ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.323
Committed: Thu Oct 17 01:51:37 2019 UTC (4 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.322: +1 -0 lines
Log Message:
8232230: Suppress warnings on non-serializable non-transient instance fields in java.util.concurrent

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.119 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.208 import java.util.Map;
21 dl 1.119 import java.util.NoSuchElementException;
22 dl 1.208 import java.util.Set;
23     import java.util.Spliterator;
24     import java.util.concurrent.atomic.AtomicReference;
25 dl 1.222 import java.util.concurrent.locks.LockSupport;
26 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
27     import java.util.function.BiConsumer;
28     import java.util.function.BiFunction;
29     import java.util.function.Consumer;
30     import java.util.function.DoubleBinaryOperator;
31     import java.util.function.Function;
32     import java.util.function.IntBinaryOperator;
33     import java.util.function.LongBinaryOperator;
34 dl 1.271 import java.util.function.Predicate;
35 dl 1.208 import java.util.function.ToDoubleBiFunction;
36     import java.util.function.ToDoubleFunction;
37     import java.util.function.ToIntBiFunction;
38     import java.util.function.ToIntFunction;
39     import java.util.function.ToLongBiFunction;
40     import java.util.function.ToLongFunction;
41 dl 1.210 import java.util.stream.Stream;
42 jsr166 1.293 import jdk.internal.misc.Unsafe;
43 tim 1.1
44     /**
45 dl 1.4 * A hash table supporting full concurrency of retrievals and
46 dl 1.119 * high expected concurrency for updates. This class obeys the
47 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
48 dl 1.19 * includes versions of methods corresponding to each method of
49 dl 1.119 * {@code Hashtable}. However, even though all operations are
50 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
51     * and there is <em>not</em> any support for locking the entire table
52     * in a way that prevents all access. This class is fully
53 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
54 dl 1.4 * thread safety but not on its synchronization details.
55 tim 1.11 *
56 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
57 dl 1.119 * block, so may overlap with update operations (including {@code put}
58     * and {@code remove}). Retrievals reflect the results of the most
59     * recently <em>completed</em> update operations holding upon their
60 dl 1.126 * onset. (More formally, an update operation for a given key bears a
61     * <em>happens-before</em> relation with any (non-null) retrieval for
62     * that key reporting the updated value.) For aggregate operations
63     * such as {@code putAll} and {@code clear}, concurrent retrievals may
64     * reflect insertion or removal of only some entries. Similarly,
65 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
66     * state of the hash table at some point at or since the creation of the
67 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
68 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69     * However, iterators are designed to be used by only one thread at a time.
70     * Bear in mind that the results of aggregate status methods including
71     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72     * useful only when a map is not undergoing concurrent updates in other threads.
73 dl 1.126 * Otherwise the results of these methods reflect transient states
74     * that may be adequate for monitoring or estimation purposes, but not
75     * for program control.
76 tim 1.1 *
77 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
78 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
79     * the same slot modulo the table size), with the expected average
80     * effect of maintaining roughly two bins per mapping (corresponding
81     * to a 0.75 load factor threshold for resizing). There may be much
82     * variance around this average as mappings are added and removed, but
83     * overall, this maintains a commonly accepted time/space tradeoff for
84     * hash tables. However, resizing this or any other kind of hash
85     * table may be a relatively slow operation. When possible, it is a
86     * good idea to provide a size estimate as an optional {@code
87     * initialCapacity} constructor argument. An additional optional
88     * {@code loadFactor} constructor argument provides a further means of
89     * customizing initial table capacity by specifying the table density
90     * to be used in calculating the amount of space to allocate for the
91     * given number of elements. Also, for compatibility with previous
92     * versions of this class, constructors may optionally specify an
93     * expected {@code concurrencyLevel} as an additional hint for
94     * internal sizing. Note that using many keys with exactly the same
95     * {@code hashCode()} is a sure way to slow down performance of any
96 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
97     * this class may use comparison order among keys to help break ties.
98 tim 1.1 *
99 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101     * (using {@link #keySet(Object)} when only keys are of interest, and the
102     * mapped values are (perhaps transiently) not used or all take the
103     * same mapping value.
104     *
105 jsr166 1.257 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 dl 1.153 * form of histogram or multiset) by using {@link
107     * java.util.concurrent.atomic.LongAdder} values and initializing via
108 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 jsr166 1.257 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 dl 1.137 *
112 dl 1.45 * <p>This class and its views and iterators implement all of the
113     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114     * interfaces.
115 dl 1.23 *
116 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
118 tim 1.1 *
119 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120     * operations that, unlike most {@link Stream} methods, are designed
121     * to be safely, and often sensibly, applied even with maps that are
122     * being concurrently updated by other threads; for example, when
123     * computing a snapshot summary of the values in a shared registry.
124     * There are three kinds of operation, each with four forms, accepting
125 jsr166 1.278 * functions with keys, values, entries, and (key, value) pairs as
126     * arguments and/or return values. Because the elements of a
127     * ConcurrentHashMap are not ordered in any particular way, and may be
128     * processed in different orders in different parallel executions, the
129     * correctness of supplied functions should not depend on any
130     * ordering, or on any other objects or values that may transiently
131     * change while computation is in progress; and except for forEach
132     * actions, should ideally be side-effect-free. Bulk operations on
133 jsr166 1.300 * {@link Map.Entry} objects do not support method {@code setValue}.
134 dl 1.137 *
135     * <ul>
136 jsr166 1.280 * <li>forEach: Performs a given action on each element.
137 dl 1.137 * A variant form applies a given transformation on each element
138 jsr166 1.280 * before performing the action.
139 dl 1.137 *
140 jsr166 1.280 * <li>search: Returns the first available non-null result of
141 dl 1.137 * applying a given function on each element; skipping further
142 jsr166 1.280 * search when a result is found.
143 dl 1.137 *
144 jsr166 1.280 * <li>reduce: Accumulates each element. The supplied reduction
145 dl 1.137 * function cannot rely on ordering (more formally, it should be
146     * both associative and commutative). There are five variants:
147     *
148     * <ul>
149     *
150 jsr166 1.280 * <li>Plain reductions. (There is not a form of this method for
151 dl 1.137 * (key, value) function arguments since there is no corresponding
152 jsr166 1.280 * return type.)
153 dl 1.137 *
154 jsr166 1.280 * <li>Mapped reductions that accumulate the results of a given
155     * function applied to each element.
156 dl 1.137 *
157 jsr166 1.280 * <li>Reductions to scalar doubles, longs, and ints, using a
158     * given basis value.
159 dl 1.137 *
160 jsr166 1.178 * </ul>
161 dl 1.137 * </ul>
162     *
163 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
164     * argument. Methods proceed sequentially if the current map size is
165     * estimated to be less than the given threshold. Using a value of
166     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
168 dl 1.219 * enough subtasks to fully utilize the {@link
169     * ForkJoinPool#commonPool()} that is used for all parallel
170     * computations. Normally, you would initially choose one of these
171     * extreme values, and then measure performance of using in-between
172     * values that trade off overhead versus throughput.
173 dl 1.210 *
174 dl 1.137 * <p>The concurrency properties of bulk operations follow
175     * from those of ConcurrentHashMap: Any non-null result returned
176     * from {@code get(key)} and related access methods bears a
177     * happens-before relation with the associated insertion or
178     * update. The result of any bulk operation reflects the
179     * composition of these per-element relations (but is not
180     * necessarily atomic with respect to the map as a whole unless it
181     * is somehow known to be quiescent). Conversely, because keys
182     * and values in the map are never null, null serves as a reliable
183     * atomic indicator of the current lack of any result. To
184     * maintain this property, null serves as an implicit basis for
185     * all non-scalar reduction operations. For the double, long, and
186     * int versions, the basis should be one that, when combined with
187     * any other value, returns that other value (more formally, it
188     * should be the identity element for the reduction). Most common
189     * reductions have these properties; for example, computing a sum
190     * with basis 0 or a minimum with basis MAX_VALUE.
191     *
192     * <p>Search and transformation functions provided as arguments
193     * should similarly return null to indicate the lack of any result
194     * (in which case it is not used). In the case of mapped
195     * reductions, this also enables transformations to serve as
196     * filters, returning null (or, in the case of primitive
197     * specializations, the identity basis) if the element should not
198     * be combined. You can create compound transformations and
199     * filterings by composing them yourself under this "null means
200     * there is nothing there now" rule before using them in search or
201     * reduce operations.
202     *
203     * <p>Methods accepting and/or returning Entry arguments maintain
204     * key-value associations. They may be useful for example when
205     * finding the key for the greatest value. Note that "plain" Entry
206     * arguments can be supplied using {@code new
207     * AbstractMap.SimpleEntry(k,v)}.
208     *
209 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
210 dl 1.137 * exception encountered in the application of a supplied
211     * function. Bear in mind when handling such exceptions that other
212     * concurrently executing functions could also have thrown
213     * exceptions, or would have done so if the first exception had
214     * not occurred.
215     *
216 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
217     * but not guaranteed. Parallel operations involving brief functions
218     * on small maps may execute more slowly than sequential forms if the
219     * underlying work to parallelize the computation is more expensive
220     * than the computation itself. Similarly, parallelization may not
221     * lead to much actual parallelism if all processors are busy
222     * performing unrelated tasks.
223 dl 1.137 *
224 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
225 dl 1.137 *
226 dl 1.42 * <p>This class is a member of the
227 jsr166 1.313 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228 dl 1.42 * Java Collections Framework</a>.
229     *
230 dl 1.8 * @since 1.5
231     * @author Doug Lea
232 dl 1.27 * @param <K> the type of keys maintained by this map
233 jsr166 1.64 * @param <V> the type of mapped values
234 dl 1.8 */
235 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236     implements ConcurrentMap<K,V>, Serializable {
237 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
238 tim 1.1
239     /*
240 dl 1.119 * Overview:
241     *
242     * The primary design goal of this hash table is to maintain
243     * concurrent readability (typically method get(), but also
244     * iterators and related methods) while minimizing update
245     * contention. Secondary goals are to keep space consumption about
246     * the same or better than java.util.HashMap, and to support high
247     * initial insertion rates on an empty table by many threads.
248     *
249 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
250     * key-value mapping is held in a Node. Most nodes are instances
251     * of the basic Node class with hash, key, value, and next
252     * fields. However, various subclasses exist: TreeNodes are
253 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
254     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255     * of bins during resizing. ReservationNodes are used as
256     * placeholders while establishing values in computeIfAbsent and
257 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
258 dl 1.222 * ReservationNode do not hold normal user keys, values, or
259     * hashes, and are readily distinguishable during search etc
260     * because they have negative hash fields and null key and value
261     * fields. (These special nodes are either uncommon or transient,
262     * so the impact of carrying around some unused fields is
263 jsr166 1.232 * insignificant.)
264 dl 1.119 *
265     * The table is lazily initialized to a power-of-two size upon the
266     * first insertion. Each bin in the table normally contains a
267     * list of Nodes (most often, the list has only zero or one Node).
268     * Table accesses require volatile/atomic reads, writes, and
269     * CASes. Because there is no other way to arrange this without
270     * adding further indirections, we use intrinsics
271 jsr166 1.291 * (jdk.internal.misc.Unsafe) operations.
272 dl 1.119 *
273 dl 1.149 * We use the top (sign) bit of Node hash fields for control
274     * purposes -- it is available anyway because of addressing
275 dl 1.222 * constraints. Nodes with negative hash fields are specially
276     * handled or ignored in map methods.
277 dl 1.119 *
278     * Insertion (via put or its variants) of the first node in an
279     * empty bin is performed by just CASing it to the bin. This is
280     * by far the most common case for put operations under most
281     * key/hash distributions. Other update operations (insert,
282     * delete, and replace) require locks. We do not want to waste
283     * the space required to associate a distinct lock object with
284     * each bin, so instead use the first node of a bin list itself as
285 dl 1.149 * a lock. Locking support for these locks relies on builtin
286     * "synchronized" monitors.
287 dl 1.119 *
288     * Using the first node of a list as a lock does not by itself
289     * suffice though: When a node is locked, any update must first
290     * validate that it is still the first node after locking it, and
291     * retry if not. Because new nodes are always appended to lists,
292     * once a node is first in a bin, it remains first until deleted
293 dl 1.210 * or the bin becomes invalidated (upon resizing).
294 dl 1.119 *
295     * The main disadvantage of per-bin locks is that other update
296     * operations on other nodes in a bin list protected by the same
297     * lock can stall, for example when user equals() or mapping
298     * functions take a long time. However, statistically, under
299     * random hash codes, this is not a common problem. Ideally, the
300     * frequency of nodes in bins follows a Poisson distribution
301     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302     * parameter of about 0.5 on average, given the resizing threshold
303     * of 0.75, although with a large variance because of resizing
304     * granularity. Ignoring variance, the expected occurrences of
305     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306     * first values are:
307     *
308     * 0: 0.60653066
309     * 1: 0.30326533
310     * 2: 0.07581633
311     * 3: 0.01263606
312     * 4: 0.00157952
313     * 5: 0.00015795
314     * 6: 0.00001316
315     * 7: 0.00000094
316     * 8: 0.00000006
317     * more: less than 1 in ten million
318     *
319     * Lock contention probability for two threads accessing distinct
320     * elements is roughly 1 / (8 * #elements) under random hashes.
321     *
322     * Actual hash code distributions encountered in practice
323     * sometimes deviate significantly from uniform randomness. This
324     * includes the case when N > (1<<30), so some keys MUST collide.
325     * Similarly for dumb or hostile usages in which multiple keys are
326 dl 1.222 * designed to have identical hash codes or ones that differs only
327 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
328     * applies when the number of nodes in a bin exceeds a
329     * threshold. These TreeBins use a balanced tree to hold nodes (a
330     * specialized form of red-black trees), bounding search time to
331     * O(log N). Each search step in a TreeBin is at least twice as
332     * slow as in a regular list, but given that N cannot exceed
333     * (1<<64) (before running out of addresses) this bounds search
334     * steps, lock hold times, etc, to reasonable constants (roughly
335     * 100 nodes inspected per operation worst case) so long as keys
336     * are Comparable (which is very common -- String, Long, etc).
337 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
338     * traversal pointers as regular nodes, so can be traversed in
339     * iterators in the same way.
340     *
341     * The table is resized when occupancy exceeds a percentage
342 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
343     * noticing an overfull bin may assist in resizing after the
344 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
345     * However, rather than stalling, these other threads may proceed
346     * with insertions etc. The use of TreeBins shields us from the
347     * worst case effects of overfilling while resizes are in
348 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
349 dl 1.246 * from the table to the next table. However, threads claim small
350     * blocks of indices to transfer (via field transferIndex) before
351 dl 1.252 * doing so, reducing contention. A generation stamp in field
352     * sizeCtl ensures that resizings do not overlap. Because we are
353     * using power-of-two expansion, the elements from each bin must
354     * either stay at same index, or move with a power of two
355     * offset. We eliminate unnecessary node creation by catching
356     * cases where old nodes can be reused because their next fields
357     * won't change. On average, only about one-sixth of them need
358     * cloning when a table doubles. The nodes they replace will be
359 jsr166 1.317 * garbage collectible as soon as they are no longer referenced by
360 dl 1.252 * any reader thread that may be in the midst of concurrently
361     * traversing table. Upon transfer, the old table bin contains
362     * only a special forwarding node (with hash field "MOVED") that
363     * contains the next table as its key. On encountering a
364     * forwarding node, access and update operations restart, using
365     * the new table.
366 dl 1.149 *
367     * Each bin transfer requires its bin lock, which can stall
368     * waiting for locks while resizing. However, because other
369     * threads can join in and help resize rather than contend for
370     * locks, average aggregate waits become shorter as resizing
371     * progresses. The transfer operation must also ensure that all
372     * accessible bins in both the old and new table are usable by any
373 dl 1.246 * traversal. This is arranged in part by proceeding from the
374     * last bin (table.length - 1) up towards the first. Upon seeing
375     * a forwarding node, traversals (see class Traverser) arrange to
376     * move to the new table without revisiting nodes. To ensure that
377     * no intervening nodes are skipped even when moved out of order,
378     * a stack (see class TableStack) is created on first encounter of
379     * a forwarding node during a traversal, to maintain its place if
380     * later processing the current table. The need for these
381     * save/restore mechanics is relatively rare, but when one
382 jsr166 1.248 * forwarding node is encountered, typically many more will be.
383 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
384     * many new TableStack nodes. (Thanks to Peter Levart for
385     * suggesting use of a stack here.)
386 dl 1.119 *
387     * The traversal scheme also applies to partial traversals of
388     * ranges of bins (via an alternate Traverser constructor)
389     * to support partitioned aggregate operations. Also, read-only
390     * operations give up if ever forwarded to a null table, which
391     * provides support for shutdown-style clearing, which is also not
392     * currently implemented.
393     *
394     * Lazy table initialization minimizes footprint until first use,
395     * and also avoids resizings when the first operation is from a
396     * putAll, constructor with map argument, or deserialization.
397     * These cases attempt to override the initial capacity settings,
398     * but harmlessly fail to take effect in cases of races.
399     *
400 dl 1.149 * The element count is maintained using a specialization of
401     * LongAdder. We need to incorporate a specialization rather than
402     * just use a LongAdder in order to access implicit
403     * contention-sensing that leads to creation of multiple
404 dl 1.222 * CounterCells. The counter mechanics avoid contention on
405 dl 1.149 * updates but can encounter cache thrashing if read too
406     * frequently during concurrent access. To avoid reading so often,
407     * resizing under contention is attempted only upon adding to a
408     * bin already holding two or more nodes. Under uniform hash
409     * distributions, the probability of this occurring at threshold
410     * is around 13%, meaning that only about 1 in 8 puts check
411 dl 1.222 * threshold (and after resizing, many fewer do so).
412     *
413     * TreeBins use a special form of comparison for search and
414     * related operations (which is the main reason we cannot use
415     * existing collections such as TreeMaps). TreeBins contain
416     * Comparable elements, but may contain others, as well as
417 dl 1.240 * elements that are Comparable but not necessarily Comparable for
418     * the same T, so we cannot invoke compareTo among them. To handle
419     * this, the tree is ordered primarily by hash value, then by
420     * Comparable.compareTo order if applicable. On lookup at a node,
421     * if elements are not comparable or compare as 0 then both left
422     * and right children may need to be searched in the case of tied
423     * hash values. (This corresponds to the full list search that
424     * would be necessary if all elements were non-Comparable and had
425     * tied hashes.) On insertion, to keep a total ordering (or as
426     * close as is required here) across rebalancings, we compare
427     * classes and identityHashCodes as tie-breakers. The red-black
428     * balancing code is updated from pre-jdk-collections
429 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431     * Algorithms" (CLR).
432     *
433     * TreeBins also require an additional locking mechanism. While
434 dl 1.224 * list traversal is always possible by readers even during
435 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
436 dl 1.222 * that may change the root node and/or its linkages. TreeBins
437     * include a simple read-write lock mechanism parasitic on the
438     * main bin-synchronization strategy: Structural adjustments
439     * associated with an insertion or removal are already bin-locked
440     * (and so cannot conflict with other writers) but must wait for
441     * ongoing readers to finish. Since there can be only one such
442     * waiter, we use a simple scheme using a single "waiter" field to
443     * block writers. However, readers need never block. If the root
444     * lock is held, they proceed along the slow traversal path (via
445     * next-pointers) until the lock becomes available or the list is
446     * exhausted, whichever comes first. These cases are not fast, but
447     * maximize aggregate expected throughput.
448 dl 1.119 *
449     * Maintaining API and serialization compatibility with previous
450     * versions of this class introduces several oddities. Mainly: We
451 jsr166 1.274 * leave untouched but unused constructor arguments referring to
452 dl 1.119 * concurrencyLevel. We accept a loadFactor constructor argument,
453     * but apply it only to initial table capacity (which is the only
454     * time that we can guarantee to honor it.) We also declare an
455     * unused "Segment" class that is instantiated in minimal form
456     * only when serializing.
457 dl 1.222 *
458 dl 1.240 * Also, solely for compatibility with previous versions of this
459     * class, it extends AbstractMap, even though all of its methods
460     * are overridden, so it is just useless baggage.
461     *
462 dl 1.222 * This file is organized to make things a little easier to follow
463 dl 1.224 * while reading than they might otherwise: First the main static
464 dl 1.222 * declarations and utilities, then fields, then main public
465     * methods (with a few factorings of multiple public methods into
466     * internal ones), then sizing methods, trees, traversers, and
467     * bulk operations.
468 dl 1.4 */
469 tim 1.1
470 dl 1.4 /* ---------------- Constants -------------- */
471 tim 1.11
472 dl 1.4 /**
473 dl 1.119 * The largest possible table capacity. This value must be
474     * exactly 1<<30 to stay within Java array allocation and indexing
475     * bounds for power of two table sizes, and is further required
476     * because the top two bits of 32bit hash fields are used for
477     * control purposes.
478 dl 1.4 */
479 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
480 dl 1.56
481     /**
482 dl 1.119 * The default initial table capacity. Must be a power of 2
483     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 dl 1.56 */
485 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
486 dl 1.56
487     /**
488 dl 1.119 * The largest possible (non-power of two) array size.
489     * Needed by toArray and related methods.
490 jsr166 1.59 */
491 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492 tim 1.1
493     /**
494 dl 1.119 * The default concurrency level for this table. Unused but
495     * defined for compatibility with previous versions of this class.
496 dl 1.4 */
497 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498 tim 1.11
499 tim 1.1 /**
500 dl 1.119 * The load factor for this table. Overrides of this value in
501     * constructors affect only the initial table capacity. The
502     * actual floating point value isn't normally used -- it is
503     * simpler to use expressions such as {@code n - (n >>> 2)} for
504     * the associated resizing threshold.
505 dl 1.99 */
506 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
507 dl 1.99
508     /**
509 dl 1.119 * The bin count threshold for using a tree rather than list for a
510 dl 1.222 * bin. Bins are converted to trees when adding an element to a
511 dl 1.224 * bin with at least this many nodes. The value must be greater
512     * than 2, and should be at least 8 to mesh with assumptions in
513     * tree removal about conversion back to plain bins upon
514     * shrinkage.
515 dl 1.222 */
516     static final int TREEIFY_THRESHOLD = 8;
517    
518     /**
519     * The bin count threshold for untreeifying a (split) bin during a
520     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521     * most 6 to mesh with shrinkage detection under removal.
522     */
523     static final int UNTREEIFY_THRESHOLD = 6;
524    
525     /**
526     * The smallest table capacity for which bins may be treeified.
527     * (Otherwise the table is resized if too many nodes in a bin.)
528 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529     * conflicts between resizing and treeification thresholds.
530 dl 1.119 */
531 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
532 dl 1.119
533 dl 1.149 /**
534     * Minimum number of rebinnings per transfer step. Ranges are
535     * subdivided to allow multiple resizer threads. This value
536     * serves as a lower bound to avoid resizers encountering
537     * excessive memory contention. The value should be at least
538     * DEFAULT_CAPACITY.
539     */
540     private static final int MIN_TRANSFER_STRIDE = 16;
541    
542 dl 1.252 /**
543     * The number of bits used for generation stamp in sizeCtl.
544     * Must be at least 6 for 32bit arrays.
545     */
546 jsr166 1.282 private static final int RESIZE_STAMP_BITS = 16;
547 dl 1.252
548     /**
549     * The maximum number of threads that can help resize.
550     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551     */
552     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553    
554     /**
555     * The bit shift for recording size stamp in sizeCtl.
556     */
557     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558    
559 dl 1.119 /*
560 dl 1.149 * Encodings for Node hash fields. See above for explanation.
561 dl 1.46 */
562 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
563     static final int TREEBIN = -2; // hash for roots of trees
564     static final int RESERVED = -3; // hash for transient reservations
565 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566    
567     /** Number of CPUS, to place bounds on some sizings */
568     static final int NCPU = Runtime.getRuntime().availableProcessors();
569    
570 jsr166 1.287 /**
571     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572     * @serialField segments Segment[]
573     * The segments, each of which is a specialized hash table.
574     * @serialField segmentMask int
575     * Mask value for indexing into segments. The upper bits of a
576     * key's hash code are used to choose the segment.
577     * @serialField segmentShift int
578     * Shift value for indexing within segments.
579     */
580 dl 1.208 private static final ObjectStreamField[] serialPersistentFields = {
581 dl 1.209 new ObjectStreamField("segments", Segment[].class),
582     new ObjectStreamField("segmentMask", Integer.TYPE),
583 jsr166 1.283 new ObjectStreamField("segmentShift", Integer.TYPE),
584 dl 1.208 };
585    
586 dl 1.222 /* ---------------- Nodes -------------- */
587    
588     /**
589     * Key-value entry. This class is never exported out as a
590     * user-mutable Map.Entry (i.e., one supporting setValue; see
591     * MapEntry below), but can be used for read-only traversals used
592 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
593 dl 1.224 * are special, and contain null keys and values (but are never
594     * exported). Otherwise, keys and vals are never null.
595 dl 1.222 */
596     static class Node<K,V> implements Map.Entry<K,V> {
597     final int hash;
598     final K key;
599     volatile V val;
600 dl 1.233 volatile Node<K,V> next;
601 dl 1.222
602 jsr166 1.290 Node(int hash, K key, V val) {
603 dl 1.222 this.hash = hash;
604     this.key = key;
605     this.val = val;
606 jsr166 1.290 }
607    
608     Node(int hash, K key, V val, Node<K,V> next) {
609     this(hash, key, val);
610 dl 1.222 this.next = next;
611     }
612    
613 jsr166 1.268 public final K getKey() { return key; }
614     public final V getValue() { return val; }
615     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616     public final String toString() {
617     return Helpers.mapEntryToString(key, val);
618 jsr166 1.265 }
619 dl 1.222 public final V setValue(V value) {
620     throw new UnsupportedOperationException();
621     }
622    
623     public final boolean equals(Object o) {
624     Object k, v, u; Map.Entry<?,?> e;
625     return ((o instanceof Map.Entry) &&
626     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627     (v = e.getValue()) != null &&
628     (k == key || k.equals(key)) &&
629     (v == (u = val) || v.equals(u)));
630     }
631    
632 dl 1.224 /**
633     * Virtualized support for map.get(); overridden in subclasses.
634     */
635 dl 1.222 Node<K,V> find(int h, Object k) {
636     Node<K,V> e = this;
637     if (k != null) {
638     do {
639     K ek;
640     if (e.hash == h &&
641     ((ek = e.key) == k || (ek != null && k.equals(ek))))
642     return e;
643     } while ((e = e.next) != null);
644     }
645     return null;
646     }
647     }
648    
649     /* ---------------- Static utilities -------------- */
650    
651     /**
652     * Spreads (XORs) higher bits of hash to lower and also forces top
653     * bit to 0. Because the table uses power-of-two masking, sets of
654     * hashes that vary only in bits above the current mask will
655     * always collide. (Among known examples are sets of Float keys
656     * holding consecutive whole numbers in small tables.) So we
657     * apply a transform that spreads the impact of higher bits
658     * downward. There is a tradeoff between speed, utility, and
659     * quality of bit-spreading. Because many common sets of hashes
660     * are already reasonably distributed (so don't benefit from
661     * spreading), and because we use trees to handle large sets of
662     * collisions in bins, we just XOR some shifted bits in the
663     * cheapest possible way to reduce systematic lossage, as well as
664     * to incorporate impact of the highest bits that would otherwise
665     * never be used in index calculations because of table bounds.
