ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.312
Committed: Tue May 29 10:27:21 2018 UTC (6 years ago) by dl
Branch: MAIN
Changes since 1.311: +2 -2 lines
Log Message:
doc clarification

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.119 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.208 import java.util.Map;
21 dl 1.119 import java.util.NoSuchElementException;
22 dl 1.208 import java.util.Set;
23     import java.util.Spliterator;
24     import java.util.concurrent.atomic.AtomicReference;
25 dl 1.222 import java.util.concurrent.locks.LockSupport;
26 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
27     import java.util.function.BiConsumer;
28     import java.util.function.BiFunction;
29     import java.util.function.Consumer;
30     import java.util.function.DoubleBinaryOperator;
31     import java.util.function.Function;
32     import java.util.function.IntBinaryOperator;
33     import java.util.function.LongBinaryOperator;
34 dl 1.271 import java.util.function.Predicate;
35 dl 1.208 import java.util.function.ToDoubleBiFunction;
36     import java.util.function.ToDoubleFunction;
37     import java.util.function.ToIntBiFunction;
38     import java.util.function.ToIntFunction;
39     import java.util.function.ToLongBiFunction;
40     import java.util.function.ToLongFunction;
41 dl 1.210 import java.util.stream.Stream;
42 jsr166 1.293 import jdk.internal.misc.Unsafe;
43 tim 1.1
44     /**
45 dl 1.4 * A hash table supporting full concurrency of retrievals and
46 dl 1.119 * high expected concurrency for updates. This class obeys the
47 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
48 dl 1.19 * includes versions of methods corresponding to each method of
49 dl 1.119 * {@code Hashtable}. However, even though all operations are
50 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
51     * and there is <em>not</em> any support for locking the entire table
52     * in a way that prevents all access. This class is fully
53 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
54 dl 1.4 * thread safety but not on its synchronization details.
55 tim 1.11 *
56 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
57 dl 1.119 * block, so may overlap with update operations (including {@code put}
58     * and {@code remove}). Retrievals reflect the results of the most
59     * recently <em>completed</em> update operations holding upon their
60 dl 1.126 * onset. (More formally, an update operation for a given key bears a
61     * <em>happens-before</em> relation with any (non-null) retrieval for
62     * that key reporting the updated value.) For aggregate operations
63     * such as {@code putAll} and {@code clear}, concurrent retrievals may
64     * reflect insertion or removal of only some entries. Similarly,
65 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
66     * state of the hash table at some point at or since the creation of the
67 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
68 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69     * However, iterators are designed to be used by only one thread at a time.
70     * Bear in mind that the results of aggregate status methods including
71     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72     * useful only when a map is not undergoing concurrent updates in other threads.
73 dl 1.126 * Otherwise the results of these methods reflect transient states
74     * that may be adequate for monitoring or estimation purposes, but not
75     * for program control.
76 tim 1.1 *
77 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
78 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
79     * the same slot modulo the table size), with the expected average
80     * effect of maintaining roughly two bins per mapping (corresponding
81     * to a 0.75 load factor threshold for resizing). There may be much
82     * variance around this average as mappings are added and removed, but
83     * overall, this maintains a commonly accepted time/space tradeoff for
84     * hash tables. However, resizing this or any other kind of hash
85     * table may be a relatively slow operation. When possible, it is a
86     * good idea to provide a size estimate as an optional {@code
87     * initialCapacity} constructor argument. An additional optional
88     * {@code loadFactor} constructor argument provides a further means of
89     * customizing initial table capacity by specifying the table density
90     * to be used in calculating the amount of space to allocate for the
91     * given number of elements. Also, for compatibility with previous
92     * versions of this class, constructors may optionally specify an
93     * expected {@code concurrencyLevel} as an additional hint for
94     * internal sizing. Note that using many keys with exactly the same
95     * {@code hashCode()} is a sure way to slow down performance of any
96 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
97     * this class may use comparison order among keys to help break ties.
98 tim 1.1 *
99 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101     * (using {@link #keySet(Object)} when only keys are of interest, and the
102     * mapped values are (perhaps transiently) not used or all take the
103     * same mapping value.
104     *
105 jsr166 1.257 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 dl 1.153 * form of histogram or multiset) by using {@link
107     * java.util.concurrent.atomic.LongAdder} values and initializing via
108 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 jsr166 1.257 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 dl 1.137 *
112 dl 1.45 * <p>This class and its views and iterators implement all of the
113     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114     * interfaces.
115 dl 1.23 *
116 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
118 tim 1.1 *
119 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120     * operations that, unlike most {@link Stream} methods, are designed
121     * to be safely, and often sensibly, applied even with maps that are
122     * being concurrently updated by other threads; for example, when
123     * computing a snapshot summary of the values in a shared registry.
124     * There are three kinds of operation, each with four forms, accepting
125 jsr166 1.278 * functions with keys, values, entries, and (key, value) pairs as
126     * arguments and/or return values. Because the elements of a
127     * ConcurrentHashMap are not ordered in any particular way, and may be
128     * processed in different orders in different parallel executions, the
129     * correctness of supplied functions should not depend on any
130     * ordering, or on any other objects or values that may transiently
131     * change while computation is in progress; and except for forEach
132     * actions, should ideally be side-effect-free. Bulk operations on
133 jsr166 1.300 * {@link Map.Entry} objects do not support method {@code setValue}.
134 dl 1.137 *
135     * <ul>
136 jsr166 1.280 * <li>forEach: Performs a given action on each element.
137 dl 1.137 * A variant form applies a given transformation on each element
138 jsr166 1.280 * before performing the action.
139 dl 1.137 *
140 jsr166 1.280 * <li>search: Returns the first available non-null result of
141 dl 1.137 * applying a given function on each element; skipping further
142 jsr166 1.280 * search when a result is found.
143 dl 1.137 *
144 jsr166 1.280 * <li>reduce: Accumulates each element. The supplied reduction
145 dl 1.137 * function cannot rely on ordering (more formally, it should be
146     * both associative and commutative). There are five variants:
147     *
148     * <ul>
149     *
150 jsr166 1.280 * <li>Plain reductions. (There is not a form of this method for
151 dl 1.137 * (key, value) function arguments since there is no corresponding
152 jsr166 1.280 * return type.)
153 dl 1.137 *
154 jsr166 1.280 * <li>Mapped reductions that accumulate the results of a given
155     * function applied to each element.
156 dl 1.137 *
157 jsr166 1.280 * <li>Reductions to scalar doubles, longs, and ints, using a
158     * given basis value.
159 dl 1.137 *
160 jsr166 1.178 * </ul>
161 dl 1.137 * </ul>
162     *
163 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
164     * argument. Methods proceed sequentially if the current map size is
165     * estimated to be less than the given threshold. Using a value of
166     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
168 dl 1.219 * enough subtasks to fully utilize the {@link
169     * ForkJoinPool#commonPool()} that is used for all parallel
170     * computations. Normally, you would initially choose one of these
171     * extreme values, and then measure performance of using in-between
172     * values that trade off overhead versus throughput.
173 dl 1.210 *
174 dl 1.137 * <p>The concurrency properties of bulk operations follow
175     * from those of ConcurrentHashMap: Any non-null result returned
176     * from {@code get(key)} and related access methods bears a
177     * happens-before relation with the associated insertion or
178     * update. The result of any bulk operation reflects the
179     * composition of these per-element relations (but is not
180     * necessarily atomic with respect to the map as a whole unless it
181     * is somehow known to be quiescent). Conversely, because keys
182     * and values in the map are never null, null serves as a reliable
183     * atomic indicator of the current lack of any result. To
184     * maintain this property, null serves as an implicit basis for
185     * all non-scalar reduction operations. For the double, long, and
186     * int versions, the basis should be one that, when combined with
187     * any other value, returns that other value (more formally, it
188     * should be the identity element for the reduction). Most common
189     * reductions have these properties; for example, computing a sum
190     * with basis 0 or a minimum with basis MAX_VALUE.
191     *
192     * <p>Search and transformation functions provided as arguments
193     * should similarly return null to indicate the lack of any result
194     * (in which case it is not used). In the case of mapped
195     * reductions, this also enables transformations to serve as
196     * filters, returning null (or, in the case of primitive
197     * specializations, the identity basis) if the element should not
198     * be combined. You can create compound transformations and
199     * filterings by composing them yourself under this "null means
200     * there is nothing there now" rule before using them in search or
201     * reduce operations.
202     *
203     * <p>Methods accepting and/or returning Entry arguments maintain
204     * key-value associations. They may be useful for example when
205     * finding the key for the greatest value. Note that "plain" Entry
206     * arguments can be supplied using {@code new
207     * AbstractMap.SimpleEntry(k,v)}.
208     *
209 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
210 dl 1.137 * exception encountered in the application of a supplied
211     * function. Bear in mind when handling such exceptions that other
212     * concurrently executing functions could also have thrown
213     * exceptions, or would have done so if the first exception had
214     * not occurred.
215     *
216 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
217     * but not guaranteed. Parallel operations involving brief functions
218     * on small maps may execute more slowly than sequential forms if the
219     * underlying work to parallelize the computation is more expensive
220     * than the computation itself. Similarly, parallelization may not
221     * lead to much actual parallelism if all processors are busy
222     * performing unrelated tasks.
223 dl 1.137 *
224 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
225 dl 1.137 *
226 dl 1.42 * <p>This class is a member of the
227 jsr166 1.301 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
228 dl 1.42 * Java Collections Framework</a>.
229     *
230 dl 1.8 * @since 1.5
231     * @author Doug Lea
232 dl 1.27 * @param <K> the type of keys maintained by this map
233 jsr166 1.64 * @param <V> the type of mapped values
234 dl 1.8 */
235 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236     implements ConcurrentMap<K,V>, Serializable {
237 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
238 tim 1.1
239     /*
240 dl 1.119 * Overview:
241     *
242     * The primary design goal of this hash table is to maintain
243     * concurrent readability (typically method get(), but also
244     * iterators and related methods) while minimizing update
245     * contention. Secondary goals are to keep space consumption about
246     * the same or better than java.util.HashMap, and to support high
247     * initial insertion rates on an empty table by many threads.
248     *
249 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
250     * key-value mapping is held in a Node. Most nodes are instances
251     * of the basic Node class with hash, key, value, and next
252     * fields. However, various subclasses exist: TreeNodes are
253 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
254     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255     * of bins during resizing. ReservationNodes are used as
256     * placeholders while establishing values in computeIfAbsent and
257 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
258 dl 1.222 * ReservationNode do not hold normal user keys, values, or
259     * hashes, and are readily distinguishable during search etc
260     * because they have negative hash fields and null key and value
261     * fields. (These special nodes are either uncommon or transient,
262     * so the impact of carrying around some unused fields is
263 jsr166 1.232 * insignificant.)
264 dl 1.119 *
265     * The table is lazily initialized to a power-of-two size upon the
266     * first insertion. Each bin in the table normally contains a
267     * list of Nodes (most often, the list has only zero or one Node).
268     * Table accesses require volatile/atomic reads, writes, and
269     * CASes. Because there is no other way to arrange this without
270     * adding further indirections, we use intrinsics
271 jsr166 1.291 * (jdk.internal.misc.Unsafe) operations.
272 dl 1.119 *
273 dl 1.149 * We use the top (sign) bit of Node hash fields for control
274     * purposes -- it is available anyway because of addressing
275 dl 1.222 * constraints. Nodes with negative hash fields are specially
276     * handled or ignored in map methods.
277 dl 1.119 *
278     * Insertion (via put or its variants) of the first node in an
279     * empty bin is performed by just CASing it to the bin. This is
280     * by far the most common case for put operations under most
281     * key/hash distributions. Other update operations (insert,
282     * delete, and replace) require locks. We do not want to waste
283     * the space required to associate a distinct lock object with
284     * each bin, so instead use the first node of a bin list itself as
285 dl 1.149 * a lock. Locking support for these locks relies on builtin
286     * "synchronized" monitors.
287 dl 1.119 *
288     * Using the first node of a list as a lock does not by itself
289     * suffice though: When a node is locked, any update must first
290     * validate that it is still the first node after locking it, and
291     * retry if not. Because new nodes are always appended to lists,
292     * once a node is first in a bin, it remains first until deleted
293 dl 1.210 * or the bin becomes invalidated (upon resizing).
294 dl 1.119 *
295     * The main disadvantage of per-bin locks is that other update
296     * operations on other nodes in a bin list protected by the same
297     * lock can stall, for example when user equals() or mapping
298     * functions take a long time. However, statistically, under
299     * random hash codes, this is not a common problem. Ideally, the
300     * frequency of nodes in bins follows a Poisson distribution
301     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302     * parameter of about 0.5 on average, given the resizing threshold
303     * of 0.75, although with a large variance because of resizing
304     * granularity. Ignoring variance, the expected occurrences of
305     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306     * first values are:
307     *
308     * 0: 0.60653066
309     * 1: 0.30326533
310     * 2: 0.07581633
311     * 3: 0.01263606
312     * 4: 0.00157952
313     * 5: 0.00015795
314     * 6: 0.00001316
315     * 7: 0.00000094
316     * 8: 0.00000006
317     * more: less than 1 in ten million
318     *
319     * Lock contention probability for two threads accessing distinct
320     * elements is roughly 1 / (8 * #elements) under random hashes.
321     *
322     * Actual hash code distributions encountered in practice
323     * sometimes deviate significantly from uniform randomness. This
324     * includes the case when N > (1<<30), so some keys MUST collide.
325     * Similarly for dumb or hostile usages in which multiple keys are
326 dl 1.222 * designed to have identical hash codes or ones that differs only
327 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
328     * applies when the number of nodes in a bin exceeds a
329     * threshold. These TreeBins use a balanced tree to hold nodes (a
330     * specialized form of red-black trees), bounding search time to
331     * O(log N). Each search step in a TreeBin is at least twice as
332     * slow as in a regular list, but given that N cannot exceed
333     * (1<<64) (before running out of addresses) this bounds search
334     * steps, lock hold times, etc, to reasonable constants (roughly
335     * 100 nodes inspected per operation worst case) so long as keys
336     * are Comparable (which is very common -- String, Long, etc).
337 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
338     * traversal pointers as regular nodes, so can be traversed in
339     * iterators in the same way.
340     *
341     * The table is resized when occupancy exceeds a percentage
342 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
343     * noticing an overfull bin may assist in resizing after the
344 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
345     * However, rather than stalling, these other threads may proceed
346     * with insertions etc. The use of TreeBins shields us from the
347     * worst case effects of overfilling while resizes are in
348 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
349 dl 1.246 * from the table to the next table. However, threads claim small
350     * blocks of indices to transfer (via field transferIndex) before
351 dl 1.252 * doing so, reducing contention. A generation stamp in field
352     * sizeCtl ensures that resizings do not overlap. Because we are
353     * using power-of-two expansion, the elements from each bin must
354     * either stay at same index, or move with a power of two
355     * offset. We eliminate unnecessary node creation by catching
356     * cases where old nodes can be reused because their next fields
357     * won't change. On average, only about one-sixth of them need
358     * cloning when a table doubles. The nodes they replace will be
359     * garbage collectable as soon as they are no longer referenced by
360     * any reader thread that may be in the midst of concurrently
361     * traversing table. Upon transfer, the old table bin contains
362     * only a special forwarding node (with hash field "MOVED") that
363     * contains the next table as its key. On encountering a
364     * forwarding node, access and update operations restart, using
365     * the new table.
366 dl 1.149 *
367     * Each bin transfer requires its bin lock, which can stall
368     * waiting for locks while resizing. However, because other
369     * threads can join in and help resize rather than contend for
370     * locks, average aggregate waits become shorter as resizing
371     * progresses. The transfer operation must also ensure that all
372     * accessible bins in both the old and new table are usable by any
373 dl 1.246 * traversal. This is arranged in part by proceeding from the
374     * last bin (table.length - 1) up towards the first. Upon seeing
375     * a forwarding node, traversals (see class Traverser) arrange to
376     * move to the new table without revisiting nodes. To ensure that
377     * no intervening nodes are skipped even when moved out of order,
378     * a stack (see class TableStack) is created on first encounter of
379     * a forwarding node during a traversal, to maintain its place if
380     * later processing the current table. The need for these
381     * save/restore mechanics is relatively rare, but when one
382 jsr166 1.248 * forwarding node is encountered, typically many more will be.
383 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
384     * many new TableStack nodes. (Thanks to Peter Levart for
385     * suggesting use of a stack here.)
386 dl 1.119 *
387     * The traversal scheme also applies to partial traversals of
388     * ranges of bins (via an alternate Traverser constructor)
389     * to support partitioned aggregate operations. Also, read-only
390     * operations give up if ever forwarded to a null table, which
391     * provides support for shutdown-style clearing, which is also not
392     * currently implemented.
393     *
394     * Lazy table initialization minimizes footprint until first use,
395     * and also avoids resizings when the first operation is from a
396     * putAll, constructor with map argument, or deserialization.
397     * These cases attempt to override the initial capacity settings,
398     * but harmlessly fail to take effect in cases of races.
399     *
400 dl 1.149 * The element count is maintained using a specialization of
401     * LongAdder. We need to incorporate a specialization rather than
402     * just use a LongAdder in order to access implicit
403     * contention-sensing that leads to creation of multiple
404 dl 1.222 * CounterCells. The counter mechanics avoid contention on
405 dl 1.149 * updates but can encounter cache thrashing if read too
406     * frequently during concurrent access. To avoid reading so often,
407     * resizing under contention is attempted only upon adding to a
408     * bin already holding two or more nodes. Under uniform hash
409     * distributions, the probability of this occurring at threshold
410     * is around 13%, meaning that only about 1 in 8 puts check
411 dl 1.222 * threshold (and after resizing, many fewer do so).
412     *
413     * TreeBins use a special form of comparison for search and
414     * related operations (which is the main reason we cannot use
415     * existing collections such as TreeMaps). TreeBins contain
416     * Comparable elements, but may contain others, as well as
417 dl 1.240 * elements that are Comparable but not necessarily Comparable for
418     * the same T, so we cannot invoke compareTo among them. To handle
419     * this, the tree is ordered primarily by hash value, then by
420     * Comparable.compareTo order if applicable. On lookup at a node,
421     * if elements are not comparable or compare as 0 then both left
422     * and right children may need to be searched in the case of tied
423     * hash values. (This corresponds to the full list search that
424     * would be necessary if all elements were non-Comparable and had
425     * tied hashes.) On insertion, to keep a total ordering (or as
426     * close as is required here) across rebalancings, we compare
427     * classes and identityHashCodes as tie-breakers. The red-black
428     * balancing code is updated from pre-jdk-collections
429 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431     * Algorithms" (CLR).
432     *
433     * TreeBins also require an additional locking mechanism. While
434 dl 1.224 * list traversal is always possible by readers even during
435 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
436 dl 1.222 * that may change the root node and/or its linkages. TreeBins
437     * include a simple read-write lock mechanism parasitic on the
438     * main bin-synchronization strategy: Structural adjustments
439     * associated with an insertion or removal are already bin-locked
440     * (and so cannot conflict with other writers) but must wait for
441     * ongoing readers to finish. Since there can be only one such
442     * waiter, we use a simple scheme using a single "waiter" field to
443     * block writers. However, readers need never block. If the root
444     * lock is held, they proceed along the slow traversal path (via
445     * next-pointers) until the lock becomes available or the list is
446     * exhausted, whichever comes first. These cases are not fast, but
447     * maximize aggregate expected throughput.
448 dl 1.119 *
449     * Maintaining API and serialization compatibility with previous
450     * versions of this class introduces several oddities. Mainly: We
451 jsr166 1.274 * leave untouched but unused constructor arguments referring to
452 dl 1.119 * concurrencyLevel. We accept a loadFactor constructor argument,
453     * but apply it only to initial table capacity (which is the only
454     * time that we can guarantee to honor it.) We also declare an
455     * unused "Segment" class that is instantiated in minimal form
456     * only when serializing.
457 dl 1.222 *
458 dl 1.240 * Also, solely for compatibility with previous versions of this
459     * class, it extends AbstractMap, even though all of its methods
460     * are overridden, so it is just useless baggage.
461     *
462 dl 1.222 * This file is organized to make things a little easier to follow
463 dl 1.224 * while reading than they might otherwise: First the main static
464 dl 1.222 * declarations and utilities, then fields, then main public
465     * methods (with a few factorings of multiple public methods into
466     * internal ones), then sizing methods, trees, traversers, and
467     * bulk operations.
468 dl 1.4 */
469 tim 1.1
470 dl 1.4 /* ---------------- Constants -------------- */
471 tim 1.11
472 dl 1.4 /**
473 dl 1.119 * The largest possible table capacity. This value must be
474     * exactly 1<<30 to stay within Java array allocation and indexing
475     * bounds for power of two table sizes, and is further required
476     * because the top two bits of 32bit hash fields are used for
477     * control purposes.
478 dl 1.4 */
479 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
480 dl 1.56
481     /**
482 dl 1.119 * The default initial table capacity. Must be a power of 2
483     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 dl 1.56 */
485 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
486 dl 1.56
487     /**
488 dl 1.119 * The largest possible (non-power of two) array size.
489     * Needed by toArray and related methods.
490 jsr166 1.59 */
491 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492 tim 1.1
493     /**
494 dl 1.119 * The default concurrency level for this table. Unused but
495     * defined for compatibility with previous versions of this class.
496 dl 1.4 */
497 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498 tim 1.11
499 tim 1.1 /**
500 dl 1.119 * The load factor for this table. Overrides of this value in
501     * constructors affect only the initial table capacity. The
502     * actual floating point value isn't normally used -- it is
503     * simpler to use expressions such as {@code n - (n >>> 2)} for
504     * the associated resizing threshold.
505 dl 1.99 */
506 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
507 dl 1.99
508     /**
509 dl 1.119 * The bin count threshold for using a tree rather than list for a
510 dl 1.222 * bin. Bins are converted to trees when adding an element to a
511 dl 1.224 * bin with at least this many nodes. The value must be greater
512     * than 2, and should be at least 8 to mesh with assumptions in
513     * tree removal about conversion back to plain bins upon
514     * shrinkage.
515 dl 1.222 */
516     static final int TREEIFY_THRESHOLD = 8;
517    
518     /**
519     * The bin count threshold for untreeifying a (split) bin during a
520     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521     * most 6 to mesh with shrinkage detection under removal.
522     */
523     static final int UNTREEIFY_THRESHOLD = 6;
524    
525     /**
526     * The smallest table capacity for which bins may be treeified.
527     * (Otherwise the table is resized if too many nodes in a bin.)
528 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529     * conflicts between resizing and treeification thresholds.
530 dl 1.119 */
531 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
532 dl 1.119
533 dl 1.149 /**
534     * Minimum number of rebinnings per transfer step. Ranges are
535     * subdivided to allow multiple resizer threads. This value
536     * serves as a lower bound to avoid resizers encountering
537     * excessive memory contention. The value should be at least
538     * DEFAULT_CAPACITY.
539     */
540     private static final int MIN_TRANSFER_STRIDE = 16;
541    
542 dl 1.252 /**
543     * The number of bits used for generation stamp in sizeCtl.
544     * Must be at least 6 for 32bit arrays.
545     */
546 jsr166 1.282 private static final int RESIZE_STAMP_BITS = 16;
547 dl 1.252
548     /**
549     * The maximum number of threads that can help resize.
550     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551     */
552     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553    
554     /**
555     * The bit shift for recording size stamp in sizeCtl.
556     */
557     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558    
559 dl 1.119 /*
560 dl 1.149 * Encodings for Node hash fields. See above for explanation.
561 dl 1.46 */
562 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
563     static final int TREEBIN = -2; // hash for roots of trees
564     static final int RESERVED = -3; // hash for transient reservations
565 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566    
567     /** Number of CPUS, to place bounds on some sizings */
568     static final int NCPU = Runtime.getRuntime().availableProcessors();
569    
570 jsr166 1.287 /**
571     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572     * @serialField segments Segment[]
573     * The segments, each of which is a specialized hash table.
574     * @serialField segmentMask int
575     * Mask value for indexing into segments. The upper bits of a
576     * key's hash code are used to choose the segment.
577     * @serialField segmentShift int
578     * Shift value for indexing within segments.
579     */
580 dl 1.208 private static final ObjectStreamField[] serialPersistentFields = {
581 dl 1.209 new ObjectStreamField("segments", Segment[].class),
582     new ObjectStreamField("segmentMask", Integer.TYPE),
583 jsr166 1.283 new ObjectStreamField("segmentShift", Integer.TYPE),
584 dl 1.208 };
585    
586 dl 1.222 /* ---------------- Nodes -------------- */
587    
588     /**
589     * Key-value entry. This class is never exported out as a
590     * user-mutable Map.Entry (i.e., one supporting setValue; see
591     * MapEntry below), but can be used for read-only traversals used
592 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
593 dl 1.224 * are special, and contain null keys and values (but are never
594     * exported). Otherwise, keys and vals are never null.
595 dl 1.222 */
596     static class Node<K,V> implements Map.Entry<K,V> {
597     final int hash;
598     final K key;
599     volatile V val;
600 dl 1.233 volatile Node<K,V> next;
601 dl 1.222
602 jsr166 1.290 Node(int hash, K key, V val) {
603 dl 1.222 this.hash = hash;
604     this.key = key;
605     this.val = val;
606 jsr166 1.290 }
607    
608     Node(int hash, K key, V val, Node<K,V> next) {
609     this(hash, key, val);
610 dl 1.222 this.next = next;
611     }
612    
613 jsr166 1.268 public final K getKey() { return key; }
614     public final V getValue() { return val; }
615     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616     public final String toString() {
617     return Helpers.mapEntryToString(key, val);
618 jsr166 1.265 }
619 dl 1.222 public final V setValue(V value) {
620     throw new UnsupportedOperationException();
621     }
622    
623     public final boolean equals(Object o) {
624     Object k, v, u; Map.Entry<?,?> e;
625     return ((o instanceof Map.Entry) &&
626     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627     (v = e.getValue()) != null &&
628     (k == key || k.equals(key)) &&
629     (v == (u = val) || v.equals(u)));
630     }
631    
632 dl 1.224 /**
633     * Virtualized support for map.get(); overridden in subclasses.
634     */
635 dl 1.222 Node<K,V> find(int h, Object k) {
636     Node<K,V> e = this;
637     if (k != null) {
638     do {
639     K ek;
640     if (e.hash == h &&
641     ((ek = e.key) == k || (ek != null && k.equals(ek))))
642     return e;
643     } while ((e = e.next) != null);
644     }
645     return null;
646     }
647     }
648    
649     /* ---------------- Static utilities -------------- */
650    
651     /**
652     * Spreads (XORs) higher bits of hash to lower and also forces top
653     * bit to 0. Because the table uses power-of-two masking, sets of
654     * hashes that vary only in bits above the current mask will
655     * always collide. (Among known examples are sets of Float keys
656     * holding consecutive whole numbers in small tables.) So we
657     * apply a transform that spreads the impact of higher bits
658     * downward. There is a tradeoff between speed, utility, and
659     * quality of bit-spreading. Because many common sets of hashes
660     * are already reasonably distributed (so don't benefit from
661     * spreading), and because we use trees to handle large sets of
662     * collisions in bins, we just XOR some shifted bits in the
663     * cheapest possible way to reduce systematic lossage, as well as
664     * to incorporate impact of the highest bits that would otherwise
665     * never be used in index calculations because of table bounds.
666     */
667     static final int spread(int h) {
668     return (h ^ (h >>> 16)) & HASH_BITS;
669     }
670    
671     /**
672     * Returns a power of two table size for the given desired capacity.
673     * See Hackers Delight, sec 3.2
674     */
675     private static final int tableSizeFor(int c) {
676 jsr166 1.310 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 dl 1.222 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678     }
679    
680     /**
681     * Returns x's Class if it is of the form "class C implements
682     * Comparable<C>", else null.
