {
1806     delta = 1;
1807     node = new Node<K,V>(h, key, val, null);
1808     }
1809     } finally {
1810     setTabAt(tab, i, node);
1811     }
1812     }
1813     }
1814     if (binCount != 0)
1815 dl 1.119 break;
1816     }
1817 dl 1.222 else if ((fh = f.hash) == MOVED)
1818     tab = helpTransfer(tab, f);
1819     else {
1820     synchronized (f) {
1821     if (tabAt(tab, i) == f) {
1822     if (fh >= 0) {
1823     binCount = 1;
1824     for (Node<K,V> e = f, pred = null;; ++binCount) {
1825     K ek;
1826     if (e.hash == h &&
1827     ((ek = e.key) == key ||
1828     (ek != null && key.equals(ek)))) {
1829     val = remappingFunction.apply(key, e.val);
1830     if (val != null)
1831     e.val = val;
1832     else {
1833     delta = -1;
1834     Node<K,V> en = e.next;
1835     if (pred != null)
1836     pred.next = en;
1837     else
1838     setTabAt(tab, i, en);
1839     }
1840     break;
1841     }
1842     pred = e;
1843     if ((e = e.next) == null) {
1844     val = remappingFunction.apply(key, null);
1845     if (val != null) {
1846     delta = 1;
1847     pred.next =
1848     new Node<K,V>(h, key, val, null);
1849     }
1850     break;
1851     }
1852     }
1853     }
1854     else if (f instanceof TreeBin) {
1855     binCount = 1;
1856     TreeBin<K,V> t = (TreeBin<K,V>)f;
1857     TreeNode<K,V> r, p;
1858     if ((r = t.root) != null)
1859     p = r.findTreeNode(h, key, null);
1860     else
1861     p = null;
1862     V pv = (p == null) ? null : p.val;
1863     val = remappingFunction.apply(key, pv);
1864 dl 1.119 if (val != null) {
1865     if (p != null)
1866     p.val = val;
1867     else {
1868     delta = 1;
1869 dl 1.222 t.putTreeVal(h, key, val);
1870 dl 1.119 }
1871     }
1872     else if (p != null) {
1873     delta = -1;
1874 dl 1.222 if (t.removeTreeNode(p))
1875     setTabAt(tab, i, untreeify(t.first));
1876 dl 1.119 }
1877     }
1878     }
1879     }
1880 dl 1.222 if (binCount != 0) {
1881     if (binCount >= TREEIFY_THRESHOLD)
1882     treeifyBin(tab, i);
1883     break;
1884 dl 1.119 }
1885 dl 1.105 }
1886 dl 1.99 }
1887 dl 1.149 if (delta != 0)
1888 dl 1.222 addCount((long)delta, binCount);
1889 dl 1.151 return val;
1890 dl 1.119 }
1891    
1892 dl 1.222 /**
1893     * If the specified key is not already associated with a
1894     * (non-null) value, associates it with the given value.
1895     * Otherwise, replaces the value with the results of the given
1896     * remapping function, or removes if {@code null}. The entire
1897     * method invocation is performed atomically. Some attempted
1898     * update operations on this map by other threads may be blocked
1899     * while computation is in progress, so the computation should be
1900     * short and simple, and must not attempt to update any other
1901     * mappings of this Map.
1902     *
1903     * @param key key with which the specified value is to be associated
1904     * @param value the value to use if absent
1905     * @param remappingFunction the function to recompute a value if present
1906     * @return the new value associated with the specified key, or null if none
1907     * @throws NullPointerException if the specified key or the
1908     * remappingFunction is null
1909     * @throws RuntimeException or Error if the remappingFunction does so,
1910     * in which case the mapping is unchanged
1911     */
1912     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1913     if (key == null || value == null || remappingFunction == null)
1914     throw new NullPointerException();
1915     int h = spread(key.hashCode());
1916     V val = null;
1917     int delta = 0;
1918     int binCount = 0;
1919     for (Node<K,V>[] tab = table;;) {
1920     Node<K,V> f; int n, i, fh;
1921     if (tab == null || (n = tab.length) == 0)
1922     tab = initTable();
1923     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1924     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1925     delta = 1;
1926     val = value;
1927 dl 1.119 break;
1928     }
1929 dl 1.222 }
1930     else if ((fh = f.hash) == MOVED)
1931     tab = helpTransfer(tab, f);
1932     else {
1933     synchronized (f) {
1934     if (tabAt(tab, i) == f) {
1935     if (fh >= 0) {
1936     binCount = 1;
1937     for (Node<K,V> e = f, pred = null;; ++binCount) {
1938     K ek;
1939     if (e.hash == h &&
1940     ((ek = e.key) == key ||
1941     (ek != null && key.equals(ek)))) {
1942     val = remappingFunction.apply(e.val, value);
1943     if (val != null)
1944     e.val = val;
1945 dl 1.119 else {
1946 dl 1.222 delta = -1;
1947     Node<K,V> en = e.next;
1948     if (pred != null)
1949     pred.next = en;
1950     else
1951     setTabAt(tab, i, en);
1952 dl 1.119 }
1953 dl 1.222 break;
1954     }
1955     pred = e;
1956     if ((e = e.next) == null) {
1957     delta = 1;
1958     val = value;
1959     pred.next =
1960     new Node<K,V>(h, key, val, null);
1961     break;
1962 dl 1.119 }
1963     }
1964     }
1965 dl 1.222 else if (f instanceof TreeBin) {
1966     binCount = 2;
1967     TreeBin<K,V> t = (TreeBin<K,V>)f;
1968     TreeNode<K,V> r = t.root;
1969     TreeNode<K,V> p = (r == null) ? null :
1970     r.findTreeNode(h, key, null);
1971     val = (p == null) ? value :
1972     remappingFunction.apply(p.val, value);
1973     if (val != null) {
1974     if (p != null)
1975     p.val = val;
1976     else {
1977     delta = 1;
1978     t.putTreeVal(h, key, val);
1979 dl 1.119 }
1980     }
1981 dl 1.222 else if (p != null) {
1982     delta = -1;
1983     if (t.removeTreeNode(p))
1984     setTabAt(tab, i, untreeify(t.first));
1985 dl 1.164 }
1986 dl 1.99 }
1987 dl 1.21 }
1988     }
1989 dl 1.222 if (binCount != 0) {
1990     if (binCount >= TREEIFY_THRESHOLD)
1991     treeifyBin(tab, i);
1992     break;
1993     }
1994 dl 1.45 }
1995     }
1996 dl 1.222 if (delta != 0)
1997     addCount((long)delta, binCount);
1998     return val;
1999 tim 1.1 }
2000 dl 1.19
2001 dl 1.222 // Hashtable legacy methods
2002    
2003 dl 1.149 /**
2004 dl 1.222 * Legacy method testing if some key maps into the specified value
2005     * in this table. This method is identical in functionality to
2006     * {@link #containsValue(Object)}, and exists solely to ensure
2007     * full compatibility with class {@link java.util.Hashtable},
2008     * which supported this method prior to introduction of the
2009     * Java Collections framework.
2010     *
2011     * @param value a value to search for
2012     * @return {@code true} if and only if some key maps to the
2013     * {@code value} argument in this table as
2014     * determined by the {@code equals} method;
2015     * {@code false} otherwise
2016     * @throws NullPointerException if the specified value is null
2017 dl 1.149 */
2018 dl 1.246 @Deprecated
2019     public boolean contains(Object value) {
2020 dl 1.222 return containsValue(value);
2021 dl 1.149 }
2022    
2023 tim 1.1 /**
2024 dl 1.222 * Returns an enumeration of the keys in this table.
2025     *
2026     * @return an enumeration of the keys in this table
2027     * @see #keySet()
2028 tim 1.1 */
2029 dl 1.222 public Enumeration<K> keys() {
2030     Node<K,V>[] t;
2031     int f = (t = table) == null ? 0 : t.length;
2032     return new KeyIterator<K,V>(t, f, 0, f, this);
2033 tim 1.1 }
2034    
2035     /**
2036 dl 1.222 * Returns an enumeration of the values in this table.
2037     *
2038     * @return an enumeration of the values in this table
2039     * @see #values()
2040     */
2041     public Enumeration<V> elements() {
2042     Node<K,V>[] t;
2043     int f = (t = table) == null ? 0 : t.length;
2044     return new ValueIterator<K,V>(t, f, 0, f, this);
2045     }
2046    
2047     // ConcurrentHashMap-only methods
2048    
2049     /**
2050     * Returns the number of mappings. This method should be used
2051     * instead of {@link #size} because a ConcurrentHashMap may
2052     * contain more mappings than can be represented as an int. The
2053     * value returned is an estimate; the actual count may differ if
2054     * there are concurrent insertions or removals.
2055     *
2056     * @return the number of mappings
2057     * @since 1.8
2058     */
2059     public long mappingCount() {
2060     long n = sumCount();
2061     return (n < 0L) ? 0L : n; // ignore transient negative values
2062     }
2063    
2064     /**
2065     * Creates a new {@link Set} backed by a ConcurrentHashMap
2066     * from the given type to {@code Boolean.TRUE}.
2067     *
2068 jsr166 1.237 * @param <K> the element type of the returned set
2069 dl 1.222 * @return the new set
2070     * @since 1.8
2071     */
2072     public static <K> KeySetView<K,Boolean> newKeySet() {
2073     return new KeySetView<K,Boolean>
2074     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2075     }
2076    
2077     /**
2078     * Creates a new {@link Set} backed by a ConcurrentHashMap
2079     * from the given type to {@code Boolean.TRUE}.
2080     *
2081     * @param initialCapacity The implementation performs internal
2082     * sizing to accommodate this many elements.
2083 jsr166 1.237 * @param <K> the element type of the returned set
2084 jsr166 1.239 * @return the new set
2085 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2086     * elements is negative
2087     * @since 1.8
2088     */
2089     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2090     return new KeySetView<K,Boolean>
2091     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2092     }
2093    
2094     /**
2095     * Returns a {@link Set} view of the keys in this map, using the
2096     * given common mapped value for any additions (i.e., {@link
2097     * Collection#add} and {@link Collection#addAll(Collection)}).
2098     * This is of course only appropriate if it is acceptable to use
2099     * the same value for all additions from this view.
2100     *
2101     * @param mappedValue the mapped value to use for any additions
2102     * @return the set view
2103     * @throws NullPointerException if the mappedValue is null
2104     */
2105     public KeySetView<K,V> keySet(V mappedValue) {
2106     if (mappedValue == null)
2107     throw new NullPointerException();
2108     return new KeySetView<K,V>(this, mappedValue);
2109     }
2110    
2111     /* ---------------- Special Nodes -------------- */
2112    
2113     /**
2114     * A node inserted at head of bins during transfer operations.
2115     */
2116     static final class ForwardingNode<K,V> extends Node<K,V> {
2117     final Node<K,V>[] nextTable;
2118     ForwardingNode(Node<K,V>[] tab) {
2119     super(MOVED, null, null, null);
2120     this.nextTable = tab;
2121     }
2122    
2123     Node<K,V> find(int h, Object k) {
2124 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2125     outer: for (Node<K,V>[] tab = nextTable;;) {
2126     Node<K,V> e; int n;
2127     if (k == null || tab == null || (n = tab.length) == 0 ||
2128     (e = tabAt(tab, (n - 1) & h)) == null)
2129     return null;
2130     for (;;) {
2131 dl 1.222 int eh; K ek;
2132     if ((eh = e.hash) == h &&
2133     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2134     return e;
2135 dl 1.234 if (eh < 0) {
2136     if (e instanceof ForwardingNode) {
2137     tab = ((ForwardingNode<K,V>)e).nextTable;
2138     continue outer;
2139     }
2140     else
2141     return e.find(h, k);
2142     }
2143     if ((e = e.next) == null)
2144     return null;
2145     }
2146 dl 1.222 }
2147     }
2148     }
2149    
2150     /**
2151     * A place-holder node used in computeIfAbsent and compute
2152     */
2153     static final class ReservationNode<K,V> extends Node<K,V> {
2154     ReservationNode() {
2155     super(RESERVED, null, null, null);
2156     }
2157    
2158     Node<K,V> find(int h, Object k) {
2159     return null;
2160     }
2161     }
2162    
2163     /* ---------------- Table Initialization and Resizing -------------- */
2164    
2165     /**
2166     * Initializes table, using the size recorded in sizeCtl.
2167 dl 1.119 */
2168 dl 1.210 private final Node<K,V>[] initTable() {
2169     Node<K,V>[] tab; int sc;
2170 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2171 dl 1.119 if ((sc = sizeCtl) < 0)
2172     Thread.yield(); // lost initialization race; just spin
2173 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2174 dl 1.119 try {
2175 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2176 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2177 jsr166 1.245 @SuppressWarnings("unchecked")
2178 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2179 dl 1.222 table = tab = nt;
2180 dl 1.119 sc = n - (n >>> 2);
2181     }
2182     } finally {
2183     sizeCtl = sc;
2184     }
2185     break;
2186     }
2187     }
2188     return tab;
2189 dl 1.4 }
2190    
2191     /**
2192 dl 1.149 * Adds to count, and if table is too small and not already
2193     * resizing, initiates transfer. If already resizing, helps
2194     * perform transfer if work is available. Rechecks occupancy
2195     * after a transfer to see if another resize is already needed
2196     * because resizings are lagging additions.
2197     *
2198     * @param x the count to add
2199     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2200     */
2201     private final void addCount(long x, int check) {
2202 dl 1.222 CounterCell[] as; long b, s;
2203 dl 1.149 if ((as = counterCells) != null ||
2204     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2205 dl 1.222 CounterCell a; long v; int m;
2206 dl 1.149 boolean uncontended = true;
2207 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2208     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2209 dl 1.149 !(uncontended =
2210     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2211 dl 1.160 fullAddCount(x, uncontended);
2212 dl 1.149 return;
2213     }
2214     if (check <= 1)
2215     return;
2216     s = sumCount();
2217     }
2218     if (check >= 0) {
2219 dl 1.210 Node<K,V>[] tab, nt; int sc;
2220 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2221     tab.length < MAXIMUM_CAPACITY) {
2222     if (sc < 0) {
2223 dl 1.246 if (sc == -1 || transferIndex <= 0 ||
2224 dl 1.149 (nt = nextTable) == null)
2225     break;
2226     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2227     transfer(tab, nt);
2228 dl 1.119 }
2229 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2230     transfer(tab, null);
2231     s = sumCount();
2232 dl 1.119 }
2233     }
2234 dl 1.4 }
2235    
2236     /**
2237 dl 1.222 * Helps transfer if a resize is in progress.
2238     */
2239     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2240     Node<K,V>[] nextTab; int sc;
2241     if ((f instanceof ForwardingNode) &&
2242     (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2243 dl 1.246 while (transferIndex > 0 && nextTab == nextTable &&
2244     (sc = sizeCtl) < -1) {
2245     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2246     transfer(tab, nextTab);
2247     break;
2248     }
2249     }
2250 dl 1.222 return nextTab;
2251     }
2252     return table;
2253     }
2254    
2255     /**
2256 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2257 tim 1.1 *
2258 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2259 tim 1.1 */
2260 dl 1.210 private final void tryPresize(int size) {
2261 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2262     tableSizeFor(size + (size >>> 1) + 1);
2263     int sc;
2264     while ((sc = sizeCtl) >= 0) {
2265 dl 1.210 Node<K,V>[] tab = table; int n;
2266 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2267     n = (sc > c) ? sc : c;
2268 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2269 dl 1.119 try {
2270     if (table == tab) {
2271 jsr166 1.245 @SuppressWarnings("unchecked")
2272 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2273 dl 1.222 table = nt;
2274 dl 1.119 sc = n - (n >>> 2);
2275     }
2276     } finally {
2277     sizeCtl = sc;
2278     }
2279     }
2280     }
2281     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2282     break;
2283 dl 1.149 else if (tab == table &&
2284     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2285     transfer(tab, null);
2286 dl 1.119 }
2287 dl 1.4 }
2288    
2289 jsr166 1.170 /**
2290 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2291     * above for explanation.
2292 dl 1.4 */
2293 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2294 dl 1.149 int n = tab.length, stride;
2295     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2296     stride = MIN_TRANSFER_STRIDE; // subdivide range
2297     if (nextTab == null) { // initiating
2298     try {
2299 jsr166 1.245 @SuppressWarnings("unchecked")
2300 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2301 dl 1.222 nextTab = nt;
2302 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2303 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2304     return;
2305     }
2306     nextTable = nextTab;
2307     transferIndex = n;
2308     }
2309     int nextn = nextTab.length;
2310 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2311 dl 1.149 boolean advance = true;
2312 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2313 dl 1.149 for (int i = 0, bound = 0;;) {
2314 dl 1.246 Node<K,V> f; int fh;
2315 dl 1.149 while (advance) {
2316 dl 1.246 int nextIndex, nextBound;
2317 dl 1.234 if (--i >= bound || finishing)
2318 dl 1.149 advance = false;
2319 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2320 dl 1.149 i = -1;
2321     advance = false;
2322     }
2323     else if (U.compareAndSwapInt
2324     (this, TRANSFERINDEX, nextIndex,
2325 jsr166 1.150 nextBound = (nextIndex > stride ?
2326 dl 1.149 nextIndex - stride : 0))) {
2327     bound = nextBound;
2328     i = nextIndex - 1;
2329     advance = false;
2330     }
2331     }
2332     if (i < 0 || i >= n || i + n >= nextn) {
2333 dl 1.246 int sc;
2334 dl 1.234 if (finishing) {
2335     nextTable = null;
2336     table = nextTab;
2337     sizeCtl = (n << 1) - (n >>> 1);
2338     return;
2339     }
2340 dl 1.246 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2341     if (sc != -1)
2342     return;
2343     finishing = advance = true;
2344     i = n; // recheck before commit
2345 dl 1.149 }
2346     }
2347 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2348     advance = casTabAt(tab, i, null, fwd);
2349 dl 1.222 else if ((fh = f.hash) == MOVED)
2350     advance = true; // already processed
2351     else {
2352 jsr166 1.150 synchronized (f) {
2353 dl 1.149 if (tabAt(tab, i) == f) {
2354 dl 1.222 Node<K,V> ln, hn;
2355     if (fh >= 0) {
2356     int runBit = fh & n;
2357     Node<K,V> lastRun = f;
2358     for (Node<K,V> p = f.next; p != null; p = p.next) {
2359     int b = p.hash & n;
2360     if (b != runBit) {
2361     runBit = b;
2362     lastRun = p;
2363     }
2364     }
2365     if (runBit == 0) {
2366     ln = lastRun;
2367     hn = null;
2368     }
2369     else {
2370     hn = lastRun;
2371     ln = null;
2372 dl 1.149 }
2373 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2374     int ph = p.hash; K pk = p.key; V pv = p.val;
2375     if ((ph & n) == 0)
2376     ln = new Node<K,V>(ph, pk, pv, ln);
2377 dl 1.210 else
2378 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2379 dl 1.149 }
2380 dl 1.233 setTabAt(nextTab, i, ln);
2381     setTabAt(nextTab, i + n, hn);
2382     setTabAt(tab, i, fwd);
2383     advance = true;
2384 dl 1.222 }
2385     else if (f instanceof TreeBin) {
2386     TreeBin<K,V> t = (TreeBin<K,V>)f;
2387     TreeNode<K,V> lo = null, loTail = null;
2388     TreeNode<K,V> hi = null, hiTail = null;
2389     int lc = 0, hc = 0;
2390     for (Node<K,V> e = t.first; e != null; e = e.next) {
2391     int h = e.hash;
2392     TreeNode<K,V> p = new TreeNode<K,V>
2393     (h, e.key, e.val, null, null);
2394     if ((h & n) == 0) {
2395     if ((p.prev = loTail) == null)
2396     lo = p;
2397     else
2398     loTail.next = p;
2399     loTail = p;
2400     ++lc;
2401 dl 1.210 }
2402 dl 1.222 else {
2403     if ((p.prev = hiTail) == null)
2404     hi = p;
2405     else
2406     hiTail.next = p;
2407     hiTail = p;
2408     ++hc;
2409 dl 1.210 }
2410 dl 1.149 }
2411 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2412     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2413     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2414     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2415 dl 1.233 setTabAt(nextTab, i, ln);
2416     setTabAt(nextTab, i + n, hn);
2417     setTabAt(tab, i, fwd);
2418     advance = true;
2419 dl 1.149 }
2420 dl 1.119 }
2421     }
2422     }
2423     }
2424 dl 1.4 }
2425 tim 1.1
2426 dl 1.149 /* ---------------- Counter support -------------- */
2427    
2428 dl 1.222 /**
2429     * A padded cell for distributing counts. Adapted from LongAdder
2430     * and Striped64. See their internal docs for explanation.
