ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.258
Committed: Sat Oct 25 18:04:44 2014 UTC (9 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.257: +2 -11 lines
Log Message:
Remove dead code

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Comparator;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.119 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.208 import java.util.Map;
22 dl 1.119 import java.util.NoSuchElementException;
23 dl 1.208 import java.util.Set;
24     import java.util.Spliterator;
25 dl 1.119 import java.util.concurrent.ConcurrentMap;
26 dl 1.208 import java.util.concurrent.ForkJoinPool;
27     import java.util.concurrent.atomic.AtomicReference;
28 dl 1.222 import java.util.concurrent.locks.LockSupport;
29 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
30     import java.util.function.BiConsumer;
31     import java.util.function.BiFunction;
32     import java.util.function.BinaryOperator;
33     import java.util.function.Consumer;
34     import java.util.function.DoubleBinaryOperator;
35     import java.util.function.Function;
36     import java.util.function.IntBinaryOperator;
37     import java.util.function.LongBinaryOperator;
38     import java.util.function.ToDoubleBiFunction;
39     import java.util.function.ToDoubleFunction;
40     import java.util.function.ToIntBiFunction;
41     import java.util.function.ToIntFunction;
42     import java.util.function.ToLongBiFunction;
43     import java.util.function.ToLongFunction;
44 dl 1.210 import java.util.stream.Stream;
45 tim 1.1
46     /**
47 dl 1.4 * A hash table supporting full concurrency of retrievals and
48 dl 1.119 * high expected concurrency for updates. This class obeys the
49 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
50 dl 1.19 * includes versions of methods corresponding to each method of
51 dl 1.119 * {@code Hashtable}. However, even though all operations are
52 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
53     * and there is <em>not</em> any support for locking the entire table
54     * in a way that prevents all access. This class is fully
55 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
56 dl 1.4 * thread safety but not on its synchronization details.
57 tim 1.11 *
58 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
59 dl 1.119 * block, so may overlap with update operations (including {@code put}
60     * and {@code remove}). Retrievals reflect the results of the most
61     * recently <em>completed</em> update operations holding upon their
62 dl 1.126 * onset. (More formally, an update operation for a given key bears a
63     * <em>happens-before</em> relation with any (non-null) retrieval for
64     * that key reporting the updated value.) For aggregate operations
65     * such as {@code putAll} and {@code clear}, concurrent retrievals may
66     * reflect insertion or removal of only some entries. Similarly,
67 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
68     * state of the hash table at some point at or since the creation of the
69 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
70 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71     * However, iterators are designed to be used by only one thread at a time.
72     * Bear in mind that the results of aggregate status methods including
73     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74     * useful only when a map is not undergoing concurrent updates in other threads.
75 dl 1.126 * Otherwise the results of these methods reflect transient states
76     * that may be adequate for monitoring or estimation purposes, but not
77     * for program control.
78 tim 1.1 *
79 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
80 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
81     * the same slot modulo the table size), with the expected average
82     * effect of maintaining roughly two bins per mapping (corresponding
83     * to a 0.75 load factor threshold for resizing). There may be much
84     * variance around this average as mappings are added and removed, but
85     * overall, this maintains a commonly accepted time/space tradeoff for
86     * hash tables. However, resizing this or any other kind of hash
87     * table may be a relatively slow operation. When possible, it is a
88     * good idea to provide a size estimate as an optional {@code
89     * initialCapacity} constructor argument. An additional optional
90     * {@code loadFactor} constructor argument provides a further means of
91     * customizing initial table capacity by specifying the table density
92     * to be used in calculating the amount of space to allocate for the
93     * given number of elements. Also, for compatibility with previous
94     * versions of this class, constructors may optionally specify an
95     * expected {@code concurrencyLevel} as an additional hint for
96     * internal sizing. Note that using many keys with exactly the same
97     * {@code hashCode()} is a sure way to slow down performance of any
98 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
99     * this class may use comparison order among keys to help break ties.
100 tim 1.1 *
101 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103     * (using {@link #keySet(Object)} when only keys are of interest, and the
104     * mapped values are (perhaps transiently) not used or all take the
105     * same mapping value.
106     *
107 jsr166 1.257 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
108 dl 1.153 * form of histogram or multiset) by using {@link
109     * java.util.concurrent.atomic.LongAdder} values and initializing via
110 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 jsr166 1.257 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
113 dl 1.137 *
114 dl 1.45 * <p>This class and its views and iterators implement all of the
115     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116     * interfaces.
117 dl 1.23 *
118 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 tim 1.1 *
121 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122     * operations that, unlike most {@link Stream} methods, are designed
123     * to be safely, and often sensibly, applied even with maps that are
124     * being concurrently updated by other threads; for example, when
125     * computing a snapshot summary of the values in a shared registry.
126     * There are three kinds of operation, each with four forms, accepting
127     * functions with Keys, Values, Entries, and (Key, Value) arguments
128     * and/or return values. Because the elements of a ConcurrentHashMap
129     * are not ordered in any particular way, and may be processed in
130     * different orders in different parallel executions, the correctness
131     * of supplied functions should not depend on any ordering, or on any
132     * other objects or values that may transiently change while
133     * computation is in progress; and except for forEach actions, should
134 dl 1.235 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 dl 1.210 * objects do not support method {@code setValue}.
136 dl 1.137 *
137     * <ul>
138     * <li> forEach: Perform a given action on each element.
139     * A variant form applies a given transformation on each element
140     * before performing the action.</li>
141     *
142     * <li> search: Return the first available non-null result of
143     * applying a given function on each element; skipping further
144     * search when a result is found.</li>
145     *
146     * <li> reduce: Accumulate each element. The supplied reduction
147     * function cannot rely on ordering (more formally, it should be
148     * both associative and commutative). There are five variants:
149     *
150     * <ul>
151     *
152     * <li> Plain reductions. (There is not a form of this method for
153     * (key, value) function arguments since there is no corresponding
154     * return type.)</li>
155     *
156     * <li> Mapped reductions that accumulate the results of a given
157     * function applied to each element.</li>
158     *
159     * <li> Reductions to scalar doubles, longs, and ints, using a
160     * given basis value.</li>
161     *
162 jsr166 1.178 * </ul>
163 dl 1.137 * </li>
164     * </ul>
165     *
166 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
167     * argument. Methods proceed sequentially if the current map size is
168     * estimated to be less than the given threshold. Using a value of
169     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
171 dl 1.219 * enough subtasks to fully utilize the {@link
172     * ForkJoinPool#commonPool()} that is used for all parallel
173     * computations. Normally, you would initially choose one of these
174     * extreme values, and then measure performance of using in-between
175     * values that trade off overhead versus throughput.
176 dl 1.210 *
177 dl 1.137 * <p>The concurrency properties of bulk operations follow
178     * from those of ConcurrentHashMap: Any non-null result returned
179     * from {@code get(key)} and related access methods bears a
180     * happens-before relation with the associated insertion or
181     * update. The result of any bulk operation reflects the
182     * composition of these per-element relations (but is not
183     * necessarily atomic with respect to the map as a whole unless it
184     * is somehow known to be quiescent). Conversely, because keys
185     * and values in the map are never null, null serves as a reliable
186     * atomic indicator of the current lack of any result. To
187     * maintain this property, null serves as an implicit basis for
188     * all non-scalar reduction operations. For the double, long, and
189     * int versions, the basis should be one that, when combined with
190     * any other value, returns that other value (more formally, it
191     * should be the identity element for the reduction). Most common
192     * reductions have these properties; for example, computing a sum
193     * with basis 0 or a minimum with basis MAX_VALUE.
194     *
195     * <p>Search and transformation functions provided as arguments
196     * should similarly return null to indicate the lack of any result
197     * (in which case it is not used). In the case of mapped
198     * reductions, this also enables transformations to serve as
199     * filters, returning null (or, in the case of primitive
200     * specializations, the identity basis) if the element should not
201     * be combined. You can create compound transformations and
202     * filterings by composing them yourself under this "null means
203     * there is nothing there now" rule before using them in search or
204     * reduce operations.
205     *
206     * <p>Methods accepting and/or returning Entry arguments maintain
207     * key-value associations. They may be useful for example when
208     * finding the key for the greatest value. Note that "plain" Entry
209     * arguments can be supplied using {@code new
210     * AbstractMap.SimpleEntry(k,v)}.
211     *
212 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
213 dl 1.137 * exception encountered in the application of a supplied
214     * function. Bear in mind when handling such exceptions that other
215     * concurrently executing functions could also have thrown
216     * exceptions, or would have done so if the first exception had
217     * not occurred.
218     *
219 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
220     * but not guaranteed. Parallel operations involving brief functions
221     * on small maps may execute more slowly than sequential forms if the
222     * underlying work to parallelize the computation is more expensive
223     * than the computation itself. Similarly, parallelization may not
224     * lead to much actual parallelism if all processors are busy
225     * performing unrelated tasks.
226 dl 1.137 *
227 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
228 dl 1.137 *
229 dl 1.42 * <p>This class is a member of the
230 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 dl 1.42 * Java Collections Framework</a>.
232     *
233 dl 1.8 * @since 1.5
234     * @author Doug Lea
235 dl 1.27 * @param <K> the type of keys maintained by this map
236 jsr166 1.64 * @param <V> the type of mapped values
237 dl 1.8 */
238 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239     implements ConcurrentMap<K,V>, Serializable {
240 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
241 tim 1.1
242     /*
243 dl 1.119 * Overview:
244     *
245     * The primary design goal of this hash table is to maintain
246     * concurrent readability (typically method get(), but also
247     * iterators and related methods) while minimizing update
248     * contention. Secondary goals are to keep space consumption about
249     * the same or better than java.util.HashMap, and to support high
250     * initial insertion rates on an empty table by many threads.
251     *
252 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
253     * key-value mapping is held in a Node. Most nodes are instances
254     * of the basic Node class with hash, key, value, and next
255     * fields. However, various subclasses exist: TreeNodes are
256 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
257     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258     * of bins during resizing. ReservationNodes are used as
259     * placeholders while establishing values in computeIfAbsent and
260 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
261 dl 1.222 * ReservationNode do not hold normal user keys, values, or
262     * hashes, and are readily distinguishable during search etc
263     * because they have negative hash fields and null key and value
264     * fields. (These special nodes are either uncommon or transient,
265     * so the impact of carrying around some unused fields is
266 jsr166 1.232 * insignificant.)
267 dl 1.119 *
268     * The table is lazily initialized to a power-of-two size upon the
269     * first insertion. Each bin in the table normally contains a
270     * list of Nodes (most often, the list has only zero or one Node).
271     * Table accesses require volatile/atomic reads, writes, and
272     * CASes. Because there is no other way to arrange this without
273     * adding further indirections, we use intrinsics
274 dl 1.210 * (sun.misc.Unsafe) operations.
275 dl 1.119 *
276 dl 1.149 * We use the top (sign) bit of Node hash fields for control
277     * purposes -- it is available anyway because of addressing
278 dl 1.222 * constraints. Nodes with negative hash fields are specially
279     * handled or ignored in map methods.
280 dl 1.119 *
281     * Insertion (via put or its variants) of the first node in an
282     * empty bin is performed by just CASing it to the bin. This is
283     * by far the most common case for put operations under most
284     * key/hash distributions. Other update operations (insert,
285     * delete, and replace) require locks. We do not want to waste
286     * the space required to associate a distinct lock object with
287     * each bin, so instead use the first node of a bin list itself as
288 dl 1.149 * a lock. Locking support for these locks relies on builtin
289     * "synchronized" monitors.
290 dl 1.119 *
291     * Using the first node of a list as a lock does not by itself
292     * suffice though: When a node is locked, any update must first
293     * validate that it is still the first node after locking it, and
294     * retry if not. Because new nodes are always appended to lists,
295     * once a node is first in a bin, it remains first until deleted
296 dl 1.210 * or the bin becomes invalidated (upon resizing).
297 dl 1.119 *
298     * The main disadvantage of per-bin locks is that other update
299     * operations on other nodes in a bin list protected by the same
300     * lock can stall, for example when user equals() or mapping
301     * functions take a long time. However, statistically, under
302     * random hash codes, this is not a common problem. Ideally, the
303     * frequency of nodes in bins follows a Poisson distribution
304     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305     * parameter of about 0.5 on average, given the resizing threshold
306     * of 0.75, although with a large variance because of resizing
307     * granularity. Ignoring variance, the expected occurrences of
308     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309     * first values are:
310     *
311     * 0: 0.60653066
312     * 1: 0.30326533
313     * 2: 0.07581633
314     * 3: 0.01263606
315     * 4: 0.00157952
316     * 5: 0.00015795
317     * 6: 0.00001316
318     * 7: 0.00000094
319     * 8: 0.00000006
320     * more: less than 1 in ten million
321     *
322     * Lock contention probability for two threads accessing distinct
323     * elements is roughly 1 / (8 * #elements) under random hashes.
324     *
325     * Actual hash code distributions encountered in practice
326     * sometimes deviate significantly from uniform randomness. This
327     * includes the case when N > (1<<30), so some keys MUST collide.
328     * Similarly for dumb or hostile usages in which multiple keys are
329 dl 1.222 * designed to have identical hash codes or ones that differs only
330 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
331     * applies when the number of nodes in a bin exceeds a
332     * threshold. These TreeBins use a balanced tree to hold nodes (a
333     * specialized form of red-black trees), bounding search time to
334     * O(log N). Each search step in a TreeBin is at least twice as
335     * slow as in a regular list, but given that N cannot exceed
336     * (1<<64) (before running out of addresses) this bounds search
337     * steps, lock hold times, etc, to reasonable constants (roughly
338     * 100 nodes inspected per operation worst case) so long as keys
339     * are Comparable (which is very common -- String, Long, etc).
340 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
341     * traversal pointers as regular nodes, so can be traversed in
342     * iterators in the same way.
343     *
344     * The table is resized when occupancy exceeds a percentage
345 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
346     * noticing an overfull bin may assist in resizing after the
347 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
348     * However, rather than stalling, these other threads may proceed
349     * with insertions etc. The use of TreeBins shields us from the
350     * worst case effects of overfilling while resizes are in
351 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
352 dl 1.246 * from the table to the next table. However, threads claim small
353     * blocks of indices to transfer (via field transferIndex) before
354 dl 1.252 * doing so, reducing contention. A generation stamp in field
355     * sizeCtl ensures that resizings do not overlap. Because we are
356     * using power-of-two expansion, the elements from each bin must
357     * either stay at same index, or move with a power of two
358     * offset. We eliminate unnecessary node creation by catching
359     * cases where old nodes can be reused because their next fields
360     * won't change. On average, only about one-sixth of them need
361     * cloning when a table doubles. The nodes they replace will be
362     * garbage collectable as soon as they are no longer referenced by
363     * any reader thread that may be in the midst of concurrently
364     * traversing table. Upon transfer, the old table bin contains
365     * only a special forwarding node (with hash field "MOVED") that
366     * contains the next table as its key. On encountering a
367     * forwarding node, access and update operations restart, using
368     * the new table.
369 dl 1.149 *
370     * Each bin transfer requires its bin lock, which can stall
371     * waiting for locks while resizing. However, because other
372     * threads can join in and help resize rather than contend for
373     * locks, average aggregate waits become shorter as resizing
374     * progresses. The transfer operation must also ensure that all
375     * accessible bins in both the old and new table are usable by any
376 dl 1.246 * traversal. This is arranged in part by proceeding from the
377     * last bin (table.length - 1) up towards the first. Upon seeing
378     * a forwarding node, traversals (see class Traverser) arrange to
379     * move to the new table without revisiting nodes. To ensure that
380     * no intervening nodes are skipped even when moved out of order,
381     * a stack (see class TableStack) is created on first encounter of
382     * a forwarding node during a traversal, to maintain its place if
383     * later processing the current table. The need for these
384     * save/restore mechanics is relatively rare, but when one
385 jsr166 1.248 * forwarding node is encountered, typically many more will be.
386 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
387     * many new TableStack nodes. (Thanks to Peter Levart for
388     * suggesting use of a stack here.)
389 dl 1.119 *
390     * The traversal scheme also applies to partial traversals of
391     * ranges of bins (via an alternate Traverser constructor)
392     * to support partitioned aggregate operations. Also, read-only
393     * operations give up if ever forwarded to a null table, which
394     * provides support for shutdown-style clearing, which is also not
395     * currently implemented.
396     *
397     * Lazy table initialization minimizes footprint until first use,
398     * and also avoids resizings when the first operation is from a
399     * putAll, constructor with map argument, or deserialization.
400     * These cases attempt to override the initial capacity settings,
401     * but harmlessly fail to take effect in cases of races.
402     *
403 dl 1.149 * The element count is maintained using a specialization of
404     * LongAdder. We need to incorporate a specialization rather than
405     * just use a LongAdder in order to access implicit
406     * contention-sensing that leads to creation of multiple
407 dl 1.222 * CounterCells. The counter mechanics avoid contention on
408 dl 1.149 * updates but can encounter cache thrashing if read too
409     * frequently during concurrent access. To avoid reading so often,
410     * resizing under contention is attempted only upon adding to a
411     * bin already holding two or more nodes. Under uniform hash
412     * distributions, the probability of this occurring at threshold
413     * is around 13%, meaning that only about 1 in 8 puts check
414 dl 1.222 * threshold (and after resizing, many fewer do so).
415     *
416     * TreeBins use a special form of comparison for search and
417     * related operations (which is the main reason we cannot use
418     * existing collections such as TreeMaps). TreeBins contain
419     * Comparable elements, but may contain others, as well as
420 dl 1.240 * elements that are Comparable but not necessarily Comparable for
421     * the same T, so we cannot invoke compareTo among them. To handle
422     * this, the tree is ordered primarily by hash value, then by
423     * Comparable.compareTo order if applicable. On lookup at a node,
424     * if elements are not comparable or compare as 0 then both left
425     * and right children may need to be searched in the case of tied
426     * hash values. (This corresponds to the full list search that
427     * would be necessary if all elements were non-Comparable and had
428     * tied hashes.) On insertion, to keep a total ordering (or as
429     * close as is required here) across rebalancings, we compare
430     * classes and identityHashCodes as tie-breakers. The red-black
431     * balancing code is updated from pre-jdk-collections
432 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434     * Algorithms" (CLR).
435     *
436     * TreeBins also require an additional locking mechanism. While
437 dl 1.224 * list traversal is always possible by readers even during
438 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
439 dl 1.222 * that may change the root node and/or its linkages. TreeBins
440     * include a simple read-write lock mechanism parasitic on the
441     * main bin-synchronization strategy: Structural adjustments
442     * associated with an insertion or removal are already bin-locked
443     * (and so cannot conflict with other writers) but must wait for
444     * ongoing readers to finish. Since there can be only one such
445     * waiter, we use a simple scheme using a single "waiter" field to
446     * block writers. However, readers need never block. If the root
447     * lock is held, they proceed along the slow traversal path (via
448     * next-pointers) until the lock becomes available or the list is
449     * exhausted, whichever comes first. These cases are not fast, but
450     * maximize aggregate expected throughput.
451 dl 1.119 *
452     * Maintaining API and serialization compatibility with previous
453     * versions of this class introduces several oddities. Mainly: We
454     * leave untouched but unused constructor arguments refering to
455     * concurrencyLevel. We accept a loadFactor constructor argument,
456     * but apply it only to initial table capacity (which is the only
457     * time that we can guarantee to honor it.) We also declare an
458     * unused "Segment" class that is instantiated in minimal form
459     * only when serializing.
460 dl 1.222 *
461 dl 1.240 * Also, solely for compatibility with previous versions of this
462     * class, it extends AbstractMap, even though all of its methods
463     * are overridden, so it is just useless baggage.
464     *
465 dl 1.222 * This file is organized to make things a little easier to follow
466 dl 1.224 * while reading than they might otherwise: First the main static
467 dl 1.222 * declarations and utilities, then fields, then main public
468     * methods (with a few factorings of multiple public methods into
469     * internal ones), then sizing methods, trees, traversers, and
470     * bulk operations.
471 dl 1.4 */
472 tim 1.1
473 dl 1.4 /* ---------------- Constants -------------- */
474 tim 1.11
475 dl 1.4 /**
476 dl 1.119 * The largest possible table capacity. This value must be
477     * exactly 1<<30 to stay within Java array allocation and indexing
478     * bounds for power of two table sizes, and is further required
479     * because the top two bits of 32bit hash fields are used for
480     * control purposes.
481 dl 1.4 */
482 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
483 dl 1.56
484     /**
485 dl 1.119 * The default initial table capacity. Must be a power of 2
486     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 dl 1.56 */
488 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
489 dl 1.56
490     /**
491 dl 1.119 * The largest possible (non-power of two) array size.
492     * Needed by toArray and related methods.
493 jsr166 1.59 */
494 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495 tim 1.1
496     /**
497 dl 1.119 * The default concurrency level for this table. Unused but
498     * defined for compatibility with previous versions of this class.
499 dl 1.4 */
500 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501 tim 1.11
502 tim 1.1 /**
503 dl 1.119 * The load factor for this table. Overrides of this value in
504     * constructors affect only the initial table capacity. The
505     * actual floating point value isn't normally used -- it is
506     * simpler to use expressions such as {@code n - (n >>> 2)} for
507     * the associated resizing threshold.
508 dl 1.99 */
509 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
510 dl 1.99
511     /**
512 dl 1.119 * The bin count threshold for using a tree rather than list for a
513 dl 1.222 * bin. Bins are converted to trees when adding an element to a
514 dl 1.224 * bin with at least this many nodes. The value must be greater
515     * than 2, and should be at least 8 to mesh with assumptions in
516     * tree removal about conversion back to plain bins upon
517     * shrinkage.
518 dl 1.222 */
519     static final int TREEIFY_THRESHOLD = 8;
520    
521     /**
522     * The bin count threshold for untreeifying a (split) bin during a
523     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524     * most 6 to mesh with shrinkage detection under removal.
525     */
526     static final int UNTREEIFY_THRESHOLD = 6;
527    
528     /**
529     * The smallest table capacity for which bins may be treeified.
530     * (Otherwise the table is resized if too many nodes in a bin.)
531 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532     * conflicts between resizing and treeification thresholds.
533 dl 1.119 */
534 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
535 dl 1.119
536 dl 1.149 /**
537     * Minimum number of rebinnings per transfer step. Ranges are
538     * subdivided to allow multiple resizer threads. This value
539     * serves as a lower bound to avoid resizers encountering
540     * excessive memory contention. The value should be at least
541     * DEFAULT_CAPACITY.
542     */
543     private static final int MIN_TRANSFER_STRIDE = 16;
544    
545 dl 1.252 /**
546     * The number of bits used for generation stamp in sizeCtl.
547     * Must be at least 6 for 32bit arrays.
548     */
549     private static int RESIZE_STAMP_BITS = 16;
550    
551     /**
552     * The maximum number of threads that can help resize.
553     * Must fit in 32 - RESIZE_STAMP_BITS bits.
554     */
555     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556    
557     /**
558     * The bit shift for recording size stamp in sizeCtl.
559     */
560     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561    
562 dl 1.119 /*
563 dl 1.149 * Encodings for Node hash fields. See above for explanation.
564 dl 1.46 */
565 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
566     static final int TREEBIN = -2; // hash for roots of trees
567     static final int RESERVED = -3; // hash for transient reservations
568 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569    
570     /** Number of CPUS, to place bounds on some sizings */
571     static final int NCPU = Runtime.getRuntime().availableProcessors();
572    
573 dl 1.208 /** For serialization compatibility. */
574     private static final ObjectStreamField[] serialPersistentFields = {
575 dl 1.209 new ObjectStreamField("segments", Segment[].class),
576     new ObjectStreamField("segmentMask", Integer.TYPE),
577     new ObjectStreamField("segmentShift", Integer.TYPE)
578 dl 1.208 };
579    
580 dl 1.222 /* ---------------- Nodes -------------- */
581    
582     /**
583     * Key-value entry. This class is never exported out as a
584     * user-mutable Map.Entry (i.e., one supporting setValue; see
585     * MapEntry below), but can be used for read-only traversals used
586 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
587 dl 1.224 * are special, and contain null keys and values (but are never
588     * exported). Otherwise, keys and vals are never null.
589 dl 1.222 */
590     static class Node<K,V> implements Map.Entry<K,V> {
591     final int hash;
592     final K key;
593     volatile V val;
594 dl 1.233 volatile Node<K,V> next;
595 dl 1.222
596     Node(int hash, K key, V val, Node<K,V> next) {
597     this.hash = hash;
598     this.key = key;
599     this.val = val;
600     this.next = next;
601     }
602    
603     public final K getKey() { return key; }
604     public final V getValue() { return val; }
605     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
606     public final String toString(){ return key + "=" + val; }
607     public final V setValue(V value) {
608     throw new UnsupportedOperationException();
609     }
610    
611     public final boolean equals(Object o) {
612     Object k, v, u; Map.Entry<?,?> e;
613     return ((o instanceof Map.Entry) &&
614     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615     (v = e.getValue()) != null &&
616     (k == key || k.equals(key)) &&
617     (v == (u = val) || v.equals(u)));
618     }
619    
620 dl 1.224 /**
621     * Virtualized support for map.get(); overridden in subclasses.
622     */
623 dl 1.222 Node<K,V> find(int h, Object k) {
624     Node<K,V> e = this;
625     if (k != null) {
626     do {
627     K ek;
628     if (e.hash == h &&
629     ((ek = e.key) == k || (ek != null && k.equals(ek))))
630     return e;
631     } while ((e = e.next) != null);
632     }
633     return null;
634     }
635     }
636    
637     /* ---------------- Static utilities -------------- */
638    
639     /**
640     * Spreads (XORs) higher bits of hash to lower and also forces top
641     * bit to 0. Because the table uses power-of-two masking, sets of
642     * hashes that vary only in bits above the current mask will
643     * always collide. (Among known examples are sets of Float keys
644     * holding consecutive whole numbers in small tables.) So we
645     * apply a transform that spreads the impact of higher bits
646     * downward. There is a tradeoff between speed, utility, and
647     * quality of bit-spreading. Because many common sets of hashes
648     * are already reasonably distributed (so don't benefit from
649     * spreading), and because we use trees to handle large sets of
650     * collisions in bins, we just XOR some shifted bits in the
651     * cheapest possible way to reduce systematic lossage, as well as
652     * to incorporate impact of the highest bits that would otherwise
653     * never be used in index calculations because of table bounds.
654     */
655     static final int spread(int h) {
656     return (h ^ (h >>> 16)) & HASH_BITS;
657     }
658    
659     /**
660     * Returns a power of two table size for the given desired capacity.
661     * See Hackers Delight, sec 3.2
662     */
663     private static final int tableSizeFor(int c) {
664     int n = c - 1;
665     n |= n >>> 1;
666     n |= n >>> 2;
667     n |= n >>> 4;
668     n |= n >>> 8;
669     n |= n >>> 16;
670     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671     }
672    
673     /**
674     * Returns x's Class if it is of the form "class C implements
675     * Comparable<C>", else null.
676     */
677     static Class<?> comparableClassFor(Object x) {
678     if (x instanceof Comparable) {
679     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680     if ((c = x.getClass()) == String.class) // bypass checks
681     return c;
682     if ((ts = c.getGenericInterfaces()) != null) {
683     for (int i = 0; i < ts.length; ++i) {
684     if (((t = ts[i]) instanceof ParameterizedType) &&
685     ((p = (ParameterizedType)t).getRawType() ==
686     Comparable.class) &&
687     (as = p.getActualTypeArguments()) != null &&
688     as.length == 1 && as[0] == c) // type arg is c
689     return c;
690     }
691     }
692     }
693     return null;
694     }
695    
696 dl 1.210 /**
697 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698     * class), else 0.