683     */
684     static Class<?> comparableClassFor(Object x) {
685     if (x instanceof Comparable) {
686 jsr166 1.305 Class<?> c; Type[] ts, as; ParameterizedType p;
687 dl 1.222 if ((c = x.getClass()) == String.class) // bypass checks
688     return c;
689     if ((ts = c.getGenericInterfaces()) != null) {
690 jsr166 1.305 for (Type t : ts) {
691     if ((t instanceof ParameterizedType) &&
692 dl 1.222 ((p = (ParameterizedType)t).getRawType() ==
693     Comparable.class) &&
694     (as = p.getActualTypeArguments()) != null &&
695     as.length == 1 && as[0] == c) // type arg is c
696     return c;
697     }
698     }
699     }
700     return null;
701     }
702    
703 dl 1.210 /**
704 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705     * class), else 0.
706     */
707     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708     static int compareComparables(Class<?> kc, Object k, Object x) {
709     return (x == null || x.getClass() != kc ? 0 :
710     ((Comparable)k).compareTo(x));
711     }
712    
713     /* ---------------- Table element access -------------- */
714    
715     /*
716 dl 1.294 * Atomic access methods are used for table elements as well as
717 dl 1.222 * elements of in-progress next table while resizing. All uses of
718     * the tab arguments must be null checked by callers. All callers
719     * also paranoically precheck that tab's length is not zero (or an
720     * equivalent check), thus ensuring that any index argument taking
721     * the form of a hash value anded with (length - 1) is a valid
722     * index. Note that, to be correct wrt arbitrary concurrency
723     * errors by users, these checks must operate on local variables,
724     * which accounts for some odd-looking inline assignments below.
725     * Note that calls to setTabAt always occur within locked regions,
726 dl 1.294 * and so require only release ordering.
727 dl 1.210 */
728 dl 1.222
729     @SuppressWarnings("unchecked")
730     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 dl 1.294 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 dl 1.222 }
733    
734     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735     Node<K,V> c, Node<K,V> v) {
736 jsr166 1.302 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 dl 1.222 }
738    
739     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 dl 1.294 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 dl 1.149 }
742    
743 dl 1.4 /* ---------------- Fields -------------- */
744 tim 1.1
745     /**
746 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
747     * Size is always a power of two. Accessed directly by iterators.
748 jsr166 1.59 */
749 dl 1.210 transient volatile Node<K,V>[] table;
750 tim 1.1
751     /**
752 dl 1.149 * The next table to use; non-null only while resizing.
753 jsr166 1.59 */
754 dl 1.210 private transient volatile Node<K,V>[] nextTable;
755 dl 1.149
756     /**
757     * Base counter value, used mainly when there is no contention,
758     * but also as a fallback during table initialization
759     * races. Updated via CAS.
760     */
761     private transient volatile long baseCount;
762 tim 1.1
763     /**
764 dl 1.119 * Table initialization and resizing control. When negative, the
765 dl 1.149 * table is being initialized or resized: -1 for initialization,
766     * else -(1 + the number of active resizing threads). Otherwise,
767     * when table is null, holds the initial table size to use upon
768     * creation, or 0 for default. After initialization, holds the
769     * next element count value upon which to resize the table.
770 tim 1.1 */
771 dl 1.119 private transient volatile int sizeCtl;
772 dl 1.4
773 dl 1.149 /**
774     * The next table index (plus one) to split while resizing.
775     */
776     private transient volatile int transferIndex;
777    
778     /**
779 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 dl 1.149 */
781 dl 1.153 private transient volatile int cellsBusy;
782 dl 1.149
783     /**
784     * Table of counter cells. When non-null, size is a power of 2.
785     */
786 dl 1.222 private transient volatile CounterCell[] counterCells;
787 dl 1.149
788 dl 1.119 // views
789 dl 1.137 private transient KeySetView<K,V> keySet;
790 dl 1.142 private transient ValuesView<K,V> values;
791     private transient EntrySetView<K,V> entrySet;
792 dl 1.119
793    
794 dl 1.222 /* ---------------- Public operations -------------- */
795    
796     /**
797     * Creates a new, empty map with the default initial table size (16).
798 dl 1.119 */
799 dl 1.222 public ConcurrentHashMap() {
800     }
801 dl 1.119
802 dl 1.222 /**
803     * Creates a new, empty map with an initial table size
804     * accommodating the specified number of elements without the need
805     * to dynamically resize.
806     *
807     * @param initialCapacity The implementation performs internal
808     * sizing to accommodate this many elements.
809     * @throws IllegalArgumentException if the initial capacity of
810     * elements is negative
811     */
812     public ConcurrentHashMap(int initialCapacity) {
813 dl 1.311 this(initialCapacity, LOAD_FACTOR, 1);
814 dl 1.119 }
815    
816 dl 1.222 /**
817     * Creates a new map with the same mappings as the given map.
818     *
819     * @param m the map
820     */
821     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822     this.sizeCtl = DEFAULT_CAPACITY;
823     putAll(m);
824 dl 1.119 }
825    
826 dl 1.222 /**
827     * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}) and
829     * initial table density ({@code loadFactor}).
830     *
831     * @param initialCapacity the initial capacity. The implementation
832     * performs internal sizing to accommodate this many elements,
833     * given the specified load factor.
834     * @param loadFactor the load factor (table density) for
835     * establishing the initial table size
836     * @throws IllegalArgumentException if the initial capacity of
837     * elements is negative or the load factor is nonpositive
838     *
839     * @since 1.6
840     */
841     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842     this(initialCapacity, loadFactor, 1);
843 dl 1.119 }
844    
845 dl 1.99 /**
846 dl 1.222 * Creates a new, empty map with an initial table size based on
847 dl 1.312 * the given number of elements ({@code initialCapacity}), initial
848     * table density ({@code loadFactor}), and number of concurrently
849 dl 1.222 * updating threads ({@code concurrencyLevel}).
850     *
851     * @param initialCapacity the initial capacity. The implementation
852     * performs internal sizing to accommodate this many elements,
853     * given the specified load factor.
854     * @param loadFactor the load factor (table density) for
855     * establishing the initial table size
856     * @param concurrencyLevel the estimated number of concurrently
857     * updating threads. The implementation may use this value as
858     * a sizing hint.
859     * @throws IllegalArgumentException if the initial capacity is
860     * negative or the load factor or concurrencyLevel are
861     * nonpositive
862 dl 1.99 */
863 dl 1.222 public ConcurrentHashMap(int initialCapacity,
864     float loadFactor, int concurrencyLevel) {
865     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866     throw new IllegalArgumentException();
867     if (initialCapacity < concurrencyLevel) // Use at least as many bins
868     initialCapacity = concurrencyLevel; // as estimated threads
869     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871     MAXIMUM_CAPACITY : tableSizeFor((int)size);
872     this.sizeCtl = cap;
873     }
874 dl 1.99
875 dl 1.222 // Original (since JDK1.2) Map methods
876 dl 1.210
877 dl 1.222 /**
878     * {@inheritDoc}
879     */
880     public int size() {
881     long n = sumCount();
882     return ((n < 0L) ? 0 :
883     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884     (int)n);
885     }
886 dl 1.210
887 dl 1.222 /**
888     * {@inheritDoc}
889     */
890     public boolean isEmpty() {
891     return sumCount() <= 0L; // ignore transient negative values
892 dl 1.210 }
893    
894     /**
895 dl 1.222 * Returns the value to which the specified key is mapped,
896     * or {@code null} if this map contains no mapping for the key.
897     *
898     * <p>More formally, if this map contains a mapping from a key
899     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900     * then this method returns {@code v}; otherwise it returns
901     * {@code null}. (There can be at most one such mapping.)
902     *
903     * @throws NullPointerException if the specified key is null
904 dl 1.210 */
905 dl 1.222 public V get(Object key) {
906     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907     int h = spread(key.hashCode());
908     if ((tab = table) != null && (n = tab.length) > 0 &&
909     (e = tabAt(tab, (n - 1) & h)) != null) {
910     if ((eh = e.hash) == h) {
911     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912     return e.val;
913     }
914     else if (eh < 0)
915     return (p = e.find(h, key)) != null ? p.val : null;
916     while ((e = e.next) != null) {
917     if (e.hash == h &&
918     ((ek = e.key) == key || (ek != null && key.equals(ek))))
919     return e.val;
920     }
921 dl 1.210 }
922 dl 1.222 return null;
923 dl 1.99 }
924    
925     /**
926 dl 1.222 * Tests if the specified object is a key in this table.
927     *
928     * @param key possible key
929     * @return {@code true} if and only if the specified object
930     * is a key in this table, as determined by the
931     * {@code equals} method; {@code false} otherwise
932     * @throws NullPointerException if the specified key is null
933 dl 1.99 */
934 dl 1.222 public boolean containsKey(Object key) {
935     return get(key) != null;
936 dl 1.99 }
937 tim 1.1
938 dl 1.201 /**
939 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
940     * specified value. Note: This method may require a full traversal
941     * of the map, and is much slower than method {@code containsKey}.
942     *
943     * @param value value whose presence in this map is to be tested
944     * @return {@code true} if this map maps one or more keys to the
945     * specified value
946     * @throws NullPointerException if the specified value is null
947     */
948     public boolean containsValue(Object value) {
949     if (value == null)
950     throw new NullPointerException();
951     Node<K,V>[] t;
952     if ((t = table) != null) {
953     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954     for (Node<K,V> p; (p = it.advance()) != null; ) {
955     V v;
956     if ((v = p.val) == value || (v != null && value.equals(v)))
957     return true;
958 dl 1.201 }
959     }
960 dl 1.222 return false;
961 dl 1.201 }
962    
963 tim 1.1 /**
964 dl 1.222 * Maps the specified key to the specified value in this table.
965     * Neither the key nor the value can be null.
966 dl 1.119 *
967 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
968     * with a key that is equal to the original key.
969 dl 1.119 *
970 dl 1.222 * @param key key with which the specified value is to be associated
971     * @param value value to be associated with the specified key
972     * @return the previous value associated with {@code key}, or
973     * {@code null} if there was no mapping for {@code key}
974     * @throws NullPointerException if the specified key or value is null
975 dl 1.119 */
976 dl 1.222 public V put(K key, V value) {
977     return putVal(key, value, false);
978     }
979 dl 1.119
980 dl 1.222 /** Implementation for put and putIfAbsent */
981     final V putVal(K key, V value, boolean onlyIfAbsent) {
982     if (key == null || value == null) throw new NullPointerException();
983     int hash = spread(key.hashCode());
984     int binCount = 0;
985     for (Node<K,V>[] tab = table;;) {
986 dl 1.296 Node<K,V> f; int n, i, fh; K fk; V fv;
987 dl 1.222 if (tab == null || (n = tab.length) == 0)
988     tab = initTable();
989     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 jsr166 1.290 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 dl 1.222 break; // no lock when adding to empty bin
992 dl 1.119 }
993 dl 1.222 else if ((fh = f.hash) == MOVED)
994     tab = helpTransfer(tab, f);
995 jsr166 1.299 else if (onlyIfAbsent // check first node without acquiring lock
996     && fh == hash
997     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998     && (fv = f.val) != null)
999 dl 1.296 return fv;
1000 dl 1.222 else {
1001     V oldVal = null;
1002     synchronized (f) {
1003     if (tabAt(tab, i) == f) {
1004     if (fh >= 0) {
1005     binCount = 1;
1006     for (Node<K,V> e = f;; ++binCount) {
1007     K ek;
1008     if (e.hash == hash &&
1009     ((ek = e.key) == key ||
1010     (ek != null && key.equals(ek)))) {
1011     oldVal = e.val;
1012     if (!onlyIfAbsent)
1013     e.val = value;
1014     break;
1015     }
1016     Node<K,V> pred = e;
1017     if ((e = e.next) == null) {
1018 jsr166 1.290 pred.next = new Node<K,V>(hash, key, value);
1019 dl 1.222 break;
1020     }
1021     }
1022     }
1023     else if (f instanceof TreeBin) {
1024     Node<K,V> p;
1025     binCount = 2;
1026     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027     value)) != null) {
1028     oldVal = p.val;
1029     if (!onlyIfAbsent)
1030     p.val = value;
1031     }
1032     }
1033 dl 1.259 else if (f instanceof ReservationNode)
1034     throw new IllegalStateException("Recursive update");
1035 dl 1.99 }
1036     }
1037 dl 1.222 if (binCount != 0) {
1038     if (binCount >= TREEIFY_THRESHOLD)
1039     treeifyBin(tab, i);
1040     if (oldVal != null)
1041     return oldVal;
1042 dl 1.99 break;
1043     }
1044     }
1045     }
1046 dl 1.222 addCount(1L, binCount);
1047     return null;
1048     }
1049    
1050     /**
1051     * Copies all of the mappings from the specified map to this one.
1052     * These mappings replace any mappings that this map had for any of the
1053     * keys currently in the specified map.
1054     *
1055     * @param m mappings to be stored in this map
1056     */
1057     public void putAll(Map<? extends K, ? extends V> m) {
1058     tryPresize(m.size());
1059     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060     putVal(e.getKey(), e.getValue(), false);
1061     }
1062 dl 1.99
1063 dl 1.222 /**
1064     * Removes the key (and its corresponding value) from this map.
1065     * This method does nothing if the key is not in the map.
1066     *
1067     * @param key the key that needs to be removed
1068     * @return the previous value associated with {@code key}, or
1069     * {@code null} if there was no mapping for {@code key}
1070     * @throws NullPointerException if the specified key is null
1071     */
1072     public V remove(Object key) {
1073     return replaceNode(key, null, null);
1074     }
1075 dl 1.99
1076 dl 1.222 /**
1077     * Implementation for the four public remove/replace methods:
1078     * Replaces node value with v, conditional upon match of cv if
1079     * non-null. If resulting value is null, delete.
1080     */
1081     final V replaceNode(Object key, V value, Object cv) {
1082     int hash = spread(key.hashCode());
1083     for (Node<K,V>[] tab = table;;) {
1084     Node<K,V> f; int n, i, fh;
1085     if (tab == null || (n = tab.length) == 0 ||
1086     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087     break;
1088     else if ((fh = f.hash) == MOVED)
1089     tab = helpTransfer(tab, f);
1090     else {
1091     V oldVal = null;
1092     boolean validated = false;
1093     synchronized (f) {
1094     if (tabAt(tab, i) == f) {
1095     if (fh >= 0) {
1096     validated = true;
1097     for (Node<K,V> e = f, pred = null;;) {
1098     K ek;
1099     if (e.hash == hash &&
1100     ((ek = e.key) == key ||
1101     (ek != null && key.equals(ek)))) {
1102     V ev = e.val;
1103     if (cv == null || cv == ev ||
1104     (ev != null && cv.equals(ev))) {
1105     oldVal = ev;
1106     if (value != null)
1107     e.val = value;
1108     else if (pred != null)
1109     pred.next = e.next;
1110     else
1111     setTabAt(tab, i, e.next);
1112     }
1113     break;
1114 dl 1.119 }
1115 dl 1.222 pred = e;
1116     if ((e = e.next) == null)
1117     break;
1118 dl 1.119 }
1119     }
1120 dl 1.222 else if (f instanceof TreeBin) {
1121     validated = true;
1122     TreeBin<K,V> t = (TreeBin<K,V>)f;
1123     TreeNode<K,V> r, p;
1124     if ((r = t.root) != null &&
1125     (p = r.findTreeNode(hash, key, null)) != null) {
1126     V pv = p.val;
1127     if (cv == null || cv == pv ||
1128     (pv != null && cv.equals(pv))) {
1129     oldVal = pv;
1130     if (value != null)
1131     p.val = value;
1132     else if (t.removeTreeNode(p))
1133     setTabAt(tab, i, untreeify(t.first));
1134 dl 1.119 }
1135     }
1136 dl 1.99 }
1137 dl 1.259 else if (f instanceof ReservationNode)
1138     throw new IllegalStateException("Recursive update");
1139 dl 1.99 }
1140     }
1141 dl 1.222 if (validated) {
1142     if (oldVal != null) {
1143     if (value == null)
1144     addCount(-1L, -1);
1145     return oldVal;
1146     }
1147     break;
1148     }
1149 dl 1.99 }
1150     }
1151 dl 1.222 return null;
1152     }
1153 dl 1.45
1154 dl 1.222 /**
1155     * Removes all of the mappings from this map.
1156     */
1157     public void clear() {
1158     long delta = 0L; // negative number of deletions
1159     int i = 0;
1160     Node<K,V>[] tab = table;
1161     while (tab != null && i < tab.length) {
1162     int fh;
1163     Node<K,V> f = tabAt(tab, i);
1164     if (f == null)
1165     ++i;
1166     else if ((fh = f.hash) == MOVED) {
1167     tab = helpTransfer(tab, f);
1168     i = 0; // restart
1169 dl 1.217 }
1170 dl 1.222 else {
1171     synchronized (f) {
1172     if (tabAt(tab, i) == f) {
1173     Node<K,V> p = (fh >= 0 ? f :
1174     (f instanceof TreeBin) ?
1175     ((TreeBin<K,V>)f).first : null);
1176     while (p != null) {
1177     --delta;
1178     p = p.next;
1179 dl 1.119 }
1180 dl 1.222 setTabAt(tab, i++, null);
1181 dl 1.119 }
1182 dl 1.45 }
1183 dl 1.4 }
1184 dl 1.217 }
1185 dl 1.222 if (delta != 0L)
1186     addCount(delta, -1);
1187     }
1188 dl 1.217
1189 dl 1.222 /**
1190     * Returns a {@link Set} view of the keys contained in this map.
1191     * The set is backed by the map, so changes to the map are
1192     * reflected in the set, and vice-versa. The set supports element
1193     * removal, which removes the corresponding mapping from this map,
1194     * via the {@code Iterator.remove}, {@code Set.remove},
1195     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196     * operations. It does not support the {@code add} or
1197     * {@code addAll} operations.
1198     *
1199 jsr166 1.242 * <p>The view's iterators and spliterators are
1200     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 dl 1.222 *
1202 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204     *
1205 dl 1.222 * @return the set view
1206     */
1207     public KeySetView<K,V> keySet() {
1208     KeySetView<K,V> ks;
1209 jsr166 1.292 if ((ks = keySet) != null) return ks;
1210     return keySet = new KeySetView<K,V>(this, null);
1211 dl 1.222 }
1212 dl 1.217
1213 dl 1.222 /**
1214     * Returns a {@link Collection} view of the values contained in this map.
1215     * The collection is backed by the map, so changes to the map are
1216     * reflected in the collection, and vice-versa. The collection
1217     * supports element removal, which removes the corresponding
1218     * mapping from this map, via the {@code Iterator.remove},
1219     * {@code Collection.remove}, {@code removeAll},
1220     * {@code retainAll}, and {@code clear} operations. It does not
1221     * support the {@code add} or {@code addAll} operations.
1222     *
1223 jsr166 1.242 * <p>The view's iterators and spliterators are
1224     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 dl 1.222 *
1226 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227     * and {@link Spliterator#NONNULL}.
1228     *
1229 dl 1.222 * @return the collection view
1230     */
1231     public Collection<V> values() {
1232     ValuesView<K,V> vs;
1233 jsr166 1.292 if ((vs = values) != null) return vs;
1234     return values = new ValuesView<K,V>(this);
1235 tim 1.1 }
1236    
1237 dl 1.99 /**
1238 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1239     * The set is backed by the map, so changes to the map are
1240     * reflected in the set, and vice-versa. The set supports element
1241     * removal, which removes the corresponding mapping from the map,
1242     * via the {@code Iterator.remove}, {@code Set.remove},
1243     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244     * operations.
1245     *
1246 jsr166 1.242 * <p>The view's iterators and spliterators are
1247     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 dl 1.222 *
1249 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251     *
1252 dl 1.222 * @return the set view
1253 dl 1.119 */
1254 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1255     EntrySetView<K,V> es;
1256 jsr166 1.292 if ((es = entrySet) != null) return es;
1257     return entrySet = new EntrySetView<K,V>(this);
1258 dl 1.99 }
1259    
1260     /**
1261 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1262     * the sum of, for each key-value pair in the map,
1263     * {@code key.hashCode() ^ value.hashCode()}.
1264     *
1265     * @return the hash code value for this map
1266 dl 1.119 */
1267 dl 1.222 public int hashCode() {
1268     int h = 0;
1269     Node<K,V>[] t;
1270     if ((t = table) != null) {
1271     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272     for (Node<K,V> p; (p = it.advance()) != null; )
1273     h += p.key.hashCode() ^ p.val.hashCode();
1274 dl 1.119 }
1275 dl 1.222 return h;
1276 dl 1.99 }
1277 tim 1.11
1278 dl 1.222 /**
1279     * Returns a string representation of this map. The string
1280     * representation consists of a list of key-value mappings (in no
1281     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282     * mappings are separated by the characters {@code ", "} (comma
1283     * and space). Each key-value mapping is rendered as the key
1284     * followed by an equals sign ("{@code =}") followed by the
1285     * associated value.
1286     *
1287     * @return a string representation of this map
1288     */
1289     public String toString() {
1290     Node<K,V>[] t;
1291     int f = (t = table) == null ? 0 : t.length;
1292     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293     StringBuilder sb = new StringBuilder();
1294     sb.append('{');
1295     Node<K,V> p;
1296     if ((p = it.advance()) != null) {
1297 dl 1.210 for (;;) {
1298 dl 1.222 K k = p.key;
1299     V v = p.val;
1300     sb.append(k == this ? "(this Map)" : k);
1301     sb.append('=');
1302     sb.append(v == this ? "(this Map)" : v);
1303     if ((p = it.advance()) == null)
1304 dl 1.210 break;
1305 dl 1.222 sb.append(',').append(' ');
1306 dl 1.119 }
1307     }
1308 dl 1.222 return sb.append('}').toString();
1309 tim 1.1 }
1310    
1311     /**
1312 dl 1.222 * Compares the specified object with this map for equality.
1313     * Returns {@code true} if the given object is a map with the same
1314     * mappings as this map. This operation may return misleading
1315     * results if either map is concurrently modified during execution
1316     * of this method.
1317     *
1318     * @param o object to be compared for equality with this map
1319     * @return {@code true} if the specified object is equal to this map
1320 dl 1.119 */
1321 dl 1.222 public boolean equals(Object o) {
1322     if (o != this) {
1323     if (!(o instanceof Map))
1324     return false;
1325     Map<?,?> m = (Map<?,?>) o;
1326     Node<K,V>[] t;
1327     int f = (t = table) == null ? 0 : t.length;
1328     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329     for (Node<K,V> p; (p = it.advance()) != null; ) {
1330     V val = p.val;
1331     Object v = m.get(p.key);
1332     if (v == null || (v != val && !v.equals(val)))
1333     return false;
1334 dl 1.119 }
1335 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1336     Object mk, mv, v;
1337     if ((mk = e.getKey()) == null ||
1338     (mv = e.getValue()) == null ||
1339     (v = get(mk)) == null ||
1340     (mv != v && !mv.equals(v)))
1341     return false;
1342     }
1343     }
1344     return true;
1345     }
1346    
1347     /**
1348     * Stripped-down version of helper class used in previous version,
1349 jsr166 1.285 * declared for the sake of serialization compatibility.
1350 dl 1.222 */
1351     static class Segment<K,V> extends ReentrantLock implements Serializable {
1352     private static final long serialVersionUID = 2249069246763182397L;
1353     final float loadFactor;
1354     Segment(float lf) { this.loadFactor = lf; }
1355     }
1356    
1357     /**
1358 jsr166 1.303 * Saves this map to a stream (that is, serializes it).
1359     *
1360 dl 1.222 * @param s the stream
1361 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1362 dl 1.222 * @serialData
1363 jsr166 1.287 * the serialized fields, followed by the key (Object) and value
1364     * (Object) for each key-value mapping, followed by a null pair.
1365 dl 1.222 * The key-value mappings are emitted in no particular order.
1366     */
1367     private void writeObject(java.io.ObjectOutputStream s)
1368     throws java.io.IOException {
1369     // For serialization compatibility
1370     // Emulate segment calculation from previous version of this class
1371     int sshift = 0;
1372     int ssize = 1;
1373     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374     ++sshift;
1375     ssize <<= 1;
1376     }
1377     int segmentShift = 32 - sshift;
1378     int segmentMask = ssize - 1;
1379 dl 1.246 @SuppressWarnings("unchecked")
1380     Segment<K,V>[] segments = (Segment<K,V>[])
1381 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382     for (int i = 0; i < segments.length; ++i)
1383     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 jsr166 1.270 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385     streamFields.put("segments", segments);
1386     streamFields.put("segmentShift", segmentShift);
1387     streamFields.put("segmentMask", segmentMask);
1388 dl 1.222 s.writeFields();
1389    
1390     Node<K,V>[] t;
1391     if ((t = table) != null) {
1392     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393     for (Node<K,V> p; (p = it.advance()) != null; ) {
1394     s.writeObject(p.key);
1395     s.writeObject(p.val);
1396     }
1397     }
1398     s.writeObject(null);
1399     s.writeObject(null);
1400     }
1401    
1402     /**
1403 jsr166 1.303 * Reconstitutes this map from a stream (that is, deserializes it).
1404 dl 1.222 * @param s the stream
1405 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1406     * could not be found
1407     * @throws java.io.IOException if an I/O error occurs
1408 dl 1.222 */
1409     private void readObject(java.io.ObjectInputStream s)
1410     throws java.io.IOException, ClassNotFoundException {
1411     /*
1412     * To improve performance in typical cases, we create nodes
1413     * while reading, then place in table once size is known.
1414     * However, we must also validate uniqueness and deal with
1415     * overpopulated bins while doing so, which requires
1416     * specialized versions of putVal mechanics.
1417     */
1418     sizeCtl = -1; // force exclusion for table construction
1419     s.defaultReadObject();
1420     long size = 0L;
1421     Node<K,V> p = null;
1422     for (;;) {
1423 dl 1.246 @SuppressWarnings("unchecked")
1424     K k = (K) s.readObject();
1425     @SuppressWarnings("unchecked")
1426     V v = (V) s.readObject();
1427 dl 1.222 if (k != null && v != null) {
1428     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429     ++size;
1430     }
1431     else
1432     break;
1433     }
1434     if (size == 0L)
1435     sizeCtl = 0;
1436     else {
1437 dl 1.311 long ts = (long)(1.0 + size / LOAD_FACTOR);
1438     int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439     MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 jsr166 1.245 @SuppressWarnings("unchecked")
1441 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 dl 1.222 int mask = n - 1;
1443     long added = 0L;
1444     while (p != null) {
1445     boolean insertAtFront;
1446     Node<K,V> next = p.next, first;
1447     int h = p.hash, j = h & mask;
1448     if ((first = tabAt(tab, j)) == null)
1449     insertAtFront = true;
1450     else {
1451     K k = p.key;
1452     if (first.hash < 0) {
1453     TreeBin<K,V> t = (TreeBin<K,V>)first;
1454     if (t.putTreeVal(h, k, p.val) == null)
1455     ++added;
1456     insertAtFront = false;
1457     }
1458     else {
1459     int binCount = 0;
1460     insertAtFront = true;
1461     Node<K,V> q; K qk;
1462     for (q = first; q != null; q = q.next) {
1463     if (q.hash == h &&
1464     ((qk = q.key) == k ||
1465     (qk != null && k.equals(qk)))) {
1466     insertAtFront = false;
1467 dl 1.119 break;
1468     }
1469 dl 1.222 ++binCount;
1470     }
1471     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472     insertAtFront = false;
1473     ++added;
1474     p.next = first;
1475     TreeNode<K,V> hd = null, tl = null;
1476     for (q = p; q != null; q = q.next) {
1477     TreeNode<K,V> t = new TreeNode<K,V>
1478     (q.hash, q.key, q.val, null, null);
1479     if ((t.prev = tl) == null)
1480     hd = t;
1481     else
1482     tl.next = t;
1483     tl = t;
1484     }
1485     setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 dl 1.119 }
1487     }
1488     }
1489 dl 1.222 if (insertAtFront) {
1490     ++added;
1491     p.next = first;
1492     setTabAt(tab, j, p);
1493 dl 1.119 }
1494 dl 1.222 p = next;
1495 dl 1.119 }
1496 dl 1.222 table = tab;
1497     sizeCtl = n - (n >>> 2);
1498     baseCount = added;
1499 dl 1.119 }
1500 dl 1.55 }
1501    
1502 dl 1.222 // ConcurrentMap methods
1503    
1504     /**
1505     * {@inheritDoc}
1506     *
1507     * @return the previous value associated with the specified key,
1508     * or {@code null} if there was no mapping for the key
1509     * @throws NullPointerException if the specified key or value is null
1510     */
1511     public V putIfAbsent(K key, V value) {
1512     return putVal(key, value, true);
1513     }
1514    
1515     /**
1516     * {@inheritDoc}
1517     *
1518     * @throws NullPointerException if the specified key is null
1519     */
1520     public boolean remove(Object key, Object value) {
1521     if (key == null)
1522     throw new NullPointerException();
1523     return value != null && replaceNode(key, null, value) != null;
1524     }
1525    
1526     /**
1527     * {@inheritDoc}
1528     *
1529     * @throws NullPointerException if any of the arguments are null
1530     */
1531     public boolean replace(K key, V oldValue, V newValue) {
1532     if (key == null || oldValue == null || newValue == null)
1533     throw new NullPointerException();
1534     return replaceNode(key, newValue, oldValue) != null;
1535     }
1536    
1537     /**
1538     * {@inheritDoc}
1539     *
1540     * @return the previous value associated with the specified key,
1541     * or {@code null} if there was no mapping for the key
1542     * @throws NullPointerException if the specified key or value is null
1543     */
1544     public V replace(K key, V value) {
1545     if (key == null || value == null)
1546     throw new NullPointerException();
1547     return replaceNode(key, value, null);
1548     }
1549    
1550     // Overrides of JDK8+ Map extension method defaults
1551    
1552     /**
1553     * Returns the value to which the specified key is mapped, or the
1554     * given default value if this map contains no mapping for the
1555     * key.
