ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.30
Committed: Fri Nov 21 17:50:28 2003 UTC (20 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.29: +126 -38 lines
Log Message:
Ensure EntrySet Entry setValue writes through to map

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52     * appropriate when it is known that only one thread will modify
53     * and all others will only read.
54 tim 1.1 *
55 dl 1.23 * <p>This class implements all of the <em>optional</em> methods
56     * of the {@link Map} and {@link Iterator} interfaces.
57     *
58 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
59     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60     * used as a key or value.
61 tim 1.1 *
62 dl 1.8 * @since 1.5
63     * @author Doug Lea
64 dl 1.27 * @param <K> the type of keys maintained by this map
65     * @param <V> the type of mapped values
66 dl 1.8 */
67 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68     implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
70 tim 1.1
71     /*
72 dl 1.4 * The basic strategy is to subdivide the table among Segments,
73     * each of which itself is a concurrently readable hash table.
74     */
75 tim 1.1
76 dl 1.4 /* ---------------- Constants -------------- */
77 tim 1.11
78 dl 1.4 /**
79 dl 1.19 * The default initial number of table slots for this table.
80 dl 1.4 * Used when not otherwise specified in constructor.
81     */
82 tim 1.11 private static int DEFAULT_INITIAL_CAPACITY = 16;
83 tim 1.1
84     /**
85 dl 1.4 * The maximum capacity, used if a higher value is implicitly
86     * specified by either of the constructors with arguments. MUST
87 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
88     * using ints.
89 dl 1.4 */
90 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
91 tim 1.11
92 tim 1.1 /**
93 dl 1.4 * The default load factor for this table. Used when not
94     * otherwise specified in constructor.
95     */
96 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 tim 1.1
98     /**
99 dl 1.4 * The default number of concurrency control segments.
100 tim 1.1 **/
101 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
102 tim 1.1
103 dl 1.21 /**
104     * The maximum number of segments to allow; used to bound ctor arguments.
105     */
106     private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
107    
108 dl 1.4 /* ---------------- Fields -------------- */
109 tim 1.1
110     /**
111 dl 1.9 * Mask value for indexing into segments. The upper bits of a
112     * key's hash code are used to choose the segment.
113 tim 1.1 **/
114 dl 1.4 private final int segmentMask;
115 tim 1.1
116     /**
117 dl 1.4 * Shift value for indexing within segments.
118 tim 1.1 **/
119 dl 1.4 private final int segmentShift;
120 tim 1.1
121     /**
122 dl 1.4 * The segments, each of which is a specialized hash table
123 tim 1.1 */
124 tim 1.11 private final Segment[] segments;
125 dl 1.4
126 dl 1.6 private transient Set<K> keySet;
127 tim 1.12 private transient Set<Map.Entry<K,V>> entrySet;
128 dl 1.6 private transient Collection<V> values;
129 dl 1.4
130     /* ---------------- Small Utilities -------------- */
131 tim 1.1
132     /**
133 tim 1.11 * Return a hash code for non-null Object x.
134 dl 1.4 * Uses the same hash code spreader as most other j.u hash tables.
135 dl 1.8 * @param x the object serving as a key
136     * @return the hash code
137 tim 1.1 */
138 dl 1.4 private static int hash(Object x) {
139     int h = x.hashCode();
140     h += ~(h << 9);
141     h ^= (h >>> 14);
142     h += (h << 4);
143     h ^= (h >>> 10);
144     return h;
145     }
146    
147 tim 1.1 /**
148 dl 1.4 * Return the segment that should be used for key with given hash
149 tim 1.1 */
150 dl 1.4 private Segment<K,V> segmentFor(int hash) {
151 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
152 dl 1.4 }
153 tim 1.1
154 dl 1.4 /* ---------------- Inner Classes -------------- */
155 tim 1.1
156     /**
157 dl 1.6 * Segments are specialized versions of hash tables. This
158 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
159     * simplify some locking and avoid separate construction.
160 tim 1.1 **/
161 dl 1.8 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
162 dl 1.4 /*
163     * Segments maintain a table of entry lists that are ALWAYS
164     * kept in a consistent state, so can be read without locking.
165     * Next fields of nodes are immutable (final). All list
166     * additions are performed at the front of each bin. This
167     * makes it easy to check changes, and also fast to traverse.
168     * When nodes would otherwise be changed, new nodes are
169     * created to replace them. This works well for hash tables
170     * since the bin lists tend to be short. (The average length
171     * is less than two for the default load factor threshold.)
172     *
173     * Read operations can thus proceed without locking, but rely
174     * on a memory barrier to ensure that completed write
175     * operations performed by other threads are
176     * noticed. Conveniently, the "count" field, tracking the
177     * number of elements, can also serve as the volatile variable
178     * providing proper read/write barriers. This is convenient
179     * because this field needs to be read in many read operations
180 dl 1.19 * anyway.
181 dl 1.4 *
182     * Implementors note. The basic rules for all this are:
183     *
184     * - All unsynchronized read operations must first read the
185     * "count" field, and should not look at table entries if
186     * it is 0.