666     */
667     static final int spread(int h) {
668     return (h ^ (h >>> 16)) & HASH_BITS;
669     }
670    
671     /**
672     * Returns a power of two table size for the given desired capacity.
673     * See Hackers Delight, sec 3.2
674     */
675     private static final int tableSizeFor(int c) {
676 jsr166 1.310 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 dl 1.222 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678     }
679    
680     /**
681     * Returns x's Class if it is of the form "class C implements
682     * Comparable<C>", else null.
683     */
684     static Class<?> comparableClassFor(Object x) {
685     if (x instanceof Comparable) {
686 jsr166 1.305 Class<?> c; Type[] ts, as; ParameterizedType p;
687 dl 1.222 if ((c = x.getClass()) == String.class) // bypass checks
688     return c;
689     if ((ts = c.getGenericInterfaces()) != null) {
690 jsr166 1.305 for (Type t : ts) {
691     if ((t instanceof ParameterizedType) &&
692 dl 1.222 ((p = (ParameterizedType)t).getRawType() ==
693     Comparable.class) &&
694     (as = p.getActualTypeArguments()) != null &&
695     as.length == 1 && as[0] == c) // type arg is c
696     return c;
697     }
698     }
699     }
700     return null;
701     }
702    
703 dl 1.210 /**
704 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705     * class), else 0.
706     */
707     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708     static int compareComparables(Class<?> kc, Object k, Object x) {
709     return (x == null || x.getClass() != kc ? 0 :
710     ((Comparable)k).compareTo(x));
711     }
712    
713     /* ---------------- Table element access -------------- */
714    
715     /*
716 dl 1.294 * Atomic access methods are used for table elements as well as
717 dl 1.222 * elements of in-progress next table while resizing. All uses of
718     * the tab arguments must be null checked by callers. All callers
719     * also paranoically precheck that tab's length is not zero (or an
720     * equivalent check), thus ensuring that any index argument taking
721     * the form of a hash value anded with (length - 1) is a valid
722     * index. Note that, to be correct wrt arbitrary concurrency
723     * errors by users, these checks must operate on local variables,
724     * which accounts for some odd-looking inline assignments below.
725     * Note that calls to setTabAt always occur within locked regions,
726 dl 1.294 * and so require only release ordering.
727 dl 1.210 */
728 dl 1.222
729     @SuppressWarnings("unchecked")
730     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 dl 1.294 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 dl 1.222 }
733    
734     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735     Node<K,V> c, Node<K,V> v) {
736 jsr166 1.302 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 dl 1.222 }
738    
739     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 dl 1.294 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 dl 1.149 }
742    
743 dl 1.4 /* ---------------- Fields -------------- */
744 tim 1.1
745     /**
746 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
747     * Size is always a power of two. Accessed directly by iterators.
748 jsr166 1.59 */
749 dl 1.210 transient volatile Node<K,V>[] table;
750 tim 1.1
751     /**
752 dl 1.149 * The next table to use; non-null only while resizing.
753 jsr166 1.59 */
754 dl 1.210 private transient volatile Node<K,V>[] nextTable;
755 dl 1.149
756     /**
757     * Base counter value, used mainly when there is no contention,
758     * but also as a fallback during table initialization
759     * races. Updated via CAS.
760     */
761     private transient volatile long baseCount;
762 tim 1.1
763     /**
764 dl 1.119 * Table initialization and resizing control. When negative, the
765 dl 1.149 * table is being initialized or resized: -1 for initialization,
766     * else -(1 + the number of active resizing threads). Otherwise,
767     * when table is null, holds the initial table size to use upon
768     * creation, or 0 for default. After initialization, holds the
769     * next element count value upon which to resize the table.
770 tim 1.1 */
771 dl 1.119 private transient volatile int sizeCtl;
772 dl 1.4
773 dl 1.149 /**
774     * The next table index (plus one) to split while resizing.
775     */
776     private transient volatile int transferIndex;
777    
778     /**
779 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 dl 1.149 */
781 dl 1.153 private transient volatile int cellsBusy;
782 dl 1.149
783     /**
784     * Table of counter cells. When non-null, size is a power of 2.
785     */
786 dl 1.222 private transient volatile CounterCell[] counterCells;
787 dl 1.149
788 dl 1.119 // views
789 dl 1.137 private transient KeySetView<K,V> keySet;
790 dl 1.142 private transient ValuesView<K,V> values;
791     private transient EntrySetView<K,V> entrySet;
792 dl 1.119
793    
794 dl 1.222 /* ---------------- Public operations -------------- */
795    
796     /**
797     * Creates a new, empty map with the default initial table size (16).
798 dl 1.119 */
799 dl 1.222 public ConcurrentHashMap() {
800     }
801 dl 1.119
802 dl 1.222 /**
803     * Creates a new, empty map with an initial table size
804     * accommodating the specified number of elements without the need
805     * to dynamically resize.
806     *
807     * @param initialCapacity The implementation performs internal
808     * sizing to accommodate this many elements.
809     * @throws IllegalArgumentException if the initial capacity of
810     * elements is negative
811     */
812     public ConcurrentHashMap(int initialCapacity) {
813 dl 1.311 this(initialCapacity, LOAD_FACTOR, 1);
814 dl 1.119 }
815    
816 dl 1.222 /**
817     * Creates a new map with the same mappings as the given map.
818     *
819     * @param m the map
820     */
821     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822     this.sizeCtl = DEFAULT_CAPACITY;
823     putAll(m);
824 dl 1.119 }
825    
826 dl 1.222 /**
827     * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}) and
829     * initial table density ({@code loadFactor}).
830     *
831     * @param initialCapacity the initial capacity. The implementation
832     * performs internal sizing to accommodate this many elements,
833     * given the specified load factor.
834     * @param loadFactor the load factor (table density) for
835     * establishing the initial table size
836     * @throws IllegalArgumentException if the initial capacity of
837     * elements is negative or the load factor is nonpositive
838     *
839     * @since 1.6
840     */
841     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842     this(initialCapacity, loadFactor, 1);
843 dl 1.119 }
844    
845 dl 1.99 /**
846 dl 1.222 * Creates a new, empty map with an initial table size based on
847 dl 1.312 * the given number of elements ({@code initialCapacity}), initial
848     * table density ({@code loadFactor}), and number of concurrently
849 dl 1.222 * updating threads ({@code concurrencyLevel}).
850     *
851     * @param initialCapacity the initial capacity. The implementation
852     * performs internal sizing to accommodate this many elements,
853     * given the specified load factor.
854     * @param loadFactor the load factor (table density) for
855     * establishing the initial table size
856     * @param concurrencyLevel the estimated number of concurrently
857     * updating threads. The implementation may use this value as
858     * a sizing hint.
859     * @throws IllegalArgumentException if the initial capacity is
860     * negative or the load factor or concurrencyLevel are
861     * nonpositive
862 dl 1.99 */
863 dl 1.222 public ConcurrentHashMap(int initialCapacity,
864     float loadFactor, int concurrencyLevel) {
865     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866     throw new IllegalArgumentException();
867     if (initialCapacity < concurrencyLevel) // Use at least as many bins
868     initialCapacity = concurrencyLevel; // as estimated threads
869     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871     MAXIMUM_CAPACITY : tableSizeFor((int)size);
872     this.sizeCtl = cap;
873     }
874 dl 1.99
875 dl 1.222 // Original (since JDK1.2) Map methods
876 dl 1.210
877 dl 1.222 /**
878     * {@inheritDoc}
879     */
880     public int size() {
881     long n = sumCount();
882     return ((n < 0L) ? 0 :
883     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884     (int)n);
885     }
886 dl 1.210
887 dl 1.222 /**
888     * {@inheritDoc}
889     */
890     public boolean isEmpty() {
891     return sumCount() <= 0L; // ignore transient negative values
892 dl 1.210 }
893    
894     /**
895 dl 1.222 * Returns the value to which the specified key is mapped,
896     * or {@code null} if this map contains no mapping for the key.
897     *
898     * <p>More formally, if this map contains a mapping from a key
899     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900     * then this method returns {@code v}; otherwise it returns
901     * {@code null}. (There can be at most one such mapping.)
902     *
903     * @throws NullPointerException if the specified key is null
904 dl 1.210 */
905 dl 1.222 public V get(Object key) {
906     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907     int h = spread(key.hashCode());
908     if ((tab = table) != null && (n = tab.length) > 0 &&
909     (e = tabAt(tab, (n - 1) & h)) != null) {
910     if ((eh = e.hash) == h) {
911     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912     return e.val;
913     }
914     else if (eh < 0)
915     return (p = e.find(h, key)) != null ? p.val : null;
916     while ((e = e.next) != null) {
917     if (e.hash == h &&
918     ((ek = e.key) == key || (ek != null && key.equals(ek))))
919     return e.val;
920     }
921 dl 1.210 }
922 dl 1.222 return null;
923 dl 1.99 }
924    
925     /**
926 dl 1.222 * Tests if the specified object is a key in this table.
927     *
928     * @param key possible key
929     * @return {@code true} if and only if the specified object
930     * is a key in this table, as determined by the
931     * {@code equals} method; {@code false} otherwise
932     * @throws NullPointerException if the specified key is null
933 dl 1.99 */
934 dl 1.222 public boolean containsKey(Object key) {
935     return get(key) != null;
936 dl 1.99 }
937 tim 1.1
938 dl 1.201 /**
939 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
940     * specified value. Note: This method may require a full traversal
941     * of the map, and is much slower than method {@code containsKey}.
942     *
943     * @param value value whose presence in this map is to be tested
944     * @return {@code true} if this map maps one or more keys to the
945     * specified value
946     * @throws NullPointerException if the specified value is null
947     */
948     public boolean containsValue(Object value) {
949     if (value == null)
950     throw new NullPointerException();
951     Node<K,V>[] t;
952     if ((t = table) != null) {
953     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954     for (Node<K,V> p; (p = it.advance()) != null; ) {
955     V v;
956     if ((v = p.val) == value || (v != null && value.equals(v)))
957     return true;
958 dl 1.201 }
959     }
960 dl 1.222 return false;
961 dl 1.201 }
962    
963 tim 1.1 /**
964 dl 1.222 * Maps the specified key to the specified value in this table.
965     * Neither the key nor the value can be null.
966 dl 1.119 *
967 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
968     * with a key that is equal to the original key.
969 dl 1.119 *
970 dl 1.222 * @param key key with which the specified value is to be associated
971     * @param value value to be associated with the specified key
972     * @return the previous value associated with {@code key}, or
973     * {@code null} if there was no mapping for {@code key}
974     * @throws NullPointerException if the specified key or value is null
975 dl 1.119 */
976 dl 1.222 public V put(K key, V value) {
977     return putVal(key, value, false);
978     }
979 dl 1.119
980 dl 1.222 /** Implementation for put and putIfAbsent */
981     final V putVal(K key, V value, boolean onlyIfAbsent) {
982     if (key == null || value == null) throw new NullPointerException();
983     int hash = spread(key.hashCode());
984     int binCount = 0;
985     for (Node<K,V>[] tab = table;;) {
986 dl 1.296 Node<K,V> f; int n, i, fh; K fk; V fv;
987 dl 1.222 if (tab == null || (n = tab.length) == 0)
988     tab = initTable();
989     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 jsr166 1.290 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 dl 1.222 break; // no lock when adding to empty bin
992 dl 1.119 }
993 dl 1.222 else if ((fh = f.hash) == MOVED)
994     tab = helpTransfer(tab, f);
995 jsr166 1.299 else if (onlyIfAbsent // check first node without acquiring lock
996     && fh == hash
997     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998     && (fv = f.val) != null)
999 dl 1.296 return fv;
1000 dl 1.222 else {
1001     V oldVal = null;
1002     synchronized (f) {
1003     if (tabAt(tab, i) == f) {
1004     if (fh >= 0) {
1005     binCount = 1;
1006     for (Node<K,V> e = f;; ++binCount) {
1007     K ek;
1008     if (e.hash == hash &&
1009     ((ek = e.key) == key ||
1010     (ek != null && key.equals(ek)))) {
1011     oldVal = e.val;
1012     if (!onlyIfAbsent)
1013     e.val = value;
1014     break;
1015     }
1016     Node<K,V> pred = e;
1017     if ((e = e.next) == null) {
1018 jsr166 1.290 pred.next = new Node<K,V>(hash, key, value);
1019 dl 1.222 break;
1020     }
1021     }
1022     }
1023     else if (f instanceof TreeBin) {
1024     Node<K,V> p;
1025     binCount = 2;
1026     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027     value)) != null) {
1028     oldVal = p.val;
1029     if (!onlyIfAbsent)
1030     p.val = value;
1031     }
1032     }
1033 dl 1.259 else if (f instanceof ReservationNode)
1034     throw new IllegalStateException("Recursive update");
1035 dl 1.99 }
1036     }
1037 dl 1.222 if (binCount != 0) {
1038     if (binCount >= TREEIFY_THRESHOLD)
1039     treeifyBin(tab, i);
1040     if (oldVal != null)
1041     return oldVal;
1042 dl 1.99 break;
1043     }
1044     }
1045     }
1046 dl 1.222 addCount(1L, binCount);
1047     return null;
1048     }
1049    
1050     /**
1051     * Copies all of the mappings from the specified map to this one.
1052     * These mappings replace any mappings that this map had for any of the
1053     * keys currently in the specified map.
1054     *
1055     * @param m mappings to be stored in this map
1056     */
1057     public void putAll(Map<? extends K, ? extends V> m) {
1058     tryPresize(m.size());
1059     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060     putVal(e.getKey(), e.getValue(), false);
1061     }
1062 dl 1.99
1063 dl 1.222 /**
1064     * Removes the key (and its corresponding value) from this map.
1065     * This method does nothing if the key is not in the map.
1066     *
1067     * @param key the key that needs to be removed
1068     * @return the previous value associated with {@code key}, or
1069     * {@code null} if there was no mapping for {@code key}
1070     * @throws NullPointerException if the specified key is null
1071     */
1072     public V remove(Object key) {
1073     return replaceNode(key, null, null);
1074     }
1075 dl 1.99
1076 dl 1.222 /**
1077     * Implementation for the four public remove/replace methods:
1078     * Replaces node value with v, conditional upon match of cv if
1079     * non-null. If resulting value is null, delete.
1080     */
1081     final V replaceNode(Object key, V value, Object cv) {
1082     int hash = spread(key.hashCode());
1083     for (Node<K,V>[] tab = table;;) {
1084     Node<K,V> f; int n, i, fh;
1085     if (tab == null || (n = tab.length) == 0 ||
1086     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087     break;
1088     else if ((fh = f.hash) == MOVED)
1089     tab = helpTransfer(tab, f);
1090     else {
1091     V oldVal = null;
1092     boolean validated = false;
1093     synchronized (f) {
1094     if (tabAt(tab, i) == f) {
1095     if (fh >= 0) {
1096     validated = true;
1097     for (Node<K,V> e = f, pred = null;;) {
1098     K ek;
1099     if (e.hash == hash &&
1100     ((ek = e.key) == key ||
1101     (ek != null && key.equals(ek)))) {
1102     V ev = e.val;
1103     if (cv == null || cv == ev ||
1104     (ev != null && cv.equals(ev))) {
1105     oldVal = ev;
1106     if (value != null)
1107     e.val = value;
1108     else if (pred != null)
1109     pred.next = e.next;
1110     else
1111     setTabAt(tab, i, e.next);
1112     }
1113     break;
1114 dl 1.119 }
1115 dl 1.222 pred = e;
1116     if ((e = e.next) == null)
1117     break;
1118 dl 1.119 }
1119     }
1120 dl 1.222 else if (f instanceof TreeBin) {
1121     validated = true;
1122     TreeBin<K,V> t = (TreeBin<K,V>)f;
1123     TreeNode<K,V> r, p;
1124     if ((r = t.root) != null &&
1125     (p = r.findTreeNode(hash, key, null)) != null) {
1126     V pv = p.val;
1127     if (cv == null || cv == pv ||
1128     (pv != null && cv.equals(pv))) {
1129     oldVal = pv;
1130     if (value != null)
1131     p.val = value;
1132     else if (t.removeTreeNode(p))
1133     setTabAt(tab, i, untreeify(t.first));
1134 dl 1.119 }
1135     }
1136 dl 1.99 }
1137 dl 1.259 else if (f instanceof ReservationNode)
1138     throw new IllegalStateException("Recursive update");
1139 dl 1.99 }
1140     }
1141 dl 1.222 if (validated) {
1142     if (oldVal != null) {
1143     if (value == null)
1144     addCount(-1L, -1);
1145     return oldVal;
1146     }
1147     break;
1148     }
1149 dl 1.99 }
1150     }
1151 dl 1.222 return null;
1152     }
1153 dl 1.45
1154 dl 1.222 /**
1155     * Removes all of the mappings from this map.
1156     */
1157     public void clear() {
1158     long delta = 0L; // negative number of deletions
1159     int i = 0;
1160     Node<K,V>[] tab = table;
1161     while (tab != null && i < tab.length) {
1162     int fh;
1163     Node<K,V> f = tabAt(tab, i);
1164     if (f == null)
1165     ++i;
1166     else if ((fh = f.hash) == MOVED) {
1167     tab = helpTransfer(tab, f);
1168     i = 0; // restart
1169 dl 1.217 }
1170 dl 1.222 else {
1171     synchronized (f) {
1172     if (tabAt(tab, i) == f) {
1173     Node<K,V> p = (fh >= 0 ? f :
1174     (f instanceof TreeBin) ?
1175     ((TreeBin<K,V>)f).first : null);
1176     while (p != null) {
1177     --delta;
1178     p = p.next;
1179 dl 1.119 }
1180 dl 1.222 setTabAt(tab, i++, null);
1181 dl 1.119 }
1182 dl 1.45 }
1183 dl 1.4 }
1184 dl 1.217 }
1185 dl 1.222 if (delta != 0L)
1186     addCount(delta, -1);
1187     }
1188 dl 1.217
1189 dl 1.222 /**
1190     * Returns a {@link Set} view of the keys contained in this map.
1191     * The set is backed by the map, so changes to the map are
1192     * reflected in the set, and vice-versa. The set supports element
1193     * removal, which removes the corresponding mapping from this map,
1194     * via the {@code Iterator.remove}, {@code Set.remove},
1195     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196     * operations. It does not support the {@code add} or
1197     * {@code addAll} operations.
1198     *
1199 jsr166 1.242 * <p>The view's iterators and spliterators are
1200     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 dl 1.222 *
1202 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204     *
1205 dl 1.222 * @return the set view
1206     */
1207     public KeySetView<K,V> keySet() {
1208     KeySetView<K,V> ks;
1209 jsr166 1.292 if ((ks = keySet) != null) return ks;
1210     return keySet = new KeySetView<K,V>(this, null);
1211 dl 1.222 }
1212 dl 1.217
1213 dl 1.222 /**
1214     * Returns a {@link Collection} view of the values contained in this map.
1215     * The collection is backed by the map, so changes to the map are
1216     * reflected in the collection, and vice-versa. The collection
1217     * supports element removal, which removes the corresponding
1218     * mapping from this map, via the {@code Iterator.remove},
1219     * {@code Collection.remove}, {@code removeAll},
1220     * {@code retainAll}, and {@code clear} operations. It does not
1221     * support the {@code add} or {@code addAll} operations.
1222     *
1223 jsr166 1.242 * <p>The view's iterators and spliterators are
1224     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 dl 1.222 *
1226 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227     * and {@link Spliterator#NONNULL}.
1228     *
1229 dl 1.222 * @return the collection view
1230     */
1231     public Collection<V> values() {
1232     ValuesView<K,V> vs;
1233 jsr166 1.292 if ((vs = values) != null) return vs;
1234     return values = new ValuesView<K,V>(this);
1235 tim 1.1 }
1236    
1237 dl 1.99 /**
1238 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1239     * The set is backed by the map, so changes to the map are
1240     * reflected in the set, and vice-versa. The set supports element
1241     * removal, which removes the corresponding mapping from the map,
1242     * via the {@code Iterator.remove}, {@code Set.remove},
1243     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244     * operations.
1245     *
1246 jsr166 1.242 * <p>The view's iterators and spliterators are
1247     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 dl 1.222 *
1249 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251     *
1252 dl 1.222 * @return the set view
1253 dl 1.119 */
1254 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1255     EntrySetView<K,V> es;
1256 jsr166 1.292 if ((es = entrySet) != null) return es;
1257     return entrySet = new EntrySetView<K,V>(this);
1258 dl 1.99 }
1259    
1260     /**
1261 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1262     * the sum of, for each key-value pair in the map,
1263     * {@code key.hashCode() ^ value.hashCode()}.
1264     *
1265     * @return the hash code value for this map
1266 dl 1.119 */
1267 dl 1.222 public int hashCode() {
1268     int h = 0;
1269     Node<K,V>[] t;
1270     if ((t = table) != null) {
1271     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272     for (Node<K,V> p; (p = it.advance()) != null; )
1273     h += p.key.hashCode() ^ p.val.hashCode();
1274 dl 1.119 }
1275 dl 1.222 return h;
1276 dl 1.99 }
1277 tim 1.11
1278 dl 1.222 /**
1279     * Returns a string representation of this map. The string
1280     * representation consists of a list of key-value mappings (in no
1281     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282     * mappings are separated by the characters {@code ", "} (comma
1283     * and space). Each key-value mapping is rendered as the key
1284     * followed by an equals sign ("{@code =}") followed by the
1285     * associated value.
1286     *
1287     * @return a string representation of this map
1288     */
1289     public String toString() {
1290     Node<K,V>[] t;
1291     int f = (t = table) == null ? 0 : t.length;
1292     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293     StringBuilder sb = new StringBuilder();
1294     sb.append('{');
1295     Node<K,V> p;
1296     if ((p = it.advance()) != null) {
1297 dl 1.210 for (;;) {
1298 dl 1.222 K k = p.key;
1299     V v = p.val;
1300     sb.append(k == this ? "(this Map)" : k);
1301     sb.append('=');
1302     sb.append(v == this ? "(this Map)" : v);
1303     if ((p = it.advance()) == null)
1304 dl 1.210 break;
1305 dl 1.222 sb.append(',').append(' ');
1306 dl 1.119 }
1307     }
1308 dl 1.222 return sb.append('}').toString();
1309 tim 1.1 }
1310    
1311     /**
1312 dl 1.222 * Compares the specified object with this map for equality.
1313     * Returns {@code true} if the given object is a map with the same
1314     * mappings as this map. This operation may return misleading
1315     * results if either map is concurrently modified during execution
1316     * of this method.
1317     *
1318     * @param o object to be compared for equality with this map
1319     * @return {@code true} if the specified object is equal to this map
1320 dl 1.119 */
1321 dl 1.222 public boolean equals(Object o) {
1322     if (o != this) {
1323     if (!(o instanceof Map))
1324     return false;
1325     Map<?,?> m = (Map<?,?>) o;
1326     Node<K,V>[] t;
1327     int f = (t = table) == null ? 0 : t.length;
1328     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329     for (Node<K,V> p; (p = it.advance()) != null; ) {
1330     V val = p.val;
1331     Object v = m.get(p.key);
1332     if (v == null || (v != val && !v.equals(val)))
1333     return false;
1334 dl 1.119 }
1335 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1336     Object mk, mv, v;
1337     if ((mk = e.getKey()) == null ||
1338     (mv = e.getValue()) == null ||
1339     (v = get(mk)) == null ||
1340     (mv != v && !mv.equals(v)))
1341     return false;
1342     }
1343     }
1344     return true;
1345     }
1346    
1347     /**
1348     * Stripped-down version of helper class used in previous version,
1349 jsr166 1.285 * declared for the sake of serialization compatibility.
1350 dl 1.222 */
1351     static class Segment<K,V> extends ReentrantLock implements Serializable {
1352     private static final long serialVersionUID = 2249069246763182397L;
1353     final float loadFactor;
1354     Segment(float lf) { this.loadFactor = lf; }
1355     }
1356    
1357     /**
1358 jsr166 1.303 * Saves this map to a stream (that is, serializes it).
1359     *
1360 dl 1.222 * @param s the stream
1361 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1362 dl 1.222 * @serialData
1363 jsr166 1.287 * the serialized fields, followed by the key (Object) and value
1364     * (Object) for each key-value mapping, followed by a null pair.
1365 dl 1.222 * The key-value mappings are emitted in no particular order.
1366     */
1367     private void writeObject(java.io.ObjectOutputStream s)
1368     throws java.io.IOException {
1369     // For serialization compatibility
1370     // Emulate segment calculation from previous version of this class
1371     int sshift = 0;
1372     int ssize = 1;
1373     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374     ++sshift;
1375     ssize <<= 1;
1376     }
1377     int segmentShift = 32 - sshift;
1378     int segmentMask = ssize - 1;
1379 dl 1.246 @SuppressWarnings("unchecked")
1380     Segment<K,V>[] segments = (Segment<K,V>[])
1381 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382     for (int i = 0; i < segments.length; ++i)
1383     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 jsr166 1.270 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385     streamFields.put("segments", segments);
1386     streamFields.put("segmentShift", segmentShift);
1387     streamFields.put("segmentMask", segmentMask);
1388 dl 1.222 s.writeFields();
1389    
1390     Node<K,V>[] t;
1391     if ((t = table) != null) {
1392     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393     for (Node<K,V> p; (p = it.advance()) != null; ) {
1394     s.writeObject(p.key);
1395     s.writeObject(p.val);
1396     }
1397     }
1398     s.writeObject(null);
1399     s.writeObject(null);
1400     }
1401    
1402     /**
1403 jsr166 1.303 * Reconstitutes this map from a stream (that is, deserializes it).
1404 dl 1.222 * @param s the stream
1405 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1406     * could not be found
1407     * @throws java.io.IOException if an I/O error occurs
1408 dl 1.222 */
1409     private void readObject(java.io.ObjectInputStream s)
1410     throws java.io.IOException, ClassNotFoundException {
1411     /*
1412     * To improve performance in typical cases, we create nodes
1413     * while reading, then place in table once size is known.
1414     * However, we must also validate uniqueness and deal with
1415     * overpopulated bins while doing so, which requires
1416     * specialized versions of putVal mechanics.