1556     *
1557     * @param key the key whose associated value is to be returned
1558     * @param defaultValue the value to return if this map contains
1559     * no mapping for the given key
1560     * @return the mapping for the key, if present; else the default value
1561     * @throws NullPointerException if the specified key is null
1562 tim 1.1 */
1563 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1564     V v;
1565     return (v = get(key)) == null ? defaultValue : v;
1566     }
1567 tim 1.1
1568 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1569     if (action == null) throw new NullPointerException();
1570     Node<K,V>[] t;
1571     if ((t = table) != null) {
1572     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573     for (Node<K,V> p; (p = it.advance()) != null; ) {
1574     action.accept(p.key, p.val);
1575 dl 1.99 }
1576 dl 1.222 }
1577     }
1578    
1579     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580     if (function == null) throw new NullPointerException();
1581     Node<K,V>[] t;
1582     if ((t = table) != null) {
1583     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584     for (Node<K,V> p; (p = it.advance()) != null; ) {
1585     V oldValue = p.val;
1586     for (K key = p.key;;) {
1587     V newValue = function.apply(key, oldValue);
1588     if (newValue == null)
1589     throw new NullPointerException();
1590     if (replaceNode(key, newValue, oldValue) != null ||
1591     (oldValue = get(key)) == null)
1592 dl 1.119 break;
1593     }
1594     }
1595 dl 1.45 }
1596 dl 1.21 }
1597    
1598 dl 1.222 /**
1599 jsr166 1.285 * Helper method for EntrySetView.removeIf.
1600 dl 1.271 */
1601 jsr166 1.273 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 dl 1.271 if (function == null) throw new NullPointerException();
1603     Node<K,V>[] t;
1604     boolean removed = false;
1605     if ((t = table) != null) {
1606     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607     for (Node<K,V> p; (p = it.advance()) != null; ) {
1608     K k = p.key;
1609     V v = p.val;
1610     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611     if (function.test(e) && replaceNode(k, null, v) != null)
1612     removed = true;
1613     }
1614     }
1615     return removed;
1616     }
1617    
1618     /**
1619 jsr166 1.285 * Helper method for ValuesView.removeIf.
1620 dl 1.272 */
1621 jsr166 1.276 boolean removeValueIf(Predicate<? super V> function) {
1622 dl 1.272 if (function == null) throw new NullPointerException();
1623     Node<K,V>[] t;
1624     boolean removed = false;
1625     if ((t = table) != null) {
1626     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627     for (Node<K,V> p; (p = it.advance()) != null; ) {
1628     K k = p.key;
1629     V v = p.val;
1630     if (function.test(v) && replaceNode(k, null, v) != null)
1631     removed = true;
1632     }
1633     }
1634     return removed;
1635     }
1636    
1637     /**
1638 dl 1.222 * If the specified key is not already associated with a value,
1639     * attempts to compute its value using the given mapping function
1640     * and enters it into this map unless {@code null}. The entire
1641     * method invocation is performed atomically, so the function is
1642     * applied at most once per key. Some attempted update operations
1643     * on this map by other threads may be blocked while computation
1644     * is in progress, so the computation should be short and simple,
1645     * and must not attempt to update any other mappings of this map.
1646     *
1647     * @param key key with which the specified value is to be associated
1648     * @param mappingFunction the function to compute a value
1649     * @return the current (existing or computed) value associated with
1650     * the specified key, or null if the computed value is null
1651     * @throws NullPointerException if the specified key or mappingFunction
1652     * is null
1653     * @throws IllegalStateException if the computation detectably
1654     * attempts a recursive update to this map that would
1655     * otherwise never complete
1656     * @throws RuntimeException or Error if the mappingFunction does so,
1657     * in which case the mapping is left unestablished
1658     */
1659     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660     if (key == null || mappingFunction == null)
1661 dl 1.149 throw new NullPointerException();
1662 dl 1.222 int h = spread(key.hashCode());
1663 dl 1.151 V val = null;
1664 dl 1.222 int binCount = 0;
1665 dl 1.210 for (Node<K,V>[] tab = table;;) {
1666 dl 1.296 Node<K,V> f; int n, i, fh; K fk; V fv;
1667 dl 1.222 if (tab == null || (n = tab.length) == 0)
1668 dl 1.119 tab = initTable();
1669 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670     Node<K,V> r = new ReservationNode<K,V>();
1671     synchronized (r) {
1672     if (casTabAt(tab, i, null, r)) {
1673     binCount = 1;
1674     Node<K,V> node = null;
1675 dl 1.149 try {
1676 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1677 jsr166 1.290 node = new Node<K,V>(h, key, val);
1678 dl 1.149 } finally {
1679 dl 1.222 setTabAt(tab, i, node);
1680 dl 1.119 }
1681     }
1682     }
1683 dl 1.222 if (binCount != 0)
1684 dl 1.119 break;
1685     }
1686 dl 1.222 else if ((fh = f.hash) == MOVED)
1687     tab = helpTransfer(tab, f);
1688 jsr166 1.299 else if (fh == h // check first node without acquiring lock
1689     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690     && (fv = f.val) != null)
1691 dl 1.296 return fv;
1692 dl 1.119 else {
1693 dl 1.149 boolean added = false;
1694 jsr166 1.150 synchronized (f) {
1695 dl 1.149 if (tabAt(tab, i) == f) {
1696 dl 1.222 if (fh >= 0) {
1697     binCount = 1;
1698     for (Node<K,V> e = f;; ++binCount) {
1699 dl 1.266 K ek;
1700 dl 1.222 if (e.hash == h &&
1701     ((ek = e.key) == key ||
1702     (ek != null && key.equals(ek)))) {
1703     val = e.val;
1704     break;
1705     }
1706     Node<K,V> pred = e;
1707     if ((e = e.next) == null) {
1708     if ((val = mappingFunction.apply(key)) != null) {
1709 dl 1.259 if (pred.next != null)
1710     throw new IllegalStateException("Recursive update");
1711 dl 1.222 added = true;
1712 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
1713 dl 1.222 }
1714     break;
1715     }
1716 dl 1.149 }
1717 dl 1.222 }
1718     else if (f instanceof TreeBin) {
1719     binCount = 2;
1720     TreeBin<K,V> t = (TreeBin<K,V>)f;
1721     TreeNode<K,V> r, p;
1722     if ((r = t.root) != null &&
1723     (p = r.findTreeNode(h, key, null)) != null)
1724     val = p.val;
1725     else if ((val = mappingFunction.apply(key)) != null) {
1726     added = true;
1727     t.putTreeVal(h, key, val);
1728 dl 1.119 }
1729     }
1730 dl 1.259 else if (f instanceof ReservationNode)
1731     throw new IllegalStateException("Recursive update");
1732 dl 1.119 }
1733 dl 1.149 }
1734 dl 1.222 if (binCount != 0) {
1735     if (binCount >= TREEIFY_THRESHOLD)
1736     treeifyBin(tab, i);
1737 dl 1.149 if (!added)
1738 dl 1.151 return val;
1739 dl 1.149 break;
1740 dl 1.119 }
1741 dl 1.105 }
1742 dl 1.99 }
1743 dl 1.149 if (val != null)
1744 dl 1.222 addCount(1L, binCount);
1745 dl 1.151 return val;
1746 tim 1.1 }
1747    
1748 dl 1.222 /**
1749     * If the value for the specified key is present, attempts to
1750     * compute a new mapping given the key and its current mapped
1751     * value. The entire method invocation is performed atomically.
1752     * Some attempted update operations on this map by other threads
1753     * may be blocked while computation is in progress, so the
1754     * computation should be short and simple, and must not attempt to
1755     * update any other mappings of this map.
1756     *
1757     * @param key key with which a value may be associated
1758     * @param remappingFunction the function to compute a value
1759     * @return the new value associated with the specified key, or null if none
1760     * @throws NullPointerException if the specified key or remappingFunction
1761     * is null
1762     * @throws IllegalStateException if the computation detectably
1763     * attempts a recursive update to this map that would
1764     * otherwise never complete
1765     * @throws RuntimeException or Error if the remappingFunction does so,
1766     * in which case the mapping is unchanged
1767     */
1768     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769     if (key == null || remappingFunction == null)
1770 dl 1.149 throw new NullPointerException();
1771 dl 1.222 int h = spread(key.hashCode());
1772 dl 1.151 V val = null;
1773 dl 1.119 int delta = 0;
1774 dl 1.222 int binCount = 0;
1775 dl 1.210 for (Node<K,V>[] tab = table;;) {
1776 dl 1.222 Node<K,V> f; int n, i, fh;
1777     if (tab == null || (n = tab.length) == 0)
1778 dl 1.119 tab = initTable();
1779 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780     break;
1781     else if ((fh = f.hash) == MOVED)
1782     tab = helpTransfer(tab, f);
1783     else {
1784     synchronized (f) {
1785     if (tabAt(tab, i) == f) {
1786     if (fh >= 0) {
1787     binCount = 1;
1788     for (Node<K,V> e = f, pred = null;; ++binCount) {
1789     K ek;
1790     if (e.hash == h &&
1791     ((ek = e.key) == key ||
1792     (ek != null && key.equals(ek)))) {
1793     val = remappingFunction.apply(key, e.val);
1794     if (val != null)
1795     e.val = val;
1796 dl 1.210 else {
1797 dl 1.222 delta = -1;
1798     Node<K,V> en = e.next;
1799     if (pred != null)
1800     pred.next = en;
1801     else
1802     setTabAt(tab, i, en);
1803 dl 1.210 }
1804 dl 1.222 break;
1805 dl 1.210 }
1806 dl 1.222 pred = e;
1807     if ((e = e.next) == null)
1808     break;
1809 dl 1.119 }
1810     }
1811 dl 1.222 else if (f instanceof TreeBin) {
1812     binCount = 2;
1813     TreeBin<K,V> t = (TreeBin<K,V>)f;
1814     TreeNode<K,V> r, p;
1815     if ((r = t.root) != null &&
1816     (p = r.findTreeNode(h, key, null)) != null) {
1817     val = remappingFunction.apply(key, p.val);
1818 dl 1.119 if (val != null)
1819 dl 1.222 p.val = val;
1820 dl 1.119 else {
1821     delta = -1;
1822 dl 1.222 if (t.removeTreeNode(p))
1823     setTabAt(tab, i, untreeify(t.first));
1824 dl 1.119 }
1825     }
1826     }
1827 dl 1.259 else if (f instanceof ReservationNode)
1828     throw new IllegalStateException("Recursive update");
1829 dl 1.119 }
1830     }
1831 dl 1.222 if (binCount != 0)
1832 dl 1.119 break;
1833     }
1834     }
1835 dl 1.149 if (delta != 0)
1836 dl 1.222 addCount((long)delta, binCount);
1837 dl 1.151 return val;
1838 dl 1.119 }
1839    
1840 dl 1.222 /**
1841     * Attempts to compute a mapping for the specified key and its
1842     * current mapped value (or {@code null} if there is no current
1843     * mapping). The entire method invocation is performed atomically.
1844     * Some attempted update operations on this map by other threads
1845     * may be blocked while computation is in progress, so the
1846     * computation should be short and simple, and must not attempt to
1847     * update any other mappings of this Map.
1848     *
1849     * @param key key with which the specified value is to be associated
1850     * @param remappingFunction the function to compute a value
1851     * @return the new value associated with the specified key, or null if none
1852     * @throws NullPointerException if the specified key or remappingFunction
1853     * is null
1854     * @throws IllegalStateException if the computation detectably
1855     * attempts a recursive update to this map that would
1856     * otherwise never complete
1857     * @throws RuntimeException or Error if the remappingFunction does so,
1858     * in which case the mapping is unchanged
1859     */
1860     public V compute(K key,
1861     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862     if (key == null || remappingFunction == null)
1863 dl 1.149 throw new NullPointerException();
1864 dl 1.222 int h = spread(key.hashCode());
1865 dl 1.151 V val = null;
1866 dl 1.119 int delta = 0;
1867 dl 1.222 int binCount = 0;
1868 dl 1.210 for (Node<K,V>[] tab = table;;) {
1869 dl 1.222 Node<K,V> f; int n, i, fh;
1870     if (tab == null || (n = tab.length) == 0)
1871 dl 1.119 tab = initTable();
1872 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873     Node<K,V> r = new ReservationNode<K,V>();
1874     synchronized (r) {
1875     if (casTabAt(tab, i, null, r)) {
1876     binCount = 1;
1877     Node<K,V> node = null;
1878     try {
1879     if ((val = remappingFunction.apply(key, null)) != null) {
1880     delta = 1;
1881 jsr166 1.290 node = new Node<K,V>(h, key, val);
1882 dl 1.222 }
1883     } finally {
1884     setTabAt(tab, i, node);
1885     }
1886     }
1887     }
1888     if (binCount != 0)
1889 dl 1.119 break;
1890     }
1891 dl 1.222 else if ((fh = f.hash) == MOVED)
1892     tab = helpTransfer(tab, f);
1893     else {
1894     synchronized (f) {
1895     if (tabAt(tab, i) == f) {
1896     if (fh >= 0) {
1897     binCount = 1;
1898     for (Node<K,V> e = f, pred = null;; ++binCount) {
1899     K ek;
1900     if (e.hash == h &&
1901     ((ek = e.key) == key ||
1902     (ek != null && key.equals(ek)))) {
1903     val = remappingFunction.apply(key, e.val);
1904     if (val != null)
1905     e.val = val;
1906     else {
1907     delta = -1;
1908     Node<K,V> en = e.next;
1909     if (pred != null)
1910     pred.next = en;
1911     else
1912     setTabAt(tab, i, en);
1913     }
1914     break;
1915     }
1916     pred = e;
1917     if ((e = e.next) == null) {
1918     val = remappingFunction.apply(key, null);
1919     if (val != null) {
1920 dl 1.259 if (pred.next != null)
1921     throw new IllegalStateException("Recursive update");
1922 dl 1.222 delta = 1;
1923 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
1924 dl 1.222 }
1925     break;
1926     }
1927     }
1928     }
1929     else if (f instanceof TreeBin) {
1930     binCount = 1;
1931     TreeBin<K,V> t = (TreeBin<K,V>)f;
1932     TreeNode<K,V> r, p;
1933     if ((r = t.root) != null)
1934     p = r.findTreeNode(h, key, null);
1935     else
1936     p = null;
1937     V pv = (p == null) ? null : p.val;
1938     val = remappingFunction.apply(key, pv);
1939 dl 1.119 if (val != null) {
1940     if (p != null)
1941     p.val = val;
1942     else {
1943     delta = 1;
1944 dl 1.222 t.putTreeVal(h, key, val);
1945 dl 1.119 }
1946     }
1947     else if (p != null) {
1948     delta = -1;
1949 dl 1.222 if (t.removeTreeNode(p))
1950     setTabAt(tab, i, untreeify(t.first));
1951 dl 1.119 }
1952     }
1953 dl 1.259 else if (f instanceof ReservationNode)
1954     throw new IllegalStateException("Recursive update");
1955 dl 1.119 }
1956     }
1957 dl 1.222 if (binCount != 0) {
1958     if (binCount >= TREEIFY_THRESHOLD)
1959     treeifyBin(tab, i);
1960     break;
1961 dl 1.119 }
1962 dl 1.105 }
1963 dl 1.99 }
1964 dl 1.149 if (delta != 0)
1965 dl 1.222 addCount((long)delta, binCount);
1966 dl 1.151 return val;
1967 dl 1.119 }
1968    
1969 dl 1.222 /**
1970     * If the specified key is not already associated with a
1971     * (non-null) value, associates it with the given value.
1972     * Otherwise, replaces the value with the results of the given
1973     * remapping function, or removes if {@code null}. The entire
1974     * method invocation is performed atomically. Some attempted
1975     * update operations on this map by other threads may be blocked
1976     * while computation is in progress, so the computation should be
1977     * short and simple, and must not attempt to update any other
1978     * mappings of this Map.
1979     *
1980     * @param key key with which the specified value is to be associated
1981     * @param value the value to use if absent
1982     * @param remappingFunction the function to recompute a value if present
1983     * @return the new value associated with the specified key, or null if none
1984     * @throws NullPointerException if the specified key or the
1985     * remappingFunction is null
1986     * @throws RuntimeException or Error if the remappingFunction does so,
1987     * in which case the mapping is unchanged
1988     */
1989     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990     if (key == null || value == null || remappingFunction == null)
1991     throw new NullPointerException();
1992     int h = spread(key.hashCode());
1993     V val = null;
1994     int delta = 0;
1995     int binCount = 0;
1996     for (Node<K,V>[] tab = table;;) {
1997     Node<K,V> f; int n, i, fh;
1998     if (tab == null || (n = tab.length) == 0)
1999     tab = initTable();
2000     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 jsr166 1.290 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 dl 1.222 delta = 1;
2003     val = value;
2004 dl 1.119 break;
2005     }
2006 dl 1.222 }
2007     else if ((fh = f.hash) == MOVED)
2008     tab = helpTransfer(tab, f);
2009     else {
2010     synchronized (f) {
2011     if (tabAt(tab, i) == f) {
2012     if (fh >= 0) {
2013     binCount = 1;
2014     for (Node<K,V> e = f, pred = null;; ++binCount) {
2015     K ek;
2016     if (e.hash == h &&
2017     ((ek = e.key) == key ||
2018     (ek != null && key.equals(ek)))) {
2019     val = remappingFunction.apply(e.val, value);
2020     if (val != null)
2021     e.val = val;
2022 dl 1.119 else {
2023 dl 1.222 delta = -1;
2024     Node<K,V> en = e.next;
2025     if (pred != null)
2026     pred.next = en;
2027     else
2028     setTabAt(tab, i, en);
2029 dl 1.119 }
2030 dl 1.222 break;
2031     }
2032     pred = e;
2033     if ((e = e.next) == null) {
2034     delta = 1;
2035     val = value;
2036 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
2037 dl 1.222 break;
2038 dl 1.119 }
2039     }
2040     }
2041 dl 1.222 else if (f instanceof TreeBin) {
2042     binCount = 2;
2043     TreeBin<K,V> t = (TreeBin<K,V>)f;
2044     TreeNode<K,V> r = t.root;
2045     TreeNode<K,V> p = (r == null) ? null :
2046     r.findTreeNode(h, key, null);
2047     val = (p == null) ? value :
2048     remappingFunction.apply(p.val, value);
2049     if (val != null) {
2050     if (p != null)
2051     p.val = val;
2052     else {
2053     delta = 1;
2054     t.putTreeVal(h, key, val);
2055 dl 1.119 }
2056     }
2057 dl 1.222 else if (p != null) {
2058     delta = -1;
2059     if (t.removeTreeNode(p))
2060     setTabAt(tab, i, untreeify(t.first));
2061 dl 1.164 }
2062 dl 1.99 }
2063 dl 1.259 else if (f instanceof ReservationNode)
2064     throw new IllegalStateException("Recursive update");
2065 dl 1.21 }
2066     }
2067 dl 1.222 if (binCount != 0) {
2068     if (binCount >= TREEIFY_THRESHOLD)
2069     treeifyBin(tab, i);
2070     break;
2071     }
2072 dl 1.45 }
2073     }
2074 dl 1.222 if (delta != 0)
2075     addCount((long)delta, binCount);
2076     return val;
2077 tim 1.1 }
2078 dl 1.19
2079 dl 1.222 // Hashtable legacy methods
2080    
2081 dl 1.149 /**
2082 jsr166 1.275 * Tests if some key maps into the specified value in this table.
2083 jsr166 1.250 *
2084 jsr166 1.275 * <p>Note that this method is identical in functionality to
2085 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2086     * full compatibility with class {@link java.util.Hashtable},
2087 jsr166 1.281 * which supported this method prior to introduction of the
2088     * Java Collections Framework.
2089 dl 1.222 *
2090     * @param value a value to search for
2091     * @return {@code true} if and only if some key maps to the
2092     * {@code value} argument in this table as
2093     * determined by the {@code equals} method;
2094     * {@code false} otherwise
2095     * @throws NullPointerException if the specified value is null
2096 dl 1.149 */
2097 dl 1.246 public boolean contains(Object value) {
2098 dl 1.222 return containsValue(value);
2099 dl 1.149 }
2100    
2101 tim 1.1 /**
2102 dl 1.222 * Returns an enumeration of the keys in this table.
2103     *
2104     * @return an enumeration of the keys in this table
2105     * @see #keySet()
2106 tim 1.1 */
2107 dl 1.222 public Enumeration<K> keys() {
2108     Node<K,V>[] t;
2109     int f = (t = table) == null ? 0 : t.length;
2110     return new KeyIterator<K,V>(t, f, 0, f, this);
2111 tim 1.1 }
2112    
2113     /**
2114 dl 1.222 * Returns an enumeration of the values in this table.
2115     *
2116     * @return an enumeration of the values in this table
2117     * @see #values()
2118     */
2119     public Enumeration<V> elements() {
2120     Node<K,V>[] t;
2121     int f = (t = table) == null ? 0 : t.length;
2122     return new ValueIterator<K,V>(t, f, 0, f, this);
2123     }
2124    
2125     // ConcurrentHashMap-only methods
2126    
2127     /**
2128     * Returns the number of mappings. This method should be used
2129     * instead of {@link #size} because a ConcurrentHashMap may
2130     * contain more mappings than can be represented as an int. The
2131     * value returned is an estimate; the actual count may differ if
2132     * there are concurrent insertions or removals.
2133     *
2134     * @return the number of mappings
2135     * @since 1.8
2136     */
2137     public long mappingCount() {
2138     long n = sumCount();
2139     return (n < 0L) ? 0L : n; // ignore transient negative values
2140     }
2141    
2142     /**
2143     * Creates a new {@link Set} backed by a ConcurrentHashMap
2144     * from the given type to {@code Boolean.TRUE}.
2145     *
2146 jsr166 1.237 * @param <K> the element type of the returned set
2147 dl 1.222 * @return the new set
2148     * @since 1.8
2149     */
2150     public static <K> KeySetView<K,Boolean> newKeySet() {
2151     return new KeySetView<K,Boolean>
2152     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153     }
2154    
2155     /**
2156     * Creates a new {@link Set} backed by a ConcurrentHashMap
2157     * from the given type to {@code Boolean.TRUE}.
2158     *
2159     * @param initialCapacity The implementation performs internal
2160     * sizing to accommodate this many elements.
2161 jsr166 1.237 * @param <K> the element type of the returned set
2162 jsr166 1.239 * @return the new set
2163 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2164     * elements is negative
2165     * @since 1.8
2166     */
2167     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168     return new KeySetView<K,Boolean>
2169     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170     }
2171    
2172     /**
2173     * Returns a {@link Set} view of the keys in this map, using the
2174     * given common mapped value for any additions (i.e., {@link
2175     * Collection#add} and {@link Collection#addAll(Collection)}).
2176     * This is of course only appropriate if it is acceptable to use
2177     * the same value for all additions from this view.
2178     *
2179     * @param mappedValue the mapped value to use for any additions
2180     * @return the set view
2181     * @throws NullPointerException if the mappedValue is null
2182     */
2183     public KeySetView<K,V> keySet(V mappedValue) {
2184     if (mappedValue == null)
2185     throw new NullPointerException();
2186     return new KeySetView<K,V>(this, mappedValue);
2187     }
2188    
2189     /* ---------------- Special Nodes -------------- */
2190    
2191     /**
2192     * A node inserted at head of bins during transfer operations.
2193     */
2194     static final class ForwardingNode<K,V> extends Node<K,V> {
2195     final Node<K,V>[] nextTable;
2196     ForwardingNode(Node<K,V>[] tab) {
2197 jsr166 1.290 super(MOVED, null, null);
2198 dl 1.222 this.nextTable = tab;
2199     }
2200    
2201     Node<K,V> find(int h, Object k) {
2202 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2203     outer: for (Node<K,V>[] tab = nextTable;;) {
2204     Node<K,V> e; int n;
2205     if (k == null || tab == null || (n = tab.length) == 0 ||
2206     (e = tabAt(tab, (n - 1) & h)) == null)
2207     return null;
2208     for (;;) {
2209 dl 1.222 int eh; K ek;
2210     if ((eh = e.hash) == h &&
2211     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212     return e;
2213 dl 1.234 if (eh < 0) {
2214     if (e instanceof ForwardingNode) {
2215     tab = ((ForwardingNode<K,V>)e).nextTable;
2216     continue outer;
2217     }
2218     else
2219     return e.find(h, k);
2220     }
2221     if ((e = e.next) == null)
2222     return null;
2223     }
2224 dl 1.222 }
2225     }
2226     }
2227    
2228     /**
2229 jsr166 1.285 * A place-holder node used in computeIfAbsent and compute.
2230 dl 1.222 */
2231     static final class ReservationNode<K,V> extends Node<K,V> {
2232     ReservationNode() {
2233 jsr166 1.290 super(RESERVED, null, null);
2234 dl 1.222 }
2235    
2236     Node<K,V> find(int h, Object k) {
2237     return null;
2238     }
2239     }
2240    
2241     /* ---------------- Table Initialization and Resizing -------------- */
2242    
2243     /**
2244 dl 1.252 * Returns the stamp bits for resizing a table of size n.
2245     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246     */
2247     static final int resizeStamp(int n) {
2248 jsr166 1.254 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249 dl 1.252 }
2250    
2251     /**
2252 dl 1.222 * Initializes table, using the size recorded in sizeCtl.
2253 dl 1.119 */
2254 dl 1.210 private final Node<K,V>[] initTable() {
2255     Node<K,V>[] tab; int sc;
2256 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2257 dl 1.119 if ((sc = sizeCtl) < 0)
2258     Thread.yield(); // lost initialization race; just spin
2259 jsr166 1.302 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 dl 1.119 try {
2261 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2262 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 jsr166 1.245 @SuppressWarnings("unchecked")
2264 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 dl 1.222 table = tab = nt;
2266 dl 1.119 sc = n - (n >>> 2);
2267     }
2268     } finally {
2269     sizeCtl = sc;
2270     }
2271     break;
2272     }
2273     }
2274     return tab;
2275 dl 1.4 }
2276    
2277     /**
2278 dl 1.149 * Adds to count, and if table is too small and not already
2279     * resizing, initiates transfer. If already resizing, helps
2280     * perform transfer if work is available. Rechecks occupancy
2281     * after a transfer to see if another resize is already needed
2282     * because resizings are lagging additions.