187 tim 1.11 *
188 dl 1.4 * - All synchronized write operations should write to
189     * the "count" field after updating. The operations must not
190     * take any action that could even momentarily cause
191     * a concurrent read operation to see inconsistent
192     * data. This is made easier by the nature of the read
193     * operations in Map. For example, no operation
194     * can reveal that the table has grown but the threshold
195     * has not yet been updated, so there are no atomicity
196     * requirements for this with respect to reads.
197     *
198     * As a guide, all critical volatile reads and writes are marked
199     * in code comments.
200     */
201 tim 1.11
202 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
203    
204 dl 1.4 /**
205     * The number of elements in this segment's region.
206     **/
207     transient volatile int count;
208    
209     /**
210 dl 1.21 * Number of updates; used for checking lack of modifications
211     * in bulk-read methods.
212     */
213     transient int modCount;
214    
215     /**
216 dl 1.4 * The table is rehashed when its size exceeds this threshold.
217     * (The value of this field is always (int)(capacity *
218     * loadFactor).)
219     */
220 dl 1.8 private transient int threshold;
221 dl 1.4
222     /**
223     * The per-segment table
224     */
225 tim 1.11 transient HashEntry[] table;
226 dl 1.4
227     /**
228     * The load factor for the hash table. Even though this value
229     * is same for all segments, it is replicated to avoid needing
230     * links to outer object.
231     * @serial
232     */
233     private final float loadFactor;
234 tim 1.1
235 dl 1.4 Segment(int initialCapacity, float lf) {
236     loadFactor = lf;
237 tim 1.11 setTable(new HashEntry[initialCapacity]);
238 dl 1.4 }
239 tim 1.1
240 dl 1.4 /**
241 tim 1.11 * Set table to new HashEntry array.
242 dl 1.4 * Call only while holding lock or in constructor.
243     **/
244 tim 1.11 private void setTable(HashEntry[] newTable) {
245 dl 1.4 table = newTable;
246     threshold = (int)(newTable.length * loadFactor);
247     count = count; // write-volatile
248 tim 1.11 }
249 dl 1.4
250     /* Specialized implementations of map methods */
251 tim 1.11
252 dl 1.29 V get(Object key, int hash) {
253 dl 1.4 if (count != 0) { // read-volatile
254 tim 1.11 HashEntry[] tab = table;
255 dl 1.9 int index = hash & (tab.length - 1);
256 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
257 dl 1.4 while (e != null) {
258 tim 1.11 if (e.hash == hash && key.equals(e.key))
259 dl 1.4 return e.value;
260     e = e.next;
261     }
262     }
263     return null;
264     }
265    
266     boolean containsKey(Object key, int hash) {
267     if (count != 0) { // read-volatile
268 tim 1.11 HashEntry[] tab = table;
269 dl 1.9 int index = hash & (tab.length - 1);
270 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
271 dl 1.4 while (e != null) {
272 tim 1.11 if (e.hash == hash && key.equals(e.key))
273 dl 1.4 return true;
274     e = e.next;
275     }
276     }
277     return false;
278     }
279 tim 1.11
280 dl 1.4 boolean containsValue(Object value) {
281     if (count != 0) { // read-volatile
282 tim 1.11 HashEntry[] tab = table;
283 dl 1.4 int len = tab.length;
284 tim 1.11 for (int i = 0 ; i < len; i++)
285 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
286 dl 1.4 if (value.equals(e.value))
287     return true;
288     }
289     return false;
290     }
291    
292 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
293 dl 1.4 lock();
294     try {
295 dl 1.9 int c = count;
296 tim 1.11 HashEntry[] tab = table;
297 dl 1.9 int index = hash & (tab.length - 1);
298 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
299    
300     for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
301 dl 1.9 if (e.hash == hash && key.equals(e.key)) {
302 tim 1.11 V oldValue = e.value;
303 dl 1.4 if (!onlyIfAbsent)
304     e.value = value;
305 dl 1.21 ++modCount;
306 dl 1.9 count = c; // write-volatile
307 dl 1.4 return oldValue;
308     }
309     }
310 tim 1.11
311 dl 1.4 tab[index] = new HashEntry<K,V>(hash, key, value, first);
312 dl 1.21 ++modCount;
313 dl 1.9 ++c;
314     count = c; // write-volatile
315 tim 1.11 if (c > threshold)
316 dl 1.9 setTable(rehash(tab));
317 dl 1.4 return null;
318 tim 1.16 } finally {
319 dl 1.4 unlock();
320     }
321     }
322    
323 tim 1.11 private HashEntry[] rehash(HashEntry[] oldTable) {
324 dl 1.4 int oldCapacity = oldTable.length;
325     if (oldCapacity >= MAXIMUM_CAPACITY)
326 dl 1.9 return oldTable;
327 dl 1.4
328     /*
329     * Reclassify nodes in each list to new Map. Because we are
330     * using power-of-two expansion, the elements from each bin
331     * must either stay at same index, or move with a power of two
332     * offset. We eliminate unnecessary node creation by catching
333     * cases where old nodes can be reused because their next
334     * fields won't change. Statistically, at the default
335 dl 1.29 * threshold, only about one-sixth of them need cloning when
336 dl 1.4 * a table doubles. The nodes they replace will be garbage
337     * collectable as soon as they are no longer referenced by any
338     * reader thread that may be in the midst of traversing table
339     * right now.