1417     */
1418     sizeCtl = -1; // force exclusion for table construction
1419     s.defaultReadObject();
1420     long size = 0L;
1421     Node<K,V> p = null;
1422     for (;;) {
1423 dl 1.246 @SuppressWarnings("unchecked")
1424     K k = (K) s.readObject();
1425     @SuppressWarnings("unchecked")
1426     V v = (V) s.readObject();
1427 dl 1.222 if (k != null && v != null) {
1428     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429     ++size;
1430     }
1431     else
1432     break;
1433     }
1434     if (size == 0L)
1435     sizeCtl = 0;
1436     else {
1437 dl 1.311 long ts = (long)(1.0 + size / LOAD_FACTOR);
1438     int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439     MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 jsr166 1.245 @SuppressWarnings("unchecked")
1441 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 dl 1.222 int mask = n - 1;
1443     long added = 0L;
1444     while (p != null) {
1445     boolean insertAtFront;
1446     Node<K,V> next = p.next, first;
1447     int h = p.hash, j = h & mask;
1448     if ((first = tabAt(tab, j)) == null)
1449     insertAtFront = true;
1450     else {
1451     K k = p.key;
1452     if (first.hash < 0) {
1453     TreeBin<K,V> t = (TreeBin<K,V>)first;
1454     if (t.putTreeVal(h, k, p.val) == null)
1455     ++added;
1456     insertAtFront = false;
1457     }
1458     else {
1459     int binCount = 0;
1460     insertAtFront = true;
1461     Node<K,V> q; K qk;
1462     for (q = first; q != null; q = q.next) {
1463     if (q.hash == h &&
1464     ((qk = q.key) == k ||
1465     (qk != null && k.equals(qk)))) {
1466     insertAtFront = false;
1467 dl 1.119 break;
1468     }
1469 dl 1.222 ++binCount;
1470     }
1471     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472     insertAtFront = false;
1473     ++added;
1474     p.next = first;
1475     TreeNode<K,V> hd = null, tl = null;
1476     for (q = p; q != null; q = q.next) {
1477     TreeNode<K,V> t = new TreeNode<K,V>
1478     (q.hash, q.key, q.val, null, null);
1479     if ((t.prev = tl) == null)
1480     hd = t;
1481     else
1482     tl.next = t;
1483     tl = t;
1484     }
1485     setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 dl 1.119 }
1487     }
1488     }
1489 dl 1.222 if (insertAtFront) {
1490     ++added;
1491     p.next = first;
1492     setTabAt(tab, j, p);
1493 dl 1.119 }
1494 dl 1.222 p = next;
1495 dl 1.119 }
1496 dl 1.222 table = tab;
1497     sizeCtl = n - (n >>> 2);
1498     baseCount = added;
1499 dl 1.119 }
1500 dl 1.55 }
1501    
1502 dl 1.222 // ConcurrentMap methods
1503    
1504     /**
1505     * {@inheritDoc}
1506     *
1507     * @return the previous value associated with the specified key,
1508     * or {@code null} if there was no mapping for the key
1509     * @throws NullPointerException if the specified key or value is null
1510     */
1511     public V putIfAbsent(K key, V value) {
1512     return putVal(key, value, true);
1513     }
1514    
1515     /**
1516     * {@inheritDoc}
1517     *
1518     * @throws NullPointerException if the specified key is null
1519     */
1520     public boolean remove(Object key, Object value) {
1521     if (key == null)
1522     throw new NullPointerException();
1523     return value != null && replaceNode(key, null, value) != null;
1524     }
1525    
1526     /**
1527     * {@inheritDoc}
1528     *
1529     * @throws NullPointerException if any of the arguments are null
1530     */
1531     public boolean replace(K key, V oldValue, V newValue) {
1532     if (key == null || oldValue == null || newValue == null)
1533     throw new NullPointerException();
1534     return replaceNode(key, newValue, oldValue) != null;
1535     }
1536    
1537     /**
1538     * {@inheritDoc}
1539     *
1540     * @return the previous value associated with the specified key,
1541     * or {@code null} if there was no mapping for the key
1542     * @throws NullPointerException if the specified key or value is null
1543     */
1544     public V replace(K key, V value) {
1545     if (key == null || value == null)
1546     throw new NullPointerException();
1547     return replaceNode(key, value, null);
1548     }
1549    
1550     // Overrides of JDK8+ Map extension method defaults
1551    
1552     /**
1553     * Returns the value to which the specified key is mapped, or the
1554     * given default value if this map contains no mapping for the
1555     * key.
1556     *
1557     * @param key the key whose associated value is to be returned
1558     * @param defaultValue the value to return if this map contains
1559     * no mapping for the given key
1560     * @return the mapping for the key, if present; else the default value
1561     * @throws NullPointerException if the specified key is null
1562 tim 1.1 */
1563 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1564     V v;
1565     return (v = get(key)) == null ? defaultValue : v;
1566     }
1567 tim 1.1
1568 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1569     if (action == null) throw new NullPointerException();
1570     Node<K,V>[] t;
1571     if ((t = table) != null) {
1572     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573     for (Node<K,V> p; (p = it.advance()) != null; ) {
1574     action.accept(p.key, p.val);
1575 dl 1.99 }
1576 dl 1.222 }
1577     }
1578    
1579     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580     if (function == null) throw new NullPointerException();
1581     Node<K,V>[] t;
1582     if ((t = table) != null) {
1583     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584     for (Node<K,V> p; (p = it.advance()) != null; ) {
1585     V oldValue = p.val;
1586     for (K key = p.key;;) {
1587     V newValue = function.apply(key, oldValue);
1588     if (newValue == null)
1589     throw new NullPointerException();
1590     if (replaceNode(key, newValue, oldValue) != null ||
1591     (oldValue = get(key)) == null)
1592 dl 1.119 break;
1593     }
1594     }
1595 dl 1.45 }
1596 dl 1.21 }
1597    
1598 dl 1.222 /**
1599 jsr166 1.285 * Helper method for EntrySetView.removeIf.
1600 dl 1.271 */
1601 jsr166 1.273 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 dl 1.271 if (function == null) throw new NullPointerException();
1603     Node<K,V>[] t;
1604     boolean removed = false;
1605     if ((t = table) != null) {
1606     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607     for (Node<K,V> p; (p = it.advance()) != null; ) {
1608     K k = p.key;
1609     V v = p.val;
1610     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611     if (function.test(e) && replaceNode(k, null, v) != null)
1612     removed = true;
1613     }
1614     }
1615     return removed;
1616     }
1617    
1618     /**
1619 jsr166 1.285 * Helper method for ValuesView.removeIf.
1620 dl 1.272 */
1621 jsr166 1.276 boolean removeValueIf(Predicate<? super V> function) {
1622 dl 1.272 if (function == null) throw new NullPointerException();
1623     Node<K,V>[] t;
1624     boolean removed = false;
1625     if ((t = table) != null) {
1626     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627     for (Node<K,V> p; (p = it.advance()) != null; ) {
1628     K k = p.key;
1629     V v = p.val;
1630     if (function.test(v) && replaceNode(k, null, v) != null)
1631     removed = true;
1632     }
1633     }
1634     return removed;
1635     }
1636    
1637     /**
1638 dl 1.222 * If the specified key is not already associated with a value,
1639     * attempts to compute its value using the given mapping function
1640     * and enters it into this map unless {@code null}. The entire
1641 dl 1.321 * method invocation is performed atomically. The supplied
1642     * function is invoked exactly once per invocation of this method
1643     * if the key is absent, else not at all. Some attempted update
1644     * operations on this map by other threads may be blocked while
1645     * computation is in progress, so the computation should be short
1646 jsr166 1.322 * and simple.
1647     *
1648     * <p>The mapping function must not modify this map during computation.
1649 dl 1.222 *
1650     * @param key key with which the specified value is to be associated
1651     * @param mappingFunction the function to compute a value
1652     * @return the current (existing or computed) value associated with
1653     * the specified key, or null if the computed value is null
1654     * @throws NullPointerException if the specified key or mappingFunction
1655     * is null
1656     * @throws IllegalStateException if the computation detectably
1657     * attempts a recursive update to this map that would
1658     * otherwise never complete
1659     * @throws RuntimeException or Error if the mappingFunction does so,
1660     * in which case the mapping is left unestablished
1661     */
1662     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1663     if (key == null || mappingFunction == null)
1664 dl 1.149 throw new NullPointerException();
1665 dl 1.222 int h = spread(key.hashCode());
1666 dl 1.151 V val = null;
1667 dl 1.222 int binCount = 0;
1668 dl 1.210 for (Node<K,V>[] tab = table;;) {
1669 dl 1.296 Node<K,V> f; int n, i, fh; K fk; V fv;
1670 dl 1.222 if (tab == null || (n = tab.length) == 0)
1671 dl 1.119 tab = initTable();
1672 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1673     Node<K,V> r = new ReservationNode<K,V>();
1674     synchronized (r) {
1675     if (casTabAt(tab, i, null, r)) {
1676     binCount = 1;
1677     Node<K,V> node = null;
1678 dl 1.149 try {
1679 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1680 jsr166 1.290 node = new Node<K,V>(h, key, val);
1681 dl 1.149 } finally {
1682 dl 1.222 setTabAt(tab, i, node);
1683 dl 1.119 }
1684     }
1685     }
1686 dl 1.222 if (binCount != 0)
1687 dl 1.119 break;
1688     }
1689 dl 1.222 else if ((fh = f.hash) == MOVED)
1690     tab = helpTransfer(tab, f);
1691 jsr166 1.299 else if (fh == h // check first node without acquiring lock
1692     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1693     && (fv = f.val) != null)
1694 dl 1.296 return fv;
1695 dl 1.119 else {
1696 dl 1.149 boolean added = false;
1697 jsr166 1.150 synchronized (f) {
1698 dl 1.149 if (tabAt(tab, i) == f) {
1699 dl 1.222 if (fh >= 0) {
1700     binCount = 1;
1701     for (Node<K,V> e = f;; ++binCount) {
1702 dl 1.266 K ek;
1703 dl 1.222 if (e.hash == h &&
1704     ((ek = e.key) == key ||
1705     (ek != null && key.equals(ek)))) {
1706     val = e.val;
1707     break;
1708     }
1709     Node<K,V> pred = e;
1710     if ((e = e.next) == null) {
1711     if ((val = mappingFunction.apply(key)) != null) {
1712 dl 1.259 if (pred.next != null)
1713     throw new IllegalStateException("Recursive update");
1714 dl 1.222 added = true;
1715 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
1716 dl 1.222 }
1717     break;
1718     }
1719 dl 1.149 }
1720 dl 1.222 }
1721     else if (f instanceof TreeBin) {
1722     binCount = 2;
1723     TreeBin<K,V> t = (TreeBin<K,V>)f;
1724     TreeNode<K,V> r, p;
1725     if ((r = t.root) != null &&
1726     (p = r.findTreeNode(h, key, null)) != null)
1727     val = p.val;
1728     else if ((val = mappingFunction.apply(key)) != null) {
1729     added = true;
1730     t.putTreeVal(h, key, val);
1731 dl 1.119 }
1732     }
1733 dl 1.259 else if (f instanceof ReservationNode)
1734     throw new IllegalStateException("Recursive update");
1735 dl 1.119 }
1736 dl 1.149 }
1737 dl 1.222 if (binCount != 0) {
1738     if (binCount >= TREEIFY_THRESHOLD)
1739     treeifyBin(tab, i);
1740 dl 1.149 if (!added)
1741 dl 1.151 return val;
1742 dl 1.149 break;
1743 dl 1.119 }
1744 dl 1.105 }
1745 dl 1.99 }
1746 dl 1.149 if (val != null)
1747 dl 1.222 addCount(1L, binCount);
1748 dl 1.151 return val;
1749 tim 1.1 }
1750    
1751 dl 1.222 /**
1752     * If the value for the specified key is present, attempts to
1753     * compute a new mapping given the key and its current mapped
1754     * value. The entire method invocation is performed atomically.
1755 dl 1.321 * The supplied function is invoked exactly once per invocation of
1756     * this method if the key is present, else not at all. Some
1757     * attempted update operations on this map by other threads may be
1758     * blocked while computation is in progress, so the computation
1759 jsr166 1.322 * should be short and simple.
1760     *
1761     * <p>The remapping function must not modify this map during computation.
1762 dl 1.222 *
1763     * @param key key with which a value may be associated
1764     * @param remappingFunction the function to compute a value
1765     * @return the new value associated with the specified key, or null if none
1766     * @throws NullPointerException if the specified key or remappingFunction
1767     * is null
1768     * @throws IllegalStateException if the computation detectably
1769     * attempts a recursive update to this map that would
1770     * otherwise never complete
1771     * @throws RuntimeException or Error if the remappingFunction does so,
1772     * in which case the mapping is unchanged
1773     */
1774     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1775     if (key == null || remappingFunction == null)
1776 dl 1.149 throw new NullPointerException();
1777 dl 1.222 int h = spread(key.hashCode());
1778 dl 1.151 V val = null;
1779 dl 1.119 int delta = 0;
1780 dl 1.222 int binCount = 0;
1781 dl 1.210 for (Node<K,V>[] tab = table;;) {
1782 dl 1.222 Node<K,V> f; int n, i, fh;
1783     if (tab == null || (n = tab.length) == 0)
1784 dl 1.119 tab = initTable();
1785 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1786     break;
1787     else if ((fh = f.hash) == MOVED)
1788     tab = helpTransfer(tab, f);
1789     else {
1790     synchronized (f) {
1791     if (tabAt(tab, i) == f) {
1792     if (fh >= 0) {
1793     binCount = 1;
1794     for (Node<K,V> e = f, pred = null;; ++binCount) {
1795     K ek;
1796     if (e.hash == h &&
1797     ((ek = e.key) == key ||
1798     (ek != null && key.equals(ek)))) {
1799     val = remappingFunction.apply(key, e.val);
1800     if (val != null)
1801     e.val = val;
1802 dl 1.210 else {
1803 dl 1.222 delta = -1;
1804     Node<K,V> en = e.next;
1805     if (pred != null)
1806     pred.next = en;
1807     else
1808     setTabAt(tab, i, en);
1809 dl 1.210 }
1810 dl 1.222 break;
1811 dl 1.210 }
1812 dl 1.222 pred = e;
1813     if ((e = e.next) == null)
1814     break;
1815 dl 1.119 }
1816     }
1817 dl 1.222 else if (f instanceof TreeBin) {
1818     binCount = 2;
1819     TreeBin<K,V> t = (TreeBin<K,V>)f;
1820     TreeNode<K,V> r, p;
1821     if ((r = t.root) != null &&
1822     (p = r.findTreeNode(h, key, null)) != null) {
1823     val = remappingFunction.apply(key, p.val);
1824 dl 1.119 if (val != null)
1825 dl 1.222 p.val = val;
1826 dl 1.119 else {
1827     delta = -1;
1828 dl 1.222 if (t.removeTreeNode(p))
1829     setTabAt(tab, i, untreeify(t.first));
1830 dl 1.119 }
1831     }
1832     }
1833 dl 1.259 else if (f instanceof ReservationNode)
1834     throw new IllegalStateException("Recursive update");
1835 dl 1.119 }
1836     }
1837 dl 1.222 if (binCount != 0)
1838 dl 1.119 break;
1839     }
1840     }
1841 dl 1.149 if (delta != 0)
1842 dl 1.222 addCount((long)delta, binCount);
1843 dl 1.151 return val;
1844 dl 1.119 }
1845    
1846 dl 1.222 /**
1847     * Attempts to compute a mapping for the specified key and its
1848     * current mapped value (or {@code null} if there is no current
1849     * mapping). The entire method invocation is performed atomically.
1850 dl 1.321 * The supplied function is invoked exactly once per invocation of
1851     * this method. Some attempted update operations on this map by
1852     * other threads may be blocked while computation is in progress,
1853 jsr166 1.322 * so the computation should be short and simple.
1854     *
1855     * <p>The remapping function must not modify this map during computation.
1856 dl 1.222 *
1857     * @param key key with which the specified value is to be associated
1858     * @param remappingFunction the function to compute a value
1859     * @return the new value associated with the specified key, or null if none
1860     * @throws NullPointerException if the specified key or remappingFunction
1861     * is null
1862     * @throws IllegalStateException if the computation detectably
1863     * attempts a recursive update to this map that would
1864     * otherwise never complete
1865     * @throws RuntimeException or Error if the remappingFunction does so,
1866     * in which case the mapping is unchanged
1867     */
1868     public V compute(K key,
1869     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1870     if (key == null || remappingFunction == null)
1871 dl 1.149 throw new NullPointerException();
1872 dl 1.222 int h = spread(key.hashCode());
1873 dl 1.151 V val = null;
1874 dl 1.119 int delta = 0;
1875 dl 1.222 int binCount = 0;
1876 dl 1.210 for (Node<K,V>[] tab = table;;) {
1877 dl 1.222 Node<K,V> f; int n, i, fh;
1878     if (tab == null || (n = tab.length) == 0)
1879 dl 1.119 tab = initTable();
1880 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1881     Node<K,V> r = new ReservationNode<K,V>();
1882     synchronized (r) {
1883     if (casTabAt(tab, i, null, r)) {
1884     binCount = 1;
1885     Node<K,V> node = null;
1886     try {
1887     if ((val = remappingFunction.apply(key, null)) != null) {
1888     delta = 1;
1889 jsr166 1.290 node = new Node<K,V>(h, key, val);
1890 dl 1.222 }
1891     } finally {
1892     setTabAt(tab, i, node);
1893     }
1894     }
1895     }
1896     if (binCount != 0)
1897 dl 1.119 break;
1898     }
1899 dl 1.222 else if ((fh = f.hash) == MOVED)
1900     tab = helpTransfer(tab, f);
1901     else {
1902     synchronized (f) {
1903     if (tabAt(tab, i) == f) {
1904     if (fh >= 0) {
1905     binCount = 1;
1906     for (Node<K,V> e = f, pred = null;; ++binCount) {
1907     K ek;
1908     if (e.hash == h &&
1909     ((ek = e.key) == key ||
1910     (ek != null && key.equals(ek)))) {
1911     val = remappingFunction.apply(key, e.val);
1912     if (val != null)
1913     e.val = val;
1914     else {
1915     delta = -1;
1916     Node<K,V> en = e.next;
1917     if (pred != null)
1918     pred.next = en;
1919     else
1920     setTabAt(tab, i, en);
1921     }
1922     break;
1923     }
1924     pred = e;
1925     if ((e = e.next) == null) {
1926     val = remappingFunction.apply(key, null);
1927     if (val != null) {
1928 dl 1.259 if (pred.next != null)
1929     throw new IllegalStateException("Recursive update");
1930 dl 1.222 delta = 1;
1931 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
1932 dl 1.222 }
1933     break;
1934     }
1935     }
1936     }
1937     else if (f instanceof TreeBin) {
1938     binCount = 1;
1939     TreeBin<K,V> t = (TreeBin<K,V>)f;
1940     TreeNode<K,V> r, p;
1941     if ((r = t.root) != null)
1942     p = r.findTreeNode(h, key, null);
1943     else
1944     p = null;
1945     V pv = (p == null) ? null : p.val;
1946     val = remappingFunction.apply(key, pv);
1947 dl 1.119 if (val != null) {
1948     if (p != null)
1949     p.val = val;
1950     else {
1951     delta = 1;
1952 dl 1.222 t.putTreeVal(h, key, val);
1953 dl 1.119 }
1954     }
1955     else if (p != null) {
1956     delta = -1;
1957 dl 1.222 if (t.removeTreeNode(p))
1958     setTabAt(tab, i, untreeify(t.first));
1959 dl 1.119 }
1960     }
1961 dl 1.259 else if (f instanceof ReservationNode)
1962     throw new IllegalStateException("Recursive update");
1963 dl 1.119 }
1964     }
1965 dl 1.222 if (binCount != 0) {
1966     if (binCount >= TREEIFY_THRESHOLD)
1967     treeifyBin(tab, i);
1968     break;
1969 dl 1.119 }
1970 dl 1.105 }
1971 dl 1.99 }
1972 dl 1.149 if (delta != 0)
1973 dl 1.222 addCount((long)delta, binCount);
1974 dl 1.151 return val;
1975 dl 1.119 }
1976    
1977 dl 1.222 /**
1978     * If the specified key is not already associated with a
1979     * (non-null) value, associates it with the given value.
1980     * Otherwise, replaces the value with the results of the given
1981     * remapping function, or removes if {@code null}. The entire
1982     * method invocation is performed atomically. Some attempted
1983     * update operations on this map by other threads may be blocked
1984     * while computation is in progress, so the computation should be
1985     * short and simple, and must not attempt to update any other
1986     * mappings of this Map.
1987     *
1988     * @param key key with which the specified value is to be associated
1989     * @param value the value to use if absent
1990     * @param remappingFunction the function to recompute a value if present
1991     * @return the new value associated with the specified key, or null if none
1992     * @throws NullPointerException if the specified key or the
1993     * remappingFunction is null
1994     * @throws RuntimeException or Error if the remappingFunction does so,
1995     * in which case the mapping is unchanged
1996     */
1997     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1998     if (key == null || value == null || remappingFunction == null)
1999     throw new NullPointerException();
2000     int h = spread(key.hashCode());
2001     V val = null;
2002     int delta = 0;
2003     int binCount = 0;
2004     for (Node<K,V>[] tab = table;;) {
2005     Node<K,V> f; int n, i, fh;
2006     if (tab == null || (n = tab.length) == 0)
2007     tab = initTable();
2008     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2009 jsr166 1.290 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2010 dl 1.222 delta = 1;
2011     val = value;
2012 dl 1.119 break;
2013     }
2014 dl 1.222 }
2015     else if ((fh = f.hash) == MOVED)
2016     tab = helpTransfer(tab, f);
2017     else {
2018     synchronized (f) {
2019     if (tabAt(tab, i) == f) {
2020     if (fh >= 0) {
2021     binCount = 1;
2022     for (Node<K,V> e = f, pred = null;; ++binCount) {
2023     K ek;
2024     if (e.hash == h &&
2025     ((ek = e.key) == key ||
2026     (ek != null && key.equals(ek)))) {
2027     val = remappingFunction.apply(e.val, value);
2028     if (val != null)
2029     e.val = val;
2030 dl 1.119 else {
2031 dl 1.222 delta = -1;
2032     Node<K,V> en = e.next;
2033     if (pred != null)
2034     pred.next = en;
2035     else
2036     setTabAt(tab, i, en);
2037 dl 1.119 }
2038 dl 1.222 break;
2039     }
2040     pred = e;
2041     if ((e = e.next) == null) {
2042     delta = 1;
2043     val = value;
2044 jsr166 1.290 pred.next = new Node<K,V>(h, key, val);
2045 dl 1.222 break;
2046 dl 1.119 }
2047     }
2048     }
2049 dl 1.222 else if (f instanceof TreeBin) {
2050     binCount = 2;
2051     TreeBin<K,V> t = (TreeBin<K,V>)f;
2052     TreeNode<K,V> r = t.root;
2053     TreeNode<K,V> p = (r == null) ? null :
2054     r.findTreeNode(h, key, null);
2055     val = (p == null) ? value :
2056     remappingFunction.apply(p.val, value);
2057     if (val != null) {
2058     if (p != null)
2059     p.val = val;
2060     else {
2061     delta = 1;
2062     t.putTreeVal(h, key, val);
2063 dl 1.119 }
2064     }
2065 dl 1.222 else if (p != null) {
2066     delta = -1;
2067     if (t.removeTreeNode(p))
2068     setTabAt(tab, i, untreeify(t.first));
2069 dl 1.164 }
2070 dl 1.99 }
2071 dl 1.259 else if (f instanceof ReservationNode)
2072     throw new IllegalStateException("Recursive update");
2073 dl 1.21 }
2074     }
2075 dl 1.222 if (binCount != 0) {
2076     if (binCount >= TREEIFY_THRESHOLD)
2077     treeifyBin(tab, i);
2078     break;
2079     }
2080 dl 1.45 }
2081     }
2082 dl 1.222 if (delta != 0)
2083     addCount((long)delta, binCount);
2084     return val;
2085 tim 1.1 }
2086 dl 1.19
2087 dl 1.222 // Hashtable legacy methods
2088    
2089 dl 1.149 /**
2090 jsr166 1.275 * Tests if some key maps into the specified value in this table.
2091 jsr166 1.250 *
2092 jsr166 1.275 * <p>Note that this method is identical in functionality to
2093 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2094     * full compatibility with class {@link java.util.Hashtable},
2095 jsr166 1.281 * which supported this method prior to introduction of the
2096     * Java Collections Framework.
2097 dl 1.222 *
2098     * @param value a value to search for
2099     * @return {@code true} if and only if some key maps to the
2100     * {@code value} argument in this table as
2101     * determined by the {@code equals} method;
2102     * {@code false} otherwise
2103     * @throws NullPointerException if the specified value is null
2104 dl 1.149 */
2105 dl 1.246 public boolean contains(Object value) {
2106 dl 1.222 return containsValue(value);
2107 dl 1.149 }
2108    
2109 tim 1.1 /**
2110 dl 1.222 * Returns an enumeration of the keys in this table.
2111     *
2112     * @return an enumeration of the keys in this table
2113     * @see #keySet()
2114 tim 1.1 */
2115 dl 1.222 public Enumeration<K> keys() {
2116     Node<K,V>[] t;
2117     int f = (t = table) == null ? 0 : t.length;
2118     return new KeyIterator<K,V>(t, f, 0, f, this);
2119 tim 1.1 }
2120    
2121     /**
2122 dl 1.222 * Returns an enumeration of the values in this table.
2123     *
2124     * @return an enumeration of the values in this table
2125     * @see #values()
2126     */
2127     public Enumeration<V> elements() {
2128     Node<K,V>[] t;
2129     int f = (t = table) == null ? 0 : t.length;
2130     return new ValueIterator<K,V>(t, f, 0, f, this);
2131     }
2132    
2133     // ConcurrentHashMap-only methods
2134    
2135     /**
2136     * Returns the number of mappings. This method should be used
2137     * instead of {@link #size} because a ConcurrentHashMap may
2138     * contain more mappings than can be represented as an int. The
2139     * value returned is an estimate; the actual count may differ if
2140     * there are concurrent insertions or removals.
2141     *
2142     * @return the number of mappings
2143     * @since 1.8
2144     */
2145     public long mappingCount() {
2146     long n = sumCount();
2147     return (n < 0L) ? 0L : n; // ignore transient negative values
2148     }
2149    
2150     /**
2151     * Creates a new {@link Set} backed by a ConcurrentHashMap
2152     * from the given type to {@code Boolean.TRUE}.
2153     *
2154 jsr166 1.237 * @param <K> the element type of the returned set
2155 dl 1.222 * @return the new set
2156     * @since 1.8
2157     */
2158     public static <K> KeySetView<K,Boolean> newKeySet() {
2159     return new KeySetView<K,Boolean>
2160     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2161     }
2162    
2163     /**
2164     * Creates a new {@link Set} backed by a ConcurrentHashMap
2165     * from the given type to {@code Boolean.TRUE}.
2166     *
2167     * @param initialCapacity The implementation performs internal
2168     * sizing to accommodate this many elements.