2431     */
2432     @sun.misc.Contended static final class CounterCell {
2433     volatile long value;
2434     CounterCell(long x) { value = x; }
2435     }
2436    
2437 dl 1.149 final long sumCount() {
2438 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2439 dl 1.149 long sum = baseCount;
2440     if (as != null) {
2441     for (int i = 0; i < as.length; ++i) {
2442     if ((a = as[i]) != null)
2443     sum += a.value;
2444 dl 1.119 }
2445     }
2446 dl 1.149 return sum;
2447 dl 1.119 }
2448    
2449 dl 1.149 // See LongAdder version for explanation
2450 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2451 dl 1.149 int h;
2452 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2453     ThreadLocalRandom.localInit(); // force initialization
2454     h = ThreadLocalRandom.getProbe();
2455     wasUncontended = true;
2456 dl 1.119 }
2457 dl 1.149 boolean collide = false; // True if last slot nonempty
2458     for (;;) {
2459 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2460 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2461     if ((a = as[(n - 1) & h]) == null) {
2462 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2463 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2464 dl 1.153 if (cellsBusy == 0 &&
2465     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2466 dl 1.149 boolean created = false;
2467     try { // Recheck under lock
2468 dl 1.222 CounterCell[] rs; int m, j;
2469 dl 1.149 if ((rs = counterCells) != null &&
2470     (m = rs.length) > 0 &&
2471     rs[j = (m - 1) & h] == null) {
2472     rs[j] = r;
2473     created = true;
2474 dl 1.128 }
2475 dl 1.149 } finally {
2476 dl 1.153 cellsBusy = 0;
2477 dl 1.119 }
2478 dl 1.149 if (created)
2479     break;
2480     continue; // Slot is now non-empty
2481     }
2482     }
2483     collide = false;
2484     }
2485     else if (!wasUncontended) // CAS already known to fail
2486     wasUncontended = true; // Continue after rehash
2487     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2488     break;
2489     else if (counterCells != as || n >= NCPU)
2490     collide = false; // At max size or stale
2491     else if (!collide)
2492     collide = true;
2493 dl 1.153 else if (cellsBusy == 0 &&
2494     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2495 dl 1.149 try {
2496     if (counterCells == as) {// Expand table unless stale
2497 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2498 dl 1.149 for (int i = 0; i < n; ++i)
2499     rs[i] = as[i];
2500     counterCells = rs;
2501 dl 1.119 }
2502     } finally {
2503 dl 1.153 cellsBusy = 0;
2504 dl 1.119 }
2505 dl 1.149 collide = false;
2506     continue; // Retry with expanded table
2507 dl 1.119 }
2508 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2509 dl 1.149 }
2510 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2511     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2512 dl 1.149 boolean init = false;
2513     try { // Initialize table
2514     if (counterCells == as) {
2515 dl 1.222 CounterCell[] rs = new CounterCell[2];
2516     rs[h & 1] = new CounterCell(x);
2517 dl 1.149 counterCells = rs;
2518     init = true;
2519 dl 1.119 }
2520     } finally {
2521 dl 1.153 cellsBusy = 0;
2522 dl 1.119 }
2523 dl 1.149 if (init)
2524     break;
2525 dl 1.119 }
2526 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2527     break; // Fall back on using base
2528 dl 1.119 }
2529     }
2530    
2531 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2532 dl 1.119
2533     /**
2534 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2535     * too small, in which case resizes instead.
2536 dl 1.119 */
2537 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2538     Node<K,V> b; int n, sc;
2539     if (tab != null) {
2540 dl 1.224 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2541     if (tab == table && (sc = sizeCtl) >= 0 &&
2542     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2543     transfer(tab, null);
2544     }
2545 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2546 jsr166 1.223 synchronized (b) {
2547 dl 1.222 if (tabAt(tab, index) == b) {
2548     TreeNode<K,V> hd = null, tl = null;
2549     for (Node<K,V> e = b; e != null; e = e.next) {
2550     TreeNode<K,V> p =
2551     new TreeNode<K,V>(e.hash, e.key, e.val,
2552     null, null);
2553     if ((p.prev = tl) == null)
2554     hd = p;
2555     else
2556     tl.next = p;
2557     tl = p;
2558     }
2559     setTabAt(tab, index, new TreeBin<K,V>(hd));
2560 dl 1.210 }
2561     }
2562     }
2563     }
2564     }
2565    
2566     /**
2567 jsr166 1.229 * Returns a list on non-TreeNodes replacing those in given list.
2568 dl 1.210 */
2569 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2570     Node<K,V> hd = null, tl = null;
2571     for (Node<K,V> q = b; q != null; q = q.next) {
2572     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2573     if (tl == null)
2574     hd = p;
2575     else
2576     tl.next = p;
2577     tl = p;
2578 dl 1.210 }
2579 dl 1.222 return hd;
2580     }
2581 dl 1.210
2582 dl 1.222 /* ---------------- TreeNodes -------------- */
2583    
2584     /**
2585     * Nodes for use in TreeBins
2586     */
2587     static final class TreeNode<K,V> extends Node<K,V> {
2588     TreeNode<K,V> parent; // red-black tree links
2589     TreeNode<K,V> left;
2590     TreeNode<K,V> right;
2591     TreeNode<K,V> prev; // needed to unlink next upon deletion
2592     boolean red;
2593 dl 1.210
2594 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2595     TreeNode<K,V> parent) {
2596     super(hash, key, val, next);
2597     this.parent = parent;
2598 dl 1.210 }
2599    
2600 dl 1.222 Node<K,V> find(int h, Object k) {
2601     return findTreeNode(h, k, null);
2602 dl 1.210 }
2603    
2604 dl 1.222 /**
2605     * Returns the TreeNode (or null if not found) for the given key
2606     * starting at given root.
2607     */
2608     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2609 dl 1.224 if (k != null) {
2610     TreeNode<K,V> p = this;
2611     do {
2612     int ph, dir; K pk; TreeNode<K,V> q;
2613     TreeNode<K,V> pl = p.left, pr = p.right;
2614     if ((ph = p.hash) > h)
2615     p = pl;
2616     else if (ph < h)
2617     p = pr;
2618     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2619     return p;
2620 dl 1.240 else if (pl == null)
2621     p = pr;
2622     else if (pr == null)
2623     p = pl;
2624 jsr166 1.225 else if ((kc != null ||
2625 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2626     (dir = compareComparables(kc, k, pk)) != 0)
2627     p = (dir < 0) ? pl : pr;
2628 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2629     return q;
2630     else
2631 dl 1.224 p = pl;
2632     } while (p != null);
2633     }
2634 dl 1.222 return null;
2635 dl 1.210 }
2636     }
2637 dl 1.192
2638 dl 1.222 /* ---------------- TreeBins -------------- */
2639 dl 1.119
2640 dl 1.222 /**
2641     * TreeNodes used at the heads of bins. TreeBins do not hold user
2642     * keys or values, but instead point to list of TreeNodes and
2643     * their root. They also maintain a parasitic read-write lock
2644     * forcing writers (who hold bin lock) to wait for readers (who do
2645     * not) to complete before tree restructuring operations.
2646     */
2647     static final class TreeBin<K,V> extends Node<K,V> {
2648     TreeNode<K,V> root;
2649     volatile TreeNode<K,V> first;
2650     volatile Thread waiter;
2651     volatile int lockState;
2652 dl 1.224 // values for lockState
2653     static final int WRITER = 1; // set while holding write lock
2654     static final int WAITER = 2; // set when waiting for write lock
2655     static final int READER = 4; // increment value for setting read lock
2656 dl 1.119
2657 dl 1.222 /**
2658 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2659     * hashCodes and non-comparable. We don't require a total
2660     * order, just a consistent insertion rule to maintain
2661     * equivalence across rebalancings. Tie-breaking further than
2662     * necessary simplifies testing a bit.
2663     */
2664     static int tieBreakOrder(Object a, Object b) {
2665     int d;
2666     if (a == null || b == null ||
2667     (d = a.getClass().getName().
2668     compareTo(b.getClass().getName())) == 0)
2669     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2670     -1 : 1);
2671     return d;
2672     }
2673    
2674     /**
2675 dl 1.222 * Creates bin with initial set of nodes headed by b.
2676     */
2677     TreeBin(TreeNode<K,V> b) {
2678     super(TREEBIN, null, null, null);
2679 dl 1.224 this.first = b;
2680 dl 1.222 TreeNode<K,V> r = null;
2681     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2682     next = (TreeNode<K,V>)x.next;
2683     x.left = x.right = null;
2684     if (r == null) {
2685     x.parent = null;
2686     x.red = false;
2687     r = x;
2688     }
2689     else {
2690 dl 1.240 K k = x.key;
2691     int h = x.hash;
2692 dl 1.222 Class<?> kc = null;
2693     for (TreeNode<K,V> p = r;;) {
2694     int dir, ph;
2695 dl 1.240 K pk = p.key;
2696     if ((ph = p.hash) > h)
2697 dl 1.222 dir = -1;
2698 dl 1.240 else if (ph < h)
2699 dl 1.222 dir = 1;
2700 dl 1.240 else if ((kc == null &&
2701     (kc = comparableClassFor(k)) == null) ||
2702     (dir = compareComparables(kc, k, pk)) == 0)
2703     dir = tieBreakOrder(k, pk);
2704     TreeNode<K,V> xp = p;
2705 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2706     x.parent = xp;
2707     if (dir <= 0)
2708     xp.left = x;
2709     else
2710     xp.right = x;
2711     r = balanceInsertion(r, x);
2712     break;
2713     }
2714     }
2715     }
2716     }
2717 dl 1.224 this.root = r;
2718 dl 1.240 assert checkInvariants(root);
2719 dl 1.222 }
2720 dl 1.210
2721 dl 1.222 /**
2722 jsr166 1.229 * Acquires write lock for tree restructuring.
2723 dl 1.222 */
2724     private final void lockRoot() {
2725     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2726     contendedLock(); // offload to separate method
2727 dl 1.153 }
2728    
2729 dl 1.222 /**
2730 jsr166 1.229 * Releases write lock for tree restructuring.
2731 dl 1.222 */
2732     private final void unlockRoot() {
2733     lockState = 0;
2734 dl 1.191 }
2735    
2736 dl 1.222 /**
2737 jsr166 1.229 * Possibly blocks awaiting root lock.
2738 dl 1.222 */
2739     private final void contendedLock() {
2740     boolean waiting = false;
2741     for (int s;;) {
2742     if (((s = lockState) & WRITER) == 0) {
2743     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2744     if (waiting)
2745     waiter = null;
2746     return;
2747     }
2748     }
2749 dl 1.244 else if ((s & WAITER) == 0) {
2750 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2751     waiting = true;
2752     waiter = Thread.currentThread();
2753     }
2754     }
2755     else if (waiting)
2756     LockSupport.park(this);
2757     }
2758 dl 1.192 }
2759    
2760 dl 1.222 /**
2761     * Returns matching node or null if none. Tries to search
2762 jsr166 1.232 * using tree comparisons from root, but continues linear
2763 dl 1.222 * search when lock not available.
2764     */
2765     final Node<K,V> find(int h, Object k) {
2766     if (k != null) {
2767     for (Node<K,V> e = first; e != null; e = e.next) {
2768     int s; K ek;
2769     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2770     if (e.hash == h &&
2771     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2772     return e;
2773     }
2774     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2775     s + READER)) {
2776     TreeNode<K,V> r, p;
2777     try {
2778     p = ((r = root) == null ? null :
2779     r.findTreeNode(h, k, null));
2780     } finally {
2781     Thread w;
2782     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2783     (READER|WAITER) && (w = waiter) != null)
2784     LockSupport.unpark(w);
2785     }
2786     return p;
2787     }
2788     }
2789     }
2790     return null;
2791 dl 1.192 }
2792    
2793 dl 1.222 /**
2794     * Finds or adds a node.
2795     * @return null if added
2796     */
2797     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2798     Class<?> kc = null;
2799 dl 1.240 boolean searched = false;
2800 dl 1.224 for (TreeNode<K,V> p = root;;) {
2801 dl 1.240 int dir, ph; K pk;
2802 dl 1.224 if (p == null) {
2803     first = root = new TreeNode<K,V>(h, k, v, null, null);
2804     break;
2805     }
2806     else if ((ph = p.hash) > h)
2807 dl 1.222 dir = -1;
2808     else if (ph < h)
2809     dir = 1;
2810     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2811     return p;
2812     else if ((kc == null &&
2813     (kc = comparableClassFor(k)) == null) ||
2814     (dir = compareComparables(kc, k, pk)) == 0) {
2815 dl 1.240 if (!searched) {
2816     TreeNode<K,V> q, ch;
2817     searched = true;
2818     if (((ch = p.left) != null &&
2819     (q = ch.findTreeNode(h, k, kc)) != null) ||
2820     ((ch = p.right) != null &&
2821     (q = ch.findTreeNode(h, k, kc)) != null))
2822     return q;
2823     }
2824     dir = tieBreakOrder(k, pk);
2825 dl 1.222 }
2826 dl 1.240
2827 dl 1.222 TreeNode<K,V> xp = p;
2828 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2829 dl 1.222 TreeNode<K,V> x, f = first;
2830     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2831     if (f != null)
2832     f.prev = x;
2833 dl 1.240 if (dir <= 0)
2834 dl 1.222 xp.left = x;
2835     else
2836     xp.right = x;
2837     if (!xp.red)
2838     x.red = true;
2839     else {
2840     lockRoot();
2841     try {
2842     root = balanceInsertion(root, x);
2843     } finally {
2844     unlockRoot();
2845     }
2846     }
2847 dl 1.224 break;
2848 dl 1.222 }
2849     }
2850 dl 1.224 assert checkInvariants(root);
2851     return null;
2852 dl 1.192 }
2853    
2854 dl 1.222 /**
2855     * Removes the given node, that must be present before this
2856     * call. This is messier than typical red-black deletion code
2857     * because we cannot swap the contents of an interior node
2858     * with a leaf successor that is pinned by "next" pointers
2859     * that are accessible independently of lock. So instead we
2860     * swap the tree linkages.