340     */
341 tim 1.11
342     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
343 dl 1.4 int sizeMask = newTable.length - 1;
344     for (int i = 0; i < oldCapacity ; i++) {
345     // We need to guarantee that any existing reads of old Map can
346 tim 1.11 // proceed. So we cannot yet null out each bin.
347 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
348 tim 1.11
349 dl 1.4 if (e != null) {
350     HashEntry<K,V> next = e.next;
351     int idx = e.hash & sizeMask;
352 tim 1.11
353 dl 1.4 // Single node on list
354 tim 1.11 if (next == null)
355 dl 1.4 newTable[idx] = e;
356 tim 1.11
357     else {
358 dl 1.4 // Reuse trailing consecutive sequence at same slot
359     HashEntry<K,V> lastRun = e;
360     int lastIdx = idx;
361 tim 1.11 for (HashEntry<K,V> last = next;
362     last != null;
363 dl 1.4 last = last.next) {
364     int k = last.hash & sizeMask;
365     if (k != lastIdx) {
366     lastIdx = k;
367     lastRun = last;
368     }
369     }
370     newTable[lastIdx] = lastRun;
371 tim 1.11
372 dl 1.4 // Clone all remaining nodes
373     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
374     int k = p.hash & sizeMask;
375 tim 1.11 newTable[k] = new HashEntry<K,V>(p.hash,
376     p.key,
377     p.value,
378     (HashEntry<K,V>) newTable[k]);
379 dl 1.4 }
380     }
381     }
382     }
383 dl 1.9 return newTable;
384 dl 1.4 }
385 dl 1.6
386     /**
387     * Remove; match on key only if value null, else match both.
388     */
389 dl 1.4 V remove(Object key, int hash, Object value) {
390 tim 1.11 lock();
391 dl 1.4 try {
392 dl 1.9 int c = count;
393 dl 1.4 HashEntry[] tab = table;
394 dl 1.9 int index = hash & (tab.length - 1);
395 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
396 tim 1.11
397 dl 1.4 HashEntry<K,V> e = first;
398 dl 1.9 for (;;) {
399 dl 1.4 if (e == null)
400     return null;
401 dl 1.9 if (e.hash == hash && key.equals(e.key))
402 dl 1.4 break;
403     e = e.next;
404     }
405    
406     V oldValue = e.value;
407     if (value != null && !value.equals(oldValue))
408     return null;
409 dl 1.9
410 dl 1.4 // All entries following removed node can stay in list, but
411 dl 1.29 // all preceding ones need to be cloned.
412 dl 1.4 HashEntry<K,V> newFirst = e.next;
413 tim 1.11 for (HashEntry<K,V> p = first; p != e; p = p.next)
414     newFirst = new HashEntry<K,V>(p.hash, p.key,
415 dl 1.8 p.value, newFirst);
416 dl 1.4 tab[index] = newFirst;
417 dl 1.21 ++modCount;
418 dl 1.9 count = c-1; // write-volatile
419     return oldValue;
420 tim 1.16 } finally {
421 dl 1.4 unlock();
422     }
423     }
424    
425     void clear() {
426     lock();
427     try {
428 tim 1.11 HashEntry[] tab = table;
429     for (int i = 0; i < tab.length ; i++)
430 dl 1.4 tab[i] = null;
431 dl 1.21 ++modCount;
432 dl 1.4 count = 0; // write-volatile
433 tim 1.16 } finally {
434 dl 1.4 unlock();
435     }
436     }
437 tim 1.1 }
438    
439     /**
440 dl 1.30 * ConcurrentHashMap list entry. Note that this is never exported
441     * out as a user-visible Map.Entry
442 tim 1.1 */
443 dl 1.30 private static class HashEntry<K,V> {
444 dl 1.4 private final K key;
445     private V value;
446     private final int hash;
447     private final HashEntry<K,V> next;
448    
449     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
450     this.value = value;
451     this.hash = hash;
452     this.key = key;
453     this.next = next;
454     }
455 tim 1.1 }
456    
457 tim 1.11
458 dl 1.4 /* ---------------- Public operations -------------- */
459 tim 1.1
460     /**
461     * Constructs a new, empty map with the specified initial
462     * capacity and the specified load factor.
463     *
464 dl 1.19 * @param initialCapacity the initial capacity. The implementation
465     * performs internal sizing to accommodate this many elements.
466 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
467 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
468     * updating threads. The implementation performs internal sizing
469 dl 1.21 * to try to accommodate this many threads.
470 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
471 dl 1.19 * negative or the load factor or concurrencyLevel are
472 dl 1.4 * nonpositive.