2169 jsr166 1.237 * @param <K> the element type of the returned set
2170 jsr166 1.239 * @return the new set
2171 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2172     * elements is negative
2173     * @since 1.8
2174     */
2175     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2176     return new KeySetView<K,Boolean>
2177     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2178     }
2179    
2180     /**
2181     * Returns a {@link Set} view of the keys in this map, using the
2182     * given common mapped value for any additions (i.e., {@link
2183     * Collection#add} and {@link Collection#addAll(Collection)}).
2184     * This is of course only appropriate if it is acceptable to use
2185     * the same value for all additions from this view.
2186     *
2187     * @param mappedValue the mapped value to use for any additions
2188     * @return the set view
2189     * @throws NullPointerException if the mappedValue is null
2190     */
2191     public KeySetView<K,V> keySet(V mappedValue) {
2192     if (mappedValue == null)
2193     throw new NullPointerException();
2194     return new KeySetView<K,V>(this, mappedValue);
2195     }
2196    
2197     /* ---------------- Special Nodes -------------- */
2198    
2199     /**
2200     * A node inserted at head of bins during transfer operations.
2201     */
2202     static final class ForwardingNode<K,V> extends Node<K,V> {
2203     final Node<K,V>[] nextTable;
2204     ForwardingNode(Node<K,V>[] tab) {
2205 jsr166 1.290 super(MOVED, null, null);
2206 dl 1.222 this.nextTable = tab;
2207     }
2208    
2209     Node<K,V> find(int h, Object k) {
2210 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2211     outer: for (Node<K,V>[] tab = nextTable;;) {
2212     Node<K,V> e; int n;
2213     if (k == null || tab == null || (n = tab.length) == 0 ||
2214     (e = tabAt(tab, (n - 1) & h)) == null)
2215     return null;
2216     for (;;) {
2217 dl 1.222 int eh; K ek;
2218     if ((eh = e.hash) == h &&
2219     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2220     return e;
2221 dl 1.234 if (eh < 0) {
2222     if (e instanceof ForwardingNode) {
2223     tab = ((ForwardingNode<K,V>)e).nextTable;
2224     continue outer;
2225     }
2226     else
2227     return e.find(h, k);
2228     }
2229     if ((e = e.next) == null)
2230     return null;
2231     }
2232 dl 1.222 }
2233     }
2234     }
2235    
2236     /**
2237 jsr166 1.285 * A place-holder node used in computeIfAbsent and compute.
2238 dl 1.222 */
2239     static final class ReservationNode<K,V> extends Node<K,V> {
2240     ReservationNode() {
2241 jsr166 1.290 super(RESERVED, null, null);
2242 dl 1.222 }
2243    
2244     Node<K,V> find(int h, Object k) {
2245     return null;
2246     }
2247     }
2248    
2249     /* ---------------- Table Initialization and Resizing -------------- */
2250    
2251     /**
2252 dl 1.252 * Returns the stamp bits for resizing a table of size n.
2253     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2254     */
2255     static final int resizeStamp(int n) {
2256 jsr166 1.254 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2257 dl 1.252 }
2258    
2259     /**
2260 dl 1.222 * Initializes table, using the size recorded in sizeCtl.
2261 dl 1.119 */
2262 dl 1.210 private final Node<K,V>[] initTable() {
2263     Node<K,V>[] tab; int sc;
2264 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2265 dl 1.119 if ((sc = sizeCtl) < 0)
2266     Thread.yield(); // lost initialization race; just spin
2267 jsr166 1.302 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2268 dl 1.119 try {
2269 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2270 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2271 jsr166 1.245 @SuppressWarnings("unchecked")
2272 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2273 dl 1.222 table = tab = nt;
2274 dl 1.119 sc = n - (n >>> 2);
2275     }
2276     } finally {
2277     sizeCtl = sc;
2278     }
2279     break;
2280     }
2281     }
2282     return tab;
2283 dl 1.4 }
2284    
2285     /**
2286 dl 1.149 * Adds to count, and if table is too small and not already
2287     * resizing, initiates transfer. If already resizing, helps
2288     * perform transfer if work is available. Rechecks occupancy
2289     * after a transfer to see if another resize is already needed
2290     * because resizings are lagging additions.
2291     *
2292     * @param x the count to add
2293     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2294     */
2295     private final void addCount(long x, int check) {
2296 jsr166 1.306 CounterCell[] cs; long b, s;
2297     if ((cs = counterCells) != null ||
2298 jsr166 1.302 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2299 jsr166 1.306 CounterCell c; long v; int m;
2300 dl 1.149 boolean uncontended = true;
2301 jsr166 1.306 if (cs == null || (m = cs.length - 1) < 0 ||
2302     (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2303 dl 1.149 !(uncontended =
2304 jsr166 1.306 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2305 dl 1.160 fullAddCount(x, uncontended);
2306 dl 1.149 return;
2307     }
2308     if (check <= 1)
2309     return;
2310     s = sumCount();
2311     }
2312     if (check >= 0) {
2313 dl 1.252 Node<K,V>[] tab, nt; int n, sc;
2314 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2315 dl 1.252 (n = tab.length) < MAXIMUM_CAPACITY) {
2316 dl 1.316 int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2317 dl 1.149 if (sc < 0) {
2318 dl 1.316 if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2319 dl 1.315 (nt = nextTable) == null || transferIndex <= 0)
2320 dl 1.149 break;
2321 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2322 dl 1.149 transfer(tab, nt);
2323 dl 1.119 }
2324 dl 1.316 else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2325 dl 1.149 transfer(tab, null);
2326     s = sumCount();
2327 dl 1.119 }
2328     }
2329 dl 1.4 }
2330    
2331     /**
2332 dl 1.222 * Helps transfer if a resize is in progress.
2333     */
2334     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2335     Node<K,V>[] nextTab; int sc;
2336 dl 1.252 if (tab != null && (f instanceof ForwardingNode) &&
2337 dl 1.222 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2338 dl 1.316 int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2339 dl 1.252 while (nextTab == nextTable && table == tab &&
2340 jsr166 1.254 (sc = sizeCtl) < 0) {
2341 dl 1.316 if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2342     transferIndex <= 0)
2343 jsr166 1.254 break;
2344 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2345 dl 1.246 transfer(tab, nextTab);
2346     break;
2347     }
2348     }
2349 dl 1.222 return nextTab;
2350     }
2351     return table;
2352     }
2353    
2354     /**
2355 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2356 tim 1.1 *
2357 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2358 tim 1.1 */
2359 dl 1.210 private final void tryPresize(int size) {
2360 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2361     tableSizeFor(size + (size >>> 1) + 1);
2362     int sc;
2363     while ((sc = sizeCtl) >= 0) {
2364 dl 1.210 Node<K,V>[] tab = table; int n;
2365 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2366     n = (sc > c) ? sc : c;
2367 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2368 dl 1.119 try {
2369     if (table == tab) {
2370 jsr166 1.245 @SuppressWarnings("unchecked")
2371 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2372 dl 1.222 table = nt;
2373 dl 1.119 sc = n - (n >>> 2);
2374     }
2375     } finally {
2376     sizeCtl = sc;
2377     }
2378     }
2379     }
2380     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2381     break;
2382 dl 1.252 else if (tab == table) {
2383     int rs = resizeStamp(n);
2384 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc,
2385 dl 1.258 (rs << RESIZE_STAMP_SHIFT) + 2))
2386 dl 1.252 transfer(tab, null);
2387     }
2388 dl 1.119 }
2389 dl 1.4 }
2390    
2391 jsr166 1.170 /**
2392 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2393     * above for explanation.
2394 dl 1.4 */
2395 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2396 dl 1.149 int n = tab.length, stride;
2397     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2398     stride = MIN_TRANSFER_STRIDE; // subdivide range
2399     if (nextTab == null) { // initiating
2400     try {
2401 jsr166 1.245 @SuppressWarnings("unchecked")
2402 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2403 dl 1.222 nextTab = nt;
2404 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2405 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2406     return;
2407     }
2408     nextTable = nextTab;
2409     transferIndex = n;
2410     }
2411     int nextn = nextTab.length;
2412 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2413 dl 1.149 boolean advance = true;
2414 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2415 dl 1.149 for (int i = 0, bound = 0;;) {
2416 dl 1.246 Node<K,V> f; int fh;
2417 dl 1.149 while (advance) {
2418 dl 1.246 int nextIndex, nextBound;
2419 dl 1.234 if (--i >= bound || finishing)
2420 dl 1.149 advance = false;
2421 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2422 dl 1.149 i = -1;
2423     advance = false;
2424     }
2425 jsr166 1.302 else if (U.compareAndSetInt
2426 dl 1.149 (this, TRANSFERINDEX, nextIndex,
2427 jsr166 1.150 nextBound = (nextIndex > stride ?
2428 dl 1.149 nextIndex - stride : 0))) {
2429     bound = nextBound;
2430     i = nextIndex - 1;
2431     advance = false;
2432     }
2433     }
2434     if (i < 0 || i >= n || i + n >= nextn) {
2435 dl 1.246 int sc;
2436 dl 1.234 if (finishing) {
2437     nextTable = null;
2438     table = nextTab;
2439     sizeCtl = (n << 1) - (n >>> 1);
2440     return;
2441     }
2442 jsr166 1.302 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2443 dl 1.255 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2444 dl 1.246 return;
2445     finishing = advance = true;
2446     i = n; // recheck before commit
2447 dl 1.149 }
2448     }
2449 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2450     advance = casTabAt(tab, i, null, fwd);
2451 dl 1.222 else if ((fh = f.hash) == MOVED)
2452     advance = true; // already processed
2453     else {
2454 jsr166 1.150 synchronized (f) {
2455 dl 1.149 if (tabAt(tab, i) == f) {
2456 dl 1.222 Node<K,V> ln, hn;
2457     if (fh >= 0) {
2458     int runBit = fh & n;
2459     Node<K,V> lastRun = f;
2460     for (Node<K,V> p = f.next; p != null; p = p.next) {
2461     int b = p.hash & n;
2462     if (b != runBit) {
2463     runBit = b;
2464     lastRun = p;
2465     }
2466     }
2467     if (runBit == 0) {
2468     ln = lastRun;
2469     hn = null;
2470     }
2471     else {
2472     hn = lastRun;
2473     ln = null;
2474 dl 1.149 }
2475 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2476     int ph = p.hash; K pk = p.key; V pv = p.val;
2477     if ((ph & n) == 0)
2478     ln = new Node<K,V>(ph, pk, pv, ln);
2479 dl 1.210 else
2480 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2481 dl 1.149 }
2482 dl 1.233 setTabAt(nextTab, i, ln);
2483     setTabAt(nextTab, i + n, hn);
2484     setTabAt(tab, i, fwd);
2485     advance = true;
2486 dl 1.222 }
2487     else if (f instanceof TreeBin) {
2488     TreeBin<K,V> t = (TreeBin<K,V>)f;
2489     TreeNode<K,V> lo = null, loTail = null;
2490     TreeNode<K,V> hi = null, hiTail = null;
2491     int lc = 0, hc = 0;
2492     for (Node<K,V> e = t.first; e != null; e = e.next) {
2493     int h = e.hash;
2494     TreeNode<K,V> p = new TreeNode<K,V>
2495     (h, e.key, e.val, null, null);
2496     if ((h & n) == 0) {
2497     if ((p.prev = loTail) == null)
2498     lo = p;
2499     else
2500     loTail.next = p;
2501     loTail = p;
2502     ++lc;
2503 dl 1.210 }
2504 dl 1.222 else {
2505     if ((p.prev = hiTail) == null)
2506     hi = p;
2507     else
2508     hiTail.next = p;
2509     hiTail = p;
2510     ++hc;
2511 dl 1.210 }
2512 dl 1.149 }
2513 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2514     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2515     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2516     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2517 dl 1.233 setTabAt(nextTab, i, ln);
2518     setTabAt(nextTab, i + n, hn);
2519     setTabAt(tab, i, fwd);
2520     advance = true;
2521 dl 1.149 }
2522 dl 1.314 else if (f instanceof ReservationNode)
2523     throw new IllegalStateException("Recursive update");
2524 dl 1.119 }
2525     }
2526     }
2527     }
2528 dl 1.4 }
2529 tim 1.1
2530 dl 1.149 /* ---------------- Counter support -------------- */
2531    
2532 dl 1.222 /**
2533     * A padded cell for distributing counts. Adapted from LongAdder
2534     * and Striped64. See their internal docs for explanation.
2535     */
2536 jsr166 1.288 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2537 dl 1.222 volatile long value;
2538     CounterCell(long x) { value = x; }
2539     }
2540    
2541 dl 1.149 final long sumCount() {
2542 jsr166 1.306 CounterCell[] cs = counterCells;
2543 dl 1.149 long sum = baseCount;
2544 jsr166 1.306 if (cs != null) {
2545     for (CounterCell c : cs)
2546     if (c != null)
2547     sum += c.value;
2548 dl 1.119 }
2549 dl 1.149 return sum;
2550 dl 1.119 }
2551    
2552 dl 1.149 // See LongAdder version for explanation
2553 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2554 dl 1.149 int h;
2555 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2556     ThreadLocalRandom.localInit(); // force initialization
2557     h = ThreadLocalRandom.getProbe();
2558     wasUncontended = true;
2559 dl 1.119 }
2560 dl 1.149 boolean collide = false; // True if last slot nonempty
2561     for (;;) {
2562 jsr166 1.306 CounterCell[] cs; CounterCell c; int n; long v;
2563     if ((cs = counterCells) != null && (n = cs.length) > 0) {
2564     if ((c = cs[(n - 1) & h]) == null) {
2565 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2566 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2567 dl 1.153 if (cellsBusy == 0 &&
2568 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2569 dl 1.149 boolean created = false;
2570     try { // Recheck under lock
2571 dl 1.222 CounterCell[] rs; int m, j;
2572 dl 1.149 if ((rs = counterCells) != null &&
2573     (m = rs.length) > 0 &&
2574     rs[j = (m - 1) & h] == null) {
2575     rs[j] = r;
2576     created = true;
2577 dl 1.128 }
2578 dl 1.149 } finally {
2579 dl 1.153 cellsBusy = 0;
2580 dl 1.119 }
2581 dl 1.149 if (created)
2582     break;
2583     continue; // Slot is now non-empty
2584     }
2585     }
2586     collide = false;
2587     }
2588     else if (!wasUncontended) // CAS already known to fail
2589     wasUncontended = true; // Continue after rehash
2590 jsr166 1.306 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2591 dl 1.149 break;
2592 jsr166 1.306 else if (counterCells != cs || n >= NCPU)
2593 dl 1.149 collide = false; // At max size or stale
2594     else if (!collide)
2595     collide = true;
2596 dl 1.153 else if (cellsBusy == 0 &&
2597 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2598 dl 1.149 try {
2599 jsr166 1.306 if (counterCells == cs) // Expand table unless stale
2600     counterCells = Arrays.copyOf(cs, n << 1);
2601 dl 1.119 } finally {
2602 dl 1.153 cellsBusy = 0;
2603 dl 1.119 }
2604 dl 1.149 collide = false;
2605     continue; // Retry with expanded table
2606 dl 1.119 }
2607 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2608 dl 1.149 }
2609 jsr166 1.306 else if (cellsBusy == 0 && counterCells == cs &&
2610 jsr166 1.302 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2611 dl 1.149 boolean init = false;
2612     try { // Initialize table
2613 jsr166 1.306 if (counterCells == cs) {
2614 dl 1.222 CounterCell[] rs = new CounterCell[2];
2615     rs[h & 1] = new CounterCell(x);
2616 dl 1.149 counterCells = rs;
2617     init = true;
2618 dl 1.119 }
2619     } finally {
2620 dl 1.153 cellsBusy = 0;
2621 dl 1.119 }
2622 dl 1.149 if (init)
2623     break;
2624 dl 1.119 }
2625 jsr166 1.302 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2626 dl 1.149 break; // Fall back on using base
2627 dl 1.119 }
2628     }
2629    
2630 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2631 dl 1.119
2632     /**
2633 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2634     * too small, in which case resizes instead.
2635 dl 1.119 */
2636 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2637 jsr166 1.267 Node<K,V> b; int n;
2638 dl 1.222 if (tab != null) {
2639 dl 1.252 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2640     tryPresize(n << 1);
2641 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2642 jsr166 1.223 synchronized (b) {
2643 dl 1.222 if (tabAt(tab, index) == b) {
2644     TreeNode<K,V> hd = null, tl = null;
2645     for (Node<K,V> e = b; e != null; e = e.next) {
2646     TreeNode<K,V> p =
2647     new TreeNode<K,V>(e.hash, e.key, e.val,
2648     null, null);
2649     if ((p.prev = tl) == null)
2650     hd = p;
2651     else
2652     tl.next = p;
2653     tl = p;
2654     }
2655     setTabAt(tab, index, new TreeBin<K,V>(hd));
2656 dl 1.210 }
2657     }
2658     }
2659     }
2660     }
2661    
2662     /**
2663 jsr166 1.289 * Returns a list of non-TreeNodes replacing those in given list.
2664 dl 1.210 */
2665 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2666     Node<K,V> hd = null, tl = null;
2667     for (Node<K,V> q = b; q != null; q = q.next) {
2668 jsr166 1.290 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2669 dl 1.222 if (tl == null)
2670     hd = p;
2671     else
2672     tl.next = p;
2673     tl = p;
2674 dl 1.210 }
2675 dl 1.222 return hd;
2676     }
2677 dl 1.210
2678 dl 1.222 /* ---------------- TreeNodes -------------- */
2679    
2680     /**
2681 jsr166 1.285 * Nodes for use in TreeBins.
2682 dl 1.222 */
2683     static final class TreeNode<K,V> extends Node<K,V> {
2684     TreeNode<K,V> parent; // red-black tree links
2685     TreeNode<K,V> left;
2686     TreeNode<K,V> right;
2687     TreeNode<K,V> prev; // needed to unlink next upon deletion
2688     boolean red;
2689 dl 1.210
2690 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2691     TreeNode<K,V> parent) {
2692     super(hash, key, val, next);
2693     this.parent = parent;
2694 dl 1.210 }
2695    
2696 dl 1.222 Node<K,V> find(int h, Object k) {
2697     return findTreeNode(h, k, null);
2698 dl 1.210 }
2699    
2700 dl 1.222 /**
2701     * Returns the TreeNode (or null if not found) for the given key
2702     * starting at given root.
2703     */
2704     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2705 dl 1.224 if (k != null) {
2706     TreeNode<K,V> p = this;
2707 jsr166 1.256 do {
2708 dl 1.224 int ph, dir; K pk; TreeNode<K,V> q;
2709     TreeNode<K,V> pl = p.left, pr = p.right;
2710     if ((ph = p.hash) > h)
2711     p = pl;
2712     else if (ph < h)
2713     p = pr;
2714     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2715     return p;
2716 dl 1.240 else if (pl == null)
2717     p = pr;
2718     else if (pr == null)
2719     p = pl;
2720 jsr166 1.225 else if ((kc != null ||
2721 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2722     (dir = compareComparables(kc, k, pk)) != 0)
2723     p = (dir < 0) ? pl : pr;
2724 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2725     return q;
2726     else
2727 dl 1.224 p = pl;
2728     } while (p != null);
2729     }
2730 dl 1.222 return null;
2731 dl 1.210 }
2732     }
2733 dl 1.192
2734 dl 1.222 /* ---------------- TreeBins -------------- */
2735 dl 1.119
2736 dl 1.222 /**
2737     * TreeNodes used at the heads of bins. TreeBins do not hold user
2738     * keys or values, but instead point to list of TreeNodes and
2739     * their root. They also maintain a parasitic read-write lock
2740     * forcing writers (who hold bin lock) to wait for readers (who do
2741     * not) to complete before tree restructuring operations.
2742     */
2743     static final class TreeBin<K,V> extends Node<K,V> {
2744     TreeNode<K,V> root;
2745     volatile TreeNode<K,V> first;
2746     volatile Thread waiter;
2747     volatile int lockState;
2748 dl 1.224 // values for lockState
2749     static final int WRITER = 1; // set while holding write lock
2750     static final int WAITER = 2; // set when waiting for write lock
2751     static final int READER = 4; // increment value for setting read lock
2752 dl 1.119
2753 dl 1.222 /**
2754 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2755     * hashCodes and non-comparable. We don't require a total
2756     * order, just a consistent insertion rule to maintain
2757     * equivalence across rebalancings. Tie-breaking further than
2758     * necessary simplifies testing a bit.
2759     */
2760     static int tieBreakOrder(Object a, Object b) {
2761     int d;
2762     if (a == null || b == null ||
2763     (d = a.getClass().getName().
2764     compareTo(b.getClass().getName())) == 0)
2765     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2766     -1 : 1);
2767     return d;
2768     }
2769    
2770     /**
2771 dl 1.222 * Creates bin with initial set of nodes headed by b.
2772     */
2773     TreeBin(TreeNode<K,V> b) {
2774 jsr166 1.290 super(TREEBIN, null, null);
2775 dl 1.224 this.first = b;
2776 dl 1.222 TreeNode<K,V> r = null;
2777     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2778     next = (TreeNode<K,V>)x.next;
2779     x.left = x.right = null;
2780     if (r == null) {
2781     x.parent = null;
2782     x.red = false;
2783     r = x;
2784     }
2785     else {
2786 dl 1.240 K k = x.key;
2787     int h = x.hash;
2788 dl 1.222 Class<?> kc = null;
2789     for (TreeNode<K,V> p = r;;) {
2790     int dir, ph;
2791 dl 1.240 K pk = p.key;
2792     if ((ph = p.hash) > h)
2793 dl 1.222 dir = -1;
2794 dl 1.240 else if (ph < h)
2795 dl 1.222 dir = 1;
2796 dl 1.240 else if ((kc == null &&
2797     (kc = comparableClassFor(k)) == null) ||
2798     (dir = compareComparables(kc, k, pk)) == 0)
2799     dir = tieBreakOrder(k, pk);
2800 jsr166 1.260 TreeNode<K,V> xp = p;
2801 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802     x.parent = xp;
2803     if (dir <= 0)
2804     xp.left = x;
2805     else
2806     xp.right = x;
2807     r = balanceInsertion(r, x);
2808     break;
2809     }
2810     }
2811     }
2812     }
2813 dl 1.224 this.root = r;
2814 dl 1.240 assert checkInvariants(root);
2815 dl 1.222 }
2816 dl 1.210
2817 dl 1.222 /**
2818 jsr166 1.229 * Acquires write lock for tree restructuring.
2819 dl 1.222 */
2820     private final void lockRoot() {
2821 jsr166 1.302 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2822 dl 1.222 contendedLock(); // offload to separate method
2823 dl 1.153 }
2824    
2825 dl 1.222 /**
2826 jsr166 1.229 * Releases write lock for tree restructuring.
2827 dl 1.222 */
2828     private final void unlockRoot() {
2829     lockState = 0;
2830 dl 1.191 }
2831    
2832 dl 1.222 /**
2833 jsr166 1.229 * Possibly blocks awaiting root lock.
2834 dl 1.222 */
2835     private final void contendedLock() {
2836     boolean waiting = false;
2837     for (int s;;) {
2838 dl 1.252 if (((s = lockState) & ~WAITER) == 0) {
2839 jsr166 1.302 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2840 dl 1.222 if (waiting)
2841     waiter = null;
2842     return;
2843     }
2844     }
2845 dl 1.244 else if ((s & WAITER) == 0) {
2846 jsr166 1.302 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2847 dl 1.222 waiting = true;
2848     waiter = Thread.currentThread();
2849     }
2850     }
2851     else if (waiting)
2852     LockSupport.park(this);
2853     }
2854 dl 1.192 }
2855    
2856 dl 1.222 /**
2857     * Returns matching node or null if none. Tries to search
2858 jsr166 1.232 * using tree comparisons from root, but continues linear
2859 dl 1.222 * search when lock not available.
2860     */
2861     final Node<K,V> find(int h, Object k) {
2862     if (k != null) {
2863 dl 1.253 for (Node<K,V> e = first; e != null; ) {
2864 dl 1.222 int s; K ek;
2865     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2866     if (e.hash == h &&
2867     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2868     return e;
2869 dl 1.253 e = e.next;
2870 dl 1.222 }
2871 jsr166 1.302 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2872 dl 1.222 s + READER)) {
2873     TreeNode<K,V> r, p;
2874     try {
2875     p = ((r = root) == null ? null :
2876     r.findTreeNode(h, k, null));
2877     } finally {
2878     Thread w;
2879     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2880     (READER|WAITER) && (w = waiter) != null)
2881     LockSupport.unpark(w);
2882     }
2883     return p;
2884     }
2885     }
2886     }
2887     return null;
2888 dl 1.192 }
2889    
2890 dl 1.222 /**
2891     * Finds or adds a node.
2892     * @return null if added
2893     */
2894     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2895     Class<?> kc = null;
2896 dl 1.240 boolean searched = false;
2897 dl 1.224 for (TreeNode<K,V> p = root;;) {
2898 dl 1.240 int dir, ph; K pk;
2899 dl 1.224 if (p == null) {
2900     first = root = new TreeNode<K,V>(h, k, v, null, null);
2901     break;
2902     }
2903     else if ((ph = p.hash) > h)
2904 dl 1.222 dir = -1;
2905     else if (ph < h)
2906     dir = 1;
2907     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2908     return p;
2909     else if ((kc == null &&
2910     (kc = comparableClassFor(k)) == null) ||
2911     (dir = compareComparables(kc, k, pk)) == 0) {
2912 dl 1.240 if (!searched) {
2913     TreeNode<K,V> q, ch;
2914     searched = true;
2915     if (((ch = p.left) != null &&
2916     (q = ch.findTreeNode(h, k, kc)) != null) ||
2917     ((ch = p.right) != null &&
2918     (q = ch.findTreeNode(h, k, kc)) != null))
2919     return q;
2920     }
2921     dir = tieBreakOrder(k, pk);
2922 dl 1.222 }
2923 dl 1.240
2924 dl 1.222 TreeNode<K,V> xp = p;
2925 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2926 dl 1.222 TreeNode<K,V> x, f = first;
2927     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2928     if (f != null)
2929     f.prev = x;
2930 dl 1.240 if (dir <= 0)
2931 dl 1.222 xp.left = x;
2932     else
2933     xp.right = x;
2934     if (!xp.red)
2935     x.red = true;
2936     else {
2937     lockRoot();
2938     try {
2939     root = balanceInsertion(root, x);
2940     } finally {
2941     unlockRoot();
2942     }
2943     }
2944 dl 1.224 break;
2945 dl 1.222 }
2946     }
2947 dl 1.224 assert checkInvariants(root);
2948     return null;
2949 dl 1.192 }
2950    
2951 dl 1.222 /**
2952     * Removes the given node, that must be present before this
2953     * call. This is messier than typical red-black deletion code
2954     * because we cannot swap the contents of an interior node
2955     * with a leaf successor that is pinned by "next" pointers
2956     * that are accessible independently of lock. So instead we
2957     * swap the tree linkages.