2283     *
2284     * @param x the count to add
2285     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286     */
2287     private final void addCount(long x, int check) {
2288 jsr166 1.306 CounterCell[] cs; long b, s;
2289     if ((cs = counterCells) != null ||
2290 jsr166 1.302 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 jsr166 1.306 CounterCell c; long v; int m;
2292 dl 1.149 boolean uncontended = true;
2293 jsr166 1.306 if (cs == null || (m = cs.length - 1) < 0 ||
2294     (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 dl 1.149 !(uncontended =
2296 jsr166 1.306 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 dl 1.160 fullAddCount(x, uncontended);
2298 dl 1.149 return;
2299     }
2300     if (check <= 1)
2301     return;
2302     s = sumCount();
2303     }
2304     if (check >= 0) {
2305 dl 1.252 Node<K,V>[] tab, nt; int n, sc;
2306 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 dl 1.252 (n = tab.length) < MAXIMUM_CAPACITY) {
2308     int rs = resizeStamp(n);
2309 dl 1.149 if (sc < 0) {
2310 dl 1.252 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2311 jsr166 1.254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2312     transferIndex <= 0)
2313 dl 1.149 break;
2314 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2315 dl 1.149 transfer(tab, nt);
2316 dl 1.119 }
2317 jsr166 1.302 else if (U.compareAndSetInt(this, SIZECTL, sc,
2318 jsr166 1.254 (rs << RESIZE_STAMP_SHIFT) + 2))
2319 dl 1.149 transfer(tab, null);
2320     s = sumCount();
2321 dl 1.119 }
2322     }
2323 dl 1.4 }
2324    
2325     /**
2326 dl 1.222 * Helps transfer if a resize is in progress.
2327     */
2328     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2329     Node<K,V>[] nextTab; int sc;
2330 dl 1.252 if (tab != null && (f instanceof ForwardingNode) &&
2331 dl 1.222 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2332 jsr166 1.254 int rs = resizeStamp(tab.length);
2333 dl 1.252 while (nextTab == nextTable && table == tab &&
2334 jsr166 1.254 (sc = sizeCtl) < 0) {
2335     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2336 dl 1.252 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2337 jsr166 1.254 break;
2338 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2339 dl 1.246 transfer(tab, nextTab);
2340     break;
2341     }
2342     }
2343 dl 1.222 return nextTab;
2344     }
2345     return table;
2346     }
2347    
2348     /**
2349 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2350 tim 1.1 *
2351 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2352 tim 1.1 */
2353 dl 1.210 private final void tryPresize(int size) {
2354 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2355     tableSizeFor(size + (size >>> 1) + 1);
2356     int sc;
2357     while ((sc = sizeCtl) >= 0) {
2358 dl 1.210 Node<K,V>[] tab = table; int n;
2359 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2360     n = (sc > c) ? sc : c;
2361 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2362 dl 1.119 try {
2363     if (table == tab) {
2364 jsr166 1.245 @SuppressWarnings("unchecked")
2365 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2366 dl 1.222 table = nt;
2367 dl 1.119 sc = n - (n >>> 2);
2368     }
2369     } finally {
2370     sizeCtl = sc;
2371     }
2372     }
2373     }
2374     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2375     break;
2376 dl 1.252 else if (tab == table) {
2377     int rs = resizeStamp(n);
2378 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc,
2379 dl 1.258 (rs << RESIZE_STAMP_SHIFT) + 2))
2380 dl 1.252 transfer(tab, null);
2381     }
2382 dl 1.119 }
2383 dl 1.4 }
2384    
2385 jsr166 1.170 /**
2386 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2387     * above for explanation.
2388 dl 1.4 */
2389 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2390 dl 1.149 int n = tab.length, stride;
2391     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2392     stride = MIN_TRANSFER_STRIDE; // subdivide range
2393     if (nextTab == null) { // initiating
2394     try {
2395 jsr166 1.245 @SuppressWarnings("unchecked")
2396 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2397 dl 1.222 nextTab = nt;
2398 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2399 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2400     return;
2401     }
2402     nextTable = nextTab;
2403     transferIndex = n;
2404     }
2405     int nextn = nextTab.length;
2406 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2407 dl 1.149 boolean advance = true;
2408 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2409 dl 1.149 for (int i = 0, bound = 0;;) {
2410 dl 1.246 Node<K,V> f; int fh;
2411 dl 1.149 while (advance) {
2412 dl 1.246 int nextIndex, nextBound;
2413 dl 1.234 if (--i >= bound || finishing)
2414 dl 1.149 advance = false;
2415 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2416 dl 1.149 i = -1;
2417     advance = false;
2418     }
2419 jsr166 1.302 else if (U.compareAndSetInt
2420 dl 1.149 (this, TRANSFERINDEX, nextIndex,
2421 jsr166 1.150 nextBound = (nextIndex > stride ?
2422 dl 1.149 nextIndex - stride : 0))) {
2423     bound = nextBound;
2424     i = nextIndex - 1;
2425     advance = false;
2426     }
2427     }
2428     if (i < 0 || i >= n || i + n >= nextn) {
2429 dl 1.246 int sc;
2430 dl 1.234 if (finishing) {
2431     nextTable = null;
2432     table = nextTab;
2433     sizeCtl = (n << 1) - (n >>> 1);
2434     return;
2435     }
2436 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2437 dl 1.255 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2438 dl 1.246 return;
2439     finishing = advance = true;
2440     i = n; // recheck before commit
2441 dl 1.149 }
2442     }
2443 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2444     advance = casTabAt(tab, i, null, fwd);
2445 dl 1.222 else if ((fh = f.hash) == MOVED)
2446     advance = true; // already processed
2447     else {
2448 jsr166 1.150 synchronized (f) {
2449 dl 1.149 if (tabAt(tab, i) == f) {
2450 dl 1.222 Node<K,V> ln, hn;
2451     if (fh >= 0) {
2452     int runBit = fh & n;
2453     Node<K,V> lastRun = f;
2454     for (Node<K,V> p = f.next; p != null; p = p.next) {
2455     int b = p.hash & n;
2456     if (b != runBit) {
2457     runBit = b;
2458     lastRun = p;
2459     }
2460     }
2461     if (runBit == 0) {
2462     ln = lastRun;
2463     hn = null;
2464     }
2465     else {
2466     hn = lastRun;
2467     ln = null;
2468 dl 1.149 }
2469 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2470     int ph = p.hash; K pk = p.key; V pv = p.val;
2471     if ((ph & n) == 0)
2472     ln = new Node<K,V>(ph, pk, pv, ln);
2473 dl 1.210 else
2474 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2475 dl 1.149 }
2476 dl 1.233 setTabAt(nextTab, i, ln);
2477     setTabAt(nextTab, i + n, hn);
2478     setTabAt(tab, i, fwd);
2479     advance = true;
2480 dl 1.222 }
2481     else if (f instanceof TreeBin) {
2482     TreeBin<K,V> t = (TreeBin<K,V>)f;
2483     TreeNode<K,V> lo = null, loTail = null;
2484     TreeNode<K,V> hi = null, hiTail = null;
2485     int lc = 0, hc = 0;
2486     for (Node<K,V> e = t.first; e != null; e = e.next) {
2487     int h = e.hash;
2488     TreeNode<K,V> p = new TreeNode<K,V>
2489     (h, e.key, e.val, null, null);
2490     if ((h & n) == 0) {
2491     if ((p.prev = loTail) == null)
2492     lo = p;
2493     else
2494     loTail.next = p;
2495     loTail = p;
2496     ++lc;
2497 dl 1.210 }
2498 dl 1.222 else {
2499     if ((p.prev = hiTail) == null)
2500     hi = p;
2501     else
2502     hiTail.next = p;
2503     hiTail = p;
2504     ++hc;
2505 dl 1.210 }
2506 dl 1.149 }
2507 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2508     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2509     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2510     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2511 dl 1.233 setTabAt(nextTab, i, ln);
2512     setTabAt(nextTab, i + n, hn);
2513     setTabAt(tab, i, fwd);
2514     advance = true;
2515 dl 1.149 }
2516 dl 1.119 }
2517     }
2518     }
2519     }
2520 dl 1.4 }
2521 tim 1.1
2522 dl 1.149 /* ---------------- Counter support -------------- */
2523    
2524 dl 1.222 /**
2525     * A padded cell for distributing counts. Adapted from LongAdder
2526     * and Striped64. See their internal docs for explanation.
2527     */
2528 jsr166 1.288 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 dl 1.222 volatile long value;
2530     CounterCell(long x) { value = x; }
2531     }
2532    
2533 dl 1.149 final long sumCount() {
2534 jsr166 1.306 CounterCell[] cs = counterCells;
2535 dl 1.149 long sum = baseCount;
2536 jsr166 1.306 if (cs != null) {
2537     for (CounterCell c : cs)
2538     if (c != null)
2539     sum += c.value;
2540 dl 1.119 }
2541 dl 1.149 return sum;
2542 dl 1.119 }
2543    
2544 dl 1.149 // See LongAdder version for explanation
2545 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2546 dl 1.149 int h;
2547 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548     ThreadLocalRandom.localInit(); // force initialization
2549     h = ThreadLocalRandom.getProbe();
2550     wasUncontended = true;
2551 dl 1.119 }
2552 dl 1.149 boolean collide = false; // True if last slot nonempty
2553     for (;;) {
2554 jsr166 1.306 CounterCell[] cs; CounterCell c; int n; long v;
2555     if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556     if ((c = cs[(n - 1) & h]) == null) {
2557 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2558 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2559 dl 1.153 if (cellsBusy == 0 &&
2560 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 dl 1.149 boolean created = false;
2562     try { // Recheck under lock
2563 dl 1.222 CounterCell[] rs; int m, j;
2564 dl 1.149 if ((rs = counterCells) != null &&
2565     (m = rs.length) > 0 &&
2566     rs[j = (m - 1) & h] == null) {
2567     rs[j] = r;
2568     created = true;
2569 dl 1.128 }
2570 dl 1.149 } finally {
2571 dl 1.153 cellsBusy = 0;
2572 dl 1.119 }
2573 dl 1.149 if (created)
2574     break;
2575     continue; // Slot is now non-empty
2576     }
2577     }
2578     collide = false;
2579     }
2580     else if (!wasUncontended) // CAS already known to fail
2581     wasUncontended = true; // Continue after rehash
2582 jsr166 1.306 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 dl 1.149 break;
2584 jsr166 1.306 else if (counterCells != cs || n >= NCPU)
2585 dl 1.149 collide = false; // At max size or stale
2586     else if (!collide)
2587     collide = true;
2588 dl 1.153 else if (cellsBusy == 0 &&
2589 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 dl 1.149 try {
2591 jsr166 1.306 if (counterCells == cs) // Expand table unless stale
2592     counterCells = Arrays.copyOf(cs, n << 1);
2593 dl 1.119 } finally {
2594 dl 1.153 cellsBusy = 0;
2595 dl 1.119 }
2596 dl 1.149 collide = false;
2597     continue; // Retry with expanded table
2598 dl 1.119 }
2599 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2600 dl 1.149 }
2601 jsr166 1.306 else if (cellsBusy == 0 && counterCells == cs &&
2602 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 dl 1.149 boolean init = false;
2604     try { // Initialize table
2605 jsr166 1.306 if (counterCells == cs) {
2606 dl 1.222 CounterCell[] rs = new CounterCell[2];
2607     rs[h & 1] = new CounterCell(x);
2608 dl 1.149 counterCells = rs;
2609     init = true;
2610 dl 1.119 }
2611     } finally {
2612 dl 1.153 cellsBusy = 0;
2613 dl 1.119 }
2614 dl 1.149 if (init)
2615     break;
2616 dl 1.119 }
2617 jsr166 1.302 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 dl 1.149 break; // Fall back on using base
2619 dl 1.119 }
2620     }
2621    
2622 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2623 dl 1.119
2624     /**
2625 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2626     * too small, in which case resizes instead.
2627 dl 1.119 */
2628 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 jsr166 1.267 Node<K,V> b; int n;
2630 dl 1.222 if (tab != null) {
2631 dl 1.252 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632     tryPresize(n << 1);
2633 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 jsr166 1.223 synchronized (b) {
2635 dl 1.222 if (tabAt(tab, index) == b) {
2636     TreeNode<K,V> hd = null, tl = null;
2637     for (Node<K,V> e = b; e != null; e = e.next) {
2638     TreeNode<K,V> p =
2639     new TreeNode<K,V>(e.hash, e.key, e.val,
2640     null, null);
2641     if ((p.prev = tl) == null)
2642     hd = p;
2643     else
2644     tl.next = p;
2645     tl = p;
2646     }
2647     setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 dl 1.210 }
2649     }
2650     }
2651     }
2652     }
2653    
2654     /**
2655 jsr166 1.289 * Returns a list of non-TreeNodes replacing those in given list.
2656 dl 1.210 */
2657 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658     Node<K,V> hd = null, tl = null;
2659     for (Node<K,V> q = b; q != null; q = q.next) {
2660 jsr166 1.290 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 dl 1.222 if (tl == null)
2662     hd = p;
2663     else
2664     tl.next = p;
2665     tl = p;
2666 dl 1.210 }
2667 dl 1.222 return hd;
2668     }
2669 dl 1.210
2670 dl 1.222 /* ---------------- TreeNodes -------------- */
2671    
2672     /**
2673 jsr166 1.285 * Nodes for use in TreeBins.
2674 dl 1.222 */
2675     static final class TreeNode<K,V> extends Node<K,V> {
2676     TreeNode<K,V> parent; // red-black tree links
2677     TreeNode<K,V> left;
2678     TreeNode<K,V> right;
2679     TreeNode<K,V> prev; // needed to unlink next upon deletion
2680     boolean red;
2681 dl 1.210
2682 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2683     TreeNode<K,V> parent) {
2684     super(hash, key, val, next);
2685     this.parent = parent;
2686 dl 1.210 }
2687    
2688 dl 1.222 Node<K,V> find(int h, Object k) {
2689     return findTreeNode(h, k, null);
2690 dl 1.210 }
2691    
2692 dl 1.222 /**
2693     * Returns the TreeNode (or null if not found) for the given key
2694     * starting at given root.
2695     */
2696     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 dl 1.224 if (k != null) {
2698     TreeNode<K,V> p = this;
2699 jsr166 1.256 do {
2700 dl 1.224 int ph, dir; K pk; TreeNode<K,V> q;
2701     TreeNode<K,V> pl = p.left, pr = p.right;
2702     if ((ph = p.hash) > h)
2703     p = pl;
2704     else if (ph < h)
2705     p = pr;
2706     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707     return p;
2708 dl 1.240 else if (pl == null)
2709     p = pr;
2710     else if (pr == null)
2711     p = pl;
2712 jsr166 1.225 else if ((kc != null ||
2713 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2714     (dir = compareComparables(kc, k, pk)) != 0)
2715     p = (dir < 0) ? pl : pr;
2716 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717     return q;
2718     else
2719 dl 1.224 p = pl;
2720     } while (p != null);
2721     }
2722 dl 1.222 return null;
2723 dl 1.210 }
2724     }
2725 dl 1.192
2726 dl 1.222 /* ---------------- TreeBins -------------- */
2727 dl 1.119
2728 dl 1.222 /**
2729     * TreeNodes used at the heads of bins. TreeBins do not hold user
2730     * keys or values, but instead point to list of TreeNodes and
2731     * their root. They also maintain a parasitic read-write lock
2732     * forcing writers (who hold bin lock) to wait for readers (who do
2733     * not) to complete before tree restructuring operations.
2734     */
2735     static final class TreeBin<K,V> extends Node<K,V> {
2736     TreeNode<K,V> root;
2737     volatile TreeNode<K,V> first;
2738     volatile Thread waiter;
2739     volatile int lockState;
2740 dl 1.224 // values for lockState
2741     static final int WRITER = 1; // set while holding write lock
2742     static final int WAITER = 2; // set when waiting for write lock
2743     static final int READER = 4; // increment value for setting read lock
2744 dl 1.119
2745 dl 1.222 /**
2746 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2747     * hashCodes and non-comparable. We don't require a total
2748     * order, just a consistent insertion rule to maintain
2749     * equivalence across rebalancings. Tie-breaking further than
2750     * necessary simplifies testing a bit.
2751     */
2752     static int tieBreakOrder(Object a, Object b) {
2753     int d;
2754     if (a == null || b == null ||
2755     (d = a.getClass().getName().
2756     compareTo(b.getClass().getName())) == 0)
2757     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758     -1 : 1);
2759     return d;
2760     }
2761    
2762     /**
2763 dl 1.222 * Creates bin with initial set of nodes headed by b.
2764     */
2765     TreeBin(TreeNode<K,V> b) {
2766 jsr166 1.290 super(TREEBIN, null, null);
2767 dl 1.224 this.first = b;
2768 dl 1.222 TreeNode<K,V> r = null;
2769     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770     next = (TreeNode<K,V>)x.next;
2771     x.left = x.right = null;
2772     if (r == null) {
2773     x.parent = null;
2774     x.red = false;
2775     r = x;
2776     }
2777     else {
2778 dl 1.240 K k = x.key;
2779     int h = x.hash;
2780 dl 1.222 Class<?> kc = null;
2781     for (TreeNode<K,V> p = r;;) {
2782     int dir, ph;
2783 dl 1.240 K pk = p.key;
2784     if ((ph = p.hash) > h)
2785 dl 1.222 dir = -1;
2786 dl 1.240 else if (ph < h)
2787 dl 1.222 dir = 1;
2788 dl 1.240 else if ((kc == null &&
2789     (kc = comparableClassFor(k)) == null) ||
2790     (dir = compareComparables(kc, k, pk)) == 0)
2791     dir = tieBreakOrder(k, pk);
2792 jsr166 1.260 TreeNode<K,V> xp = p;
2793 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794     x.parent = xp;
2795     if (dir <= 0)
2796     xp.left = x;
2797     else
2798     xp.right = x;
2799     r = balanceInsertion(r, x);
2800     break;
2801     }
2802     }
2803     }
2804     }
2805 dl 1.224 this.root = r;
2806 dl 1.240 assert checkInvariants(root);
2807 dl 1.222 }
2808 dl 1.210
2809 dl 1.222 /**
2810 jsr166 1.229 * Acquires write lock for tree restructuring.
2811 dl 1.222 */
2812     private final void lockRoot() {
2813 jsr166 1.302 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 dl 1.222 contendedLock(); // offload to separate method
2815 dl 1.153 }
2816    
2817 dl 1.222 /**
2818 jsr166 1.229 * Releases write lock for tree restructuring.
2819 dl 1.222 */
2820     private final void unlockRoot() {
2821     lockState = 0;
2822 dl 1.191 }
2823    
2824 dl 1.222 /**
2825 jsr166 1.229 * Possibly blocks awaiting root lock.
2826 dl 1.222 */
2827     private final void contendedLock() {
2828     boolean waiting = false;
2829     for (int s;;) {
2830 dl 1.252 if (((s = lockState) & ~WAITER) == 0) {
2831 jsr166 1.302 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 dl 1.222 if (waiting)
2833     waiter = null;
2834     return;
2835     }
2836     }
2837 dl 1.244 else if ((s & WAITER) == 0) {
2838 jsr166 1.302 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 dl 1.222 waiting = true;
2840     waiter = Thread.currentThread();
2841     }
2842     }
2843     else if (waiting)
2844     LockSupport.park(this);
2845     }
2846 dl 1.192 }
2847    
2848 dl 1.222 /**
2849     * Returns matching node or null if none. Tries to search
2850 jsr166 1.232 * using tree comparisons from root, but continues linear
2851 dl 1.222 * search when lock not available.
2852     */
2853     final Node<K,V> find(int h, Object k) {
2854     if (k != null) {
2855 dl 1.253 for (Node<K,V> e = first; e != null; ) {
2856 dl 1.222 int s; K ek;
2857     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858     if (e.hash == h &&
2859     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860     return e;
2861 dl 1.253 e = e.next;
2862 dl 1.222 }
2863 jsr166 1.302 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 dl 1.222 s + READER)) {
2865     TreeNode<K,V> r, p;
2866     try {
2867     p = ((r = root) == null ? null :
2868     r.findTreeNode(h, k, null));
2869     } finally {
2870     Thread w;
2871     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872     (READER|WAITER) && (w = waiter) != null)
2873     LockSupport.unpark(w);
2874     }
2875     return p;
2876     }
2877     }
2878     }
2879     return null;
2880 dl 1.192 }
2881    
2882 dl 1.222 /**
2883     * Finds or adds a node.
2884     * @return null if added
2885     */
2886     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887     Class<?> kc = null;
2888 dl 1.240 boolean searched = false;
2889 dl 1.224 for (TreeNode<K,V> p = root;;) {
2890 dl 1.240 int dir, ph; K pk;
2891 dl 1.224 if (p == null) {
2892     first = root = new TreeNode<K,V>(h, k, v, null, null);
2893     break;
2894     }
2895     else if ((ph = p.hash) > h)
2896 dl 1.222 dir = -1;
2897     else if (ph < h)
2898     dir = 1;
2899     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900     return p;
2901     else if ((kc == null &&
2902     (kc = comparableClassFor(k)) == null) ||
2903     (dir = compareComparables(kc, k, pk)) == 0) {
2904 dl 1.240 if (!searched) {
2905     TreeNode<K,V> q, ch;
2906     searched = true;
2907     if (((ch = p.left) != null &&
2908     (q = ch.findTreeNode(h, k, kc)) != null) ||
2909     ((ch = p.right) != null &&
2910     (q = ch.findTreeNode(h, k, kc)) != null))
2911     return q;
2912     }
2913     dir = tieBreakOrder(k, pk);
2914 dl 1.222 }
2915 dl 1.240
2916 dl 1.222 TreeNode<K,V> xp = p;
2917 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 dl 1.222 TreeNode<K,V> x, f = first;
2919     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920     if (f != null)
2921     f.prev = x;
2922 dl 1.240 if (dir <= 0)
2923 dl 1.222 xp.left = x;
2924     else
2925     xp.right = x;
2926     if (!xp.red)
2927     x.red = true;
2928     else {
2929     lockRoot();
2930     try {
2931     root = balanceInsertion(root, x);
2932     } finally {
2933     unlockRoot();
2934     }
2935     }
2936 dl 1.224 break;
2937 dl 1.222 }
2938     }
2939 dl 1.224 assert checkInvariants(root);
2940     return null;
2941 dl 1.192 }
2942    
2943 dl 1.222 /**
2944     * Removes the given node, that must be present before this
2945     * call. This is messier than typical red-black deletion code
2946     * because we cannot swap the contents of an interior node
2947     * with a leaf successor that is pinned by "next" pointers
2948     * that are accessible independently of lock. So instead we
2949     * swap the tree linkages.
2950     *
2951 jsr166 1.230 * @return true if now too small, so should be untreeified
2952 dl 1.222 */
2953     final boolean removeTreeNode(TreeNode<K,V> p) {
2954     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2956     TreeNode<K,V> r, rl;
2957     if (pred == null)
2958     first = next;
2959     else
2960     pred.next = next;
2961     if (next != null)
2962     next.prev = pred;
2963     if (first == null) {
2964     root = null;
2965     return true;
2966     }
2967 dl 1.224 if ((r = root) == null || r.right == null || // too small
2968 dl 1.222 (rl = r.left) == null || rl.left == null)
2969     return true;
2970     lockRoot();
2971     try {
2972     TreeNode<K,V> replacement;
2973     TreeNode<K,V> pl = p.left;
2974     TreeNode<K,V> pr = p.right;
2975     if (pl != null && pr != null) {
2976     TreeNode<K,V> s = pr, sl;
2977     while ((sl = s.left) != null) // find successor
2978     s = sl;
2979     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980     TreeNode<K,V> sr = s.right;
2981     TreeNode<K,V> pp = p.parent;
2982     if (s == pr) { // p was s's direct parent
2983     p.parent = s;
2984     s.right = p;
2985     }
2986     else {
2987     TreeNode<K,V> sp = s.parent;
2988     if ((p.parent = sp) != null) {
2989     if (s == sp.left)
2990     sp.left = p;
2991     else
2992     sp.right = p;
2993     }
2994     if ((s.right = pr) != null)
2995     pr.parent = s;
2996     }
2997     p.left = null;
2998     if ((p.right = sr) != null)
2999     sr.parent = p;
3000     if ((s.left = pl) != null)
3001     pl.parent = s;
3002     if ((s.parent = pp) == null)
3003     r = s;
3004     else if (p == pp.left)
3005     pp.left = s;
3006     else
3007     pp.right = s;
3008     if (sr != null)
3009     replacement = sr;
3010     else
3011     replacement = p;
3012     }
3013     else if (pl != null)
3014     replacement = pl;
3015     else if (pr != null)
3016     replacement = pr;
3017     else
3018     replacement = p;
3019     if (replacement != p) {
3020     TreeNode<K,V> pp = replacement.parent = p.parent;
3021     if (pp == null)
3022     r = replacement;
3023     else if (p == pp.left)
3024     pp.left = replacement;
3025     else
3026     pp.right = replacement;
3027     p.left = p.right = p.parent = null;
3028     }
3029    
3030     root = (p.red) ? r : balanceDeletion(r, replacement);
3031    
3032     if (p == replacement) { // detach pointers
3033     TreeNode<K,V> pp;
3034     if ((pp = p.parent) != null) {
3035     if (p == pp.left)
3036     pp.left = null;
3037     else if (p == pp.right)
3038     pp.right = null;
3039     p.parent = null;
3040     }
3041     }
3042     } finally {
3043     unlockRoot();
3044     }
3045 dl 1.224 assert checkInvariants(root);
3046 dl 1.222 return false;
3047 dl 1.210 }
3048    
3049 dl 1.222 /* ------------------------------------------------------------ */
3050     // Red-black tree methods, all adapted from CLR
3051 dl 1.210
3052 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053     TreeNode<K,V> p) {
3054 dl 1.224 TreeNode<K,V> r, pp, rl;
3055     if (p != null && (r = p.right) != null) {
3056 dl 1.222 if ((rl = p.right = r.left) != null)
3057     rl.parent = p;
3058     if ((pp = r.parent = p.parent) == null)
3059     (root = r).red = false;
3060     else if (pp.left == p)
3061     pp.left = r;
3062     else
3063     pp.right = r;
3064     r.left = p;
3065     p.parent = r;
3066     }
3067     return root;
3068 dl 1.119 }
3069    
3070 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071     TreeNode<K,V> p) {
3072 dl 1.224 TreeNode<K,V> l, pp, lr;
3073     if (p != null && (l = p.left) != null) {
3074 dl 1.222 if ((lr = p.left = l.right) != null)
3075     lr.parent = p;
3076     if ((pp = l.parent = p.parent) == null)
3077     (root = l).red = false;
3078     else if (pp.right == p)
3079     pp.right = l;
3080     else
3081     pp.left = l;
3082     l.right = p;
3083     p.parent = l;
3084     }
3085     return root;
3086 dl 1.119 }
3087    
3088 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089     TreeNode<K,V> x) {
3090     x.red = true;
3091     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092     if ((xp = x.parent) == null) {
3093     x.red = false;
3094     return x;
3095     }
3096     else if (!xp.red || (xpp = xp.parent) == null)
3097     return root;
3098     if (xp == (xppl = xpp.left)) {
3099     if ((xppr = xpp.right) != null && xppr.red) {
3100     xppr.red = false;
3101     xp.red = false;
3102     xpp.red = true;
3103     x = xpp;
3104     }
3105     else {
3106     if (x == xp.right) {
3107     root = rotateLeft(root, x = xp);
3108     xpp = (xp = x.parent) == null ? null : xp.parent;
3109     }
3110     if (xp != null) {
3111     xp.red = false;
3112     if (xpp != null) {
3113     xpp.red = true;
3114     root = rotateRight(root, xpp);
3115     }
3116     }
3117     }
3118     }
3119     else {
3120     if (xppl != null && xppl.red) {
3121     xppl.red = false;
3122     xp.red = false;
3123     xpp.red = true;
3124     x = xpp;
3125     }
3126     else {
3127     if (x == xp.left) {
3128     root = rotateRight(root, x = xp);
3129     xpp = (xp = x.parent) == null ? null : xp.parent;
3130     }
3131     if (xp != null) {
3132     xp.red = false;
3133     if (xpp != null) {
3134     xpp.red = true;
3135     root = rotateLeft(root, xpp);
3136     }
3137     }
3138     }
3139     }
3140     }
3141 dl 1.119 }
3142    
3143 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144     TreeNode<K,V> x) {
3145 jsr166 1.256 for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 dl 1.222 if (x == null || x == root)
3147     return root;
3148     else if ((xp = x.parent) == null) {
3149     x.red = false;
3150     return x;
3151     }
3152     else if (x.red) {
3153     x.red = false;
3154     return root;
3155     }
3156     else if ((xpl = xp.left) == x) {
3157     if ((xpr = xp.right) != null && xpr.red) {
3158     xpr.red = false;
3159     xp.red = true;
3160     root = rotateLeft(root, xp);
3161     xpr = (xp = x.parent) == null ? null : xp.right;
3162     }
3163     if (xpr == null)
3164     x = xp;
3165     else {
3166     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167     if ((sr == null || !sr.red) &&
3168     (sl == null || !sl.red)) {
3169     xpr.red = true;
3170     x = xp;
3171     }
3172     else {
3173     if (sr == null || !sr.red) {
3174     if (sl != null)
3175     sl.red = false;
3176     xpr.red = true;
3177     root = rotateRight(root, xpr);
3178     xpr = (xp = x.parent) == null ?