2861     *
2862 jsr166 1.230 * @return true if now too small, so should be untreeified
2863 dl 1.222 */
2864     final boolean removeTreeNode(TreeNode<K,V> p) {
2865     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2866     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2867     TreeNode<K,V> r, rl;
2868     if (pred == null)
2869     first = next;
2870     else
2871     pred.next = next;
2872     if (next != null)
2873     next.prev = pred;
2874     if (first == null) {
2875     root = null;
2876     return true;
2877     }
2878 dl 1.224 if ((r = root) == null || r.right == null || // too small
2879 dl 1.222 (rl = r.left) == null || rl.left == null)
2880     return true;
2881     lockRoot();
2882     try {
2883     TreeNode<K,V> replacement;
2884     TreeNode<K,V> pl = p.left;
2885     TreeNode<K,V> pr = p.right;
2886     if (pl != null && pr != null) {
2887     TreeNode<K,V> s = pr, sl;
2888     while ((sl = s.left) != null) // find successor
2889     s = sl;
2890     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2891     TreeNode<K,V> sr = s.right;
2892     TreeNode<K,V> pp = p.parent;
2893     if (s == pr) { // p was s's direct parent
2894     p.parent = s;
2895     s.right = p;
2896     }
2897     else {
2898     TreeNode<K,V> sp = s.parent;
2899     if ((p.parent = sp) != null) {
2900     if (s == sp.left)
2901     sp.left = p;
2902     else
2903     sp.right = p;
2904     }
2905     if ((s.right = pr) != null)
2906     pr.parent = s;
2907     }
2908     p.left = null;
2909     if ((p.right = sr) != null)
2910     sr.parent = p;
2911     if ((s.left = pl) != null)
2912     pl.parent = s;
2913     if ((s.parent = pp) == null)
2914     r = s;
2915     else if (p == pp.left)
2916     pp.left = s;
2917     else
2918     pp.right = s;
2919     if (sr != null)
2920     replacement = sr;
2921     else
2922     replacement = p;
2923     }
2924     else if (pl != null)
2925     replacement = pl;
2926     else if (pr != null)
2927     replacement = pr;
2928     else
2929     replacement = p;
2930     if (replacement != p) {
2931     TreeNode<K,V> pp = replacement.parent = p.parent;
2932     if (pp == null)
2933     r = replacement;
2934     else if (p == pp.left)
2935     pp.left = replacement;
2936     else
2937     pp.right = replacement;
2938     p.left = p.right = p.parent = null;
2939     }
2940    
2941     root = (p.red) ? r : balanceDeletion(r, replacement);
2942    
2943     if (p == replacement) { // detach pointers
2944     TreeNode<K,V> pp;
2945     if ((pp = p.parent) != null) {
2946     if (p == pp.left)
2947     pp.left = null;
2948     else if (p == pp.right)
2949     pp.right = null;
2950     p.parent = null;
2951     }
2952     }
2953     } finally {
2954     unlockRoot();
2955     }
2956 dl 1.224 assert checkInvariants(root);
2957 dl 1.222 return false;
2958 dl 1.210 }
2959    
2960 dl 1.222 /* ------------------------------------------------------------ */
2961     // Red-black tree methods, all adapted from CLR
2962 dl 1.210
2963 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2964     TreeNode<K,V> p) {
2965 dl 1.224 TreeNode<K,V> r, pp, rl;
2966     if (p != null && (r = p.right) != null) {
2967 dl 1.222 if ((rl = p.right = r.left) != null)
2968     rl.parent = p;
2969     if ((pp = r.parent = p.parent) == null)
2970     (root = r).red = false;
2971     else if (pp.left == p)
2972     pp.left = r;
2973     else
2974     pp.right = r;
2975     r.left = p;
2976     p.parent = r;
2977     }
2978     return root;
2979 dl 1.119 }
2980    
2981 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2982     TreeNode<K,V> p) {
2983 dl 1.224 TreeNode<K,V> l, pp, lr;
2984     if (p != null && (l = p.left) != null) {
2985 dl 1.222 if ((lr = p.left = l.right) != null)
2986     lr.parent = p;
2987     if ((pp = l.parent = p.parent) == null)
2988     (root = l).red = false;
2989     else if (pp.right == p)
2990     pp.right = l;
2991     else
2992     pp.left = l;
2993     l.right = p;
2994     p.parent = l;
2995     }
2996     return root;
2997 dl 1.119 }
2998    
2999 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3000     TreeNode<K,V> x) {
3001     x.red = true;
3002     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3003     if ((xp = x.parent) == null) {
3004     x.red = false;
3005     return x;
3006     }
3007     else if (!xp.red || (xpp = xp.parent) == null)
3008     return root;
3009     if (xp == (xppl = xpp.left)) {
3010     if ((xppr = xpp.right) != null && xppr.red) {
3011     xppr.red = false;
3012     xp.red = false;
3013     xpp.red = true;
3014     x = xpp;
3015     }
3016     else {
3017     if (x == xp.right) {
3018     root = rotateLeft(root, x = xp);
3019     xpp = (xp = x.parent) == null ? null : xp.parent;
3020     }
3021     if (xp != null) {
3022     xp.red = false;
3023     if (xpp != null) {
3024     xpp.red = true;
3025     root = rotateRight(root, xpp);
3026     }
3027     }
3028     }
3029     }
3030     else {
3031     if (xppl != null && xppl.red) {
3032     xppl.red = false;
3033     xp.red = false;
3034     xpp.red = true;
3035     x = xpp;
3036     }
3037     else {
3038     if (x == xp.left) {
3039     root = rotateRight(root, x = xp);
3040     xpp = (xp = x.parent) == null ? null : xp.parent;
3041     }
3042     if (xp != null) {
3043     xp.red = false;
3044     if (xpp != null) {
3045     xpp.red = true;
3046     root = rotateLeft(root, xpp);
3047     }
3048     }
3049     }
3050     }
3051     }
3052 dl 1.119 }
3053    
3054 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3055     TreeNode<K,V> x) {
3056     for (TreeNode<K,V> xp, xpl, xpr;;) {
3057     if (x == null || x == root)
3058     return root;
3059     else if ((xp = x.parent) == null) {
3060     x.red = false;
3061     return x;
3062     }
3063     else if (x.red) {
3064     x.red = false;
3065     return root;
3066     }
3067     else if ((xpl = xp.left) == x) {
3068     if ((xpr = xp.right) != null && xpr.red) {
3069     xpr.red = false;
3070     xp.red = true;
3071     root = rotateLeft(root, xp);
3072     xpr = (xp = x.parent) == null ? null : xp.right;
3073     }
3074     if (xpr == null)
3075     x = xp;
3076     else {
3077     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3078     if ((sr == null || !sr.red) &&
3079     (sl == null || !sl.red)) {
3080     xpr.red = true;
3081     x = xp;
3082     }
3083     else {
3084     if (sr == null || !sr.red) {
3085     if (sl != null)
3086     sl.red = false;
3087     xpr.red = true;
3088     root = rotateRight(root, xpr);
3089     xpr = (xp = x.parent) == null ?
3090     null : xp.right;
3091     }
3092     if (xpr != null) {
3093     xpr.red = (xp == null) ? false : xp.red;
3094     if ((sr = xpr.right) != null)
3095     sr.red = false;
3096     }
3097     if (xp != null) {
3098     xp.red = false;
3099     root = rotateLeft(root, xp);
3100     }
3101     x = root;
3102     }
3103     }
3104     }
3105     else { // symmetric
3106     if (xpl != null && xpl.red) {
3107     xpl.red = false;
3108     xp.red = true;
3109     root = rotateRight(root, xp);
3110     xpl = (xp = x.parent) == null ? null : xp.left;
3111     }
3112     if (xpl == null)
3113     x = xp;
3114     else {
3115     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3116     if ((sl == null || !sl.red) &&
3117     (sr == null || !sr.red)) {
3118     xpl.red = true;
3119     x = xp;
3120     }
3121     else {
3122     if (sl == null || !sl.red) {
3123     if (sr != null)
3124     sr.red = false;
3125     xpl.red = true;
3126     root = rotateLeft(root, xpl);
3127     xpl = (xp = x.parent) == null ?
3128     null : xp.left;
3129     }
3130     if (xpl != null) {
3131     xpl.red = (xp == null) ? false : xp.red;
3132     if ((sl = xpl.left) != null)
3133     sl.red = false;
3134     }
3135     if (xp != null) {
3136     xp.red = false;
3137     root = rotateRight(root, xp);
3138     }
3139     x = root;
3140     }
3141     }
3142     }
3143     }
3144 dl 1.210 }
3145 jsr166 1.225
3146 dl 1.222 /**
3147     * Recursive invariant check
3148     */
3149 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3150 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3151     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3152     if (tb != null && tb.next != t)
3153     return false;
3154     if (tn != null && tn.prev != t)
3155     return false;
3156     if (tp != null && t != tp.left && t != tp.right)
3157     return false;
3158     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3159     return false;
3160     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3161     return false;
3162     if (t.red && tl != null && tl.red && tr != null && tr.red)
3163     return false;
3164 dl 1.224 if (tl != null && !checkInvariants(tl))
3165 dl 1.222 return false;
3166 dl 1.224 if (tr != null && !checkInvariants(tr))
3167 dl 1.210 return false;
3168     return true;
3169     }
3170 dl 1.146
3171 dl 1.222 private static final sun.misc.Unsafe U;
3172     private static final long LOCKSTATE;
3173     static {
3174     try {
3175     U = sun.misc.Unsafe.getUnsafe();
3176     Class<?> k = TreeBin.class;
3177     LOCKSTATE = U.objectFieldOffset
3178     (k.getDeclaredField("lockState"));
3179     } catch (Exception e) {
3180     throw new Error(e);
3181     }
3182 dl 1.146 }
3183 dl 1.119 }
3184    
3185 dl 1.222 /* ----------------Table Traversal -------------- */
3186    
3187 jsr166 1.247 /**
3188     * Records the table, its length, and current traversal index for a
3189     * traverser that must process a region of a forwarded table before
3190     * proceeding with current table.
3191     */
3192     static final class TableStack<K,V> {
3193 dl 1.246 int length;
3194     int index;
3195     Node<K,V>[] tab;
3196 jsr166 1.247 TableStack<K,V> next;
3197 dl 1.246 }
3198    
3199 dl 1.222 /**
3200     * Encapsulates traversal for methods such as containsValue; also
3201     * serves as a base class for other iterators and spliterators.
3202     *
3203     * Method advance visits once each still-valid node that was
3204     * reachable upon iterator construction. It might miss some that
3205     * were added to a bin after the bin was visited, which is OK wrt
3206     * consistency guarantees. Maintaining this property in the face
3207     * of possible ongoing resizes requires a fair amount of
3208     * bookkeeping state that is difficult to optimize away amidst
3209     * volatile accesses. Even so, traversal maintains reasonable
3210     * throughput.
3211     *
3212     * Normally, iteration proceeds bin-by-bin traversing lists.
3213     * However, if the table has been resized, then all future steps
3214     * must traverse both the bin at the current index as well as at
3215     * (index + baseSize); and so on for further resizings. To
3216     * paranoically cope with potential sharing by users of iterators
3217     * across threads, iteration terminates if a bounds checks fails
3218     * for a table read.
3219     */
3220     static class Traverser<K,V> {
3221     Node<K,V>[] tab; // current table; updated if resized
3222     Node<K,V> next; // the next entry to use
3223 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3224 dl 1.222 int index; // index of bin to use next
3225     int baseIndex; // current index of initial table
3226     int baseLimit; // index bound for initial table
3227     final int baseSize; // initial table size
3228    
3229     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3230     this.tab = tab;
3231     this.baseSize = size;
3232     this.baseIndex = this.index = index;
3233     this.baseLimit = limit;
3234     this.next = null;
3235     }
3236    
3237     /**
3238     * Advances if possible, returning next valid node, or null if none.
3239     */
3240     final Node<K,V> advance() {
3241     Node<K,V> e;
3242     if ((e = next) != null)
3243     e = e.next;
3244     for (;;) {
3245 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3246 dl 1.222 if (e != null)
3247     return next = e;
3248     if (baseIndex >= baseLimit || (t = tab) == null ||
3249     (n = t.length) <= (i = index) || i < 0)
3250     return next = null;
3251 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3252 dl 1.222 if (e instanceof ForwardingNode) {
3253     tab = ((ForwardingNode<K,V>)e).nextTable;
3254     e = null;
3255 dl 1.246 pushState(t, i, n);
3256 dl 1.222 continue;
3257     }
3258     else if (e instanceof TreeBin)
3259     e = ((TreeBin<K,V>)e).first;
3260     else
3261     e = null;
3262     }
3263 dl 1.246 if (stack != null)
3264     recoverState(n);
3265     else if ((index = i + baseSize) >= n)
3266     index = ++baseIndex; // visit upper slots if present
3267 dl 1.222 }
3268     }
3269 dl 1.246
3270     /**
3271 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3272 dl 1.246 */
3273     private void pushState(Node<K,V>[] t, int i, int n) {
3274     TableStack<K,V> s = spare; // reuse if possible
3275     if (s != null)
3276     spare = s.next;
3277     else
3278     s = new TableStack<K,V>();
3279     s.tab = t;
3280     s.length = n;
3281     s.index = i;
3282     s.next = stack;
3283     stack = s;
3284     }
3285    
3286     /**
3287 jsr166 1.249 * Possibly pops traversal state.
3288 dl 1.246 *
3289     * @param n length of current table
3290     */
3291     private void recoverState(int n) {
3292     TableStack<K,V> s; int len;
3293     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3294     n = len;
3295     index = s.index;
3296     tab = s.tab;
3297     s.tab = null;
3298     TableStack<K,V> next = s.next;
3299     s.next = spare; // save for reuse
3300     stack = next;
3301     spare = s;
3302     }
3303     if (s == null && (index += baseSize) >= n)
3304     index = ++baseIndex;
3305     }
3306 dl 1.222 }
3307    
3308     /**
3309     * Base of key, value, and entry Iterators. Adds fields to
3310 jsr166 1.229 * Traverser to support iterator.remove.
3311 dl 1.222 */
3312     static class BaseIterator<K,V> extends Traverser<K,V> {
3313     final ConcurrentHashMap<K,V> map;
3314     Node<K,V> lastReturned;
3315     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3316     ConcurrentHashMap<K,V> map) {
3317 dl 1.210 super(tab, size, index, limit);
3318     this.map = map;
3319 dl 1.222 advance();
3320 dl 1.210 }
3321    
3322 dl 1.222 public final boolean hasNext() { return next != null; }
3323     public final boolean hasMoreElements() { return next != null; }
3324    
3325     public final void remove() {
3326     Node<K,V> p;
3327     if ((p = lastReturned) == null)
3328     throw new IllegalStateException();
3329     lastReturned = null;
3330     map.replaceNode(p.key, null, null);
3331 dl 1.210 }
3332 dl 1.222 }
3333 dl 1.210
3334 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3335     implements Iterator<K>, Enumeration<K> {
3336     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3337     ConcurrentHashMap<K,V> map) {
3338     super(tab, index, size, limit, map);
3339 dl 1.210 }
3340    
3341 dl 1.222 public final K next() {
3342 dl 1.210 Node<K,V> p;
3343 dl 1.222 if ((p = next) == null)
3344     throw new NoSuchElementException();
3345     K k = p.key;
3346     lastReturned = p;
3347     advance();
3348     return k;
3349 dl 1.210 }
3350    
3351 dl 1.222 public final K nextElement() { return next(); }
3352     }
3353    
3354     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3355     implements Iterator<V>, Enumeration<V> {
3356     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3357     ConcurrentHashMap<K,V> map) {
3358     super(tab, index, size, limit, map);
3359     }
3360 dl 1.210
3361 dl 1.222 public final V next() {
3362     Node<K,V> p;
3363     if ((p = next) == null)
3364     throw new NoSuchElementException();
3365     V v = p.val;
3366     lastReturned = p;
3367     advance();
3368     return v;
3369 dl 1.210 }
3370 dl 1.222
3371     public final V nextElement() { return next(); }
3372 dl 1.210 }
3373    
3374 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3375     implements Iterator<Map.Entry<K,V>> {
3376     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3377     ConcurrentHashMap<K,V> map) {
3378     super(tab, index, size, limit, map);
3379     }
3380 dl 1.210
3381 dl 1.222 public final Map.Entry<K,V> next() {
3382     Node<K,V> p;
3383     if ((p = next) == null)
3384     throw new NoSuchElementException();
3385     K k = p.key;
3386     V v = p.val;
3387     lastReturned = p;
3388     advance();
3389     return new MapEntry<K,V>(k, v, map);
3390     }
3391     }
3392 dl 1.119
3393     /**
3394 dl 1.222 * Exported Entry for EntryIterator
3395 dl 1.119 */
3396 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3397     final K key; // non-null
3398     V val; // non-null
3399     final ConcurrentHashMap<K,V> map;
3400     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3401     this.key = key;
3402     this.val = val;
3403     this.map = map;
3404     }
3405     public K getKey() { return key; }
3406     public V getValue() { return val; }
3407     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3408     public String toString() { return key + "=" + val; }
3409 dl 1.119
3410 dl 1.222 public boolean equals(Object o) {
3411     Object k, v; Map.Entry<?,?> e;
3412     return ((o instanceof Map.Entry) &&
3413     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3414     (v = e.getValue()) != null &&
3415     (k == key || k.equals(key)) &&
3416     (v == val || v.equals(val)));
3417     }
3418 dl 1.119
3419 dl 1.222 /**
3420     * Sets our entry's value and writes through to the map. The
3421     * value to return is somewhat arbitrary here. Since we do not
3422     * necessarily track asynchronous changes, the most recent
3423     * "previous" value could be different from what we return (or
3424     * could even have been removed, in which case the put will
3425     * re-establish). We do not and cannot guarantee more.
3426     */
3427     public V setValue(V value) {
3428     if (value == null) throw new NullPointerException();
3429     V v = val;
3430     val = value;
3431     map.put(key, value);
3432     return v;
3433     }
3434 dl 1.119 }
3435    
3436 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3437     implements Spliterator<K> {
3438     long est; // size estimate
3439     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3440     long est) {
3441     super(tab, size, index, limit);
3442     this.est = est;
3443     }
3444 dl 1.119
3445 dl 1.222 public Spliterator<K> trySplit() {
3446     int i, f, h;
3447     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3448     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3449     f, est >>>= 1);
3450 dl 1.119 }
3451    
3452 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3453     if (action == null) throw new NullPointerException();
3454     for (Node<K,V> p; (p = advance()) != null;)
3455     action.accept(p.key);
3456 dl 1.119 }
3457    
3458 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3459     if (action == null) throw new NullPointerException();
3460     Node<K,V> p;
3461     if ((p = advance()) == null)
3462 dl 1.119 return false;
3463 dl 1.222 action.accept(p.key);
3464     return true;
3465 dl 1.119 }
3466    
3467 dl 1.222 public long estimateSize() { return est; }
3468 dl 1.119
3469 dl 1.222 public int characteristics() {
3470     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3471     Spliterator.NONNULL;
3472     }
3473 dl 1.142 }
3474 dl 1.119
3475 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3476     implements Spliterator<V> {
3477     long est; // size estimate
3478     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3479     long est) {
3480     super(tab, size, index, limit);
3481     this.est = est;
3482 dl 1.209 }
3483    
3484 dl 1.222 public Spliterator<V> trySplit() {
3485     int i, f, h;
3486     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3487     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3488     f, est >>>= 1);
3489 dl 1.142 }
3490 dl 1.119
3491 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3492     if (action == null) throw new NullPointerException();
3493     for (Node<K,V> p; (p = advance()) != null;)
3494     action.accept(p.val);
3495     }
3496 dl 1.119
3497 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3498     if (action == null) throw new NullPointerException();
3499     Node<K,V> p;
3500     if ((p = advance()) == null)
3501     return false;
3502     action.accept(p.val);
3503     return true;
3504 dl 1.119 }
3505 dl 1.222
3506     public long estimateSize() { return est; }
3507    
3508     public int characteristics() {
3509     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3510 dl 1.119 }
3511 dl 1.142 }
3512 dl 1.119
3513 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3514     implements Spliterator<Map.Entry<K,V>> {
3515     final ConcurrentHashMap<K,V> map; // To export MapEntry
3516     long est; // size estimate
3517     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3518     long est, ConcurrentHashMap<K,V> map) {
3519     super(tab, size, index, limit);
3520     this.map = map;
3521     this.est = est;
3522     }
3523    
3524     public Spliterator<Map.Entry<K,V>> trySplit() {
3525     int i, f, h;
3526     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3527     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3528     f, est >>>= 1, map);
3529     }
3530 dl 1.142
3531 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3532     if (action == null) throw new NullPointerException();
3533     for (Node<K,V> p; (p = advance()) != null; )
3534     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3535     }
3536 dl 1.210
3537 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3538     if (action == null) throw new NullPointerException();
3539     Node<K,V> p;
3540     if ((p = advance()) == null)
3541     return false;
3542     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3543     return true;
3544 dl 1.210 }
3545    
3546 dl 1.222 public long estimateSize() { return est; }
3547    
3548     public int characteristics() {
3549     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3550     Spliterator.NONNULL;
3551 dl 1.210 }
3552     }
3553    
3554     // Parallel bulk operations
3555    
3556     /**
3557     * Computes initial batch value for bulk tasks. The returned value
3558     * is approximately exp2 of the number of times (minus one) to
3559     * split task by two before executing leaf action. This value is
3560     * faster to compute and more convenient to use as a guide to
3561     * splitting than is the depth, since it is used while dividing by
3562     * two anyway.
3563     */
3564     final int batchFor(long b) {
3565     long n;
3566     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3567     return 0;
3568     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3569     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3570     }
3571 dl 1.151
3572 dl 1.119 /**
3573 dl 1.137 * Performs the given action for each (key, value).
3574 dl 1.119 *
3575 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3576 jsr166 1.213 * needed for this operation to be executed in parallel
3577 dl 1.137 * @param action the action
3578 jsr166 1.220 * @since 1.8
3579 dl 1.119 */
3580 dl 1.210 public void forEach(long parallelismThreshold,
3581     BiConsumer<? super K,? super V> action) {
3582 dl 1.151 if (action == null) throw new NullPointerException();
3583 dl 1.210 new ForEachMappingTask<K,V>
3584     (null, batchFor(parallelismThreshold), 0, 0, table,
3585     action).invoke();
3586 dl 1.119 }
3587    
3588     /**
3589 dl 1.137 * Performs the given action for each non-null transformation
3590     * of each (key, value).