699     */
700     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701     static int compareComparables(Class<?> kc, Object k, Object x) {
702     return (x == null || x.getClass() != kc ? 0 :
703     ((Comparable)k).compareTo(x));
704     }
705    
706     /* ---------------- Table element access -------------- */
707    
708     /*
709     * Volatile access methods are used for table elements as well as
710     * elements of in-progress next table while resizing. All uses of
711     * the tab arguments must be null checked by callers. All callers
712     * also paranoically precheck that tab's length is not zero (or an
713     * equivalent check), thus ensuring that any index argument taking
714     * the form of a hash value anded with (length - 1) is a valid
715     * index. Note that, to be correct wrt arbitrary concurrency
716     * errors by users, these checks must operate on local variables,
717     * which accounts for some odd-looking inline assignments below.
718     * Note that calls to setTabAt always occur within locked regions,
719 dl 1.252 * and so in principle require only release ordering, not
720 dl 1.233 * full volatile semantics, but are currently coded as volatile
721     * writes to be conservative.
722 dl 1.210 */
723 dl 1.222
724     @SuppressWarnings("unchecked")
725     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727     }
728    
729     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730     Node<K,V> c, Node<K,V> v) {
731     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732     }
733    
734     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 dl 1.233 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 dl 1.149 }
737    
738 dl 1.4 /* ---------------- Fields -------------- */
739 tim 1.1
740     /**
741 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
742     * Size is always a power of two. Accessed directly by iterators.
743 jsr166 1.59 */
744 dl 1.210 transient volatile Node<K,V>[] table;
745 tim 1.1
746     /**
747 dl 1.149 * The next table to use; non-null only while resizing.
748 jsr166 1.59 */
749 dl 1.210 private transient volatile Node<K,V>[] nextTable;
750 dl 1.149
751     /**
752     * Base counter value, used mainly when there is no contention,
753     * but also as a fallback during table initialization
754     * races. Updated via CAS.
755     */
756     private transient volatile long baseCount;
757 tim 1.1
758     /**
759 dl 1.119 * Table initialization and resizing control. When negative, the
760 dl 1.149 * table is being initialized or resized: -1 for initialization,
761     * else -(1 + the number of active resizing threads). Otherwise,
762     * when table is null, holds the initial table size to use upon
763     * creation, or 0 for default. After initialization, holds the
764     * next element count value upon which to resize the table.
765 tim 1.1 */
766 dl 1.119 private transient volatile int sizeCtl;
767 dl 1.4
768 dl 1.149 /**
769     * The next table index (plus one) to split while resizing.
770     */
771     private transient volatile int transferIndex;
772    
773     /**
774 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 dl 1.149 */
776 dl 1.153 private transient volatile int cellsBusy;
777 dl 1.149
778     /**
779     * Table of counter cells. When non-null, size is a power of 2.
780     */
781 dl 1.222 private transient volatile CounterCell[] counterCells;
782 dl 1.149
783 dl 1.119 // views
784 dl 1.137 private transient KeySetView<K,V> keySet;
785 dl 1.142 private transient ValuesView<K,V> values;
786     private transient EntrySetView<K,V> entrySet;
787 dl 1.119
788    
789 dl 1.222 /* ---------------- Public operations -------------- */
790    
791     /**
792     * Creates a new, empty map with the default initial table size (16).
793 dl 1.119 */
794 dl 1.222 public ConcurrentHashMap() {
795     }
796 dl 1.119
797 dl 1.222 /**
798     * Creates a new, empty map with an initial table size
799     * accommodating the specified number of elements without the need
800     * to dynamically resize.
801     *
802     * @param initialCapacity The implementation performs internal
803     * sizing to accommodate this many elements.
804     * @throws IllegalArgumentException if the initial capacity of
805     * elements is negative
806     */
807     public ConcurrentHashMap(int initialCapacity) {
808     if (initialCapacity < 0)
809     throw new IllegalArgumentException();
810     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811     MAXIMUM_CAPACITY :
812     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813     this.sizeCtl = cap;
814 dl 1.119 }
815    
816 dl 1.222 /**
817     * Creates a new map with the same mappings as the given map.
818     *
819     * @param m the map
820     */
821     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822     this.sizeCtl = DEFAULT_CAPACITY;
823     putAll(m);
824 dl 1.119 }
825    
826 dl 1.222 /**
827     * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}) and
829     * initial table density ({@code loadFactor}).
830     *
831     * @param initialCapacity the initial capacity. The implementation
832     * performs internal sizing to accommodate this many elements,
833     * given the specified load factor.
834     * @param loadFactor the load factor (table density) for
835     * establishing the initial table size
836     * @throws IllegalArgumentException if the initial capacity of
837     * elements is negative or the load factor is nonpositive
838     *
839     * @since 1.6
840     */
841     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842     this(initialCapacity, loadFactor, 1);
843 dl 1.119 }
844    
845 dl 1.99 /**
846 dl 1.222 * Creates a new, empty map with an initial table size based on
847     * the given number of elements ({@code initialCapacity}), table
848     * density ({@code loadFactor}), and number of concurrently
849     * updating threads ({@code concurrencyLevel}).
850     *
851     * @param initialCapacity the initial capacity. The implementation
852     * performs internal sizing to accommodate this many elements,
853     * given the specified load factor.
854     * @param loadFactor the load factor (table density) for
855     * establishing the initial table size
856     * @param concurrencyLevel the estimated number of concurrently
857     * updating threads. The implementation may use this value as
858     * a sizing hint.
859     * @throws IllegalArgumentException if the initial capacity is
860     * negative or the load factor or concurrencyLevel are
861     * nonpositive
862 dl 1.99 */
863 dl 1.222 public ConcurrentHashMap(int initialCapacity,
864     float loadFactor, int concurrencyLevel) {
865     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866     throw new IllegalArgumentException();
867     if (initialCapacity < concurrencyLevel) // Use at least as many bins
868     initialCapacity = concurrencyLevel; // as estimated threads
869     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871     MAXIMUM_CAPACITY : tableSizeFor((int)size);
872     this.sizeCtl = cap;
873     }
874 dl 1.99
875 dl 1.222 // Original (since JDK1.2) Map methods
876 dl 1.210
877 dl 1.222 /**
878     * {@inheritDoc}
879     */
880     public int size() {
881     long n = sumCount();
882     return ((n < 0L) ? 0 :
883     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884     (int)n);
885     }
886 dl 1.210
887 dl 1.222 /**
888     * {@inheritDoc}
889     */
890     public boolean isEmpty() {
891     return sumCount() <= 0L; // ignore transient negative values
892 dl 1.210 }
893    
894     /**
895 dl 1.222 * Returns the value to which the specified key is mapped,
896     * or {@code null} if this map contains no mapping for the key.
897     *
898     * <p>More formally, if this map contains a mapping from a key
899     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900     * then this method returns {@code v}; otherwise it returns
901     * {@code null}. (There can be at most one such mapping.)
902     *
903     * @throws NullPointerException if the specified key is null
904 dl 1.210 */
905 dl 1.222 public V get(Object key) {
906     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907     int h = spread(key.hashCode());
908     if ((tab = table) != null && (n = tab.length) > 0 &&
909     (e = tabAt(tab, (n - 1) & h)) != null) {
910     if ((eh = e.hash) == h) {
911     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912     return e.val;
913     }
914     else if (eh < 0)
915     return (p = e.find(h, key)) != null ? p.val : null;
916     while ((e = e.next) != null) {
917     if (e.hash == h &&
918     ((ek = e.key) == key || (ek != null && key.equals(ek))))
919     return e.val;
920     }
921 dl 1.210 }
922 dl 1.222 return null;
923 dl 1.99 }
924    
925     /**
926 dl 1.222 * Tests if the specified object is a key in this table.
927     *
928     * @param key possible key
929     * @return {@code true} if and only if the specified object
930     * is a key in this table, as determined by the
931     * {@code equals} method; {@code false} otherwise
932     * @throws NullPointerException if the specified key is null
933 dl 1.99 */
934 dl 1.222 public boolean containsKey(Object key) {
935     return get(key) != null;
936 dl 1.99 }
937 tim 1.1
938 dl 1.201 /**
939 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
940     * specified value. Note: This method may require a full traversal
941     * of the map, and is much slower than method {@code containsKey}.
942     *
943     * @param value value whose presence in this map is to be tested
944     * @return {@code true} if this map maps one or more keys to the
945     * specified value
946     * @throws NullPointerException if the specified value is null
947     */
948     public boolean containsValue(Object value) {
949     if (value == null)
950     throw new NullPointerException();
951     Node<K,V>[] t;
952     if ((t = table) != null) {
953     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954     for (Node<K,V> p; (p = it.advance()) != null; ) {
955     V v;
956     if ((v = p.val) == value || (v != null && value.equals(v)))
957     return true;
958 dl 1.201 }
959     }
960 dl 1.222 return false;
961 dl 1.201 }
962    
963 tim 1.1 /**
964 dl 1.222 * Maps the specified key to the specified value in this table.
965     * Neither the key nor the value can be null.
966 dl 1.119 *
967 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
968     * with a key that is equal to the original key.
969 dl 1.119 *
970 dl 1.222 * @param key key with which the specified value is to be associated
971     * @param value value to be associated with the specified key
972     * @return the previous value associated with {@code key}, or
973     * {@code null} if there was no mapping for {@code key}
974     * @throws NullPointerException if the specified key or value is null
975 dl 1.119 */
976 dl 1.222 public V put(K key, V value) {
977     return putVal(key, value, false);
978     }
979 dl 1.119
980 dl 1.222 /** Implementation for put and putIfAbsent */
981     final V putVal(K key, V value, boolean onlyIfAbsent) {
982     if (key == null || value == null) throw new NullPointerException();
983     int hash = spread(key.hashCode());
984     int binCount = 0;
985     for (Node<K,V>[] tab = table;;) {
986     Node<K,V> f; int n, i, fh;
987     if (tab == null || (n = tab.length) == 0)
988     tab = initTable();
989     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990     if (casTabAt(tab, i, null,
991     new Node<K,V>(hash, key, value, null)))
992     break; // no lock when adding to empty bin
993 dl 1.119 }
994 dl 1.222 else if ((fh = f.hash) == MOVED)
995     tab = helpTransfer(tab, f);
996     else {
997     V oldVal = null;
998     synchronized (f) {
999     if (tabAt(tab, i) == f) {
1000     if (fh >= 0) {
1001     binCount = 1;
1002     for (Node<K,V> e = f;; ++binCount) {
1003     K ek;
1004     if (e.hash == hash &&
1005     ((ek = e.key) == key ||
1006     (ek != null && key.equals(ek)))) {
1007     oldVal = e.val;
1008     if (!onlyIfAbsent)
1009     e.val = value;
1010     break;
1011     }
1012     Node<K,V> pred = e;
1013     if ((e = e.next) == null) {
1014     pred.next = new Node<K,V>(hash, key,
1015     value, null);
1016     break;
1017     }
1018     }
1019     }
1020     else if (f instanceof TreeBin) {
1021     Node<K,V> p;
1022     binCount = 2;
1023     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024     value)) != null) {
1025     oldVal = p.val;
1026     if (!onlyIfAbsent)
1027     p.val = value;
1028     }
1029     }
1030 dl 1.99 }
1031     }
1032 dl 1.222 if (binCount != 0) {
1033     if (binCount >= TREEIFY_THRESHOLD)
1034     treeifyBin(tab, i);
1035     if (oldVal != null)
1036     return oldVal;
1037 dl 1.99 break;
1038     }
1039     }
1040     }
1041 dl 1.222 addCount(1L, binCount);
1042     return null;
1043     }
1044    
1045     /**
1046     * Copies all of the mappings from the specified map to this one.
1047     * These mappings replace any mappings that this map had for any of the
1048     * keys currently in the specified map.
1049     *
1050     * @param m mappings to be stored in this map
1051     */
1052     public void putAll(Map<? extends K, ? extends V> m) {
1053     tryPresize(m.size());
1054     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055     putVal(e.getKey(), e.getValue(), false);
1056     }
1057 dl 1.99
1058 dl 1.222 /**
1059     * Removes the key (and its corresponding value) from this map.
1060     * This method does nothing if the key is not in the map.
1061     *
1062     * @param key the key that needs to be removed
1063     * @return the previous value associated with {@code key}, or
1064     * {@code null} if there was no mapping for {@code key}
1065     * @throws NullPointerException if the specified key is null
1066     */
1067     public V remove(Object key) {
1068     return replaceNode(key, null, null);
1069     }
1070 dl 1.99
1071 dl 1.222 /**
1072     * Implementation for the four public remove/replace methods:
1073     * Replaces node value with v, conditional upon match of cv if
1074     * non-null. If resulting value is null, delete.
1075     */
1076     final V replaceNode(Object key, V value, Object cv) {
1077     int hash = spread(key.hashCode());
1078     for (Node<K,V>[] tab = table;;) {
1079     Node<K,V> f; int n, i, fh;
1080     if (tab == null || (n = tab.length) == 0 ||
1081     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082     break;
1083     else if ((fh = f.hash) == MOVED)
1084     tab = helpTransfer(tab, f);
1085     else {
1086     V oldVal = null;
1087     boolean validated = false;
1088     synchronized (f) {
1089     if (tabAt(tab, i) == f) {
1090     if (fh >= 0) {
1091     validated = true;
1092     for (Node<K,V> e = f, pred = null;;) {
1093     K ek;
1094     if (e.hash == hash &&
1095     ((ek = e.key) == key ||
1096     (ek != null && key.equals(ek)))) {
1097     V ev = e.val;
1098     if (cv == null || cv == ev ||
1099     (ev != null && cv.equals(ev))) {
1100     oldVal = ev;
1101     if (value != null)
1102     e.val = value;
1103     else if (pred != null)
1104     pred.next = e.next;
1105     else
1106     setTabAt(tab, i, e.next);
1107     }
1108     break;
1109 dl 1.119 }
1110 dl 1.222 pred = e;
1111     if ((e = e.next) == null)
1112     break;
1113 dl 1.119 }
1114     }
1115 dl 1.222 else if (f instanceof TreeBin) {
1116     validated = true;
1117     TreeBin<K,V> t = (TreeBin<K,V>)f;
1118     TreeNode<K,V> r, p;
1119     if ((r = t.root) != null &&
1120     (p = r.findTreeNode(hash, key, null)) != null) {
1121     V pv = p.val;
1122     if (cv == null || cv == pv ||
1123     (pv != null && cv.equals(pv))) {
1124     oldVal = pv;
1125     if (value != null)
1126     p.val = value;
1127     else if (t.removeTreeNode(p))
1128     setTabAt(tab, i, untreeify(t.first));
1129 dl 1.119 }
1130     }
1131 dl 1.99 }
1132     }
1133     }
1134 dl 1.222 if (validated) {
1135     if (oldVal != null) {
1136     if (value == null)
1137     addCount(-1L, -1);
1138     return oldVal;
1139     }
1140     break;
1141     }
1142 dl 1.99 }
1143     }
1144 dl 1.222 return null;
1145     }
1146 dl 1.45
1147 dl 1.222 /**
1148     * Removes all of the mappings from this map.
1149     */
1150     public void clear() {
1151     long delta = 0L; // negative number of deletions
1152     int i = 0;
1153     Node<K,V>[] tab = table;
1154     while (tab != null && i < tab.length) {
1155     int fh;
1156     Node<K,V> f = tabAt(tab, i);
1157     if (f == null)
1158     ++i;
1159     else if ((fh = f.hash) == MOVED) {
1160     tab = helpTransfer(tab, f);
1161     i = 0; // restart
1162 dl 1.217 }
1163 dl 1.222 else {
1164     synchronized (f) {
1165     if (tabAt(tab, i) == f) {
1166     Node<K,V> p = (fh >= 0 ? f :
1167     (f instanceof TreeBin) ?
1168     ((TreeBin<K,V>)f).first : null);
1169     while (p != null) {
1170     --delta;
1171     p = p.next;
1172 dl 1.119 }
1173 dl 1.222 setTabAt(tab, i++, null);
1174 dl 1.119 }
1175 dl 1.45 }
1176 dl 1.4 }
1177 dl 1.217 }
1178 dl 1.222 if (delta != 0L)
1179     addCount(delta, -1);
1180     }
1181 dl 1.217
1182 dl 1.222 /**
1183     * Returns a {@link Set} view of the keys contained in this map.
1184     * The set is backed by the map, so changes to the map are
1185     * reflected in the set, and vice-versa. The set supports element
1186     * removal, which removes the corresponding mapping from this map,
1187     * via the {@code Iterator.remove}, {@code Set.remove},
1188     * {@code removeAll}, {@code retainAll}, and {@code clear}
1189     * operations. It does not support the {@code add} or
1190     * {@code addAll} operations.
1191     *
1192 jsr166 1.242 * <p>The view's iterators and spliterators are
1193     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 dl 1.222 *
1195 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197     *
1198 dl 1.222 * @return the set view
1199     */
1200     public KeySetView<K,V> keySet() {
1201     KeySetView<K,V> ks;
1202     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203     }
1204 dl 1.217
1205 dl 1.222 /**
1206     * Returns a {@link Collection} view of the values contained in this map.
1207     * The collection is backed by the map, so changes to the map are
1208     * reflected in the collection, and vice-versa. The collection
1209     * supports element removal, which removes the corresponding
1210     * mapping from this map, via the {@code Iterator.remove},
1211     * {@code Collection.remove}, {@code removeAll},
1212     * {@code retainAll}, and {@code clear} operations. It does not
1213     * support the {@code add} or {@code addAll} operations.
1214     *
1215 jsr166 1.242 * <p>The view's iterators and spliterators are
1216     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 dl 1.222 *
1218 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219     * and {@link Spliterator#NONNULL}.
1220     *
1221 dl 1.222 * @return the collection view
1222     */
1223     public Collection<V> values() {
1224     ValuesView<K,V> vs;
1225     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 tim 1.1 }
1227    
1228 dl 1.99 /**
1229 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1230     * The set is backed by the map, so changes to the map are
1231     * reflected in the set, and vice-versa. The set supports element
1232     * removal, which removes the corresponding mapping from the map,
1233     * via the {@code Iterator.remove}, {@code Set.remove},
1234     * {@code removeAll}, {@code retainAll}, and {@code clear}
1235     * operations.
1236     *
1237 jsr166 1.242 * <p>The view's iterators and spliterators are
1238     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 dl 1.222 *
1240 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242     *
1243 dl 1.222 * @return the set view
1244 dl 1.119 */
1245 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1246     EntrySetView<K,V> es;
1247     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 dl 1.99 }
1249    
1250     /**
1251 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1252     * the sum of, for each key-value pair in the map,
1253     * {@code key.hashCode() ^ value.hashCode()}.
1254     *
1255     * @return the hash code value for this map
1256 dl 1.119 */
1257 dl 1.222 public int hashCode() {
1258     int h = 0;
1259     Node<K,V>[] t;
1260     if ((t = table) != null) {
1261     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262     for (Node<K,V> p; (p = it.advance()) != null; )
1263     h += p.key.hashCode() ^ p.val.hashCode();
1264 dl 1.119 }
1265 dl 1.222 return h;
1266 dl 1.99 }
1267 tim 1.11
1268 dl 1.222 /**
1269     * Returns a string representation of this map. The string
1270     * representation consists of a list of key-value mappings (in no
1271     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1272     * mappings are separated by the characters {@code ", "} (comma
1273     * and space). Each key-value mapping is rendered as the key
1274     * followed by an equals sign ("{@code =}") followed by the
1275     * associated value.
1276     *
1277     * @return a string representation of this map
1278     */
1279     public String toString() {
1280     Node<K,V>[] t;
1281     int f = (t = table) == null ? 0 : t.length;
1282     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283     StringBuilder sb = new StringBuilder();
1284     sb.append('{');
1285     Node<K,V> p;
1286     if ((p = it.advance()) != null) {
1287 dl 1.210 for (;;) {
1288 dl 1.222 K k = p.key;
1289     V v = p.val;
1290     sb.append(k == this ? "(this Map)" : k);
1291     sb.append('=');
1292     sb.append(v == this ? "(this Map)" : v);
1293     if ((p = it.advance()) == null)
1294 dl 1.210 break;
1295 dl 1.222 sb.append(',').append(' ');
1296 dl 1.119 }
1297     }
1298 dl 1.222 return sb.append('}').toString();
1299 tim 1.1 }
1300    
1301     /**
1302 dl 1.222 * Compares the specified object with this map for equality.
1303     * Returns {@code true} if the given object is a map with the same
1304     * mappings as this map. This operation may return misleading
1305     * results if either map is concurrently modified during execution
1306     * of this method.
1307     *
1308     * @param o object to be compared for equality with this map
1309     * @return {@code true} if the specified object is equal to this map
1310 dl 1.119 */
1311 dl 1.222 public boolean equals(Object o) {
1312     if (o != this) {
1313     if (!(o instanceof Map))
1314     return false;
1315     Map<?,?> m = (Map<?,?>) o;
1316     Node<K,V>[] t;
1317     int f = (t = table) == null ? 0 : t.length;
1318     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319     for (Node<K,V> p; (p = it.advance()) != null; ) {
1320     V val = p.val;
1321     Object v = m.get(p.key);
1322     if (v == null || (v != val && !v.equals(val)))
1323     return false;
1324 dl 1.119 }
1325 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1326     Object mk, mv, v;
1327     if ((mk = e.getKey()) == null ||
1328     (mv = e.getValue()) == null ||
1329     (v = get(mk)) == null ||
1330     (mv != v && !mv.equals(v)))
1331     return false;
1332     }
1333     }
1334     return true;
1335     }
1336    
1337     /**
1338     * Stripped-down version of helper class used in previous version,
1339     * declared for the sake of serialization compatibility
1340     */
1341     static class Segment<K,V> extends ReentrantLock implements Serializable {
1342     private static final long serialVersionUID = 2249069246763182397L;
1343     final float loadFactor;
1344     Segment(float lf) { this.loadFactor = lf; }
1345     }
1346    
1347     /**
1348     * Saves the state of the {@code ConcurrentHashMap} instance to a
1349     * stream (i.e., serializes it).
1350     * @param s the stream
1351 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1352 dl 1.222 * @serialData
1353     * the key (Object) and value (Object)
1354     * for each key-value mapping, followed by a null pair.
1355     * The key-value mappings are emitted in no particular order.
1356     */
1357     private void writeObject(java.io.ObjectOutputStream s)
1358     throws java.io.IOException {
1359     // For serialization compatibility
1360     // Emulate segment calculation from previous version of this class
1361     int sshift = 0;
1362     int ssize = 1;
1363     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364     ++sshift;
1365     ssize <<= 1;
1366     }
1367     int segmentShift = 32 - sshift;
1368     int segmentMask = ssize - 1;
1369 dl 1.246 @SuppressWarnings("unchecked")
1370     Segment<K,V>[] segments = (Segment<K,V>[])
1371 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372     for (int i = 0; i < segments.length; ++i)
1373     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374     s.putFields().put("segments", segments);
1375     s.putFields().put("segmentShift", segmentShift);
1376     s.putFields().put("segmentMask", segmentMask);
1377     s.writeFields();
1378    
1379     Node<K,V>[] t;
1380     if ((t = table) != null) {
1381     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382     for (Node<K,V> p; (p = it.advance()) != null; ) {
1383     s.writeObject(p.key);
1384     s.writeObject(p.val);
1385     }
1386     }
1387     s.writeObject(null);
1388     s.writeObject(null);
1389     segments = null; // throw away
1390     }
1391    
1392     /**
1393     * Reconstitutes the instance from a stream (that is, deserializes it).
1394     * @param s the stream
1395 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1396     * could not be found
1397     * @throws java.io.IOException if an I/O error occurs
1398 dl 1.222 */
1399     private void readObject(java.io.ObjectInputStream s)
1400     throws java.io.IOException, ClassNotFoundException {
1401     /*
1402     * To improve performance in typical cases, we create nodes
1403     * while reading, then place in table once size is known.
1404     * However, we must also validate uniqueness and deal with
1405     * overpopulated bins while doing so, which requires
1406     * specialized versions of putVal mechanics.
1407     */
1408     sizeCtl = -1; // force exclusion for table construction
1409     s.defaultReadObject();
1410     long size = 0L;
1411     Node<K,V> p = null;
1412     for (;;) {
1413 dl 1.246 @SuppressWarnings("unchecked")
1414     K k = (K) s.readObject();
1415     @SuppressWarnings("unchecked")
1416     V v = (V) s.readObject();
1417 dl 1.222 if (k != null && v != null) {
1418     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419     ++size;
1420     }
1421     else
1422     break;
1423     }
1424     if (size == 0L)
1425     sizeCtl = 0;
1426     else {
1427     int n;
1428     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429     n = MAXIMUM_CAPACITY;
1430 dl 1.149 else {
1431 dl 1.222 int sz = (int)size;
1432     n = tableSizeFor(sz + (sz >>> 1) + 1);
1433     }
1434 jsr166 1.245 @SuppressWarnings("unchecked")
1435 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 dl 1.222 int mask = n - 1;
1437     long added = 0L;
1438     while (p != null) {
1439     boolean insertAtFront;
1440     Node<K,V> next = p.next, first;
1441     int h = p.hash, j = h & mask;
1442     if ((first = tabAt(tab, j)) == null)
1443     insertAtFront = true;
1444     else {
1445     K k = p.key;
1446     if (first.hash < 0) {
1447     TreeBin<K,V> t = (TreeBin<K,V>)first;
1448     if (t.putTreeVal(h, k, p.val) == null)
1449     ++added;
1450     insertAtFront = false;
1451     }
1452     else {
1453     int binCount = 0;
1454     insertAtFront = true;
1455     Node<K,V> q; K qk;
1456     for (q = first; q != null; q = q.next) {
1457     if (q.hash == h &&
1458     ((qk = q.key) == k ||
1459     (qk != null && k.equals(qk)))) {
1460     insertAtFront = false;
1461 dl 1.119 break;
1462     }
1463 dl 1.222 ++binCount;
1464     }
1465     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466     insertAtFront = false;
1467     ++added;
1468     p.next = first;
1469     TreeNode<K,V> hd = null, tl = null;
1470     for (q = p; q != null; q = q.next) {
1471     TreeNode<K,V> t = new TreeNode<K,V>
1472     (q.hash, q.key, q.val, null, null);
1473     if ((t.prev = tl) == null)
1474     hd = t;
1475     else
1476     tl.next = t;
1477     tl = t;
1478     }
1479     setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 dl 1.119 }
1481     }
1482     }
1483 dl 1.222 if (insertAtFront) {
1484     ++added;
1485     p.next = first;
1486     setTabAt(tab, j, p);
1487 dl 1.119 }
1488 dl 1.222 p = next;
1489 dl 1.119 }
1490 dl 1.222 table = tab;
1491     sizeCtl = n - (n >>> 2);
1492     baseCount = added;
1493 dl 1.119 }
1494 dl 1.55 }
1495    
1496 dl 1.222 // ConcurrentMap methods
1497    
1498     /**
1499     * {@inheritDoc}
1500     *
1501     * @return the previous value associated with the specified key,
1502     * or {@code null} if there was no mapping for the key
1503     * @throws NullPointerException if the specified key or value is null
1504     */
1505     public V putIfAbsent(K key, V value) {
1506     return putVal(key, value, true);
1507     }
1508    
1509     /**
1510     * {@inheritDoc}
1511     *
1512     * @throws NullPointerException if the specified key is null
1513     */
1514     public boolean remove(Object key, Object value) {
1515     if (key == null)
1516     throw new NullPointerException();
1517     return value != null && replaceNode(key, null, value) != null;
1518     }
1519    
1520     /**
1521     * {@inheritDoc}
1522     *
1523     * @throws NullPointerException if any of the arguments are null
1524     */
1525     public boolean replace(K key, V oldValue, V newValue) {
1526     if (key == null || oldValue == null || newValue == null)
1527     throw new NullPointerException();
1528     return replaceNode(key, newValue, oldValue) != null;
1529     }
1530    
1531     /**
1532     * {@inheritDoc}
1533     *
1534     * @return the previous value associated with the specified key,
1535     * or {@code null} if there was no mapping for the key
1536     * @throws NullPointerException if the specified key or value is null
1537     */
1538     public V replace(K key, V value) {
1539     if (key == null || value == null)
1540     throw new NullPointerException();
1541     return replaceNode(key, value, null);
1542     }
1543    
1544     // Overrides of JDK8+ Map extension method defaults
1545    
1546     /**
1547     * Returns the value to which the specified key is mapped, or the
1548     * given default value if this map contains no mapping for the
1549     * key.