3179     null : xp.right;
3180     }
3181     if (xpr != null) {
3182     xpr.red = (xp == null) ? false : xp.red;
3183     if ((sr = xpr.right) != null)
3184     sr.red = false;
3185     }
3186     if (xp != null) {
3187     xp.red = false;
3188     root = rotateLeft(root, xp);
3189     }
3190     x = root;
3191     }
3192     }
3193     }
3194     else { // symmetric
3195     if (xpl != null && xpl.red) {
3196     xpl.red = false;
3197     xp.red = true;
3198     root = rotateRight(root, xp);
3199     xpl = (xp = x.parent) == null ? null : xp.left;
3200     }
3201     if (xpl == null)
3202     x = xp;
3203     else {
3204     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205     if ((sl == null || !sl.red) &&
3206     (sr == null || !sr.red)) {
3207     xpl.red = true;
3208     x = xp;
3209     }
3210     else {
3211     if (sl == null || !sl.red) {
3212     if (sr != null)
3213     sr.red = false;
3214     xpl.red = true;
3215     root = rotateLeft(root, xpl);
3216     xpl = (xp = x.parent) == null ?
3217     null : xp.left;
3218     }
3219     if (xpl != null) {
3220     xpl.red = (xp == null) ? false : xp.red;
3221     if ((sl = xpl.left) != null)
3222     sl.red = false;
3223     }
3224     if (xp != null) {
3225     xp.red = false;
3226     root = rotateRight(root, xp);
3227     }
3228     x = root;
3229     }
3230     }
3231     }
3232     }
3233 dl 1.210 }
3234 jsr166 1.225
3235 dl 1.222 /**
3236 jsr166 1.285 * Checks invariants recursively for the tree of Nodes rooted at t.
3237 dl 1.222 */
3238 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241     if (tb != null && tb.next != t)
3242     return false;
3243     if (tn != null && tn.prev != t)
3244     return false;
3245     if (tp != null && t != tp.left && t != tp.right)
3246     return false;
3247     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248     return false;
3249     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250     return false;
3251     if (t.red && tl != null && tl.red && tr != null && tr.red)
3252     return false;
3253 dl 1.224 if (tl != null && !checkInvariants(tl))
3254 dl 1.222 return false;
3255 dl 1.224 if (tr != null && !checkInvariants(tr))
3256 dl 1.210 return false;
3257     return true;
3258     }
3259 dl 1.146
3260 jsr166 1.293 private static final Unsafe U = Unsafe.getUnsafe();
3261 dl 1.222 private static final long LOCKSTATE;
3262     static {
3263     try {
3264     LOCKSTATE = U.objectFieldOffset
3265 jsr166 1.264 (TreeBin.class.getDeclaredField("lockState"));
3266 jsr166 1.262 } catch (ReflectiveOperationException e) {
3267 jsr166 1.307 throw new ExceptionInInitializerError(e);
3268 dl 1.222 }
3269 dl 1.146 }
3270 dl 1.119 }
3271    
3272 dl 1.222 /* ----------------Table Traversal -------------- */
3273    
3274 jsr166 1.247 /**
3275     * Records the table, its length, and current traversal index for a
3276     * traverser that must process a region of a forwarded table before
3277     * proceeding with current table.
3278     */
3279     static final class TableStack<K,V> {
3280 dl 1.246 int length;
3281     int index;
3282     Node<K,V>[] tab;
3283 jsr166 1.247 TableStack<K,V> next;
3284 dl 1.246 }
3285    
3286 dl 1.222 /**
3287     * Encapsulates traversal for methods such as containsValue; also
3288     * serves as a base class for other iterators and spliterators.
3289     *
3290     * Method advance visits once each still-valid node that was
3291     * reachable upon iterator construction. It might miss some that
3292     * were added to a bin after the bin was visited, which is OK wrt
3293     * consistency guarantees. Maintaining this property in the face
3294     * of possible ongoing resizes requires a fair amount of
3295     * bookkeeping state that is difficult to optimize away amidst
3296     * volatile accesses. Even so, traversal maintains reasonable
3297     * throughput.
3298     *
3299     * Normally, iteration proceeds bin-by-bin traversing lists.
3300     * However, if the table has been resized, then all future steps
3301     * must traverse both the bin at the current index as well as at
3302     * (index + baseSize); and so on for further resizings. To
3303     * paranoically cope with potential sharing by users of iterators
3304     * across threads, iteration terminates if a bounds checks fails
3305     * for a table read.
3306     */
3307     static class Traverser<K,V> {
3308     Node<K,V>[] tab; // current table; updated if resized
3309     Node<K,V> next; // the next entry to use
3310 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3311 dl 1.222 int index; // index of bin to use next
3312     int baseIndex; // current index of initial table
3313     int baseLimit; // index bound for initial table
3314     final int baseSize; // initial table size
3315    
3316     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3317     this.tab = tab;
3318     this.baseSize = size;
3319     this.baseIndex = this.index = index;
3320     this.baseLimit = limit;
3321     this.next = null;
3322     }
3323    
3324     /**
3325     * Advances if possible, returning next valid node, or null if none.
3326     */
3327     final Node<K,V> advance() {
3328     Node<K,V> e;
3329     if ((e = next) != null)
3330     e = e.next;
3331     for (;;) {
3332 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3333 dl 1.222 if (e != null)
3334     return next = e;
3335     if (baseIndex >= baseLimit || (t = tab) == null ||
3336     (n = t.length) <= (i = index) || i < 0)
3337     return next = null;
3338 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3339 dl 1.222 if (e instanceof ForwardingNode) {
3340     tab = ((ForwardingNode<K,V>)e).nextTable;
3341     e = null;
3342 dl 1.246 pushState(t, i, n);
3343 dl 1.222 continue;
3344     }
3345     else if (e instanceof TreeBin)
3346     e = ((TreeBin<K,V>)e).first;
3347     else
3348     e = null;
3349     }
3350 dl 1.246 if (stack != null)
3351     recoverState(n);
3352     else if ((index = i + baseSize) >= n)
3353     index = ++baseIndex; // visit upper slots if present
3354 dl 1.222 }
3355     }
3356 dl 1.246
3357     /**
3358 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3359 dl 1.246 */
3360     private void pushState(Node<K,V>[] t, int i, int n) {
3361     TableStack<K,V> s = spare; // reuse if possible
3362     if (s != null)
3363     spare = s.next;
3364     else
3365     s = new TableStack<K,V>();
3366     s.tab = t;
3367     s.length = n;
3368     s.index = i;
3369     s.next = stack;
3370     stack = s;
3371     }
3372    
3373     /**
3374 jsr166 1.249 * Possibly pops traversal state.
3375 dl 1.246 *
3376     * @param n length of current table
3377     */
3378     private void recoverState(int n) {
3379     TableStack<K,V> s; int len;
3380     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3381     n = len;
3382     index = s.index;
3383     tab = s.tab;
3384     s.tab = null;
3385     TableStack<K,V> next = s.next;
3386     s.next = spare; // save for reuse
3387     stack = next;
3388     spare = s;
3389     }
3390     if (s == null && (index += baseSize) >= n)
3391     index = ++baseIndex;
3392     }
3393 dl 1.222 }
3394    
3395     /**
3396     * Base of key, value, and entry Iterators. Adds fields to
3397 jsr166 1.229 * Traverser to support iterator.remove.
3398 dl 1.222 */
3399     static class BaseIterator<K,V> extends Traverser<K,V> {
3400     final ConcurrentHashMap<K,V> map;
3401     Node<K,V> lastReturned;
3402     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3403     ConcurrentHashMap<K,V> map) {
3404 dl 1.210 super(tab, size, index, limit);
3405     this.map = map;
3406 dl 1.222 advance();
3407 dl 1.210 }
3408    
3409 dl 1.222 public final boolean hasNext() { return next != null; }
3410     public final boolean hasMoreElements() { return next != null; }
3411    
3412     public final void remove() {
3413     Node<K,V> p;
3414     if ((p = lastReturned) == null)
3415     throw new IllegalStateException();
3416     lastReturned = null;
3417     map.replaceNode(p.key, null, null);
3418 dl 1.210 }
3419 dl 1.222 }
3420 dl 1.210
3421 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3422     implements Iterator<K>, Enumeration<K> {
3423 jsr166 1.298 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3424 dl 1.222 ConcurrentHashMap<K,V> map) {
3425 jsr166 1.298 super(tab, size, index, limit, map);
3426 dl 1.210 }
3427    
3428 dl 1.222 public final K next() {
3429 dl 1.210 Node<K,V> p;
3430 dl 1.222 if ((p = next) == null)
3431     throw new NoSuchElementException();
3432     K k = p.key;
3433     lastReturned = p;
3434     advance();
3435     return k;
3436 dl 1.210 }
3437    
3438 dl 1.222 public final K nextElement() { return next(); }
3439     }
3440    
3441     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3442     implements Iterator<V>, Enumeration<V> {
3443 jsr166 1.298 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3444 dl 1.222 ConcurrentHashMap<K,V> map) {
3445 jsr166 1.298 super(tab, size, index, limit, map);
3446 dl 1.222 }
3447 dl 1.210
3448 dl 1.222 public final V next() {
3449     Node<K,V> p;
3450     if ((p = next) == null)
3451     throw new NoSuchElementException();
3452     V v = p.val;
3453     lastReturned = p;
3454     advance();
3455     return v;
3456 dl 1.210 }
3457 dl 1.222
3458     public final V nextElement() { return next(); }
3459 dl 1.210 }
3460    
3461 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3462     implements Iterator<Map.Entry<K,V>> {
3463 jsr166 1.298 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3464 dl 1.222 ConcurrentHashMap<K,V> map) {
3465 jsr166 1.298 super(tab, size, index, limit, map);
3466 dl 1.222 }
3467 dl 1.210
3468 dl 1.222 public final Map.Entry<K,V> next() {
3469     Node<K,V> p;
3470     if ((p = next) == null)
3471     throw new NoSuchElementException();
3472     K k = p.key;
3473     V v = p.val;
3474     lastReturned = p;
3475     advance();
3476     return new MapEntry<K,V>(k, v, map);
3477     }
3478     }
3479 dl 1.119
3480     /**
3481 jsr166 1.285 * Exported Entry for EntryIterator.
3482 dl 1.119 */
3483 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3484     final K key; // non-null
3485     V val; // non-null
3486     final ConcurrentHashMap<K,V> map;
3487     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3488     this.key = key;
3489     this.val = val;
3490     this.map = map;
3491     }
3492     public K getKey() { return key; }
3493     public V getValue() { return val; }
3494     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3495 jsr166 1.268 public String toString() {
3496     return Helpers.mapEntryToString(key, val);
3497     }
3498 dl 1.119
3499 dl 1.222 public boolean equals(Object o) {
3500     Object k, v; Map.Entry<?,?> e;
3501     return ((o instanceof Map.Entry) &&
3502     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3503     (v = e.getValue()) != null &&
3504     (k == key || k.equals(key)) &&
3505     (v == val || v.equals(val)));
3506     }
3507 dl 1.119
3508 dl 1.222 /**
3509     * Sets our entry's value and writes through to the map. The
3510     * value to return is somewhat arbitrary here. Since we do not
3511     * necessarily track asynchronous changes, the most recent
3512     * "previous" value could be different from what we return (or
3513     * could even have been removed, in which case the put will
3514     * re-establish). We do not and cannot guarantee more.
3515     */
3516     public V setValue(V value) {
3517     if (value == null) throw new NullPointerException();
3518     V v = val;
3519     val = value;
3520     map.put(key, value);
3521     return v;
3522     }
3523 dl 1.119 }
3524    
3525 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3526     implements Spliterator<K> {
3527     long est; // size estimate
3528     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3529     long est) {
3530     super(tab, size, index, limit);
3531     this.est = est;
3532     }
3533 dl 1.119
3534 jsr166 1.286 public KeySpliterator<K,V> trySplit() {
3535 dl 1.222 int i, f, h;
3536     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3537     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3538     f, est >>>= 1);
3539 dl 1.119 }
3540    
3541 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3542     if (action == null) throw new NullPointerException();
3543     for (Node<K,V> p; (p = advance()) != null;)
3544     action.accept(p.key);
3545 dl 1.119 }
3546    
3547 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3548     if (action == null) throw new NullPointerException();
3549     Node<K,V> p;
3550     if ((p = advance()) == null)
3551 dl 1.119 return false;
3552 dl 1.222 action.accept(p.key);
3553     return true;
3554 dl 1.119 }
3555    
3556 dl 1.222 public long estimateSize() { return est; }
3557 dl 1.119
3558 dl 1.222 public int characteristics() {
3559     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3560     Spliterator.NONNULL;
3561     }
3562 dl 1.142 }
3563 dl 1.119
3564 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3565     implements Spliterator<V> {
3566     long est; // size estimate
3567     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3568     long est) {
3569     super(tab, size, index, limit);
3570     this.est = est;
3571 dl 1.209 }
3572    
3573 jsr166 1.286 public ValueSpliterator<K,V> trySplit() {
3574 dl 1.222 int i, f, h;
3575     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3577     f, est >>>= 1);
3578 dl 1.142 }
3579 dl 1.119
3580 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3581     if (action == null) throw new NullPointerException();
3582     for (Node<K,V> p; (p = advance()) != null;)
3583     action.accept(p.val);
3584     }
3585 dl 1.119
3586 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3587     if (action == null) throw new NullPointerException();
3588     Node<K,V> p;
3589     if ((p = advance()) == null)
3590     return false;
3591     action.accept(p.val);
3592     return true;
3593 dl 1.119 }
3594 dl 1.222
3595     public long estimateSize() { return est; }
3596    
3597     public int characteristics() {
3598     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3599 dl 1.119 }
3600 dl 1.142 }
3601 dl 1.119
3602 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3603     implements Spliterator<Map.Entry<K,V>> {
3604     final ConcurrentHashMap<K,V> map; // To export MapEntry
3605     long est; // size estimate
3606     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3607     long est, ConcurrentHashMap<K,V> map) {
3608     super(tab, size, index, limit);
3609     this.map = map;
3610     this.est = est;
3611     }
3612    
3613 jsr166 1.286 public EntrySpliterator<K,V> trySplit() {
3614 dl 1.222 int i, f, h;
3615     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3616     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3617     f, est >>>= 1, map);
3618     }
3619 dl 1.142
3620 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3621     if (action == null) throw new NullPointerException();
3622     for (Node<K,V> p; (p = advance()) != null; )
3623     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624     }
3625 dl 1.210
3626 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3627     if (action == null) throw new NullPointerException();
3628     Node<K,V> p;
3629     if ((p = advance()) == null)
3630     return false;
3631     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3632     return true;
3633 dl 1.210 }
3634    
3635 dl 1.222 public long estimateSize() { return est; }
3636    
3637     public int characteristics() {
3638     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3639     Spliterator.NONNULL;
3640 dl 1.210 }
3641     }
3642    
3643     // Parallel bulk operations
3644    
3645     /**
3646     * Computes initial batch value for bulk tasks. The returned value
3647     * is approximately exp2 of the number of times (minus one) to
3648     * split task by two before executing leaf action. This value is
3649     * faster to compute and more convenient to use as a guide to
3650     * splitting than is the depth, since it is used while dividing by
3651     * two anyway.
3652     */
3653     final int batchFor(long b) {
3654     long n;
3655     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3656     return 0;
3657     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3658     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3659     }
3660 dl 1.151
3661 dl 1.119 /**
3662 dl 1.137 * Performs the given action for each (key, value).
3663 dl 1.119 *
3664 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3665 jsr166 1.213 * needed for this operation to be executed in parallel
3666 dl 1.137 * @param action the action
3667 jsr166 1.220 * @since 1.8
3668 dl 1.119 */
3669 dl 1.210 public void forEach(long parallelismThreshold,
3670     BiConsumer<? super K,? super V> action) {
3671 dl 1.151 if (action == null) throw new NullPointerException();
3672 dl 1.210 new ForEachMappingTask<K,V>
3673     (null, batchFor(parallelismThreshold), 0, 0, table,
3674     action).invoke();
3675 dl 1.119 }
3676    
3677     /**
3678 dl 1.137 * Performs the given action for each non-null transformation
3679     * of each (key, value).
3680     *
3681 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3682 jsr166 1.213 * needed for this operation to be executed in parallel
3683 dl 1.137 * @param transformer a function returning the transformation
3684 jsr166 1.169 * for an element, or null if there is no transformation (in
3685 jsr166 1.172 * which case the action is not applied)
3686 dl 1.137 * @param action the action
3687 jsr166 1.237 * @param <U> the return type of the transformer
3688 jsr166 1.220 * @since 1.8
3689 dl 1.119 */
3690 dl 1.210 public <U> void forEach(long parallelismThreshold,
3691     BiFunction<? super K, ? super V, ? extends U> transformer,
3692     Consumer<? super U> action) {
3693 dl 1.151 if (transformer == null || action == null)
3694     throw new NullPointerException();
3695 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3696     (null, batchFor(parallelismThreshold), 0, 0, table,
3697     transformer, action).invoke();
3698 dl 1.137 }
3699    
3700     /**
3701     * Returns a non-null result from applying the given search
3702 dl 1.210 * function on each (key, value), or null if none. Upon
3703     * success, further element processing is suppressed and the
3704     * results of any other parallel invocations of the search
3705     * function are ignored.
3706 dl 1.137 *
3707 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3708 jsr166 1.213 * needed for this operation to be executed in parallel
3709 dl 1.137 * @param searchFunction a function returning a non-null
3710     * result on success, else null
3711 jsr166 1.237 * @param <U> the return type of the search function
3712 dl 1.137 * @return a non-null result from applying the given search
3713     * function on each (key, value), or null if none
3714 jsr166 1.220 * @since 1.8
3715 dl 1.137 */
3716 dl 1.210 public <U> U search(long parallelismThreshold,
3717     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3718 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3719 dl 1.210 return new SearchMappingsTask<K,V,U>
3720     (null, batchFor(parallelismThreshold), 0, 0, table,
3721     searchFunction, new AtomicReference<U>()).invoke();
3722 dl 1.137 }
3723    
3724     /**
3725     * Returns the result of accumulating the given transformation
3726     * of all (key, value) pairs using the given reducer to
3727     * combine values, or null if none.
3728     *
3729 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3730 jsr166 1.213 * needed for this operation to be executed in parallel
3731 dl 1.137 * @param transformer a function returning the transformation
3732 jsr166 1.169 * for an element, or null if there is no transformation (in
3733 jsr166 1.172 * which case it is not combined)
3734 dl 1.137 * @param reducer a commutative associative combining function
3735 jsr166 1.237 * @param <U> the return type of the transformer
3736 dl 1.137 * @return the result of accumulating the given transformation
3737     * of all (key, value) pairs
3738 jsr166 1.220 * @since 1.8
3739 dl 1.137 */
3740 dl 1.210 public <U> U reduce(long parallelismThreshold,
3741     BiFunction<? super K, ? super V, ? extends U> transformer,
3742     BiFunction<? super U, ? super U, ? extends U> reducer) {
3743 dl 1.151 if (transformer == null || reducer == null)
3744     throw new NullPointerException();
3745 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3746     (null, batchFor(parallelismThreshold), 0, 0, table,
3747     null, transformer, reducer).invoke();
3748 dl 1.137 }
3749    
3750     /**
3751     * Returns the result of accumulating the given transformation
3752     * of all (key, value) pairs using the given reducer to
3753     * combine values, and the given basis as an identity value.
3754     *
3755 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3756 jsr166 1.213 * needed for this operation to be executed in parallel
3757 dl 1.137 * @param transformer a function returning the transformation
3758     * for an element
3759     * @param basis the identity (initial default value) for the reduction
3760     * @param reducer a commutative associative combining function
3761     * @return the result of accumulating the given transformation
3762     * of all (key, value) pairs
3763 jsr166 1.220 * @since 1.8
3764 dl 1.137 */
3765 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3766     ToDoubleBiFunction<? super K, ? super V> transformer,
3767     double basis,
3768     DoubleBinaryOperator reducer) {
3769 dl 1.151 if (transformer == null || reducer == null)
3770     throw new NullPointerException();
3771 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3772     (null, batchFor(parallelismThreshold), 0, 0, table,
3773     null, transformer, basis, reducer).invoke();
3774 dl 1.137 }
3775 dl 1.119
3776 dl 1.137 /**
3777     * Returns the result of accumulating the given transformation
3778     * of all (key, value) pairs using the given reducer to
3779     * combine values, and the given basis as an identity value.
3780     *
3781 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3782 jsr166 1.213 * needed for this operation to be executed in parallel
3783 dl 1.137 * @param transformer a function returning the transformation
3784     * for an element
3785     * @param basis the identity (initial default value) for the reduction
3786     * @param reducer a commutative associative combining function
3787     * @return the result of accumulating the given transformation
3788     * of all (key, value) pairs
3789 jsr166 1.220 * @since 1.8
3790 dl 1.137 */
3791 dl 1.210 public long reduceToLong(long parallelismThreshold,
3792     ToLongBiFunction<? super K, ? super V> transformer,
3793     long basis,
3794     LongBinaryOperator reducer) {
3795 dl 1.151 if (transformer == null || reducer == null)
3796     throw new NullPointerException();
3797 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3798     (null, batchFor(parallelismThreshold), 0, 0, table,
3799     null, transformer, basis, reducer).invoke();
3800 dl 1.137 }
3801    
3802     /**
3803     * Returns the result of accumulating the given transformation
3804     * of all (key, value) pairs using the given reducer to
3805     * combine values, and the given basis as an identity value.
3806     *
3807 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3808 jsr166 1.213 * needed for this operation to be executed in parallel
3809 dl 1.137 * @param transformer a function returning the transformation
3810     * for an element
3811     * @param basis the identity (initial default value) for the reduction
3812     * @param reducer a commutative associative combining function
3813     * @return the result of accumulating the given transformation
3814     * of all (key, value) pairs
3815 jsr166 1.220 * @since 1.8
3816 dl 1.137 */
3817 dl 1.210 public int reduceToInt(long parallelismThreshold,
3818     ToIntBiFunction<? super K, ? super V> transformer,
3819     int basis,
3820     IntBinaryOperator reducer) {
3821 dl 1.151 if (transformer == null || reducer == null)
3822     throw new NullPointerException();
3823 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3824     (null, batchFor(parallelismThreshold), 0, 0, table,
3825     null, transformer, basis, reducer).invoke();
3826 dl 1.137 }
3827    
3828     /**
3829     * Performs the given action for each key.
3830     *
3831 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3832 jsr166 1.213 * needed for this operation to be executed in parallel
3833 dl 1.137 * @param action the action
3834 jsr166 1.220 * @since 1.8
3835 dl 1.137 */
3836 dl 1.210 public void forEachKey(long parallelismThreshold,
3837     Consumer<? super K> action) {
3838     if (action == null) throw new NullPointerException();
3839     new ForEachKeyTask<K,V>
3840     (null, batchFor(parallelismThreshold), 0, 0, table,
3841     action).invoke();
3842 dl 1.137 }
3843 dl 1.119
3844 dl 1.137 /**
3845     * Performs the given action for each non-null transformation
3846     * of each key.
3847     *
3848 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3849 jsr166 1.213 * needed for this operation to be executed in parallel
3850 dl 1.137 * @param transformer a function returning the transformation
3851 jsr166 1.169 * for an element, or null if there is no transformation (in
3852 jsr166 1.172 * which case the action is not applied)
3853 dl 1.137 * @param action the action
3854 jsr166 1.237 * @param <U> the return type of the transformer
3855 jsr166 1.220 * @since 1.8
3856 dl 1.137 */
3857 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3858     Function<? super K, ? extends U> transformer,
3859     Consumer<? super U> action) {
3860 dl 1.151 if (transformer == null || action == null)
3861     throw new NullPointerException();
3862 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3863     (null, batchFor(parallelismThreshold), 0, 0, table,
3864     transformer, action).invoke();
3865 dl 1.137 }
3866 dl 1.119
3867 dl 1.137 /**
3868     * Returns a non-null result from applying the given search
3869 dl 1.210 * function on each key, or null if none. Upon success,
3870     * further element processing is suppressed and the results of
3871     * any other parallel invocations of the search function are
3872     * ignored.
3873 dl 1.137 *
3874 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3875 jsr166 1.213 * needed for this operation to be executed in parallel
3876 dl 1.137 * @param searchFunction a function returning a non-null
3877     * result on success, else null
3878 jsr166 1.237 * @param <U> the return type of the search function
3879 dl 1.137 * @return a non-null result from applying the given search
3880     * function on each key, or null if none
3881 jsr166 1.220 * @since 1.8
3882 dl 1.137 */
3883 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3884     Function<? super K, ? extends U> searchFunction) {
3885     if (searchFunction == null) throw new NullPointerException();
3886     return new SearchKeysTask<K,V,U>
3887     (null, batchFor(parallelismThreshold), 0, 0, table,
3888     searchFunction, new AtomicReference<U>()).invoke();
3889 dl 1.137 }
3890 dl 1.119
3891 dl 1.137 /**
3892     * Returns the result of accumulating all keys using the given
3893     * reducer to combine values, or null if none.
3894     *
3895 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3896 jsr166 1.213 * needed for this operation to be executed in parallel
3897 dl 1.137 * @param reducer a commutative associative combining function
3898     * @return the result of accumulating all keys using the given
3899     * reducer to combine values, or null if none
3900 jsr166 1.220 * @since 1.8
3901 dl 1.137 */
3902 dl 1.210 public K reduceKeys(long parallelismThreshold,
3903     BiFunction<? super K, ? super K, ? extends K> reducer) {
3904 dl 1.151 if (reducer == null) throw new NullPointerException();
3905 dl 1.210 return new ReduceKeysTask<K,V>
3906     (null, batchFor(parallelismThreshold), 0, 0, table,
3907     null, reducer).invoke();
3908 dl 1.137 }
3909 dl 1.119
3910 dl 1.137 /**
3911     * Returns the result of accumulating the given transformation
3912     * of all keys using the given reducer to combine values, or
3913     * null if none.
3914     *
3915 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3916 jsr166 1.213 * needed for this operation to be executed in parallel
3917 dl 1.137 * @param transformer a function returning the transformation
3918 jsr166 1.169 * for an element, or null if there is no transformation (in
3919 jsr166 1.172 * which case it is not combined)
3920 dl 1.137 * @param reducer a commutative associative combining function
3921 jsr166 1.237 * @param <U> the return type of the transformer
3922 dl 1.137 * @return the result of accumulating the given transformation
3923     * of all keys
3924 jsr166 1.220 * @since 1.8
3925 dl 1.137 */
3926 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3927     Function<? super K, ? extends U> transformer,
3928 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3929 dl 1.151 if (transformer == null || reducer == null)
3930     throw new NullPointerException();
3931 dl 1.210 return new MapReduceKeysTask<K,V,U>
3932     (null, batchFor(parallelismThreshold), 0, 0, table,
3933     null, transformer, reducer).invoke();
3934 dl 1.137 }
3935 dl 1.119
3936 dl 1.137 /**
3937     * Returns the result of accumulating the given transformation
3938     * of all keys using the given reducer to combine values, and
3939     * the given basis as an identity value.