473     */
474 tim 1.11 public ConcurrentHashMap(int initialCapacity,
475 dl 1.19 float loadFactor, int concurrencyLevel) {
476     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
477 dl 1.4 throw new IllegalArgumentException();
478    
479 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
480     concurrencyLevel = MAX_SEGMENTS;
481    
482 dl 1.4 // Find power-of-two sizes best matching arguments
483     int sshift = 0;
484     int ssize = 1;
485 dl 1.19 while (ssize < concurrencyLevel) {
486 dl 1.4 ++sshift;
487     ssize <<= 1;
488     }
489 dl 1.9 segmentShift = 32 - sshift;
490 dl 1.8 segmentMask = ssize - 1;
491 tim 1.11 this.segments = new Segment[ssize];
492 dl 1.4
493     if (initialCapacity > MAXIMUM_CAPACITY)
494     initialCapacity = MAXIMUM_CAPACITY;
495     int c = initialCapacity / ssize;
496 tim 1.11 if (c * ssize < initialCapacity)
497 dl 1.4 ++c;
498     int cap = 1;
499     while (cap < c)
500     cap <<= 1;
501    
502     for (int i = 0; i < this.segments.length; ++i)
503     this.segments[i] = new Segment<K,V>(cap, loadFactor);
504 tim 1.1 }
505    
506     /**
507     * Constructs a new, empty map with the specified initial
508 dl 1.19 * capacity, and with default load factor and concurrencyLevel.
509 tim 1.1 *
510 dl 1.19 * @param initialCapacity The implementation performs internal
511     * sizing to accommodate this many elements.
512 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
513     * elements is negative.
514 tim 1.1 */
515     public ConcurrentHashMap(int initialCapacity) {
516 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
517 tim 1.1 }
518    
519     /**
520 dl 1.4 * Constructs a new, empty map with a default initial capacity,
521 dl 1.23 * load factor, and concurrencyLevel.
522 tim 1.1 */
523     public ConcurrentHashMap() {
524 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
525 tim 1.1 }
526    
527     /**
528     * Constructs a new map with the same mappings as the given map. The
529     * map is created with a capacity of twice the number of mappings in
530 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
531 tim 1.1 */
532     public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
533     this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
534 dl 1.4 11),
535     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
536     putAll(t);
537 tim 1.1 }
538    
539 dl 1.4 // inherit Map javadoc
540 tim 1.1 public boolean isEmpty() {
541 dl 1.21 /*
542     * We need to keep track of per-segment modCounts to avoid ABA
543     * problems in which an element in one segment was added and
544     * in another removed during traversal, in which case the
545     * table was never actually empty at any point. Note the
546     * similar use of modCounts in the size() and containsValue()
547     * methods, which are the only other methods also susceptible
548     * to ABA problems.
549     */
550     int[] mc = new int[segments.length];
551     int mcsum = 0;
552     for (int i = 0; i < segments.length; ++i) {
553 dl 1.4 if (segments[i].count != 0)
554 tim 1.1 return false;
555 dl 1.21 else
556     mcsum += mc[i] = segments[i].modCount;
557     }
558     // If mcsum happens to be zero, then we know we got a snapshot
559     // before any modifications at all were made. This is
560     // probably common enough to bother tracking.
561     if (mcsum != 0) {
562     for (int i = 0; i < segments.length; ++i) {
563     if (segments[i].count != 0 ||
564     mc[i] != segments[i].modCount)
565     return false;
566     }
567     }
568 tim 1.1 return true;
569     }
570    
571 dl 1.21 // inherit Map javadoc
572     public int size() {
573     int[] mc = new int[segments.length];
574     for (;;) {
575 dl 1.23 long sum = 0;
576 dl 1.21 int mcsum = 0;
577     for (int i = 0; i < segments.length; ++i) {
578     sum += segments[i].count;
579     mcsum += mc[i] = segments[i].modCount;
580     }
581     int check = 0;
582     if (mcsum != 0) {
583     for (int i = 0; i < segments.length; ++i) {
584     check += segments[i].count;
585     if (mc[i] != segments[i].modCount) {
586     check = -1; // force retry
587     break;
588     }
589     }
590     }
591 dl 1.23 if (check == sum) {
592     if (sum > Integer.MAX_VALUE)
593     return Integer.MAX_VALUE;
594     else
595     return (int)sum;
596     }
597 dl 1.21 }
598     }
599    
600    
601 tim 1.1 /**
602     * Returns the value to which the specified key is mapped in this table.
603     *
604     * @param key a key in the table.
605     * @return the value to which the key is mapped in this table;
606 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
607 tim 1.1 * this table.
608 dl 1.8 * @throws NullPointerException if the key is
609 dl 1.19 * <tt>null</tt>.
610 tim 1.1 */
611 tim 1.11 public V get(Object key) {
612 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
613 dl 1.29 return segmentFor(hash).get(key, hash);
614 tim 1.1 }
615    
616     /**
617     * Tests if the specified object is a key in this table.
618 tim 1.11 *
619 tim 1.1 * @param key possible key.