1550     *
1551     * @param key the key whose associated value is to be returned
1552     * @param defaultValue the value to return if this map contains
1553     * no mapping for the given key
1554     * @return the mapping for the key, if present; else the default value
1555     * @throws NullPointerException if the specified key is null
1556 tim 1.1 */
1557 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1558     V v;
1559     return (v = get(key)) == null ? defaultValue : v;
1560     }
1561 tim 1.1
1562 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1563     if (action == null) throw new NullPointerException();
1564     Node<K,V>[] t;
1565     if ((t = table) != null) {
1566     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567     for (Node<K,V> p; (p = it.advance()) != null; ) {
1568     action.accept(p.key, p.val);
1569 dl 1.99 }
1570 dl 1.222 }
1571     }
1572    
1573     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574     if (function == null) throw new NullPointerException();
1575     Node<K,V>[] t;
1576     if ((t = table) != null) {
1577     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578     for (Node<K,V> p; (p = it.advance()) != null; ) {
1579     V oldValue = p.val;
1580     for (K key = p.key;;) {
1581     V newValue = function.apply(key, oldValue);
1582     if (newValue == null)
1583     throw new NullPointerException();
1584     if (replaceNode(key, newValue, oldValue) != null ||
1585     (oldValue = get(key)) == null)
1586 dl 1.119 break;
1587     }
1588     }
1589 dl 1.45 }
1590 dl 1.21 }
1591    
1592 dl 1.222 /**
1593     * If the specified key is not already associated with a value,
1594     * attempts to compute its value using the given mapping function
1595     * and enters it into this map unless {@code null}. The entire
1596     * method invocation is performed atomically, so the function is
1597     * applied at most once per key. Some attempted update operations
1598     * on this map by other threads may be blocked while computation
1599     * is in progress, so the computation should be short and simple,
1600     * and must not attempt to update any other mappings of this map.
1601     *
1602     * @param key key with which the specified value is to be associated
1603     * @param mappingFunction the function to compute a value
1604     * @return the current (existing or computed) value associated with
1605     * the specified key, or null if the computed value is null
1606     * @throws NullPointerException if the specified key or mappingFunction
1607     * is null
1608     * @throws IllegalStateException if the computation detectably
1609     * attempts a recursive update to this map that would
1610     * otherwise never complete
1611     * @throws RuntimeException or Error if the mappingFunction does so,
1612     * in which case the mapping is left unestablished
1613     */
1614     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615     if (key == null || mappingFunction == null)
1616 dl 1.149 throw new NullPointerException();
1617 dl 1.222 int h = spread(key.hashCode());
1618 dl 1.151 V val = null;
1619 dl 1.222 int binCount = 0;
1620 dl 1.210 for (Node<K,V>[] tab = table;;) {
1621 dl 1.222 Node<K,V> f; int n, i, fh;
1622     if (tab == null || (n = tab.length) == 0)
1623 dl 1.119 tab = initTable();
1624 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625     Node<K,V> r = new ReservationNode<K,V>();
1626     synchronized (r) {
1627     if (casTabAt(tab, i, null, r)) {
1628     binCount = 1;
1629     Node<K,V> node = null;
1630 dl 1.149 try {
1631 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1632     node = new Node<K,V>(h, key, val, null);
1633 dl 1.149 } finally {
1634 dl 1.222 setTabAt(tab, i, node);
1635 dl 1.119 }
1636     }
1637     }
1638 dl 1.222 if (binCount != 0)
1639 dl 1.119 break;
1640     }
1641 dl 1.222 else if ((fh = f.hash) == MOVED)
1642     tab = helpTransfer(tab, f);
1643 dl 1.119 else {
1644 dl 1.149 boolean added = false;
1645 jsr166 1.150 synchronized (f) {
1646 dl 1.149 if (tabAt(tab, i) == f) {
1647 dl 1.222 if (fh >= 0) {
1648     binCount = 1;
1649     for (Node<K,V> e = f;; ++binCount) {
1650     K ek; V ev;
1651     if (e.hash == h &&
1652     ((ek = e.key) == key ||
1653     (ek != null && key.equals(ek)))) {
1654     val = e.val;
1655     break;
1656     }
1657     Node<K,V> pred = e;
1658     if ((e = e.next) == null) {
1659     if ((val = mappingFunction.apply(key)) != null) {
1660     added = true;
1661     pred.next = new Node<K,V>(h, key, val, null);
1662     }
1663     break;
1664     }
1665 dl 1.149 }
1666 dl 1.222 }
1667     else if (f instanceof TreeBin) {
1668     binCount = 2;
1669     TreeBin<K,V> t = (TreeBin<K,V>)f;
1670     TreeNode<K,V> r, p;
1671     if ((r = t.root) != null &&
1672     (p = r.findTreeNode(h, key, null)) != null)
1673     val = p.val;
1674     else if ((val = mappingFunction.apply(key)) != null) {
1675     added = true;
1676     t.putTreeVal(h, key, val);
1677 dl 1.119 }
1678     }
1679     }
1680 dl 1.149 }
1681 dl 1.222 if (binCount != 0) {
1682     if (binCount >= TREEIFY_THRESHOLD)
1683     treeifyBin(tab, i);
1684 dl 1.149 if (!added)
1685 dl 1.151 return val;
1686 dl 1.149 break;
1687 dl 1.119 }
1688 dl 1.105 }
1689 dl 1.99 }
1690 dl 1.149 if (val != null)
1691 dl 1.222 addCount(1L, binCount);
1692 dl 1.151 return val;
1693 tim 1.1 }
1694    
1695 dl 1.222 /**
1696     * If the value for the specified key is present, attempts to
1697     * compute a new mapping given the key and its current mapped
1698     * value. The entire method invocation is performed atomically.
1699     * Some attempted update operations on this map by other threads
1700     * may be blocked while computation is in progress, so the
1701     * computation should be short and simple, and must not attempt to
1702     * update any other mappings of this map.
1703     *
1704     * @param key key with which a value may be associated
1705     * @param remappingFunction the function to compute a value
1706     * @return the new value associated with the specified key, or null if none
1707     * @throws NullPointerException if the specified key or remappingFunction
1708     * is null
1709     * @throws IllegalStateException if the computation detectably
1710     * attempts a recursive update to this map that would
1711     * otherwise never complete
1712     * @throws RuntimeException or Error if the remappingFunction does so,
1713     * in which case the mapping is unchanged
1714     */
1715     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1716     if (key == null || remappingFunction == null)
1717 dl 1.149 throw new NullPointerException();
1718 dl 1.222 int h = spread(key.hashCode());
1719 dl 1.151 V val = null;
1720 dl 1.119 int delta = 0;
1721 dl 1.222 int binCount = 0;
1722 dl 1.210 for (Node<K,V>[] tab = table;;) {
1723 dl 1.222 Node<K,V> f; int n, i, fh;
1724     if (tab == null || (n = tab.length) == 0)
1725 dl 1.119 tab = initTable();
1726 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1727     break;
1728     else if ((fh = f.hash) == MOVED)
1729     tab = helpTransfer(tab, f);
1730     else {
1731     synchronized (f) {
1732     if (tabAt(tab, i) == f) {
1733     if (fh >= 0) {
1734     binCount = 1;
1735     for (Node<K,V> e = f, pred = null;; ++binCount) {
1736     K ek;
1737     if (e.hash == h &&
1738     ((ek = e.key) == key ||
1739     (ek != null && key.equals(ek)))) {
1740     val = remappingFunction.apply(key, e.val);
1741     if (val != null)
1742     e.val = val;
1743 dl 1.210 else {
1744 dl 1.222 delta = -1;
1745     Node<K,V> en = e.next;
1746     if (pred != null)
1747     pred.next = en;
1748     else
1749     setTabAt(tab, i, en);
1750 dl 1.210 }
1751 dl 1.222 break;
1752 dl 1.210 }
1753 dl 1.222 pred = e;
1754     if ((e = e.next) == null)
1755     break;
1756 dl 1.119 }
1757     }
1758 dl 1.222 else if (f instanceof TreeBin) {
1759     binCount = 2;
1760     TreeBin<K,V> t = (TreeBin<K,V>)f;
1761     TreeNode<K,V> r, p;
1762     if ((r = t.root) != null &&
1763     (p = r.findTreeNode(h, key, null)) != null) {
1764     val = remappingFunction.apply(key, p.val);
1765 dl 1.119 if (val != null)
1766 dl 1.222 p.val = val;
1767 dl 1.119 else {
1768     delta = -1;
1769 dl 1.222 if (t.removeTreeNode(p))
1770     setTabAt(tab, i, untreeify(t.first));
1771 dl 1.119 }
1772     }
1773     }
1774     }
1775     }
1776 dl 1.222 if (binCount != 0)
1777 dl 1.119 break;
1778     }
1779     }
1780 dl 1.149 if (delta != 0)
1781 dl 1.222 addCount((long)delta, binCount);
1782 dl 1.151 return val;
1783 dl 1.119 }
1784    
1785 dl 1.222 /**
1786     * Attempts to compute a mapping for the specified key and its
1787     * current mapped value (or {@code null} if there is no current
1788     * mapping). The entire method invocation is performed atomically.
1789     * Some attempted update operations on this map by other threads
1790     * may be blocked while computation is in progress, so the
1791     * computation should be short and simple, and must not attempt to
1792     * update any other mappings of this Map.
1793     *
1794     * @param key key with which the specified value is to be associated
1795     * @param remappingFunction the function to compute a value
1796     * @return the new value associated with the specified key, or null if none
1797     * @throws NullPointerException if the specified key or remappingFunction
1798     * is null
1799     * @throws IllegalStateException if the computation detectably
1800     * attempts a recursive update to this map that would
1801     * otherwise never complete
1802     * @throws RuntimeException or Error if the remappingFunction does so,
1803     * in which case the mapping is unchanged
1804     */
1805     public V compute(K key,
1806     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1807     if (key == null || remappingFunction == null)
1808 dl 1.149 throw new NullPointerException();
1809 dl 1.222 int h = spread(key.hashCode());
1810 dl 1.151 V val = null;
1811 dl 1.119 int delta = 0;
1812 dl 1.222 int binCount = 0;
1813 dl 1.210 for (Node<K,V>[] tab = table;;) {
1814 dl 1.222 Node<K,V> f; int n, i, fh;
1815     if (tab == null || (n = tab.length) == 0)
1816 dl 1.119 tab = initTable();
1817 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1818     Node<K,V> r = new ReservationNode<K,V>();
1819     synchronized (r) {
1820     if (casTabAt(tab, i, null, r)) {
1821     binCount = 1;
1822     Node<K,V> node = null;
1823     try {
1824     if ((val = remappingFunction.apply(key, null)) != null) {
1825     delta = 1;
1826     node = new Node<K,V>(h, key, val, null);
1827     }
1828     } finally {
1829     setTabAt(tab, i, node);
1830     }
1831     }
1832     }
1833     if (binCount != 0)
1834 dl 1.119 break;
1835     }
1836 dl 1.222 else if ((fh = f.hash) == MOVED)
1837     tab = helpTransfer(tab, f);
1838     else {
1839     synchronized (f) {
1840     if (tabAt(tab, i) == f) {
1841     if (fh >= 0) {
1842     binCount = 1;
1843     for (Node<K,V> e = f, pred = null;; ++binCount) {
1844     K ek;
1845     if (e.hash == h &&
1846     ((ek = e.key) == key ||
1847     (ek != null && key.equals(ek)))) {
1848     val = remappingFunction.apply(key, e.val);
1849     if (val != null)
1850     e.val = val;
1851     else {
1852     delta = -1;
1853     Node<K,V> en = e.next;
1854     if (pred != null)
1855     pred.next = en;
1856     else
1857     setTabAt(tab, i, en);
1858     }
1859     break;
1860     }
1861     pred = e;
1862     if ((e = e.next) == null) {
1863     val = remappingFunction.apply(key, null);
1864     if (val != null) {
1865     delta = 1;
1866     pred.next =
1867     new Node<K,V>(h, key, val, null);
1868     }
1869     break;
1870     }
1871     }
1872     }
1873     else if (f instanceof TreeBin) {
1874     binCount = 1;
1875     TreeBin<K,V> t = (TreeBin<K,V>)f;
1876     TreeNode<K,V> r, p;
1877     if ((r = t.root) != null)
1878     p = r.findTreeNode(h, key, null);
1879     else
1880     p = null;
1881     V pv = (p == null) ? null : p.val;
1882     val = remappingFunction.apply(key, pv);
1883 dl 1.119 if (val != null) {
1884     if (p != null)
1885     p.val = val;
1886     else {
1887     delta = 1;
1888 dl 1.222 t.putTreeVal(h, key, val);
1889 dl 1.119 }
1890     }
1891     else if (p != null) {
1892     delta = -1;
1893 dl 1.222 if (t.removeTreeNode(p))
1894     setTabAt(tab, i, untreeify(t.first));
1895 dl 1.119 }
1896     }
1897     }
1898     }
1899 dl 1.222 if (binCount != 0) {
1900     if (binCount >= TREEIFY_THRESHOLD)
1901     treeifyBin(tab, i);
1902     break;
1903 dl 1.119 }
1904 dl 1.105 }
1905 dl 1.99 }
1906 dl 1.149 if (delta != 0)
1907 dl 1.222 addCount((long)delta, binCount);
1908 dl 1.151 return val;
1909 dl 1.119 }
1910    
1911 dl 1.222 /**
1912     * If the specified key is not already associated with a
1913     * (non-null) value, associates it with the given value.
1914     * Otherwise, replaces the value with the results of the given
1915     * remapping function, or removes if {@code null}. The entire
1916     * method invocation is performed atomically. Some attempted
1917     * update operations on this map by other threads may be blocked
1918     * while computation is in progress, so the computation should be
1919     * short and simple, and must not attempt to update any other
1920     * mappings of this Map.
1921     *
1922     * @param key key with which the specified value is to be associated
1923     * @param value the value to use if absent
1924     * @param remappingFunction the function to recompute a value if present
1925     * @return the new value associated with the specified key, or null if none
1926     * @throws NullPointerException if the specified key or the
1927     * remappingFunction is null
1928     * @throws RuntimeException or Error if the remappingFunction does so,
1929     * in which case the mapping is unchanged
1930     */
1931     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1932     if (key == null || value == null || remappingFunction == null)
1933     throw new NullPointerException();
1934     int h = spread(key.hashCode());
1935     V val = null;
1936     int delta = 0;
1937     int binCount = 0;
1938     for (Node<K,V>[] tab = table;;) {
1939     Node<K,V> f; int n, i, fh;
1940     if (tab == null || (n = tab.length) == 0)
1941     tab = initTable();
1942     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1943     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1944     delta = 1;
1945     val = value;
1946 dl 1.119 break;
1947     }
1948 dl 1.222 }
1949     else if ((fh = f.hash) == MOVED)
1950     tab = helpTransfer(tab, f);
1951     else {
1952     synchronized (f) {
1953     if (tabAt(tab, i) == f) {
1954     if (fh >= 0) {
1955     binCount = 1;
1956     for (Node<K,V> e = f, pred = null;; ++binCount) {
1957     K ek;
1958     if (e.hash == h &&
1959     ((ek = e.key) == key ||
1960     (ek != null && key.equals(ek)))) {
1961     val = remappingFunction.apply(e.val, value);
1962     if (val != null)
1963     e.val = val;
1964 dl 1.119 else {
1965 dl 1.222 delta = -1;
1966     Node<K,V> en = e.next;
1967     if (pred != null)
1968     pred.next = en;
1969     else
1970     setTabAt(tab, i, en);
1971 dl 1.119 }
1972 dl 1.222 break;
1973     }
1974     pred = e;
1975     if ((e = e.next) == null) {
1976     delta = 1;
1977     val = value;
1978     pred.next =
1979     new Node<K,V>(h, key, val, null);
1980     break;
1981 dl 1.119 }
1982     }
1983     }
1984 dl 1.222 else if (f instanceof TreeBin) {
1985     binCount = 2;
1986     TreeBin<K,V> t = (TreeBin<K,V>)f;
1987     TreeNode<K,V> r = t.root;
1988     TreeNode<K,V> p = (r == null) ? null :
1989     r.findTreeNode(h, key, null);
1990     val = (p == null) ? value :
1991     remappingFunction.apply(p.val, value);
1992     if (val != null) {
1993     if (p != null)
1994     p.val = val;
1995     else {
1996     delta = 1;
1997     t.putTreeVal(h, key, val);
1998 dl 1.119 }
1999     }
2000 dl 1.222 else if (p != null) {
2001     delta = -1;
2002     if (t.removeTreeNode(p))
2003     setTabAt(tab, i, untreeify(t.first));
2004 dl 1.164 }
2005 dl 1.99 }
2006 dl 1.21 }
2007     }
2008 dl 1.222 if (binCount != 0) {
2009     if (binCount >= TREEIFY_THRESHOLD)
2010     treeifyBin(tab, i);
2011     break;
2012     }
2013 dl 1.45 }
2014     }
2015 dl 1.222 if (delta != 0)
2016     addCount((long)delta, binCount);
2017     return val;
2018 tim 1.1 }
2019 dl 1.19
2020 dl 1.222 // Hashtable legacy methods
2021    
2022 dl 1.149 /**
2023 dl 1.222 * Legacy method testing if some key maps into the specified value
2024 jsr166 1.250 * in this table.
2025     *
2026     * @deprecated This method is identical in functionality to
2027 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2028     * full compatibility with class {@link java.util.Hashtable},
2029     * which supported this method prior to introduction of the
2030     * Java Collections framework.
2031     *
2032     * @param value a value to search for
2033     * @return {@code true} if and only if some key maps to the
2034     * {@code value} argument in this table as
2035     * determined by the {@code equals} method;
2036     * {@code false} otherwise
2037     * @throws NullPointerException if the specified value is null
2038 dl 1.149 */
2039 dl 1.246 @Deprecated
2040     public boolean contains(Object value) {
2041 dl 1.222 return containsValue(value);
2042 dl 1.149 }
2043    
2044 tim 1.1 /**
2045 dl 1.222 * Returns an enumeration of the keys in this table.
2046     *
2047     * @return an enumeration of the keys in this table
2048     * @see #keySet()
2049 tim 1.1 */
2050 dl 1.222 public Enumeration<K> keys() {
2051     Node<K,V>[] t;
2052     int f = (t = table) == null ? 0 : t.length;
2053     return new KeyIterator<K,V>(t, f, 0, f, this);
2054 tim 1.1 }
2055    
2056     /**
2057 dl 1.222 * Returns an enumeration of the values in this table.
2058     *
2059     * @return an enumeration of the values in this table
2060     * @see #values()
2061     */
2062     public Enumeration<V> elements() {
2063     Node<K,V>[] t;
2064     int f = (t = table) == null ? 0 : t.length;
2065     return new ValueIterator<K,V>(t, f, 0, f, this);
2066     }
2067    
2068     // ConcurrentHashMap-only methods
2069    
2070     /**
2071     * Returns the number of mappings. This method should be used
2072     * instead of {@link #size} because a ConcurrentHashMap may
2073     * contain more mappings than can be represented as an int. The
2074     * value returned is an estimate; the actual count may differ if
2075     * there are concurrent insertions or removals.
2076     *
2077     * @return the number of mappings
2078     * @since 1.8
2079     */
2080     public long mappingCount() {
2081     long n = sumCount();
2082     return (n < 0L) ? 0L : n; // ignore transient negative values
2083     }
2084    
2085     /**
2086     * Creates a new {@link Set} backed by a ConcurrentHashMap
2087     * from the given type to {@code Boolean.TRUE}.
2088     *
2089 jsr166 1.237 * @param <K> the element type of the returned set
2090 dl 1.222 * @return the new set
2091     * @since 1.8
2092     */
2093     public static <K> KeySetView<K,Boolean> newKeySet() {
2094     return new KeySetView<K,Boolean>
2095     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2096     }
2097    
2098     /**
2099     * Creates a new {@link Set} backed by a ConcurrentHashMap
2100     * from the given type to {@code Boolean.TRUE}.
2101     *
2102     * @param initialCapacity The implementation performs internal
2103     * sizing to accommodate this many elements.
2104 jsr166 1.237 * @param <K> the element type of the returned set
2105 jsr166 1.239 * @return the new set
2106 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2107     * elements is negative
2108     * @since 1.8
2109     */
2110     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2111     return new KeySetView<K,Boolean>
2112     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2113     }
2114    
2115     /**
2116     * Returns a {@link Set} view of the keys in this map, using the
2117     * given common mapped value for any additions (i.e., {@link
2118     * Collection#add} and {@link Collection#addAll(Collection)}).
2119     * This is of course only appropriate if it is acceptable to use
2120     * the same value for all additions from this view.
2121     *
2122     * @param mappedValue the mapped value to use for any additions
2123     * @return the set view
2124     * @throws NullPointerException if the mappedValue is null
2125     */
2126     public KeySetView<K,V> keySet(V mappedValue) {
2127     if (mappedValue == null)
2128     throw new NullPointerException();
2129     return new KeySetView<K,V>(this, mappedValue);
2130     }
2131    
2132     /* ---------------- Special Nodes -------------- */
2133    
2134     /**
2135     * A node inserted at head of bins during transfer operations.
2136     */
2137     static final class ForwardingNode<K,V> extends Node<K,V> {
2138     final Node<K,V>[] nextTable;
2139     ForwardingNode(Node<K,V>[] tab) {
2140     super(MOVED, null, null, null);
2141     this.nextTable = tab;
2142     }
2143    
2144     Node<K,V> find(int h, Object k) {
2145 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2146     outer: for (Node<K,V>[] tab = nextTable;;) {
2147     Node<K,V> e; int n;
2148     if (k == null || tab == null || (n = tab.length) == 0 ||
2149     (e = tabAt(tab, (n - 1) & h)) == null)
2150     return null;
2151     for (;;) {
2152 dl 1.222 int eh; K ek;
2153     if ((eh = e.hash) == h &&
2154     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2155     return e;
2156 dl 1.234 if (eh < 0) {
2157     if (e instanceof ForwardingNode) {
2158     tab = ((ForwardingNode<K,V>)e).nextTable;
2159     continue outer;
2160     }
2161     else
2162     return e.find(h, k);
2163     }
2164     if ((e = e.next) == null)
2165     return null;
2166     }
2167 dl 1.222 }
2168     }
2169     }
2170    
2171     /**
2172     * A place-holder node used in computeIfAbsent and compute
2173     */
2174     static final class ReservationNode<K,V> extends Node<K,V> {
2175     ReservationNode() {
2176     super(RESERVED, null, null, null);
2177     }
2178    
2179     Node<K,V> find(int h, Object k) {
2180     return null;
2181     }
2182     }
2183    
2184     /* ---------------- Table Initialization and Resizing -------------- */
2185    
2186     /**
2187 dl 1.252 * Returns the stamp bits for resizing a table of size n.
2188     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2189     */
2190     static final int resizeStamp(int n) {
2191 jsr166 1.254 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2192 dl 1.252 }
2193    
2194     /**
2195 dl 1.222 * Initializes table, using the size recorded in sizeCtl.
2196 dl 1.119 */
2197 dl 1.210 private final Node<K,V>[] initTable() {
2198     Node<K,V>[] tab; int sc;
2199 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2200 dl 1.119 if ((sc = sizeCtl) < 0)
2201     Thread.yield(); // lost initialization race; just spin
2202 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2203 dl 1.119 try {
2204 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2205 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2206 jsr166 1.245 @SuppressWarnings("unchecked")
2207 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2208 dl 1.222 table = tab = nt;
2209 dl 1.119 sc = n - (n >>> 2);
2210     }
2211     } finally {
2212     sizeCtl = sc;
2213     }
2214     break;
2215     }
2216     }
2217     return tab;
2218 dl 1.4 }
2219    
2220     /**
2221 dl 1.149 * Adds to count, and if table is too small and not already
2222     * resizing, initiates transfer. If already resizing, helps
2223     * perform transfer if work is available. Rechecks occupancy
2224     * after a transfer to see if another resize is already needed
2225     * because resizings are lagging additions.
2226     *
2227     * @param x the count to add
2228     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2229     */
2230     private final void addCount(long x, int check) {
2231 dl 1.222 CounterCell[] as; long b, s;
2232 dl 1.149 if ((as = counterCells) != null ||
2233     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2234 dl 1.222 CounterCell a; long v; int m;
2235 dl 1.149 boolean uncontended = true;
2236 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2237     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2238 dl 1.149 !(uncontended =
2239     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2240 dl 1.160 fullAddCount(x, uncontended);
2241 dl 1.149 return;
2242     }
2243     if (check <= 1)
2244     return;
2245     s = sumCount();
2246     }
2247     if (check >= 0) {
2248 dl 1.252 Node<K,V>[] tab, nt; int n, sc;
2249 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2250 dl 1.252 (n = tab.length) < MAXIMUM_CAPACITY) {
2251     int rs = resizeStamp(n);
2252 dl 1.149 if (sc < 0) {
2253 dl 1.252 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2254 jsr166 1.254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2255     transferIndex <= 0)
2256 dl 1.149 break;
2257 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2258 dl 1.149 transfer(tab, nt);
2259 dl 1.119 }
2260 dl 1.252 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2261 jsr166 1.254 (rs << RESIZE_STAMP_SHIFT) + 2))
2262 dl 1.149 transfer(tab, null);
2263     s = sumCount();
2264 dl 1.119 }
2265     }
2266 dl 1.4 }
2267    
2268     /**
2269 dl 1.222 * Helps transfer if a resize is in progress.