3940     *
3941 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3942 jsr166 1.213 * needed for this operation to be executed in parallel
3943 dl 1.137 * @param transformer a function returning the transformation
3944     * for an element
3945     * @param basis the identity (initial default value) for the reduction
3946     * @param reducer a commutative associative combining function
3947 jsr166 1.157 * @return the result of accumulating the given transformation
3948 dl 1.137 * of all keys
3949 jsr166 1.220 * @since 1.8
3950 dl 1.137 */
3951 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3952     ToDoubleFunction<? super K> transformer,
3953     double basis,
3954     DoubleBinaryOperator reducer) {
3955 dl 1.151 if (transformer == null || reducer == null)
3956     throw new NullPointerException();
3957 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3958     (null, batchFor(parallelismThreshold), 0, 0, table,
3959     null, transformer, basis, reducer).invoke();
3960 dl 1.137 }
3961 dl 1.119
3962 dl 1.137 /**
3963     * Returns the result of accumulating the given transformation
3964     * of all keys using the given reducer to combine values, and
3965     * the given basis as an identity value.
3966     *
3967 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3968 jsr166 1.213 * needed for this operation to be executed in parallel
3969 dl 1.137 * @param transformer a function returning the transformation
3970     * for an element
3971     * @param basis the identity (initial default value) for the reduction
3972     * @param reducer a commutative associative combining function
3973     * @return the result of accumulating the given transformation
3974     * of all keys
3975 jsr166 1.220 * @since 1.8
3976 dl 1.137 */
3977 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3978     ToLongFunction<? super K> transformer,
3979     long basis,
3980     LongBinaryOperator reducer) {
3981 dl 1.151 if (transformer == null || reducer == null)
3982     throw new NullPointerException();
3983 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3984     (null, batchFor(parallelismThreshold), 0, 0, table,
3985     null, transformer, basis, reducer).invoke();
3986 dl 1.137 }
3987 dl 1.119
3988 dl 1.137 /**
3989     * Returns the result of accumulating the given transformation
3990     * of all keys using the given reducer to combine values, and
3991     * the given basis as an identity value.
3992     *
3993 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3994 jsr166 1.213 * needed for this operation to be executed in parallel
3995 dl 1.137 * @param transformer a function returning the transformation
3996     * for an element
3997     * @param basis the identity (initial default value) for the reduction
3998     * @param reducer a commutative associative combining function
3999     * @return the result of accumulating the given transformation
4000     * of all keys
4001 jsr166 1.220 * @since 1.8
4002 dl 1.137 */
4003 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
4004     ToIntFunction<? super K> transformer,
4005     int basis,
4006     IntBinaryOperator reducer) {
4007 dl 1.151 if (transformer == null || reducer == null)
4008     throw new NullPointerException();
4009 dl 1.210 return new MapReduceKeysToIntTask<K,V>
4010     (null, batchFor(parallelismThreshold), 0, 0, table,
4011     null, transformer, basis, reducer).invoke();
4012 dl 1.137 }
4013 dl 1.119
4014 dl 1.137 /**
4015     * Performs the given action for each value.
4016     *
4017 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4018 jsr166 1.213 * needed for this operation to be executed in parallel
4019 dl 1.137 * @param action the action
4020 jsr166 1.220 * @since 1.8
4021 dl 1.137 */
4022 dl 1.210 public void forEachValue(long parallelismThreshold,
4023     Consumer<? super V> action) {
4024     if (action == null)
4025     throw new NullPointerException();
4026     new ForEachValueTask<K,V>
4027     (null, batchFor(parallelismThreshold), 0, 0, table,
4028     action).invoke();
4029 dl 1.137 }
4030 dl 1.119
4031 dl 1.137 /**
4032     * Performs the given action for each non-null transformation
4033     * of each value.
4034     *
4035 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4036 jsr166 1.213 * needed for this operation to be executed in parallel
4037 dl 1.137 * @param transformer a function returning the transformation
4038 jsr166 1.169 * for an element, or null if there is no transformation (in
4039 jsr166 1.172 * which case the action is not applied)
4040 jsr166 1.179 * @param action the action
4041 jsr166 1.237 * @param <U> the return type of the transformer
4042 jsr166 1.220 * @since 1.8
4043 dl 1.137 */
4044 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
4045     Function<? super V, ? extends U> transformer,
4046     Consumer<? super U> action) {
4047 dl 1.151 if (transformer == null || action == null)
4048     throw new NullPointerException();
4049 dl 1.210 new ForEachTransformedValueTask<K,V,U>
4050     (null, batchFor(parallelismThreshold), 0, 0, table,
4051     transformer, action).invoke();
4052 dl 1.137 }
4053 dl 1.119
4054 dl 1.137 /**
4055     * Returns a non-null result from applying the given search
4056 dl 1.210 * function on each value, or null if none. Upon success,
4057     * further element processing is suppressed and the results of
4058     * any other parallel invocations of the search function are
4059     * ignored.
4060 dl 1.137 *
4061 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4062 jsr166 1.213 * needed for this operation to be executed in parallel
4063 dl 1.137 * @param searchFunction a function returning a non-null
4064     * result on success, else null
4065 jsr166 1.237 * @param <U> the return type of the search function
4066 dl 1.137 * @return a non-null result from applying the given search
4067     * function on each value, or null if none
4068 jsr166 1.220 * @since 1.8
4069 dl 1.137 */
4070 dl 1.210 public <U> U searchValues(long parallelismThreshold,
4071     Function<? super V, ? extends U> searchFunction) {
4072 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4073 dl 1.210 return new SearchValuesTask<K,V,U>
4074     (null, batchFor(parallelismThreshold), 0, 0, table,
4075     searchFunction, new AtomicReference<U>()).invoke();
4076 dl 1.137 }
4077 dl 1.119
4078 dl 1.137 /**
4079     * Returns the result of accumulating all values using the
4080     * given reducer to combine values, or null if none.
4081     *
4082 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4083 jsr166 1.213 * needed for this operation to be executed in parallel
4084 dl 1.137 * @param reducer a commutative associative combining function
4085 jsr166 1.157 * @return the result of accumulating all values
4086 jsr166 1.220 * @since 1.8
4087 dl 1.137 */
4088 dl 1.210 public V reduceValues(long parallelismThreshold,
4089     BiFunction<? super V, ? super V, ? extends V> reducer) {
4090 dl 1.151 if (reducer == null) throw new NullPointerException();
4091 dl 1.210 return new ReduceValuesTask<K,V>
4092     (null, batchFor(parallelismThreshold), 0, 0, table,
4093     null, reducer).invoke();
4094 dl 1.137 }
4095 dl 1.119
4096 dl 1.137 /**
4097     * Returns the result of accumulating the given transformation
4098     * of all values using the given reducer to combine values, or
4099     * null if none.
4100     *
4101 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4102 jsr166 1.213 * needed for this operation to be executed in parallel
4103 dl 1.137 * @param transformer a function returning the transformation
4104 jsr166 1.169 * for an element, or null if there is no transformation (in
4105 jsr166 1.172 * which case it is not combined)
4106 dl 1.137 * @param reducer a commutative associative combining function
4107 jsr166 1.237 * @param <U> the return type of the transformer
4108 dl 1.137 * @return the result of accumulating the given transformation
4109     * of all values
4110 jsr166 1.220 * @since 1.8
4111 dl 1.137 */
4112 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4113     Function<? super V, ? extends U> transformer,
4114     BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 dl 1.151 if (transformer == null || reducer == null)
4116     throw new NullPointerException();
4117 dl 1.210 return new MapReduceValuesTask<K,V,U>
4118     (null, batchFor(parallelismThreshold), 0, 0, table,
4119     null, transformer, reducer).invoke();
4120 dl 1.137 }
4121 dl 1.119
4122 dl 1.137 /**
4123     * Returns the result of accumulating the given transformation
4124     * of all values using the given reducer to combine values,
4125     * and the given basis as an identity value.
4126     *
4127 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4128 jsr166 1.213 * needed for this operation to be executed in parallel
4129 dl 1.137 * @param transformer a function returning the transformation
4130     * for an element
4131     * @param basis the identity (initial default value) for the reduction
4132     * @param reducer a commutative associative combining function
4133     * @return the result of accumulating the given transformation
4134     * of all values
4135 jsr166 1.220 * @since 1.8
4136 dl 1.137 */
4137 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4138     ToDoubleFunction<? super V> transformer,
4139     double basis,
4140     DoubleBinaryOperator reducer) {
4141 dl 1.151 if (transformer == null || reducer == null)
4142     throw new NullPointerException();
4143 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4144     (null, batchFor(parallelismThreshold), 0, 0, table,
4145     null, transformer, basis, reducer).invoke();
4146 dl 1.137 }
4147 dl 1.119
4148 dl 1.137 /**
4149     * Returns the result of accumulating the given transformation
4150     * of all values using the given reducer to combine values,
4151     * and the given basis as an identity value.
4152     *
4153 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4154 jsr166 1.213 * needed for this operation to be executed in parallel
4155 dl 1.137 * @param transformer a function returning the transformation
4156     * for an element
4157     * @param basis the identity (initial default value) for the reduction
4158     * @param reducer a commutative associative combining function
4159     * @return the result of accumulating the given transformation
4160     * of all values
4161 jsr166 1.220 * @since 1.8
4162 dl 1.137 */
4163 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4164     ToLongFunction<? super V> transformer,
4165     long basis,
4166     LongBinaryOperator reducer) {
4167 dl 1.151 if (transformer == null || reducer == null)
4168     throw new NullPointerException();
4169 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4170     (null, batchFor(parallelismThreshold), 0, 0, table,
4171     null, transformer, basis, reducer).invoke();
4172 dl 1.137 }
4173 dl 1.119
4174 dl 1.137 /**
4175     * Returns the result of accumulating the given transformation
4176     * of all values using the given reducer to combine values,
4177     * and the given basis as an identity value.
4178     *
4179 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4180 jsr166 1.213 * needed for this operation to be executed in parallel
4181 dl 1.137 * @param transformer a function returning the transformation
4182     * for an element
4183     * @param basis the identity (initial default value) for the reduction
4184     * @param reducer a commutative associative combining function
4185     * @return the result of accumulating the given transformation
4186     * of all values
4187 jsr166 1.220 * @since 1.8
4188 dl 1.137 */
4189 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4190     ToIntFunction<? super V> transformer,
4191     int basis,
4192     IntBinaryOperator reducer) {
4193 dl 1.151 if (transformer == null || reducer == null)
4194     throw new NullPointerException();
4195 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4196     (null, batchFor(parallelismThreshold), 0, 0, table,
4197     null, transformer, basis, reducer).invoke();
4198 dl 1.137 }
4199 dl 1.119
4200 dl 1.137 /**
4201     * Performs the given action for each entry.
4202     *
4203 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4204 jsr166 1.213 * needed for this operation to be executed in parallel
4205 dl 1.137 * @param action the action
4206 jsr166 1.220 * @since 1.8
4207 dl 1.137 */
4208 dl 1.210 public void forEachEntry(long parallelismThreshold,
4209     Consumer<? super Map.Entry<K,V>> action) {
4210 dl 1.151 if (action == null) throw new NullPointerException();
4211 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4212     action).invoke();
4213 dl 1.137 }
4214 dl 1.119
4215 dl 1.137 /**
4216     * Performs the given action for each non-null transformation
4217     * of each entry.
4218     *
4219 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4220 jsr166 1.213 * needed for this operation to be executed in parallel
4221 dl 1.137 * @param transformer a function returning the transformation
4222 jsr166 1.169 * for an element, or null if there is no transformation (in
4223 jsr166 1.172 * which case the action is not applied)
4224 dl 1.137 * @param action the action
4225 jsr166 1.237 * @param <U> the return type of the transformer
4226 jsr166 1.220 * @since 1.8
4227 dl 1.137 */
4228 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4229     Function<Map.Entry<K,V>, ? extends U> transformer,
4230     Consumer<? super U> action) {
4231 dl 1.151 if (transformer == null || action == null)
4232     throw new NullPointerException();
4233 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4234     (null, batchFor(parallelismThreshold), 0, 0, table,
4235     transformer, action).invoke();
4236 dl 1.137 }
4237 dl 1.119
4238 dl 1.137 /**
4239     * Returns a non-null result from applying the given search
4240 dl 1.210 * function on each entry, or null if none. Upon success,
4241     * further element processing is suppressed and the results of
4242     * any other parallel invocations of the search function are
4243     * ignored.
4244 dl 1.137 *
4245 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4246 jsr166 1.213 * needed for this operation to be executed in parallel
4247 dl 1.137 * @param searchFunction a function returning a non-null
4248     * result on success, else null
4249 jsr166 1.237 * @param <U> the return type of the search function
4250 dl 1.137 * @return a non-null result from applying the given search
4251     * function on each entry, or null if none
4252 jsr166 1.220 * @since 1.8
4253 dl 1.137 */
4254 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4255     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4256 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4257 dl 1.210 return new SearchEntriesTask<K,V,U>
4258     (null, batchFor(parallelismThreshold), 0, 0, table,
4259     searchFunction, new AtomicReference<U>()).invoke();
4260 dl 1.137 }
4261 dl 1.119
4262 dl 1.137 /**
4263     * Returns the result of accumulating all entries using the
4264     * given reducer to combine values, or null if none.
4265     *
4266 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4267 jsr166 1.213 * needed for this operation to be executed in parallel
4268 dl 1.137 * @param reducer a commutative associative combining function
4269     * @return the result of accumulating all entries
4270 jsr166 1.220 * @since 1.8
4271 dl 1.137 */
4272 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4273     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4274 dl 1.151 if (reducer == null) throw new NullPointerException();
4275 dl 1.210 return new ReduceEntriesTask<K,V>
4276     (null, batchFor(parallelismThreshold), 0, 0, table,
4277     null, reducer).invoke();
4278 dl 1.137 }
4279 dl 1.119
4280 dl 1.137 /**
4281     * Returns the result of accumulating the given transformation
4282     * of all entries using the given reducer to combine values,
4283     * or null if none.
4284     *
4285 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4286 jsr166 1.213 * needed for this operation to be executed in parallel
4287 dl 1.137 * @param transformer a function returning the transformation
4288 jsr166 1.169 * for an element, or null if there is no transformation (in
4289 jsr166 1.172 * which case it is not combined)
4290 dl 1.137 * @param reducer a commutative associative combining function
4291 jsr166 1.237 * @param <U> the return type of the transformer
4292 dl 1.137 * @return the result of accumulating the given transformation
4293     * of all entries
4294 jsr166 1.220 * @since 1.8
4295 dl 1.137 */
4296 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4297     Function<Map.Entry<K,V>, ? extends U> transformer,
4298     BiFunction<? super U, ? super U, ? extends U> reducer) {
4299 dl 1.151 if (transformer == null || reducer == null)
4300     throw new NullPointerException();
4301 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4302     (null, batchFor(parallelismThreshold), 0, 0, table,
4303     null, transformer, reducer).invoke();
4304 dl 1.137 }
4305 dl 1.119
4306 dl 1.137 /**
4307     * Returns the result of accumulating the given transformation
4308     * of all entries using the given reducer to combine values,
4309     * and the given basis as an identity value.
4310     *
4311 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4312 jsr166 1.213 * needed for this operation to be executed in parallel
4313 dl 1.137 * @param transformer a function returning the transformation
4314     * for an element
4315     * @param basis the identity (initial default value) for the reduction
4316     * @param reducer a commutative associative combining function
4317     * @return the result of accumulating the given transformation
4318     * of all entries
4319 jsr166 1.220 * @since 1.8
4320 dl 1.137 */
4321 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4322     ToDoubleFunction<Map.Entry<K,V>> transformer,
4323     double basis,
4324     DoubleBinaryOperator reducer) {
4325 dl 1.151 if (transformer == null || reducer == null)
4326     throw new NullPointerException();
4327 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4328     (null, batchFor(parallelismThreshold), 0, 0, table,
4329     null, transformer, basis, reducer).invoke();
4330 dl 1.137 }
4331 dl 1.119
4332 dl 1.137 /**
4333     * Returns the result of accumulating the given transformation
4334     * of all entries using the given reducer to combine values,
4335     * and the given basis as an identity value.
4336     *
4337 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4338 jsr166 1.213 * needed for this operation to be executed in parallel
4339 dl 1.137 * @param transformer a function returning the transformation
4340     * for an element
4341     * @param basis the identity (initial default value) for the reduction
4342     * @param reducer a commutative associative combining function
4343 jsr166 1.157 * @return the result of accumulating the given transformation
4344 dl 1.137 * of all entries
4345 jsr166 1.221 * @since 1.8
4346 dl 1.137 */
4347 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4348     ToLongFunction<Map.Entry<K,V>> transformer,
4349     long basis,
4350     LongBinaryOperator reducer) {
4351 dl 1.151 if (transformer == null || reducer == null)
4352     throw new NullPointerException();
4353 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4354     (null, batchFor(parallelismThreshold), 0, 0, table,
4355     null, transformer, basis, reducer).invoke();
4356 dl 1.137 }
4357 dl 1.119
4358 dl 1.137 /**
4359     * Returns the result of accumulating the given transformation
4360     * of all entries using the given reducer to combine values,
4361     * and the given basis as an identity value.
4362     *
4363 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4364 jsr166 1.213 * needed for this operation to be executed in parallel
4365 dl 1.137 * @param transformer a function returning the transformation
4366     * for an element
4367     * @param basis the identity (initial default value) for the reduction
4368     * @param reducer a commutative associative combining function
4369     * @return the result of accumulating the given transformation
4370     * of all entries
4371 jsr166 1.221 * @since 1.8
4372 dl 1.137 */
4373 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4374     ToIntFunction<Map.Entry<K,V>> transformer,
4375     int basis,
4376     IntBinaryOperator reducer) {
4377 dl 1.151 if (transformer == null || reducer == null)
4378     throw new NullPointerException();
4379 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4380     (null, batchFor(parallelismThreshold), 0, 0, table,
4381     null, transformer, basis, reducer).invoke();
4382 dl 1.119 }
4383    
4384 dl 1.209
4385 dl 1.210 /* ----------------Views -------------- */
4386 dl 1.142
4387     /**
4388 dl 1.210 * Base class for views.
4389 dl 1.142 */
4390 dl 1.210 abstract static class CollectionView<K,V,E>
4391     implements Collection<E>, java.io.Serializable {
4392     private static final long serialVersionUID = 7249069246763182397L;
4393     final ConcurrentHashMap<K,V> map;
4394     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4395    
4396     /**
4397     * Returns the map backing this view.
4398     *
4399     * @return the map backing this view
4400     */
4401     public ConcurrentHashMap<K,V> getMap() { return map; }
4402 dl 1.142
4403 dl 1.210 /**
4404     * Removes all of the elements from this view, by removing all
4405     * the mappings from the map backing this view.
4406 jsr166 1.184 */
4407     public final void clear() { map.clear(); }
4408     public final int size() { return map.size(); }
4409     public final boolean isEmpty() { return map.isEmpty(); }
4410 dl 1.151
4411     // implementations below rely on concrete classes supplying these
4412 jsr166 1.184 // abstract methods
4413     /**
4414 jsr166 1.242 * Returns an iterator over the elements in this collection.
4415     *
4416     * <p>The returned iterator is
4417     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4418     *
4419     * @return an iterator over the elements in this collection
4420 jsr166 1.184 */
4421     public abstract Iterator<E> iterator();
4422 jsr166 1.165 public abstract boolean contains(Object o);
4423     public abstract boolean remove(Object o);
4424 dl 1.151
4425 jsr166 1.284 private static final String OOME_MSG = "Required array size too large";
4426 dl 1.142
4427     public final Object[] toArray() {
4428     long sz = map.mappingCount();
4429 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4430 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4431 dl 1.142 int n = (int)sz;
4432     Object[] r = new Object[n];
4433     int i = 0;
4434 jsr166 1.184 for (E e : this) {
4435 dl 1.142 if (i == n) {
4436     if (n >= MAX_ARRAY_SIZE)
4437 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4438 dl 1.142 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4439     n = MAX_ARRAY_SIZE;
4440     else
4441     n += (n >>> 1) + 1;
4442     r = Arrays.copyOf(r, n);
4443     }
4444 jsr166 1.184 r[i++] = e;
4445 dl 1.142 }
4446     return (i == n) ? r : Arrays.copyOf(r, i);
4447     }
4448    
4449 dl 1.222 @SuppressWarnings("unchecked")
4450 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4451 dl 1.142 long sz = map.mappingCount();
4452 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4453 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4454 dl 1.142 int m = (int)sz;
4455     T[] r = (a.length >= m) ? a :
4456     (T[])java.lang.reflect.Array
4457     .newInstance(a.getClass().getComponentType(), m);
4458     int n = r.length;
4459     int i = 0;
4460 jsr166 1.184 for (E e : this) {
4461 dl 1.142 if (i == n) {
4462     if (n >= MAX_ARRAY_SIZE)
4463 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4464 dl 1.142 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4465     n = MAX_ARRAY_SIZE;
4466     else
4467     n += (n >>> 1) + 1;
4468     r = Arrays.copyOf(r, n);
4469     }
4470 jsr166 1.184 r[i++] = (T)e;
4471 dl 1.142 }
4472     if (a == r && i < n) {
4473     r[i] = null; // null-terminate
4474     return r;
4475     }
4476     return (i == n) ? r : Arrays.copyOf(r, i);
4477     }
4478    
4479 jsr166 1.184 /**
4480     * Returns a string representation of this collection.
4481     * The string representation consists of the string representations
4482     * of the collection's elements in the order they are returned by
4483     * its iterator, enclosed in square brackets ({@code "[]"}).
4484     * Adjacent elements are separated by the characters {@code ", "}
4485     * (comma and space). Elements are converted to strings as by
4486     * {@link String#valueOf(Object)}.
4487     *
4488     * @return a string representation of this collection
4489     */
4490 dl 1.142 public final String toString() {
4491     StringBuilder sb = new StringBuilder();
4492     sb.append('[');
4493 jsr166 1.184 Iterator<E> it = iterator();
4494 dl 1.142 if (it.hasNext()) {
4495     for (;;) {
4496     Object e = it.next();
4497     sb.append(e == this ? "(this Collection)" : e);
4498     if (!it.hasNext())
4499     break;
4500     sb.append(',').append(' ');
4501     }
4502     }
4503     return sb.append(']').toString();
4504     }
4505    
4506     public final boolean containsAll(Collection<?> c) {
4507     if (c != this) {
4508 jsr166 1.184 for (Object e : c) {
4509 dl 1.142 if (e == null || !contains(e))
4510     return false;
4511     }
4512     }
4513     return true;
4514     }
4515    
4516 jsr166 1.295 public boolean removeAll(Collection<?> c) {
4517 dl 1.251 if (c == null) throw new NullPointerException();
4518 dl 1.142 boolean modified = false;
4519 jsr166 1.295 // Use (c instanceof Set) as a hint that lookup in c is as
4520     // efficient as this view
4521 jsr166 1.297 Node<K,V>[] t;
4522     if ((t = map.table) == null) {
4523     return false;
4524     } else if (c instanceof Set<?> && c.size() > t.length) {
4525 jsr166 1.295 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4526     if (c.contains(it.next())) {
4527     it.remove();
4528     modified = true;
4529     }
4530 dl 1.142 }
4531 jsr166 1.295 } else {
4532     for (Object e : c)
4533     modified |= remove(e);
4534 dl 1.142 }
4535     return modified;
4536     }
4537    
4538     public final boolean retainAll(Collection<?> c) {
4539 dl 1.251 if (c == null) throw new NullPointerException();
4540 dl 1.142 boolean modified = false;
4541 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4542 dl 1.142 if (!c.contains(it.next())) {
4543     it.remove();
4544     modified = true;
4545     }
4546     }
4547     return modified;
4548     }
4549    
4550     }
4551    
4552     /**
4553     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4554     * which additions may optionally be enabled by mapping to a
4555 jsr166 1.185 * common value. This class cannot be directly instantiated.
4556     * See {@link #keySet() keySet()},
4557     * {@link #keySet(Object) keySet(V)},
4558     * {@link #newKeySet() newKeySet()},
4559     * {@link #newKeySet(int) newKeySet(int)}.
4560 jsr166 1.221 *
4561     * @since 1.8
4562 dl 1.142 */
4563 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4564     implements Set<K>, java.io.Serializable {
4565 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4566     private final V value;
4567 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4568 dl 1.142 super(map);
4569     this.value = value;
4570     }
4571    
4572     /**
4573     * Returns the default mapped value for additions,
4574     * or {@code null} if additions are not supported.
4575     *
4576     * @return the default mapped value for additions, or {@code null}
4577 jsr166 1.172 * if not supported
4578 dl 1.142 */
4579     public V getMappedValue() { return value; }
4580    
4581 jsr166 1.184 /**
4582     * {@inheritDoc}
4583     * @throws NullPointerException if the specified key is null
4584     */
4585     public boolean contains(Object o) { return map.containsKey(o); }
4586 dl 1.142
4587 jsr166 1.184 /**
4588     * Removes the key from this map view, by removing the key (and its
4589     * corresponding value) from the backing map. This method does
4590     * nothing if the key is not in the map.
4591     *
4592     * @param o the key to be removed from the backing map
4593     * @return {@code true} if the backing map contained the specified key
4594     * @throws NullPointerException if the specified key is null
4595     */
4596     public boolean remove(Object o) { return map.remove(o) != null; }
4597    
4598     /**
4599     * @return an iterator over the keys of the backing map
4600     */
4601 dl 1.210 public Iterator<K> iterator() {
4602     Node<K,V>[] t;
4603     ConcurrentHashMap<K,V> m = map;
4604     int f = (t = m.table) == null ? 0 : t.length;
4605     return new KeyIterator<K,V>(t, f, 0, f, m);
4606     }
4607 dl 1.142
4608     /**
4609 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4610     * the default mapped value in the backing map, if defined.
4611 dl 1.142 *
4612 jsr166 1.184 * @param e key to be added
4613     * @return {@code true} if this set changed as a result of the call
4614     * @throws NullPointerException if the specified key is null
4615     * @throws UnsupportedOperationException if no default mapped value
4616     * for additions was provided
4617 dl 1.142 */
4618     public boolean add(K e) {
4619     V v;
4620     if ((v = value) == null)
4621     throw new UnsupportedOperationException();
4622 dl 1.222 return map.putVal(e, v, true) == null;
4623 dl 1.142 }
4624 jsr166 1.184
4625     /**
4626     * Adds all of the elements in the specified collection to this set,
4627     * as if by calling {@link #add} on each one.
4628     *
4629     * @param c the elements to be inserted into this set
4630     * @return {@code true} if this set changed as a result of the call
4631     * @throws NullPointerException if the collection or any of its
4632     * elements are {@code null}
4633     * @throws UnsupportedOperationException if no default mapped value
4634     * for additions was provided
4635     */
4636 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4637     boolean added = false;
4638     V v;
4639     if ((v = value) == null)
4640     throw new UnsupportedOperationException();
4641     for (K e : c) {
4642 dl 1.222 if (map.putVal(e, v, true) == null)
4643 dl 1.142 added = true;
4644     }
4645     return added;
4646     }
4647 dl 1.153
4648 dl 1.210 public int hashCode() {
4649     int h = 0;
4650     for (K e : this)
4651     h += e.hashCode();
4652     return h;
4653 dl 1.191 }
4654    
4655 dl 1.210 public boolean equals(Object o) {
4656     Set<?> c;
4657     return ((o instanceof Set) &&
4658     ((c = (Set<?>)o) == this ||
4659     (containsAll(c) && c.containsAll(this))));
4660 dl 1.119 }
4661 jsr166 1.125
4662 dl 1.210 public Spliterator<K> spliterator() {
4663     Node<K,V>[] t;
4664     ConcurrentHashMap<K,V> m = map;
4665     long n = m.sumCount();
4666     int f = (t = m.table) == null ? 0 : t.length;
4667     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4668 dl 1.119 }
4669    
4670 dl 1.210 public void forEach(Consumer<? super K> action) {
4671     if (action == null) throw new NullPointerException();
4672     Node<K,V>[] t;
4673     if ((t = map.table) != null) {
4674     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4675     for (Node<K,V> p; (p = it.advance()) != null; )
4676 dl 1.222 action.accept(p.key);
4677 dl 1.210 }
4678 dl 1.119 }
4679 dl 1.210 }
4680 dl 1.119
4681 dl 1.210 /**
4682     * A view of a ConcurrentHashMap as a {@link Collection} of
4683     * values, in which additions are disabled. This class cannot be
4684     * directly instantiated. See {@link #values()}.