620 dl 1.19 * @return <tt>true</tt> if and only if the specified object
621 tim 1.11 * is a key in this table, as determined by the
622 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
623 dl 1.8 * @throws NullPointerException if the key is
624 dl 1.19 * <tt>null</tt>.
625 tim 1.1 */
626     public boolean containsKey(Object key) {
627 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
628 dl 1.9 return segmentFor(hash).containsKey(key, hash);
629 tim 1.1 }
630    
631     /**
632     * Returns <tt>true</tt> if this map maps one or more keys to the
633     * specified value. Note: This method requires a full internal
634     * traversal of the hash table, and so is much slower than
635     * method <tt>containsKey</tt>.
636     *
637     * @param value value whose presence in this map is to be tested.
638     * @return <tt>true</tt> if this map maps one or more keys to the
639 tim 1.11 * specified value.
640 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
641 tim 1.1 */
642     public boolean containsValue(Object value) {
643 tim 1.11 if (value == null)
644 dl 1.4 throw new NullPointerException();
645 tim 1.1
646 dl 1.21 int[] mc = new int[segments.length];
647     for (;;) {
648     int sum = 0;
649     int mcsum = 0;
650     for (int i = 0; i < segments.length; ++i) {
651     int c = segments[i].count;
652     mcsum += mc[i] = segments[i].modCount;
653     if (segments[i].containsValue(value))
654     return true;
655     }
656     boolean cleanSweep = true;
657     if (mcsum != 0) {
658     for (int i = 0; i < segments.length; ++i) {
659     int c = segments[i].count;
660     if (mc[i] != segments[i].modCount) {
661     cleanSweep = false;
662     break;
663     }
664     }
665     }
666     if (cleanSweep)
667     return false;
668 tim 1.1 }
669     }
670 dl 1.19
671 tim 1.1 /**
672 dl 1.18 * Legacy method testing if some key maps into the specified value
673 dl 1.23 * in this table. This method is identical in functionality to
674     * {@link #containsValue}, and exists solely to ensure
675 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
676 dl 1.18 * which supported this method prior to introduction of the
677 dl 1.23 * Java Collections framework.
678 dl 1.17
679 tim 1.1 * @param value a value to search for.
680 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
681     * <tt>value</tt> argument in this table as
682 tim 1.1 * determined by the <tt>equals</tt> method;
683 dl 1.19 * <tt>false</tt> otherwise.
684     * @throws NullPointerException if the value is <tt>null</tt>.
685 tim 1.1 */
686 dl 1.4 public boolean contains(Object value) {
687 tim 1.1 return containsValue(value);
688     }
689    
690     /**
691 dl 1.19 * Maps the specified <tt>key</tt> to the specified
692     * <tt>value</tt> in this table. Neither the key nor the
693     * value can be <tt>null</tt>. <p>
694 dl 1.4 *
695 dl 1.19 * The value can be retrieved by calling the <tt>get</tt> method
696 tim 1.11 * with a key that is equal to the original key.
697 dl 1.4 *
698     * @param key the table key.
699     * @param value the value.
700     * @return the previous value of the specified key in this table,
701 dl 1.19 * or <tt>null</tt> if it did not have one.
702 dl 1.8 * @throws NullPointerException if the key or value is
703 dl 1.19 * <tt>null</tt>.
704 dl 1.4 */
705 tim 1.11 public V put(K key, V value) {
706     if (value == null)
707 dl 1.4 throw new NullPointerException();
708 tim 1.11 int hash = hash(key);
709 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
710 dl 1.4 }
711    
712     /**
713     * If the specified key is not already associated
714     * with a value, associate it with the given value.
715     * This is equivalent to
716     * <pre>
717 dl 1.17 * if (!map.containsKey(key))
718     * return map.put(key, value);
719     * else
720     * return map.get(key);
721 dl 1.4 * </pre>
722     * Except that the action is performed atomically.
723     * @param key key with which the specified value is to be associated.
724     * @param value value to be associated with the specified key.
725     * @return previous value associated with specified key, or <tt>null</tt>
726     * if there was no mapping for key. A <tt>null</tt> return can
727     * also indicate that the map previously associated <tt>null</tt>
728     * with the specified key, if the implementation supports
729     * <tt>null</tt> values.
730     *
731 dl 1.17 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
732     * not supported by this map.
733     * @throws ClassCastException if the class of the specified key or value
734     * prevents it from being stored in this map.
735     * @throws NullPointerException if the specified key or value is
736 dl 1.4 * <tt>null</tt>.
737     *
738     **/
739 tim 1.11 public V putIfAbsent(K key, V value) {
740     if (value == null)
741 dl 1.4 throw new NullPointerException();
742 tim 1.11 int hash = hash(key);
743 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
744 dl 1.4 }
745    
746    
747     /**
748 tim 1.1 * Copies all of the mappings from the specified map to this one.
749     *
750     * These mappings replace any mappings that this map had for any of the
751     * keys currently in the specified Map.
752     *
753     * @param t Mappings to be stored in this map.