2270     */
2271     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272     Node<K,V>[] nextTab; int sc;
2273 dl 1.252 if (tab != null && (f instanceof ForwardingNode) &&
2274 dl 1.222 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 jsr166 1.254 int rs = resizeStamp(tab.length);
2276 dl 1.252 while (nextTab == nextTable && table == tab &&
2277 jsr166 1.254 (sc = sizeCtl) < 0) {
2278     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2279 dl 1.252 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2280 jsr166 1.254 break;
2281     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2282 dl 1.246 transfer(tab, nextTab);
2283     break;
2284     }
2285     }
2286 dl 1.222 return nextTab;
2287     }
2288     return table;
2289     }
2290    
2291     /**
2292 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2293 tim 1.1 *
2294 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2295 tim 1.1 */
2296 dl 1.210 private final void tryPresize(int size) {
2297 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2298     tableSizeFor(size + (size >>> 1) + 1);
2299     int sc;
2300     while ((sc = sizeCtl) >= 0) {
2301 dl 1.210 Node<K,V>[] tab = table; int n;
2302 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2303     n = (sc > c) ? sc : c;
2304 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2305 dl 1.119 try {
2306     if (table == tab) {
2307 jsr166 1.245 @SuppressWarnings("unchecked")
2308 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2309 dl 1.222 table = nt;
2310 dl 1.119 sc = n - (n >>> 2);
2311     }
2312     } finally {
2313     sizeCtl = sc;
2314     }
2315     }
2316     }
2317     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2318     break;
2319 dl 1.252 else if (tab == table) {
2320     int rs = resizeStamp(n);
2321 dl 1.258 if (U.compareAndSwapInt(this, SIZECTL, sc,
2322     (rs << RESIZE_STAMP_SHIFT) + 2))
2323 dl 1.252 transfer(tab, null);
2324     }
2325 dl 1.119 }
2326 dl 1.4 }
2327    
2328 jsr166 1.170 /**
2329 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2330     * above for explanation.
2331 dl 1.4 */
2332 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2333 dl 1.149 int n = tab.length, stride;
2334     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2335     stride = MIN_TRANSFER_STRIDE; // subdivide range
2336     if (nextTab == null) { // initiating
2337     try {
2338 jsr166 1.245 @SuppressWarnings("unchecked")
2339 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2340 dl 1.222 nextTab = nt;
2341 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2342 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2343     return;
2344     }
2345     nextTable = nextTab;
2346     transferIndex = n;
2347     }
2348     int nextn = nextTab.length;
2349 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2350 dl 1.149 boolean advance = true;
2351 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2352 dl 1.149 for (int i = 0, bound = 0;;) {
2353 dl 1.246 Node<K,V> f; int fh;
2354 dl 1.149 while (advance) {
2355 dl 1.246 int nextIndex, nextBound;
2356 dl 1.234 if (--i >= bound || finishing)
2357 dl 1.149 advance = false;
2358 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2359 dl 1.149 i = -1;
2360     advance = false;
2361     }
2362     else if (U.compareAndSwapInt
2363     (this, TRANSFERINDEX, nextIndex,
2364 jsr166 1.150 nextBound = (nextIndex > stride ?
2365 dl 1.149 nextIndex - stride : 0))) {
2366     bound = nextBound;
2367     i = nextIndex - 1;
2368     advance = false;
2369     }
2370     }
2371     if (i < 0 || i >= n || i + n >= nextn) {
2372 dl 1.246 int sc;
2373 dl 1.234 if (finishing) {
2374     nextTable = null;
2375     table = nextTab;
2376     sizeCtl = (n << 1) - (n >>> 1);
2377     return;
2378     }
2379 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2380 dl 1.255 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2381 dl 1.246 return;
2382     finishing = advance = true;
2383     i = n; // recheck before commit
2384 dl 1.149 }
2385     }
2386 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2387     advance = casTabAt(tab, i, null, fwd);
2388 dl 1.222 else if ((fh = f.hash) == MOVED)
2389     advance = true; // already processed
2390     else {
2391 jsr166 1.150 synchronized (f) {
2392 dl 1.149 if (tabAt(tab, i) == f) {
2393 dl 1.222 Node<K,V> ln, hn;
2394     if (fh >= 0) {
2395     int runBit = fh & n;
2396     Node<K,V> lastRun = f;
2397     for (Node<K,V> p = f.next; p != null; p = p.next) {
2398     int b = p.hash & n;
2399     if (b != runBit) {
2400     runBit = b;
2401     lastRun = p;
2402     }
2403     }
2404     if (runBit == 0) {
2405     ln = lastRun;
2406     hn = null;
2407     }
2408     else {
2409     hn = lastRun;
2410     ln = null;
2411 dl 1.149 }
2412 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2413     int ph = p.hash; K pk = p.key; V pv = p.val;
2414     if ((ph & n) == 0)
2415     ln = new Node<K,V>(ph, pk, pv, ln);
2416 dl 1.210 else
2417 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2418 dl 1.149 }
2419 dl 1.233 setTabAt(nextTab, i, ln);
2420     setTabAt(nextTab, i + n, hn);
2421     setTabAt(tab, i, fwd);
2422     advance = true;
2423 dl 1.222 }
2424     else if (f instanceof TreeBin) {
2425     TreeBin<K,V> t = (TreeBin<K,V>)f;
2426     TreeNode<K,V> lo = null, loTail = null;
2427     TreeNode<K,V> hi = null, hiTail = null;
2428     int lc = 0, hc = 0;
2429     for (Node<K,V> e = t.first; e != null; e = e.next) {
2430     int h = e.hash;
2431     TreeNode<K,V> p = new TreeNode<K,V>
2432     (h, e.key, e.val, null, null);
2433     if ((h & n) == 0) {
2434     if ((p.prev = loTail) == null)
2435     lo = p;
2436     else
2437     loTail.next = p;
2438     loTail = p;
2439     ++lc;
2440 dl 1.210 }
2441 dl 1.222 else {
2442     if ((p.prev = hiTail) == null)
2443     hi = p;
2444     else
2445     hiTail.next = p;
2446     hiTail = p;
2447     ++hc;
2448 dl 1.210 }
2449 dl 1.149 }
2450 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2451     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2452     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2453     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2454 dl 1.233 setTabAt(nextTab, i, ln);
2455     setTabAt(nextTab, i + n, hn);
2456     setTabAt(tab, i, fwd);
2457     advance = true;
2458 dl 1.149 }
2459 dl 1.119 }
2460     }
2461     }
2462     }
2463 dl 1.4 }
2464 tim 1.1
2465 dl 1.149 /* ---------------- Counter support -------------- */
2466    
2467 dl 1.222 /**
2468     * A padded cell for distributing counts. Adapted from LongAdder
2469     * and Striped64. See their internal docs for explanation.
2470     */
2471     @sun.misc.Contended static final class CounterCell {
2472     volatile long value;
2473     CounterCell(long x) { value = x; }
2474     }
2475    
2476 dl 1.149 final long sumCount() {
2477 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2478 dl 1.149 long sum = baseCount;
2479     if (as != null) {
2480     for (int i = 0; i < as.length; ++i) {
2481     if ((a = as[i]) != null)
2482     sum += a.value;
2483 dl 1.119 }
2484     }
2485 dl 1.149 return sum;
2486 dl 1.119 }
2487    
2488 dl 1.149 // See LongAdder version for explanation
2489 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2490 dl 1.149 int h;
2491 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2492     ThreadLocalRandom.localInit(); // force initialization
2493     h = ThreadLocalRandom.getProbe();
2494     wasUncontended = true;
2495 dl 1.119 }
2496 dl 1.149 boolean collide = false; // True if last slot nonempty
2497     for (;;) {
2498 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2499 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2500     if ((a = as[(n - 1) & h]) == null) {
2501 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2502 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2503 dl 1.153 if (cellsBusy == 0 &&
2504     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2505 dl 1.149 boolean created = false;
2506     try { // Recheck under lock
2507 dl 1.222 CounterCell[] rs; int m, j;
2508 dl 1.149 if ((rs = counterCells) != null &&
2509     (m = rs.length) > 0 &&
2510     rs[j = (m - 1) & h] == null) {
2511     rs[j] = r;
2512     created = true;
2513 dl 1.128 }
2514 dl 1.149 } finally {
2515 dl 1.153 cellsBusy = 0;
2516 dl 1.119 }
2517 dl 1.149 if (created)
2518     break;
2519     continue; // Slot is now non-empty
2520     }
2521     }
2522     collide = false;
2523     }
2524     else if (!wasUncontended) // CAS already known to fail
2525     wasUncontended = true; // Continue after rehash
2526     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2527     break;
2528     else if (counterCells != as || n >= NCPU)
2529     collide = false; // At max size or stale
2530     else if (!collide)
2531     collide = true;
2532 dl 1.153 else if (cellsBusy == 0 &&
2533     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2534 dl 1.149 try {
2535     if (counterCells == as) {// Expand table unless stale
2536 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2537 dl 1.149 for (int i = 0; i < n; ++i)
2538     rs[i] = as[i];
2539     counterCells = rs;
2540 dl 1.119 }
2541     } finally {
2542 dl 1.153 cellsBusy = 0;
2543 dl 1.119 }
2544 dl 1.149 collide = false;
2545     continue; // Retry with expanded table
2546 dl 1.119 }
2547 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2548 dl 1.149 }
2549 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2550     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2551 dl 1.149 boolean init = false;
2552     try { // Initialize table
2553     if (counterCells == as) {
2554 dl 1.222 CounterCell[] rs = new CounterCell[2];
2555     rs[h & 1] = new CounterCell(x);
2556 dl 1.149 counterCells = rs;
2557     init = true;
2558 dl 1.119 }
2559     } finally {
2560 dl 1.153 cellsBusy = 0;
2561 dl 1.119 }
2562 dl 1.149 if (init)
2563     break;
2564 dl 1.119 }
2565 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2566     break; // Fall back on using base
2567 dl 1.119 }
2568     }
2569    
2570 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2571 dl 1.119
2572     /**
2573 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2574     * too small, in which case resizes instead.
2575 dl 1.119 */
2576 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2577     Node<K,V> b; int n, sc;
2578     if (tab != null) {
2579 dl 1.252 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2580     tryPresize(n << 1);
2581 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2582 jsr166 1.223 synchronized (b) {
2583 dl 1.222 if (tabAt(tab, index) == b) {
2584     TreeNode<K,V> hd = null, tl = null;
2585     for (Node<K,V> e = b; e != null; e = e.next) {
2586     TreeNode<K,V> p =
2587     new TreeNode<K,V>(e.hash, e.key, e.val,
2588     null, null);
2589     if ((p.prev = tl) == null)
2590     hd = p;
2591     else
2592     tl.next = p;
2593     tl = p;
2594     }
2595     setTabAt(tab, index, new TreeBin<K,V>(hd));
2596 dl 1.210 }
2597     }
2598     }
2599     }
2600     }
2601    
2602     /**
2603 jsr166 1.229 * Returns a list on non-TreeNodes replacing those in given list.
2604 dl 1.210 */
2605 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2606     Node<K,V> hd = null, tl = null;
2607     for (Node<K,V> q = b; q != null; q = q.next) {
2608     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2609     if (tl == null)
2610     hd = p;
2611     else
2612     tl.next = p;
2613     tl = p;
2614 dl 1.210 }
2615 dl 1.222 return hd;
2616     }
2617 dl 1.210
2618 dl 1.222 /* ---------------- TreeNodes -------------- */
2619    
2620     /**
2621     * Nodes for use in TreeBins
2622     */
2623     static final class TreeNode<K,V> extends Node<K,V> {
2624     TreeNode<K,V> parent; // red-black tree links
2625     TreeNode<K,V> left;
2626     TreeNode<K,V> right;
2627     TreeNode<K,V> prev; // needed to unlink next upon deletion
2628     boolean red;
2629 dl 1.210
2630 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2631     TreeNode<K,V> parent) {
2632     super(hash, key, val, next);
2633     this.parent = parent;
2634 dl 1.210 }
2635    
2636 dl 1.222 Node<K,V> find(int h, Object k) {
2637     return findTreeNode(h, k, null);
2638 dl 1.210 }
2639    
2640 dl 1.222 /**
2641     * Returns the TreeNode (or null if not found) for the given key
2642     * starting at given root.
2643     */
2644     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2645 dl 1.224 if (k != null) {
2646     TreeNode<K,V> p = this;
2647 jsr166 1.256 do {
2648 dl 1.224 int ph, dir; K pk; TreeNode<K,V> q;
2649     TreeNode<K,V> pl = p.left, pr = p.right;
2650     if ((ph = p.hash) > h)
2651     p = pl;
2652     else if (ph < h)
2653     p = pr;
2654     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2655     return p;
2656 dl 1.240 else if (pl == null)
2657     p = pr;
2658     else if (pr == null)
2659     p = pl;
2660 jsr166 1.225 else if ((kc != null ||
2661 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2662     (dir = compareComparables(kc, k, pk)) != 0)
2663     p = (dir < 0) ? pl : pr;
2664 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2665     return q;
2666     else
2667 dl 1.224 p = pl;
2668     } while (p != null);
2669     }
2670 dl 1.222 return null;
2671 dl 1.210 }
2672     }
2673 dl 1.192
2674 dl 1.222 /* ---------------- TreeBins -------------- */
2675 dl 1.119
2676 dl 1.222 /**
2677     * TreeNodes used at the heads of bins. TreeBins do not hold user
2678     * keys or values, but instead point to list of TreeNodes and
2679     * their root. They also maintain a parasitic read-write lock
2680     * forcing writers (who hold bin lock) to wait for readers (who do
2681     * not) to complete before tree restructuring operations.
2682     */
2683     static final class TreeBin<K,V> extends Node<K,V> {
2684     TreeNode<K,V> root;
2685     volatile TreeNode<K,V> first;
2686     volatile Thread waiter;
2687     volatile int lockState;
2688 dl 1.224 // values for lockState
2689     static final int WRITER = 1; // set while holding write lock
2690     static final int WAITER = 2; // set when waiting for write lock
2691     static final int READER = 4; // increment value for setting read lock
2692 dl 1.119
2693 dl 1.222 /**
2694 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2695     * hashCodes and non-comparable. We don't require a total
2696     * order, just a consistent insertion rule to maintain
2697     * equivalence across rebalancings. Tie-breaking further than
2698     * necessary simplifies testing a bit.
2699     */
2700     static int tieBreakOrder(Object a, Object b) {
2701     int d;
2702     if (a == null || b == null ||
2703     (d = a.getClass().getName().
2704     compareTo(b.getClass().getName())) == 0)
2705     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2706     -1 : 1);
2707     return d;
2708     }
2709    
2710     /**
2711 dl 1.222 * Creates bin with initial set of nodes headed by b.
2712     */
2713     TreeBin(TreeNode<K,V> b) {
2714     super(TREEBIN, null, null, null);
2715 dl 1.224 this.first = b;
2716 dl 1.222 TreeNode<K,V> r = null;
2717     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2718     next = (TreeNode<K,V>)x.next;
2719     x.left = x.right = null;
2720     if (r == null) {
2721     x.parent = null;
2722     x.red = false;
2723     r = x;
2724     }
2725     else {
2726 dl 1.240 K k = x.key;
2727     int h = x.hash;
2728 dl 1.222 Class<?> kc = null;
2729     for (TreeNode<K,V> p = r;;) {
2730     int dir, ph;
2731 dl 1.240 K pk = p.key;
2732     if ((ph = p.hash) > h)
2733 dl 1.222 dir = -1;
2734 dl 1.240 else if (ph < h)
2735 dl 1.222 dir = 1;
2736 dl 1.240 else if ((kc == null &&
2737     (kc = comparableClassFor(k)) == null) ||
2738     (dir = compareComparables(kc, k, pk)) == 0)
2739     dir = tieBreakOrder(k, pk);
2740     TreeNode<K,V> xp = p;
2741 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2742     x.parent = xp;
2743     if (dir <= 0)
2744     xp.left = x;
2745     else
2746     xp.right = x;
2747     r = balanceInsertion(r, x);
2748     break;
2749     }
2750     }
2751     }
2752     }
2753 dl 1.224 this.root = r;
2754 dl 1.240 assert checkInvariants(root);
2755 dl 1.222 }
2756 dl 1.210
2757 dl 1.222 /**
2758 jsr166 1.229 * Acquires write lock for tree restructuring.
2759 dl 1.222 */
2760     private final void lockRoot() {
2761     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2762     contendedLock(); // offload to separate method
2763 dl 1.153 }
2764    
2765 dl 1.222 /**
2766 jsr166 1.229 * Releases write lock for tree restructuring.
2767 dl 1.222 */
2768     private final void unlockRoot() {
2769     lockState = 0;
2770 dl 1.191 }
2771    
2772 dl 1.222 /**
2773 jsr166 1.229 * Possibly blocks awaiting root lock.
2774 dl 1.222 */
2775     private final void contendedLock() {
2776     boolean waiting = false;
2777     for (int s;;) {
2778 dl 1.252 if (((s = lockState) & ~WAITER) == 0) {
2779 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2780     if (waiting)
2781     waiter = null;
2782     return;
2783     }
2784     }
2785 dl 1.244 else if ((s & WAITER) == 0) {
2786 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2787     waiting = true;
2788     waiter = Thread.currentThread();
2789     }
2790     }
2791     else if (waiting)
2792     LockSupport.park(this);
2793     }
2794 dl 1.192 }
2795    
2796 dl 1.222 /**
2797     * Returns matching node or null if none. Tries to search
2798 jsr166 1.232 * using tree comparisons from root, but continues linear
2799 dl 1.222 * search when lock not available.
2800     */
2801     final Node<K,V> find(int h, Object k) {
2802     if (k != null) {
2803 dl 1.253 for (Node<K,V> e = first; e != null; ) {
2804 dl 1.222 int s; K ek;
2805     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2806     if (e.hash == h &&
2807     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2808     return e;
2809 dl 1.253 e = e.next;
2810 dl 1.222 }
2811     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2812     s + READER)) {
2813     TreeNode<K,V> r, p;
2814     try {
2815     p = ((r = root) == null ? null :
2816     r.findTreeNode(h, k, null));
2817     } finally {
2818     Thread w;
2819     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2820     (READER|WAITER) && (w = waiter) != null)
2821     LockSupport.unpark(w);
2822     }
2823     return p;
2824     }
2825     }
2826     }
2827     return null;
2828 dl 1.192 }
2829    
2830 dl 1.222 /**
2831     * Finds or adds a node.
2832     * @return null if added
2833     */
2834     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2835     Class<?> kc = null;
2836 dl 1.240 boolean searched = false;
2837 dl 1.224 for (TreeNode<K,V> p = root;;) {
2838 dl 1.240 int dir, ph; K pk;
2839 dl 1.224 if (p == null) {
2840     first = root = new TreeNode<K,V>(h, k, v, null, null);
2841     break;
2842     }
2843     else if ((ph = p.hash) > h)
2844 dl 1.222 dir = -1;
2845     else if (ph < h)
2846     dir = 1;
2847     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2848     return p;
2849     else if ((kc == null &&
2850     (kc = comparableClassFor(k)) == null) ||
2851     (dir = compareComparables(kc, k, pk)) == 0) {
2852 dl 1.240 if (!searched) {
2853     TreeNode<K,V> q, ch;
2854     searched = true;
2855     if (((ch = p.left) != null &&
2856     (q = ch.findTreeNode(h, k, kc)) != null) ||
2857     ((ch = p.right) != null &&
2858     (q = ch.findTreeNode(h, k, kc)) != null))
2859     return q;
2860     }
2861     dir = tieBreakOrder(k, pk);
2862 dl 1.222 }
2863 dl 1.240
2864 dl 1.222 TreeNode<K,V> xp = p;
2865 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2866 dl 1.222 TreeNode<K,V> x, f = first;
2867     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2868     if (f != null)
2869     f.prev = x;
2870 dl 1.240 if (dir <= 0)
2871 dl 1.222 xp.left = x;
2872     else
2873     xp.right = x;
2874     if (!xp.red)
2875     x.red = true;
2876     else {
2877     lockRoot();
2878     try {
2879     root = balanceInsertion(root, x);
2880     } finally {
2881     unlockRoot();
2882     }
2883     }
2884 dl 1.224 break;
2885 dl 1.222 }
2886     }
2887 dl 1.224 assert checkInvariants(root);
2888     return null;
2889 dl 1.192 }
2890    
2891 dl 1.222 /**
2892     * Removes the given node, that must be present before this
2893     * call. This is messier than typical red-black deletion code
2894     * because we cannot swap the contents of an interior node
2895     * with a leaf successor that is pinned by "next" pointers
2896     * that are accessible independently of lock. So instead we
2897     * swap the tree linkages.
2898     *
2899 jsr166 1.230 * @return true if now too small, so should be untreeified
2900 dl 1.222 */
2901     final boolean removeTreeNode(TreeNode<K,V> p) {
2902     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2903     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2904     TreeNode<K,V> r, rl;
2905     if (pred == null)
2906     first = next;
2907     else
2908     pred.next = next;
2909     if (next != null)
2910     next.prev = pred;
2911     if (first == null) {
2912     root = null;
2913     return true;
2914     }
2915 dl 1.224 if ((r = root) == null || r.right == null || // too small
2916 dl 1.222 (rl = r.left) == null || rl.left == null)
2917     return true;
2918     lockRoot();
2919     try {
2920     TreeNode<K,V> replacement;
2921     TreeNode<K,V> pl = p.left;
2922     TreeNode<K,V> pr = p.right;
2923     if (pl != null && pr != null) {
2924     TreeNode<K,V> s = pr, sl;
2925     while ((sl = s.left) != null) // find successor
2926     s = sl;
2927     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2928     TreeNode<K,V> sr = s.right;
2929     TreeNode<K,V> pp = p.parent;
2930     if (s == pr) { // p was s's direct parent
2931     p.parent = s;
2932     s.right = p;
2933     }
2934     else {
2935     TreeNode<K,V> sp = s.parent;
2936     if ((p.parent = sp) != null) {
2937     if (s == sp.left)
2938     sp.left = p;
2939     else
2940     sp.right = p;
2941     }
2942     if ((s.right = pr) != null)
2943     pr.parent = s;
2944     }
2945     p.left = null;
2946     if ((p.right = sr) != null)
2947     sr.parent = p;
2948     if ((s.left = pl) != null)
2949     pl.parent = s;
2950     if ((s.parent = pp) == null)
2951     r = s;
2952     else if (p == pp.left)
2953     pp.left = s;
2954     else
2955     pp.right = s;
2956     if (sr != null)
2957     replacement = sr;
2958     else
2959     replacement = p;
2960     }
2961     else if (pl != null)
2962     replacement = pl;
2963     else if (pr != null)
2964     replacement = pr;
2965     else
2966     replacement = p;
2967     if (replacement != p) {
2968     TreeNode<K,V> pp = replacement.parent = p.parent;
2969     if (pp == null)
2970     r = replacement;
2971     else if (p == pp.left)
2972     pp.left = replacement;
2973     else
2974     pp.right = replacement;
2975     p.left = p.right = p.parent = null;
2976     }
2977    
2978     root = (p.red) ? r : balanceDeletion(r, replacement);
2979    
2980     if (p == replacement) { // detach pointers
2981     TreeNode<K,V> pp;
2982     if ((pp = p.parent) != null) {
2983     if (p == pp.left)
2984     pp.left = null;
2985     else if (p == pp.right)
2986     pp.right = null;
2987     p.parent = null;
2988     }
2989     }
2990     } finally {
2991     unlockRoot();
2992     }
2993 dl 1.224 assert checkInvariants(root);
2994 dl 1.222 return false;
2995 dl 1.210 }
2996    
2997 dl 1.222 /* ------------------------------------------------------------ */
2998     // Red-black tree methods, all adapted from CLR
2999 dl 1.210
3000 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3001     TreeNode<K,V> p) {
3002 dl 1.224 TreeNode<K,V> r, pp, rl;
3003     if (p != null && (r = p.right) != null) {
3004 dl 1.222 if ((rl = p.right = r.left) != null)
3005     rl.parent = p;
3006     if ((pp = r.parent = p.parent) == null)
3007     (root = r).red = false;
3008     else if (pp.left == p)
3009     pp.left = r;
3010     else
3011     pp.right = r;
3012     r.left = p;
3013     p.parent = r;
3014     }
3015     return root;
3016 dl 1.119 }
3017    
3018 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3019     TreeNode<K,V> p) {
3020 dl 1.224 TreeNode<K,V> l, pp, lr;
3021     if (p != null && (l = p.left) != null) {
3022 dl 1.222 if ((lr = p.left = l.right) != null)
3023     lr.parent = p;
3024     if ((pp = l.parent = p.parent) == null)
3025     (root = l).red = false;
3026     else if (pp.right == p)
3027     pp.right = l;
3028     else
3029     pp.left = l;
3030     l.right = p;
3031     p.parent = l;
3032     }
3033     return root;
3034 dl 1.119 }
3035    
3036 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3037     TreeNode<K,V> x) {
3038     x.red = true;
3039     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3040     if ((xp = x.parent) == null) {
3041     x.red = false;
3042     return x;
3043     }
3044     else if (!xp.red || (xpp = xp.parent) == null)
3045     return root;
3046     if (xp == (xppl = xpp.left)) {
3047     if ((xppr = xpp.right) != null && xppr.red) {
3048     xppr.red = false;
3049     xp.red = false;
3050     xpp.red = true;
3051     x = xpp;
3052     }
3053     else {
3054     if (x == xp.right) {
3055     root = rotateLeft(root, x = xp);
3056     xpp = (xp = x.parent) == null ? null : xp.parent;
3057     }
3058     if (xp != null) {
3059     xp.red = false;
3060     if (xpp != null) {
3061     xpp.red = true;
3062     root = rotateRight(root, xpp);
3063     }
3064     }
3065     }
3066     }
3067     else {
3068     if (xppl != null && xppl.red) {
3069     xppl.red = false;
3070     xp.red = false;
3071     xpp.red = true;
3072     x = xpp;
3073     }
3074     else {
3075     if (x == xp.left) {
3076     root = rotateRight(root, x = xp);
3077     xpp = (xp = x.parent) == null ? null : xp.parent;
3078     }
3079     if (xp != null) {
3080     xp.red = false;
3081     if (xpp != null) {
3082     xpp.red = true;
3083     root = rotateLeft(root, xpp);
3084     }
3085     }
3086     }
3087     }
3088     }
3089 dl 1.119 }
3090    
3091 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3092     TreeNode<K,V> x) {
3093 jsr166 1.256 for (TreeNode<K,V> xp, xpl, xpr;;) {
3094 dl 1.222 if (x == null || x == root)
3095     return root;
3096     else if ((xp = x.parent) == null) {
3097     x.red = false;
3098     return x;
3099     }
3100     else if (x.red) {
3101     x.red = false;
3102     return root;
3103     }
3104     else if ((xpl = xp.left) == x) {
3105     if ((xpr = xp.right) != null && xpr.red) {
3106     xpr.red = false;
3107     xp.red = true;
3108     root = rotateLeft(root, xp);
3109     xpr = (xp = x.parent) == null ? null : xp.right;
3110     }
3111     if (xpr == null)
3112     x = xp;
3113     else {
3114     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3115     if ((sr == null || !sr.red) &&
3116     (sl == null || !sl.red)) {
3117     xpr.red = true;
3118     x = xp;
3119     }
3120     else {
3121     if (sr == null || !sr.red) {
3122     if (sl != null)
3123     sl.red = false;
3124     xpr.red = true;
3125     root = rotateRight(root, xpr);
3126     xpr = (xp = x.parent) == null ?