2958     *
2959 jsr166 1.230 * @return true if now too small, so should be untreeified
2960 dl 1.222 */
2961     final boolean removeTreeNode(TreeNode<K,V> p) {
2962     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2963     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2964     TreeNode<K,V> r, rl;
2965     if (pred == null)
2966     first = next;
2967     else
2968     pred.next = next;
2969     if (next != null)
2970     next.prev = pred;
2971     if (first == null) {
2972     root = null;
2973     return true;
2974     }
2975 dl 1.224 if ((r = root) == null || r.right == null || // too small
2976 dl 1.222 (rl = r.left) == null || rl.left == null)
2977     return true;
2978     lockRoot();
2979     try {
2980     TreeNode<K,V> replacement;
2981     TreeNode<K,V> pl = p.left;
2982     TreeNode<K,V> pr = p.right;
2983     if (pl != null && pr != null) {
2984     TreeNode<K,V> s = pr, sl;
2985     while ((sl = s.left) != null) // find successor
2986     s = sl;
2987     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2988     TreeNode<K,V> sr = s.right;
2989     TreeNode<K,V> pp = p.parent;
2990     if (s == pr) { // p was s's direct parent
2991     p.parent = s;
2992     s.right = p;
2993     }
2994     else {
2995     TreeNode<K,V> sp = s.parent;
2996     if ((p.parent = sp) != null) {
2997     if (s == sp.left)
2998     sp.left = p;
2999     else
3000     sp.right = p;
3001     }
3002     if ((s.right = pr) != null)
3003     pr.parent = s;
3004     }
3005     p.left = null;
3006     if ((p.right = sr) != null)
3007     sr.parent = p;
3008     if ((s.left = pl) != null)
3009     pl.parent = s;
3010     if ((s.parent = pp) == null)
3011     r = s;
3012     else if (p == pp.left)
3013     pp.left = s;
3014     else
3015     pp.right = s;
3016     if (sr != null)
3017     replacement = sr;
3018     else
3019     replacement = p;
3020     }
3021     else if (pl != null)
3022     replacement = pl;
3023     else if (pr != null)
3024     replacement = pr;
3025     else
3026     replacement = p;
3027     if (replacement != p) {
3028     TreeNode<K,V> pp = replacement.parent = p.parent;
3029     if (pp == null)
3030     r = replacement;
3031     else if (p == pp.left)
3032     pp.left = replacement;
3033     else
3034     pp.right = replacement;
3035     p.left = p.right = p.parent = null;
3036     }
3037    
3038     root = (p.red) ? r : balanceDeletion(r, replacement);
3039    
3040     if (p == replacement) { // detach pointers
3041     TreeNode<K,V> pp;
3042     if ((pp = p.parent) != null) {
3043     if (p == pp.left)
3044     pp.left = null;
3045     else if (p == pp.right)
3046     pp.right = null;
3047     p.parent = null;
3048     }
3049     }
3050     } finally {
3051     unlockRoot();
3052     }
3053 dl 1.224 assert checkInvariants(root);
3054 dl 1.222 return false;
3055 dl 1.210 }
3056    
3057 dl 1.222 /* ------------------------------------------------------------ */
3058     // Red-black tree methods, all adapted from CLR
3059 dl 1.210
3060 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3061     TreeNode<K,V> p) {
3062 dl 1.224 TreeNode<K,V> r, pp, rl;
3063     if (p != null && (r = p.right) != null) {
3064 dl 1.222 if ((rl = p.right = r.left) != null)
3065     rl.parent = p;
3066     if ((pp = r.parent = p.parent) == null)
3067     (root = r).red = false;
3068     else if (pp.left == p)
3069     pp.left = r;
3070     else
3071     pp.right = r;
3072     r.left = p;
3073     p.parent = r;
3074     }
3075     return root;
3076 dl 1.119 }
3077    
3078 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3079     TreeNode<K,V> p) {
3080 dl 1.224 TreeNode<K,V> l, pp, lr;
3081     if (p != null && (l = p.left) != null) {
3082 dl 1.222 if ((lr = p.left = l.right) != null)
3083     lr.parent = p;
3084     if ((pp = l.parent = p.parent) == null)
3085     (root = l).red = false;
3086     else if (pp.right == p)
3087     pp.right = l;
3088     else
3089     pp.left = l;
3090     l.right = p;
3091     p.parent = l;
3092     }
3093     return root;
3094 dl 1.119 }
3095    
3096 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3097     TreeNode<K,V> x) {
3098     x.red = true;
3099     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3100     if ((xp = x.parent) == null) {
3101     x.red = false;
3102     return x;
3103     }
3104     else if (!xp.red || (xpp = xp.parent) == null)
3105     return root;
3106     if (xp == (xppl = xpp.left)) {
3107     if ((xppr = xpp.right) != null && xppr.red) {
3108     xppr.red = false;
3109     xp.red = false;
3110     xpp.red = true;
3111     x = xpp;
3112     }
3113     else {
3114     if (x == xp.right) {
3115     root = rotateLeft(root, x = xp);
3116     xpp = (xp = x.parent) == null ? null : xp.parent;
3117     }
3118     if (xp != null) {
3119     xp.red = false;
3120     if (xpp != null) {
3121     xpp.red = true;
3122     root = rotateRight(root, xpp);
3123     }
3124     }
3125     }
3126     }
3127     else {
3128     if (xppl != null && xppl.red) {
3129     xppl.red = false;
3130     xp.red = false;
3131     xpp.red = true;
3132     x = xpp;
3133     }
3134     else {
3135     if (x == xp.left) {
3136     root = rotateRight(root, x = xp);
3137     xpp = (xp = x.parent) == null ? null : xp.parent;
3138     }
3139     if (xp != null) {
3140     xp.red = false;
3141     if (xpp != null) {
3142     xpp.red = true;
3143     root = rotateLeft(root, xpp);
3144     }
3145     }
3146     }
3147     }
3148     }
3149 dl 1.119 }
3150    
3151 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3152     TreeNode<K,V> x) {
3153 jsr166 1.256 for (TreeNode<K,V> xp, xpl, xpr;;) {
3154 dl 1.222 if (x == null || x == root)
3155     return root;
3156     else if ((xp = x.parent) == null) {
3157     x.red = false;
3158     return x;
3159     }
3160     else if (x.red) {
3161     x.red = false;
3162     return root;
3163     }
3164     else if ((xpl = xp.left) == x) {
3165     if ((xpr = xp.right) != null && xpr.red) {
3166     xpr.red = false;
3167     xp.red = true;
3168     root = rotateLeft(root, xp);
3169     xpr = (xp = x.parent) == null ? null : xp.right;
3170     }
3171     if (xpr == null)
3172     x = xp;
3173     else {
3174     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3175     if ((sr == null || !sr.red) &&
3176     (sl == null || !sl.red)) {
3177     xpr.red = true;
3178     x = xp;
3179     }
3180     else {
3181     if (sr == null || !sr.red) {
3182     if (sl != null)
3183     sl.red = false;
3184     xpr.red = true;
3185     root = rotateRight(root, xpr);
3186     xpr = (xp = x.parent) == null ?
3187     null : xp.right;
3188     }
3189     if (xpr != null) {
3190     xpr.red = (xp == null) ? false : xp.red;
3191     if ((sr = xpr.right) != null)
3192     sr.red = false;
3193     }
3194     if (xp != null) {
3195     xp.red = false;
3196     root = rotateLeft(root, xp);
3197     }
3198     x = root;
3199     }
3200     }
3201     }
3202     else { // symmetric
3203     if (xpl != null && xpl.red) {
3204     xpl.red = false;
3205     xp.red = true;
3206     root = rotateRight(root, xp);
3207     xpl = (xp = x.parent) == null ? null : xp.left;
3208     }
3209     if (xpl == null)
3210     x = xp;
3211     else {
3212     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3213     if ((sl == null || !sl.red) &&
3214     (sr == null || !sr.red)) {
3215     xpl.red = true;
3216     x = xp;
3217     }
3218     else {
3219     if (sl == null || !sl.red) {
3220     if (sr != null)
3221     sr.red = false;
3222     xpl.red = true;
3223     root = rotateLeft(root, xpl);
3224     xpl = (xp = x.parent) == null ?
3225     null : xp.left;
3226     }
3227     if (xpl != null) {
3228     xpl.red = (xp == null) ? false : xp.red;
3229     if ((sl = xpl.left) != null)
3230     sl.red = false;
3231     }
3232     if (xp != null) {
3233     xp.red = false;
3234     root = rotateRight(root, xp);
3235     }
3236     x = root;
3237     }
3238     }
3239     }
3240     }
3241 dl 1.210 }
3242 jsr166 1.225
3243 dl 1.222 /**
3244 jsr166 1.285 * Checks invariants recursively for the tree of Nodes rooted at t.
3245 dl 1.222 */
3246 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3247 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3248     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3249     if (tb != null && tb.next != t)
3250     return false;
3251     if (tn != null && tn.prev != t)
3252     return false;
3253     if (tp != null && t != tp.left && t != tp.right)
3254     return false;
3255     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3256     return false;
3257     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3258     return false;
3259     if (t.red && tl != null && tl.red && tr != null && tr.red)
3260     return false;
3261 dl 1.224 if (tl != null && !checkInvariants(tl))
3262 dl 1.222 return false;
3263 dl 1.224 if (tr != null && !checkInvariants(tr))
3264 dl 1.210 return false;
3265     return true;
3266     }
3267 dl 1.146
3268 jsr166 1.320 private static final long LOCKSTATE
3269     = U.objectFieldOffset(TreeBin.class, "lockState");
3270 dl 1.119 }
3271    
3272 dl 1.222 /* ----------------Table Traversal -------------- */
3273    
3274 jsr166 1.247 /**
3275     * Records the table, its length, and current traversal index for a
3276     * traverser that must process a region of a forwarded table before
3277     * proceeding with current table.
3278     */
3279     static final class TableStack<K,V> {
3280 dl 1.246 int length;
3281     int index;
3282     Node<K,V>[] tab;
3283 jsr166 1.247 TableStack<K,V> next;
3284 dl 1.246 }
3285    
3286 dl 1.222 /**
3287     * Encapsulates traversal for methods such as containsValue; also
3288     * serves as a base class for other iterators and spliterators.
3289     *
3290     * Method advance visits once each still-valid node that was
3291     * reachable upon iterator construction. It might miss some that
3292     * were added to a bin after the bin was visited, which is OK wrt
3293     * consistency guarantees. Maintaining this property in the face
3294     * of possible ongoing resizes requires a fair amount of
3295     * bookkeeping state that is difficult to optimize away amidst
3296     * volatile accesses. Even so, traversal maintains reasonable
3297     * throughput.
3298     *
3299     * Normally, iteration proceeds bin-by-bin traversing lists.
3300     * However, if the table has been resized, then all future steps
3301     * must traverse both the bin at the current index as well as at
3302     * (index + baseSize); and so on for further resizings. To
3303     * paranoically cope with potential sharing by users of iterators
3304     * across threads, iteration terminates if a bounds checks fails
3305     * for a table read.
3306     */
3307     static class Traverser<K,V> {
3308     Node<K,V>[] tab; // current table; updated if resized
3309     Node<K,V> next; // the next entry to use
3310 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3311 dl 1.222 int index; // index of bin to use next
3312     int baseIndex; // current index of initial table
3313     int baseLimit; // index bound for initial table
3314     final int baseSize; // initial table size
3315    
3316     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3317     this.tab = tab;
3318     this.baseSize = size;
3319     this.baseIndex = this.index = index;
3320     this.baseLimit = limit;
3321     this.next = null;
3322     }
3323    
3324     /**
3325     * Advances if possible, returning next valid node, or null if none.
3326     */
3327     final Node<K,V> advance() {
3328     Node<K,V> e;
3329     if ((e = next) != null)
3330     e = e.next;
3331     for (;;) {
3332 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3333 dl 1.222 if (e != null)
3334     return next = e;
3335     if (baseIndex >= baseLimit || (t = tab) == null ||
3336     (n = t.length) <= (i = index) || i < 0)
3337     return next = null;
3338 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3339 dl 1.222 if (e instanceof ForwardingNode) {
3340     tab = ((ForwardingNode<K,V>)e).nextTable;
3341     e = null;
3342 dl 1.246 pushState(t, i, n);
3343 dl 1.222 continue;
3344     }
3345     else if (e instanceof TreeBin)
3346     e = ((TreeBin<K,V>)e).first;
3347     else
3348     e = null;
3349     }
3350 dl 1.246 if (stack != null)
3351     recoverState(n);
3352     else if ((index = i + baseSize) >= n)
3353     index = ++baseIndex; // visit upper slots if present
3354 dl 1.222 }
3355     }
3356 dl 1.246
3357     /**
3358 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3359 dl 1.246 */
3360     private void pushState(Node<K,V>[] t, int i, int n) {
3361     TableStack<K,V> s = spare; // reuse if possible
3362     if (s != null)
3363     spare = s.next;
3364     else
3365     s = new TableStack<K,V>();
3366     s.tab = t;
3367     s.length = n;
3368     s.index = i;
3369     s.next = stack;
3370     stack = s;
3371     }
3372    
3373     /**
3374 jsr166 1.249 * Possibly pops traversal state.
3375 dl 1.246 *
3376     * @param n length of current table
3377     */
3378     private void recoverState(int n) {
3379     TableStack<K,V> s; int len;
3380     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3381     n = len;
3382     index = s.index;
3383     tab = s.tab;
3384     s.tab = null;
3385     TableStack<K,V> next = s.next;
3386     s.next = spare; // save for reuse
3387     stack = next;
3388     spare = s;
3389     }
3390     if (s == null && (index += baseSize) >= n)
3391     index = ++baseIndex;
3392     }
3393 dl 1.222 }
3394    
3395     /**
3396     * Base of key, value, and entry Iterators. Adds fields to
3397 jsr166 1.229 * Traverser to support iterator.remove.
3398 dl 1.222 */
3399     static class BaseIterator<K,V> extends Traverser<K,V> {
3400     final ConcurrentHashMap<K,V> map;
3401     Node<K,V> lastReturned;
3402     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3403     ConcurrentHashMap<K,V> map) {
3404 dl 1.210 super(tab, size, index, limit);
3405     this.map = map;
3406 dl 1.222 advance();
3407 dl 1.210 }
3408    
3409 dl 1.222 public final boolean hasNext() { return next != null; }
3410     public final boolean hasMoreElements() { return next != null; }
3411    
3412     public final void remove() {
3413     Node<K,V> p;
3414     if ((p = lastReturned) == null)
3415     throw new IllegalStateException();
3416     lastReturned = null;
3417     map.replaceNode(p.key, null, null);
3418 dl 1.210 }
3419 dl 1.222 }
3420 dl 1.210
3421 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3422     implements Iterator<K>, Enumeration<K> {
3423 jsr166 1.298 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3424 dl 1.222 ConcurrentHashMap<K,V> map) {
3425 jsr166 1.298 super(tab, size, index, limit, map);
3426 dl 1.210 }
3427    
3428 dl 1.222 public final K next() {
3429 dl 1.210 Node<K,V> p;
3430 dl 1.222 if ((p = next) == null)
3431     throw new NoSuchElementException();
3432     K k = p.key;
3433     lastReturned = p;
3434     advance();
3435     return k;
3436 dl 1.210 }
3437    
3438 dl 1.222 public final K nextElement() { return next(); }
3439     }
3440    
3441     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3442     implements Iterator<V>, Enumeration<V> {
3443 jsr166 1.298 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3444 dl 1.222 ConcurrentHashMap<K,V> map) {
3445 jsr166 1.298 super(tab, size, index, limit, map);
3446 dl 1.222 }
3447 dl 1.210
3448 dl 1.222 public final V next() {
3449     Node<K,V> p;
3450     if ((p = next) == null)
3451     throw new NoSuchElementException();
3452     V v = p.val;
3453     lastReturned = p;
3454     advance();
3455     return v;
3456 dl 1.210 }
3457 dl 1.222
3458     public final V nextElement() { return next(); }
3459 dl 1.210 }
3460    
3461 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3462     implements Iterator<Map.Entry<K,V>> {
3463 jsr166 1.298 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3464 dl 1.222 ConcurrentHashMap<K,V> map) {
3465 jsr166 1.298 super(tab, size, index, limit, map);
3466 dl 1.222 }
3467 dl 1.210
3468 dl 1.222 public final Map.Entry<K,V> next() {
3469     Node<K,V> p;
3470     if ((p = next) == null)
3471     throw new NoSuchElementException();
3472     K k = p.key;
3473     V v = p.val;
3474     lastReturned = p;
3475     advance();
3476     return new MapEntry<K,V>(k, v, map);
3477     }
3478     }
3479 dl 1.119
3480     /**
3481 jsr166 1.285 * Exported Entry for EntryIterator.
3482 dl 1.119 */
3483 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3484     final K key; // non-null
3485     V val; // non-null
3486     final ConcurrentHashMap<K,V> map;
3487     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3488     this.key = key;
3489     this.val = val;
3490     this.map = map;
3491     }
3492     public K getKey() { return key; }
3493     public V getValue() { return val; }
3494     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3495 jsr166 1.268 public String toString() {
3496     return Helpers.mapEntryToString(key, val);
3497     }
3498 dl 1.119
3499 dl 1.222 public boolean equals(Object o) {
3500     Object k, v; Map.Entry<?,?> e;
3501     return ((o instanceof Map.Entry) &&
3502     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3503     (v = e.getValue()) != null &&
3504     (k == key || k.equals(key)) &&
3505     (v == val || v.equals(val)));
3506     }
3507 dl 1.119
3508 dl 1.222 /**
3509     * Sets our entry's value and writes through to the map. The
3510     * value to return is somewhat arbitrary here. Since we do not
3511     * necessarily track asynchronous changes, the most recent
3512     * "previous" value could be different from what we return (or
3513     * could even have been removed, in which case the put will
3514     * re-establish). We do not and cannot guarantee more.
3515     */
3516     public V setValue(V value) {
3517     if (value == null) throw new NullPointerException();
3518     V v = val;
3519     val = value;
3520     map.put(key, value);
3521     return v;
3522     }
3523 dl 1.119 }
3524    
3525 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3526     implements Spliterator<K> {
3527     long est; // size estimate
3528     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3529     long est) {
3530     super(tab, size, index, limit);
3531     this.est = est;
3532     }
3533 dl 1.119
3534 jsr166 1.286 public KeySpliterator<K,V> trySplit() {
3535 dl 1.222 int i, f, h;
3536     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3537     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3538     f, est >>>= 1);
3539 dl 1.119 }
3540    
3541 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3542     if (action == null) throw new NullPointerException();
3543     for (Node<K,V> p; (p = advance()) != null;)
3544     action.accept(p.key);
3545 dl 1.119 }
3546    
3547 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3548     if (action == null) throw new NullPointerException();
3549     Node<K,V> p;
3550     if ((p = advance()) == null)
3551 dl 1.119 return false;
3552 dl 1.222 action.accept(p.key);
3553     return true;
3554 dl 1.119 }
3555    
3556 dl 1.222 public long estimateSize() { return est; }
3557 dl 1.119
3558 dl 1.222 public int characteristics() {
3559     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3560     Spliterator.NONNULL;
3561     }
3562 dl 1.142 }
3563 dl 1.119
3564 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3565     implements Spliterator<V> {
3566     long est; // size estimate
3567     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3568     long est) {
3569     super(tab, size, index, limit);
3570     this.est = est;
3571 dl 1.209 }
3572    
3573 jsr166 1.286 public ValueSpliterator<K,V> trySplit() {
3574 dl 1.222 int i, f, h;
3575     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3577     f, est >>>= 1);
3578 dl 1.142 }
3579 dl 1.119
3580 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3581     if (action == null) throw new NullPointerException();
3582     for (Node<K,V> p; (p = advance()) != null;)
3583     action.accept(p.val);
3584     }
3585 dl 1.119
3586 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3587     if (action == null) throw new NullPointerException();
3588     Node<K,V> p;
3589     if ((p = advance()) == null)
3590     return false;
3591     action.accept(p.val);
3592     return true;
3593 dl 1.119 }
3594 dl 1.222
3595     public long estimateSize() { return est; }
3596    
3597     public int characteristics() {
3598     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3599 dl 1.119 }
3600 dl 1.142 }
3601 dl 1.119
3602 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3603     implements Spliterator<Map.Entry<K,V>> {
3604     final ConcurrentHashMap<K,V> map; // To export MapEntry
3605     long est; // size estimate
3606     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3607     long est, ConcurrentHashMap<K,V> map) {
3608     super(tab, size, index, limit);
3609     this.map = map;
3610     this.est = est;
3611     }
3612    
3613 jsr166 1.286 public EntrySpliterator<K,V> trySplit() {
3614 dl 1.222 int i, f, h;
3615     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3616     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3617     f, est >>>= 1, map);
3618     }
3619 dl 1.142
3620 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3621     if (action == null) throw new NullPointerException();
3622     for (Node<K,V> p; (p = advance()) != null; )
3623     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624     }
3625 dl 1.210
3626 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3627     if (action == null) throw new NullPointerException();
3628     Node<K,V> p;
3629     if ((p = advance()) == null)
3630     return false;
3631     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3632     return true;
3633 dl 1.210 }
3634    
3635 dl 1.222 public long estimateSize() { return est; }
3636    
3637     public int characteristics() {
3638     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3639     Spliterator.NONNULL;
3640 dl 1.210 }
3641     }
3642    
3643     // Parallel bulk operations
3644    
3645     /**
3646     * Computes initial batch value for bulk tasks. The returned value
3647     * is approximately exp2 of the number of times (minus one) to
3648     * split task by two before executing leaf action. This value is
3649     * faster to compute and more convenient to use as a guide to
3650     * splitting than is the depth, since it is used while dividing by
3651     * two anyway.
3652     */
3653     final int batchFor(long b) {
3654     long n;
3655     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3656     return 0;
3657     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3658     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3659     }
3660 dl 1.151
3661 dl 1.119 /**
3662 dl 1.137 * Performs the given action for each (key, value).
3663 dl 1.119 *
3664 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3665 jsr166 1.213 * needed for this operation to be executed in parallel
3666 dl 1.137 * @param action the action
3667 jsr166 1.220 * @since 1.8
3668 dl 1.119 */
3669 dl 1.210 public void forEach(long parallelismThreshold,
3670     BiConsumer<? super K,? super V> action) {
3671 dl 1.151 if (action == null) throw new NullPointerException();
3672 dl 1.210 new ForEachMappingTask<K,V>
3673     (null, batchFor(parallelismThreshold), 0, 0, table,
3674     action).invoke();
3675 dl 1.119 }
3676    
3677     /**
3678 dl 1.137 * Performs the given action for each non-null transformation
3679     * of each (key, value).
3680     *
3681 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3682 jsr166 1.213 * needed for this operation to be executed in parallel
3683 dl 1.137 * @param transformer a function returning the transformation
3684 jsr166 1.169 * for an element, or null if there is no transformation (in
3685 jsr166 1.172 * which case the action is not applied)
3686 dl 1.137 * @param action the action
3687 jsr166 1.237 * @param <U> the return type of the transformer
3688 jsr166 1.220 * @since 1.8
3689 dl 1.119 */
3690 dl 1.210 public <U> void forEach(long parallelismThreshold,
3691     BiFunction<? super K, ? super V, ? extends U> transformer,
3692     Consumer<? super U> action) {
3693 dl 1.151 if (transformer == null || action == null)
3694     throw new NullPointerException();
3695 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3696     (null, batchFor(parallelismThreshold), 0, 0, table,
3697     transformer, action).invoke();
3698 dl 1.137 }
3699    
3700     /**
3701     * Returns a non-null result from applying the given search
3702 dl 1.210 * function on each (key, value), or null if none. Upon
3703     * success, further element processing is suppressed and the
3704     * results of any other parallel invocations of the search
3705     * function are ignored.
3706 dl 1.137 *
3707 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3708 jsr166 1.213 * needed for this operation to be executed in parallel
3709 dl 1.137 * @param searchFunction a function returning a non-null
3710     * result on success, else null
3711 jsr166 1.237 * @param <U> the return type of the search function
3712 dl 1.137 * @return a non-null result from applying the given search
3713     * function on each (key, value), or null if none
3714 jsr166 1.220 * @since 1.8
3715 dl 1.137 */
3716 dl 1.210 public <U> U search(long parallelismThreshold,
3717     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3718 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3719 dl 1.210 return new SearchMappingsTask<K,V,U>
3720     (null, batchFor(parallelismThreshold), 0, 0, table,
3721     searchFunction, new AtomicReference<U>()).invoke();
3722 dl 1.137 }
3723    
3724     /**
3725     * Returns the result of accumulating the given transformation
3726     * of all (key, value) pairs using the given reducer to
3727     * combine values, or null if none.
3728     *
3729 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3730 jsr166 1.213 * needed for this operation to be executed in parallel
3731 dl 1.137 * @param transformer a function returning the transformation
3732 jsr166 1.169 * for an element, or null if there is no transformation (in
3733 jsr166 1.172 * which case it is not combined)
3734 dl 1.137 * @param reducer a commutative associative combining function
3735 jsr166 1.237 * @param <U> the return type of the transformer
3736 dl 1.137 * @return the result of accumulating the given transformation
3737     * of all (key, value) pairs
3738 jsr166 1.220 * @since 1.8
3739 dl 1.137 */
3740 dl 1.210 public <U> U reduce(long parallelismThreshold,
3741     BiFunction<? super K, ? super V, ? extends U> transformer,
3742     BiFunction<? super U, ? super U, ? extends U> reducer) {
3743 dl 1.151 if (transformer == null || reducer == null)
3744     throw new NullPointerException();
3745 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3746     (null, batchFor(parallelismThreshold), 0, 0, table,
3747     null, transformer, reducer).invoke();
3748 dl 1.137 }
3749    
3750     /**
3751     * Returns the result of accumulating the given transformation
3752     * of all (key, value) pairs using the given reducer to
3753     * combine values, and the given basis as an identity value.
3754     *
3755 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3756 jsr166 1.213 * needed for this operation to be executed in parallel
3757 dl 1.137 * @param transformer a function returning the transformation
3758     * for an element
3759     * @param basis the identity (initial default value) for the reduction
3760     * @param reducer a commutative associative combining function
3761     * @return the result of accumulating the given transformation
3762     * of all (key, value) pairs
3763 jsr166 1.220 * @since 1.8
3764 dl 1.137 */
3765 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3766     ToDoubleBiFunction<? super K, ? super V> transformer,
3767     double basis,
3768     DoubleBinaryOperator reducer) {
3769 dl 1.151 if (transformer == null || reducer == null)
3770     throw new NullPointerException();
3771 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3772     (null, batchFor(parallelismThreshold), 0, 0, table,
3773     null, transformer, basis, reducer).invoke();
3774 dl 1.137 }
3775 dl 1.119
3776 dl 1.137 /**
3777     * Returns the result of accumulating the given transformation
3778     * of all (key, value) pairs using the given reducer to
3779     * combine values, and the given basis as an identity value.