3591     *
3592 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3593 jsr166 1.213 * needed for this operation to be executed in parallel
3594 dl 1.137 * @param transformer a function returning the transformation
3595 jsr166 1.169 * for an element, or null if there is no transformation (in
3596 jsr166 1.172 * which case the action is not applied)
3597 dl 1.137 * @param action the action
3598 jsr166 1.237 * @param <U> the return type of the transformer
3599 jsr166 1.220 * @since 1.8
3600 dl 1.119 */
3601 dl 1.210 public <U> void forEach(long parallelismThreshold,
3602     BiFunction<? super K, ? super V, ? extends U> transformer,
3603     Consumer<? super U> action) {
3604 dl 1.151 if (transformer == null || action == null)
3605     throw new NullPointerException();
3606 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3607     (null, batchFor(parallelismThreshold), 0, 0, table,
3608     transformer, action).invoke();
3609 dl 1.137 }
3610    
3611     /**
3612     * Returns a non-null result from applying the given search
3613 dl 1.210 * function on each (key, value), or null if none. Upon
3614     * success, further element processing is suppressed and the
3615     * results of any other parallel invocations of the search
3616     * function are ignored.
3617 dl 1.137 *
3618 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3619 jsr166 1.213 * needed for this operation to be executed in parallel
3620 dl 1.137 * @param searchFunction a function returning a non-null
3621     * result on success, else null
3622 jsr166 1.237 * @param <U> the return type of the search function
3623 dl 1.137 * @return a non-null result from applying the given search
3624     * function on each (key, value), or null if none
3625 jsr166 1.220 * @since 1.8
3626 dl 1.137 */
3627 dl 1.210 public <U> U search(long parallelismThreshold,
3628     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3629 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3630 dl 1.210 return new SearchMappingsTask<K,V,U>
3631     (null, batchFor(parallelismThreshold), 0, 0, table,
3632     searchFunction, new AtomicReference<U>()).invoke();
3633 dl 1.137 }
3634    
3635     /**
3636     * Returns the result of accumulating the given transformation
3637     * of all (key, value) pairs using the given reducer to
3638     * combine values, or null if none.
3639     *
3640 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3641 jsr166 1.213 * needed for this operation to be executed in parallel
3642 dl 1.137 * @param transformer a function returning the transformation
3643 jsr166 1.169 * for an element, or null if there is no transformation (in
3644 jsr166 1.172 * which case it is not combined)
3645 dl 1.137 * @param reducer a commutative associative combining function
3646 jsr166 1.237 * @param <U> the return type of the transformer
3647 dl 1.137 * @return the result of accumulating the given transformation
3648     * of all (key, value) pairs
3649 jsr166 1.220 * @since 1.8
3650 dl 1.137 */
3651 dl 1.210 public <U> U reduce(long parallelismThreshold,
3652     BiFunction<? super K, ? super V, ? extends U> transformer,
3653     BiFunction<? super U, ? super U, ? extends U> reducer) {
3654 dl 1.151 if (transformer == null || reducer == null)
3655     throw new NullPointerException();
3656 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3657     (null, batchFor(parallelismThreshold), 0, 0, table,
3658     null, transformer, reducer).invoke();
3659 dl 1.137 }
3660    
3661     /**
3662     * Returns the result of accumulating the given transformation
3663     * of all (key, value) pairs using the given reducer to
3664     * combine values, and the given basis as an identity value.
3665     *
3666 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3667 jsr166 1.213 * needed for this operation to be executed in parallel
3668 dl 1.137 * @param transformer a function returning the transformation
3669     * for an element
3670     * @param basis the identity (initial default value) for the reduction
3671     * @param reducer a commutative associative combining function
3672     * @return the result of accumulating the given transformation
3673     * of all (key, value) pairs
3674 jsr166 1.220 * @since 1.8
3675 dl 1.137 */
3676 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3677     ToDoubleBiFunction<? super K, ? super V> transformer,
3678     double basis,
3679     DoubleBinaryOperator reducer) {
3680 dl 1.151 if (transformer == null || reducer == null)
3681     throw new NullPointerException();
3682 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3683     (null, batchFor(parallelismThreshold), 0, 0, table,
3684     null, transformer, basis, reducer).invoke();
3685 dl 1.137 }
3686 dl 1.119
3687 dl 1.137 /**
3688     * Returns the result of accumulating the given transformation
3689     * of all (key, value) pairs using the given reducer to
3690     * combine values, and the given basis as an identity value.
3691     *
3692 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3693 jsr166 1.213 * needed for this operation to be executed in parallel
3694 dl 1.137 * @param transformer a function returning the transformation
3695     * for an element
3696     * @param basis the identity (initial default value) for the reduction
3697     * @param reducer a commutative associative combining function
3698     * @return the result of accumulating the given transformation
3699     * of all (key, value) pairs
3700 jsr166 1.220 * @since 1.8
3701 dl 1.137 */
3702 dl 1.210 public long reduceToLong(long parallelismThreshold,
3703     ToLongBiFunction<? super K, ? super V> transformer,
3704     long basis,
3705     LongBinaryOperator reducer) {
3706 dl 1.151 if (transformer == null || reducer == null)
3707     throw new NullPointerException();
3708 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3709     (null, batchFor(parallelismThreshold), 0, 0, table,
3710     null, transformer, basis, reducer).invoke();
3711 dl 1.137 }
3712    
3713     /**
3714     * Returns the result of accumulating the given transformation
3715     * of all (key, value) pairs using the given reducer to
3716     * combine values, and the given basis as an identity value.
3717     *
3718 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3719 jsr166 1.213 * needed for this operation to be executed in parallel
3720 dl 1.137 * @param transformer a function returning the transformation
3721     * for an element
3722     * @param basis the identity (initial default value) for the reduction
3723     * @param reducer a commutative associative combining function
3724     * @return the result of accumulating the given transformation
3725     * of all (key, value) pairs
3726 jsr166 1.220 * @since 1.8
3727 dl 1.137 */
3728 dl 1.210 public int reduceToInt(long parallelismThreshold,
3729     ToIntBiFunction<? super K, ? super V> transformer,
3730     int basis,
3731     IntBinaryOperator reducer) {
3732 dl 1.151 if (transformer == null || reducer == null)
3733     throw new NullPointerException();
3734 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3735     (null, batchFor(parallelismThreshold), 0, 0, table,
3736     null, transformer, basis, reducer).invoke();
3737 dl 1.137 }
3738    
3739     /**
3740     * Performs the given action for each key.
3741     *
3742 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3743 jsr166 1.213 * needed for this operation to be executed in parallel
3744 dl 1.137 * @param action the action
3745 jsr166 1.220 * @since 1.8
3746 dl 1.137 */
3747 dl 1.210 public void forEachKey(long parallelismThreshold,
3748     Consumer<? super K> action) {
3749     if (action == null) throw new NullPointerException();
3750     new ForEachKeyTask<K,V>
3751     (null, batchFor(parallelismThreshold), 0, 0, table,
3752     action).invoke();
3753 dl 1.137 }
3754 dl 1.119
3755 dl 1.137 /**
3756     * Performs the given action for each non-null transformation
3757     * of each key.
3758     *
3759 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3760 jsr166 1.213 * needed for this operation to be executed in parallel
3761 dl 1.137 * @param transformer a function returning the transformation
3762 jsr166 1.169 * for an element, or null if there is no transformation (in
3763 jsr166 1.172 * which case the action is not applied)
3764 dl 1.137 * @param action the action
3765 jsr166 1.237 * @param <U> the return type of the transformer
3766 jsr166 1.220 * @since 1.8
3767 dl 1.137 */
3768 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3769     Function<? super K, ? extends U> transformer,
3770     Consumer<? super U> action) {
3771 dl 1.151 if (transformer == null || action == null)
3772     throw new NullPointerException();
3773 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3774     (null, batchFor(parallelismThreshold), 0, 0, table,
3775     transformer, action).invoke();
3776 dl 1.137 }
3777 dl 1.119
3778 dl 1.137 /**
3779     * Returns a non-null result from applying the given search
3780 dl 1.210 * function on each key, or null if none. Upon success,
3781     * further element processing is suppressed and the results of
3782     * any other parallel invocations of the search function are
3783     * ignored.
3784 dl 1.137 *
3785 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3786 jsr166 1.213 * needed for this operation to be executed in parallel
3787 dl 1.137 * @param searchFunction a function returning a non-null
3788     * result on success, else null
3789 jsr166 1.237 * @param <U> the return type of the search function
3790 dl 1.137 * @return a non-null result from applying the given search
3791     * function on each key, or null if none
3792 jsr166 1.220 * @since 1.8
3793 dl 1.137 */
3794 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3795     Function<? super K, ? extends U> searchFunction) {
3796     if (searchFunction == null) throw new NullPointerException();
3797     return new SearchKeysTask<K,V,U>
3798     (null, batchFor(parallelismThreshold), 0, 0, table,
3799     searchFunction, new AtomicReference<U>()).invoke();
3800 dl 1.137 }
3801 dl 1.119
3802 dl 1.137 /**
3803     * Returns the result of accumulating all keys using the given
3804     * reducer to combine values, or null if none.
3805     *
3806 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3807 jsr166 1.213 * needed for this operation to be executed in parallel
3808 dl 1.137 * @param reducer a commutative associative combining function
3809     * @return the result of accumulating all keys using the given
3810     * reducer to combine values, or null if none
3811 jsr166 1.220 * @since 1.8
3812 dl 1.137 */
3813 dl 1.210 public K reduceKeys(long parallelismThreshold,
3814     BiFunction<? super K, ? super K, ? extends K> reducer) {
3815 dl 1.151 if (reducer == null) throw new NullPointerException();
3816 dl 1.210 return new ReduceKeysTask<K,V>
3817     (null, batchFor(parallelismThreshold), 0, 0, table,
3818     null, reducer).invoke();
3819 dl 1.137 }
3820 dl 1.119
3821 dl 1.137 /**
3822     * Returns the result of accumulating the given transformation
3823     * of all keys using the given reducer to combine values, or
3824     * null if none.
3825     *
3826 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3827 jsr166 1.213 * needed for this operation to be executed in parallel
3828 dl 1.137 * @param transformer a function returning the transformation
3829 jsr166 1.169 * for an element, or null if there is no transformation (in
3830 jsr166 1.172 * which case it is not combined)
3831 dl 1.137 * @param reducer a commutative associative combining function
3832 jsr166 1.237 * @param <U> the return type of the transformer
3833 dl 1.137 * @return the result of accumulating the given transformation
3834     * of all keys
3835 jsr166 1.220 * @since 1.8
3836 dl 1.137 */
3837 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3838     Function<? super K, ? extends U> transformer,
3839 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3840 dl 1.151 if (transformer == null || reducer == null)
3841     throw new NullPointerException();
3842 dl 1.210 return new MapReduceKeysTask<K,V,U>
3843     (null, batchFor(parallelismThreshold), 0, 0, table,
3844     null, transformer, reducer).invoke();
3845 dl 1.137 }
3846 dl 1.119
3847 dl 1.137 /**
3848     * Returns the result of accumulating the given transformation
3849     * of all keys using the given reducer to combine values, and
3850     * the given basis as an identity value.
3851     *
3852 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3853 jsr166 1.213 * needed for this operation to be executed in parallel
3854 dl 1.137 * @param transformer a function returning the transformation
3855     * for an element
3856     * @param basis the identity (initial default value) for the reduction
3857     * @param reducer a commutative associative combining function
3858 jsr166 1.157 * @return the result of accumulating the given transformation
3859 dl 1.137 * of all keys
3860 jsr166 1.220 * @since 1.8
3861 dl 1.137 */
3862 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3863     ToDoubleFunction<? super K> transformer,
3864     double basis,
3865     DoubleBinaryOperator reducer) {
3866 dl 1.151 if (transformer == null || reducer == null)
3867     throw new NullPointerException();
3868 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3869     (null, batchFor(parallelismThreshold), 0, 0, table,
3870     null, transformer, basis, reducer).invoke();
3871 dl 1.137 }
3872 dl 1.119
3873 dl 1.137 /**
3874     * Returns the result of accumulating the given transformation
3875     * of all keys using the given reducer to combine values, and
3876     * the given basis as an identity value.
3877     *
3878 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3879 jsr166 1.213 * needed for this operation to be executed in parallel
3880 dl 1.137 * @param transformer a function returning the transformation
3881     * for an element
3882     * @param basis the identity (initial default value) for the reduction
3883     * @param reducer a commutative associative combining function
3884     * @return the result of accumulating the given transformation
3885     * of all keys
3886 jsr166 1.220 * @since 1.8
3887 dl 1.137 */
3888 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3889     ToLongFunction<? super K> transformer,
3890     long basis,
3891     LongBinaryOperator reducer) {
3892 dl 1.151 if (transformer == null || reducer == null)
3893     throw new NullPointerException();
3894 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3895     (null, batchFor(parallelismThreshold), 0, 0, table,
3896     null, transformer, basis, reducer).invoke();
3897 dl 1.137 }
3898 dl 1.119
3899 dl 1.137 /**
3900     * Returns the result of accumulating the given transformation
3901     * of all keys using the given reducer to combine values, and
3902     * the given basis as an identity value.
3903     *
3904 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3905 jsr166 1.213 * needed for this operation to be executed in parallel
3906 dl 1.137 * @param transformer a function returning the transformation
3907     * for an element
3908     * @param basis the identity (initial default value) for the reduction
3909     * @param reducer a commutative associative combining function
3910     * @return the result of accumulating the given transformation
3911     * of all keys
3912 jsr166 1.220 * @since 1.8
3913 dl 1.137 */
3914 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
3915     ToIntFunction<? super K> transformer,
3916     int basis,
3917     IntBinaryOperator reducer) {
3918 dl 1.151 if (transformer == null || reducer == null)
3919     throw new NullPointerException();
3920 dl 1.210 return new MapReduceKeysToIntTask<K,V>
3921     (null, batchFor(parallelismThreshold), 0, 0, table,
3922     null, transformer, basis, reducer).invoke();
3923 dl 1.137 }
3924 dl 1.119
3925 dl 1.137 /**
3926     * Performs the given action for each value.
3927     *
3928 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3929 jsr166 1.213 * needed for this operation to be executed in parallel
3930 dl 1.137 * @param action the action
3931 jsr166 1.220 * @since 1.8
3932 dl 1.137 */
3933 dl 1.210 public void forEachValue(long parallelismThreshold,
3934     Consumer<? super V> action) {
3935     if (action == null)
3936     throw new NullPointerException();
3937     new ForEachValueTask<K,V>
3938     (null, batchFor(parallelismThreshold), 0, 0, table,
3939     action).invoke();
3940 dl 1.137 }
3941 dl 1.119
3942 dl 1.137 /**
3943     * Performs the given action for each non-null transformation
3944     * of each value.
3945     *
3946 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3947 jsr166 1.213 * needed for this operation to be executed in parallel
3948 dl 1.137 * @param transformer a function returning the transformation
3949 jsr166 1.169 * for an element, or null if there is no transformation (in
3950 jsr166 1.172 * which case the action is not applied)
3951 jsr166 1.179 * @param action the action
3952 jsr166 1.237 * @param <U> the return type of the transformer
3953 jsr166 1.220 * @since 1.8
3954 dl 1.137 */
3955 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
3956     Function<? super V, ? extends U> transformer,
3957     Consumer<? super U> action) {
3958 dl 1.151 if (transformer == null || action == null)
3959     throw new NullPointerException();
3960 dl 1.210 new ForEachTransformedValueTask<K,V,U>
3961     (null, batchFor(parallelismThreshold), 0, 0, table,
3962     transformer, action).invoke();
3963 dl 1.137 }
3964 dl 1.119
3965 dl 1.137 /**
3966     * Returns a non-null result from applying the given search
3967 dl 1.210 * function on each value, or null if none. Upon success,
3968     * further element processing is suppressed and the results of
3969     * any other parallel invocations of the search function are
3970     * ignored.
3971 dl 1.137 *
3972 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3973 jsr166 1.213 * needed for this operation to be executed in parallel
3974 dl 1.137 * @param searchFunction a function returning a non-null
3975     * result on success, else null
3976 jsr166 1.237 * @param <U> the return type of the search function
3977 dl 1.137 * @return a non-null result from applying the given search
3978     * function on each value, or null if none
3979 jsr166 1.220 * @since 1.8
3980 dl 1.137 */
3981 dl 1.210 public <U> U searchValues(long parallelismThreshold,
3982     Function<? super V, ? extends U> searchFunction) {
3983 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3984 dl 1.210 return new SearchValuesTask<K,V,U>
3985     (null, batchFor(parallelismThreshold), 0, 0, table,
3986     searchFunction, new AtomicReference<U>()).invoke();
3987 dl 1.137 }
3988 dl 1.119
3989 dl 1.137 /**
3990     * Returns the result of accumulating all values using the
3991     * given reducer to combine values, or null if none.
3992     *
3993 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3994 jsr166 1.213 * needed for this operation to be executed in parallel
3995 dl 1.137 * @param reducer a commutative associative combining function
3996 jsr166 1.157 * @return the result of accumulating all values
3997 jsr166 1.220 * @since 1.8
3998 dl 1.137 */
3999 dl 1.210 public V reduceValues(long parallelismThreshold,
4000     BiFunction<? super V, ? super V, ? extends V> reducer) {
4001 dl 1.151 if (reducer == null) throw new NullPointerException();
4002 dl 1.210 return new ReduceValuesTask<K,V>
4003     (null, batchFor(parallelismThreshold), 0, 0, table,
4004     null, reducer).invoke();
4005 dl 1.137 }
4006 dl 1.119
4007 dl 1.137 /**
4008     * Returns the result of accumulating the given transformation
4009     * of all values using the given reducer to combine values, or
4010     * null if none.
4011     *
4012 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4013 jsr166 1.213 * needed for this operation to be executed in parallel
4014 dl 1.137 * @param transformer a function returning the transformation
4015 jsr166 1.169 * for an element, or null if there is no transformation (in
4016 jsr166 1.172 * which case it is not combined)
4017 dl 1.137 * @param reducer a commutative associative combining function
4018 jsr166 1.237 * @param <U> the return type of the transformer
4019 dl 1.137 * @return the result of accumulating the given transformation
4020     * of all values
4021 jsr166 1.220 * @since 1.8
4022 dl 1.137 */
4023 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4024     Function<? super V, ? extends U> transformer,
4025     BiFunction<? super U, ? super U, ? extends U> reducer) {
4026 dl 1.151 if (transformer == null || reducer == null)
4027     throw new NullPointerException();
4028 dl 1.210 return new MapReduceValuesTask<K,V,U>
4029     (null, batchFor(parallelismThreshold), 0, 0, table,
4030     null, transformer, reducer).invoke();
4031 dl 1.137 }
4032 dl 1.119
4033 dl 1.137 /**
4034     * Returns the result of accumulating the given transformation
4035     * of all values using the given reducer to combine values,
4036     * and the given basis as an identity value.