3127     null : xp.right;
3128     }
3129     if (xpr != null) {
3130     xpr.red = (xp == null) ? false : xp.red;
3131     if ((sr = xpr.right) != null)
3132     sr.red = false;
3133     }
3134     if (xp != null) {
3135     xp.red = false;
3136     root = rotateLeft(root, xp);
3137     }
3138     x = root;
3139     }
3140     }
3141     }
3142     else { // symmetric
3143     if (xpl != null && xpl.red) {
3144     xpl.red = false;
3145     xp.red = true;
3146     root = rotateRight(root, xp);
3147     xpl = (xp = x.parent) == null ? null : xp.left;
3148     }
3149     if (xpl == null)
3150     x = xp;
3151     else {
3152     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3153     if ((sl == null || !sl.red) &&
3154     (sr == null || !sr.red)) {
3155     xpl.red = true;
3156     x = xp;
3157     }
3158     else {
3159     if (sl == null || !sl.red) {
3160     if (sr != null)
3161     sr.red = false;
3162     xpl.red = true;
3163     root = rotateLeft(root, xpl);
3164     xpl = (xp = x.parent) == null ?
3165     null : xp.left;
3166     }
3167     if (xpl != null) {
3168     xpl.red = (xp == null) ? false : xp.red;
3169     if ((sl = xpl.left) != null)
3170     sl.red = false;
3171     }
3172     if (xp != null) {
3173     xp.red = false;
3174     root = rotateRight(root, xp);
3175     }
3176     x = root;
3177     }
3178     }
3179     }
3180     }
3181 dl 1.210 }
3182 jsr166 1.225
3183 dl 1.222 /**
3184     * Recursive invariant check
3185     */
3186 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3187 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3188     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3189     if (tb != null && tb.next != t)
3190     return false;
3191     if (tn != null && tn.prev != t)
3192     return false;
3193     if (tp != null && t != tp.left && t != tp.right)
3194     return false;
3195     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3196     return false;
3197     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3198     return false;
3199     if (t.red && tl != null && tl.red && tr != null && tr.red)
3200     return false;
3201 dl 1.224 if (tl != null && !checkInvariants(tl))
3202 dl 1.222 return false;
3203 dl 1.224 if (tr != null && !checkInvariants(tr))
3204 dl 1.210 return false;
3205     return true;
3206     }
3207 dl 1.146
3208 dl 1.222 private static final sun.misc.Unsafe U;
3209     private static final long LOCKSTATE;
3210     static {
3211     try {
3212     U = sun.misc.Unsafe.getUnsafe();
3213     Class<?> k = TreeBin.class;
3214     LOCKSTATE = U.objectFieldOffset
3215     (k.getDeclaredField("lockState"));
3216     } catch (Exception e) {
3217     throw new Error(e);
3218     }
3219 dl 1.146 }
3220 dl 1.119 }
3221    
3222 dl 1.222 /* ----------------Table Traversal -------------- */
3223    
3224 jsr166 1.247 /**
3225     * Records the table, its length, and current traversal index for a
3226     * traverser that must process a region of a forwarded table before
3227     * proceeding with current table.
3228     */
3229     static final class TableStack<K,V> {
3230 dl 1.246 int length;
3231     int index;
3232     Node<K,V>[] tab;
3233 jsr166 1.247 TableStack<K,V> next;
3234 dl 1.246 }
3235    
3236 dl 1.222 /**
3237     * Encapsulates traversal for methods such as containsValue; also
3238     * serves as a base class for other iterators and spliterators.
3239     *
3240     * Method advance visits once each still-valid node that was
3241     * reachable upon iterator construction. It might miss some that
3242     * were added to a bin after the bin was visited, which is OK wrt
3243     * consistency guarantees. Maintaining this property in the face
3244     * of possible ongoing resizes requires a fair amount of
3245     * bookkeeping state that is difficult to optimize away amidst
3246     * volatile accesses. Even so, traversal maintains reasonable
3247     * throughput.
3248     *
3249     * Normally, iteration proceeds bin-by-bin traversing lists.
3250     * However, if the table has been resized, then all future steps
3251     * must traverse both the bin at the current index as well as at
3252     * (index + baseSize); and so on for further resizings. To
3253     * paranoically cope with potential sharing by users of iterators
3254     * across threads, iteration terminates if a bounds checks fails
3255     * for a table read.
3256     */
3257     static class Traverser<K,V> {
3258     Node<K,V>[] tab; // current table; updated if resized
3259     Node<K,V> next; // the next entry to use
3260 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3261 dl 1.222 int index; // index of bin to use next
3262     int baseIndex; // current index of initial table
3263     int baseLimit; // index bound for initial table
3264     final int baseSize; // initial table size
3265    
3266     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3267     this.tab = tab;
3268     this.baseSize = size;
3269     this.baseIndex = this.index = index;
3270     this.baseLimit = limit;
3271     this.next = null;
3272     }
3273    
3274     /**
3275     * Advances if possible, returning next valid node, or null if none.
3276     */
3277     final Node<K,V> advance() {
3278     Node<K,V> e;
3279     if ((e = next) != null)
3280     e = e.next;
3281     for (;;) {
3282 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3283 dl 1.222 if (e != null)
3284     return next = e;
3285     if (baseIndex >= baseLimit || (t = tab) == null ||
3286     (n = t.length) <= (i = index) || i < 0)
3287     return next = null;
3288 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3289 dl 1.222 if (e instanceof ForwardingNode) {
3290     tab = ((ForwardingNode<K,V>)e).nextTable;
3291     e = null;
3292 dl 1.246 pushState(t, i, n);
3293 dl 1.222 continue;
3294     }
3295     else if (e instanceof TreeBin)
3296     e = ((TreeBin<K,V>)e).first;
3297     else
3298     e = null;
3299     }
3300 dl 1.246 if (stack != null)
3301     recoverState(n);
3302     else if ((index = i + baseSize) >= n)
3303     index = ++baseIndex; // visit upper slots if present
3304 dl 1.222 }
3305     }
3306 dl 1.246
3307     /**
3308 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3309 dl 1.246 */
3310     private void pushState(Node<K,V>[] t, int i, int n) {
3311     TableStack<K,V> s = spare; // reuse if possible
3312     if (s != null)
3313     spare = s.next;
3314     else
3315     s = new TableStack<K,V>();
3316     s.tab = t;
3317     s.length = n;
3318     s.index = i;
3319     s.next = stack;
3320     stack = s;
3321     }
3322    
3323     /**
3324 jsr166 1.249 * Possibly pops traversal state.
3325 dl 1.246 *
3326     * @param n length of current table
3327     */
3328     private void recoverState(int n) {
3329     TableStack<K,V> s; int len;
3330     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3331     n = len;
3332     index = s.index;
3333     tab = s.tab;
3334     s.tab = null;
3335     TableStack<K,V> next = s.next;
3336     s.next = spare; // save for reuse
3337     stack = next;
3338     spare = s;
3339     }
3340     if (s == null && (index += baseSize) >= n)
3341     index = ++baseIndex;
3342     }
3343 dl 1.222 }
3344    
3345     /**
3346     * Base of key, value, and entry Iterators. Adds fields to
3347 jsr166 1.229 * Traverser to support iterator.remove.
3348 dl 1.222 */
3349     static class BaseIterator<K,V> extends Traverser<K,V> {
3350     final ConcurrentHashMap<K,V> map;
3351     Node<K,V> lastReturned;
3352     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3353     ConcurrentHashMap<K,V> map) {
3354 dl 1.210 super(tab, size, index, limit);
3355     this.map = map;
3356 dl 1.222 advance();
3357 dl 1.210 }
3358    
3359 dl 1.222 public final boolean hasNext() { return next != null; }
3360     public final boolean hasMoreElements() { return next != null; }
3361    
3362     public final void remove() {
3363     Node<K,V> p;
3364     if ((p = lastReturned) == null)
3365     throw new IllegalStateException();
3366     lastReturned = null;
3367     map.replaceNode(p.key, null, null);
3368 dl 1.210 }
3369 dl 1.222 }
3370 dl 1.210
3371 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3372     implements Iterator<K>, Enumeration<K> {
3373     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3374     ConcurrentHashMap<K,V> map) {
3375     super(tab, index, size, limit, map);
3376 dl 1.210 }
3377    
3378 dl 1.222 public final K next() {
3379 dl 1.210 Node<K,V> p;
3380 dl 1.222 if ((p = next) == null)
3381     throw new NoSuchElementException();
3382     K k = p.key;
3383     lastReturned = p;
3384     advance();
3385     return k;
3386 dl 1.210 }
3387    
3388 dl 1.222 public final K nextElement() { return next(); }
3389     }
3390    
3391     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3392     implements Iterator<V>, Enumeration<V> {
3393     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3394     ConcurrentHashMap<K,V> map) {
3395     super(tab, index, size, limit, map);
3396     }
3397 dl 1.210
3398 dl 1.222 public final V next() {
3399     Node<K,V> p;
3400     if ((p = next) == null)
3401     throw new NoSuchElementException();
3402     V v = p.val;
3403     lastReturned = p;
3404     advance();
3405     return v;
3406 dl 1.210 }
3407 dl 1.222
3408     public final V nextElement() { return next(); }
3409 dl 1.210 }
3410    
3411 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3412     implements Iterator<Map.Entry<K,V>> {
3413     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3414     ConcurrentHashMap<K,V> map) {
3415     super(tab, index, size, limit, map);
3416     }
3417 dl 1.210
3418 dl 1.222 public final Map.Entry<K,V> next() {
3419     Node<K,V> p;
3420     if ((p = next) == null)
3421     throw new NoSuchElementException();
3422     K k = p.key;
3423     V v = p.val;
3424     lastReturned = p;
3425     advance();
3426     return new MapEntry<K,V>(k, v, map);
3427     }
3428     }
3429 dl 1.119
3430     /**
3431 dl 1.222 * Exported Entry for EntryIterator
3432 dl 1.119 */
3433 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3434     final K key; // non-null
3435     V val; // non-null
3436     final ConcurrentHashMap<K,V> map;
3437     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3438     this.key = key;
3439     this.val = val;
3440     this.map = map;
3441     }
3442     public K getKey() { return key; }
3443     public V getValue() { return val; }
3444     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3445     public String toString() { return key + "=" + val; }
3446 dl 1.119
3447 dl 1.222 public boolean equals(Object o) {
3448     Object k, v; Map.Entry<?,?> e;
3449     return ((o instanceof Map.Entry) &&
3450     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3451     (v = e.getValue()) != null &&
3452     (k == key || k.equals(key)) &&
3453     (v == val || v.equals(val)));
3454     }
3455 dl 1.119
3456 dl 1.222 /**
3457     * Sets our entry's value and writes through to the map. The
3458     * value to return is somewhat arbitrary here. Since we do not
3459     * necessarily track asynchronous changes, the most recent
3460     * "previous" value could be different from what we return (or
3461     * could even have been removed, in which case the put will
3462     * re-establish). We do not and cannot guarantee more.
3463     */
3464     public V setValue(V value) {
3465     if (value == null) throw new NullPointerException();
3466     V v = val;
3467     val = value;
3468     map.put(key, value);
3469     return v;
3470     }
3471 dl 1.119 }
3472    
3473 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3474     implements Spliterator<K> {
3475     long est; // size estimate
3476     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3477     long est) {
3478     super(tab, size, index, limit);
3479     this.est = est;
3480     }
3481 dl 1.119
3482 dl 1.222 public Spliterator<K> trySplit() {
3483     int i, f, h;
3484     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3485     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3486     f, est >>>= 1);
3487 dl 1.119 }
3488    
3489 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3490     if (action == null) throw new NullPointerException();
3491     for (Node<K,V> p; (p = advance()) != null;)
3492     action.accept(p.key);
3493 dl 1.119 }
3494    
3495 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3496     if (action == null) throw new NullPointerException();
3497     Node<K,V> p;
3498     if ((p = advance()) == null)
3499 dl 1.119 return false;
3500 dl 1.222 action.accept(p.key);
3501     return true;
3502 dl 1.119 }
3503    
3504 dl 1.222 public long estimateSize() { return est; }
3505 dl 1.119
3506 dl 1.222 public int characteristics() {
3507     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3508     Spliterator.NONNULL;
3509     }
3510 dl 1.142 }
3511 dl 1.119
3512 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3513     implements Spliterator<V> {
3514     long est; // size estimate
3515     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3516     long est) {
3517     super(tab, size, index, limit);
3518     this.est = est;
3519 dl 1.209 }
3520    
3521 dl 1.222 public Spliterator<V> trySplit() {
3522     int i, f, h;
3523     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3524     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3525     f, est >>>= 1);
3526 dl 1.142 }
3527 dl 1.119
3528 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3529     if (action == null) throw new NullPointerException();
3530     for (Node<K,V> p; (p = advance()) != null;)
3531     action.accept(p.val);
3532     }
3533 dl 1.119
3534 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3535     if (action == null) throw new NullPointerException();
3536     Node<K,V> p;
3537     if ((p = advance()) == null)
3538     return false;
3539     action.accept(p.val);
3540     return true;
3541 dl 1.119 }
3542 dl 1.222
3543     public long estimateSize() { return est; }
3544    
3545     public int characteristics() {
3546     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3547 dl 1.119 }
3548 dl 1.142 }
3549 dl 1.119
3550 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3551     implements Spliterator<Map.Entry<K,V>> {
3552     final ConcurrentHashMap<K,V> map; // To export MapEntry
3553     long est; // size estimate
3554     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3555     long est, ConcurrentHashMap<K,V> map) {
3556     super(tab, size, index, limit);
3557     this.map = map;
3558     this.est = est;
3559     }
3560    
3561     public Spliterator<Map.Entry<K,V>> trySplit() {
3562     int i, f, h;
3563     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3564     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3565     f, est >>>= 1, map);
3566     }
3567 dl 1.142
3568 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3569     if (action == null) throw new NullPointerException();
3570     for (Node<K,V> p; (p = advance()) != null; )
3571     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3572     }
3573 dl 1.210
3574 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3575     if (action == null) throw new NullPointerException();
3576     Node<K,V> p;
3577     if ((p = advance()) == null)
3578     return false;
3579     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3580     return true;
3581 dl 1.210 }
3582    
3583 dl 1.222 public long estimateSize() { return est; }
3584    
3585     public int characteristics() {
3586     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3587     Spliterator.NONNULL;
3588 dl 1.210 }
3589     }
3590    
3591     // Parallel bulk operations
3592    
3593     /**
3594     * Computes initial batch value for bulk tasks. The returned value
3595     * is approximately exp2 of the number of times (minus one) to
3596     * split task by two before executing leaf action. This value is
3597     * faster to compute and more convenient to use as a guide to
3598     * splitting than is the depth, since it is used while dividing by
3599     * two anyway.
3600     */
3601     final int batchFor(long b) {
3602     long n;
3603     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3604     return 0;
3605     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3606     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3607     }
3608 dl 1.151
3609 dl 1.119 /**
3610 dl 1.137 * Performs the given action for each (key, value).
3611 dl 1.119 *
3612 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3613 jsr166 1.213 * needed for this operation to be executed in parallel
3614 dl 1.137 * @param action the action
3615 jsr166 1.220 * @since 1.8
3616 dl 1.119 */
3617 dl 1.210 public void forEach(long parallelismThreshold,
3618     BiConsumer<? super K,? super V> action) {
3619 dl 1.151 if (action == null) throw new NullPointerException();
3620 dl 1.210 new ForEachMappingTask<K,V>
3621     (null, batchFor(parallelismThreshold), 0, 0, table,
3622     action).invoke();
3623 dl 1.119 }
3624    
3625     /**
3626 dl 1.137 * Performs the given action for each non-null transformation
3627     * of each (key, value).
3628     *
3629 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3630 jsr166 1.213 * needed for this operation to be executed in parallel
3631 dl 1.137 * @param transformer a function returning the transformation
3632 jsr166 1.169 * for an element, or null if there is no transformation (in
3633 jsr166 1.172 * which case the action is not applied)
3634 dl 1.137 * @param action the action
3635 jsr166 1.237 * @param <U> the return type of the transformer
3636 jsr166 1.220 * @since 1.8
3637 dl 1.119 */
3638 dl 1.210 public <U> void forEach(long parallelismThreshold,
3639     BiFunction<? super K, ? super V, ? extends U> transformer,
3640     Consumer<? super U> action) {
3641 dl 1.151 if (transformer == null || action == null)
3642     throw new NullPointerException();
3643 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3644     (null, batchFor(parallelismThreshold), 0, 0, table,
3645     transformer, action).invoke();
3646 dl 1.137 }
3647    
3648     /**
3649     * Returns a non-null result from applying the given search
3650 dl 1.210 * function on each (key, value), or null if none. Upon
3651     * success, further element processing is suppressed and the
3652     * results of any other parallel invocations of the search
3653     * function are ignored.
3654 dl 1.137 *
3655 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3656 jsr166 1.213 * needed for this operation to be executed in parallel
3657 dl 1.137 * @param searchFunction a function returning a non-null
3658     * result on success, else null
3659 jsr166 1.237 * @param <U> the return type of the search function
3660 dl 1.137 * @return a non-null result from applying the given search
3661     * function on each (key, value), or null if none
3662 jsr166 1.220 * @since 1.8
3663 dl 1.137 */
3664 dl 1.210 public <U> U search(long parallelismThreshold,
3665     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3666 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3667 dl 1.210 return new SearchMappingsTask<K,V,U>
3668     (null, batchFor(parallelismThreshold), 0, 0, table,
3669     searchFunction, new AtomicReference<U>()).invoke();
3670 dl 1.137 }
3671    
3672     /**
3673     * Returns the result of accumulating the given transformation
3674     * of all (key, value) pairs using the given reducer to
3675     * combine values, or null if none.
3676     *
3677 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3678 jsr166 1.213 * needed for this operation to be executed in parallel
3679 dl 1.137 * @param transformer a function returning the transformation
3680 jsr166 1.169 * for an element, or null if there is no transformation (in
3681 jsr166 1.172 * which case it is not combined)
3682 dl 1.137 * @param reducer a commutative associative combining function
3683 jsr166 1.237 * @param <U> the return type of the transformer
3684 dl 1.137 * @return the result of accumulating the given transformation
3685     * of all (key, value) pairs
3686 jsr166 1.220 * @since 1.8
3687 dl 1.137 */
3688 dl 1.210 public <U> U reduce(long parallelismThreshold,
3689     BiFunction<? super K, ? super V, ? extends U> transformer,
3690     BiFunction<? super U, ? super U, ? extends U> reducer) {
3691 dl 1.151 if (transformer == null || reducer == null)
3692     throw new NullPointerException();
3693 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3694     (null, batchFor(parallelismThreshold), 0, 0, table,
3695     null, transformer, reducer).invoke();
3696 dl 1.137 }
3697    
3698     /**
3699     * Returns the result of accumulating the given transformation
3700     * of all (key, value) pairs using the given reducer to
3701     * combine values, and the given basis as an identity value.
3702     *
3703 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3704 jsr166 1.213 * needed for this operation to be executed in parallel
3705 dl 1.137 * @param transformer a function returning the transformation
3706     * for an element
3707     * @param basis the identity (initial default value) for the reduction
3708     * @param reducer a commutative associative combining function
3709     * @return the result of accumulating the given transformation
3710     * of all (key, value) pairs
3711 jsr166 1.220 * @since 1.8
3712 dl 1.137 */
3713 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3714     ToDoubleBiFunction<? super K, ? super V> transformer,
3715     double basis,
3716     DoubleBinaryOperator reducer) {
3717 dl 1.151 if (transformer == null || reducer == null)
3718     throw new NullPointerException();
3719 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3720     (null, batchFor(parallelismThreshold), 0, 0, table,
3721     null, transformer, basis, reducer).invoke();
3722 dl 1.137 }
3723 dl 1.119
3724 dl 1.137 /**
3725     * Returns the result of accumulating the given transformation
3726     * of all (key, value) pairs using the given reducer to
3727     * combine values, and the given basis as an identity value.
3728     *
3729 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3730 jsr166 1.213 * needed for this operation to be executed in parallel
3731 dl 1.137 * @param transformer a function returning the transformation
3732     * for an element
3733     * @param basis the identity (initial default value) for the reduction
3734     * @param reducer a commutative associative combining function
3735     * @return the result of accumulating the given transformation
3736     * of all (key, value) pairs
3737 jsr166 1.220 * @since 1.8
3738 dl 1.137 */
3739 dl 1.210 public long reduceToLong(long parallelismThreshold,
3740     ToLongBiFunction<? super K, ? super V> transformer,
3741     long basis,
3742     LongBinaryOperator reducer) {
3743 dl 1.151 if (transformer == null || reducer == null)
3744     throw new NullPointerException();
3745 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3746     (null, batchFor(parallelismThreshold), 0, 0, table,
3747     null, transformer, basis, reducer).invoke();
3748 dl 1.137 }
3749    
3750     /**
3751     * Returns the result of accumulating the given transformation
3752     * of all (key, value) pairs using the given reducer to
3753     * combine values, and the given basis as an identity value.
3754     *
3755 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3756 jsr166 1.213 * needed for this operation to be executed in parallel
3757 dl 1.137 * @param transformer a function returning the transformation
3758     * for an element
3759     * @param basis the identity (initial default value) for the reduction
3760     * @param reducer a commutative associative combining function
3761     * @return the result of accumulating the given transformation
3762     * of all (key, value) pairs
3763 jsr166 1.220 * @since 1.8
3764 dl 1.137 */
3765 dl 1.210 public int reduceToInt(long parallelismThreshold,
3766     ToIntBiFunction<? super K, ? super V> transformer,
3767     int basis,
3768     IntBinaryOperator reducer) {
3769 dl 1.151 if (transformer == null || reducer == null)
3770     throw new NullPointerException();
3771 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3772     (null, batchFor(parallelismThreshold), 0, 0, table,
3773     null, transformer, basis, reducer).invoke();
3774 dl 1.137 }
3775    
3776     /**
3777     * Performs the given action for each key.
3778     *
3779 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3780 jsr166 1.213 * needed for this operation to be executed in parallel
3781 dl 1.137 * @param action the action
3782 jsr166 1.220 * @since 1.8
3783 dl 1.137 */
3784 dl 1.210 public void forEachKey(long parallelismThreshold,
3785     Consumer<? super K> action) {
3786     if (action == null) throw new NullPointerException();
3787     new ForEachKeyTask<K,V>
3788     (null, batchFor(parallelismThreshold), 0, 0, table,
3789     action).invoke();
3790 dl 1.137 }
3791 dl 1.119
3792 dl 1.137 /**
3793     * Performs the given action for each non-null transformation
3794     * of each key.
3795     *
3796 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3797 jsr166 1.213 * needed for this operation to be executed in parallel
3798 dl 1.137 * @param transformer a function returning the transformation
3799 jsr166 1.169 * for an element, or null if there is no transformation (in
3800 jsr166 1.172 * which case the action is not applied)
3801 dl 1.137 * @param action the action
3802 jsr166 1.237 * @param <U> the return type of the transformer
3803 jsr166 1.220 * @since 1.8
3804 dl 1.137 */
3805 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3806     Function<? super K, ? extends U> transformer,
3807     Consumer<? super U> action) {
3808 dl 1.151 if (transformer == null || action == null)
3809     throw new NullPointerException();
3810 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3811     (null, batchFor(parallelismThreshold), 0, 0, table,
3812     transformer, action).invoke();
3813 dl 1.137 }
3814 dl 1.119
3815 dl 1.137 /**
3816     * Returns a non-null result from applying the given search
3817 dl 1.210 * function on each key, or null if none. Upon success,
3818     * further element processing is suppressed and the results of
3819     * any other parallel invocations of the search function are
3820     * ignored.
3821 dl 1.137 *
3822 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3823 jsr166 1.213 * needed for this operation to be executed in parallel
3824 dl 1.137 * @param searchFunction a function returning a non-null
3825     * result on success, else null
3826 jsr166 1.237 * @param <U> the return type of the search function
3827 dl 1.137 * @return a non-null result from applying the given search
3828     * function on each key, or null if none
3829 jsr166 1.220 * @since 1.8
3830 dl 1.137 */
3831 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3832     Function<? super K, ? extends U> searchFunction) {
3833     if (searchFunction == null) throw new NullPointerException();
3834     return new SearchKeysTask<K,V,U>
3835     (null, batchFor(parallelismThreshold), 0, 0, table,
3836     searchFunction, new AtomicReference<U>()).invoke();
3837 dl 1.137 }
3838 dl 1.119
3839 dl 1.137 /**
3840     * Returns the result of accumulating all keys using the given
3841     * reducer to combine values, or null if none.
3842     *
3843 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3844 jsr166 1.213 * needed for this operation to be executed in parallel
3845 dl 1.137 * @param reducer a commutative associative combining function
3846     * @return the result of accumulating all keys using the given
3847     * reducer to combine values, or null if none
3848 jsr166 1.220 * @since 1.8
3849 dl 1.137 */
3850 dl 1.210 public K reduceKeys(long parallelismThreshold,
3851     BiFunction<? super K, ? super K, ? extends K> reducer) {
3852 dl 1.151 if (reducer == null) throw new NullPointerException();
3853 dl 1.210 return new ReduceKeysTask<K,V>
3854     (null, batchFor(parallelismThreshold), 0, 0, table,
3855     null, reducer).invoke();
3856 dl 1.137 }
3857 dl 1.119
3858 dl 1.137 /**
3859     * Returns the result of accumulating the given transformation
3860     * of all keys using the given reducer to combine values, or
3861     * null if none.
3862     *
3863 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3864 jsr166 1.213 * needed for this operation to be executed in parallel
3865 dl 1.137 * @param transformer a function returning the transformation
3866 jsr166 1.169 * for an element, or null if there is no transformation (in
3867 jsr166 1.172 * which case it is not combined)
3868 dl 1.137 * @param reducer a commutative associative combining function
3869 jsr166 1.237 * @param <U> the return type of the transformer
3870 dl 1.137 * @return the result of accumulating the given transformation
3871     * of all keys
3872 jsr166 1.220 * @since 1.8
3873 dl 1.137 */
3874 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3875     Function<? super K, ? extends U> transformer,
3876 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3877 dl 1.151 if (transformer == null || reducer == null)
3878     throw new NullPointerException();
3879 dl 1.210 return new MapReduceKeysTask<K,V,U>
3880     (null, batchFor(parallelismThreshold), 0, 0, table,
3881     null, transformer, reducer).invoke();
3882 dl 1.137 }
3883 dl 1.119
3884 dl 1.137 /**
3885     * Returns the result of accumulating the given transformation
3886     * of all keys using the given reducer to combine values, and
3887     * the given basis as an identity value.
3888     *
3889 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3890 jsr166 1.213 * needed for this operation to be executed in parallel
3891 dl 1.137 * @param transformer a function returning the transformation
3892     * for an element
3893     * @param basis the identity (initial default value) for the reduction
3894     * @param reducer a commutative associative combining function
3895 jsr166 1.157 * @return the result of accumulating the given transformation
3896 dl 1.137 * of all keys
3897 jsr166 1.220 * @since 1.8
3898 dl 1.137 */
3899 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3900     ToDoubleFunction<? super K> transformer,
3901     double basis,
3902     DoubleBinaryOperator reducer) {
3903 dl 1.151 if (transformer == null || reducer == null)
3904     throw new NullPointerException();
3905 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3906     (null, batchFor(parallelismThreshold), 0, 0, table,
3907     null, transformer, basis, reducer).invoke();
3908 dl 1.137 }
3909 dl 1.119
3910 dl 1.137 /**
3911     * Returns the result of accumulating the given transformation
3912     * of all keys using the given reducer to combine values, and
3913     * the given basis as an identity value.