754     */
755 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
756 dl 1.23 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
757 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
758 dl 1.4 put(e.getKey(), e.getValue());
759 tim 1.1 }
760 dl 1.4 }
761    
762     /**
763 tim 1.11 * Removes the key (and its corresponding value) from this
764 dl 1.4 * table. This method does nothing if the key is not in the table.
765     *
766     * @param key the key that needs to be removed.
767     * @return the value to which the key had been mapped in this table,
768 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
769 dl 1.8 * @throws NullPointerException if the key is
770 dl 1.19 * <tt>null</tt>.
771 dl 1.4 */
772     public V remove(Object key) {
773     int hash = hash(key);
774 dl 1.9 return segmentFor(hash).remove(key, hash, null);
775 dl 1.4 }
776 tim 1.1
777 dl 1.4 /**
778 dl 1.17 * Remove entry for key only if currently mapped to given value.
779     * Acts as
780     * <pre>
781     * if (map.get(key).equals(value)) {
782     * map.remove(key);
783     * return true;
784     * } else return false;
785     * </pre>
786     * except that the action is performed atomically.
787     * @param key key with which the specified value is associated.
788     * @param value value associated with the specified key.
789     * @return true if the value was removed
790     * @throws NullPointerException if the specified key is
791     * <tt>null</tt>.
792 dl 1.4 */
793 dl 1.13 public boolean remove(Object key, Object value) {
794 dl 1.4 int hash = hash(key);
795 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
796 tim 1.1 }
797    
798     /**
799     * Removes all mappings from this map.
800     */
801     public void clear() {
802 tim 1.11 for (int i = 0; i < segments.length; ++i)
803 dl 1.4 segments[i].clear();
804 tim 1.1 }
805    
806 dl 1.4
807 tim 1.1 /**
808     * Returns a shallow copy of this
809     * <tt>ConcurrentHashMap</tt> instance: the keys and
810     * values themselves are not cloned.
811     *
812     * @return a shallow copy of this map.
813     */
814     public Object clone() {
815 dl 1.4 // We cannot call super.clone, since it would share final
816     // segments array, and there's no way to reassign finals.
817    
818     float lf = segments[0].loadFactor;
819     int segs = segments.length;
820     int cap = (int)(size() / lf);
821     if (cap < segs) cap = segs;
822 tim 1.12 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
823 dl 1.4 t.putAll(this);
824     return t;
825 tim 1.1 }
826    
827     /**
828     * Returns a set view of the keys contained in this map. The set is
829     * backed by the map, so changes to the map are reflected in the set, and
830     * vice-versa. The set supports element removal, which removes the
831     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
832     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
833     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
834     * <tt>addAll</tt> operations.
835 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
836     * will never throw {@link java.util.ConcurrentModificationException},
837     * and guarantees to traverse elements as they existed upon
838     * construction of the iterator, and may (but is not guaranteed to)
839     * reflect any modifications subsequent to construction.
840 tim 1.1 *
841     * @return a set view of the keys contained in this map.
842     */
843     public Set<K> keySet() {
844     Set<K> ks = keySet;
845 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
846 tim 1.1 }
847    
848    
849     /**
850     * Returns a collection view of the values contained in this map. The
851     * collection is backed by the map, so changes to the map are reflected in
852     * the collection, and vice-versa. The collection supports element
853     * removal, which removes the corresponding mapping from this map, via the
854     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
855     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
856     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
857 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
858     * will never throw {@link java.util.ConcurrentModificationException},
859     * and guarantees to traverse elements as they existed upon
860     * construction of the iterator, and may (but is not guaranteed to)
861     * reflect any modifications subsequent to construction.
862 tim 1.1 *
863     * @return a collection view of the values contained in this map.
864     */
865     public Collection<V> values() {
866     Collection<V> vs = values;
867 dl 1.8 return (vs != null) ? vs : (values = new Values());
868 tim 1.1 }
869    
870    
871     /**
872     * Returns a collection view of the mappings contained in this map. Each
873     * element in the returned collection is a <tt>Map.Entry</tt>. The
874     * collection is backed by the map, so changes to the map are reflected in
875     * the collection, and vice-versa. The collection supports element
876     * removal, which removes the corresponding mapping from the map, via the
877     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
878     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
879     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
880 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
881     * will never throw {@link java.util.ConcurrentModificationException},
882     * and guarantees to traverse elements as they existed upon
883     * construction of the iterator, and may (but is not guaranteed to)
884     * reflect any modifications subsequent to construction.
885 tim 1.1 *
886     * @return a collection view of the mappings contained in this map.
887     */
888     public Set<Map.Entry<K,V>> entrySet() {
889     Set<Map.Entry<K,V>> es = entrySet;
890 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
891 tim 1.1 }
892    
893    
894     /**
895     * Returns an enumeration of the keys in this table.
896     *
897     * @return an enumeration of the keys in this table.
898 dl 1.23 * @see #keySet
899 tim 1.1 */
900 dl 1.4 public Enumeration<K> keys() {
901 tim 1.1 return new KeyIterator();
902     }
903    
904     /**
905     * Returns an enumeration of the values in this table.