4037     *
4038 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4039 jsr166 1.213 * needed for this operation to be executed in parallel
4040 dl 1.137 * @param transformer a function returning the transformation
4041     * for an element
4042     * @param basis the identity (initial default value) for the reduction
4043     * @param reducer a commutative associative combining function
4044     * @return the result of accumulating the given transformation
4045     * of all values
4046 jsr166 1.220 * @since 1.8
4047 dl 1.137 */
4048 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4049     ToDoubleFunction<? super V> transformer,
4050     double basis,
4051     DoubleBinaryOperator reducer) {
4052 dl 1.151 if (transformer == null || reducer == null)
4053     throw new NullPointerException();
4054 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4055     (null, batchFor(parallelismThreshold), 0, 0, table,
4056     null, transformer, basis, reducer).invoke();
4057 dl 1.137 }
4058 dl 1.119
4059 dl 1.137 /**
4060     * Returns the result of accumulating the given transformation
4061     * of all values using the given reducer to combine values,
4062     * and the given basis as an identity value.
4063     *
4064 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4065 jsr166 1.213 * needed for this operation to be executed in parallel
4066 dl 1.137 * @param transformer a function returning the transformation
4067     * for an element
4068     * @param basis the identity (initial default value) for the reduction
4069     * @param reducer a commutative associative combining function
4070     * @return the result of accumulating the given transformation
4071     * of all values
4072 jsr166 1.220 * @since 1.8
4073 dl 1.137 */
4074 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4075     ToLongFunction<? super V> transformer,
4076     long basis,
4077     LongBinaryOperator reducer) {
4078 dl 1.151 if (transformer == null || reducer == null)
4079     throw new NullPointerException();
4080 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4081     (null, batchFor(parallelismThreshold), 0, 0, table,
4082     null, transformer, basis, reducer).invoke();
4083 dl 1.137 }
4084 dl 1.119
4085 dl 1.137 /**
4086     * Returns the result of accumulating the given transformation
4087     * of all values using the given reducer to combine values,
4088     * and the given basis as an identity value.
4089     *
4090 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4091 jsr166 1.213 * needed for this operation to be executed in parallel
4092 dl 1.137 * @param transformer a function returning the transformation
4093     * for an element
4094     * @param basis the identity (initial default value) for the reduction
4095     * @param reducer a commutative associative combining function
4096     * @return the result of accumulating the given transformation
4097     * of all values
4098 jsr166 1.220 * @since 1.8
4099 dl 1.137 */
4100 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4101     ToIntFunction<? super V> transformer,
4102     int basis,
4103     IntBinaryOperator reducer) {
4104 dl 1.151 if (transformer == null || reducer == null)
4105     throw new NullPointerException();
4106 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4107     (null, batchFor(parallelismThreshold), 0, 0, table,
4108     null, transformer, basis, reducer).invoke();
4109 dl 1.137 }
4110 dl 1.119
4111 dl 1.137 /**
4112     * Performs the given action for each entry.
4113     *
4114 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4115 jsr166 1.213 * needed for this operation to be executed in parallel
4116 dl 1.137 * @param action the action
4117 jsr166 1.220 * @since 1.8
4118 dl 1.137 */
4119 dl 1.210 public void forEachEntry(long parallelismThreshold,
4120     Consumer<? super Map.Entry<K,V>> action) {
4121 dl 1.151 if (action == null) throw new NullPointerException();
4122 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4123     action).invoke();
4124 dl 1.137 }
4125 dl 1.119
4126 dl 1.137 /**
4127     * Performs the given action for each non-null transformation
4128     * of each entry.
4129     *
4130 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4131 jsr166 1.213 * needed for this operation to be executed in parallel
4132 dl 1.137 * @param transformer a function returning the transformation
4133 jsr166 1.169 * for an element, or null if there is no transformation (in
4134 jsr166 1.172 * which case the action is not applied)
4135 dl 1.137 * @param action the action
4136 jsr166 1.237 * @param <U> the return type of the transformer
4137 jsr166 1.220 * @since 1.8
4138 dl 1.137 */
4139 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4140     Function<Map.Entry<K,V>, ? extends U> transformer,
4141     Consumer<? super U> action) {
4142 dl 1.151 if (transformer == null || action == null)
4143     throw new NullPointerException();
4144 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4145     (null, batchFor(parallelismThreshold), 0, 0, table,
4146     transformer, action).invoke();
4147 dl 1.137 }
4148 dl 1.119
4149 dl 1.137 /**
4150     * Returns a non-null result from applying the given search
4151 dl 1.210 * function on each entry, or null if none. Upon success,
4152     * further element processing is suppressed and the results of
4153     * any other parallel invocations of the search function are
4154     * ignored.
4155 dl 1.137 *
4156 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4157 jsr166 1.213 * needed for this operation to be executed in parallel
4158 dl 1.137 * @param searchFunction a function returning a non-null
4159     * result on success, else null
4160 jsr166 1.237 * @param <U> the return type of the search function
4161 dl 1.137 * @return a non-null result from applying the given search
4162     * function on each entry, or null if none
4163 jsr166 1.220 * @since 1.8
4164 dl 1.137 */
4165 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4166     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4167 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4168 dl 1.210 return new SearchEntriesTask<K,V,U>
4169     (null, batchFor(parallelismThreshold), 0, 0, table,
4170     searchFunction, new AtomicReference<U>()).invoke();
4171 dl 1.137 }
4172 dl 1.119
4173 dl 1.137 /**
4174     * Returns the result of accumulating all entries using the
4175     * given reducer to combine values, or null if none.
4176     *
4177 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4178 jsr166 1.213 * needed for this operation to be executed in parallel
4179 dl 1.137 * @param reducer a commutative associative combining function
4180     * @return the result of accumulating all entries
4181 jsr166 1.220 * @since 1.8
4182 dl 1.137 */
4183 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4184     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4185 dl 1.151 if (reducer == null) throw new NullPointerException();
4186 dl 1.210 return new ReduceEntriesTask<K,V>
4187     (null, batchFor(parallelismThreshold), 0, 0, table,
4188     null, reducer).invoke();
4189 dl 1.137 }
4190 dl 1.119
4191 dl 1.137 /**
4192     * Returns the result of accumulating the given transformation
4193     * of all entries using the given reducer to combine values,
4194     * or null if none.
4195     *
4196 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4197 jsr166 1.213 * needed for this operation to be executed in parallel
4198 dl 1.137 * @param transformer a function returning the transformation
4199 jsr166 1.169 * for an element, or null if there is no transformation (in
4200 jsr166 1.172 * which case it is not combined)
4201 dl 1.137 * @param reducer a commutative associative combining function
4202 jsr166 1.237 * @param <U> the return type of the transformer
4203 dl 1.137 * @return the result of accumulating the given transformation
4204     * of all entries
4205 jsr166 1.220 * @since 1.8
4206 dl 1.137 */
4207 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4208     Function<Map.Entry<K,V>, ? extends U> transformer,
4209     BiFunction<? super U, ? super U, ? extends U> reducer) {
4210 dl 1.151 if (transformer == null || reducer == null)
4211     throw new NullPointerException();
4212 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4213     (null, batchFor(parallelismThreshold), 0, 0, table,
4214     null, transformer, reducer).invoke();
4215 dl 1.137 }
4216 dl 1.119
4217 dl 1.137 /**
4218     * Returns the result of accumulating the given transformation
4219     * of all entries using the given reducer to combine values,
4220     * and the given basis as an identity value.
4221     *
4222 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4223 jsr166 1.213 * needed for this operation to be executed in parallel
4224 dl 1.137 * @param transformer a function returning the transformation
4225     * for an element
4226     * @param basis the identity (initial default value) for the reduction
4227     * @param reducer a commutative associative combining function
4228     * @return the result of accumulating the given transformation
4229     * of all entries
4230 jsr166 1.220 * @since 1.8
4231 dl 1.137 */
4232 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4233     ToDoubleFunction<Map.Entry<K,V>> transformer,
4234     double basis,
4235     DoubleBinaryOperator reducer) {
4236 dl 1.151 if (transformer == null || reducer == null)
4237     throw new NullPointerException();
4238 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4239     (null, batchFor(parallelismThreshold), 0, 0, table,
4240     null, transformer, basis, reducer).invoke();
4241 dl 1.137 }
4242 dl 1.119
4243 dl 1.137 /**
4244     * Returns the result of accumulating the given transformation
4245     * of all entries using the given reducer to combine values,
4246     * and the given basis as an identity value.
4247     *
4248 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4249 jsr166 1.213 * needed for this operation to be executed in parallel
4250 dl 1.137 * @param transformer a function returning the transformation
4251     * for an element
4252     * @param basis the identity (initial default value) for the reduction
4253     * @param reducer a commutative associative combining function
4254 jsr166 1.157 * @return the result of accumulating the given transformation
4255 dl 1.137 * of all entries
4256 jsr166 1.221 * @since 1.8
4257 dl 1.137 */
4258 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4259     ToLongFunction<Map.Entry<K,V>> transformer,
4260     long basis,
4261     LongBinaryOperator reducer) {
4262 dl 1.151 if (transformer == null || reducer == null)
4263     throw new NullPointerException();
4264 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4265     (null, batchFor(parallelismThreshold), 0, 0, table,
4266     null, transformer, basis, reducer).invoke();
4267 dl 1.137 }
4268 dl 1.119
4269 dl 1.137 /**
4270     * Returns the result of accumulating the given transformation
4271     * of all entries using the given reducer to combine values,
4272     * and the given basis as an identity value.
4273     *
4274 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4275 jsr166 1.213 * needed for this operation to be executed in parallel
4276 dl 1.137 * @param transformer a function returning the transformation
4277     * for an element
4278     * @param basis the identity (initial default value) for the reduction
4279     * @param reducer a commutative associative combining function
4280     * @return the result of accumulating the given transformation
4281     * of all entries
4282 jsr166 1.221 * @since 1.8
4283 dl 1.137 */
4284 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4285     ToIntFunction<Map.Entry<K,V>> transformer,
4286     int basis,
4287     IntBinaryOperator reducer) {
4288 dl 1.151 if (transformer == null || reducer == null)
4289     throw new NullPointerException();
4290 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4291     (null, batchFor(parallelismThreshold), 0, 0, table,
4292     null, transformer, basis, reducer).invoke();
4293 dl 1.119 }
4294    
4295 dl 1.209
4296 dl 1.210 /* ----------------Views -------------- */
4297 dl 1.142
4298     /**
4299 dl 1.210 * Base class for views.
4300 dl 1.142 */
4301 dl 1.210 abstract static class CollectionView<K,V,E>
4302     implements Collection<E>, java.io.Serializable {
4303     private static final long serialVersionUID = 7249069246763182397L;
4304     final ConcurrentHashMap<K,V> map;
4305     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4306    
4307     /**
4308     * Returns the map backing this view.
4309     *
4310     * @return the map backing this view
4311     */
4312     public ConcurrentHashMap<K,V> getMap() { return map; }
4313 dl 1.142
4314 dl 1.210 /**
4315     * Removes all of the elements from this view, by removing all
4316     * the mappings from the map backing this view.
4317 jsr166 1.184 */
4318     public final void clear() { map.clear(); }
4319     public final int size() { return map.size(); }
4320     public final boolean isEmpty() { return map.isEmpty(); }
4321 dl 1.151
4322     // implementations below rely on concrete classes supplying these
4323 jsr166 1.184 // abstract methods
4324     /**
4325 jsr166 1.242 * Returns an iterator over the elements in this collection.
4326     *
4327     * <p>The returned iterator is
4328     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4329     *
4330     * @return an iterator over the elements in this collection
4331 jsr166 1.184 */
4332     public abstract Iterator<E> iterator();
4333 jsr166 1.165 public abstract boolean contains(Object o);
4334     public abstract boolean remove(Object o);
4335 dl 1.151
4336     private static final String oomeMsg = "Required array size too large";
4337 dl 1.142
4338     public final Object[] toArray() {
4339     long sz = map.mappingCount();
4340 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4341 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4342     int n = (int)sz;
4343     Object[] r = new Object[n];
4344     int i = 0;
4345 jsr166 1.184 for (E e : this) {
4346 dl 1.142 if (i == n) {
4347     if (n >= MAX_ARRAY_SIZE)
4348     throw new OutOfMemoryError(oomeMsg);
4349     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4350     n = MAX_ARRAY_SIZE;
4351     else
4352     n += (n >>> 1) + 1;
4353     r = Arrays.copyOf(r, n);
4354     }
4355 jsr166 1.184 r[i++] = e;
4356 dl 1.142 }
4357     return (i == n) ? r : Arrays.copyOf(r, i);
4358     }
4359    
4360 dl 1.222 @SuppressWarnings("unchecked")
4361 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4362 dl 1.142 long sz = map.mappingCount();
4363 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4364 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4365     int m = (int)sz;
4366     T[] r = (a.length >= m) ? a :
4367     (T[])java.lang.reflect.Array
4368     .newInstance(a.getClass().getComponentType(), m);
4369     int n = r.length;
4370     int i = 0;
4371 jsr166 1.184 for (E e : this) {
4372 dl 1.142 if (i == n) {
4373     if (n >= MAX_ARRAY_SIZE)
4374     throw new OutOfMemoryError(oomeMsg);
4375     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4376     n = MAX_ARRAY_SIZE;
4377     else
4378     n += (n >>> 1) + 1;
4379     r = Arrays.copyOf(r, n);
4380     }
4381 jsr166 1.184 r[i++] = (T)e;
4382 dl 1.142 }
4383     if (a == r && i < n) {
4384     r[i] = null; // null-terminate
4385     return r;
4386     }
4387     return (i == n) ? r : Arrays.copyOf(r, i);
4388     }
4389    
4390 jsr166 1.184 /**
4391     * Returns a string representation of this collection.
4392     * The string representation consists of the string representations
4393     * of the collection's elements in the order they are returned by
4394     * its iterator, enclosed in square brackets ({@code "[]"}).
4395     * Adjacent elements are separated by the characters {@code ", "}
4396     * (comma and space). Elements are converted to strings as by
4397     * {@link String#valueOf(Object)}.
4398     *
4399     * @return a string representation of this collection
4400     */
4401 dl 1.142 public final String toString() {
4402     StringBuilder sb = new StringBuilder();
4403     sb.append('[');
4404 jsr166 1.184 Iterator<E> it = iterator();
4405 dl 1.142 if (it.hasNext()) {
4406     for (;;) {
4407     Object e = it.next();
4408     sb.append(e == this ? "(this Collection)" : e);
4409     if (!it.hasNext())
4410     break;
4411     sb.append(',').append(' ');
4412     }
4413     }
4414     return sb.append(']').toString();
4415     }
4416    
4417     public final boolean containsAll(Collection<?> c) {
4418     if (c != this) {
4419 jsr166 1.184 for (Object e : c) {
4420 dl 1.142 if (e == null || !contains(e))
4421     return false;
4422     }
4423     }
4424     return true;
4425     }
4426    
4427     public final boolean removeAll(Collection<?> c) {
4428     boolean modified = false;
4429 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4430 dl 1.142 if (c.contains(it.next())) {
4431     it.remove();
4432     modified = true;
4433     }
4434     }
4435     return modified;
4436     }
4437    
4438     public final boolean retainAll(Collection<?> c) {
4439     boolean modified = false;
4440 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4441 dl 1.142 if (!c.contains(it.next())) {
4442     it.remove();
4443     modified = true;
4444     }
4445     }
4446     return modified;
4447     }
4448    
4449     }
4450    
4451     /**
4452     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4453     * which additions may optionally be enabled by mapping to a
4454 jsr166 1.185 * common value. This class cannot be directly instantiated.
4455     * See {@link #keySet() keySet()},
4456     * {@link #keySet(Object) keySet(V)},
4457     * {@link #newKeySet() newKeySet()},
4458     * {@link #newKeySet(int) newKeySet(int)}.
4459 jsr166 1.221 *
4460     * @since 1.8
4461 dl 1.142 */
4462 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4463     implements Set<K>, java.io.Serializable {
4464 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4465     private final V value;
4466 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4467 dl 1.142 super(map);
4468     this.value = value;
4469     }
4470    
4471     /**
4472     * Returns the default mapped value for additions,
4473     * or {@code null} if additions are not supported.
4474     *
4475     * @return the default mapped value for additions, or {@code null}
4476 jsr166 1.172 * if not supported
4477 dl 1.142 */
4478     public V getMappedValue() { return value; }
4479    
4480 jsr166 1.184 /**
4481     * {@inheritDoc}
4482     * @throws NullPointerException if the specified key is null
4483     */
4484     public boolean contains(Object o) { return map.containsKey(o); }
4485 dl 1.142
4486 jsr166 1.184 /**
4487     * Removes the key from this map view, by removing the key (and its
4488     * corresponding value) from the backing map. This method does
4489     * nothing if the key is not in the map.
4490     *
4491     * @param o the key to be removed from the backing map
4492     * @return {@code true} if the backing map contained the specified key
4493     * @throws NullPointerException if the specified key is null
4494     */
4495     public boolean remove(Object o) { return map.remove(o) != null; }
4496    
4497     /**
4498     * @return an iterator over the keys of the backing map
4499     */
4500 dl 1.210 public Iterator<K> iterator() {
4501     Node<K,V>[] t;
4502     ConcurrentHashMap<K,V> m = map;
4503     int f = (t = m.table) == null ? 0 : t.length;
4504     return new KeyIterator<K,V>(t, f, 0, f, m);
4505     }
4506 dl 1.142
4507     /**
4508 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4509     * the default mapped value in the backing map, if defined.
4510 dl 1.142 *
4511 jsr166 1.184 * @param e key to be added
4512     * @return {@code true} if this set changed as a result of the call
4513     * @throws NullPointerException if the specified key is null
4514     * @throws UnsupportedOperationException if no default mapped value
4515     * for additions was provided
4516 dl 1.142 */
4517     public boolean add(K e) {
4518     V v;
4519     if ((v = value) == null)
4520     throw new UnsupportedOperationException();
4521 dl 1.222 return map.putVal(e, v, true) == null;
4522 dl 1.142 }
4523 jsr166 1.184
4524     /**
4525     * Adds all of the elements in the specified collection to this set,
4526     * as if by calling {@link #add} on each one.