3914     *
3915 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3916 jsr166 1.213 * needed for this operation to be executed in parallel
3917 dl 1.137 * @param transformer a function returning the transformation
3918     * for an element
3919     * @param basis the identity (initial default value) for the reduction
3920     * @param reducer a commutative associative combining function
3921     * @return the result of accumulating the given transformation
3922     * of all keys
3923 jsr166 1.220 * @since 1.8
3924 dl 1.137 */
3925 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3926     ToLongFunction<? super K> transformer,
3927     long basis,
3928     LongBinaryOperator reducer) {
3929 dl 1.151 if (transformer == null || reducer == null)
3930     throw new NullPointerException();
3931 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3932     (null, batchFor(parallelismThreshold), 0, 0, table,
3933     null, transformer, basis, reducer).invoke();
3934 dl 1.137 }
3935 dl 1.119
3936 dl 1.137 /**
3937     * Returns the result of accumulating the given transformation
3938     * of all keys using the given reducer to combine values, and
3939     * the given basis as an identity value.
3940     *
3941 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3942 jsr166 1.213 * needed for this operation to be executed in parallel
3943 dl 1.137 * @param transformer a function returning the transformation
3944     * for an element
3945     * @param basis the identity (initial default value) for the reduction
3946     * @param reducer a commutative associative combining function
3947     * @return the result of accumulating the given transformation
3948     * of all keys
3949 jsr166 1.220 * @since 1.8
3950 dl 1.137 */
3951 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
3952     ToIntFunction<? super K> transformer,
3953     int basis,
3954     IntBinaryOperator reducer) {
3955 dl 1.151 if (transformer == null || reducer == null)
3956     throw new NullPointerException();
3957 dl 1.210 return new MapReduceKeysToIntTask<K,V>
3958     (null, batchFor(parallelismThreshold), 0, 0, table,
3959     null, transformer, basis, reducer).invoke();
3960 dl 1.137 }
3961 dl 1.119
3962 dl 1.137 /**
3963     * Performs the given action for each value.
3964     *
3965 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3966 jsr166 1.213 * needed for this operation to be executed in parallel
3967 dl 1.137 * @param action the action
3968 jsr166 1.220 * @since 1.8
3969 dl 1.137 */
3970 dl 1.210 public void forEachValue(long parallelismThreshold,
3971     Consumer<? super V> action) {
3972     if (action == null)
3973     throw new NullPointerException();
3974     new ForEachValueTask<K,V>
3975     (null, batchFor(parallelismThreshold), 0, 0, table,
3976     action).invoke();
3977 dl 1.137 }
3978 dl 1.119
3979 dl 1.137 /**
3980     * Performs the given action for each non-null transformation
3981     * of each value.
3982     *
3983 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3984 jsr166 1.213 * needed for this operation to be executed in parallel
3985 dl 1.137 * @param transformer a function returning the transformation
3986 jsr166 1.169 * for an element, or null if there is no transformation (in
3987 jsr166 1.172 * which case the action is not applied)
3988 jsr166 1.179 * @param action the action
3989 jsr166 1.237 * @param <U> the return type of the transformer
3990 jsr166 1.220 * @since 1.8
3991 dl 1.137 */
3992 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
3993     Function<? super V, ? extends U> transformer,
3994     Consumer<? super U> action) {
3995 dl 1.151 if (transformer == null || action == null)
3996     throw new NullPointerException();
3997 dl 1.210 new ForEachTransformedValueTask<K,V,U>
3998     (null, batchFor(parallelismThreshold), 0, 0, table,
3999     transformer, action).invoke();
4000 dl 1.137 }
4001 dl 1.119
4002 dl 1.137 /**
4003     * Returns a non-null result from applying the given search
4004 dl 1.210 * function on each value, or null if none. Upon success,
4005     * further element processing is suppressed and the results of
4006     * any other parallel invocations of the search function are
4007     * ignored.
4008 dl 1.137 *
4009 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4010 jsr166 1.213 * needed for this operation to be executed in parallel
4011 dl 1.137 * @param searchFunction a function returning a non-null
4012     * result on success, else null
4013 jsr166 1.237 * @param <U> the return type of the search function
4014 dl 1.137 * @return a non-null result from applying the given search
4015     * function on each value, or null if none
4016 jsr166 1.220 * @since 1.8
4017 dl 1.137 */
4018 dl 1.210 public <U> U searchValues(long parallelismThreshold,
4019     Function<? super V, ? extends U> searchFunction) {
4020 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4021 dl 1.210 return new SearchValuesTask<K,V,U>
4022     (null, batchFor(parallelismThreshold), 0, 0, table,
4023     searchFunction, new AtomicReference<U>()).invoke();
4024 dl 1.137 }
4025 dl 1.119
4026 dl 1.137 /**
4027     * Returns the result of accumulating all values using the
4028     * given reducer to combine values, or null if none.
4029     *
4030 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4031 jsr166 1.213 * needed for this operation to be executed in parallel
4032 dl 1.137 * @param reducer a commutative associative combining function
4033 jsr166 1.157 * @return the result of accumulating all values
4034 jsr166 1.220 * @since 1.8
4035 dl 1.137 */
4036 dl 1.210 public V reduceValues(long parallelismThreshold,
4037     BiFunction<? super V, ? super V, ? extends V> reducer) {
4038 dl 1.151 if (reducer == null) throw new NullPointerException();
4039 dl 1.210 return new ReduceValuesTask<K,V>
4040     (null, batchFor(parallelismThreshold), 0, 0, table,
4041     null, reducer).invoke();
4042 dl 1.137 }
4043 dl 1.119
4044 dl 1.137 /**
4045     * Returns the result of accumulating the given transformation
4046     * of all values using the given reducer to combine values, or
4047     * null if none.
4048     *
4049 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4050 jsr166 1.213 * needed for this operation to be executed in parallel
4051 dl 1.137 * @param transformer a function returning the transformation
4052 jsr166 1.169 * for an element, or null if there is no transformation (in
4053 jsr166 1.172 * which case it is not combined)
4054 dl 1.137 * @param reducer a commutative associative combining function
4055 jsr166 1.237 * @param <U> the return type of the transformer
4056 dl 1.137 * @return the result of accumulating the given transformation
4057     * of all values
4058 jsr166 1.220 * @since 1.8
4059 dl 1.137 */
4060 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4061     Function<? super V, ? extends U> transformer,
4062     BiFunction<? super U, ? super U, ? extends U> reducer) {
4063 dl 1.151 if (transformer == null || reducer == null)
4064     throw new NullPointerException();
4065 dl 1.210 return new MapReduceValuesTask<K,V,U>
4066     (null, batchFor(parallelismThreshold), 0, 0, table,
4067     null, transformer, reducer).invoke();
4068 dl 1.137 }
4069 dl 1.119
4070 dl 1.137 /**
4071     * Returns the result of accumulating the given transformation
4072     * of all values using the given reducer to combine values,
4073     * and the given basis as an identity value.
4074     *
4075 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4076 jsr166 1.213 * needed for this operation to be executed in parallel
4077 dl 1.137 * @param transformer a function returning the transformation
4078     * for an element
4079     * @param basis the identity (initial default value) for the reduction
4080     * @param reducer a commutative associative combining function
4081     * @return the result of accumulating the given transformation
4082     * of all values
4083 jsr166 1.220 * @since 1.8
4084 dl 1.137 */
4085 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4086     ToDoubleFunction<? super V> transformer,
4087     double basis,
4088     DoubleBinaryOperator reducer) {
4089 dl 1.151 if (transformer == null || reducer == null)
4090     throw new NullPointerException();
4091 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4092     (null, batchFor(parallelismThreshold), 0, 0, table,
4093     null, transformer, basis, reducer).invoke();
4094 dl 1.137 }
4095 dl 1.119
4096 dl 1.137 /**
4097     * Returns the result of accumulating the given transformation
4098     * of all values using the given reducer to combine values,
4099     * and the given basis as an identity value.
4100     *
4101 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4102 jsr166 1.213 * needed for this operation to be executed in parallel
4103 dl 1.137 * @param transformer a function returning the transformation
4104     * for an element
4105     * @param basis the identity (initial default value) for the reduction
4106     * @param reducer a commutative associative combining function
4107     * @return the result of accumulating the given transformation
4108     * of all values
4109 jsr166 1.220 * @since 1.8
4110 dl 1.137 */
4111 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4112     ToLongFunction<? super V> transformer,
4113     long basis,
4114     LongBinaryOperator reducer) {
4115 dl 1.151 if (transformer == null || reducer == null)
4116     throw new NullPointerException();
4117 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4118     (null, batchFor(parallelismThreshold), 0, 0, table,
4119     null, transformer, basis, reducer).invoke();
4120 dl 1.137 }
4121 dl 1.119
4122 dl 1.137 /**
4123     * Returns the result of accumulating the given transformation
4124     * of all values using the given reducer to combine values,
4125     * and the given basis as an identity value.
4126     *
4127 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4128 jsr166 1.213 * needed for this operation to be executed in parallel
4129 dl 1.137 * @param transformer a function returning the transformation
4130     * for an element
4131     * @param basis the identity (initial default value) for the reduction
4132     * @param reducer a commutative associative combining function
4133     * @return the result of accumulating the given transformation
4134     * of all values
4135 jsr166 1.220 * @since 1.8
4136 dl 1.137 */
4137 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4138     ToIntFunction<? super V> transformer,
4139     int basis,
4140     IntBinaryOperator reducer) {
4141 dl 1.151 if (transformer == null || reducer == null)
4142     throw new NullPointerException();
4143 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4144     (null, batchFor(parallelismThreshold), 0, 0, table,
4145     null, transformer, basis, reducer).invoke();
4146 dl 1.137 }
4147 dl 1.119
4148 dl 1.137 /**
4149     * Performs the given action for each entry.
4150     *
4151 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4152 jsr166 1.213 * needed for this operation to be executed in parallel
4153 dl 1.137 * @param action the action
4154 jsr166 1.220 * @since 1.8
4155 dl 1.137 */
4156 dl 1.210 public void forEachEntry(long parallelismThreshold,
4157     Consumer<? super Map.Entry<K,V>> action) {
4158 dl 1.151 if (action == null) throw new NullPointerException();
4159 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4160     action).invoke();
4161 dl 1.137 }
4162 dl 1.119
4163 dl 1.137 /**
4164     * Performs the given action for each non-null transformation
4165     * of each entry.
4166     *
4167 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4168 jsr166 1.213 * needed for this operation to be executed in parallel
4169 dl 1.137 * @param transformer a function returning the transformation
4170 jsr166 1.169 * for an element, or null if there is no transformation (in
4171 jsr166 1.172 * which case the action is not applied)
4172 dl 1.137 * @param action the action
4173 jsr166 1.237 * @param <U> the return type of the transformer
4174 jsr166 1.220 * @since 1.8
4175 dl 1.137 */
4176 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4177     Function<Map.Entry<K,V>, ? extends U> transformer,
4178     Consumer<? super U> action) {
4179 dl 1.151 if (transformer == null || action == null)
4180     throw new NullPointerException();
4181 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4182     (null, batchFor(parallelismThreshold), 0, 0, table,
4183     transformer, action).invoke();
4184 dl 1.137 }
4185 dl 1.119
4186 dl 1.137 /**
4187     * Returns a non-null result from applying the given search
4188 dl 1.210 * function on each entry, or null if none. Upon success,
4189     * further element processing is suppressed and the results of
4190     * any other parallel invocations of the search function are
4191     * ignored.
4192 dl 1.137 *
4193 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4194 jsr166 1.213 * needed for this operation to be executed in parallel
4195 dl 1.137 * @param searchFunction a function returning a non-null
4196     * result on success, else null
4197 jsr166 1.237 * @param <U> the return type of the search function
4198 dl 1.137 * @return a non-null result from applying the given search
4199     * function on each entry, or null if none
4200 jsr166 1.220 * @since 1.8
4201 dl 1.137 */
4202 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4203     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4204 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4205 dl 1.210 return new SearchEntriesTask<K,V,U>
4206     (null, batchFor(parallelismThreshold), 0, 0, table,
4207     searchFunction, new AtomicReference<U>()).invoke();
4208 dl 1.137 }
4209 dl 1.119
4210 dl 1.137 /**
4211     * Returns the result of accumulating all entries using the
4212     * given reducer to combine values, or null if none.
4213     *
4214 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4215 jsr166 1.213 * needed for this operation to be executed in parallel
4216 dl 1.137 * @param reducer a commutative associative combining function
4217     * @return the result of accumulating all entries
4218 jsr166 1.220 * @since 1.8
4219 dl 1.137 */
4220 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4221     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4222 dl 1.151 if (reducer == null) throw new NullPointerException();
4223 dl 1.210 return new ReduceEntriesTask<K,V>
4224     (null, batchFor(parallelismThreshold), 0, 0, table,
4225     null, reducer).invoke();
4226 dl 1.137 }
4227 dl 1.119
4228 dl 1.137 /**
4229     * Returns the result of accumulating the given transformation
4230     * of all entries using the given reducer to combine values,
4231     * or null if none.
4232     *
4233 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4234 jsr166 1.213 * needed for this operation to be executed in parallel
4235 dl 1.137 * @param transformer a function returning the transformation
4236 jsr166 1.169 * for an element, or null if there is no transformation (in
4237 jsr166 1.172 * which case it is not combined)
4238 dl 1.137 * @param reducer a commutative associative combining function
4239 jsr166 1.237 * @param <U> the return type of the transformer
4240 dl 1.137 * @return the result of accumulating the given transformation
4241     * of all entries
4242 jsr166 1.220 * @since 1.8
4243 dl 1.137 */
4244 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4245     Function<Map.Entry<K,V>, ? extends U> transformer,
4246     BiFunction<? super U, ? super U, ? extends U> reducer) {
4247 dl 1.151 if (transformer == null || reducer == null)
4248     throw new NullPointerException();
4249 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4250     (null, batchFor(parallelismThreshold), 0, 0, table,
4251     null, transformer, reducer).invoke();
4252 dl 1.137 }
4253 dl 1.119
4254 dl 1.137 /**
4255     * Returns the result of accumulating the given transformation
4256     * of all entries using the given reducer to combine values,
4257     * and the given basis as an identity value.
4258     *
4259 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4260 jsr166 1.213 * needed for this operation to be executed in parallel
4261 dl 1.137 * @param transformer a function returning the transformation
4262     * for an element
4263     * @param basis the identity (initial default value) for the reduction
4264     * @param reducer a commutative associative combining function
4265     * @return the result of accumulating the given transformation
4266     * of all entries
4267 jsr166 1.220 * @since 1.8
4268 dl 1.137 */
4269 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4270     ToDoubleFunction<Map.Entry<K,V>> transformer,
4271     double basis,
4272     DoubleBinaryOperator reducer) {
4273 dl 1.151 if (transformer == null || reducer == null)
4274     throw new NullPointerException();
4275 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4276     (null, batchFor(parallelismThreshold), 0, 0, table,
4277     null, transformer, basis, reducer).invoke();
4278 dl 1.137 }
4279 dl 1.119
4280 dl 1.137 /**
4281     * Returns the result of accumulating the given transformation
4282     * of all entries using the given reducer to combine values,
4283     * and the given basis as an identity value.
4284     *
4285 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4286 jsr166 1.213 * needed for this operation to be executed in parallel
4287 dl 1.137 * @param transformer a function returning the transformation
4288     * for an element
4289     * @param basis the identity (initial default value) for the reduction
4290     * @param reducer a commutative associative combining function
4291 jsr166 1.157 * @return the result of accumulating the given transformation
4292 dl 1.137 * of all entries
4293 jsr166 1.221 * @since 1.8
4294 dl 1.137 */
4295 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4296     ToLongFunction<Map.Entry<K,V>> transformer,
4297     long basis,
4298     LongBinaryOperator reducer) {
4299 dl 1.151 if (transformer == null || reducer == null)
4300     throw new NullPointerException();
4301 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4302     (null, batchFor(parallelismThreshold), 0, 0, table,
4303     null, transformer, basis, reducer).invoke();
4304 dl 1.137 }
4305 dl 1.119
4306 dl 1.137 /**
4307     * Returns the result of accumulating the given transformation
4308     * of all entries using the given reducer to combine values,
4309     * and the given basis as an identity value.
4310     *
4311 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4312 jsr166 1.213 * needed for this operation to be executed in parallel
4313 dl 1.137 * @param transformer a function returning the transformation
4314     * for an element
4315     * @param basis the identity (initial default value) for the reduction
4316     * @param reducer a commutative associative combining function
4317     * @return the result of accumulating the given transformation
4318     * of all entries
4319 jsr166 1.221 * @since 1.8
4320 dl 1.137 */
4321 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4322     ToIntFunction<Map.Entry<K,V>> transformer,
4323     int basis,
4324     IntBinaryOperator reducer) {
4325 dl 1.151 if (transformer == null || reducer == null)
4326     throw new NullPointerException();
4327 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4328     (null, batchFor(parallelismThreshold), 0, 0, table,
4329     null, transformer, basis, reducer).invoke();
4330 dl 1.119 }
4331    
4332 dl 1.209
4333 dl 1.210 /* ----------------Views -------------- */
4334 dl 1.142
4335     /**
4336 dl 1.210 * Base class for views.
4337 dl 1.142 */
4338 dl 1.210 abstract static class CollectionView<K,V,E>
4339     implements Collection<E>, java.io.Serializable {
4340     private static final long serialVersionUID = 7249069246763182397L;
4341     final ConcurrentHashMap<K,V> map;
4342     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4343    
4344     /**
4345     * Returns the map backing this view.
4346     *
4347     * @return the map backing this view
4348     */
4349     public ConcurrentHashMap<K,V> getMap() { return map; }
4350 dl 1.142
4351 dl 1.210 /**
4352     * Removes all of the elements from this view, by removing all
4353     * the mappings from the map backing this view.
4354 jsr166 1.184 */
4355     public final void clear() { map.clear(); }
4356     public final int size() { return map.size(); }
4357     public final boolean isEmpty() { return map.isEmpty(); }
4358 dl 1.151
4359     // implementations below rely on concrete classes supplying these
4360 jsr166 1.184 // abstract methods
4361     /**
4362 jsr166 1.242 * Returns an iterator over the elements in this collection.
4363     *
4364     * <p>The returned iterator is
4365     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4366     *
4367     * @return an iterator over the elements in this collection
4368 jsr166 1.184 */
4369     public abstract Iterator<E> iterator();
4370 jsr166 1.165 public abstract boolean contains(Object o);
4371     public abstract boolean remove(Object o);
4372 dl 1.151
4373     private static final String oomeMsg = "Required array size too large";
4374 dl 1.142
4375     public final Object[] toArray() {
4376     long sz = map.mappingCount();
4377 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4378 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4379     int n = (int)sz;
4380     Object[] r = new Object[n];
4381     int i = 0;
4382 jsr166 1.184 for (E e : this) {
4383 dl 1.142 if (i == n) {
4384     if (n >= MAX_ARRAY_SIZE)
4385     throw new OutOfMemoryError(oomeMsg);
4386     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4387     n = MAX_ARRAY_SIZE;
4388     else
4389     n += (n >>> 1) + 1;
4390     r = Arrays.copyOf(r, n);
4391     }
4392 jsr166 1.184 r[i++] = e;
4393 dl 1.142 }
4394     return (i == n) ? r : Arrays.copyOf(r, i);
4395     }
4396    
4397 dl 1.222 @SuppressWarnings("unchecked")
4398 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4399 dl 1.142 long sz = map.mappingCount();
4400 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4401 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4402     int m = (int)sz;
4403     T[] r = (a.length >= m) ? a :
4404     (T[])java.lang.reflect.Array
4405     .newInstance(a.getClass().getComponentType(), m);
4406     int n = r.length;
4407     int i = 0;
4408 jsr166 1.184 for (E e : this) {
4409 dl 1.142 if (i == n) {
4410     if (n >= MAX_ARRAY_SIZE)
4411     throw new OutOfMemoryError(oomeMsg);
4412     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4413     n = MAX_ARRAY_SIZE;
4414     else
4415     n += (n >>> 1) + 1;
4416     r = Arrays.copyOf(r, n);
4417     }
4418 jsr166 1.184 r[i++] = (T)e;
4419 dl 1.142 }
4420     if (a == r && i < n) {
4421     r[i] = null; // null-terminate
4422     return r;
4423     }
4424     return (i == n) ? r : Arrays.copyOf(r, i);
4425     }
4426    
4427 jsr166 1.184 /**
4428     * Returns a string representation of this collection.
4429     * The string representation consists of the string representations
4430     * of the collection's elements in the order they are returned by
4431     * its iterator, enclosed in square brackets ({@code "[]"}).
4432     * Adjacent elements are separated by the characters {@code ", "}
4433     * (comma and space). Elements are converted to strings as by
4434     * {@link String#valueOf(Object)}.
4435     *
4436     * @return a string representation of this collection
4437     */
4438 dl 1.142 public final String toString() {
4439     StringBuilder sb = new StringBuilder();
4440     sb.append('[');
4441 jsr166 1.184 Iterator<E> it = iterator();
4442 dl 1.142 if (it.hasNext()) {
4443     for (;;) {
4444     Object e = it.next();
4445     sb.append(e == this ? "(this Collection)" : e);
4446     if (!it.hasNext())
4447     break;
4448     sb.append(',').append(' ');
4449     }
4450     }
4451     return sb.append(']').toString();
4452     }
4453    
4454     public final boolean containsAll(Collection<?> c) {
4455     if (c != this) {
4456 jsr166 1.184 for (Object e : c) {
4457 dl 1.142 if (e == null || !contains(e))
4458     return false;
4459     }
4460     }
4461     return true;
4462     }
4463    
4464     public final boolean removeAll(Collection<?> c) {
4465 dl 1.251 if (c == null) throw new NullPointerException();
4466 dl 1.142 boolean modified = false;
4467 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4468 dl 1.142 if (c.contains(it.next())) {
4469     it.remove();
4470     modified = true;
4471     }
4472     }
4473     return modified;
4474     }
4475    
4476     public final boolean retainAll(Collection<?> c) {
4477 dl 1.251 if (c == null) throw new NullPointerException();
4478 dl 1.142 boolean modified = false;
4479 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4480 dl 1.142 if (!c.contains(it.next())) {
4481     it.remove();
4482     modified = true;
4483     }
4484     }
4485     return modified;
4486     }
4487    
4488     }
4489    
4490     /**
4491     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4492     * which additions may optionally be enabled by mapping to a
4493 jsr166 1.185 * common value. This class cannot be directly instantiated.
4494     * See {@link #keySet() keySet()},
4495     * {@link #keySet(Object) keySet(V)},
4496     * {@link #newKeySet() newKeySet()},
4497     * {@link #newKeySet(int) newKeySet(int)}.
4498 jsr166 1.221 *
4499     * @since 1.8
4500 dl 1.142 */
4501 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4502     implements Set<K>, java.io.Serializable {
4503 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4504     private final V value;
4505 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4506 dl 1.142 super(map);
4507     this.value = value;
4508     }
4509    
4510     /**
4511     * Returns the default mapped value for additions,
4512     * or {@code null} if additions are not supported.
4513     *
4514     * @return the default mapped value for additions, or {@code null}
4515 jsr166 1.172 * if not supported
4516 dl 1.142 */
4517     public V getMappedValue() { return value; }
4518    
4519 jsr166 1.184 /**
4520     * {@inheritDoc}
4521     * @throws NullPointerException if the specified key is null
4522     */
4523     public boolean contains(Object o) { return map.containsKey(o); }
4524 dl 1.142
4525 jsr166 1.184 /**
4526     * Removes the key from this map view, by removing the key (and its
4527     * corresponding value) from the backing map. This method does
4528     * nothing if the key is not in the map.
4529     *
4530     * @param o the key to be removed from the backing map
4531     * @return {@code true} if the backing map contained the specified key
4532     * @throws NullPointerException if the specified key is null
4533     */
4534     public boolean remove(Object o) { return map.remove(o) != null; }
4535    
4536     /**
4537     * @return an iterator over the keys of the backing map
4538     */
4539 dl 1.210 public Iterator<K> iterator() {
4540     Node<K,V>[] t;
4541     ConcurrentHashMap<K,V> m = map;
4542     int f = (t = m.table) == null ? 0 : t.length;
4543     return new KeyIterator<K,V>(t, f, 0, f, m);
4544     }
4545 dl 1.142
4546     /**
4547 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4548     * the default mapped value in the backing map, if defined.
4549 dl 1.142 *
4550 jsr166 1.184 * @param e key to be added
4551     * @return {@code true} if this set changed as a result of the call
4552     * @throws NullPointerException if the specified key is null
4553     * @throws UnsupportedOperationException if no default mapped value
4554     * for additions was provided
4555 dl 1.142 */
4556     public boolean add(K e) {
4557     V v;
4558     if ((v = value) == null)
4559     throw new UnsupportedOperationException();
4560 dl 1.222 return map.putVal(e, v, true) == null;
4561 dl 1.142 }
4562 jsr166 1.184
4563     /**
4564     * Adds all of the elements in the specified collection to this set,
4565     * as if by calling {@link #add} on each one.
4566     *
4567     * @param c the elements to be inserted into this set
4568     * @return {@code true} if this set changed as a result of the call
4569     * @throws NullPointerException if the collection or any of its
4570     * elements are {@code null}
4571     * @throws UnsupportedOperationException if no default mapped value
4572     * for additions was provided
4573     */
4574 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4575     boolean added = false;
4576     V v;
4577     if ((v = value) == null)
4578     throw new UnsupportedOperationException();
4579     for (K e : c) {
4580 dl 1.222 if (map.putVal(e, v, true) == null)
4581 dl 1.142 added = true;
4582     }
4583     return added;
4584     }
4585 dl 1.153
4586 dl 1.210 public int hashCode() {
4587     int h = 0;
4588     for (K e : this)
4589     h += e.hashCode();
4590     return h;
4591 dl 1.191 }
4592    
4593 dl 1.210 public boolean equals(Object o) {
4594     Set<?> c;
4595     return ((o instanceof Set) &&
4596     ((c = (Set<?>)o) == this ||
4597     (containsAll(c) && c.containsAll(this))));
4598 dl 1.119 }
4599 jsr166 1.125
4600 dl 1.210 public Spliterator<K> spliterator() {
4601     Node<K,V>[] t;
4602     ConcurrentHashMap<K,V> m = map;
4603     long n = m.sumCount();
4604     int f = (t = m.table) == null ? 0 : t.length;
4605     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4606 dl 1.119 }
4607    
4608 dl 1.210 public void forEach(Consumer<? super K> action) {
4609     if (action == null) throw new NullPointerException();
4610     Node<K,V>[] t;
4611     if ((t = map.table) != null) {
4612     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4613     for (Node<K,V> p; (p = it.advance()) != null; )
4614 dl 1.222 action.accept(p.key);
4615 dl 1.210 }
4616 dl 1.119 }
4617 dl 1.210 }
4618 dl 1.119
4619 dl 1.210 /**
4620     * A view of a ConcurrentHashMap as a {@link Collection} of
4621     * values, in which additions are disabled. This class cannot be
4622     * directly instantiated. See {@link #values()}.