4685     */
4686     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4687     implements Collection<V>, java.io.Serializable {
4688     private static final long serialVersionUID = 2249069246763182397L;
4689     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4690     public final boolean contains(Object o) {
4691     return map.containsValue(o);
4692 dl 1.119 }
4693    
4694 dl 1.210 public final boolean remove(Object o) {
4695     if (o != null) {
4696     for (Iterator<V> it = iterator(); it.hasNext();) {
4697     if (o.equals(it.next())) {
4698     it.remove();
4699     return true;
4700     }
4701     }
4702     }
4703     return false;
4704 dl 1.119 }
4705    
4706 dl 1.210 public final Iterator<V> iterator() {
4707     ConcurrentHashMap<K,V> m = map;
4708     Node<K,V>[] t;
4709     int f = (t = m.table) == null ? 0 : t.length;
4710     return new ValueIterator<K,V>(t, f, 0, f, m);
4711 dl 1.119 }
4712    
4713 dl 1.210 public final boolean add(V e) {
4714     throw new UnsupportedOperationException();
4715     }
4716     public final boolean addAll(Collection<? extends V> c) {
4717     throw new UnsupportedOperationException();
4718 dl 1.119 }
4719    
4720 jsr166 1.295 @Override public boolean removeAll(Collection<?> c) {
4721     if (c == null) throw new NullPointerException();
4722     boolean modified = false;
4723     for (Iterator<V> it = iterator(); it.hasNext();) {
4724     if (c.contains(it.next())) {
4725     it.remove();
4726     modified = true;
4727     }
4728     }
4729     return modified;
4730     }
4731    
4732 dl 1.272 public boolean removeIf(Predicate<? super V> filter) {
4733     return map.removeValueIf(filter);
4734     }
4735    
4736 dl 1.210 public Spliterator<V> spliterator() {
4737     Node<K,V>[] t;
4738     ConcurrentHashMap<K,V> m = map;
4739     long n = m.sumCount();
4740     int f = (t = m.table) == null ? 0 : t.length;
4741     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4742 dl 1.119 }
4743    
4744 dl 1.210 public void forEach(Consumer<? super V> action) {
4745     if (action == null) throw new NullPointerException();
4746     Node<K,V>[] t;
4747     if ((t = map.table) != null) {
4748     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4749     for (Node<K,V> p; (p = it.advance()) != null; )
4750     action.accept(p.val);
4751     }
4752 dl 1.119 }
4753 dl 1.210 }
4754    
4755     /**
4756     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4757     * entries. This class cannot be directly instantiated. See
4758     * {@link #entrySet()}.
4759     */
4760     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4761     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4762     private static final long serialVersionUID = 2249069246763182397L;
4763     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4764 dl 1.119
4765 dl 1.210 public boolean contains(Object o) {
4766     Object k, v, r; Map.Entry<?,?> e;
4767     return ((o instanceof Map.Entry) &&
4768     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4769     (r = map.get(k)) != null &&
4770     (v = e.getValue()) != null &&
4771     (v == r || v.equals(r)));
4772 dl 1.119 }
4773    
4774 dl 1.210 public boolean remove(Object o) {
4775     Object k, v; Map.Entry<?,?> e;
4776     return ((o instanceof Map.Entry) &&
4777     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4778     (v = e.getValue()) != null &&
4779     map.remove(k, v));
4780 dl 1.119 }
4781    
4782     /**
4783 dl 1.210 * @return an iterator over the entries of the backing map
4784 dl 1.119 */
4785 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4786     ConcurrentHashMap<K,V> m = map;
4787     Node<K,V>[] t;
4788     int f = (t = m.table) == null ? 0 : t.length;
4789     return new EntryIterator<K,V>(t, f, 0, f, m);
4790 dl 1.119 }
4791    
4792 dl 1.210 public boolean add(Entry<K,V> e) {
4793 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4794 dl 1.119 }
4795    
4796 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4797     boolean added = false;
4798     for (Entry<K,V> e : c) {
4799     if (add(e))
4800     added = true;
4801     }
4802     return added;
4803 dl 1.119 }
4804    
4805 jsr166 1.273 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4806 dl 1.271 return map.removeEntryIf(filter);
4807     }
4808    
4809 dl 1.210 public final int hashCode() {
4810     int h = 0;
4811     Node<K,V>[] t;
4812     if ((t = map.table) != null) {
4813     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4814     for (Node<K,V> p; (p = it.advance()) != null; ) {
4815     h += p.hashCode();
4816     }
4817     }
4818     return h;
4819 dl 1.119 }
4820    
4821 dl 1.210 public final boolean equals(Object o) {
4822     Set<?> c;
4823     return ((o instanceof Set) &&
4824     ((c = (Set<?>)o) == this ||
4825     (containsAll(c) && c.containsAll(this))));
4826 dl 1.119 }
4827    
4828 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4829     Node<K,V>[] t;
4830     ConcurrentHashMap<K,V> m = map;
4831     long n = m.sumCount();
4832     int f = (t = m.table) == null ? 0 : t.length;
4833     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4834 dl 1.119 }
4835    
4836 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4837     if (action == null) throw new NullPointerException();
4838     Node<K,V>[] t;
4839     if ((t = map.table) != null) {
4840     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4841     for (Node<K,V> p; (p = it.advance()) != null; )
4842 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4843 dl 1.210 }
4844 dl 1.119 }
4845    
4846 dl 1.210 }
4847    
4848     // -------------------------------------------------------
4849 dl 1.119
4850 dl 1.210 /**
4851     * Base class for bulk tasks. Repeats some fields and code from
4852     * class Traverser, because we need to subclass CountedCompleter.
4853     */
4854 dl 1.243 @SuppressWarnings("serial")
4855 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4856 dl 1.210 Node<K,V>[] tab; // same as Traverser
4857     Node<K,V> next;
4858 dl 1.246 TableStack<K,V> stack, spare;
4859 dl 1.210 int index;
4860     int baseIndex;
4861     int baseLimit;
4862     final int baseSize;
4863     int batch; // split control
4864    
4865     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4866     super(par);
4867     this.batch = b;
4868     this.index = this.baseIndex = i;
4869     if ((this.tab = t) == null)
4870     this.baseSize = this.baseLimit = 0;
4871     else if (par == null)
4872     this.baseSize = this.baseLimit = t.length;
4873     else {
4874     this.baseLimit = f;
4875     this.baseSize = par.baseSize;
4876     }
4877 dl 1.119 }
4878    
4879     /**
4880 jsr166 1.285 * Same as Traverser version.
4881 dl 1.119 */
4882 dl 1.210 final Node<K,V> advance() {
4883     Node<K,V> e;
4884     if ((e = next) != null)
4885     e = e.next;
4886     for (;;) {
4887 dl 1.246 Node<K,V>[] t; int i, n;
4888 dl 1.210 if (e != null)
4889     return next = e;
4890     if (baseIndex >= baseLimit || (t = tab) == null ||
4891     (n = t.length) <= (i = index) || i < 0)
4892     return next = null;
4893 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4894 dl 1.222 if (e instanceof ForwardingNode) {
4895     tab = ((ForwardingNode<K,V>)e).nextTable;
4896 dl 1.210 e = null;
4897 dl 1.246 pushState(t, i, n);
4898 dl 1.210 continue;
4899     }
4900 dl 1.222 else if (e instanceof TreeBin)
4901     e = ((TreeBin<K,V>)e).first;
4902     else
4903     e = null;
4904 dl 1.210 }
4905 dl 1.246 if (stack != null)
4906     recoverState(n);
4907     else if ((index = i + baseSize) >= n)
4908     index = ++baseIndex;
4909     }
4910     }
4911    
4912     private void pushState(Node<K,V>[] t, int i, int n) {
4913     TableStack<K,V> s = spare;
4914     if (s != null)
4915     spare = s.next;
4916     else
4917     s = new TableStack<K,V>();
4918     s.tab = t;
4919     s.length = n;
4920     s.index = i;
4921     s.next = stack;
4922     stack = s;
4923     }
4924    
4925     private void recoverState(int n) {
4926     TableStack<K,V> s; int len;
4927     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4928     n = len;
4929     index = s.index;
4930     tab = s.tab;
4931     s.tab = null;
4932     TableStack<K,V> next = s.next;
4933     s.next = spare; // save for reuse
4934     stack = next;
4935     spare = s;
4936 dl 1.210 }
4937 dl 1.246 if (s == null && (index += baseSize) >= n)
4938     index = ++baseIndex;
4939 dl 1.119 }
4940     }
4941    
4942     /*
4943     * Task classes. Coded in a regular but ugly format/style to
4944     * simplify checks that each variant differs in the right way from
4945 dl 1.149 * others. The null screenings exist because compilers cannot tell
4946     * that we've already null-checked task arguments, so we force
4947     * simplest hoisted bypass to help avoid convoluted traps.
4948 dl 1.119 */
4949 dl 1.222 @SuppressWarnings("serial")
4950 dl 1.210 static final class ForEachKeyTask<K,V>
4951     extends BulkTask<K,V,Void> {
4952 dl 1.171 final Consumer<? super K> action;
4953 dl 1.119 ForEachKeyTask
4954 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4955 dl 1.171 Consumer<? super K> action) {
4956 dl 1.210 super(p, b, i, f, t);
4957 dl 1.119 this.action = action;
4958     }
4959 jsr166 1.168 public final void compute() {
4960 dl 1.171 final Consumer<? super K> action;
4961 dl 1.149 if ((action = this.action) != null) {
4962 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4963     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4964     addToPendingCount(1);
4965     new ForEachKeyTask<K,V>
4966     (this, batch >>>= 1, baseLimit = h, f, tab,
4967     action).fork();
4968     }
4969     for (Node<K,V> p; (p = advance()) != null;)
4970 dl 1.222 action.accept(p.key);
4971 dl 1.149 propagateCompletion();
4972     }
4973 dl 1.119 }
4974     }
4975    
4976 dl 1.222 @SuppressWarnings("serial")
4977 dl 1.210 static final class ForEachValueTask<K,V>
4978     extends BulkTask<K,V,Void> {
4979 dl 1.171 final Consumer<? super V> action;
4980 dl 1.119 ForEachValueTask
4981 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4982 dl 1.171 Consumer<? super V> action) {
4983 dl 1.210 super(p, b, i, f, t);
4984 dl 1.119 this.action = action;
4985     }
4986 jsr166 1.168 public final void compute() {
4987 dl 1.171 final Consumer<? super V> action;
4988 dl 1.149 if ((action = this.action) != null) {
4989 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4990     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4991     addToPendingCount(1);
4992     new ForEachValueTask<K,V>
4993     (this, batch >>>= 1, baseLimit = h, f, tab,
4994     action).fork();
4995     }
4996     for (Node<K,V> p; (p = advance()) != null;)
4997     action.accept(p.val);
4998 dl 1.149 propagateCompletion();
4999     }
5000 dl 1.119 }
5001     }
5002    
5003 dl 1.222 @SuppressWarnings("serial")
5004 dl 1.210 static final class ForEachEntryTask<K,V>
5005     extends BulkTask<K,V,Void> {
5006 dl 1.171 final Consumer<? super Entry<K,V>> action;
5007 dl 1.119 ForEachEntryTask
5008 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5009 dl 1.171 Consumer<? super Entry<K,V>> action) {
5010 dl 1.210 super(p, b, i, f, t);
5011 dl 1.119 this.action = action;
5012     }
5013 jsr166 1.168 public final void compute() {
5014 dl 1.171 final Consumer<? super Entry<K,V>> action;
5015 dl 1.149 if ((action = this.action) != null) {
5016 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5017     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5018     addToPendingCount(1);
5019     new ForEachEntryTask<K,V>
5020     (this, batch >>>= 1, baseLimit = h, f, tab,
5021     action).fork();
5022     }
5023     for (Node<K,V> p; (p = advance()) != null; )
5024     action.accept(p);
5025 dl 1.149 propagateCompletion();
5026     }
5027 dl 1.119 }
5028     }
5029    
5030 dl 1.222 @SuppressWarnings("serial")
5031 dl 1.210 static final class ForEachMappingTask<K,V>
5032     extends BulkTask<K,V,Void> {
5033 dl 1.171 final BiConsumer<? super K, ? super V> action;
5034 dl 1.119 ForEachMappingTask
5035 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036 dl 1.171 BiConsumer<? super K,? super V> action) {
5037 dl 1.210 super(p, b, i, f, t);
5038 dl 1.119 this.action = action;
5039     }
5040 jsr166 1.168 public final void compute() {
5041 dl 1.171 final BiConsumer<? super K, ? super V> action;
5042 dl 1.149 if ((action = this.action) != null) {
5043 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5044     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5045     addToPendingCount(1);
5046     new ForEachMappingTask<K,V>
5047     (this, batch >>>= 1, baseLimit = h, f, tab,
5048     action).fork();
5049     }
5050     for (Node<K,V> p; (p = advance()) != null; )
5051 dl 1.222 action.accept(p.key, p.val);
5052 dl 1.149 propagateCompletion();
5053     }
5054 dl 1.119 }
5055     }
5056    
5057 dl 1.222 @SuppressWarnings("serial")
5058 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
5059     extends BulkTask<K,V,Void> {
5060 dl 1.153 final Function<? super K, ? extends U> transformer;
5061 dl 1.171 final Consumer<? super U> action;
5062 dl 1.119 ForEachTransformedKeyTask
5063 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5064 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5065 dl 1.210 super(p, b, i, f, t);
5066 dl 1.146 this.transformer = transformer; this.action = action;
5067     }
5068 jsr166 1.168 public final void compute() {
5069 dl 1.153 final Function<? super K, ? extends U> transformer;
5070 dl 1.171 final Consumer<? super U> action;
5071 dl 1.149 if ((transformer = this.transformer) != null &&
5072     (action = this.action) != null) {
5073 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5074     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5075     addToPendingCount(1);
5076 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
5077 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5078     transformer, action).fork();
5079     }
5080     for (Node<K,V> p; (p = advance()) != null; ) {
5081     U u;
5082 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5083 dl 1.153 action.accept(u);
5084 dl 1.149 }
5085     propagateCompletion();
5086 dl 1.119 }
5087     }
5088     }
5089    
5090 dl 1.222 @SuppressWarnings("serial")
5091 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
5092     extends BulkTask<K,V,Void> {
5093 dl 1.153 final Function<? super V, ? extends U> transformer;
5094 dl 1.171 final Consumer<? super U> action;
5095 dl 1.119 ForEachTransformedValueTask
5096 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5097 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5098 dl 1.210 super(p, b, i, f, t);
5099 dl 1.146 this.transformer = transformer; this.action = action;
5100     }
5101 jsr166 1.168 public final void compute() {
5102 dl 1.153 final Function<? super V, ? extends U> transformer;
5103 dl 1.171 final Consumer<? super U> action;
5104 dl 1.149 if ((transformer = this.transformer) != null &&
5105     (action = this.action) != null) {
5106 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5107     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5108     addToPendingCount(1);
5109 dl 1.149 new ForEachTransformedValueTask<K,V,U>
5110 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5111     transformer, action).fork();
5112     }
5113     for (Node<K,V> p; (p = advance()) != null; ) {
5114     U u;
5115     if ((u = transformer.apply(p.val)) != null)
5116 dl 1.153 action.accept(u);
5117 dl 1.149 }
5118     propagateCompletion();
5119 dl 1.119 }
5120     }
5121 tim 1.1 }
5122    
5123 dl 1.222 @SuppressWarnings("serial")
5124 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5125     extends BulkTask<K,V,Void> {
5126 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5127 dl 1.171 final Consumer<? super U> action;
5128 dl 1.119 ForEachTransformedEntryTask
5129 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5130 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5131 dl 1.210 super(p, b, i, f, t);
5132 dl 1.146 this.transformer = transformer; this.action = action;
5133     }
5134 jsr166 1.168 public final void compute() {
5135 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5136 dl 1.171 final Consumer<? super U> action;
5137 dl 1.149 if ((transformer = this.transformer) != null &&
5138     (action = this.action) != null) {
5139 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5140     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5141     addToPendingCount(1);
5142 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5143 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5144     transformer, action).fork();
5145     }
5146     for (Node<K,V> p; (p = advance()) != null; ) {
5147     U u;
5148     if ((u = transformer.apply(p)) != null)
5149 dl 1.153 action.accept(u);
5150 dl 1.149 }
5151     propagateCompletion();
5152 dl 1.119 }
5153     }
5154 tim 1.1 }
5155    
5156 dl 1.222 @SuppressWarnings("serial")
5157 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5158     extends BulkTask<K,V,Void> {
5159 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5160 dl 1.171 final Consumer<? super U> action;
5161 dl 1.119 ForEachTransformedMappingTask
5162 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5163 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5164 dl 1.171 Consumer<? super U> action) {
5165 dl 1.210 super(p, b, i, f, t);
5166 dl 1.146 this.transformer = transformer; this.action = action;
5167 dl 1.119 }
5168 jsr166 1.168 public final void compute() {
5169 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5170 dl 1.171 final Consumer<? super U> action;
5171 dl 1.149 if ((transformer = this.transformer) != null &&
5172     (action = this.action) != null) {
5173 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5174     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5175     addToPendingCount(1);
5176 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5177 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5178     transformer, action).fork();
5179     }
5180     for (Node<K,V> p; (p = advance()) != null; ) {
5181     U u;
5182 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5183 dl 1.153 action.accept(u);
5184 dl 1.149 }
5185     propagateCompletion();
5186 dl 1.119 }
5187     }
5188 tim 1.1 }
5189    
5190 dl 1.222 @SuppressWarnings("serial")
5191 dl 1.210 static final class SearchKeysTask<K,V,U>
5192     extends BulkTask<K,V,U> {
5193 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5194 dl 1.119 final AtomicReference<U> result;
5195     SearchKeysTask
5196 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5197 dl 1.153 Function<? super K, ? extends U> searchFunction,
5198 dl 1.119 AtomicReference<U> result) {
5199 dl 1.210 super(p, b, i, f, t);
5200 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5201     }
5202 dl 1.146 public final U getRawResult() { return result.get(); }
5203 jsr166 1.168 public final void compute() {
5204 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5205 dl 1.146 final AtomicReference<U> result;
5206 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5207     (result = this.result) != null) {
5208 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5209     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5210 dl 1.149 if (result.get() != null)
5211     return;
5212 dl 1.210 addToPendingCount(1);
5213 dl 1.149 new SearchKeysTask<K,V,U>
5214 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5215     searchFunction, result).fork();
5216 dl 1.128 }
5217 dl 1.149 while (result.get() == null) {
5218 dl 1.210 U u;
5219     Node<K,V> p;
5220     if ((p = advance()) == null) {
5221 dl 1.149 propagateCompletion();
5222     break;
5223     }
5224 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5225 dl 1.149 if (result.compareAndSet(null, u))
5226     quietlyCompleteRoot();
5227     break;
5228     }
5229 dl 1.119 }
5230     }
5231     }
5232 tim 1.1 }
5233    
5234 dl 1.222 @SuppressWarnings("serial")
5235 dl 1.210 static final class SearchValuesTask<K,V,U>
5236     extends BulkTask<K,V,U> {
5237 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5238 dl 1.119 final AtomicReference<U> result;
5239     SearchValuesTask
5240 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241 dl 1.153 Function<? super V, ? extends U> searchFunction,
5242 dl 1.119 AtomicReference<U> result) {
5243 dl 1.210 super(p, b, i, f, t);
5244 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5245     }
5246 dl 1.146 public final U getRawResult() { return result.get(); }
5247 jsr166 1.168 public final void compute() {
5248 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5249 dl 1.146 final AtomicReference<U> result;
5250 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5251     (result = this.result) != null) {
5252 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5253     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5254 dl 1.149 if (result.get() != null)
5255     return;
5256 dl 1.210 addToPendingCount(1);
5257 dl 1.149 new SearchValuesTask<K,V,U>
5258 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5259     searchFunction, result).fork();
5260 dl 1.128 }
5261 dl 1.149 while (result.get() == null) {
5262 dl 1.210 U u;
5263     Node<K,V> p;
5264     if ((p = advance()) == null) {
5265 dl 1.149 propagateCompletion();
5266     break;
5267     }
5268 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5269 dl 1.149 if (result.compareAndSet(null, u))
5270     quietlyCompleteRoot();
5271     break;
5272     }
5273 dl 1.119 }
5274     }
5275     }
5276     }
5277 tim 1.11
5278 dl 1.222 @SuppressWarnings("serial")
5279 dl 1.210 static final class SearchEntriesTask<K,V,U>
5280     extends BulkTask<K,V,U> {
5281 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5282 dl 1.119 final AtomicReference<U> result;
5283     SearchEntriesTask
5284 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5285 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5286 dl 1.119 AtomicReference<U> result) {
5287 dl 1.210 super(p, b, i, f, t);
5288 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5289     }
5290 dl 1.146 public final U getRawResult() { return result.get(); }
5291 jsr166 1.168 public final void compute() {
5292 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5293 dl 1.146 final AtomicReference<U> result;
5294 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5295     (result = this.result) != null) {
5296 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5297     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5298 dl 1.149 if (result.get() != null)
5299     return;
5300 dl 1.210 addToPendingCount(1);
5301 dl 1.149 new SearchEntriesTask<K,V,U>
5302 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5303     searchFunction, result).fork();
5304 dl 1.128 }
5305 dl 1.149 while (result.get() == null) {
5306 dl 1.210 U u;
5307     Node<K,V> p;
5308     if ((p = advance()) == null) {
5309 dl 1.149 propagateCompletion();
5310     break;
5311     }
5312 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5313 dl 1.149 if (result.compareAndSet(null, u))
5314     quietlyCompleteRoot();
5315     return;
5316     }
5317 dl 1.119 }
5318     }
5319     }
5320     }
5321 tim 1.1
5322 dl 1.222 @SuppressWarnings("serial")
5323 dl 1.210 static final class SearchMappingsTask<K,V,U>
5324     extends BulkTask<K,V,U> {
5325 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5326 dl 1.119 final AtomicReference<U> result;
5327     SearchMappingsTask
5328 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5329 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5330 dl 1.119 AtomicReference<U> result) {
5331 dl 1.210 super(p, b, i, f, t);
5332 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5333     }
5334 dl 1.146 public final U getRawResult() { return result.get(); }
5335 jsr166 1.168 public final void compute() {
5336 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5337 dl 1.146 final AtomicReference<U> result;
5338 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5339     (result = this.result) != null) {
5340 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5341     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5342 dl 1.149 if (result.get() != null)
5343     return;
5344 dl 1.210 addToPendingCount(1);
5345 dl 1.149 new SearchMappingsTask<K,V,U>
5346 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5347     searchFunction, result).fork();
5348 dl 1.128 }
5349 dl 1.149 while (result.get() == null) {
5350 dl 1.210 U u;
5351     Node<K,V> p;
5352     if ((p = advance()) == null) {
5353 dl 1.149 propagateCompletion();
5354     break;
5355     }
5356 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5357 dl 1.149 if (result.compareAndSet(null, u))
5358     quietlyCompleteRoot();
5359     break;
5360     }
5361 dl 1.119 }
5362     }
5363 tim 1.1 }
5364 dl 1.119 }
5365 tim 1.1
5366 dl 1.222 @SuppressWarnings("serial")
5367 dl 1.210 static final class ReduceKeysTask<K,V>
5368     extends BulkTask<K,V,K> {
5369 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5370 dl 1.119 K result;
5371 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5372 dl 1.119 ReduceKeysTask
5373 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5374 dl 1.128 ReduceKeysTask<K,V> nextRight,
5375 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5376 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5377 dl 1.119 this.reducer = reducer;
5378     }
5379 dl 1.146 public final K getRawResult() { return result; }
5380 dl 1.210 public final void compute() {
5381 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5382 dl 1.149 if ((reducer = this.reducer) != null) {
5383 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5384     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5385     addToPendingCount(1);
5386 dl 1.149 (rights = new ReduceKeysTask<K,V>
5387 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5388     rights, reducer)).fork();
5389     }
5390     K r = null;
5391     for (Node<K,V> p; (p = advance()) != null; ) {
5392 dl 1.222 K u = p.key;
5393 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5394 dl 1.149 }
5395     result = r;
5396     CountedCompleter<?> c;
5397     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5398 dl 1.246 @SuppressWarnings("unchecked")
5399     ReduceKeysTask<K,V>
5400 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5401     s = t.rights;
5402     while (s != null) {
5403     K tr, sr;
5404     if ((sr = s.result) != null)
5405     t.result = (((tr = t.result) == null) ? sr :
5406     reducer.apply(tr, sr));
5407     s = t.rights = s.nextRight;
5408     }
5409 dl 1.99 }
5410 dl 1.138 }
5411 tim 1.1 }
5412 dl 1.119 }
5413 tim 1.1
5414 dl 1.222 @SuppressWarnings("serial")
5415 dl 1.210 static final class ReduceValuesTask<K,V>
5416     extends BulkTask<K,V,V> {
5417 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5418 dl 1.119 V result;
5419 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5420 dl 1.119 ReduceValuesTask
5421 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5422 dl 1.128 ReduceValuesTask<K,V> nextRight,
5423 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5424 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5425 dl 1.119 this.reducer = reducer;
5426     }
5427 dl 1.146 public final V getRawResult() { return result; }
5428 dl 1.210 public final void compute() {
5429 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5430 dl 1.149 if ((reducer = this.reducer) != null) {
5431 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5432     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5433     addToPendingCount(1);
5434 dl 1.149 (rights = new ReduceValuesTask<K,V>
5435 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5436     rights, reducer)).fork();
5437     }
5438     V r = null;
5439     for (Node<K,V> p; (p = advance()) != null; ) {
5440     V v = p.val;
5441 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5442 dl 1.210 }
5443 dl 1.149 result = r;
5444     CountedCompleter<?> c;
5445     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5446 dl 1.246 @SuppressWarnings("unchecked")
5447     ReduceValuesTask<K,V>
5448 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5449     s = t.rights;
5450     while (s != null) {
5451     V tr, sr;
5452     if ((sr = s.result) != null)
5453     t.result = (((tr = t.result) == null) ? sr :
5454     reducer.apply(tr, sr));
5455     s = t.rights = s.nextRight;
5456     }
5457 dl 1.119 }
5458     }
5459 tim 1.1 }
5460 dl 1.119 }
5461 tim 1.1
5462 dl 1.222 @SuppressWarnings("serial")
5463 dl 1.210 static final class ReduceEntriesTask<K,V>
5464     extends BulkTask<K,V,Map.Entry<K,V>> {
5465 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5466 dl 1.119 Map.Entry<K,V> result;
5467 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5468 dl 1.119 ReduceEntriesTask
5469 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5470 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5471 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5472 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5473 dl 1.119 this.reducer = reducer;
5474     }
5475 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5476 dl 1.210 public final void compute() {
5477 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5478 dl 1.149 if ((reducer = this.reducer) != null) {
5479 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5480     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5481     addToPendingCount(1);
5482 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5483 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5484     rights, reducer)).fork();
5485     }
5486 dl 1.149 Map.Entry<K,V> r = null;
5487 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5488     r = (r == null) ? p : reducer.apply(r, p);
5489 dl 1.149 result = r;
5490     CountedCompleter<?> c;
5491     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5492 dl 1.246 @SuppressWarnings("unchecked")
5493     ReduceEntriesTask<K,V>
5494 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5495     s = t.rights;
5496     while (s != null) {
5497     Map.Entry<K,V> tr, sr;
5498     if ((sr = s.result) != null)
5499     t.result = (((tr = t.result) == null) ? sr :
5500     reducer.apply(tr, sr));
5501     s = t.rights = s.nextRight;
5502     }
5503 dl 1.119 }
5504 dl 1.138 }
5505 dl 1.119 }
5506     }
5507 dl 1.99
5508 dl 1.222 @SuppressWarnings("serial")
5509 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5510     extends BulkTask<K,V,U> {
5511 dl 1.153 final Function<? super K, ? extends U> transformer;
5512     final BiFunction<? super U, ? super U, ? extends U> reducer;
5513 dl 1.119 U result;
5514 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5515 dl 1.119 MapReduceKeysTask
5516 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5517 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5518 dl 1.153 Function<? super K, ? extends U> transformer,
5519     BiFunction<? super U, ? super U, ? extends U> reducer) {
5520 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5521 dl 1.119 this.transformer = transformer;
5522     this.reducer = reducer;
5523     }
5524 dl 1.146 public final U getRawResult() { return result; }
5525 dl 1.210 public final void compute() {
5526 dl 1.153 final Function<? super K, ? extends U> transformer;
5527     final BiFunction<? super U, ? super U, ? extends U> reducer;
5528 dl 1.149 if ((transformer = this.transformer) != null &&
5529     (reducer = this.reducer) != null) {
5530 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5531     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5532     addToPendingCount(1);
5533 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5534 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5535     rights, transformer, reducer)).fork();
5536     }
5537     U r = null;
5538     for (Node<K,V> p; (p = advance()) != null; ) {
5539     U u;
5540 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5541 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5542     }
5543     result = r;
5544     CountedCompleter<?> c;
5545     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5546 dl 1.246 @SuppressWarnings("unchecked")
5547     MapReduceKeysTask<K,V,U>
5548 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5549     s = t.rights;
5550     while (s != null) {
5551     U tr, sr;
5552     if ((sr = s.result) != null)
5553     t.result = (((tr = t.result) == null) ? sr :
5554     reducer.apply(tr, sr));
5555     s = t.rights = s.nextRight;
5556     }
5557 dl 1.119 }
5558 dl 1.138 }
5559 tim 1.1 }
5560 dl 1.4 }
5561    
5562 dl 1.222 @SuppressWarnings("serial")
5563 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5564     extends BulkTask<K,V,U> {
5565 dl 1.153 final Function<? super V, ? extends U> transformer;
5566     final BiFunction<? super U, ? super U, ? extends U> reducer;
5567 dl 1.119 U result;
5568 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5569 dl 1.119 MapReduceValuesTask
5570 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5572 dl 1.153 Function<? super V, ? extends U> transformer,