4527     *
4528     * @param c the elements to be inserted into this set
4529     * @return {@code true} if this set changed as a result of the call
4530     * @throws NullPointerException if the collection or any of its
4531     * elements are {@code null}
4532     * @throws UnsupportedOperationException if no default mapped value
4533     * for additions was provided
4534     */
4535 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4536     boolean added = false;
4537     V v;
4538     if ((v = value) == null)
4539     throw new UnsupportedOperationException();
4540     for (K e : c) {
4541 dl 1.222 if (map.putVal(e, v, true) == null)
4542 dl 1.142 added = true;
4543     }
4544     return added;
4545     }
4546 dl 1.153
4547 dl 1.210 public int hashCode() {
4548     int h = 0;
4549     for (K e : this)
4550     h += e.hashCode();
4551     return h;
4552 dl 1.191 }
4553    
4554 dl 1.210 public boolean equals(Object o) {
4555     Set<?> c;
4556     return ((o instanceof Set) &&
4557     ((c = (Set<?>)o) == this ||
4558     (containsAll(c) && c.containsAll(this))));
4559 dl 1.119 }
4560 jsr166 1.125
4561 dl 1.210 public Spliterator<K> spliterator() {
4562     Node<K,V>[] t;
4563     ConcurrentHashMap<K,V> m = map;
4564     long n = m.sumCount();
4565     int f = (t = m.table) == null ? 0 : t.length;
4566     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4567 dl 1.119 }
4568    
4569 dl 1.210 public void forEach(Consumer<? super K> action) {
4570     if (action == null) throw new NullPointerException();
4571     Node<K,V>[] t;
4572     if ((t = map.table) != null) {
4573     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4574     for (Node<K,V> p; (p = it.advance()) != null; )
4575 dl 1.222 action.accept(p.key);
4576 dl 1.210 }
4577 dl 1.119 }
4578 dl 1.210 }
4579 dl 1.119
4580 dl 1.210 /**
4581     * A view of a ConcurrentHashMap as a {@link Collection} of
4582     * values, in which additions are disabled. This class cannot be
4583     * directly instantiated. See {@link #values()}.
4584     */
4585     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4586     implements Collection<V>, java.io.Serializable {
4587     private static final long serialVersionUID = 2249069246763182397L;
4588     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4589     public final boolean contains(Object o) {
4590     return map.containsValue(o);
4591 dl 1.119 }
4592    
4593 dl 1.210 public final boolean remove(Object o) {
4594     if (o != null) {
4595     for (Iterator<V> it = iterator(); it.hasNext();) {
4596     if (o.equals(it.next())) {
4597     it.remove();
4598     return true;
4599     }
4600     }
4601     }
4602     return false;
4603 dl 1.119 }
4604    
4605 dl 1.210 public final Iterator<V> iterator() {
4606     ConcurrentHashMap<K,V> m = map;
4607     Node<K,V>[] t;
4608     int f = (t = m.table) == null ? 0 : t.length;
4609     return new ValueIterator<K,V>(t, f, 0, f, m);
4610 dl 1.119 }
4611    
4612 dl 1.210 public final boolean add(V e) {
4613     throw new UnsupportedOperationException();
4614     }
4615     public final boolean addAll(Collection<? extends V> c) {
4616     throw new UnsupportedOperationException();
4617 dl 1.119 }
4618    
4619 dl 1.210 public Spliterator<V> spliterator() {
4620     Node<K,V>[] t;
4621     ConcurrentHashMap<K,V> m = map;
4622     long n = m.sumCount();
4623     int f = (t = m.table) == null ? 0 : t.length;
4624     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4625 dl 1.119 }
4626    
4627 dl 1.210 public void forEach(Consumer<? super V> action) {
4628     if (action == null) throw new NullPointerException();
4629     Node<K,V>[] t;
4630     if ((t = map.table) != null) {
4631     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4632     for (Node<K,V> p; (p = it.advance()) != null; )
4633     action.accept(p.val);
4634     }
4635 dl 1.119 }
4636 dl 1.210 }
4637    
4638     /**
4639     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4640     * entries. This class cannot be directly instantiated. See
4641     * {@link #entrySet()}.
4642     */
4643     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4644     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4645     private static final long serialVersionUID = 2249069246763182397L;
4646     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4647 dl 1.119
4648 dl 1.210 public boolean contains(Object o) {
4649     Object k, v, r; Map.Entry<?,?> e;
4650     return ((o instanceof Map.Entry) &&
4651     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4652     (r = map.get(k)) != null &&
4653     (v = e.getValue()) != null &&
4654     (v == r || v.equals(r)));
4655 dl 1.119 }
4656    
4657 dl 1.210 public boolean remove(Object o) {
4658     Object k, v; Map.Entry<?,?> e;
4659     return ((o instanceof Map.Entry) &&
4660     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4661     (v = e.getValue()) != null &&
4662     map.remove(k, v));
4663 dl 1.119 }
4664    
4665     /**
4666 dl 1.210 * @return an iterator over the entries of the backing map
4667 dl 1.119 */
4668 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4669     ConcurrentHashMap<K,V> m = map;
4670     Node<K,V>[] t;
4671     int f = (t = m.table) == null ? 0 : t.length;
4672     return new EntryIterator<K,V>(t, f, 0, f, m);
4673 dl 1.119 }
4674    
4675 dl 1.210 public boolean add(Entry<K,V> e) {
4676 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4677 dl 1.119 }
4678    
4679 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4680     boolean added = false;
4681     for (Entry<K,V> e : c) {
4682     if (add(e))
4683     added = true;
4684     }
4685     return added;
4686 dl 1.119 }
4687    
4688 dl 1.210 public final int hashCode() {
4689     int h = 0;
4690     Node<K,V>[] t;
4691     if ((t = map.table) != null) {
4692     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4693     for (Node<K,V> p; (p = it.advance()) != null; ) {
4694     h += p.hashCode();
4695     }
4696     }
4697     return h;
4698 dl 1.119 }
4699    
4700 dl 1.210 public final boolean equals(Object o) {
4701     Set<?> c;
4702     return ((o instanceof Set) &&
4703     ((c = (Set<?>)o) == this ||
4704     (containsAll(c) && c.containsAll(this))));
4705 dl 1.119 }
4706    
4707 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4708     Node<K,V>[] t;
4709     ConcurrentHashMap<K,V> m = map;
4710     long n = m.sumCount();
4711     int f = (t = m.table) == null ? 0 : t.length;
4712     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4713 dl 1.119 }
4714    
4715 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4716     if (action == null) throw new NullPointerException();
4717     Node<K,V>[] t;
4718     if ((t = map.table) != null) {
4719     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4720     for (Node<K,V> p; (p = it.advance()) != null; )
4721 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4722 dl 1.210 }
4723 dl 1.119 }
4724    
4725 dl 1.210 }
4726    
4727     // -------------------------------------------------------
4728 dl 1.119
4729 dl 1.210 /**
4730     * Base class for bulk tasks. Repeats some fields and code from
4731     * class Traverser, because we need to subclass CountedCompleter.
4732     */
4733 dl 1.243 @SuppressWarnings("serial")
4734 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4735 dl 1.210 Node<K,V>[] tab; // same as Traverser
4736     Node<K,V> next;
4737 dl 1.246 TableStack<K,V> stack, spare;
4738 dl 1.210 int index;
4739     int baseIndex;
4740     int baseLimit;
4741     final int baseSize;
4742     int batch; // split control
4743    
4744     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4745     super(par);
4746     this.batch = b;
4747     this.index = this.baseIndex = i;
4748     if ((this.tab = t) == null)
4749     this.baseSize = this.baseLimit = 0;
4750     else if (par == null)
4751     this.baseSize = this.baseLimit = t.length;
4752     else {
4753     this.baseLimit = f;
4754     this.baseSize = par.baseSize;
4755     }
4756 dl 1.119 }
4757    
4758     /**
4759 dl 1.210 * Same as Traverser version
4760 dl 1.119 */
4761 dl 1.210 final Node<K,V> advance() {
4762     Node<K,V> e;
4763     if ((e = next) != null)
4764     e = e.next;
4765     for (;;) {
4766 dl 1.246 Node<K,V>[] t; int i, n;
4767 dl 1.210 if (e != null)
4768     return next = e;
4769     if (baseIndex >= baseLimit || (t = tab) == null ||
4770     (n = t.length) <= (i = index) || i < 0)
4771     return next = null;
4772 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4773 dl 1.222 if (e instanceof ForwardingNode) {
4774     tab = ((ForwardingNode<K,V>)e).nextTable;
4775 dl 1.210 e = null;
4776 dl 1.246 pushState(t, i, n);
4777 dl 1.210 continue;
4778     }
4779 dl 1.222 else if (e instanceof TreeBin)
4780     e = ((TreeBin<K,V>)e).first;
4781     else
4782     e = null;
4783 dl 1.210 }
4784 dl 1.246 if (stack != null)
4785     recoverState(n);
4786     else if ((index = i + baseSize) >= n)
4787     index = ++baseIndex;
4788     }
4789     }
4790    
4791     private void pushState(Node<K,V>[] t, int i, int n) {
4792     TableStack<K,V> s = spare;
4793     if (s != null)
4794     spare = s.next;
4795     else
4796     s = new TableStack<K,V>();
4797     s.tab = t;
4798     s.length = n;
4799     s.index = i;
4800     s.next = stack;
4801     stack = s;
4802     }
4803    
4804     private void recoverState(int n) {
4805     TableStack<K,V> s; int len;
4806     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4807     n = len;
4808     index = s.index;
4809     tab = s.tab;
4810     s.tab = null;
4811     TableStack<K,V> next = s.next;
4812     s.next = spare; // save for reuse
4813     stack = next;
4814     spare = s;
4815 dl 1.210 }
4816 dl 1.246 if (s == null && (index += baseSize) >= n)
4817     index = ++baseIndex;
4818 dl 1.119 }
4819     }
4820    
4821     /*
4822     * Task classes. Coded in a regular but ugly format/style to
4823     * simplify checks that each variant differs in the right way from
4824 dl 1.149 * others. The null screenings exist because compilers cannot tell
4825     * that we've already null-checked task arguments, so we force
4826     * simplest hoisted bypass to help avoid convoluted traps.
4827 dl 1.119 */
4828 dl 1.222 @SuppressWarnings("serial")
4829 dl 1.210 static final class ForEachKeyTask<K,V>
4830     extends BulkTask<K,V,Void> {
4831 dl 1.171 final Consumer<? super K> action;
4832 dl 1.119 ForEachKeyTask
4833 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4834 dl 1.171 Consumer<? super K> action) {
4835 dl 1.210 super(p, b, i, f, t);
4836 dl 1.119 this.action = action;
4837     }
4838 jsr166 1.168 public final void compute() {
4839 dl 1.171 final Consumer<? super K> action;
4840 dl 1.149 if ((action = this.action) != null) {
4841 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4842     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4843     addToPendingCount(1);
4844     new ForEachKeyTask<K,V>
4845     (this, batch >>>= 1, baseLimit = h, f, tab,
4846     action).fork();
4847     }
4848     for (Node<K,V> p; (p = advance()) != null;)
4849 dl 1.222 action.accept(p.key);
4850 dl 1.149 propagateCompletion();
4851     }
4852 dl 1.119 }
4853     }
4854    
4855 dl 1.222 @SuppressWarnings("serial")
4856 dl 1.210 static final class ForEachValueTask<K,V>
4857     extends BulkTask<K,V,Void> {
4858 dl 1.171 final Consumer<? super V> action;
4859 dl 1.119 ForEachValueTask
4860 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4861 dl 1.171 Consumer<? super V> action) {
4862 dl 1.210 super(p, b, i, f, t);
4863 dl 1.119 this.action = action;
4864     }
4865 jsr166 1.168 public final void compute() {
4866 dl 1.171 final Consumer<? super V> action;
4867 dl 1.149 if ((action = this.action) != null) {
4868 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4869     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870     addToPendingCount(1);
4871     new ForEachValueTask<K,V>
4872     (this, batch >>>= 1, baseLimit = h, f, tab,
4873     action).fork();
4874     }
4875     for (Node<K,V> p; (p = advance()) != null;)
4876     action.accept(p.val);
4877 dl 1.149 propagateCompletion();
4878     }
4879 dl 1.119 }
4880     }
4881    
4882 dl 1.222 @SuppressWarnings("serial")
4883 dl 1.210 static final class ForEachEntryTask<K,V>
4884     extends BulkTask<K,V,Void> {
4885 dl 1.171 final Consumer<? super Entry<K,V>> action;
4886 dl 1.119 ForEachEntryTask
4887 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4888 dl 1.171 Consumer<? super Entry<K,V>> action) {
4889 dl 1.210 super(p, b, i, f, t);
4890 dl 1.119 this.action = action;
4891     }
4892 jsr166 1.168 public final void compute() {
4893 dl 1.171 final Consumer<? super Entry<K,V>> action;
4894 dl 1.149 if ((action = this.action) != null) {
4895 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4896     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4897     addToPendingCount(1);
4898     new ForEachEntryTask<K,V>
4899     (this, batch >>>= 1, baseLimit = h, f, tab,
4900     action).fork();
4901     }
4902     for (Node<K,V> p; (p = advance()) != null; )
4903     action.accept(p);
4904 dl 1.149 propagateCompletion();
4905     }
4906 dl 1.119 }
4907     }
4908    
4909 dl 1.222 @SuppressWarnings("serial")
4910 dl 1.210 static final class ForEachMappingTask<K,V>
4911     extends BulkTask<K,V,Void> {
4912 dl 1.171 final BiConsumer<? super K, ? super V> action;
4913 dl 1.119 ForEachMappingTask
4914 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4915 dl 1.171 BiConsumer<? super K,? super V> action) {
4916 dl 1.210 super(p, b, i, f, t);
4917 dl 1.119 this.action = action;
4918     }
4919 jsr166 1.168 public final void compute() {
4920 dl 1.171 final BiConsumer<? super K, ? super V> action;
4921 dl 1.149 if ((action = this.action) != null) {
4922 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4923     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4924     addToPendingCount(1);
4925     new ForEachMappingTask<K,V>
4926     (this, batch >>>= 1, baseLimit = h, f, tab,
4927     action).fork();
4928     }
4929     for (Node<K,V> p; (p = advance()) != null; )
4930 dl 1.222 action.accept(p.key, p.val);
4931 dl 1.149 propagateCompletion();
4932     }
4933 dl 1.119 }
4934     }
4935    
4936 dl 1.222 @SuppressWarnings("serial")
4937 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
4938     extends BulkTask<K,V,Void> {
4939 dl 1.153 final Function<? super K, ? extends U> transformer;
4940 dl 1.171 final Consumer<? super U> action;
4941 dl 1.119 ForEachTransformedKeyTask
4942 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4943 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4944 dl 1.210 super(p, b, i, f, t);
4945 dl 1.146 this.transformer = transformer; this.action = action;
4946     }
4947 jsr166 1.168 public final void compute() {
4948 dl 1.153 final Function<? super K, ? extends U> transformer;
4949 dl 1.171 final Consumer<? super U> action;
4950 dl 1.149 if ((transformer = this.transformer) != null &&
4951     (action = this.action) != null) {
4952 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4953     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4954     addToPendingCount(1);
4955 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
4956 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4957     transformer, action).fork();
4958     }
4959     for (Node<K,V> p; (p = advance()) != null; ) {
4960     U u;
4961 dl 1.222 if ((u = transformer.apply(p.key)) != null)
4962 dl 1.153 action.accept(u);
4963 dl 1.149 }
4964     propagateCompletion();
4965 dl 1.119 }
4966     }
4967     }
4968    
4969 dl 1.222 @SuppressWarnings("serial")
4970 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
4971     extends BulkTask<K,V,Void> {
4972 dl 1.153 final Function<? super V, ? extends U> transformer;
4973 dl 1.171 final Consumer<? super U> action;
4974 dl 1.119 ForEachTransformedValueTask
4975 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4976 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4977 dl 1.210 super(p, b, i, f, t);
4978 dl 1.146 this.transformer = transformer; this.action = action;
4979     }
4980 jsr166 1.168 public final void compute() {
4981 dl 1.153 final Function<? super V, ? extends U> transformer;
4982 dl 1.171 final Consumer<? super U> action;
4983 dl 1.149 if ((transformer = this.transformer) != null &&
4984     (action = this.action) != null) {
4985 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4986     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4987     addToPendingCount(1);
4988 dl 1.149 new ForEachTransformedValueTask<K,V,U>
4989 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4990     transformer, action).fork();
4991     }
4992     for (Node<K,V> p; (p = advance()) != null; ) {
4993     U u;
4994     if ((u = transformer.apply(p.val)) != null)
4995 dl 1.153 action.accept(u);
4996 dl 1.149 }
4997     propagateCompletion();
4998 dl 1.119 }
4999     }
5000 tim 1.1 }
5001    
5002 dl 1.222 @SuppressWarnings("serial")
5003 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5004     extends BulkTask<K,V,Void> {
5005 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5006 dl 1.171 final Consumer<? super U> action;
5007 dl 1.119 ForEachTransformedEntryTask
5008 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5009 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5010 dl 1.210 super(p, b, i, f, t);
5011 dl 1.146 this.transformer = transformer; this.action = action;
5012     }
5013 jsr166 1.168 public final void compute() {
5014 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5015 dl 1.171 final Consumer<? super U> action;
5016 dl 1.149 if ((transformer = this.transformer) != null &&
5017     (action = this.action) != null) {
5018 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5019     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5020     addToPendingCount(1);
5021 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5022 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5023     transformer, action).fork();
5024     }
5025     for (Node<K,V> p; (p = advance()) != null; ) {
5026     U u;
5027     if ((u = transformer.apply(p)) != null)
5028 dl 1.153 action.accept(u);
5029 dl 1.149 }
5030     propagateCompletion();
5031 dl 1.119 }
5032     }
5033 tim 1.1 }
5034    
5035 dl 1.222 @SuppressWarnings("serial")
5036 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5037     extends BulkTask<K,V,Void> {
5038 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5039 dl 1.171 final Consumer<? super U> action;
5040 dl 1.119 ForEachTransformedMappingTask
5041 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5042 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5043 dl 1.171 Consumer<? super U> action) {
5044 dl 1.210 super(p, b, i, f, t);
5045 dl 1.146 this.transformer = transformer; this.action = action;
5046 dl 1.119 }
5047 jsr166 1.168 public final void compute() {
5048 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5049 dl 1.171 final Consumer<? super U> action;
5050 dl 1.149 if ((transformer = this.transformer) != null &&
5051     (action = this.action) != null) {
5052 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5053     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054     addToPendingCount(1);
5055 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5056 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5057     transformer, action).fork();
5058     }
5059     for (Node<K,V> p; (p = advance()) != null; ) {
5060     U u;
5061 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5062 dl 1.153 action.accept(u);
5063 dl 1.149 }
5064     propagateCompletion();
5065 dl 1.119 }
5066     }
5067 tim 1.1 }
5068    
5069 dl 1.222 @SuppressWarnings("serial")
5070 dl 1.210 static final class SearchKeysTask<K,V,U>
5071     extends BulkTask<K,V,U> {
5072 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5073 dl 1.119 final AtomicReference<U> result;
5074     SearchKeysTask
5075 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5076 dl 1.153 Function<? super K, ? extends U> searchFunction,
5077 dl 1.119 AtomicReference<U> result) {
5078 dl 1.210 super(p, b, i, f, t);
5079 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5080     }
5081 dl 1.146 public final U getRawResult() { return result.get(); }
5082 jsr166 1.168 public final void compute() {
5083 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5084 dl 1.146 final AtomicReference<U> result;
5085 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5086     (result = this.result) != null) {
5087 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5088     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5089 dl 1.149 if (result.get() != null)
5090     return;
5091 dl 1.210 addToPendingCount(1);
5092 dl 1.149 new SearchKeysTask<K,V,U>
5093 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5094     searchFunction, result).fork();
5095 dl 1.128 }
5096 dl 1.149 while (result.get() == null) {
5097 dl 1.210 U u;
5098     Node<K,V> p;
5099     if ((p = advance()) == null) {
5100 dl 1.149 propagateCompletion();
5101     break;
5102     }
5103 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5104 dl 1.149 if (result.compareAndSet(null, u))
5105     quietlyCompleteRoot();
5106     break;
5107     }
5108 dl 1.119 }
5109     }
5110     }
5111 tim 1.1 }
5112    
5113 dl 1.222 @SuppressWarnings("serial")
5114 dl 1.210 static final class SearchValuesTask<K,V,U>
5115     extends BulkTask<K,V,U> {
5116 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5117 dl 1.119 final AtomicReference<U> result;
5118     SearchValuesTask
5119 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5120 dl 1.153 Function<? super V, ? extends U> searchFunction,
5121 dl 1.119 AtomicReference<U> result) {
5122 dl 1.210 super(p, b, i, f, t);
5123 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5124     }
5125 dl 1.146 public final U getRawResult() { return result.get(); }
5126 jsr166 1.168 public final void compute() {
5127 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5128 dl 1.146 final AtomicReference<U> result;
5129 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5130     (result = this.result) != null) {
5131 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5132     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 dl 1.149 if (result.get() != null)