4623     */
4624     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4625     implements Collection<V>, java.io.Serializable {
4626     private static final long serialVersionUID = 2249069246763182397L;
4627     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4628     public final boolean contains(Object o) {
4629     return map.containsValue(o);
4630 dl 1.119 }
4631    
4632 dl 1.210 public final boolean remove(Object o) {
4633     if (o != null) {
4634     for (Iterator<V> it = iterator(); it.hasNext();) {
4635     if (o.equals(it.next())) {
4636     it.remove();
4637     return true;
4638     }
4639     }
4640     }
4641     return false;
4642 dl 1.119 }
4643    
4644 dl 1.210 public final Iterator<V> iterator() {
4645     ConcurrentHashMap<K,V> m = map;
4646     Node<K,V>[] t;
4647     int f = (t = m.table) == null ? 0 : t.length;
4648     return new ValueIterator<K,V>(t, f, 0, f, m);
4649 dl 1.119 }
4650    
4651 dl 1.210 public final boolean add(V e) {
4652     throw new UnsupportedOperationException();
4653     }
4654     public final boolean addAll(Collection<? extends V> c) {
4655     throw new UnsupportedOperationException();
4656 dl 1.119 }
4657    
4658 dl 1.210 public Spliterator<V> spliterator() {
4659     Node<K,V>[] t;
4660     ConcurrentHashMap<K,V> m = map;
4661     long n = m.sumCount();
4662     int f = (t = m.table) == null ? 0 : t.length;
4663     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4664 dl 1.119 }
4665    
4666 dl 1.210 public void forEach(Consumer<? super V> action) {
4667     if (action == null) throw new NullPointerException();
4668     Node<K,V>[] t;
4669     if ((t = map.table) != null) {
4670     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4671     for (Node<K,V> p; (p = it.advance()) != null; )
4672     action.accept(p.val);
4673     }
4674 dl 1.119 }
4675 dl 1.210 }
4676    
4677     /**
4678     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4679     * entries. This class cannot be directly instantiated. See
4680     * {@link #entrySet()}.
4681     */
4682     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4683     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4684     private static final long serialVersionUID = 2249069246763182397L;
4685     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4686 dl 1.119
4687 dl 1.210 public boolean contains(Object o) {
4688     Object k, v, r; Map.Entry<?,?> e;
4689     return ((o instanceof Map.Entry) &&
4690     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4691     (r = map.get(k)) != null &&
4692     (v = e.getValue()) != null &&
4693     (v == r || v.equals(r)));
4694 dl 1.119 }
4695    
4696 dl 1.210 public boolean remove(Object o) {
4697     Object k, v; Map.Entry<?,?> e;
4698     return ((o instanceof Map.Entry) &&
4699     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4700     (v = e.getValue()) != null &&
4701     map.remove(k, v));
4702 dl 1.119 }
4703    
4704     /**
4705 dl 1.210 * @return an iterator over the entries of the backing map
4706 dl 1.119 */
4707 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4708     ConcurrentHashMap<K,V> m = map;
4709     Node<K,V>[] t;
4710     int f = (t = m.table) == null ? 0 : t.length;
4711     return new EntryIterator<K,V>(t, f, 0, f, m);
4712 dl 1.119 }
4713    
4714 dl 1.210 public boolean add(Entry<K,V> e) {
4715 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4716 dl 1.119 }
4717    
4718 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4719     boolean added = false;
4720     for (Entry<K,V> e : c) {
4721     if (add(e))
4722     added = true;
4723     }
4724     return added;
4725 dl 1.119 }
4726    
4727 dl 1.210 public final int hashCode() {
4728     int h = 0;
4729     Node<K,V>[] t;
4730     if ((t = map.table) != null) {
4731     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4732     for (Node<K,V> p; (p = it.advance()) != null; ) {
4733     h += p.hashCode();
4734     }
4735     }
4736     return h;
4737 dl 1.119 }
4738    
4739 dl 1.210 public final boolean equals(Object o) {
4740     Set<?> c;
4741     return ((o instanceof Set) &&
4742     ((c = (Set<?>)o) == this ||
4743     (containsAll(c) && c.containsAll(this))));
4744 dl 1.119 }
4745    
4746 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4747     Node<K,V>[] t;
4748     ConcurrentHashMap<K,V> m = map;
4749     long n = m.sumCount();
4750     int f = (t = m.table) == null ? 0 : t.length;
4751     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4752 dl 1.119 }
4753    
4754 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4755     if (action == null) throw new NullPointerException();
4756     Node<K,V>[] t;
4757     if ((t = map.table) != null) {
4758     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4759     for (Node<K,V> p; (p = it.advance()) != null; )
4760 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4761 dl 1.210 }
4762 dl 1.119 }
4763    
4764 dl 1.210 }
4765    
4766     // -------------------------------------------------------
4767 dl 1.119
4768 dl 1.210 /**
4769     * Base class for bulk tasks. Repeats some fields and code from
4770     * class Traverser, because we need to subclass CountedCompleter.
4771     */
4772 dl 1.243 @SuppressWarnings("serial")
4773 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4774 dl 1.210 Node<K,V>[] tab; // same as Traverser
4775     Node<K,V> next;
4776 dl 1.246 TableStack<K,V> stack, spare;
4777 dl 1.210 int index;
4778     int baseIndex;
4779     int baseLimit;
4780     final int baseSize;
4781     int batch; // split control
4782    
4783     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4784     super(par);
4785     this.batch = b;
4786     this.index = this.baseIndex = i;
4787     if ((this.tab = t) == null)
4788     this.baseSize = this.baseLimit = 0;
4789     else if (par == null)
4790     this.baseSize = this.baseLimit = t.length;
4791     else {
4792     this.baseLimit = f;
4793     this.baseSize = par.baseSize;
4794     }
4795 dl 1.119 }
4796    
4797     /**
4798 dl 1.210 * Same as Traverser version
4799 dl 1.119 */
4800 dl 1.210 final Node<K,V> advance() {
4801     Node<K,V> e;
4802     if ((e = next) != null)
4803     e = e.next;
4804     for (;;) {
4805 dl 1.246 Node<K,V>[] t; int i, n;
4806 dl 1.210 if (e != null)
4807     return next = e;
4808     if (baseIndex >= baseLimit || (t = tab) == null ||
4809     (n = t.length) <= (i = index) || i < 0)
4810     return next = null;
4811 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4812 dl 1.222 if (e instanceof ForwardingNode) {
4813     tab = ((ForwardingNode<K,V>)e).nextTable;
4814 dl 1.210 e = null;
4815 dl 1.246 pushState(t, i, n);
4816 dl 1.210 continue;
4817     }
4818 dl 1.222 else if (e instanceof TreeBin)
4819     e = ((TreeBin<K,V>)e).first;
4820     else
4821     e = null;
4822 dl 1.210 }
4823 dl 1.246 if (stack != null)
4824     recoverState(n);
4825     else if ((index = i + baseSize) >= n)
4826     index = ++baseIndex;
4827     }
4828     }
4829    
4830     private void pushState(Node<K,V>[] t, int i, int n) {
4831     TableStack<K,V> s = spare;
4832     if (s != null)
4833     spare = s.next;
4834     else
4835     s = new TableStack<K,V>();
4836     s.tab = t;
4837     s.length = n;
4838     s.index = i;
4839     s.next = stack;
4840     stack = s;
4841     }
4842    
4843     private void recoverState(int n) {
4844     TableStack<K,V> s; int len;
4845     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4846     n = len;
4847     index = s.index;
4848     tab = s.tab;
4849     s.tab = null;
4850     TableStack<K,V> next = s.next;
4851     s.next = spare; // save for reuse
4852     stack = next;
4853     spare = s;
4854 dl 1.210 }
4855 dl 1.246 if (s == null && (index += baseSize) >= n)
4856     index = ++baseIndex;
4857 dl 1.119 }
4858     }
4859    
4860     /*
4861     * Task classes. Coded in a regular but ugly format/style to
4862     * simplify checks that each variant differs in the right way from
4863 dl 1.149 * others. The null screenings exist because compilers cannot tell
4864     * that we've already null-checked task arguments, so we force
4865     * simplest hoisted bypass to help avoid convoluted traps.
4866 dl 1.119 */
4867 dl 1.222 @SuppressWarnings("serial")
4868 dl 1.210 static final class ForEachKeyTask<K,V>
4869     extends BulkTask<K,V,Void> {
4870 dl 1.171 final Consumer<? super K> action;
4871 dl 1.119 ForEachKeyTask
4872 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4873 dl 1.171 Consumer<? super K> action) {
4874 dl 1.210 super(p, b, i, f, t);
4875 dl 1.119 this.action = action;
4876     }
4877 jsr166 1.168 public final void compute() {
4878 dl 1.171 final Consumer<? super K> action;
4879 dl 1.149 if ((action = this.action) != null) {
4880 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4881     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4882     addToPendingCount(1);
4883     new ForEachKeyTask<K,V>
4884     (this, batch >>>= 1, baseLimit = h, f, tab,
4885     action).fork();
4886     }
4887     for (Node<K,V> p; (p = advance()) != null;)
4888 dl 1.222 action.accept(p.key);
4889 dl 1.149 propagateCompletion();
4890     }
4891 dl 1.119 }
4892     }
4893    
4894 dl 1.222 @SuppressWarnings("serial")
4895 dl 1.210 static final class ForEachValueTask<K,V>
4896     extends BulkTask<K,V,Void> {
4897 dl 1.171 final Consumer<? super V> action;
4898 dl 1.119 ForEachValueTask
4899 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4900 dl 1.171 Consumer<? super V> action) {
4901 dl 1.210 super(p, b, i, f, t);
4902 dl 1.119 this.action = action;
4903     }
4904 jsr166 1.168 public final void compute() {
4905 dl 1.171 final Consumer<? super V> action;
4906 dl 1.149 if ((action = this.action) != null) {
4907 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4908     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4909     addToPendingCount(1);
4910     new ForEachValueTask<K,V>
4911     (this, batch >>>= 1, baseLimit = h, f, tab,
4912     action).fork();
4913     }
4914     for (Node<K,V> p; (p = advance()) != null;)
4915     action.accept(p.val);
4916 dl 1.149 propagateCompletion();
4917     }
4918 dl 1.119 }
4919     }
4920    
4921 dl 1.222 @SuppressWarnings("serial")
4922 dl 1.210 static final class ForEachEntryTask<K,V>
4923     extends BulkTask<K,V,Void> {
4924 dl 1.171 final Consumer<? super Entry<K,V>> action;
4925 dl 1.119 ForEachEntryTask
4926 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4927 dl 1.171 Consumer<? super Entry<K,V>> action) {
4928 dl 1.210 super(p, b, i, f, t);
4929 dl 1.119 this.action = action;
4930     }
4931 jsr166 1.168 public final void compute() {
4932 dl 1.171 final Consumer<? super Entry<K,V>> action;
4933 dl 1.149 if ((action = this.action) != null) {
4934 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4935     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4936     addToPendingCount(1);
4937     new ForEachEntryTask<K,V>
4938     (this, batch >>>= 1, baseLimit = h, f, tab,
4939     action).fork();
4940     }
4941     for (Node<K,V> p; (p = advance()) != null; )
4942     action.accept(p);
4943 dl 1.149 propagateCompletion();
4944     }
4945 dl 1.119 }
4946     }
4947    
4948 dl 1.222 @SuppressWarnings("serial")
4949 dl 1.210 static final class ForEachMappingTask<K,V>
4950     extends BulkTask<K,V,Void> {
4951 dl 1.171 final BiConsumer<? super K, ? super V> action;
4952 dl 1.119 ForEachMappingTask
4953 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4954 dl 1.171 BiConsumer<? super K,? super V> action) {
4955 dl 1.210 super(p, b, i, f, t);
4956 dl 1.119 this.action = action;
4957     }
4958 jsr166 1.168 public final void compute() {
4959 dl 1.171 final BiConsumer<? super K, ? super V> action;
4960 dl 1.149 if ((action = this.action) != null) {
4961 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4962     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4963     addToPendingCount(1);
4964     new ForEachMappingTask<K,V>
4965     (this, batch >>>= 1, baseLimit = h, f, tab,
4966     action).fork();
4967     }
4968     for (Node<K,V> p; (p = advance()) != null; )
4969 dl 1.222 action.accept(p.key, p.val);
4970 dl 1.149 propagateCompletion();
4971     }
4972 dl 1.119 }
4973     }
4974    
4975 dl 1.222 @SuppressWarnings("serial")
4976 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
4977     extends BulkTask<K,V,Void> {
4978 dl 1.153 final Function<? super K, ? extends U> transformer;
4979 dl 1.171 final Consumer<? super U> action;
4980 dl 1.119 ForEachTransformedKeyTask
4981 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4982 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4983 dl 1.210 super(p, b, i, f, t);
4984 dl 1.146 this.transformer = transformer; this.action = action;
4985     }
4986 jsr166 1.168 public final void compute() {
4987 dl 1.153 final Function<? super K, ? extends U> transformer;
4988 dl 1.171 final Consumer<? super U> action;
4989 dl 1.149 if ((transformer = this.transformer) != null &&
4990     (action = this.action) != null) {
4991 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4992     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4993     addToPendingCount(1);
4994 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
4995 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4996     transformer, action).fork();
4997     }
4998     for (Node<K,V> p; (p = advance()) != null; ) {
4999     U u;
5000 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5001 dl 1.153 action.accept(u);
5002 dl 1.149 }
5003     propagateCompletion();
5004 dl 1.119 }
5005     }
5006     }
5007    
5008 dl 1.222 @SuppressWarnings("serial")
5009 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
5010     extends BulkTask<K,V,Void> {
5011 dl 1.153 final Function<? super V, ? extends U> transformer;
5012 dl 1.171 final Consumer<? super U> action;
5013 dl 1.119 ForEachTransformedValueTask
5014 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5015 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5016 dl 1.210 super(p, b, i, f, t);
5017 dl 1.146 this.transformer = transformer; this.action = action;
5018     }
5019 jsr166 1.168 public final void compute() {
5020 dl 1.153 final Function<? super V, ? extends U> transformer;
5021 dl 1.171 final Consumer<? super U> action;
5022 dl 1.149 if ((transformer = this.transformer) != null &&
5023     (action = this.action) != null) {
5024 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5025     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5026     addToPendingCount(1);
5027 dl 1.149 new ForEachTransformedValueTask<K,V,U>
5028 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5029     transformer, action).fork();
5030     }
5031     for (Node<K,V> p; (p = advance()) != null; ) {
5032     U u;
5033     if ((u = transformer.apply(p.val)) != null)
5034 dl 1.153 action.accept(u);
5035 dl 1.149 }
5036     propagateCompletion();
5037 dl 1.119 }
5038     }
5039 tim 1.1 }
5040    
5041 dl 1.222 @SuppressWarnings("serial")
5042 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5043     extends BulkTask<K,V,Void> {
5044 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5045 dl 1.171 final Consumer<? super U> action;
5046 dl 1.119 ForEachTransformedEntryTask
5047 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5048 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5049 dl 1.210 super(p, b, i, f, t);
5050 dl 1.146 this.transformer = transformer; this.action = action;
5051     }
5052 jsr166 1.168 public final void compute() {
5053 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5054 dl 1.171 final Consumer<? super U> action;
5055 dl 1.149 if ((transformer = this.transformer) != null &&
5056     (action = this.action) != null) {
5057 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5058     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5059     addToPendingCount(1);
5060 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5061 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5062     transformer, action).fork();
5063     }
5064     for (Node<K,V> p; (p = advance()) != null; ) {
5065     U u;
5066     if ((u = transformer.apply(p)) != null)
5067 dl 1.153 action.accept(u);
5068 dl 1.149 }
5069     propagateCompletion();
5070 dl 1.119 }
5071     }
5072 tim 1.1 }
5073    
5074 dl 1.222 @SuppressWarnings("serial")
5075 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5076     extends BulkTask<K,V,Void> {
5077 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5078 dl 1.171 final Consumer<? super U> action;
5079 dl 1.119 ForEachTransformedMappingTask
5080 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5082 dl 1.171 Consumer<? super U> action) {
5083 dl 1.210 super(p, b, i, f, t);
5084 dl 1.146 this.transformer = transformer; this.action = action;
5085 dl 1.119 }
5086 jsr166 1.168 public final void compute() {
5087 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5088 dl 1.171 final Consumer<? super U> action;
5089 dl 1.149 if ((transformer = this.transformer) != null &&
5090     (action = this.action) != null) {
5091 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5092     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093     addToPendingCount(1);
5094 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5095 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5096     transformer, action).fork();
5097     }
5098     for (Node<K,V> p; (p = advance()) != null; ) {
5099     U u;
5100 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5101 dl 1.153 action.accept(u);
5102 dl 1.149 }
5103     propagateCompletion();
5104 dl 1.119 }
5105     }
5106 tim 1.1 }
5107    
5108 dl 1.222 @SuppressWarnings("serial")
5109 dl 1.210 static final class SearchKeysTask<K,V,U>
5110     extends BulkTask<K,V,U> {
5111 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5112 dl 1.119 final AtomicReference<U> result;
5113     SearchKeysTask
5114 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5115 dl 1.153 Function<? super K, ? extends U> searchFunction,
5116 dl 1.119 AtomicReference<U> result) {
5117 dl 1.210 super(p, b, i, f, t);
5118 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5119     }
5120 dl 1.146 public final U getRawResult() { return result.get(); }
5121 jsr166 1.168 public final void compute() {
5122 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5123 dl 1.146 final AtomicReference<U> result;
5124 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5125     (result = this.result) != null) {
5126 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5127     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5128 dl 1.149 if (result.get() != null)
5129     return;
5130 dl 1.210 addToPendingCount(1);
5131 dl 1.149 new SearchKeysTask<K,V,U>
5132 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5133     searchFunction, result).fork();
5134 dl 1.128 }
5135 dl 1.149 while (result.get() == null) {
5136 dl 1.210 U u;
5137     Node<K,V> p;
5138     if ((p = advance()) == null) {
5139 dl 1.149 propagateCompletion();
5140     break;
5141     }
5142 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5143 dl 1.149 if (result.compareAndSet(null, u))
5144     quietlyCompleteRoot();
5145     break;
5146     }
5147 dl 1.119 }
5148     }
5149     }
5150 tim 1.1 }
5151    
5152 dl 1.222 @SuppressWarnings("serial")
5153 dl 1.210 static final class SearchValuesTask<K,V,U>
5154     extends BulkTask<K,V,U> {
5155 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5156 dl 1.119 final AtomicReference<U> result;
5157     SearchValuesTask
5158 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5159 dl 1.153 Function<? super V, ? extends U> searchFunction,
5160 dl 1.119 AtomicReference<U> result) {
5161 dl 1.210 super(p, b, i, f, t);
5162 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5163     }
5164 dl 1.146 public final U getRawResult() { return result.get(); }
5165 jsr166 1.168 public final void compute() {
5166 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5167 dl 1.146 final AtomicReference<U> result;
5168 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5169     (result = this.result) != null) {
5170 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5171     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5172 dl 1.149 if (result.get() != null)
5173     return;
5174 dl 1.210 addToPendingCount(1);
5175 dl 1.149 new SearchValuesTask<K,V,U>
5176 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5177     searchFunction, result).fork();
5178 dl 1.128 }
5179 dl 1.149 while (result.get() == null) {
5180 dl 1.210 U u;
5181     Node<K,V> p;
5182     if ((p = advance()) == null) {
5183 dl 1.149 propagateCompletion();
5184     break;
5185     }
5186 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5187 dl 1.149 if (result.compareAndSet(null, u))
5188     quietlyCompleteRoot();
5189     break;
5190     }
5191 dl 1.119 }
5192     }
5193     }
5194     }
5195 tim 1.11
5196 dl 1.222 @SuppressWarnings("serial")
5197 dl 1.210 static final class SearchEntriesTask<K,V,U>
5198     extends BulkTask<K,V,U> {
5199 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5200 dl 1.119 final AtomicReference<U> result;
5201     SearchEntriesTask
5202 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5203 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5204 dl 1.119 AtomicReference<U> result) {
5205 dl 1.210 super(p, b, i, f, t);
5206 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5207     }
5208 dl 1.146 public final U getRawResult() { return result.get(); }
5209 jsr166 1.168 public final void compute() {
5210 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5211 dl 1.146 final AtomicReference<U> result;
5212 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5213     (result = this.result) != null) {
5214 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5215     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5216 dl 1.149 if (result.get() != null)
5217     return;
5218 dl 1.210 addToPendingCount(1);
5219 dl 1.149 new SearchEntriesTask<K,V,U>
5220 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5221     searchFunction, result).fork();
5222 dl 1.128 }
5223 dl 1.149 while (result.get() == null) {
5224 dl 1.210 U u;
5225     Node<K,V> p;
5226     if ((p = advance()) == null) {
5227 dl 1.149 propagateCompletion();
5228     break;
5229     }
5230 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5231 dl 1.149 if (result.compareAndSet(null, u))
5232     quietlyCompleteRoot();
5233     return;
5234     }
5235 dl 1.119 }
5236     }
5237     }
5238     }
5239 tim 1.1
5240 dl 1.222 @SuppressWarnings("serial")
5241 dl 1.210 static final class SearchMappingsTask<K,V,U>
5242     extends BulkTask<K,V,U> {
5243 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5244 dl 1.119 final AtomicReference<U> result;
5245     SearchMappingsTask
5246 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5247 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5248 dl 1.119 AtomicReference<U> result) {
5249 dl 1.210 super(p, b, i, f, t);
5250 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5251     }
5252 dl 1.146 public final U getRawResult() { return result.get(); }
5253 jsr166 1.168 public final void compute() {
5254 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5255 dl 1.146 final AtomicReference<U> result;
5256 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5257     (result = this.result) != null) {
5258 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5259     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5260 dl 1.149 if (result.get() != null)
5261     return;
5262 dl 1.210 addToPendingCount(1);
5263 dl 1.149 new SearchMappingsTask<K,V,U>
5264 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5265     searchFunction, result).fork();
5266 dl 1.128 }
5267 dl 1.149 while (result.get() == null) {
5268 dl 1.210 U u;
5269     Node<K,V> p;
5270     if ((p = advance()) == null) {
5271 dl 1.149 propagateCompletion();
5272     break;
5273     }
5274 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5275 dl 1.149 if (result.compareAndSet(null, u))
5276     quietlyCompleteRoot();
5277     break;
5278     }
5279 dl 1.119 }
5280     }
5281 tim 1.1 }
5282 dl 1.119 }
5283 tim 1.1
5284 dl 1.222 @SuppressWarnings("serial")
5285 dl 1.210 static final class ReduceKeysTask<K,V>
5286     extends BulkTask<K,V,K> {
5287 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5288 dl 1.119 K result;
5289 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5290 dl 1.119 ReduceKeysTask
5291 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5292 dl 1.128 ReduceKeysTask<K,V> nextRight,
5293 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5294 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5295 dl 1.119 this.reducer = reducer;
5296     }
5297 dl 1.146 public final K getRawResult() { return result; }
5298 dl 1.210 public final void compute() {
5299 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5300 dl 1.149 if ((reducer = this.reducer) != null) {
5301 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5302     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5303     addToPendingCount(1);
5304 dl 1.149 (rights = new ReduceKeysTask<K,V>
5305 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5306     rights, reducer)).fork();
5307     }
5308     K r = null;
5309     for (Node<K,V> p; (p = advance()) != null; ) {
5310 dl 1.222 K u = p.key;
5311 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5312 dl 1.149 }
5313     result = r;
5314     CountedCompleter<?> c;
5315     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5316 dl 1.246 @SuppressWarnings("unchecked")
5317     ReduceKeysTask<K,V>
5318 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5319     s = t.rights;
5320     while (s != null) {
5321     K tr, sr;
5322     if ((sr = s.result) != null)
5323     t.result = (((tr = t.result) == null) ? sr :
5324     reducer.apply(tr, sr));
5325     s = t.rights = s.nextRight;
5326     }
5327 dl 1.99 }
5328 dl 1.138 }
5329 tim 1.1 }
5330 dl 1.119 }
5331 tim 1.1
5332 dl 1.222 @SuppressWarnings("serial")
5333 dl 1.210 static final class ReduceValuesTask<K,V>
5334     extends BulkTask<K,V,V> {
5335 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5336 dl 1.119 V result;
5337 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5338 dl 1.119 ReduceValuesTask
5339 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5340 dl 1.128 ReduceValuesTask<K,V> nextRight,
5341 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5342 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5343 dl 1.119 this.reducer = reducer;
5344     }
5345 dl 1.146 public final V getRawResult() { return result; }
5346 dl 1.210 public final void compute() {
5347 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5348 dl 1.149 if ((reducer = this.reducer) != null) {
5349 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5350     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5351     addToPendingCount(1);
5352 dl 1.149 (rights = new ReduceValuesTask<K,V>
5353 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5354     rights, reducer)).fork();
5355     }
5356     V r = null;
5357     for (Node<K,V> p; (p = advance()) != null; ) {
5358     V v = p.val;
5359 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5360 dl 1.210 }
5361 dl 1.149 result = r;
5362     CountedCompleter<?> c;
5363     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5364 dl 1.246 @SuppressWarnings("unchecked")
5365     ReduceValuesTask<K,V>
5366 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5367     s = t.rights;
5368     while (s != null) {
5369     V tr, sr;
5370     if ((sr = s.result) != null)
5371     t.result = (((tr = t.result) == null) ? sr :
5372     reducer.apply(tr, sr));
5373     s = t.rights = s.nextRight;
5374     }
5375 dl 1.119 }
5376     }
5377 tim 1.1 }
5378 dl 1.119 }
5379 tim 1.1
5380 dl 1.222 @SuppressWarnings("serial")
5381 dl 1.210 static final class ReduceEntriesTask<K,V>
5382     extends BulkTask<K,V,Map.Entry<K,V>> {
5383 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5384 dl 1.119 Map.Entry<K,V> result;
5385 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5386 dl 1.119 ReduceEntriesTask
5387 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5388 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5389 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5390 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5391 dl 1.119 this.reducer = reducer;
5392     }
5393 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5394 dl 1.210 public final void compute() {
5395 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5396 dl 1.149 if ((reducer = this.reducer) != null) {
5397 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5398     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5399     addToPendingCount(1);
5400 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5401 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5402     rights, reducer)).fork();
5403     }
5404 dl 1.149 Map.Entry<K,V> r = null;
5405 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5406     r = (r == null) ? p : reducer.apply(r, p);
5407 dl 1.149 result = r;
5408     CountedCompleter<?> c;
5409     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5410 dl 1.246 @SuppressWarnings("unchecked")
5411     ReduceEntriesTask<K,V>
5412 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5413     s = t.rights;
5414     while (s != null) {
5415     Map.Entry<K,V> tr, sr;
5416     if ((sr = s.result) != null)
5417     t.result = (((tr = t.result) == null) ? sr :
5418     reducer.apply(tr, sr));
5419     s = t.rights = s.nextRight;
5420     }
5421 dl 1.119 }
5422 dl 1.138 }
5423 dl 1.119 }
5424     }
5425 dl 1.99
5426 dl 1.222 @SuppressWarnings("serial")
5427 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5428     extends BulkTask<K,V,U> {
5429 dl 1.153 final Function<? super K, ? extends U> transformer;
5430     final BiFunction<? super U, ? super U, ? extends U> reducer;
5431 dl 1.119 U result;
5432 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5433 dl 1.119 MapReduceKeysTask
5434 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5435 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5436 dl 1.153 Function<? super K, ? extends U> transformer,
5437     BiFunction<? super U, ? super U, ? extends U> reducer) {
5438 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5439 dl 1.119 this.transformer = transformer;
5440     this.reducer = reducer;
5441     }
5442 dl 1.146 public final U getRawResult() { return result; }
5443 dl 1.210 public final void compute() {
5444 dl 1.153 final Function<? super K, ? extends U> transformer;
5445     final BiFunction<? super U, ? super U, ? extends U> reducer;
5446 dl 1.149 if ((transformer = this.transformer) != null &&
5447     (reducer = this.reducer) != null) {
5448 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5449     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5450     addToPendingCount(1);
5451 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5452 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5453     rights, transformer, reducer)).fork();
5454     }
5455     U r = null;
5456     for (Node<K,V> p; (p = advance()) != null; ) {
5457     U u;
5458 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5459 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5460     }
5461     result = r;
5462     CountedCompleter<?> c;
5463     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5464 dl 1.246 @SuppressWarnings("unchecked")
5465     MapReduceKeysTask<K,V,U>
5466 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5467     s = t.rights;
5468     while (s != null) {
5469     U tr, sr;
5470     if ((sr = s.result) != null)
5471     t.result = (((tr = t.result) == null) ? sr :
5472     reducer.apply(tr, sr));
5473     s = t.rights = s.nextRight;
5474     }
5475 dl 1.119 }
5476 dl 1.138 }
5477 tim 1.1 }
5478 dl 1.4 }
5479    
5480 dl 1.222 @SuppressWarnings("serial")
5481 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5482     extends BulkTask<K,V,U> {
5483 dl 1.153 final Function<? super V, ? extends U> transformer;
5484     final BiFunction<? super U, ? super U, ? extends U> reducer;
5485 dl 1.119 U result;
5486 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5487 dl 1.119 MapReduceValuesTask
5488 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5489 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5490 dl 1.153 Function<? super V, ? extends U> transformer,
5491     BiFunction<? super U, ? super U, ? extends U> reducer) {
5492 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5493 dl 1.119 this.transformer = transformer;