5573     BiFunction<? super U, ? super U, ? extends U> reducer) {
5574 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5575 dl 1.119 this.transformer = transformer;
5576     this.reducer = reducer;
5577     }
5578 dl 1.146 public final U getRawResult() { return result; }
5579 dl 1.210 public final void compute() {
5580 dl 1.153 final Function<? super V, ? extends U> transformer;
5581     final BiFunction<? super U, ? super U, ? extends U> reducer;
5582 dl 1.149 if ((transformer = this.transformer) != null &&
5583     (reducer = this.reducer) != null) {
5584 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5585     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5586     addToPendingCount(1);
5587 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5588 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5589     rights, transformer, reducer)).fork();
5590     }
5591     U r = null;
5592     for (Node<K,V> p; (p = advance()) != null; ) {
5593     U u;
5594     if ((u = transformer.apply(p.val)) != null)
5595 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5596     }
5597     result = r;
5598     CountedCompleter<?> c;
5599     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5600 dl 1.246 @SuppressWarnings("unchecked")
5601     MapReduceValuesTask<K,V,U>
5602 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5603     s = t.rights;
5604     while (s != null) {
5605     U tr, sr;
5606     if ((sr = s.result) != null)
5607     t.result = (((tr = t.result) == null) ? sr :
5608     reducer.apply(tr, sr));
5609     s = t.rights = s.nextRight;
5610     }
5611 dl 1.119 }
5612     }
5613     }
5614 dl 1.4 }
5615    
5616 dl 1.222 @SuppressWarnings("serial")
5617 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5618     extends BulkTask<K,V,U> {
5619 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5620     final BiFunction<? super U, ? super U, ? extends U> reducer;
5621 dl 1.119 U result;
5622 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5623 dl 1.119 MapReduceEntriesTask
5624 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5625 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5626 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5627     BiFunction<? super U, ? super U, ? extends U> reducer) {
5628 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5629 dl 1.119 this.transformer = transformer;
5630     this.reducer = reducer;
5631     }
5632 dl 1.146 public final U getRawResult() { return result; }
5633 dl 1.210 public final void compute() {
5634 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5635     final BiFunction<? super U, ? super U, ? extends U> reducer;
5636 dl 1.149 if ((transformer = this.transformer) != null &&
5637     (reducer = this.reducer) != null) {
5638 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5639     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5640     addToPendingCount(1);
5641 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5642 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5643     rights, transformer, reducer)).fork();
5644     }
5645     U r = null;
5646     for (Node<K,V> p; (p = advance()) != null; ) {
5647     U u;
5648     if ((u = transformer.apply(p)) != null)
5649 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5650     }
5651     result = r;
5652     CountedCompleter<?> c;
5653     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 dl 1.246 @SuppressWarnings("unchecked")
5655     MapReduceEntriesTask<K,V,U>
5656 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5657     s = t.rights;
5658     while (s != null) {
5659     U tr, sr;
5660     if ((sr = s.result) != null)
5661     t.result = (((tr = t.result) == null) ? sr :
5662     reducer.apply(tr, sr));
5663     s = t.rights = s.nextRight;
5664     }
5665 dl 1.119 }
5666 dl 1.138 }
5667 dl 1.119 }
5668 dl 1.4 }
5669 tim 1.1
5670 dl 1.222 @SuppressWarnings("serial")
5671 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5672     extends BulkTask<K,V,U> {
5673 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5674     final BiFunction<? super U, ? super U, ? extends U> reducer;
5675 dl 1.119 U result;
5676 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5677 dl 1.119 MapReduceMappingsTask
5678 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5679 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5680 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5681     BiFunction<? super U, ? super U, ? extends U> reducer) {
5682 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5683 dl 1.119 this.transformer = transformer;
5684     this.reducer = reducer;
5685     }
5686 dl 1.146 public final U getRawResult() { return result; }
5687 dl 1.210 public final void compute() {
5688 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5689     final BiFunction<? super U, ? super U, ? extends U> reducer;
5690 dl 1.149 if ((transformer = this.transformer) != null &&
5691     (reducer = this.reducer) != null) {
5692 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5693     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5694     addToPendingCount(1);
5695 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5696 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5697     rights, transformer, reducer)).fork();
5698     }
5699     U r = null;
5700     for (Node<K,V> p; (p = advance()) != null; ) {
5701     U u;
5702 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5703 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5704     }
5705     result = r;
5706     CountedCompleter<?> c;
5707     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5708 dl 1.246 @SuppressWarnings("unchecked")
5709     MapReduceMappingsTask<K,V,U>
5710 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5711     s = t.rights;
5712     while (s != null) {
5713     U tr, sr;
5714     if ((sr = s.result) != null)
5715     t.result = (((tr = t.result) == null) ? sr :
5716     reducer.apply(tr, sr));
5717     s = t.rights = s.nextRight;
5718     }
5719 dl 1.119 }
5720     }
5721     }
5722     }
5723 jsr166 1.114
5724 dl 1.222 @SuppressWarnings("serial")
5725 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5726     extends BulkTask<K,V,Double> {
5727 dl 1.171 final ToDoubleFunction<? super K> transformer;
5728 dl 1.153 final DoubleBinaryOperator reducer;
5729 dl 1.119 final double basis;
5730     double result;
5731 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5732 dl 1.119 MapReduceKeysToDoubleTask
5733 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5734 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5735 dl 1.171 ToDoubleFunction<? super K> transformer,
5736 dl 1.119 double basis,
5737 dl 1.153 DoubleBinaryOperator reducer) {
5738 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5739 dl 1.119 this.transformer = transformer;
5740     this.basis = basis; this.reducer = reducer;
5741     }
5742 dl 1.146 public final Double getRawResult() { return result; }
5743 dl 1.210 public final void compute() {
5744 dl 1.171 final ToDoubleFunction<? super K> transformer;
5745 dl 1.153 final DoubleBinaryOperator reducer;
5746 dl 1.149 if ((transformer = this.transformer) != null &&
5747     (reducer = this.reducer) != null) {
5748     double r = this.basis;
5749 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5750     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5751     addToPendingCount(1);
5752 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5753 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5754     rights, transformer, r, reducer)).fork();
5755     }
5756     for (Node<K,V> p; (p = advance()) != null; )
5757 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5758 dl 1.149 result = r;
5759     CountedCompleter<?> c;
5760     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5761 dl 1.246 @SuppressWarnings("unchecked")
5762     MapReduceKeysToDoubleTask<K,V>
5763 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5764     s = t.rights;
5765     while (s != null) {
5766 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5767 dl 1.149 s = t.rights = s.nextRight;
5768     }
5769 dl 1.119 }
5770 dl 1.138 }
5771 dl 1.79 }
5772 dl 1.119 }
5773 dl 1.79
5774 dl 1.222 @SuppressWarnings("serial")
5775 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5776     extends BulkTask<K,V,Double> {
5777 dl 1.171 final ToDoubleFunction<? super V> transformer;
5778 dl 1.153 final DoubleBinaryOperator reducer;
5779 dl 1.119 final double basis;
5780     double result;
5781 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5782 dl 1.119 MapReduceValuesToDoubleTask
5783 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5784 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5785 dl 1.171 ToDoubleFunction<? super V> transformer,
5786 dl 1.119 double basis,
5787 dl 1.153 DoubleBinaryOperator reducer) {
5788 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5789 dl 1.119 this.transformer = transformer;
5790     this.basis = basis; this.reducer = reducer;
5791     }
5792 dl 1.146 public final Double getRawResult() { return result; }
5793 dl 1.210 public final void compute() {
5794 dl 1.171 final ToDoubleFunction<? super V> transformer;
5795 dl 1.153 final DoubleBinaryOperator reducer;
5796 dl 1.149 if ((transformer = this.transformer) != null &&
5797     (reducer = this.reducer) != null) {
5798     double r = this.basis;
5799 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5800     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5801     addToPendingCount(1);
5802 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5803 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5804     rights, transformer, r, reducer)).fork();
5805     }
5806     for (Node<K,V> p; (p = advance()) != null; )
5807     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5808 dl 1.149 result = r;
5809     CountedCompleter<?> c;
5810     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5811 dl 1.246 @SuppressWarnings("unchecked")
5812     MapReduceValuesToDoubleTask<K,V>
5813 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5814     s = t.rights;
5815     while (s != null) {
5816 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5817 dl 1.149 s = t.rights = s.nextRight;
5818     }
5819 dl 1.119 }
5820     }
5821 dl 1.30 }
5822 dl 1.79 }
5823 dl 1.30
5824 dl 1.222 @SuppressWarnings("serial")
5825 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5826     extends BulkTask<K,V,Double> {
5827 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5828 dl 1.153 final DoubleBinaryOperator reducer;
5829 dl 1.119 final double basis;
5830     double result;
5831 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5832 dl 1.119 MapReduceEntriesToDoubleTask
5833 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5834 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5835 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5836 dl 1.119 double basis,
5837 dl 1.153 DoubleBinaryOperator reducer) {
5838 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5839 dl 1.119 this.transformer = transformer;
5840     this.basis = basis; this.reducer = reducer;
5841     }
5842 dl 1.146 public final Double getRawResult() { return result; }
5843 dl 1.210 public final void compute() {
5844 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5845 dl 1.153 final DoubleBinaryOperator reducer;
5846 dl 1.149 if ((transformer = this.transformer) != null &&
5847     (reducer = this.reducer) != null) {
5848     double r = this.basis;
5849 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5850     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5851     addToPendingCount(1);
5852 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5853 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5854     rights, transformer, r, reducer)).fork();
5855     }
5856     for (Node<K,V> p; (p = advance()) != null; )
5857     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5858 dl 1.149 result = r;
5859     CountedCompleter<?> c;
5860     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5861 dl 1.246 @SuppressWarnings("unchecked")
5862     MapReduceEntriesToDoubleTask<K,V>
5863 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5864     s = t.rights;
5865     while (s != null) {
5866 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5867 dl 1.149 s = t.rights = s.nextRight;
5868     }
5869 dl 1.119 }
5870 dl 1.138 }
5871 dl 1.30 }
5872 tim 1.1 }
5873    
5874 dl 1.222 @SuppressWarnings("serial")
5875 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5876     extends BulkTask<K,V,Double> {
5877 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5878 dl 1.153 final DoubleBinaryOperator reducer;
5879 dl 1.119 final double basis;
5880     double result;
5881 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5882 dl 1.119 MapReduceMappingsToDoubleTask
5883 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5884 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5885 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5886 dl 1.119 double basis,
5887 dl 1.153 DoubleBinaryOperator reducer) {
5888 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5889 dl 1.119 this.transformer = transformer;
5890     this.basis = basis; this.reducer = reducer;
5891     }
5892 dl 1.146 public final Double getRawResult() { return result; }
5893 dl 1.210 public final void compute() {
5894 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5895 dl 1.153 final DoubleBinaryOperator reducer;
5896 dl 1.149 if ((transformer = this.transformer) != null &&
5897     (reducer = this.reducer) != null) {
5898     double r = this.basis;
5899 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5900     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5901     addToPendingCount(1);
5902 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5903 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5904     rights, transformer, r, reducer)).fork();
5905     }
5906     for (Node<K,V> p; (p = advance()) != null; )
5907 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5908 dl 1.149 result = r;
5909     CountedCompleter<?> c;
5910     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911 dl 1.246 @SuppressWarnings("unchecked")
5912     MapReduceMappingsToDoubleTask<K,V>
5913 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5914     s = t.rights;
5915     while (s != null) {
5916 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5917 dl 1.149 s = t.rights = s.nextRight;
5918     }
5919 dl 1.119 }
5920     }
5921 dl 1.4 }
5922 dl 1.119 }
5923    
5924 dl 1.222 @SuppressWarnings("serial")
5925 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5926     extends BulkTask<K,V,Long> {
5927 dl 1.171 final ToLongFunction<? super K> transformer;
5928 dl 1.153 final LongBinaryOperator reducer;
5929 dl 1.119 final long basis;
5930     long result;
5931 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5932 dl 1.119 MapReduceKeysToLongTask
5933 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5934 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5935 dl 1.171 ToLongFunction<? super K> transformer,
5936 dl 1.119 long basis,
5937 dl 1.153 LongBinaryOperator reducer) {
5938 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5939 dl 1.119 this.transformer = transformer;
5940     this.basis = basis; this.reducer = reducer;
5941     }
5942 dl 1.146 public final Long getRawResult() { return result; }
5943 dl 1.210 public final void compute() {
5944 dl 1.171 final ToLongFunction<? super K> transformer;
5945 dl 1.153 final LongBinaryOperator reducer;
5946 dl 1.149 if ((transformer = this.transformer) != null &&
5947     (reducer = this.reducer) != null) {
5948     long r = this.basis;
5949 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5950     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5951     addToPendingCount(1);
5952 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5953 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5954     rights, transformer, r, reducer)).fork();
5955     }
5956     for (Node<K,V> p; (p = advance()) != null; )
5957 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5958 dl 1.149 result = r;
5959     CountedCompleter<?> c;
5960     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5961 dl 1.246 @SuppressWarnings("unchecked")
5962     MapReduceKeysToLongTask<K,V>
5963 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5964     s = t.rights;
5965     while (s != null) {
5966 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5967 dl 1.149 s = t.rights = s.nextRight;
5968     }
5969 dl 1.119 }
5970 dl 1.138 }
5971 dl 1.4 }
5972 dl 1.119 }
5973    
5974 dl 1.222 @SuppressWarnings("serial")
5975 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5976     extends BulkTask<K,V,Long> {
5977 dl 1.171 final ToLongFunction<? super V> transformer;
5978 dl 1.153 final LongBinaryOperator reducer;
5979 dl 1.119 final long basis;
5980     long result;
5981 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5982 dl 1.119 MapReduceValuesToLongTask
5983 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5984 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5985 dl 1.171 ToLongFunction<? super V> transformer,
5986 dl 1.119 long basis,
5987 dl 1.153 LongBinaryOperator reducer) {
5988 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5989 dl 1.119 this.transformer = transformer;
5990     this.basis = basis; this.reducer = reducer;
5991     }
5992 dl 1.146 public final Long getRawResult() { return result; }
5993 dl 1.210 public final void compute() {
5994 dl 1.171 final ToLongFunction<? super V> transformer;
5995 dl 1.153 final LongBinaryOperator reducer;
5996 dl 1.149 if ((transformer = this.transformer) != null &&
5997     (reducer = this.reducer) != null) {
5998     long r = this.basis;
5999 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6000     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6001     addToPendingCount(1);
6002 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
6003 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6004     rights, transformer, r, reducer)).fork();
6005     }
6006     for (Node<K,V> p; (p = advance()) != null; )
6007     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6008 dl 1.149 result = r;
6009     CountedCompleter<?> c;
6010     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6011 dl 1.246 @SuppressWarnings("unchecked")
6012     MapReduceValuesToLongTask<K,V>
6013 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
6014     s = t.rights;
6015     while (s != null) {
6016 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6017 dl 1.149 s = t.rights = s.nextRight;
6018     }
6019 dl 1.119 }
6020     }
6021 jsr166 1.95 }
6022 dl 1.119 }
6023    
6024 dl 1.222 @SuppressWarnings("serial")
6025 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
6026     extends BulkTask<K,V,Long> {
6027 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6028 dl 1.153 final LongBinaryOperator reducer;
6029 dl 1.119 final long basis;
6030     long result;
6031 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6032 dl 1.119 MapReduceEntriesToLongTask
6033 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6034 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6035 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6036 dl 1.119 long basis,
6037 dl 1.153 LongBinaryOperator reducer) {
6038 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6039 dl 1.119 this.transformer = transformer;
6040     this.basis = basis; this.reducer = reducer;
6041     }
6042 dl 1.146 public final Long getRawResult() { return result; }
6043 dl 1.210 public final void compute() {
6044 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6045 dl 1.153 final LongBinaryOperator reducer;
6046 dl 1.149 if ((transformer = this.transformer) != null &&
6047     (reducer = this.reducer) != null) {
6048     long r = this.basis;
6049 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6050     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6051     addToPendingCount(1);
6052 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
6053 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6054     rights, transformer, r, reducer)).fork();
6055     }
6056     for (Node<K,V> p; (p = advance()) != null; )
6057     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6058 dl 1.149 result = r;
6059     CountedCompleter<?> c;
6060     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6061 dl 1.246 @SuppressWarnings("unchecked")
6062     MapReduceEntriesToLongTask<K,V>
6063 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
6064     s = t.rights;
6065     while (s != null) {
6066 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6067 dl 1.149 s = t.rights = s.nextRight;
6068     }
6069 dl 1.119 }
6070 dl 1.138 }
6071 dl 1.4 }
6072 tim 1.1 }
6073    
6074 dl 1.222 @SuppressWarnings("serial")
6075 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
6076     extends BulkTask<K,V,Long> {
6077 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6078 dl 1.153 final LongBinaryOperator reducer;
6079 dl 1.119 final long basis;
6080     long result;
6081 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6082 dl 1.119 MapReduceMappingsToLongTask
6083 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6084 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6085 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6086 dl 1.119 long basis,
6087 dl 1.153 LongBinaryOperator reducer) {
6088 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6089 dl 1.119 this.transformer = transformer;
6090     this.basis = basis; this.reducer = reducer;
6091     }
6092 dl 1.146 public final Long getRawResult() { return result; }
6093 dl 1.210 public final void compute() {
6094 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6095 dl 1.153 final LongBinaryOperator reducer;
6096 dl 1.149 if ((transformer = this.transformer) != null &&
6097     (reducer = this.reducer) != null) {
6098     long r = this.basis;
6099 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6100     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6101     addToPendingCount(1);
6102 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
6103 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6104     rights, transformer, r, reducer)).fork();
6105     }
6106     for (Node<K,V> p; (p = advance()) != null; )
6107 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6108 dl 1.149 result = r;
6109     CountedCompleter<?> c;
6110     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6111 dl 1.246 @SuppressWarnings("unchecked")
6112     MapReduceMappingsToLongTask<K,V>
6113 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
6114     s = t.rights;
6115     while (s != null) {
6116 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6117 dl 1.149 s = t.rights = s.nextRight;
6118     }
6119 dl 1.119 }
6120     }
6121 dl 1.4 }
6122 tim 1.1 }
6123    
6124 dl 1.222 @SuppressWarnings("serial")
6125 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6126     extends BulkTask<K,V,Integer> {
6127 dl 1.171 final ToIntFunction<? super K> transformer;
6128 dl 1.153 final IntBinaryOperator reducer;
6129 dl 1.119 final int basis;
6130     int result;
6131 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6132 dl 1.119 MapReduceKeysToIntTask
6133 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6134 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6135 dl 1.171 ToIntFunction<? super K> transformer,
6136 dl 1.119 int basis,
6137 dl 1.153 IntBinaryOperator reducer) {
6138 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6139 dl 1.119 this.transformer = transformer;
6140     this.basis = basis; this.reducer = reducer;
6141     }
6142 dl 1.146 public final Integer getRawResult() { return result; }
6143 dl 1.210 public final void compute() {
6144 dl 1.171 final ToIntFunction<? super K> transformer;
6145 dl 1.153 final IntBinaryOperator reducer;
6146 dl 1.149 if ((transformer = this.transformer) != null &&
6147     (reducer = this.reducer) != null) {
6148     int r = this.basis;
6149 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6150     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6151     addToPendingCount(1);
6152 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6153 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6154     rights, transformer, r, reducer)).fork();
6155     }
6156     for (Node<K,V> p; (p = advance()) != null; )
6157 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6158 dl 1.149 result = r;
6159     CountedCompleter<?> c;
6160     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6161 dl 1.246 @SuppressWarnings("unchecked")
6162     MapReduceKeysToIntTask<K,V>
6163 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6164     s = t.rights;
6165     while (s != null) {
6166 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6167 dl 1.149 s = t.rights = s.nextRight;
6168     }
6169 dl 1.119 }
6170 dl 1.138 }
6171 dl 1.30 }
6172     }
6173    
6174 dl 1.222 @SuppressWarnings("serial")
6175 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6176     extends BulkTask<K,V,Integer> {
6177 dl 1.171 final ToIntFunction<? super V> transformer;
6178 dl 1.153 final IntBinaryOperator reducer;
6179 dl 1.119 final int basis;
6180     int result;
6181 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6182 dl 1.119 MapReduceValuesToIntTask
6183 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6184 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6185 dl 1.171 ToIntFunction<? super V> transformer,
6186 dl 1.119 int basis,
6187 dl 1.153 IntBinaryOperator reducer) {
6188 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6189 dl 1.119 this.transformer = transformer;
6190     this.basis = basis; this.reducer = reducer;
6191     }
6192 dl 1.146 public final Integer getRawResult() { return result; }
6193 dl 1.210 public final void compute() {
6194 dl 1.171 final ToIntFunction<? super V> transformer;
6195 dl 1.153 final IntBinaryOperator reducer;
6196 dl 1.149 if ((transformer = this.transformer) != null &&
6197     (reducer = this.reducer) != null) {
6198     int r = this.basis;
6199 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6200     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6201     addToPendingCount(1);
6202 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6203 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6204     rights, transformer, r, reducer)).fork();
6205     }
6206     for (Node<K,V> p; (p = advance()) != null; )
6207     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6208 dl 1.149 result = r;
6209     CountedCompleter<?> c;
6210     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6211 dl 1.246 @SuppressWarnings("unchecked")
6212     MapReduceValuesToIntTask<K,V>
6213 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6214     s = t.rights;
6215     while (s != null) {
6216 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6217 dl 1.149 s = t.rights = s.nextRight;
6218     }
6219 dl 1.119 }
6220 dl 1.2 }
6221 tim 1.1 }
6222     }
6223    
6224 dl 1.222 @SuppressWarnings("serial")
6225 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6226     extends BulkTask<K,V,Integer> {
6227 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6228 dl 1.153 final IntBinaryOperator reducer;
6229 dl 1.119 final int basis;
6230     int result;
6231 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6232 dl 1.119 MapReduceEntriesToIntTask
6233 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6234 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6235 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6236 dl 1.119 int basis,
6237 dl 1.153 IntBinaryOperator reducer) {
6238 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6239 dl 1.119 this.transformer = transformer;
6240     this.basis = basis; this.reducer = reducer;
6241     }
6242 dl 1.146 public final Integer getRawResult() { return result; }
6243 dl 1.210 public final void compute() {
6244 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6245 dl 1.153 final IntBinaryOperator reducer;
6246 dl 1.149 if ((transformer = this.transformer) != null &&
6247     (reducer = this.reducer) != null) {
6248     int r = this.basis;
6249 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6250     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6251     addToPendingCount(1);
6252 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6253 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6254     rights, transformer, r, reducer)).fork();
6255     }
6256     for (Node<K,V> p; (p = advance()) != null; )
6257     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6258 dl 1.149 result = r;
6259     CountedCompleter<?> c;
6260     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6261 dl 1.246 @SuppressWarnings("unchecked")
6262     MapReduceEntriesToIntTask<K,V>
6263 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6264     s = t.rights;
6265     while (s != null) {
6266 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6267 dl 1.149 s = t.rights = s.nextRight;
6268     }
6269 dl 1.119 }
6270 dl 1.138 }
6271 dl 1.4 }
6272 dl 1.119 }
6273 tim 1.1
6274 dl 1.222 @SuppressWarnings("serial")
6275 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6276     extends BulkTask<K,V,Integer> {
6277 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6278 dl 1.153 final IntBinaryOperator reducer;
6279 dl 1.119 final int basis;
6280     int result;
6281 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6282 dl 1.119 MapReduceMappingsToIntTask
6283 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6284 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6285 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6286 dl 1.119 int basis,
6287 dl 1.153 IntBinaryOperator reducer) {
6288 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6289 dl 1.119 this.transformer = transformer;
6290     this.basis = basis; this.reducer = reducer;
6291     }
6292 dl 1.146 public final Integer getRawResult() { return result; }
6293 dl 1.210 public final void compute() {
6294 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6295 dl 1.153 final IntBinaryOperator reducer;
6296 dl 1.149 if ((transformer = this.transformer) != null &&
6297     (reducer = this.reducer) != null) {
6298     int r = this.basis;
6299 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6300     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6301     addToPendingCount(1);
6302 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6303 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6304     rights, transformer, r, reducer)).fork();
6305     }
6306     for (Node<K,V> p; (p = advance()) != null; )
6307 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6308 dl 1.149 result = r;
6309     CountedCompleter<?> c;
6310     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6311 dl 1.246 @SuppressWarnings("unchecked")
6312     MapReduceMappingsToIntTask<K,V>
6313 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6314     s = t.rights;
6315     while (s != null) {
6316 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6317 dl 1.149 s = t.rights = s.nextRight;
6318     }
6319 dl 1.119 }
6320 dl 1.138 }
6321 tim 1.1 }
6322     }
6323 dl 1.99
6324     // Unsafe mechanics
6325 jsr166 1.293 private static final Unsafe U = Unsafe.getUnsafe();
6326 dl 1.149 private static final long SIZECTL;
6327     private static final long TRANSFERINDEX;
6328     private static final long BASECOUNT;
6329 dl 1.153 private static final long CELLSBUSY;
6330 dl 1.149 private static final long CELLVALUE;
6331 jsr166 1.264 private static final int ABASE;
6332 dl 1.119 private static final int ASHIFT;
6333 dl 1.99
6334     static {
6335     try {
6336 dl 1.149 SIZECTL = U.objectFieldOffset
6337 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6338 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6339 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6340 dl 1.149 BASECOUNT = U.objectFieldOffset
6341 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6342 dl 1.153 CELLSBUSY = U.objectFieldOffset
6343 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6344    
6345 dl 1.149 CELLVALUE = U.objectFieldOffset
6346 jsr166 1.264 (CounterCell.class.getDeclaredField("value"));
6347    
6348     ABASE = U.arrayBaseOffset(Node[].class);
6349     int scale = U.arrayIndexScale(Node[].class);
6350 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6351 jsr166 1.308 throw new ExceptionInInitializerError("array index scale not a power of two");
6352 jsr166 1.167 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6353 jsr166 1.262 } catch (ReflectiveOperationException e) {
6354 jsr166 1.307 throw new ExceptionInInitializerError(e);
6355 dl 1.99 }
6356 jsr166 1.269
6357     // Reduce the risk of rare disastrous classloading in first call to
6358     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6359     Class<?> ensureLoaded = LockSupport.class;
6360 jsr166 1.309
6361     // Eager class load observed to help JIT during startup
6362     ensureLoaded = ReservationNode.class;
6363 dl 1.99 }
6364 jsr166 1.152 }