3780     *
3781 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3782 jsr166 1.213 * needed for this operation to be executed in parallel
3783 dl 1.137 * @param transformer a function returning the transformation
3784     * for an element
3785     * @param basis the identity (initial default value) for the reduction
3786     * @param reducer a commutative associative combining function
3787     * @return the result of accumulating the given transformation
3788     * of all (key, value) pairs
3789 jsr166 1.220 * @since 1.8
3790 dl 1.137 */
3791 dl 1.210 public long reduceToLong(long parallelismThreshold,
3792     ToLongBiFunction<? super K, ? super V> transformer,
3793     long basis,
3794     LongBinaryOperator reducer) {
3795 dl 1.151 if (transformer == null || reducer == null)
3796     throw new NullPointerException();
3797 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3798     (null, batchFor(parallelismThreshold), 0, 0, table,
3799     null, transformer, basis, reducer).invoke();
3800 dl 1.137 }
3801    
3802     /**
3803     * Returns the result of accumulating the given transformation
3804     * of all (key, value) pairs using the given reducer to
3805     * combine values, and the given basis as an identity value.
3806     *
3807 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3808 jsr166 1.213 * needed for this operation to be executed in parallel
3809 dl 1.137 * @param transformer a function returning the transformation
3810     * for an element
3811     * @param basis the identity (initial default value) for the reduction
3812     * @param reducer a commutative associative combining function
3813     * @return the result of accumulating the given transformation
3814     * of all (key, value) pairs
3815 jsr166 1.220 * @since 1.8
3816 dl 1.137 */
3817 dl 1.210 public int reduceToInt(long parallelismThreshold,
3818     ToIntBiFunction<? super K, ? super V> transformer,
3819     int basis,
3820     IntBinaryOperator reducer) {
3821 dl 1.151 if (transformer == null || reducer == null)
3822     throw new NullPointerException();
3823 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3824     (null, batchFor(parallelismThreshold), 0, 0, table,
3825     null, transformer, basis, reducer).invoke();
3826 dl 1.137 }
3827    
3828     /**
3829     * Performs the given action for each key.
3830     *
3831 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3832 jsr166 1.213 * needed for this operation to be executed in parallel
3833 dl 1.137 * @param action the action
3834 jsr166 1.220 * @since 1.8
3835 dl 1.137 */
3836 dl 1.210 public void forEachKey(long parallelismThreshold,
3837     Consumer<? super K> action) {
3838     if (action == null) throw new NullPointerException();
3839     new ForEachKeyTask<K,V>
3840     (null, batchFor(parallelismThreshold), 0, 0, table,
3841     action).invoke();
3842 dl 1.137 }
3843 dl 1.119
3844 dl 1.137 /**
3845     * Performs the given action for each non-null transformation
3846     * of each key.
3847     *
3848 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3849 jsr166 1.213 * needed for this operation to be executed in parallel
3850 dl 1.137 * @param transformer a function returning the transformation
3851 jsr166 1.169 * for an element, or null if there is no transformation (in
3852 jsr166 1.172 * which case the action is not applied)
3853 dl 1.137 * @param action the action
3854 jsr166 1.237 * @param <U> the return type of the transformer
3855 jsr166 1.220 * @since 1.8
3856 dl 1.137 */
3857 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3858     Function<? super K, ? extends U> transformer,
3859     Consumer<? super U> action) {
3860 dl 1.151 if (transformer == null || action == null)
3861     throw new NullPointerException();
3862 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3863     (null, batchFor(parallelismThreshold), 0, 0, table,
3864     transformer, action).invoke();
3865 dl 1.137 }
3866 dl 1.119
3867 dl 1.137 /**
3868     * Returns a non-null result from applying the given search
3869 dl 1.210 * function on each key, or null if none. Upon success,
3870     * further element processing is suppressed and the results of
3871     * any other parallel invocations of the search function are
3872     * ignored.
3873 dl 1.137 *
3874 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3875 jsr166 1.213 * needed for this operation to be executed in parallel
3876 dl 1.137 * @param searchFunction a function returning a non-null
3877     * result on success, else null
3878 jsr166 1.237 * @param <U> the return type of the search function
3879 dl 1.137 * @return a non-null result from applying the given search
3880     * function on each key, or null if none
3881 jsr166 1.220 * @since 1.8
3882 dl 1.137 */
3883 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3884     Function<? super K, ? extends U> searchFunction) {
3885     if (searchFunction == null) throw new NullPointerException();
3886     return new SearchKeysTask<K,V,U>
3887     (null, batchFor(parallelismThreshold), 0, 0, table,
3888     searchFunction, new AtomicReference<U>()).invoke();
3889 dl 1.137 }
3890 dl 1.119
3891 dl 1.137 /**
3892     * Returns the result of accumulating all keys using the given
3893     * reducer to combine values, or null if none.
3894     *
3895 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3896 jsr166 1.213 * needed for this operation to be executed in parallel
3897 dl 1.137 * @param reducer a commutative associative combining function
3898     * @return the result of accumulating all keys using the given
3899     * reducer to combine values, or null if none
3900 jsr166 1.220 * @since 1.8
3901 dl 1.137 */
3902 dl 1.210 public K reduceKeys(long parallelismThreshold,
3903     BiFunction<? super K, ? super K, ? extends K> reducer) {
3904 dl 1.151 if (reducer == null) throw new NullPointerException();
3905 dl 1.210 return new ReduceKeysTask<K,V>
3906     (null, batchFor(parallelismThreshold), 0, 0, table,
3907     null, reducer).invoke();
3908 dl 1.137 }
3909 dl 1.119
3910 dl 1.137 /**
3911     * Returns the result of accumulating the given transformation
3912     * of all keys using the given reducer to combine values, or
3913     * null if none.
3914     *
3915 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3916 jsr166 1.213 * needed for this operation to be executed in parallel
3917 dl 1.137 * @param transformer a function returning the transformation
3918 jsr166 1.169 * for an element, or null if there is no transformation (in
3919 jsr166 1.172 * which case it is not combined)
3920 dl 1.137 * @param reducer a commutative associative combining function
3921 jsr166 1.237 * @param <U> the return type of the transformer
3922 dl 1.137 * @return the result of accumulating the given transformation
3923     * of all keys
3924 jsr166 1.220 * @since 1.8
3925 dl 1.137 */
3926 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3927     Function<? super K, ? extends U> transformer,
3928 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3929 dl 1.151 if (transformer == null || reducer == null)
3930     throw new NullPointerException();
3931 dl 1.210 return new MapReduceKeysTask<K,V,U>
3932     (null, batchFor(parallelismThreshold), 0, 0, table,
3933     null, transformer, reducer).invoke();
3934 dl 1.137 }
3935 dl 1.119
3936 dl 1.137 /**
3937     * Returns the result of accumulating the given transformation
3938     * of all keys using the given reducer to combine values, and
3939     * the given basis as an identity value.
3940     *
3941 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3942 jsr166 1.213 * needed for this operation to be executed in parallel
3943 dl 1.137 * @param transformer a function returning the transformation
3944     * for an element
3945     * @param basis the identity (initial default value) for the reduction
3946     * @param reducer a commutative associative combining function
3947 jsr166 1.157 * @return the result of accumulating the given transformation
3948 dl 1.137 * of all keys
3949 jsr166 1.220 * @since 1.8
3950 dl 1.137 */
3951 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3952     ToDoubleFunction<? super K> transformer,
3953     double basis,
3954     DoubleBinaryOperator reducer) {
3955 dl 1.151 if (transformer == null || reducer == null)
3956     throw new NullPointerException();
3957 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3958     (null, batchFor(parallelismThreshold), 0, 0, table,
3959     null, transformer, basis, reducer).invoke();
3960 dl 1.137 }
3961 dl 1.119
3962 dl 1.137 /**
3963     * Returns the result of accumulating the given transformation
3964     * of all keys using the given reducer to combine values, and
3965     * the given basis as an identity value.
3966     *
3967 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3968 jsr166 1.213 * needed for this operation to be executed in parallel
3969 dl 1.137 * @param transformer a function returning the transformation
3970     * for an element
3971     * @param basis the identity (initial default value) for the reduction
3972     * @param reducer a commutative associative combining function
3973     * @return the result of accumulating the given transformation
3974     * of all keys
3975 jsr166 1.220 * @since 1.8
3976 dl 1.137 */
3977 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3978     ToLongFunction<? super K> transformer,
3979     long basis,
3980     LongBinaryOperator reducer) {
3981 dl 1.151 if (transformer == null || reducer == null)
3982     throw new NullPointerException();
3983 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3984     (null, batchFor(parallelismThreshold), 0, 0, table,
3985     null, transformer, basis, reducer).invoke();
3986 dl 1.137 }
3987 dl 1.119
3988 dl 1.137 /**
3989     * Returns the result of accumulating the given transformation
3990     * of all keys using the given reducer to combine values, and
3991     * the given basis as an identity value.
3992     *
3993 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3994 jsr166 1.213 * needed for this operation to be executed in parallel
3995 dl 1.137 * @param transformer a function returning the transformation
3996     * for an element
3997     * @param basis the identity (initial default value) for the reduction
3998     * @param reducer a commutative associative combining function
3999     * @return the result of accumulating the given transformation
4000     * of all keys
4001 jsr166 1.220 * @since 1.8
4002 dl 1.137 */
4003 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
4004     ToIntFunction<? super K> transformer,
4005     int basis,
4006     IntBinaryOperator reducer) {
4007 dl 1.151 if (transformer == null || reducer == null)
4008     throw new NullPointerException();
4009 dl 1.210 return new MapReduceKeysToIntTask<K,V>
4010     (null, batchFor(parallelismThreshold), 0, 0, table,
4011     null, transformer, basis, reducer).invoke();
4012 dl 1.137 }
4013 dl 1.119
4014 dl 1.137 /**
4015     * Performs the given action for each value.
4016     *
4017 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4018 jsr166 1.213 * needed for this operation to be executed in parallel
4019 dl 1.137 * @param action the action
4020 jsr166 1.220 * @since 1.8
4021 dl 1.137 */
4022 dl 1.210 public void forEachValue(long parallelismThreshold,
4023     Consumer<? super V> action) {
4024     if (action == null)
4025     throw new NullPointerException();
4026     new ForEachValueTask<K,V>
4027     (null, batchFor(parallelismThreshold), 0, 0, table,
4028     action).invoke();
4029 dl 1.137 }
4030 dl 1.119
4031 dl 1.137 /**
4032     * Performs the given action for each non-null transformation
4033     * of each value.
4034     *
4035 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4036 jsr166 1.213 * needed for this operation to be executed in parallel
4037 dl 1.137 * @param transformer a function returning the transformation
4038 jsr166 1.169 * for an element, or null if there is no transformation (in
4039 jsr166 1.172 * which case the action is not applied)
4040 jsr166 1.179 * @param action the action
4041 jsr166 1.237 * @param <U> the return type of the transformer
4042 jsr166 1.220 * @since 1.8
4043 dl 1.137 */
4044 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
4045     Function<? super V, ? extends U> transformer,
4046     Consumer<? super U> action) {
4047 dl 1.151 if (transformer == null || action == null)
4048     throw new NullPointerException();
4049 dl 1.210 new ForEachTransformedValueTask<K,V,U>
4050     (null, batchFor(parallelismThreshold), 0, 0, table,
4051     transformer, action).invoke();
4052 dl 1.137 }
4053 dl 1.119
4054 dl 1.137 /**
4055     * Returns a non-null result from applying the given search
4056 dl 1.210 * function on each value, or null if none. Upon success,
4057     * further element processing is suppressed and the results of
4058     * any other parallel invocations of the search function are
4059     * ignored.
4060 dl 1.137 *
4061 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4062 jsr166 1.213 * needed for this operation to be executed in parallel
4063 dl 1.137 * @param searchFunction a function returning a non-null
4064     * result on success, else null
4065 jsr166 1.237 * @param <U> the return type of the search function
4066 dl 1.137 * @return a non-null result from applying the given search
4067     * function on each value, or null if none
4068 jsr166 1.220 * @since 1.8
4069 dl 1.137 */
4070 dl 1.210 public <U> U searchValues(long parallelismThreshold,
4071     Function<? super V, ? extends U> searchFunction) {
4072 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4073 dl 1.210 return new SearchValuesTask<K,V,U>
4074     (null, batchFor(parallelismThreshold), 0, 0, table,
4075     searchFunction, new AtomicReference<U>()).invoke();
4076 dl 1.137 }
4077 dl 1.119
4078 dl 1.137 /**
4079     * Returns the result of accumulating all values using the
4080     * given reducer to combine values, or null if none.
4081     *
4082 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4083 jsr166 1.213 * needed for this operation to be executed in parallel
4084 dl 1.137 * @param reducer a commutative associative combining function
4085 jsr166 1.157 * @return the result of accumulating all values
4086 jsr166 1.220 * @since 1.8
4087 dl 1.137 */
4088 dl 1.210 public V reduceValues(long parallelismThreshold,
4089     BiFunction<? super V, ? super V, ? extends V> reducer) {
4090 dl 1.151 if (reducer == null) throw new NullPointerException();
4091 dl 1.210 return new ReduceValuesTask<K,V>
4092     (null, batchFor(parallelismThreshold), 0, 0, table,
4093     null, reducer).invoke();
4094 dl 1.137 }
4095 dl 1.119
4096 dl 1.137 /**
4097     * Returns the result of accumulating the given transformation
4098     * of all values using the given reducer to combine values, or
4099     * null if none.
4100     *
4101 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4102 jsr166 1.213 * needed for this operation to be executed in parallel
4103 dl 1.137 * @param transformer a function returning the transformation
4104 jsr166 1.169 * for an element, or null if there is no transformation (in
4105 jsr166 1.172 * which case it is not combined)
4106 dl 1.137 * @param reducer a commutative associative combining function
4107 jsr166 1.237 * @param <U> the return type of the transformer
4108 dl 1.137 * @return the result of accumulating the given transformation
4109     * of all values
4110 jsr166 1.220 * @since 1.8
4111 dl 1.137 */
4112 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4113     Function<? super V, ? extends U> transformer,
4114     BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 dl 1.151 if (transformer == null || reducer == null)
4116     throw new NullPointerException();
4117 dl 1.210 return new MapReduceValuesTask<K,V,U>
4118     (null, batchFor(parallelismThreshold), 0, 0, table,
4119     null, transformer, reducer).invoke();
4120 dl 1.137 }
4121 dl 1.119
4122 dl 1.137 /**
4123     * Returns the result of accumulating the given transformation
4124     * of all values using the given reducer to combine values,
4125     * and the given basis as an identity value.
4126     *
4127 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4128 jsr166 1.213 * needed for this operation to be executed in parallel
4129 dl 1.137 * @param transformer a function returning the transformation
4130     * for an element
4131     * @param basis the identity (initial default value) for the reduction
4132     * @param reducer a commutative associative combining function
4133     * @return the result of accumulating the given transformation
4134     * of all values
4135 jsr166 1.220 * @since 1.8
4136 dl 1.137 */
4137 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4138     ToDoubleFunction<? super V> transformer,
4139     double basis,
4140     DoubleBinaryOperator reducer) {
4141 dl 1.151 if (transformer == null || reducer == null)
4142     throw new NullPointerException();
4143 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4144     (null, batchFor(parallelismThreshold), 0, 0, table,
4145     null, transformer, basis, reducer).invoke();
4146 dl 1.137 }
4147 dl 1.119
4148 dl 1.137 /**
4149     * Returns the result of accumulating the given transformation
4150     * of all values using the given reducer to combine values,
4151     * and the given basis as an identity value.
4152     *
4153 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4154 jsr166 1.213 * needed for this operation to be executed in parallel
4155 dl 1.137 * @param transformer a function returning the transformation
4156     * for an element
4157     * @param basis the identity (initial default value) for the reduction
4158     * @param reducer a commutative associative combining function
4159     * @return the result of accumulating the given transformation
4160     * of all values
4161 jsr166 1.220 * @since 1.8
4162 dl 1.137 */
4163 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4164     ToLongFunction<? super V> transformer,
4165     long basis,
4166     LongBinaryOperator reducer) {
4167 dl 1.151 if (transformer == null || reducer == null)
4168     throw new NullPointerException();
4169 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4170     (null, batchFor(parallelismThreshold), 0, 0, table,
4171     null, transformer, basis, reducer).invoke();
4172 dl 1.137 }
4173 dl 1.119
4174 dl 1.137 /**
4175     * Returns the result of accumulating the given transformation
4176     * of all values using the given reducer to combine values,
4177     * and the given basis as an identity value.
4178     *
4179 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4180 jsr166 1.213 * needed for this operation to be executed in parallel
4181 dl 1.137 * @param transformer a function returning the transformation
4182     * for an element
4183     * @param basis the identity (initial default value) for the reduction
4184     * @param reducer a commutative associative combining function
4185     * @return the result of accumulating the given transformation
4186     * of all values
4187 jsr166 1.220 * @since 1.8
4188 dl 1.137 */
4189 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4190     ToIntFunction<? super V> transformer,
4191     int basis,
4192     IntBinaryOperator reducer) {
4193 dl 1.151 if (transformer == null || reducer == null)
4194     throw new NullPointerException();
4195 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4196     (null, batchFor(parallelismThreshold), 0, 0, table,
4197     null, transformer, basis, reducer).invoke();
4198 dl 1.137 }
4199 dl 1.119
4200 dl 1.137 /**
4201     * Performs the given action for each entry.
4202     *
4203 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4204 jsr166 1.213 * needed for this operation to be executed in parallel
4205 dl 1.137 * @param action the action
4206 jsr166 1.220 * @since 1.8
4207 dl 1.137 */
4208 dl 1.210 public void forEachEntry(long parallelismThreshold,
4209     Consumer<? super Map.Entry<K,V>> action) {
4210 dl 1.151 if (action == null) throw new NullPointerException();
4211 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4212     action).invoke();
4213 dl 1.137 }
4214 dl 1.119
4215 dl 1.137 /**
4216     * Performs the given action for each non-null transformation
4217     * of each entry.
4218     *
4219 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4220 jsr166 1.213 * needed for this operation to be executed in parallel
4221 dl 1.137 * @param transformer a function returning the transformation
4222 jsr166 1.169 * for an element, or null if there is no transformation (in
4223 jsr166 1.172 * which case the action is not applied)
4224 dl 1.137 * @param action the action
4225 jsr166 1.237 * @param <U> the return type of the transformer
4226 jsr166 1.220 * @since 1.8
4227 dl 1.137 */
4228 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4229     Function<Map.Entry<K,V>, ? extends U> transformer,
4230     Consumer<? super U> action) {
4231 dl 1.151 if (transformer == null || action == null)
4232     throw new NullPointerException();
4233 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4234     (null, batchFor(parallelismThreshold), 0, 0, table,
4235     transformer, action).invoke();
4236 dl 1.137 }
4237 dl 1.119
4238 dl 1.137 /**
4239     * Returns a non-null result from applying the given search
4240 dl 1.210 * function on each entry, or null if none. Upon success,
4241     * further element processing is suppressed and the results of
4242     * any other parallel invocations of the search function are
4243     * ignored.
4244 dl 1.137 *
4245 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4246 jsr166 1.213 * needed for this operation to be executed in parallel
4247 dl 1.137 * @param searchFunction a function returning a non-null
4248     * result on success, else null
4249 jsr166 1.237 * @param <U> the return type of the search function
4250 dl 1.137 * @return a non-null result from applying the given search
4251     * function on each entry, or null if none
4252 jsr166 1.220 * @since 1.8
4253 dl 1.137 */
4254 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4255     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4256 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4257 dl 1.210 return new SearchEntriesTask<K,V,U>
4258     (null, batchFor(parallelismThreshold), 0, 0, table,
4259     searchFunction, new AtomicReference<U>()).invoke();
4260 dl 1.137 }
4261 dl 1.119
4262 dl 1.137 /**
4263     * Returns the result of accumulating all entries using the
4264     * given reducer to combine values, or null if none.
4265     *
4266 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4267 jsr166 1.213 * needed for this operation to be executed in parallel
4268 dl 1.137 * @param reducer a commutative associative combining function
4269     * @return the result of accumulating all entries
4270 jsr166 1.220 * @since 1.8
4271 dl 1.137 */
4272 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4273     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4274 dl 1.151 if (reducer == null) throw new NullPointerException();
4275 dl 1.210 return new ReduceEntriesTask<K,V>
4276     (null, batchFor(parallelismThreshold), 0, 0, table,
4277     null, reducer).invoke();
4278 dl 1.137 }
4279 dl 1.119
4280 dl 1.137 /**
4281     * Returns the result of accumulating the given transformation
4282     * of all entries using the given reducer to combine values,
4283     * or null if none.
4284     *
4285 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4286 jsr166 1.213 * needed for this operation to be executed in parallel
4287 dl 1.137 * @param transformer a function returning the transformation
4288 jsr166 1.169 * for an element, or null if there is no transformation (in
4289 jsr166 1.172 * which case it is not combined)
4290 dl 1.137 * @param reducer a commutative associative combining function
4291 jsr166 1.237 * @param <U> the return type of the transformer
4292 dl 1.137 * @return the result of accumulating the given transformation
4293     * of all entries
4294 jsr166 1.220 * @since 1.8
4295 dl 1.137 */
4296 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4297     Function<Map.Entry<K,V>, ? extends U> transformer,
4298     BiFunction<? super U, ? super U, ? extends U> reducer) {
4299 dl 1.151 if (transformer == null || reducer == null)
4300     throw new NullPointerException();
4301 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4302     (null, batchFor(parallelismThreshold), 0, 0, table,
4303     null, transformer, reducer).invoke();
4304 dl 1.137 }
4305 dl 1.119
4306 dl 1.137 /**
4307     * Returns the result of accumulating the given transformation
4308     * of all entries using the given reducer to combine values,
4309     * and the given basis as an identity value.
4310     *
4311 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4312 jsr166 1.213 * needed for this operation to be executed in parallel
4313 dl 1.137 * @param transformer a function returning the transformation
4314     * for an element
4315     * @param basis the identity (initial default value) for the reduction
4316     * @param reducer a commutative associative combining function
4317     * @return the result of accumulating the given transformation
4318     * of all entries
4319 jsr166 1.220 * @since 1.8
4320 dl 1.137 */
4321 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4322     ToDoubleFunction<Map.Entry<K,V>> transformer,
4323     double basis,
4324     DoubleBinaryOperator reducer) {
4325 dl 1.151 if (transformer == null || reducer == null)
4326     throw new NullPointerException();
4327 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4328     (null, batchFor(parallelismThreshold), 0, 0, table,
4329     null, transformer, basis, reducer).invoke();
4330 dl 1.137 }
4331 dl 1.119
4332 dl 1.137 /**
4333     * Returns the result of accumulating the given transformation
4334     * of all entries using the given reducer to combine values,
4335     * and the given basis as an identity value.
4336     *
4337 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4338 jsr166 1.213 * needed for this operation to be executed in parallel
4339 dl 1.137 * @param transformer a function returning the transformation
4340     * for an element
4341     * @param basis the identity (initial default value) for the reduction
4342     * @param reducer a commutative associative combining function
4343 jsr166 1.157 * @return the result of accumulating the given transformation
4344 dl 1.137 * of all entries
4345 jsr166 1.221 * @since 1.8
4346 dl 1.137 */
4347 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4348     ToLongFunction<Map.Entry<K,V>> transformer,
4349     long basis,
4350     LongBinaryOperator reducer) {
4351 dl 1.151 if (transformer == null || reducer == null)
4352     throw new NullPointerException();
4353 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4354     (null, batchFor(parallelismThreshold), 0, 0, table,
4355     null, transformer, basis, reducer).invoke();
4356 dl 1.137 }
4357 dl 1.119
4358 dl 1.137 /**
4359     * Returns the result of accumulating the given transformation
4360     * of all entries using the given reducer to combine values,
4361     * and the given basis as an identity value.
4362     *
4363 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4364 jsr166 1.213 * needed for this operation to be executed in parallel
4365 dl 1.137 * @param transformer a function returning the transformation
4366     * for an element
4367     * @param basis the identity (initial default value) for the reduction
4368     * @param reducer a commutative associative combining function
4369     * @return the result of accumulating the given transformation
4370     * of all entries
4371 jsr166 1.221 * @since 1.8
4372 dl 1.137 */
4373 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4374     ToIntFunction<Map.Entry<K,V>> transformer,
4375     int basis,
4376     IntBinaryOperator reducer) {
4377 dl 1.151 if (transformer == null || reducer == null)
4378     throw new NullPointerException();
4379 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4380     (null, batchFor(parallelismThreshold), 0, 0, table,
4381     null, transformer, basis, reducer).invoke();
4382 dl 1.119 }
4383    
4384 dl 1.209
4385 dl 1.210 /* ----------------Views -------------- */
4386 dl 1.142
4387     /**
4388 dl 1.210 * Base class for views.
4389 dl 1.142 */
4390 dl 1.210 abstract static class CollectionView<K,V,E>
4391     implements Collection<E>, java.io.Serializable {
4392     private static final long serialVersionUID = 7249069246763182397L;
4393     final ConcurrentHashMap<K,V> map;
4394     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4395    
4396     /**
4397     * Returns the map backing this view.
4398     *
4399     * @return the map backing this view
4400     */
4401     public ConcurrentHashMap<K,V> getMap() { return map; }
4402 dl 1.142
4403 dl 1.210 /**
4404     * Removes all of the elements from this view, by removing all
4405     * the mappings from the map backing this view.
4406 jsr166 1.184 */
4407     public final void clear() { map.clear(); }
4408     public final int size() { return map.size(); }
4409     public final boolean isEmpty() { return map.isEmpty(); }
4410 dl 1.151
4411     // implementations below rely on concrete classes supplying these
4412 jsr166 1.184 // abstract methods
4413     /**
4414 jsr166 1.242 * Returns an iterator over the elements in this collection.