5494     this.reducer = reducer;
5495     }
5496 dl 1.146 public final U getRawResult() { return result; }
5497 dl 1.210 public final void compute() {
5498 dl 1.153 final Function<? super V, ? extends U> transformer;
5499     final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 dl 1.149 if ((transformer = this.transformer) != null &&
5501     (reducer = this.reducer) != null) {
5502 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5503     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5504     addToPendingCount(1);
5505 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5506 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5507     rights, transformer, reducer)).fork();
5508     }
5509     U r = null;
5510     for (Node<K,V> p; (p = advance()) != null; ) {
5511     U u;
5512     if ((u = transformer.apply(p.val)) != null)
5513 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5514     }
5515     result = r;
5516     CountedCompleter<?> c;
5517     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5518 dl 1.246 @SuppressWarnings("unchecked")
5519     MapReduceValuesTask<K,V,U>
5520 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5521     s = t.rights;
5522     while (s != null) {
5523     U tr, sr;
5524     if ((sr = s.result) != null)
5525     t.result = (((tr = t.result) == null) ? sr :
5526     reducer.apply(tr, sr));
5527     s = t.rights = s.nextRight;
5528     }
5529 dl 1.119 }
5530     }
5531     }
5532 dl 1.4 }
5533    
5534 dl 1.222 @SuppressWarnings("serial")
5535 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5536     extends BulkTask<K,V,U> {
5537 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5538     final BiFunction<? super U, ? super U, ? extends U> reducer;
5539 dl 1.119 U result;
5540 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5541 dl 1.119 MapReduceEntriesTask
5542 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5543 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5544 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5545     BiFunction<? super U, ? super U, ? extends U> reducer) {
5546 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5547 dl 1.119 this.transformer = transformer;
5548     this.reducer = reducer;
5549     }
5550 dl 1.146 public final U getRawResult() { return result; }
5551 dl 1.210 public final void compute() {
5552 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5553     final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 dl 1.149 if ((transformer = this.transformer) != null &&
5555     (reducer = this.reducer) != null) {
5556 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5557     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5558     addToPendingCount(1);
5559 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5560 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5561     rights, transformer, reducer)).fork();
5562     }
5563     U r = null;
5564     for (Node<K,V> p; (p = advance()) != null; ) {
5565     U u;
5566     if ((u = transformer.apply(p)) != null)
5567 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5568     }
5569     result = r;
5570     CountedCompleter<?> c;
5571     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5572 dl 1.246 @SuppressWarnings("unchecked")
5573     MapReduceEntriesTask<K,V,U>
5574 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5575     s = t.rights;
5576     while (s != null) {
5577     U tr, sr;
5578     if ((sr = s.result) != null)
5579     t.result = (((tr = t.result) == null) ? sr :
5580     reducer.apply(tr, sr));
5581     s = t.rights = s.nextRight;
5582     }
5583 dl 1.119 }
5584 dl 1.138 }
5585 dl 1.119 }
5586 dl 1.4 }
5587 tim 1.1
5588 dl 1.222 @SuppressWarnings("serial")
5589 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5590     extends BulkTask<K,V,U> {
5591 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5592     final BiFunction<? super U, ? super U, ? extends U> reducer;
5593 dl 1.119 U result;
5594 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5595 dl 1.119 MapReduceMappingsTask
5596 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5597 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5598 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5599     BiFunction<? super U, ? super U, ? extends U> reducer) {
5600 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5601 dl 1.119 this.transformer = transformer;
5602     this.reducer = reducer;
5603     }
5604 dl 1.146 public final U getRawResult() { return result; }
5605 dl 1.210 public final void compute() {
5606 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5607     final BiFunction<? super U, ? super U, ? extends U> reducer;
5608 dl 1.149 if ((transformer = this.transformer) != null &&
5609     (reducer = this.reducer) != null) {
5610 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5611     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5612     addToPendingCount(1);
5613 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5614 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5615     rights, transformer, reducer)).fork();
5616     }
5617     U r = null;
5618     for (Node<K,V> p; (p = advance()) != null; ) {
5619     U u;
5620 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5621 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5622     }
5623     result = r;
5624     CountedCompleter<?> c;
5625     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5626 dl 1.246 @SuppressWarnings("unchecked")
5627     MapReduceMappingsTask<K,V,U>
5628 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5629     s = t.rights;
5630     while (s != null) {
5631     U tr, sr;
5632     if ((sr = s.result) != null)
5633     t.result = (((tr = t.result) == null) ? sr :
5634     reducer.apply(tr, sr));
5635     s = t.rights = s.nextRight;
5636     }
5637 dl 1.119 }
5638     }
5639     }
5640     }
5641 jsr166 1.114
5642 dl 1.222 @SuppressWarnings("serial")
5643 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5644     extends BulkTask<K,V,Double> {
5645 dl 1.171 final ToDoubleFunction<? super K> transformer;
5646 dl 1.153 final DoubleBinaryOperator reducer;
5647 dl 1.119 final double basis;
5648     double result;
5649 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5650 dl 1.119 MapReduceKeysToDoubleTask
5651 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5652 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5653 dl 1.171 ToDoubleFunction<? super K> transformer,
5654 dl 1.119 double basis,
5655 dl 1.153 DoubleBinaryOperator reducer) {
5656 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5657 dl 1.119 this.transformer = transformer;
5658     this.basis = basis; this.reducer = reducer;
5659     }
5660 dl 1.146 public final Double getRawResult() { return result; }
5661 dl 1.210 public final void compute() {
5662 dl 1.171 final ToDoubleFunction<? super K> transformer;
5663 dl 1.153 final DoubleBinaryOperator reducer;
5664 dl 1.149 if ((transformer = this.transformer) != null &&
5665     (reducer = this.reducer) != null) {
5666     double r = this.basis;
5667 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5668     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5669     addToPendingCount(1);
5670 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5671 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5672     rights, transformer, r, reducer)).fork();
5673     }
5674     for (Node<K,V> p; (p = advance()) != null; )
5675 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5676 dl 1.149 result = r;
5677     CountedCompleter<?> c;
5678     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5679 dl 1.246 @SuppressWarnings("unchecked")
5680     MapReduceKeysToDoubleTask<K,V>
5681 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5682     s = t.rights;
5683     while (s != null) {
5684 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5685 dl 1.149 s = t.rights = s.nextRight;
5686     }
5687 dl 1.119 }
5688 dl 1.138 }
5689 dl 1.79 }
5690 dl 1.119 }
5691 dl 1.79
5692 dl 1.222 @SuppressWarnings("serial")
5693 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5694     extends BulkTask<K,V,Double> {
5695 dl 1.171 final ToDoubleFunction<? super V> transformer;
5696 dl 1.153 final DoubleBinaryOperator reducer;
5697 dl 1.119 final double basis;
5698     double result;
5699 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5700 dl 1.119 MapReduceValuesToDoubleTask
5701 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5702 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5703 dl 1.171 ToDoubleFunction<? super V> transformer,
5704 dl 1.119 double basis,
5705 dl 1.153 DoubleBinaryOperator reducer) {
5706 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5707 dl 1.119 this.transformer = transformer;
5708     this.basis = basis; this.reducer = reducer;
5709     }
5710 dl 1.146 public final Double getRawResult() { return result; }
5711 dl 1.210 public final void compute() {
5712 dl 1.171 final ToDoubleFunction<? super V> transformer;
5713 dl 1.153 final DoubleBinaryOperator reducer;
5714 dl 1.149 if ((transformer = this.transformer) != null &&
5715     (reducer = this.reducer) != null) {
5716     double r = this.basis;
5717 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5718     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5719     addToPendingCount(1);
5720 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5721 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5722     rights, transformer, r, reducer)).fork();
5723     }
5724     for (Node<K,V> p; (p = advance()) != null; )
5725     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5726 dl 1.149 result = r;
5727     CountedCompleter<?> c;
5728     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5729 dl 1.246 @SuppressWarnings("unchecked")
5730     MapReduceValuesToDoubleTask<K,V>
5731 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5732     s = t.rights;
5733     while (s != null) {
5734 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5735 dl 1.149 s = t.rights = s.nextRight;
5736     }
5737 dl 1.119 }
5738     }
5739 dl 1.30 }
5740 dl 1.79 }
5741 dl 1.30
5742 dl 1.222 @SuppressWarnings("serial")
5743 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5744     extends BulkTask<K,V,Double> {
5745 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5746 dl 1.153 final DoubleBinaryOperator reducer;
5747 dl 1.119 final double basis;
5748     double result;
5749 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5750 dl 1.119 MapReduceEntriesToDoubleTask
5751 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5752 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5753 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5754 dl 1.119 double basis,
5755 dl 1.153 DoubleBinaryOperator reducer) {
5756 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5757 dl 1.119 this.transformer = transformer;
5758     this.basis = basis; this.reducer = reducer;
5759     }
5760 dl 1.146 public final Double getRawResult() { return result; }
5761 dl 1.210 public final void compute() {
5762 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5763 dl 1.153 final DoubleBinaryOperator reducer;
5764 dl 1.149 if ((transformer = this.transformer) != null &&
5765     (reducer = this.reducer) != null) {
5766     double r = this.basis;
5767 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5768     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5769     addToPendingCount(1);
5770 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5771 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5772     rights, transformer, r, reducer)).fork();
5773     }
5774     for (Node<K,V> p; (p = advance()) != null; )
5775     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5776 dl 1.149 result = r;
5777     CountedCompleter<?> c;
5778     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5779 dl 1.246 @SuppressWarnings("unchecked")
5780     MapReduceEntriesToDoubleTask<K,V>
5781 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5782     s = t.rights;
5783     while (s != null) {
5784 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5785 dl 1.149 s = t.rights = s.nextRight;
5786     }
5787 dl 1.119 }
5788 dl 1.138 }
5789 dl 1.30 }
5790 tim 1.1 }
5791    
5792 dl 1.222 @SuppressWarnings("serial")
5793 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5794     extends BulkTask<K,V,Double> {
5795 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5796 dl 1.153 final DoubleBinaryOperator reducer;
5797 dl 1.119 final double basis;
5798     double result;
5799 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5800 dl 1.119 MapReduceMappingsToDoubleTask
5801 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5802 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5803 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5804 dl 1.119 double basis,
5805 dl 1.153 DoubleBinaryOperator reducer) {
5806 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5807 dl 1.119 this.transformer = transformer;
5808     this.basis = basis; this.reducer = reducer;
5809     }
5810 dl 1.146 public final Double getRawResult() { return result; }
5811 dl 1.210 public final void compute() {
5812 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5813 dl 1.153 final DoubleBinaryOperator reducer;
5814 dl 1.149 if ((transformer = this.transformer) != null &&
5815     (reducer = this.reducer) != null) {
5816     double r = this.basis;
5817 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5818     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5819     addToPendingCount(1);
5820 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5821 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5822     rights, transformer, r, reducer)).fork();
5823     }
5824     for (Node<K,V> p; (p = advance()) != null; )
5825 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5826 dl 1.149 result = r;
5827     CountedCompleter<?> c;
5828     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5829 dl 1.246 @SuppressWarnings("unchecked")
5830     MapReduceMappingsToDoubleTask<K,V>
5831 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5832     s = t.rights;
5833     while (s != null) {
5834 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5835 dl 1.149 s = t.rights = s.nextRight;
5836     }
5837 dl 1.119 }
5838     }
5839 dl 1.4 }
5840 dl 1.119 }
5841    
5842 dl 1.222 @SuppressWarnings("serial")
5843 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5844     extends BulkTask<K,V,Long> {
5845 dl 1.171 final ToLongFunction<? super K> transformer;
5846 dl 1.153 final LongBinaryOperator reducer;
5847 dl 1.119 final long basis;
5848     long result;
5849 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5850 dl 1.119 MapReduceKeysToLongTask
5851 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5852 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5853 dl 1.171 ToLongFunction<? super K> transformer,
5854 dl 1.119 long basis,
5855 dl 1.153 LongBinaryOperator reducer) {
5856 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5857 dl 1.119 this.transformer = transformer;
5858     this.basis = basis; this.reducer = reducer;
5859     }
5860 dl 1.146 public final Long getRawResult() { return result; }
5861 dl 1.210 public final void compute() {
5862 dl 1.171 final ToLongFunction<? super K> transformer;
5863 dl 1.153 final LongBinaryOperator reducer;
5864 dl 1.149 if ((transformer = this.transformer) != null &&
5865     (reducer = this.reducer) != null) {
5866     long r = this.basis;
5867 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5868     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5869     addToPendingCount(1);
5870 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5871 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5872     rights, transformer, r, reducer)).fork();
5873     }
5874     for (Node<K,V> p; (p = advance()) != null; )
5875 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5876 dl 1.149 result = r;
5877     CountedCompleter<?> c;
5878     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5879 dl 1.246 @SuppressWarnings("unchecked")
5880     MapReduceKeysToLongTask<K,V>
5881 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5882     s = t.rights;
5883     while (s != null) {
5884 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5885 dl 1.149 s = t.rights = s.nextRight;
5886     }
5887 dl 1.119 }
5888 dl 1.138 }
5889 dl 1.4 }
5890 dl 1.119 }
5891    
5892 dl 1.222 @SuppressWarnings("serial")
5893 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5894     extends BulkTask<K,V,Long> {
5895 dl 1.171 final ToLongFunction<? super V> transformer;
5896 dl 1.153 final LongBinaryOperator reducer;
5897 dl 1.119 final long basis;
5898     long result;
5899 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5900 dl 1.119 MapReduceValuesToLongTask
5901 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5902 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5903 dl 1.171 ToLongFunction<? super V> transformer,
5904 dl 1.119 long basis,
5905 dl 1.153 LongBinaryOperator reducer) {
5906 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5907 dl 1.119 this.transformer = transformer;
5908     this.basis = basis; this.reducer = reducer;
5909     }
5910 dl 1.146 public final Long getRawResult() { return result; }
5911 dl 1.210 public final void compute() {
5912 dl 1.171 final ToLongFunction<? super V> transformer;
5913 dl 1.153 final LongBinaryOperator reducer;
5914 dl 1.149 if ((transformer = this.transformer) != null &&
5915     (reducer = this.reducer) != null) {
5916     long r = this.basis;
5917 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5918     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5919     addToPendingCount(1);
5920 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5921 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5922     rights, transformer, r, reducer)).fork();
5923     }
5924     for (Node<K,V> p; (p = advance()) != null; )
5925     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5926 dl 1.149 result = r;
5927     CountedCompleter<?> c;
5928     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5929 dl 1.246 @SuppressWarnings("unchecked")
5930     MapReduceValuesToLongTask<K,V>
5931 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5932     s = t.rights;
5933     while (s != null) {
5934 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5935 dl 1.149 s = t.rights = s.nextRight;
5936     }
5937 dl 1.119 }
5938     }
5939 jsr166 1.95 }
5940 dl 1.119 }
5941    
5942 dl 1.222 @SuppressWarnings("serial")
5943 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
5944     extends BulkTask<K,V,Long> {
5945 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5946 dl 1.153 final LongBinaryOperator reducer;
5947 dl 1.119 final long basis;
5948     long result;
5949 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5950 dl 1.119 MapReduceEntriesToLongTask
5951 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5952 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
5953 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5954 dl 1.119 long basis,
5955 dl 1.153 LongBinaryOperator reducer) {
5956 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5957 dl 1.119 this.transformer = transformer;
5958     this.basis = basis; this.reducer = reducer;
5959     }
5960 dl 1.146 public final Long getRawResult() { return result; }
5961 dl 1.210 public final void compute() {
5962 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5963 dl 1.153 final LongBinaryOperator reducer;
5964 dl 1.149 if ((transformer = this.transformer) != null &&
5965     (reducer = this.reducer) != null) {
5966     long r = this.basis;
5967 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5968     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5969     addToPendingCount(1);
5970 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
5971 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5972     rights, transformer, r, reducer)).fork();
5973     }
5974     for (Node<K,V> p; (p = advance()) != null; )
5975     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5976 dl 1.149 result = r;
5977     CountedCompleter<?> c;
5978     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5979 dl 1.246 @SuppressWarnings("unchecked")
5980     MapReduceEntriesToLongTask<K,V>
5981 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
5982     s = t.rights;
5983     while (s != null) {
5984 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5985 dl 1.149 s = t.rights = s.nextRight;
5986     }
5987 dl 1.119 }
5988 dl 1.138 }
5989 dl 1.4 }
5990 tim 1.1 }
5991    
5992 dl 1.222 @SuppressWarnings("serial")
5993 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
5994     extends BulkTask<K,V,Long> {
5995 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5996 dl 1.153 final LongBinaryOperator reducer;
5997 dl 1.119 final long basis;
5998     long result;
5999 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6000 dl 1.119 MapReduceMappingsToLongTask
6001 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6002 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6003 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6004 dl 1.119 long basis,
6005 dl 1.153 LongBinaryOperator reducer) {
6006 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6007 dl 1.119 this.transformer = transformer;
6008     this.basis = basis; this.reducer = reducer;
6009     }
6010 dl 1.146 public final Long getRawResult() { return result; }
6011 dl 1.210 public final void compute() {
6012 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6013 dl 1.153 final LongBinaryOperator reducer;
6014 dl 1.149 if ((transformer = this.transformer) != null &&
6015     (reducer = this.reducer) != null) {
6016     long r = this.basis;
6017 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6018     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6019     addToPendingCount(1);
6020 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
6021 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6022     rights, transformer, r, reducer)).fork();
6023     }
6024     for (Node<K,V> p; (p = advance()) != null; )
6025 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6026 dl 1.149 result = r;
6027     CountedCompleter<?> c;
6028     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6029 dl 1.246 @SuppressWarnings("unchecked")
6030     MapReduceMappingsToLongTask<K,V>
6031 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
6032     s = t.rights;
6033     while (s != null) {
6034 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6035 dl 1.149 s = t.rights = s.nextRight;
6036     }
6037 dl 1.119 }
6038     }
6039 dl 1.4 }
6040 tim 1.1 }
6041    
6042 dl 1.222 @SuppressWarnings("serial")
6043 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6044     extends BulkTask<K,V,Integer> {
6045 dl 1.171 final ToIntFunction<? super K> transformer;
6046 dl 1.153 final IntBinaryOperator reducer;
6047 dl 1.119 final int basis;
6048     int result;
6049 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6050 dl 1.119 MapReduceKeysToIntTask
6051 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6052 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6053 dl 1.171 ToIntFunction<? super K> transformer,
6054 dl 1.119 int basis,
6055 dl 1.153 IntBinaryOperator reducer) {
6056 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6057 dl 1.119 this.transformer = transformer;
6058     this.basis = basis; this.reducer = reducer;
6059     }
6060 dl 1.146 public final Integer getRawResult() { return result; }
6061 dl 1.210 public final void compute() {
6062 dl 1.171 final ToIntFunction<? super K> transformer;
6063 dl 1.153 final IntBinaryOperator reducer;
6064 dl 1.149 if ((transformer = this.transformer) != null &&
6065     (reducer = this.reducer) != null) {
6066     int r = this.basis;
6067 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6068     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6069     addToPendingCount(1);
6070 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6071 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6072     rights, transformer, r, reducer)).fork();
6073     }
6074     for (Node<K,V> p; (p = advance()) != null; )
6075 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6076 dl 1.149 result = r;
6077     CountedCompleter<?> c;
6078     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6079 dl 1.246 @SuppressWarnings("unchecked")
6080     MapReduceKeysToIntTask<K,V>
6081 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6082     s = t.rights;
6083     while (s != null) {
6084 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6085 dl 1.149 s = t.rights = s.nextRight;
6086     }
6087 dl 1.119 }
6088 dl 1.138 }
6089 dl 1.30 }
6090     }
6091    
6092 dl 1.222 @SuppressWarnings("serial")
6093 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6094     extends BulkTask<K,V,Integer> {
6095 dl 1.171 final ToIntFunction<? super V> transformer;
6096 dl 1.153 final IntBinaryOperator reducer;
6097 dl 1.119 final int basis;
6098     int result;
6099 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6100 dl 1.119 MapReduceValuesToIntTask
6101 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6102 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6103 dl 1.171 ToIntFunction<? super V> transformer,
6104 dl 1.119 int basis,
6105 dl 1.153 IntBinaryOperator reducer) {
6106 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6107 dl 1.119 this.transformer = transformer;
6108     this.basis = basis; this.reducer = reducer;
6109     }
6110 dl 1.146 public final Integer getRawResult() { return result; }
6111 dl 1.210 public final void compute() {
6112 dl 1.171 final ToIntFunction<? super V> transformer;
6113 dl 1.153 final IntBinaryOperator reducer;
6114 dl 1.149 if ((transformer = this.transformer) != null &&
6115     (reducer = this.reducer) != null) {
6116     int r = this.basis;
6117 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6118     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6119     addToPendingCount(1);
6120 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6121 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6122     rights, transformer, r, reducer)).fork();
6123     }
6124     for (Node<K,V> p; (p = advance()) != null; )
6125     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6126 dl 1.149 result = r;
6127     CountedCompleter<?> c;
6128     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6129 dl 1.246 @SuppressWarnings("unchecked")
6130     MapReduceValuesToIntTask<K,V>
6131 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6132     s = t.rights;
6133     while (s != null) {
6134 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6135 dl 1.149 s = t.rights = s.nextRight;
6136     }
6137 dl 1.119 }
6138 dl 1.2 }
6139 tim 1.1 }
6140     }
6141    
6142 dl 1.222 @SuppressWarnings("serial")
6143 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6144     extends BulkTask<K,V,Integer> {
6145 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6146 dl 1.153 final IntBinaryOperator reducer;
6147 dl 1.119 final int basis;
6148     int result;
6149 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6150 dl 1.119 MapReduceEntriesToIntTask
6151 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6152 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6153 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6154 dl 1.119 int basis,
6155 dl 1.153 IntBinaryOperator reducer) {
6156 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6157 dl 1.119 this.transformer = transformer;
6158     this.basis = basis; this.reducer = reducer;
6159     }
6160 dl 1.146 public final Integer getRawResult() { return result; }
6161 dl 1.210 public final void compute() {
6162 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6163 dl 1.153 final IntBinaryOperator reducer;
6164 dl 1.149 if ((transformer = this.transformer) != null &&
6165     (reducer = this.reducer) != null) {
6166     int r = this.basis;
6167 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6168     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6169     addToPendingCount(1);
6170 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6171 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6172     rights, transformer, r, reducer)).fork();
6173     }
6174     for (Node<K,V> p; (p = advance()) != null; )
6175     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6176 dl 1.149 result = r;
6177     CountedCompleter<?> c;
6178     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6179 dl 1.246 @SuppressWarnings("unchecked")
6180     MapReduceEntriesToIntTask<K,V>
6181 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6182     s = t.rights;
6183     while (s != null) {
6184 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6185 dl 1.149 s = t.rights = s.nextRight;
6186     }
6187 dl 1.119 }
6188 dl 1.138 }
6189 dl 1.4 }
6190 dl 1.119 }
6191 tim 1.1
6192 dl 1.222 @SuppressWarnings("serial")
6193 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6194     extends BulkTask<K,V,Integer> {
6195 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6196 dl 1.153 final IntBinaryOperator reducer;
6197 dl 1.119 final int basis;
6198     int result;
6199 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6200 dl 1.119 MapReduceMappingsToIntTask
6201 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6202 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6203 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6204 dl 1.119 int basis,
6205 dl 1.153 IntBinaryOperator reducer) {
6206 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6207 dl 1.119 this.transformer = transformer;
6208     this.basis = basis; this.reducer = reducer;
6209     }
6210 dl 1.146 public final Integer getRawResult() { return result; }
6211 dl 1.210 public final void compute() {
6212 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6213 dl 1.153 final IntBinaryOperator reducer;
6214 dl 1.149 if ((transformer = this.transformer) != null &&
6215     (reducer = this.reducer) != null) {
6216     int r = this.basis;
6217 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6218     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6219     addToPendingCount(1);
6220 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6221 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6222     rights, transformer, r, reducer)).fork();
6223     }
6224     for (Node<K,V> p; (p = advance()) != null; )
6225 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6226 dl 1.149 result = r;
6227     CountedCompleter<?> c;
6228     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6229 dl 1.246 @SuppressWarnings("unchecked")
6230     MapReduceMappingsToIntTask<K,V>
6231 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6232     s = t.rights;
6233     while (s != null) {
6234 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6235 dl 1.149 s = t.rights = s.nextRight;
6236     }
6237 dl 1.119 }
6238 dl 1.138 }
6239 tim 1.1 }
6240     }
6241 dl 1.99
6242     // Unsafe mechanics
6243 dl 1.149 private static final sun.misc.Unsafe U;
6244     private static final long SIZECTL;
6245     private static final long TRANSFERINDEX;
6246     private static final long BASECOUNT;
6247 dl 1.153 private static final long CELLSBUSY;
6248 dl 1.149 private static final long CELLVALUE;
6249 dl 1.119 private static final long ABASE;
6250     private static final int ASHIFT;
6251 dl 1.99
6252     static {
6253     try {
6254 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6255 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6256 dl 1.149 SIZECTL = U.objectFieldOffset
6257 dl 1.119 (k.getDeclaredField("sizeCtl"));
6258 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6259     (k.getDeclaredField("transferIndex"));
6260     BASECOUNT = U.objectFieldOffset
6261     (k.getDeclaredField("baseCount"));
6262 dl 1.153 CELLSBUSY = U.objectFieldOffset
6263     (k.getDeclaredField("cellsBusy"));
6264 dl 1.222 Class<?> ck = CounterCell.class;
6265 dl 1.149 CELLVALUE = U.objectFieldOffset
6266     (ck.getDeclaredField("value"));
6267 jsr166 1.226 Class<?> ak = Node[].class;
6268     ABASE = U.arrayBaseOffset(ak);
6269     int scale = U.arrayIndexScale(ak);
6270 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6271     throw new Error("data type scale not a power of two");
6272     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6273 dl 1.99 } catch (Exception e) {
6274     throw new Error(e);
6275     }
6276     }
6277 jsr166 1.152 }