5134     return;
5135 dl 1.210 addToPendingCount(1);
5136 dl 1.149 new SearchValuesTask<K,V,U>
5137 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5138     searchFunction, result).fork();
5139 dl 1.128 }
5140 dl 1.149 while (result.get() == null) {
5141 dl 1.210 U u;
5142     Node<K,V> p;
5143     if ((p = advance()) == null) {
5144 dl 1.149 propagateCompletion();
5145     break;
5146     }
5147 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5148 dl 1.149 if (result.compareAndSet(null, u))
5149     quietlyCompleteRoot();
5150     break;
5151     }
5152 dl 1.119 }
5153     }
5154     }
5155     }
5156 tim 1.11
5157 dl 1.222 @SuppressWarnings("serial")
5158 dl 1.210 static final class SearchEntriesTask<K,V,U>
5159     extends BulkTask<K,V,U> {
5160 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5161 dl 1.119 final AtomicReference<U> result;
5162     SearchEntriesTask
5163 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5164 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5165 dl 1.119 AtomicReference<U> result) {
5166 dl 1.210 super(p, b, i, f, t);
5167 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5168     }
5169 dl 1.146 public final U getRawResult() { return result.get(); }
5170 jsr166 1.168 public final void compute() {
5171 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5172 dl 1.146 final AtomicReference<U> result;
5173 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5174     (result = this.result) != null) {
5175 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5176     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5177 dl 1.149 if (result.get() != null)
5178     return;
5179 dl 1.210 addToPendingCount(1);
5180 dl 1.149 new SearchEntriesTask<K,V,U>
5181 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5182     searchFunction, result).fork();
5183 dl 1.128 }
5184 dl 1.149 while (result.get() == null) {
5185 dl 1.210 U u;
5186     Node<K,V> p;
5187     if ((p = advance()) == null) {
5188 dl 1.149 propagateCompletion();
5189     break;
5190     }
5191 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5192 dl 1.149 if (result.compareAndSet(null, u))
5193     quietlyCompleteRoot();
5194     return;
5195     }
5196 dl 1.119 }
5197     }
5198     }
5199     }
5200 tim 1.1
5201 dl 1.222 @SuppressWarnings("serial")
5202 dl 1.210 static final class SearchMappingsTask<K,V,U>
5203     extends BulkTask<K,V,U> {
5204 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5205 dl 1.119 final AtomicReference<U> result;
5206     SearchMappingsTask
5207 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5208 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5209 dl 1.119 AtomicReference<U> result) {
5210 dl 1.210 super(p, b, i, f, t);
5211 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5212     }
5213 dl 1.146 public final U getRawResult() { return result.get(); }
5214 jsr166 1.168 public final void compute() {
5215 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5216 dl 1.146 final AtomicReference<U> result;
5217 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5218     (result = this.result) != null) {
5219 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5220     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5221 dl 1.149 if (result.get() != null)
5222     return;
5223 dl 1.210 addToPendingCount(1);
5224 dl 1.149 new SearchMappingsTask<K,V,U>
5225 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5226     searchFunction, result).fork();
5227 dl 1.128 }
5228 dl 1.149 while (result.get() == null) {
5229 dl 1.210 U u;
5230     Node<K,V> p;
5231     if ((p = advance()) == null) {
5232 dl 1.149 propagateCompletion();
5233     break;
5234     }
5235 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5236 dl 1.149 if (result.compareAndSet(null, u))
5237     quietlyCompleteRoot();
5238     break;
5239     }
5240 dl 1.119 }
5241     }
5242 tim 1.1 }
5243 dl 1.119 }
5244 tim 1.1
5245 dl 1.222 @SuppressWarnings("serial")
5246 dl 1.210 static final class ReduceKeysTask<K,V>
5247     extends BulkTask<K,V,K> {
5248 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5249 dl 1.119 K result;
5250 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5251 dl 1.119 ReduceKeysTask
5252 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5253 dl 1.128 ReduceKeysTask<K,V> nextRight,
5254 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5255 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5256 dl 1.119 this.reducer = reducer;
5257     }
5258 dl 1.146 public final K getRawResult() { return result; }
5259 dl 1.210 public final void compute() {
5260 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5261 dl 1.149 if ((reducer = this.reducer) != null) {
5262 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5263     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5264     addToPendingCount(1);
5265 dl 1.149 (rights = new ReduceKeysTask<K,V>
5266 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5267     rights, reducer)).fork();
5268     }
5269     K r = null;
5270     for (Node<K,V> p; (p = advance()) != null; ) {
5271 dl 1.222 K u = p.key;
5272 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5273 dl 1.149 }
5274     result = r;
5275     CountedCompleter<?> c;
5276     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5277 dl 1.246 @SuppressWarnings("unchecked")
5278     ReduceKeysTask<K,V>
5279 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5280     s = t.rights;
5281     while (s != null) {
5282     K tr, sr;
5283     if ((sr = s.result) != null)
5284     t.result = (((tr = t.result) == null) ? sr :
5285     reducer.apply(tr, sr));
5286     s = t.rights = s.nextRight;
5287     }
5288 dl 1.99 }
5289 dl 1.138 }
5290 tim 1.1 }
5291 dl 1.119 }
5292 tim 1.1
5293 dl 1.222 @SuppressWarnings("serial")
5294 dl 1.210 static final class ReduceValuesTask<K,V>
5295     extends BulkTask<K,V,V> {
5296 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5297 dl 1.119 V result;
5298 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5299 dl 1.119 ReduceValuesTask
5300 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5301 dl 1.128 ReduceValuesTask<K,V> nextRight,
5302 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5303 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5304 dl 1.119 this.reducer = reducer;
5305     }
5306 dl 1.146 public final V getRawResult() { return result; }
5307 dl 1.210 public final void compute() {
5308 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5309 dl 1.149 if ((reducer = this.reducer) != null) {
5310 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5311     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5312     addToPendingCount(1);
5313 dl 1.149 (rights = new ReduceValuesTask<K,V>
5314 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5315     rights, reducer)).fork();
5316     }
5317     V r = null;
5318     for (Node<K,V> p; (p = advance()) != null; ) {
5319     V v = p.val;
5320 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5321 dl 1.210 }
5322 dl 1.149 result = r;
5323     CountedCompleter<?> c;
5324     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5325 dl 1.246 @SuppressWarnings("unchecked")
5326     ReduceValuesTask<K,V>
5327 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5328     s = t.rights;
5329     while (s != null) {
5330     V tr, sr;
5331     if ((sr = s.result) != null)
5332     t.result = (((tr = t.result) == null) ? sr :
5333     reducer.apply(tr, sr));
5334     s = t.rights = s.nextRight;
5335     }
5336 dl 1.119 }
5337     }
5338 tim 1.1 }
5339 dl 1.119 }
5340 tim 1.1
5341 dl 1.222 @SuppressWarnings("serial")
5342 dl 1.210 static final class ReduceEntriesTask<K,V>
5343     extends BulkTask<K,V,Map.Entry<K,V>> {
5344 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5345 dl 1.119 Map.Entry<K,V> result;
5346 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5347 dl 1.119 ReduceEntriesTask
5348 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5349 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5350 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5351 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5352 dl 1.119 this.reducer = reducer;
5353     }
5354 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5355 dl 1.210 public final void compute() {
5356 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5357 dl 1.149 if ((reducer = this.reducer) != null) {
5358 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5359     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5360     addToPendingCount(1);
5361 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5362 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5363     rights, reducer)).fork();
5364     }
5365 dl 1.149 Map.Entry<K,V> r = null;
5366 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5367     r = (r == null) ? p : reducer.apply(r, p);
5368 dl 1.149 result = r;
5369     CountedCompleter<?> c;
5370     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5371 dl 1.246 @SuppressWarnings("unchecked")
5372     ReduceEntriesTask<K,V>
5373 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5374     s = t.rights;
5375     while (s != null) {
5376     Map.Entry<K,V> tr, sr;
5377     if ((sr = s.result) != null)
5378     t.result = (((tr = t.result) == null) ? sr :
5379     reducer.apply(tr, sr));
5380     s = t.rights = s.nextRight;
5381     }
5382 dl 1.119 }
5383 dl 1.138 }
5384 dl 1.119 }
5385     }
5386 dl 1.99
5387 dl 1.222 @SuppressWarnings("serial")
5388 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5389     extends BulkTask<K,V,U> {
5390 dl 1.153 final Function<? super K, ? extends U> transformer;
5391     final BiFunction<? super U, ? super U, ? extends U> reducer;
5392 dl 1.119 U result;
5393 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5394 dl 1.119 MapReduceKeysTask
5395 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5396 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5397 dl 1.153 Function<? super K, ? extends U> transformer,
5398     BiFunction<? super U, ? super U, ? extends U> reducer) {
5399 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5400 dl 1.119 this.transformer = transformer;
5401     this.reducer = reducer;
5402     }
5403 dl 1.146 public final U getRawResult() { return result; }
5404 dl 1.210 public final void compute() {
5405 dl 1.153 final Function<? super K, ? extends U> transformer;
5406     final BiFunction<? super U, ? super U, ? extends U> reducer;
5407 dl 1.149 if ((transformer = this.transformer) != null &&
5408     (reducer = this.reducer) != null) {
5409 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5410     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5411     addToPendingCount(1);
5412 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5413 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5414     rights, transformer, reducer)).fork();
5415     }
5416     U r = null;
5417     for (Node<K,V> p; (p = advance()) != null; ) {
5418     U u;
5419 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5420 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5421     }
5422     result = r;
5423     CountedCompleter<?> c;
5424     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425 dl 1.246 @SuppressWarnings("unchecked")
5426     MapReduceKeysTask<K,V,U>
5427 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5428     s = t.rights;
5429     while (s != null) {
5430     U tr, sr;
5431     if ((sr = s.result) != null)
5432     t.result = (((tr = t.result) == null) ? sr :
5433     reducer.apply(tr, sr));
5434     s = t.rights = s.nextRight;
5435     }
5436 dl 1.119 }
5437 dl 1.138 }
5438 tim 1.1 }
5439 dl 1.4 }
5440    
5441 dl 1.222 @SuppressWarnings("serial")
5442 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5443     extends BulkTask<K,V,U> {
5444 dl 1.153 final Function<? super V, ? extends U> transformer;
5445     final BiFunction<? super U, ? super U, ? extends U> reducer;
5446 dl 1.119 U result;
5447 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5448 dl 1.119 MapReduceValuesTask
5449 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5451 dl 1.153 Function<? super V, ? extends U> transformer,
5452     BiFunction<? super U, ? super U, ? extends U> reducer) {
5453 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5454 dl 1.119 this.transformer = transformer;
5455     this.reducer = reducer;
5456     }
5457 dl 1.146 public final U getRawResult() { return result; }
5458 dl 1.210 public final void compute() {
5459 dl 1.153 final Function<? super V, ? extends U> transformer;
5460     final BiFunction<? super U, ? super U, ? extends U> reducer;
5461 dl 1.149 if ((transformer = this.transformer) != null &&
5462     (reducer = this.reducer) != null) {
5463 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5464     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5465     addToPendingCount(1);
5466 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5467 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5468     rights, transformer, reducer)).fork();
5469     }
5470     U r = null;
5471     for (Node<K,V> p; (p = advance()) != null; ) {
5472     U u;
5473     if ((u = transformer.apply(p.val)) != null)
5474 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5475     }
5476     result = r;
5477     CountedCompleter<?> c;
5478     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5479 dl 1.246 @SuppressWarnings("unchecked")
5480     MapReduceValuesTask<K,V,U>
5481 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5482     s = t.rights;
5483     while (s != null) {
5484     U tr, sr;
5485     if ((sr = s.result) != null)
5486     t.result = (((tr = t.result) == null) ? sr :
5487     reducer.apply(tr, sr));
5488     s = t.rights = s.nextRight;
5489     }
5490 dl 1.119 }
5491     }
5492     }
5493 dl 1.4 }
5494    
5495 dl 1.222 @SuppressWarnings("serial")
5496 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5497     extends BulkTask<K,V,U> {
5498 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5499     final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 dl 1.119 U result;
5501 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5502 dl 1.119 MapReduceEntriesTask
5503 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5505 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5506     BiFunction<? super U, ? super U, ? extends U> reducer) {
5507 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5508 dl 1.119 this.transformer = transformer;
5509     this.reducer = reducer;
5510     }
5511 dl 1.146 public final U getRawResult() { return result; }
5512 dl 1.210 public final void compute() {
5513 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5514     final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 dl 1.149 if ((transformer = this.transformer) != null &&
5516     (reducer = this.reducer) != null) {
5517 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5518     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5519     addToPendingCount(1);
5520 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5521 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5522     rights, transformer, reducer)).fork();
5523     }
5524     U r = null;
5525     for (Node<K,V> p; (p = advance()) != null; ) {
5526     U u;
5527     if ((u = transformer.apply(p)) != null)
5528 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5529     }
5530     result = r;
5531     CountedCompleter<?> c;
5532     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5533 dl 1.246 @SuppressWarnings("unchecked")
5534     MapReduceEntriesTask<K,V,U>
5535 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5536     s = t.rights;
5537     while (s != null) {
5538     U tr, sr;
5539     if ((sr = s.result) != null)
5540     t.result = (((tr = t.result) == null) ? sr :
5541     reducer.apply(tr, sr));
5542     s = t.rights = s.nextRight;
5543     }
5544 dl 1.119 }
5545 dl 1.138 }
5546 dl 1.119 }
5547 dl 1.4 }
5548 tim 1.1
5549 dl 1.222 @SuppressWarnings("serial")
5550 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5551     extends BulkTask<K,V,U> {
5552 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5553     final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 dl 1.119 U result;
5555 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5556 dl 1.119 MapReduceMappingsTask
5557 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5558 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5559 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5560     BiFunction<? super U, ? super U, ? extends U> reducer) {
5561 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5562 dl 1.119 this.transformer = transformer;
5563     this.reducer = reducer;
5564     }
5565 dl 1.146 public final U getRawResult() { return result; }
5566 dl 1.210 public final void compute() {
5567 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5568     final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 dl 1.149 if ((transformer = this.transformer) != null &&
5570     (reducer = this.reducer) != null) {
5571 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5572     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573     addToPendingCount(1);
5574 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5575 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5576     rights, transformer, reducer)).fork();
5577     }
5578     U r = null;
5579     for (Node<K,V> p; (p = advance()) != null; ) {
5580     U u;
5581 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5582 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5583     }
5584     result = r;
5585     CountedCompleter<?> c;
5586     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 dl 1.246 @SuppressWarnings("unchecked")
5588     MapReduceMappingsTask<K,V,U>
5589 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5590     s = t.rights;
5591     while (s != null) {
5592     U tr, sr;
5593     if ((sr = s.result) != null)
5594     t.result = (((tr = t.result) == null) ? sr :
5595     reducer.apply(tr, sr));
5596     s = t.rights = s.nextRight;
5597     }
5598 dl 1.119 }
5599     }
5600     }
5601     }
5602 jsr166 1.114
5603 dl 1.222 @SuppressWarnings("serial")
5604 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5605     extends BulkTask<K,V,Double> {
5606 dl 1.171 final ToDoubleFunction<? super K> transformer;
5607 dl 1.153 final DoubleBinaryOperator reducer;
5608 dl 1.119 final double basis;
5609     double result;
5610 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5611 dl 1.119 MapReduceKeysToDoubleTask
5612 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5613 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5614 dl 1.171 ToDoubleFunction<? super K> transformer,
5615 dl 1.119 double basis,
5616 dl 1.153 DoubleBinaryOperator reducer) {
5617 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5618 dl 1.119 this.transformer = transformer;
5619     this.basis = basis; this.reducer = reducer;
5620     }
5621 dl 1.146 public final Double getRawResult() { return result; }
5622 dl 1.210 public final void compute() {
5623 dl 1.171 final ToDoubleFunction<? super K> transformer;
5624 dl 1.153 final DoubleBinaryOperator reducer;
5625 dl 1.149 if ((transformer = this.transformer) != null &&
5626     (reducer = this.reducer) != null) {
5627     double r = this.basis;
5628 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5629     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5630     addToPendingCount(1);
5631 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5632 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5633     rights, transformer, r, reducer)).fork();
5634     }
5635     for (Node<K,V> p; (p = advance()) != null; )
5636 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5637 dl 1.149 result = r;
5638     CountedCompleter<?> c;
5639     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5640 dl 1.246 @SuppressWarnings("unchecked")
5641     MapReduceKeysToDoubleTask<K,V>
5642 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5643     s = t.rights;
5644     while (s != null) {
5645 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5646 dl 1.149 s = t.rights = s.nextRight;
5647     }
5648 dl 1.119 }
5649 dl 1.138 }
5650 dl 1.79 }
5651 dl 1.119 }
5652 dl 1.79
5653 dl 1.222 @SuppressWarnings("serial")
5654 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5655     extends BulkTask<K,V,Double> {
5656 dl 1.171 final ToDoubleFunction<? super V> transformer;
5657 dl 1.153 final DoubleBinaryOperator reducer;
5658 dl 1.119 final double basis;
5659     double result;
5660 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5661 dl 1.119 MapReduceValuesToDoubleTask
5662 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5663 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5664 dl 1.171 ToDoubleFunction<? super V> transformer,
5665 dl 1.119 double basis,
5666 dl 1.153 DoubleBinaryOperator reducer) {
5667 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5668 dl 1.119 this.transformer = transformer;
5669     this.basis = basis; this.reducer = reducer;
5670     }
5671 dl 1.146 public final Double getRawResult() { return result; }
5672 dl 1.210 public final void compute() {
5673 dl 1.171 final ToDoubleFunction<? super V> transformer;
5674 dl 1.153 final DoubleBinaryOperator reducer;
5675 dl 1.149 if ((transformer = this.transformer) != null &&
5676     (reducer = this.reducer) != null) {
5677     double r = this.basis;
5678 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5679     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5680     addToPendingCount(1);
5681 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5682 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5683     rights, transformer, r, reducer)).fork();
5684     }
5685     for (Node<K,V> p; (p = advance()) != null; )
5686     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5687 dl 1.149 result = r;
5688     CountedCompleter<?> c;
5689     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5690 dl 1.246 @SuppressWarnings("unchecked")
5691     MapReduceValuesToDoubleTask<K,V>
5692 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5693     s = t.rights;
5694     while (s != null) {
5695 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5696 dl 1.149 s = t.rights = s.nextRight;