4415     *
4416     * <p>The returned iterator is
4417     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4418     *
4419     * @return an iterator over the elements in this collection
4420 jsr166 1.184 */
4421     public abstract Iterator<E> iterator();
4422 jsr166 1.165 public abstract boolean contains(Object o);
4423     public abstract boolean remove(Object o);
4424 dl 1.151
4425 jsr166 1.284 private static final String OOME_MSG = "Required array size too large";
4426 dl 1.142
4427     public final Object[] toArray() {
4428     long sz = map.mappingCount();
4429 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4430 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4431 dl 1.142 int n = (int)sz;
4432     Object[] r = new Object[n];
4433     int i = 0;
4434 jsr166 1.184 for (E e : this) {
4435 dl 1.142 if (i == n) {
4436     if (n >= MAX_ARRAY_SIZE)
4437 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4438 dl 1.142 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4439     n = MAX_ARRAY_SIZE;
4440     else
4441     n += (n >>> 1) + 1;
4442     r = Arrays.copyOf(r, n);
4443     }
4444 jsr166 1.184 r[i++] = e;
4445 dl 1.142 }
4446     return (i == n) ? r : Arrays.copyOf(r, i);
4447     }
4448    
4449 dl 1.222 @SuppressWarnings("unchecked")
4450 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4451 dl 1.142 long sz = map.mappingCount();
4452 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4453 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4454 dl 1.142 int m = (int)sz;
4455     T[] r = (a.length >= m) ? a :
4456     (T[])java.lang.reflect.Array
4457     .newInstance(a.getClass().getComponentType(), m);
4458     int n = r.length;
4459     int i = 0;
4460 jsr166 1.184 for (E e : this) {
4461 dl 1.142 if (i == n) {
4462     if (n >= MAX_ARRAY_SIZE)
4463 jsr166 1.284 throw new OutOfMemoryError(OOME_MSG);
4464 dl 1.142 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4465     n = MAX_ARRAY_SIZE;
4466     else
4467     n += (n >>> 1) + 1;
4468     r = Arrays.copyOf(r, n);
4469     }
4470 jsr166 1.184 r[i++] = (T)e;
4471 dl 1.142 }
4472     if (a == r && i < n) {
4473     r[i] = null; // null-terminate
4474     return r;
4475     }
4476     return (i == n) ? r : Arrays.copyOf(r, i);
4477     }
4478    
4479 jsr166 1.184 /**
4480     * Returns a string representation of this collection.
4481     * The string representation consists of the string representations
4482     * of the collection's elements in the order they are returned by
4483     * its iterator, enclosed in square brackets ({@code "[]"}).
4484     * Adjacent elements are separated by the characters {@code ", "}
4485     * (comma and space). Elements are converted to strings as by
4486     * {@link String#valueOf(Object)}.
4487     *
4488     * @return a string representation of this collection
4489     */
4490 dl 1.142 public final String toString() {
4491     StringBuilder sb = new StringBuilder();
4492     sb.append('[');
4493 jsr166 1.184 Iterator<E> it = iterator();
4494 dl 1.142 if (it.hasNext()) {
4495     for (;;) {
4496     Object e = it.next();
4497     sb.append(e == this ? "(this Collection)" : e);
4498     if (!it.hasNext())
4499     break;
4500     sb.append(',').append(' ');
4501     }
4502     }
4503     return sb.append(']').toString();
4504     }
4505    
4506     public final boolean containsAll(Collection<?> c) {
4507     if (c != this) {
4508 jsr166 1.184 for (Object e : c) {
4509 dl 1.142 if (e == null || !contains(e))
4510     return false;
4511     }
4512     }
4513     return true;
4514     }
4515    
4516 jsr166 1.295 public boolean removeAll(Collection<?> c) {
4517 dl 1.251 if (c == null) throw new NullPointerException();
4518 dl 1.142 boolean modified = false;
4519 jsr166 1.295 // Use (c instanceof Set) as a hint that lookup in c is as
4520     // efficient as this view
4521 jsr166 1.297 Node<K,V>[] t;
4522     if ((t = map.table) == null) {
4523     return false;
4524     } else if (c instanceof Set<?> && c.size() > t.length) {
4525 jsr166 1.295 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4526     if (c.contains(it.next())) {
4527     it.remove();
4528     modified = true;
4529     }
4530 dl 1.142 }
4531 jsr166 1.295 } else {
4532     for (Object e : c)
4533     modified |= remove(e);
4534 dl 1.142 }
4535     return modified;
4536     }
4537    
4538     public final boolean retainAll(Collection<?> c) {
4539 dl 1.251 if (c == null) throw new NullPointerException();
4540 dl 1.142 boolean modified = false;
4541 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4542 dl 1.142 if (!c.contains(it.next())) {
4543     it.remove();
4544     modified = true;
4545     }
4546     }
4547     return modified;
4548     }
4549    
4550     }
4551    
4552     /**
4553     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4554     * which additions may optionally be enabled by mapping to a
4555 jsr166 1.185 * common value. This class cannot be directly instantiated.
4556     * See {@link #keySet() keySet()},
4557     * {@link #keySet(Object) keySet(V)},
4558     * {@link #newKeySet() newKeySet()},
4559     * {@link #newKeySet(int) newKeySet(int)}.
4560 jsr166 1.221 *
4561     * @since 1.8
4562 dl 1.142 */
4563 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4564     implements Set<K>, java.io.Serializable {
4565 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4566 jsr166 1.323 @SuppressWarnings("serial") // Conditionally serializable
4567 dl 1.142 private final V value;
4568 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4569 dl 1.142 super(map);
4570     this.value = value;
4571     }
4572    
4573     /**
4574     * Returns the default mapped value for additions,
4575     * or {@code null} if additions are not supported.
4576     *
4577     * @return the default mapped value for additions, or {@code null}
4578 jsr166 1.172 * if not supported
4579 dl 1.142 */
4580     public V getMappedValue() { return value; }
4581    
4582 jsr166 1.184 /**
4583     * {@inheritDoc}
4584     * @throws NullPointerException if the specified key is null
4585     */
4586     public boolean contains(Object o) { return map.containsKey(o); }
4587 dl 1.142
4588 jsr166 1.184 /**
4589     * Removes the key from this map view, by removing the key (and its
4590     * corresponding value) from the backing map. This method does
4591     * nothing if the key is not in the map.
4592     *
4593     * @param o the key to be removed from the backing map
4594     * @return {@code true} if the backing map contained the specified key
4595     * @throws NullPointerException if the specified key is null
4596     */
4597     public boolean remove(Object o) { return map.remove(o) != null; }
4598    
4599     /**
4600     * @return an iterator over the keys of the backing map
4601     */
4602 dl 1.210 public Iterator<K> iterator() {
4603     Node<K,V>[] t;
4604     ConcurrentHashMap<K,V> m = map;
4605     int f = (t = m.table) == null ? 0 : t.length;
4606     return new KeyIterator<K,V>(t, f, 0, f, m);
4607     }
4608 dl 1.142
4609     /**
4610 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4611     * the default mapped value in the backing map, if defined.
4612 dl 1.142 *
4613 jsr166 1.184 * @param e key to be added
4614     * @return {@code true} if this set changed as a result of the call
4615     * @throws NullPointerException if the specified key is null
4616     * @throws UnsupportedOperationException if no default mapped value
4617     * for additions was provided
4618 dl 1.142 */
4619     public boolean add(K e) {
4620     V v;
4621     if ((v = value) == null)
4622     throw new UnsupportedOperationException();
4623 dl 1.222 return map.putVal(e, v, true) == null;
4624 dl 1.142 }
4625 jsr166 1.184
4626     /**
4627     * Adds all of the elements in the specified collection to this set,
4628     * as if by calling {@link #add} on each one.
4629     *
4630     * @param c the elements to be inserted into this set
4631     * @return {@code true} if this set changed as a result of the call
4632     * @throws NullPointerException if the collection or any of its
4633     * elements are {@code null}
4634     * @throws UnsupportedOperationException if no default mapped value
4635     * for additions was provided
4636     */
4637 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4638     boolean added = false;
4639     V v;
4640     if ((v = value) == null)
4641     throw new UnsupportedOperationException();
4642     for (K e : c) {
4643 dl 1.222 if (map.putVal(e, v, true) == null)
4644 dl 1.142 added = true;
4645     }
4646     return added;
4647     }
4648 dl 1.153
4649 dl 1.210 public int hashCode() {
4650     int h = 0;
4651     for (K e : this)
4652     h += e.hashCode();
4653     return h;
4654 dl 1.191 }
4655    
4656 dl 1.210 public boolean equals(Object o) {
4657     Set<?> c;
4658     return ((o instanceof Set) &&
4659     ((c = (Set<?>)o) == this ||
4660     (containsAll(c) && c.containsAll(this))));
4661 dl 1.119 }
4662 jsr166 1.125
4663 dl 1.210 public Spliterator<K> spliterator() {
4664     Node<K,V>[] t;
4665     ConcurrentHashMap<K,V> m = map;
4666     long n = m.sumCount();
4667     int f = (t = m.table) == null ? 0 : t.length;
4668     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4669 dl 1.119 }
4670    
4671 dl 1.210 public void forEach(Consumer<? super K> action) {
4672     if (action == null) throw new NullPointerException();
4673     Node<K,V>[] t;
4674     if ((t = map.table) != null) {
4675     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4676     for (Node<K,V> p; (p = it.advance()) != null; )
4677 dl 1.222 action.accept(p.key);
4678 dl 1.210 }
4679 dl 1.119 }
4680 dl 1.210 }
4681 dl 1.119
4682 dl 1.210 /**
4683     * A view of a ConcurrentHashMap as a {@link Collection} of
4684     * values, in which additions are disabled. This class cannot be
4685     * directly instantiated. See {@link #values()}.
4686     */
4687     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4688     implements Collection<V>, java.io.Serializable {
4689     private static final long serialVersionUID = 2249069246763182397L;
4690     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4691     public final boolean contains(Object o) {
4692     return map.containsValue(o);
4693 dl 1.119 }
4694    
4695 dl 1.210 public final boolean remove(Object o) {
4696     if (o != null) {
4697     for (Iterator<V> it = iterator(); it.hasNext();) {
4698     if (o.equals(it.next())) {
4699     it.remove();
4700     return true;
4701     }
4702     }
4703     }
4704     return false;
4705 dl 1.119 }
4706    
4707 dl 1.210 public final Iterator<V> iterator() {
4708     ConcurrentHashMap<K,V> m = map;
4709     Node<K,V>[] t;
4710     int f = (t = m.table) == null ? 0 : t.length;
4711     return new ValueIterator<K,V>(t, f, 0, f, m);
4712 dl 1.119 }
4713    
4714 dl 1.210 public final boolean add(V e) {
4715     throw new UnsupportedOperationException();
4716     }
4717     public final boolean addAll(Collection<? extends V> c) {
4718     throw new UnsupportedOperationException();
4719 dl 1.119 }
4720    
4721 jsr166 1.295 @Override public boolean removeAll(Collection<?> c) {
4722     if (c == null) throw new NullPointerException();
4723     boolean modified = false;
4724     for (Iterator<V> it = iterator(); it.hasNext();) {
4725     if (c.contains(it.next())) {
4726     it.remove();
4727     modified = true;
4728     }
4729     }
4730     return modified;
4731     }
4732    
4733 dl 1.272 public boolean removeIf(Predicate<? super V> filter) {
4734     return map.removeValueIf(filter);
4735     }
4736    
4737 dl 1.210 public Spliterator<V> spliterator() {
4738     Node<K,V>[] t;
4739     ConcurrentHashMap<K,V> m = map;
4740     long n = m.sumCount();
4741     int f = (t = m.table) == null ? 0 : t.length;
4742     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4743 dl 1.119 }
4744    
4745 dl 1.210 public void forEach(Consumer<? super V> action) {
4746     if (action == null) throw new NullPointerException();
4747     Node<K,V>[] t;
4748     if ((t = map.table) != null) {
4749     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4750     for (Node<K,V> p; (p = it.advance()) != null; )
4751     action.accept(p.val);
4752     }
4753 dl 1.119 }
4754 dl 1.210 }
4755    
4756     /**
4757     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4758     * entries. This class cannot be directly instantiated. See
4759     * {@link #entrySet()}.
4760     */
4761     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4762     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4763     private static final long serialVersionUID = 2249069246763182397L;
4764     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4765 dl 1.119
4766 dl 1.210 public boolean contains(Object o) {
4767     Object k, v, r; Map.Entry<?,?> e;
4768     return ((o instanceof Map.Entry) &&
4769     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4770     (r = map.get(k)) != null &&
4771     (v = e.getValue()) != null &&
4772     (v == r || v.equals(r)));
4773 dl 1.119 }
4774    
4775 dl 1.210 public boolean remove(Object o) {
4776     Object k, v; Map.Entry<?,?> e;
4777     return ((o instanceof Map.Entry) &&
4778     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4779     (v = e.getValue()) != null &&
4780     map.remove(k, v));
4781 dl 1.119 }
4782    
4783     /**
4784 dl 1.210 * @return an iterator over the entries of the backing map
4785 dl 1.119 */
4786 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4787     ConcurrentHashMap<K,V> m = map;
4788     Node<K,V>[] t;
4789     int f = (t = m.table) == null ? 0 : t.length;
4790     return new EntryIterator<K,V>(t, f, 0, f, m);
4791 dl 1.119 }
4792    
4793 dl 1.210 public boolean add(Entry<K,V> e) {
4794 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4795 dl 1.119 }
4796    
4797 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4798     boolean added = false;
4799     for (Entry<K,V> e : c) {
4800     if (add(e))
4801     added = true;
4802     }
4803     return added;
4804 dl 1.119 }
4805    
4806 jsr166 1.273 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4807 dl 1.271 return map.removeEntryIf(filter);
4808     }
4809    
4810 dl 1.210 public final int hashCode() {
4811     int h = 0;
4812     Node<K,V>[] t;
4813     if ((t = map.table) != null) {
4814     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4815     for (Node<K,V> p; (p = it.advance()) != null; ) {
4816     h += p.hashCode();
4817     }
4818     }
4819     return h;
4820 dl 1.119 }
4821    
4822 dl 1.210 public final boolean equals(Object o) {
4823     Set<?> c;
4824     return ((o instanceof Set) &&
4825     ((c = (Set<?>)o) == this ||
4826     (containsAll(c) && c.containsAll(this))));
4827 dl 1.119 }
4828    
4829 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4830     Node<K,V>[] t;
4831     ConcurrentHashMap<K,V> m = map;
4832     long n = m.sumCount();
4833     int f = (t = m.table) == null ? 0 : t.length;
4834     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4835 dl 1.119 }
4836    
4837 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4838     if (action == null) throw new NullPointerException();
4839     Node<K,V>[] t;
4840     if ((t = map.table) != null) {
4841     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4842     for (Node<K,V> p; (p = it.advance()) != null; )
4843 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4844 dl 1.210 }
4845 dl 1.119 }
4846    
4847 dl 1.210 }
4848    
4849     // -------------------------------------------------------
4850 dl 1.119
4851 dl 1.210 /**
4852     * Base class for bulk tasks. Repeats some fields and code from
4853     * class Traverser, because we need to subclass CountedCompleter.
4854     */
4855 dl 1.243 @SuppressWarnings("serial")
4856 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4857 dl 1.210 Node<K,V>[] tab; // same as Traverser
4858     Node<K,V> next;
4859 dl 1.246 TableStack<K,V> stack, spare;
4860 dl 1.210 int index;
4861     int baseIndex;
4862     int baseLimit;
4863     final int baseSize;
4864     int batch; // split control
4865    
4866     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4867     super(par);
4868     this.batch = b;
4869     this.index = this.baseIndex = i;
4870     if ((this.tab = t) == null)
4871     this.baseSize = this.baseLimit = 0;
4872     else if (par == null)
4873     this.baseSize = this.baseLimit = t.length;
4874     else {
4875     this.baseLimit = f;
4876     this.baseSize = par.baseSize;
4877     }
4878 dl 1.119 }
4879    
4880     /**
4881 jsr166 1.285 * Same as Traverser version.
4882 dl 1.119 */
4883 dl 1.210 final Node<K,V> advance() {
4884     Node<K,V> e;
4885     if ((e = next) != null)
4886     e = e.next;
4887     for (;;) {
4888 dl 1.246 Node<K,V>[] t; int i, n;
4889 dl 1.210 if (e != null)
4890     return next = e;
4891     if (baseIndex >= baseLimit || (t = tab) == null ||
4892     (n = t.length) <= (i = index) || i < 0)
4893     return next = null;
4894 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4895 dl 1.222 if (e instanceof ForwardingNode) {
4896     tab = ((ForwardingNode<K,V>)e).nextTable;
4897 dl 1.210 e = null;
4898 dl 1.246 pushState(t, i, n);
4899 dl 1.210 continue;
4900     }
4901 dl 1.222 else if (e instanceof TreeBin)
4902     e = ((TreeBin<K,V>)e).first;
4903     else
4904     e = null;
4905 dl 1.210 }
4906 dl 1.246 if (stack != null)
4907     recoverState(n);
4908     else if ((index = i + baseSize) >= n)
4909     index = ++baseIndex;
4910     }
4911     }
4912    
4913     private void pushState(Node<K,V>[] t, int i, int n) {
4914     TableStack<K,V> s = spare;
4915     if (s != null)
4916     spare = s.next;
4917     else
4918     s = new TableStack<K,V>();
4919     s.tab = t;
4920     s.length = n;
4921     s.index = i;
4922     s.next = stack;
4923     stack = s;
4924     }
4925    
4926     private void recoverState(int n) {
4927     TableStack<K,V> s; int len;
4928     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4929     n = len;
4930     index = s.index;
4931     tab = s.tab;
4932     s.tab = null;
4933     TableStack<K,V> next = s.next;
4934     s.next = spare; // save for reuse
4935     stack = next;
4936     spare = s;
4937 dl 1.210 }
4938 dl 1.246 if (s == null && (index += baseSize) >= n)
4939     index = ++baseIndex;
4940 dl 1.119 }
4941     }
4942    
4943     /*
4944     * Task classes. Coded in a regular but ugly format/style to
4945     * simplify checks that each variant differs in the right way from
4946 dl 1.149 * others. The null screenings exist because compilers cannot tell
4947     * that we've already null-checked task arguments, so we force
4948     * simplest hoisted bypass to help avoid convoluted traps.
4949 dl 1.119 */
4950 dl 1.222 @SuppressWarnings("serial")
4951 dl 1.210 static final class ForEachKeyTask<K,V>
4952     extends BulkTask<K,V,Void> {
4953 dl 1.171 final Consumer<? super K> action;
4954 dl 1.119 ForEachKeyTask
4955 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4956 dl 1.171 Consumer<? super K> action) {
4957 dl 1.210 super(p, b, i, f, t);
4958 dl 1.119 this.action = action;
4959     }
4960 jsr166 1.168 public final void compute() {
4961 dl 1.171 final Consumer<? super K> action;
4962 dl 1.149 if ((action = this.action) != null) {
4963 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4964     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4965     addToPendingCount(1);
4966     new ForEachKeyTask<K,V>
4967     (this, batch >>>= 1, baseLimit = h, f, tab,
4968     action).fork();
4969     }
4970     for (Node<K,V> p; (p = advance()) != null;)
4971 dl 1.222 action.accept(p.key);
4972 dl 1.149 propagateCompletion();
4973     }
4974 dl 1.119 }
4975     }
4976    
4977 dl 1.222 @SuppressWarnings("serial")
4978 dl 1.210 static final class ForEachValueTask<K,V>
4979     extends BulkTask<K,V,Void> {
4980 dl 1.171 final Consumer<? super V> action;
4981 dl 1.119 ForEachValueTask
4982 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4983 dl 1.171 Consumer<? super V> action) {
4984 dl 1.210 super(p, b, i, f, t);
4985 dl 1.119 this.action = action;
4986     }
4987 jsr166 1.168 public final void compute() {
4988 dl 1.171 final Consumer<? super V> action;
4989 dl 1.149 if ((action = this.action) != null) {
4990 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4991     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4992     addToPendingCount(1);
4993     new ForEachValueTask<K,V>
4994     (this, batch >>>= 1, baseLimit = h, f, tab,
4995     action).fork();
4996     }
4997     for (Node<K,V> p; (p = advance()) != null;)
4998     action.accept(p.val);
4999 dl 1.149 propagateCompletion();
5000     }
5001 dl 1.119 }
5002     }
5003    
5004 dl 1.222 @SuppressWarnings("serial")
5005 dl 1.210 static final class ForEachEntryTask<K,V>
5006     extends BulkTask<K,V,Void> {
5007 dl 1.171 final Consumer<? super Entry<K,V>> action;
5008 dl 1.119 ForEachEntryTask
5009 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5010 dl 1.171 Consumer<? super Entry<K,V>> action) {
5011 dl 1.210 super(p, b, i, f, t);
5012 dl 1.119 this.action = action;
5013     }
5014 jsr166 1.168 public final void compute() {
5015 dl 1.171 final Consumer<? super Entry<K,V>> action;
5016 dl 1.149 if ((action = this.action) != null) {
5017 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5018     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5019     addToPendingCount(1);
5020     new ForEachEntryTask<K,V>
5021     (this, batch >>>= 1, baseLimit = h, f, tab,
5022     action).fork();
5023     }
5024     for (Node<K,V> p; (p = advance()) != null; )
5025     action.accept(p);
5026 dl 1.149 propagateCompletion();
5027     }
5028 dl 1.119 }
5029     }
5030    
5031 dl 1.222 @SuppressWarnings("serial")
5032 dl 1.210 static final class ForEachMappingTask<K,V>
5033     extends BulkTask<K,V,Void> {
5034 dl 1.171 final BiConsumer<? super K, ? super V> action;
5035 dl 1.119 ForEachMappingTask
5036 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 dl 1.171 BiConsumer<? super K,? super V> action) {
5038 dl 1.210 super(p, b, i, f, t);
5039 dl 1.119 this.action = action;
5040     }
5041 jsr166 1.168 public final void compute() {
5042 dl 1.171 final BiConsumer<? super K, ? super V> action;
5043 dl 1.149 if ((action = this.action) != null) {
5044 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5045     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5046     addToPendingCount(1);
5047     new ForEachMappingTask<K,V>
5048     (this, batch >>>= 1, baseLimit = h, f, tab,
5049     action).fork();
5050     }
5051     for (Node<K,V> p; (p = advance()) != null; )
5052 dl 1.222 action.accept(p.key, p.val);
5053 dl 1.149 propagateCompletion();
5054     }
5055 dl 1.119 }
5056     }
5057    
5058 dl 1.222 @SuppressWarnings("serial")
5059 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
5060     extends BulkTask<K,V,Void> {
5061 dl 1.153 final Function<? super K, ? extends U> transformer;
5062 dl 1.171 final Consumer<? super U> action;
5063 dl 1.119 ForEachTransformedKeyTask
5064 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5065 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5066 dl 1.210 super(p, b, i, f, t);
5067 dl 1.146 this.transformer = transformer; this.action = action;
5068     }
5069 jsr166 1.168 public final void compute() {
5070 dl 1.153 final Function<? super K, ? extends U> transformer;
5071 dl 1.171 final Consumer<? super U> action;
5072 dl 1.149 if ((transformer = this.transformer) != null &&
5073     (action = this.action) != null) {
5074 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5075     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5076     addToPendingCount(1);
5077 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
5078 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5079     transformer, action).fork();
5080     }
5081     for (Node<K,V> p; (p = advance()) != null; ) {
5082     U u;
5083 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5084 dl 1.153 action.accept(u);
5085 dl 1.149 }
5086     propagateCompletion();
5087 dl 1.119 }
5088     }
5089     }
5090    
5091 dl 1.222 @SuppressWarnings("serial")
5092 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
5093     extends BulkTask<K,V,Void> {
5094 dl 1.153 final Function<? super V, ? extends U> transformer;
5095 dl 1.171 final Consumer<? super U> action;
5096 dl 1.119 ForEachTransformedValueTask
5097 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5098 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5099 dl 1.210 super(p, b, i, f, t);
5100 dl 1.146 this.transformer = transformer; this.action = action;
5101     }
5102 jsr166 1.168 public final void compute() {
5103 dl 1.153 final Function<? super V, ? extends U> transformer;
5104 dl 1.171 final Consumer<? super U> action;
5105 dl 1.149 if ((transformer = this.transformer) != null &&
5106     (action = this.action) != null) {
5107 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5108     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5109     addToPendingCount(1);
5110 dl 1.149 new ForEachTransformedValueTask<K,V,U>
5111 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5112     transformer, action).fork();
5113     }
5114     for (Node<K,V> p; (p = advance()) != null; ) {
5115     U u;
5116     if ((u = transformer.apply(p.val)) != null)
5117 dl 1.153 action.accept(u);
5118 dl 1.149 }
5119     propagateCompletion();
5120 dl 1.119 }
5121     }
5122 tim 1.1 }
5123    
5124 dl 1.222 @SuppressWarnings("serial")
5125 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5126     extends BulkTask<K,V,Void> {
5127 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5128 dl 1.171 final Consumer<? super U> action;
5129 dl 1.119 ForEachTransformedEntryTask
5130 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5131 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5132 dl 1.210 super(p, b, i, f, t);
5133 dl 1.146 this.transformer = transformer; this.action = action;
5134     }
5135 jsr166 1.168 public final void compute() {
5136 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5137 dl 1.171 final Consumer<? super U> action;
5138 dl 1.149 if ((transformer = this.transformer) != null &&
5139     (action = this.action) != null) {
5140 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5141     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5142     addToPendingCount(1);
5143 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5144 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5145     transformer, action).fork();
5146     }
5147     for (Node<K,V> p; (p = advance()) != null; ) {
5148     U u;
5149     if ((u = transformer.apply(p)) != null)
5150 dl 1.153 action.accept(u);
5151 dl 1.149 }
5152     propagateCompletion();
5153 dl 1.119 }
5154     }
5155 tim 1.1 }
5156    
5157 dl 1.222 @SuppressWarnings("serial")
5158 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5159     extends BulkTask<K,V,Void> {
5160 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5161 dl 1.171 final Consumer<? super U> action;
5162 dl 1.119 ForEachTransformedMappingTask
5163 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5164 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5165 dl 1.171 Consumer<? super U> action) {
5166 dl 1.210 super(p, b, i, f, t);
5167 dl 1.146 this.transformer = transformer; this.action = action;
5168 dl 1.119 }
5169 jsr166 1.168 public final void compute() {
5170 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5171 dl 1.171 final Consumer<? super U> action;
5172 dl 1.149 if ((transformer = this.transformer) != null &&
5173     (action = this.action) != null) {
5174 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5175     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5176     addToPendingCount(1);
5177 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5178 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5179     transformer, action).fork();
5180     }
5181     for (Node<K,V> p; (p = advance()) != null; ) {
5182     U u;
5183 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5184 dl 1.153 action.accept(u);
5185 dl 1.149 }
5186     propagateCompletion();
5187 dl 1.119 }
5188     }
5189 tim 1.1 }
5190    
5191 dl 1.222 @SuppressWarnings("serial")
5192 dl 1.210 static final class SearchKeysTask<K,V,U>
5193     extends BulkTask<K,V,U> {
5194 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5195 dl 1.119 final AtomicReference<U> result;
5196     SearchKeysTask
5197 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5198 dl 1.153 Function<? super K, ? extends U> searchFunction,
5199 dl 1.119 AtomicReference<U> result) {
5200 dl 1.210 super(p, b, i, f, t);
5201 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5202     }
5203 dl 1.146 public final U getRawResult() { return result.get(); }
5204 jsr166 1.168 public final void compute() {
5205 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5206 dl 1.146 final AtomicReference<U> result;
5207 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5208     (result = this.result) != null) {
5209 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5210     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5211 dl 1.149 if (result.get() != null)
5212     return;
5213 dl 1.210 addToPendingCount(1);
5214 dl 1.149 new SearchKeysTask<K,V,U>
5215 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5216     searchFunction, result).fork();
5217 dl 1.128 }
5218 dl 1.149 while (result.get() == null) {
5219 dl 1.210 U u;
5220     Node<K,V> p;
5221     if ((p = advance()) == null) {
5222 dl 1.149 propagateCompletion();
5223     break;
5224     }
5225 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5226 dl 1.149 if (result.compareAndSet(null, u))
5227     quietlyCompleteRoot();
5228     break;
5229     }
5230 dl 1.119 }
5231     }
5232     }
5233 tim 1.1 }
5234    
5235 dl 1.222 @SuppressWarnings("serial")
5236 dl 1.210 static final class SearchValuesTask<K,V,U>
5237     extends BulkTask<K,V,U> {
5238 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5239 dl 1.119 final AtomicReference<U> result;
5240     SearchValuesTask
5241 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5242 dl 1.153 Function<? super V, ? extends U> searchFunction,
5243 dl 1.119 AtomicReference<U> result) {
5244 dl 1.210 super(p, b, i, f, t);
5245 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5246     }
5247 dl 1.146 public final U getRawResult() { return result.get(); }
5248 jsr166 1.168 public final void compute() {
5249 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5250 dl 1.146 final AtomicReference<U> result;
5251 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5252     (result = this.result) != null) {
5253 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5254     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5255 dl 1.149 if (result.get() != null)
5256     return;
5257 dl 1.210 addToPendingCount(1);
5258 dl 1.149 new SearchValuesTask<K,V,U>
5259 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5260     searchFunction, result).fork();
5261 dl 1.128 }
5262 dl 1.149 while (result.get() == null) {