906     * Use the Enumeration methods on the returned object to fetch the elements
907     * sequentially.
908     *
909     * @return an enumeration of the values in this table.
910 dl 1.23 * @see #values
911 tim 1.1 */
912 dl 1.4 public Enumeration<V> elements() {
913 tim 1.1 return new ValueIterator();
914     }
915    
916 dl 1.4 /* ---------------- Iterator Support -------------- */
917 tim 1.11
918 dl 1.4 private abstract class HashIterator {
919     private int nextSegmentIndex;
920     private int nextTableIndex;
921 tim 1.11 private HashEntry[] currentTable;
922 dl 1.4 private HashEntry<K, V> nextEntry;
923 dl 1.30 HashEntry<K, V> lastReturned;
924 tim 1.1
925     private HashIterator() {
926 dl 1.8 nextSegmentIndex = segments.length - 1;
927 dl 1.4 nextTableIndex = -1;
928     advance();
929 tim 1.1 }
930    
931     public boolean hasMoreElements() { return hasNext(); }
932    
933 dl 1.4 private void advance() {
934     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
935     return;
936 tim 1.11
937 dl 1.4 while (nextTableIndex >= 0) {
938 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
939 dl 1.4 return;
940     }
941 tim 1.11
942 dl 1.4 while (nextSegmentIndex >= 0) {
943 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
944 dl 1.4 if (seg.count != 0) {
945     currentTable = seg.table;
946 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
947 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
948 dl 1.8 nextTableIndex = j - 1;
949 dl 1.4 return;
950     }
951 tim 1.1 }
952     }
953     }
954     }
955    
956 dl 1.4 public boolean hasNext() { return nextEntry != null; }
957 tim 1.1
958 dl 1.4 HashEntry<K,V> nextEntry() {
959     if (nextEntry == null)
960 tim 1.1 throw new NoSuchElementException();
961 dl 1.4 lastReturned = nextEntry;
962     advance();
963     return lastReturned;
964 tim 1.1 }
965    
966     public void remove() {
967     if (lastReturned == null)
968     throw new IllegalStateException();
969     ConcurrentHashMap.this.remove(lastReturned.key);
970     lastReturned = null;
971     }
972 dl 1.4 }
973    
974     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
975     public K next() { return super.nextEntry().key; }
976     public K nextElement() { return super.nextEntry().key; }
977     }
978    
979     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
980     public V next() { return super.nextEntry().value; }
981     public V nextElement() { return super.nextEntry().value; }
982     }
983 tim 1.1
984 dl 1.30
985    
986     /**
987     * Exported Entry objects must write-through changes in setValue,
988     * even if the nodes have been cloned. So we cannot return
989     * internal HashEntry objects. Instead, the iterator itself acts
990     * as a forwarding pseudo-entry.
991     */
992     private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
993     public Map.Entry<K,V> next() {
994     nextEntry();
995     return this;
996     }
997    
998     public K getKey() {
999     if (lastReturned == null)
1000     throw new IllegalStateException("Entry was removed");
1001     return lastReturned.key;
1002     }
1003    
1004     public V getValue() {
1005     if (lastReturned == null)
1006     throw new IllegalStateException("Entry was removed");
1007     return ConcurrentHashMap.this.get(lastReturned.key);
1008     }
1009    
1010     public V setValue(V value) {
1011     if (lastReturned == null)
1012     throw new IllegalStateException("Entry was removed");
1013     return ConcurrentHashMap.this.put(lastReturned.key, value);
1014     }
1015    
1016     public boolean equals(Object o) {
1017     if (!(o instanceof Map.Entry))
1018     return false;
1019     Map.Entry e = (Map.Entry)o;
1020     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1021     }
1022    
1023     public int hashCode() {
1024     Object k = getKey();
1025     Object v = getValue();
1026     return ((k == null) ? 0 : k.hashCode()) ^
1027     ((v == null) ? 0 : v.hashCode());
1028     }
1029    
1030     public String toString() {
1031     return getKey() + "=" + getValue();
1032     }
1033    
1034     private boolean eq(Object o1, Object o2) {
1035     return (o1 == null ? o2 == null : o1.equals(o2));
1036     }
1037    
1038 tim 1.1 }
1039    
1040 dl 1.4 private class KeySet extends AbstractSet<K> {
1041     public Iterator<K> iterator() {
1042     return new KeyIterator();
1043     }
1044     public int size() {
1045     return ConcurrentHashMap.this.size();
1046     }
1047     public boolean contains(Object o) {
1048     return ConcurrentHashMap.this.containsKey(o);
1049     }
1050     public boolean remove(Object o) {
1051     return ConcurrentHashMap.this.remove(o) != null;
1052     }
1053     public void clear() {
1054     ConcurrentHashMap.this.clear();
1055     }
1056 tim 1.1 }
1057    
1058 dl 1.4 private class Values extends AbstractCollection<V> {
1059     public Iterator<V> iterator() {
1060     return new ValueIterator();
1061     }
1062     public int size() {
1063     return ConcurrentHashMap.this.size();
1064     }