5697     }
5698 dl 1.119 }
5699     }
5700 dl 1.30 }
5701 dl 1.79 }
5702 dl 1.30
5703 dl 1.222 @SuppressWarnings("serial")
5704 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5705     extends BulkTask<K,V,Double> {
5706 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5707 dl 1.153 final DoubleBinaryOperator reducer;
5708 dl 1.119 final double basis;
5709     double result;
5710 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5711 dl 1.119 MapReduceEntriesToDoubleTask
5712 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5713 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5714 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5715 dl 1.119 double basis,
5716 dl 1.153 DoubleBinaryOperator reducer) {
5717 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5718 dl 1.119 this.transformer = transformer;
5719     this.basis = basis; this.reducer = reducer;
5720     }
5721 dl 1.146 public final Double getRawResult() { return result; }
5722 dl 1.210 public final void compute() {
5723 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5724 dl 1.153 final DoubleBinaryOperator reducer;
5725 dl 1.149 if ((transformer = this.transformer) != null &&
5726     (reducer = this.reducer) != null) {
5727     double r = this.basis;
5728 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5729     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5730     addToPendingCount(1);
5731 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5732 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5733     rights, transformer, r, reducer)).fork();
5734     }
5735     for (Node<K,V> p; (p = advance()) != null; )
5736     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5737 dl 1.149 result = r;
5738     CountedCompleter<?> c;
5739     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5740 dl 1.246 @SuppressWarnings("unchecked")
5741     MapReduceEntriesToDoubleTask<K,V>
5742 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5743     s = t.rights;
5744     while (s != null) {
5745 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5746 dl 1.149 s = t.rights = s.nextRight;
5747     }
5748 dl 1.119 }
5749 dl 1.138 }
5750 dl 1.30 }
5751 tim 1.1 }
5752    
5753 dl 1.222 @SuppressWarnings("serial")
5754 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5755     extends BulkTask<K,V,Double> {
5756 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5757 dl 1.153 final DoubleBinaryOperator reducer;
5758 dl 1.119 final double basis;
5759     double result;
5760 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5761 dl 1.119 MapReduceMappingsToDoubleTask
5762 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5763 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5764 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5765 dl 1.119 double basis,
5766 dl 1.153 DoubleBinaryOperator reducer) {
5767 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5768 dl 1.119 this.transformer = transformer;
5769     this.basis = basis; this.reducer = reducer;
5770     }
5771 dl 1.146 public final Double getRawResult() { return result; }
5772 dl 1.210 public final void compute() {
5773 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5774 dl 1.153 final DoubleBinaryOperator reducer;
5775 dl 1.149 if ((transformer = this.transformer) != null &&
5776     (reducer = this.reducer) != null) {
5777     double r = this.basis;
5778 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5779     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5780     addToPendingCount(1);
5781 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5782 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5783     rights, transformer, r, reducer)).fork();
5784     }
5785     for (Node<K,V> p; (p = advance()) != null; )
5786 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5787 dl 1.149 result = r;
5788     CountedCompleter<?> c;
5789     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5790 dl 1.246 @SuppressWarnings("unchecked")
5791     MapReduceMappingsToDoubleTask<K,V>
5792 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5793     s = t.rights;
5794     while (s != null) {
5795 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5796 dl 1.149 s = t.rights = s.nextRight;
5797     }
5798 dl 1.119 }
5799     }
5800 dl 1.4 }
5801 dl 1.119 }
5802    
5803 dl 1.222 @SuppressWarnings("serial")
5804 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5805     extends BulkTask<K,V,Long> {
5806 dl 1.171 final ToLongFunction<? super K> transformer;
5807 dl 1.153 final LongBinaryOperator reducer;
5808 dl 1.119 final long basis;
5809     long result;
5810 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5811 dl 1.119 MapReduceKeysToLongTask
5812 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5813 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5814 dl 1.171 ToLongFunction<? super K> transformer,
5815 dl 1.119 long basis,
5816 dl 1.153 LongBinaryOperator reducer) {
5817 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5818 dl 1.119 this.transformer = transformer;
5819     this.basis = basis; this.reducer = reducer;
5820     }
5821 dl 1.146 public final Long getRawResult() { return result; }
5822 dl 1.210 public final void compute() {
5823 dl 1.171 final ToLongFunction<? super K> transformer;
5824 dl 1.153 final LongBinaryOperator reducer;
5825 dl 1.149 if ((transformer = this.transformer) != null &&
5826     (reducer = this.reducer) != null) {
5827     long r = this.basis;
5828 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5829     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5830     addToPendingCount(1);
5831 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5832 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5833     rights, transformer, r, reducer)).fork();
5834     }
5835     for (Node<K,V> p; (p = advance()) != null; )
5836 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5837 dl 1.149 result = r;
5838     CountedCompleter<?> c;
5839     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5840 dl 1.246 @SuppressWarnings("unchecked")
5841     MapReduceKeysToLongTask<K,V>
5842 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5843     s = t.rights;
5844     while (s != null) {
5845 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5846 dl 1.149 s = t.rights = s.nextRight;
5847     }
5848 dl 1.119 }
5849 dl 1.138 }
5850 dl 1.4 }
5851 dl 1.119 }
5852    
5853 dl 1.222 @SuppressWarnings("serial")
5854 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5855     extends BulkTask<K,V,Long> {
5856 dl 1.171 final ToLongFunction<? super V> transformer;
5857 dl 1.153 final LongBinaryOperator reducer;
5858 dl 1.119 final long basis;
5859     long result;
5860 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5861 dl 1.119 MapReduceValuesToLongTask
5862 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5863 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5864 dl 1.171 ToLongFunction<? super V> transformer,
5865 dl 1.119 long basis,
5866 dl 1.153 LongBinaryOperator reducer) {
5867 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5868 dl 1.119 this.transformer = transformer;
5869     this.basis = basis; this.reducer = reducer;
5870     }
5871 dl 1.146 public final Long getRawResult() { return result; }
5872 dl 1.210 public final void compute() {
5873 dl 1.171 final ToLongFunction<? super V> transformer;
5874 dl 1.153 final LongBinaryOperator reducer;
5875 dl 1.149 if ((transformer = this.transformer) != null &&
5876     (reducer = this.reducer) != null) {
5877     long r = this.basis;
5878 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5879     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5880     addToPendingCount(1);
5881 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5882 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5883     rights, transformer, r, reducer)).fork();
5884     }
5885     for (Node<K,V> p; (p = advance()) != null; )
5886     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5887 dl 1.149 result = r;
5888     CountedCompleter<?> c;
5889     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5890 dl 1.246 @SuppressWarnings("unchecked")
5891     MapReduceValuesToLongTask<K,V>
5892 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5893     s = t.rights;
5894     while (s != null) {
5895 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5896 dl 1.149 s = t.rights = s.nextRight;
5897     }
5898 dl 1.119 }
5899     }
5900 jsr166 1.95 }
5901 dl 1.119 }
5902    
5903 dl 1.222 @SuppressWarnings("serial")
5904 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
5905     extends BulkTask<K,V,Long> {
5906 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5907 dl 1.153 final LongBinaryOperator reducer;
5908 dl 1.119 final long basis;
5909     long result;
5910 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5911 dl 1.119 MapReduceEntriesToLongTask
5912 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5913 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
5914 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5915 dl 1.119 long basis,
5916 dl 1.153 LongBinaryOperator reducer) {
5917 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5918 dl 1.119 this.transformer = transformer;
5919     this.basis = basis; this.reducer = reducer;
5920     }
5921 dl 1.146 public final Long getRawResult() { return result; }
5922 dl 1.210 public final void compute() {
5923 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5924 dl 1.153 final LongBinaryOperator reducer;
5925 dl 1.149 if ((transformer = this.transformer) != null &&
5926     (reducer = this.reducer) != null) {
5927     long r = this.basis;
5928 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5929     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5930     addToPendingCount(1);
5931 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
5932 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5933     rights, transformer, r, reducer)).fork();
5934     }
5935     for (Node<K,V> p; (p = advance()) != null; )
5936     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5937 dl 1.149 result = r;
5938     CountedCompleter<?> c;
5939     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5940 dl 1.246 @SuppressWarnings("unchecked")
5941     MapReduceEntriesToLongTask<K,V>
5942 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
5943     s = t.rights;
5944     while (s != null) {
5945 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5946 dl 1.149 s = t.rights = s.nextRight;
5947     }
5948 dl 1.119 }
5949 dl 1.138 }
5950 dl 1.4 }
5951 tim 1.1 }
5952    
5953 dl 1.222 @SuppressWarnings("serial")
5954 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
5955     extends BulkTask<K,V,Long> {
5956 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5957 dl 1.153 final LongBinaryOperator reducer;
5958 dl 1.119 final long basis;
5959     long result;
5960 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5961 dl 1.119 MapReduceMappingsToLongTask
5962 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
5964 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5965 dl 1.119 long basis,
5966 dl 1.153 LongBinaryOperator reducer) {
5967 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5968 dl 1.119 this.transformer = transformer;
5969     this.basis = basis; this.reducer = reducer;
5970     }
5971 dl 1.146 public final Long getRawResult() { return result; }
5972 dl 1.210 public final void compute() {
5973 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5974 dl 1.153 final LongBinaryOperator reducer;
5975 dl 1.149 if ((transformer = this.transformer) != null &&
5976     (reducer = this.reducer) != null) {
5977     long r = this.basis;
5978 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5979     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980     addToPendingCount(1);
5981 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
5982 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5983     rights, transformer, r, reducer)).fork();
5984     }
5985     for (Node<K,V> p; (p = advance()) != null; )
5986 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5987 dl 1.149 result = r;
5988     CountedCompleter<?> c;
5989     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 dl 1.246 @SuppressWarnings("unchecked")
5991     MapReduceMappingsToLongTask<K,V>
5992 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
5993     s = t.rights;
5994     while (s != null) {
5995 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5996 dl 1.149 s = t.rights = s.nextRight;
5997     }
5998 dl 1.119 }
5999     }
6000 dl 1.4 }
6001 tim 1.1 }
6002    
6003 dl 1.222 @SuppressWarnings("serial")
6004 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6005     extends BulkTask<K,V,Integer> {
6006 dl 1.171 final ToIntFunction<? super K> transformer;
6007 dl 1.153 final IntBinaryOperator reducer;
6008 dl 1.119 final int basis;
6009     int result;
6010 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6011 dl 1.119 MapReduceKeysToIntTask
6012 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6014 dl 1.171 ToIntFunction<? super K> transformer,
6015 dl 1.119 int basis,
6016 dl 1.153 IntBinaryOperator reducer) {
6017 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6018 dl 1.119 this.transformer = transformer;
6019     this.basis = basis; this.reducer = reducer;
6020     }
6021 dl 1.146 public final Integer getRawResult() { return result; }
6022 dl 1.210 public final void compute() {
6023 dl 1.171 final ToIntFunction<? super K> transformer;
6024 dl 1.153 final IntBinaryOperator reducer;
6025 dl 1.149 if ((transformer = this.transformer) != null &&
6026     (reducer = this.reducer) != null) {
6027     int r = this.basis;
6028 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6029     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030     addToPendingCount(1);
6031 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6032 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6033     rights, transformer, r, reducer)).fork();
6034     }
6035     for (Node<K,V> p; (p = advance()) != null; )
6036 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6037 dl 1.149 result = r;
6038     CountedCompleter<?> c;
6039     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 dl 1.246 @SuppressWarnings("unchecked")
6041     MapReduceKeysToIntTask<K,V>
6042 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6043     s = t.rights;
6044     while (s != null) {
6045 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6046 dl 1.149 s = t.rights = s.nextRight;
6047     }
6048 dl 1.119 }
6049 dl 1.138 }
6050 dl 1.30 }
6051     }
6052    
6053 dl 1.222 @SuppressWarnings("serial")
6054 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6055     extends BulkTask<K,V,Integer> {
6056 dl 1.171 final ToIntFunction<? super V> transformer;
6057 dl 1.153 final IntBinaryOperator reducer;
6058 dl 1.119 final int basis;
6059     int result;
6060 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6061 dl 1.119 MapReduceValuesToIntTask
6062 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6064 dl 1.171 ToIntFunction<? super V> transformer,
6065 dl 1.119 int basis,
6066 dl 1.153 IntBinaryOperator reducer) {
6067 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6068 dl 1.119 this.transformer = transformer;
6069     this.basis = basis; this.reducer = reducer;
6070     }
6071 dl 1.146 public final Integer getRawResult() { return result; }
6072 dl 1.210 public final void compute() {
6073 dl 1.171 final ToIntFunction<? super V> transformer;
6074 dl 1.153 final IntBinaryOperator reducer;
6075 dl 1.149 if ((transformer = this.transformer) != null &&
6076     (reducer = this.reducer) != null) {
6077     int r = this.basis;
6078 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6079     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080     addToPendingCount(1);
6081 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6082 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6083     rights, transformer, r, reducer)).fork();
6084     }
6085     for (Node<K,V> p; (p = advance()) != null; )
6086     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6087 dl 1.149 result = r;
6088     CountedCompleter<?> c;
6089     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 dl 1.246 @SuppressWarnings("unchecked")
6091     MapReduceValuesToIntTask<K,V>
6092 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6093     s = t.rights;
6094     while (s != null) {
6095 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6096 dl 1.149 s = t.rights = s.nextRight;
6097     }
6098 dl 1.119 }
6099 dl 1.2 }
6100 tim 1.1 }
6101     }
6102    
6103 dl 1.222 @SuppressWarnings("serial")
6104 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6105     extends BulkTask<K,V,Integer> {
6106 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6107 dl 1.153 final IntBinaryOperator reducer;
6108 dl 1.119 final int basis;
6109     int result;
6110 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6111 dl 1.119 MapReduceEntriesToIntTask
6112 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6113 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6114 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6115 dl 1.119 int basis,
6116 dl 1.153 IntBinaryOperator reducer) {
6117 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6118 dl 1.119 this.transformer = transformer;
6119     this.basis = basis; this.reducer = reducer;
6120     }
6121 dl 1.146 public final Integer getRawResult() { return result; }
6122 dl 1.210 public final void compute() {
6123 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6124 dl 1.153 final IntBinaryOperator reducer;
6125 dl 1.149 if ((transformer = this.transformer) != null &&
6126     (reducer = this.reducer) != null) {
6127     int r = this.basis;
6128 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6129     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6130     addToPendingCount(1);
6131 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6132 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6133     rights, transformer, r, reducer)).fork();
6134     }
6135     for (Node<K,V> p; (p = advance()) != null; )
6136     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6137 dl 1.149 result = r;
6138     CountedCompleter<?> c;
6139     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6140 dl 1.246 @SuppressWarnings("unchecked")
6141     MapReduceEntriesToIntTask<K,V>
6142 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6143     s = t.rights;
6144     while (s != null) {
6145 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6146 dl 1.149 s = t.rights = s.nextRight;
6147     }
6148 dl 1.119 }
6149 dl 1.138 }
6150 dl 1.4 }
6151 dl 1.119 }
6152 tim 1.1
6153 dl 1.222 @SuppressWarnings("serial")
6154 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6155     extends BulkTask<K,V,Integer> {
6156 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6157 dl 1.153 final IntBinaryOperator reducer;
6158 dl 1.119 final int basis;
6159     int result;
6160 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6161 dl 1.119 MapReduceMappingsToIntTask
6162 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6163 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6164 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6165 dl 1.119 int basis,
6166 dl 1.153 IntBinaryOperator reducer) {
6167 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6168 dl 1.119 this.transformer = transformer;
6169     this.basis = basis; this.reducer = reducer;
6170     }
6171 dl 1.146 public final Integer getRawResult() { return result; }
6172 dl 1.210 public final void compute() {
6173 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6174 dl 1.153 final IntBinaryOperator reducer;
6175 dl 1.149 if ((transformer = this.transformer) != null &&
6176     (reducer = this.reducer) != null) {
6177     int r = this.basis;
6178 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6179     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6180     addToPendingCount(1);
6181 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6182 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6183     rights, transformer, r, reducer)).fork();
6184     }
6185     for (Node<K,V> p; (p = advance()) != null; )
6186 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6187 dl 1.149 result = r;
6188     CountedCompleter<?> c;
6189     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6190 dl 1.246 @SuppressWarnings("unchecked")
6191     MapReduceMappingsToIntTask<K,V>
6192 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6193     s = t.rights;
6194     while (s != null) {
6195 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6196 dl 1.149 s = t.rights = s.nextRight;
6197     }
6198 dl 1.119 }
6199 dl 1.138 }
6200 tim 1.1 }
6201     }
6202 dl 1.99
6203     // Unsafe mechanics
6204 dl 1.149 private static final sun.misc.Unsafe U;
6205     private static final long SIZECTL;
6206     private static final long TRANSFERINDEX;
6207     private static final long BASECOUNT;
6208 dl 1.153 private static final long CELLSBUSY;
6209 dl 1.149 private static final long CELLVALUE;
6210 dl 1.119 private static final long ABASE;
6211     private static final int ASHIFT;
6212 dl 1.99
6213     static {
6214     try {
6215 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6216 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6217 dl 1.149 SIZECTL = U.objectFieldOffset
6218 dl 1.119 (k.getDeclaredField("sizeCtl"));
6219 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6220     (k.getDeclaredField("transferIndex"));
6221     BASECOUNT = U.objectFieldOffset
6222     (k.getDeclaredField("baseCount"));
6223 dl 1.153 CELLSBUSY = U.objectFieldOffset
6224     (k.getDeclaredField("cellsBusy"));
6225 dl 1.222 Class<?> ck = CounterCell.class;
6226 dl 1.149 CELLVALUE = U.objectFieldOffset
6227     (ck.getDeclaredField("value"));
6228 jsr166 1.226 Class<?> ak = Node[].class;
6229     ABASE = U.arrayBaseOffset(ak);
6230     int scale = U.arrayIndexScale(ak);
6231 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6232     throw new Error("data type scale not a power of two");
6233     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6234 dl 1.99 } catch (Exception e) {
6235     throw new Error(e);
6236     }
6237     }
6238 jsr166 1.152 }