1065     public boolean contains(Object o) {
1066     return ConcurrentHashMap.this.containsValue(o);
1067     }
1068     public void clear() {
1069     ConcurrentHashMap.this.clear();
1070     }
1071 tim 1.1 }
1072    
1073 tim 1.12 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1074 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1075     return new EntryIterator();
1076     }
1077     public boolean contains(Object o) {
1078     if (!(o instanceof Map.Entry))
1079     return false;
1080     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1081     V v = ConcurrentHashMap.this.get(e.getKey());
1082     return v != null && v.equals(e.getValue());
1083     }
1084     public boolean remove(Object o) {
1085     if (!(o instanceof Map.Entry))
1086     return false;
1087     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1088 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1089 dl 1.4 }
1090     public int size() {
1091     return ConcurrentHashMap.this.size();
1092     }
1093     public void clear() {
1094     ConcurrentHashMap.this.clear();
1095 dl 1.30 }
1096     public Object[] toArray() {
1097     // Since we don't ordinarily have distinct Entry objects, we
1098     // must pack elements using exportable SimpleEntry
1099     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1100     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1101     c.add(new SimpleEntry<K,V>(i.next()));
1102     return c.toArray();
1103     }
1104     public <T> T[] toArray(T[] a) {
1105     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1106     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1107     c.add(new SimpleEntry<K,V>(i.next()));
1108     return c.toArray(a);
1109     }
1110    
1111     }
1112    
1113     /**
1114     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1115     * is made accessible.
1116     */
1117     static class SimpleEntry<K,V> implements Entry<K,V> {
1118     K key;
1119     V value;
1120    
1121     public SimpleEntry(K key, V value) {
1122     this.key = key;
1123     this.value = value;
1124     }
1125    
1126     public SimpleEntry(Entry<K,V> e) {
1127     this.key = e.getKey();
1128     this.value = e.getValue();
1129     }
1130    
1131     public K getKey() {
1132     return key;
1133     }
1134    
1135     public V getValue() {
1136     return value;
1137     }
1138    
1139     public V setValue(V value) {
1140     V oldValue = this.value;
1141     this.value = value;
1142     return oldValue;
1143     }
1144    
1145     public boolean equals(Object o) {
1146     if (!(o instanceof Map.Entry))
1147     return false;
1148     Map.Entry e = (Map.Entry)o;
1149     return eq(key, e.getKey()) && eq(value, e.getValue());
1150     }
1151    
1152     public int hashCode() {
1153     return ((key == null) ? 0 : key.hashCode()) ^
1154     ((value == null) ? 0 : value.hashCode());
1155     }
1156    
1157     public String toString() {
1158     return key + "=" + value;
1159     }
1160    
1161     private static boolean eq(Object o1, Object o2) {
1162     return (o1 == null ? o2 == null : o1.equals(o2));
1163 dl 1.4 }
1164 tim 1.1 }
1165    
1166 dl 1.4 /* ---------------- Serialization Support -------------- */
1167    
1168 tim 1.1 /**
1169     * Save the state of the <tt>ConcurrentHashMap</tt>
1170     * instance to a stream (i.e.,
1171     * serialize it).
1172 dl 1.8 * @param s the stream
1173 tim 1.1 * @serialData
1174     * the key (Object) and value (Object)
1175     * for each key-value mapping, followed by a null pair.
1176     * The key-value mappings are emitted in no particular order.
1177     */
1178     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1179     s.defaultWriteObject();
1180    
1181     for (int k = 0; k < segments.length; ++k) {
1182 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1183 dl 1.2 seg.lock();
1184     try {
1185 tim 1.11 HashEntry[] tab = seg.table;
1186 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1187 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1188 dl 1.4 s.writeObject(e.key);
1189     s.writeObject(e.value);
1190     }
1191     }
1192 tim 1.16 } finally {
1193 dl 1.2 seg.unlock();
1194     }
1195 tim 1.1 }
1196     s.writeObject(null);
1197     s.writeObject(null);
1198     }
1199    
1200     /**
1201     * Reconstitute the <tt>ConcurrentHashMap</tt>
1202     * instance from a stream (i.e.,
1203     * deserialize it).
1204 dl 1.8 * @param s the stream
1205 tim 1.1 */
1206     private void readObject(java.io.ObjectInputStream s)
1207     throws IOException, ClassNotFoundException {
1208     s.defaultReadObject();
1209    
1210 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1211     for (int i = 0; i < segments.length; ++i) {
1212 tim 1.11 segments[i].setTable(new HashEntry[1]);
1213 dl 1.4 }
1214 tim 1.1
1215     // Read the keys and values, and put the mappings in the table
1216 dl 1.9 for (;;) {
1217 tim 1.1 K key = (K) s.readObject();
1218     V value = (V) s.readObject();
1219     if (key == null)
1220     break;
1221     put(key, value);
1222     }
1223     }
1224     }
1225 tim 1.11