5263 dl 1.210 U u;
5264     Node<K,V> p;
5265     if ((p = advance()) == null) {
5266 dl 1.149 propagateCompletion();
5267     break;
5268     }
5269 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5270 dl 1.149 if (result.compareAndSet(null, u))
5271     quietlyCompleteRoot();
5272     break;
5273     }
5274 dl 1.119 }
5275     }
5276     }
5277     }
5278 tim 1.11
5279 dl 1.222 @SuppressWarnings("serial")
5280 dl 1.210 static final class SearchEntriesTask<K,V,U>
5281     extends BulkTask<K,V,U> {
5282 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5283 dl 1.119 final AtomicReference<U> result;
5284     SearchEntriesTask
5285 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5286 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5287 dl 1.119 AtomicReference<U> result) {
5288 dl 1.210 super(p, b, i, f, t);
5289 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5290     }
5291 dl 1.146 public final U getRawResult() { return result.get(); }
5292 jsr166 1.168 public final void compute() {
5293 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5294 dl 1.146 final AtomicReference<U> result;
5295 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5296     (result = this.result) != null) {
5297 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5298     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5299 dl 1.149 if (result.get() != null)
5300     return;
5301 dl 1.210 addToPendingCount(1);
5302 dl 1.149 new SearchEntriesTask<K,V,U>
5303 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5304     searchFunction, result).fork();
5305 dl 1.128 }
5306 dl 1.149 while (result.get() == null) {
5307 dl 1.210 U u;
5308     Node<K,V> p;
5309     if ((p = advance()) == null) {
5310 dl 1.149 propagateCompletion();
5311     break;
5312     }
5313 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5314 dl 1.149 if (result.compareAndSet(null, u))
5315     quietlyCompleteRoot();
5316     return;
5317     }
5318 dl 1.119 }
5319     }
5320     }
5321     }
5322 tim 1.1
5323 dl 1.222 @SuppressWarnings("serial")
5324 dl 1.210 static final class SearchMappingsTask<K,V,U>
5325     extends BulkTask<K,V,U> {
5326 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5327 dl 1.119 final AtomicReference<U> result;
5328     SearchMappingsTask
5329 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5330 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5331 dl 1.119 AtomicReference<U> result) {
5332 dl 1.210 super(p, b, i, f, t);
5333 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5334     }
5335 dl 1.146 public final U getRawResult() { return result.get(); }
5336 jsr166 1.168 public final void compute() {
5337 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5338 dl 1.146 final AtomicReference<U> result;
5339 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5340     (result = this.result) != null) {
5341 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5342     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 dl 1.149 if (result.get() != null)
5344     return;
5345 dl 1.210 addToPendingCount(1);
5346 dl 1.149 new SearchMappingsTask<K,V,U>
5347 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5348     searchFunction, result).fork();
5349 dl 1.128 }
5350 dl 1.149 while (result.get() == null) {
5351 dl 1.210 U u;
5352     Node<K,V> p;
5353     if ((p = advance()) == null) {
5354 dl 1.149 propagateCompletion();
5355     break;
5356     }
5357 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5358 dl 1.149 if (result.compareAndSet(null, u))
5359     quietlyCompleteRoot();
5360     break;
5361     }
5362 dl 1.119 }
5363     }
5364 tim 1.1 }
5365 dl 1.119 }
5366 tim 1.1
5367 dl 1.222 @SuppressWarnings("serial")
5368 dl 1.210 static final class ReduceKeysTask<K,V>
5369     extends BulkTask<K,V,K> {
5370 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5371 dl 1.119 K result;
5372 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5373 dl 1.119 ReduceKeysTask
5374 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5375 dl 1.128 ReduceKeysTask<K,V> nextRight,
5376 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5377 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5378 dl 1.119 this.reducer = reducer;
5379     }
5380 dl 1.146 public final K getRawResult() { return result; }
5381 dl 1.210 public final void compute() {
5382 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5383 dl 1.149 if ((reducer = this.reducer) != null) {
5384 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5385     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5386     addToPendingCount(1);
5387 dl 1.149 (rights = new ReduceKeysTask<K,V>
5388 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5389     rights, reducer)).fork();
5390     }
5391     K r = null;
5392     for (Node<K,V> p; (p = advance()) != null; ) {
5393 dl 1.222 K u = p.key;
5394 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5395 dl 1.149 }
5396     result = r;
5397     CountedCompleter<?> c;
5398     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5399 dl 1.246 @SuppressWarnings("unchecked")
5400     ReduceKeysTask<K,V>
5401 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5402     s = t.rights;
5403     while (s != null) {
5404     K tr, sr;
5405     if ((sr = s.result) != null)
5406     t.result = (((tr = t.result) == null) ? sr :
5407     reducer.apply(tr, sr));
5408     s = t.rights = s.nextRight;
5409     }
5410 dl 1.99 }
5411 dl 1.138 }
5412 tim 1.1 }
5413 dl 1.119 }
5414 tim 1.1
5415 dl 1.222 @SuppressWarnings("serial")
5416 dl 1.210 static final class ReduceValuesTask<K,V>
5417     extends BulkTask<K,V,V> {
5418 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5419 dl 1.119 V result;
5420 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5421 dl 1.119 ReduceValuesTask
5422 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5423 dl 1.128 ReduceValuesTask<K,V> nextRight,
5424 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5425 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5426 dl 1.119 this.reducer = reducer;
5427     }
5428 dl 1.146 public final V getRawResult() { return result; }
5429 dl 1.210 public final void compute() {
5430 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5431 dl 1.149 if ((reducer = this.reducer) != null) {
5432 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5433     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5434     addToPendingCount(1);
5435 dl 1.149 (rights = new ReduceValuesTask<K,V>
5436 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5437     rights, reducer)).fork();
5438     }
5439     V r = null;
5440     for (Node<K,V> p; (p = advance()) != null; ) {
5441     V v = p.val;
5442 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5443 dl 1.210 }
5444 dl 1.149 result = r;
5445     CountedCompleter<?> c;
5446     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5447 dl 1.246 @SuppressWarnings("unchecked")
5448     ReduceValuesTask<K,V>
5449 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5450     s = t.rights;
5451     while (s != null) {
5452     V tr, sr;
5453     if ((sr = s.result) != null)
5454     t.result = (((tr = t.result) == null) ? sr :
5455     reducer.apply(tr, sr));
5456     s = t.rights = s.nextRight;
5457     }
5458 dl 1.119 }
5459     }
5460 tim 1.1 }
5461 dl 1.119 }
5462 tim 1.1
5463 dl 1.222 @SuppressWarnings("serial")
5464 dl 1.210 static final class ReduceEntriesTask<K,V>
5465     extends BulkTask<K,V,Map.Entry<K,V>> {
5466 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5467 dl 1.119 Map.Entry<K,V> result;
5468 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5469 dl 1.119 ReduceEntriesTask
5470 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5471 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5472 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5473 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5474 dl 1.119 this.reducer = reducer;
5475     }
5476 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5477 dl 1.210 public final void compute() {
5478 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5479 dl 1.149 if ((reducer = this.reducer) != null) {
5480 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5481     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5482     addToPendingCount(1);
5483 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5484 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5485     rights, reducer)).fork();
5486     }
5487 dl 1.149 Map.Entry<K,V> r = null;
5488 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5489     r = (r == null) ? p : reducer.apply(r, p);
5490 dl 1.149 result = r;
5491     CountedCompleter<?> c;
5492     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5493 dl 1.246 @SuppressWarnings("unchecked")
5494     ReduceEntriesTask<K,V>
5495 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5496     s = t.rights;
5497     while (s != null) {
5498     Map.Entry<K,V> tr, sr;
5499     if ((sr = s.result) != null)
5500     t.result = (((tr = t.result) == null) ? sr :
5501     reducer.apply(tr, sr));
5502     s = t.rights = s.nextRight;
5503     }
5504 dl 1.119 }
5505 dl 1.138 }
5506 dl 1.119 }
5507     }
5508 dl 1.99
5509 dl 1.222 @SuppressWarnings("serial")
5510 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5511     extends BulkTask<K,V,U> {
5512 dl 1.153 final Function<? super K, ? extends U> transformer;
5513     final BiFunction<? super U, ? super U, ? extends U> reducer;
5514 dl 1.119 U result;
5515 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5516 dl 1.119 MapReduceKeysTask
5517 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5518 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5519 dl 1.153 Function<? super K, ? extends U> transformer,
5520     BiFunction<? super U, ? super U, ? extends U> reducer) {
5521 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5522 dl 1.119 this.transformer = transformer;
5523     this.reducer = reducer;
5524     }
5525 dl 1.146 public final U getRawResult() { return result; }
5526 dl 1.210 public final void compute() {
5527 dl 1.153 final Function<? super K, ? extends U> transformer;
5528     final BiFunction<? super U, ? super U, ? extends U> reducer;
5529 dl 1.149 if ((transformer = this.transformer) != null &&
5530     (reducer = this.reducer) != null) {
5531 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5532     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5533     addToPendingCount(1);
5534 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5535 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5536     rights, transformer, reducer)).fork();
5537     }
5538     U r = null;
5539     for (Node<K,V> p; (p = advance()) != null; ) {
5540     U u;
5541 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5542 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5543     }
5544     result = r;
5545     CountedCompleter<?> c;
5546     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5547 dl 1.246 @SuppressWarnings("unchecked")
5548     MapReduceKeysTask<K,V,U>
5549 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5550     s = t.rights;
5551     while (s != null) {
5552     U tr, sr;
5553     if ((sr = s.result) != null)
5554     t.result = (((tr = t.result) == null) ? sr :
5555     reducer.apply(tr, sr));
5556     s = t.rights = s.nextRight;
5557     }
5558 dl 1.119 }
5559 dl 1.138 }
5560 tim 1.1 }
5561 dl 1.4 }
5562    
5563 dl 1.222 @SuppressWarnings("serial")
5564 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5565     extends BulkTask<K,V,U> {
5566 dl 1.153 final Function<? super V, ? extends U> transformer;
5567     final BiFunction<? super U, ? super U, ? extends U> reducer;
5568 dl 1.119 U result;
5569 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5570 dl 1.119 MapReduceValuesTask
5571 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5573 dl 1.153 Function<? super V, ? extends U> transformer,
5574     BiFunction<? super U, ? super U, ? extends U> reducer) {
5575 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5576 dl 1.119 this.transformer = transformer;
5577     this.reducer = reducer;
5578     }
5579 dl 1.146 public final U getRawResult() { return result; }
5580 dl 1.210 public final void compute() {
5581 dl 1.153 final Function<? super V, ? extends U> transformer;
5582     final BiFunction<? super U, ? super U, ? extends U> reducer;
5583 dl 1.149 if ((transformer = this.transformer) != null &&
5584     (reducer = this.reducer) != null) {
5585 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5586     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5587     addToPendingCount(1);
5588 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5589 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5590     rights, transformer, reducer)).fork();
5591     }
5592     U r = null;
5593     for (Node<K,V> p; (p = advance()) != null; ) {
5594     U u;
5595     if ((u = transformer.apply(p.val)) != null)
5596 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5597     }
5598     result = r;
5599     CountedCompleter<?> c;
5600     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5601 dl 1.246 @SuppressWarnings("unchecked")
5602     MapReduceValuesTask<K,V,U>
5603 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5604     s = t.rights;
5605     while (s != null) {
5606     U tr, sr;
5607     if ((sr = s.result) != null)
5608     t.result = (((tr = t.result) == null) ? sr :
5609     reducer.apply(tr, sr));
5610     s = t.rights = s.nextRight;
5611     }
5612 dl 1.119 }
5613     }
5614     }
5615 dl 1.4 }
5616    
5617 dl 1.222 @SuppressWarnings("serial")
5618 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5619     extends BulkTask<K,V,U> {
5620 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5621     final BiFunction<? super U, ? super U, ? extends U> reducer;
5622 dl 1.119 U result;
5623 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5624 dl 1.119 MapReduceEntriesTask
5625 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5626 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5627 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5628     BiFunction<? super U, ? super U, ? extends U> reducer) {
5629 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5630 dl 1.119 this.transformer = transformer;
5631     this.reducer = reducer;
5632     }
5633 dl 1.146 public final U getRawResult() { return result; }
5634 dl 1.210 public final void compute() {
5635 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5636     final BiFunction<? super U, ? super U, ? extends U> reducer;
5637 dl 1.149 if ((transformer = this.transformer) != null &&
5638     (reducer = this.reducer) != null) {
5639 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5640     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5641     addToPendingCount(1);
5642 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5643 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5644     rights, transformer, reducer)).fork();
5645     }
5646     U r = null;
5647     for (Node<K,V> p; (p = advance()) != null; ) {
5648     U u;
5649     if ((u = transformer.apply(p)) != null)
5650 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5651     }
5652     result = r;
5653     CountedCompleter<?> c;
5654     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5655 dl 1.246 @SuppressWarnings("unchecked")
5656     MapReduceEntriesTask<K,V,U>
5657 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5658     s = t.rights;
5659     while (s != null) {
5660     U tr, sr;
5661     if ((sr = s.result) != null)
5662     t.result = (((tr = t.result) == null) ? sr :
5663     reducer.apply(tr, sr));
5664     s = t.rights = s.nextRight;
5665     }
5666 dl 1.119 }
5667 dl 1.138 }
5668 dl 1.119 }
5669 dl 1.4 }
5670 tim 1.1
5671 dl 1.222 @SuppressWarnings("serial")
5672 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5673     extends BulkTask<K,V,U> {
5674 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5675     final BiFunction<? super U, ? super U, ? extends U> reducer;
5676 dl 1.119 U result;
5677 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5678 dl 1.119 MapReduceMappingsTask
5679 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5681 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5682     BiFunction<? super U, ? super U, ? extends U> reducer) {
5683 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5684 dl 1.119 this.transformer = transformer;
5685     this.reducer = reducer;
5686     }
5687 dl 1.146 public final U getRawResult() { return result; }
5688 dl 1.210 public final void compute() {
5689 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5690     final BiFunction<? super U, ? super U, ? extends U> reducer;
5691 dl 1.149 if ((transformer = this.transformer) != null &&
5692     (reducer = this.reducer) != null) {
5693 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5694     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5695     addToPendingCount(1);
5696 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5697 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5698     rights, transformer, reducer)).fork();
5699     }
5700     U r = null;
5701     for (Node<K,V> p; (p = advance()) != null; ) {
5702     U u;
5703 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5704 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5705     }
5706     result = r;
5707     CountedCompleter<?> c;
5708     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 dl 1.246 @SuppressWarnings("unchecked")
5710     MapReduceMappingsTask<K,V,U>
5711 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5712     s = t.rights;
5713     while (s != null) {
5714     U tr, sr;
5715     if ((sr = s.result) != null)
5716     t.result = (((tr = t.result) == null) ? sr :
5717     reducer.apply(tr, sr));
5718     s = t.rights = s.nextRight;
5719     }
5720 dl 1.119 }
5721     }
5722     }
5723     }
5724 jsr166 1.114
5725 dl 1.222 @SuppressWarnings("serial")
5726 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5727     extends BulkTask<K,V,Double> {
5728 dl 1.171 final ToDoubleFunction<? super K> transformer;
5729 dl 1.153 final DoubleBinaryOperator reducer;
5730 dl 1.119 final double basis;
5731     double result;
5732 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5733 dl 1.119 MapReduceKeysToDoubleTask
5734 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5735 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5736 dl 1.171 ToDoubleFunction<? super K> transformer,
5737 dl 1.119 double basis,
5738 dl 1.153 DoubleBinaryOperator reducer) {
5739 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5740 dl 1.119 this.transformer = transformer;
5741     this.basis = basis; this.reducer = reducer;
5742     }
5743 dl 1.146 public final Double getRawResult() { return result; }
5744 dl 1.210 public final void compute() {
5745 dl 1.171 final ToDoubleFunction<? super K> transformer;
5746 dl 1.153 final DoubleBinaryOperator reducer;
5747 dl 1.149 if ((transformer = this.transformer) != null &&
5748     (reducer = this.reducer) != null) {
5749     double r = this.basis;
5750 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5751     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5752     addToPendingCount(1);
5753 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5754 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5755     rights, transformer, r, reducer)).fork();
5756     }
5757     for (Node<K,V> p; (p = advance()) != null; )
5758 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5759 dl 1.149 result = r;
5760     CountedCompleter<?> c;
5761     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5762 dl 1.246 @SuppressWarnings("unchecked")
5763     MapReduceKeysToDoubleTask<K,V>
5764 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5765     s = t.rights;
5766     while (s != null) {
5767 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5768 dl 1.149 s = t.rights = s.nextRight;
5769     }
5770 dl 1.119 }
5771 dl 1.138 }
5772 dl 1.79 }
5773 dl 1.119 }
5774 dl 1.79
5775 dl 1.222 @SuppressWarnings("serial")
5776 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5777     extends BulkTask<K,V,Double> {
5778 dl 1.171 final ToDoubleFunction<? super V> transformer;
5779 dl 1.153 final DoubleBinaryOperator reducer;
5780 dl 1.119 final double basis;
5781     double result;
5782 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5783 dl 1.119 MapReduceValuesToDoubleTask
5784 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5785 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5786 dl 1.171 ToDoubleFunction<? super V> transformer,
5787 dl 1.119 double basis,
5788 dl 1.153 DoubleBinaryOperator reducer) {
5789 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5790 dl 1.119 this.transformer = transformer;
5791     this.basis = basis; this.reducer = reducer;
5792     }
5793 dl 1.146 public final Double getRawResult() { return result; }
5794 dl 1.210 public final void compute() {
5795 dl 1.171 final ToDoubleFunction<? super V> transformer;
5796 dl 1.153 final DoubleBinaryOperator reducer;
5797 dl 1.149 if ((transformer = this.transformer) != null &&
5798     (reducer = this.reducer) != null) {
5799     double r = this.basis;
5800 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5801     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5802     addToPendingCount(1);
5803 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5804 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5805     rights, transformer, r, reducer)).fork();
5806     }
5807     for (Node<K,V> p; (p = advance()) != null; )
5808     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5809 dl 1.149 result = r;
5810     CountedCompleter<?> c;
5811     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5812 dl 1.246 @SuppressWarnings("unchecked")
5813     MapReduceValuesToDoubleTask<K,V>
5814 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5815     s = t.rights;
5816     while (s != null) {
5817 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5818 dl 1.149 s = t.rights = s.nextRight;
5819     }
5820 dl 1.119 }
5821     }
5822 dl 1.30 }
5823 dl 1.79 }
5824 dl 1.30
5825 dl 1.222 @SuppressWarnings("serial")
5826 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5827     extends BulkTask<K,V,Double> {
5828 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5829 dl 1.153 final DoubleBinaryOperator reducer;
5830 dl 1.119 final double basis;
5831     double result;
5832 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5833 dl 1.119 MapReduceEntriesToDoubleTask
5834 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5835 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5836 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5837 dl 1.119 double basis,
5838 dl 1.153 DoubleBinaryOperator reducer) {
5839 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5840 dl 1.119 this.transformer = transformer;
5841     this.basis = basis; this.reducer = reducer;
5842     }
5843 dl 1.146 public final Double getRawResult() { return result; }
5844 dl 1.210 public final void compute() {
5845 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5846 dl 1.153 final DoubleBinaryOperator reducer;
5847 dl 1.149 if ((transformer = this.transformer) != null &&
5848     (reducer = this.reducer) != null) {
5849     double r = this.basis;
5850 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5851     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5852     addToPendingCount(1);
5853 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5854 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5855     rights, transformer, r, reducer)).fork();
5856     }
5857     for (Node<K,V> p; (p = advance()) != null; )
5858     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5859 dl 1.149 result = r;
5860     CountedCompleter<?> c;
5861     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5862 dl 1.246 @SuppressWarnings("unchecked")
5863     MapReduceEntriesToDoubleTask<K,V>
5864 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5865     s = t.rights;
5866     while (s != null) {
5867 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5868 dl 1.149 s = t.rights = s.nextRight;
5869     }
5870 dl 1.119 }
5871 dl 1.138 }
5872 dl 1.30 }
5873 tim 1.1 }
5874    
5875 dl 1.222 @SuppressWarnings("serial")
5876 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5877     extends BulkTask<K,V,Double> {
5878 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5879 dl 1.153 final DoubleBinaryOperator reducer;
5880 dl 1.119 final double basis;
5881     double result;
5882 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5883 dl 1.119 MapReduceMappingsToDoubleTask
5884 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5885 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5886 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5887 dl 1.119 double basis,
5888 dl 1.153 DoubleBinaryOperator reducer) {
5889 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5890 dl 1.119 this.transformer = transformer;
5891     this.basis = basis; this.reducer = reducer;
5892     }
5893 dl 1.146 public final Double getRawResult() { return result; }
5894 dl 1.210 public final void compute() {
5895 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5896 dl 1.153 final DoubleBinaryOperator reducer;
5897 dl 1.149 if ((transformer = this.transformer) != null &&
5898     (reducer = this.reducer) != null) {
5899     double r = this.basis;
5900 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5901     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5902     addToPendingCount(1);
5903 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5904 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5905     rights, transformer, r, reducer)).fork();
5906     }
5907     for (Node<K,V> p; (p = advance()) != null; )
5908 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5909 dl 1.149 result = r;
5910     CountedCompleter<?> c;
5911     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5912 dl 1.246 @SuppressWarnings("unchecked")
5913     MapReduceMappingsToDoubleTask<K,V>
5914 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5915     s = t.rights;
5916     while (s != null) {
5917 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5918 dl 1.149 s = t.rights = s.nextRight;
5919     }
5920 dl 1.119 }
5921     }
5922 dl 1.4 }
5923 dl 1.119 }
5924    
5925 dl 1.222 @SuppressWarnings("serial")
5926 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5927     extends BulkTask<K,V,Long> {
5928 dl 1.171 final ToLongFunction<? super K> transformer;
5929 dl 1.153 final LongBinaryOperator reducer;
5930 dl 1.119 final long basis;
5931     long result;
5932 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5933 dl 1.119 MapReduceKeysToLongTask
5934 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5935 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5936 dl 1.171 ToLongFunction<? super K> transformer,
5937 dl 1.119 long basis,
5938 dl 1.153 LongBinaryOperator reducer) {
5939 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5940 dl 1.119 this.transformer = transformer;
5941     this.basis = basis; this.reducer = reducer;
5942     }
5943 dl 1.146 public final Long getRawResult() { return result; }
5944 dl 1.210 public final void compute() {
5945 dl 1.171 final ToLongFunction<? super K> transformer;
5946 dl 1.153 final LongBinaryOperator reducer;
5947 dl 1.149 if ((transformer = this.transformer) != null &&
5948     (reducer = this.reducer) != null) {
5949     long r = this.basis;
5950 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5951     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5952     addToPendingCount(1);
5953 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5954 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5955     rights, transformer, r, reducer)).fork();
5956     }
5957     for (Node<K,V> p; (p = advance()) != null; )
5958 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5959 dl 1.149 result = r;
5960     CountedCompleter<?> c;
5961     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 dl 1.246 @SuppressWarnings("unchecked")
5963     MapReduceKeysToLongTask<K,V>
5964 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5965     s = t.rights;
5966     while (s != null) {
5967 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5968 dl 1.149 s = t.rights = s.nextRight;
5969     }
5970 dl 1.119 }
5971 dl 1.138 }
5972 dl 1.4 }
5973 dl 1.119 }
5974    
5975 dl 1.222 @SuppressWarnings("serial")
5976 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5977     extends BulkTask<K,V,Long> {
5978 dl 1.171 final ToLongFunction<? super V> transformer;
5979 dl 1.153 final LongBinaryOperator reducer;
5980 dl 1.119 final long basis;
5981     long result;
5982 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5983 dl 1.119 MapReduceValuesToLongTask
5984 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5985 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5986 dl 1.171 ToLongFunction<? super V> transformer,
5987 dl 1.119 long basis,
5988 dl 1.153 LongBinaryOperator reducer) {
5989 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5990 dl 1.119 this.transformer = transformer;
5991     this.basis = basis; this.reducer = reducer;
5992     }
5993 dl 1.146 public final Long getRawResult() { return result; }
5994 dl 1.210 public final void compute() {
5995 dl 1.171 final ToLongFunction<? super V> transformer;
5996 dl 1.153 final LongBinaryOperator reducer;
5997 dl 1.149 if ((transformer = this.transformer) != null &&
5998     (reducer = this.reducer) != null) {
5999     long r = this.basis;
6000 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6001     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6002     addToPendingCount(1);
6003 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
6004 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6005     rights, transformer, r, reducer)).fork();
6006     }
6007     for (Node<K,V> p; (p = advance()) != null; )
6008     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6009 dl 1.149 result = r;
6010     CountedCompleter<?> c;
6011     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6012 dl 1.246 @SuppressWarnings("unchecked")
6013     MapReduceValuesToLongTask<K,V>
6014 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
6015     s = t.rights;
6016     while (s != null) {
6017 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6018 dl 1.149 s = t.rights = s.nextRight;
6019     }
6020 dl 1.119 }
6021     }
6022 jsr166 1.95 }
6023 dl 1.119 }
6024    
6025 dl 1.222 @SuppressWarnings("serial")
6026 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
6027     extends BulkTask<K,V,Long> {
6028 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6029 dl 1.153 final LongBinaryOperator reducer;
6030 dl 1.119 final long basis;
6031     long result;
6032 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6033 dl 1.119 MapReduceEntriesToLongTask
6034 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6035 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6036 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6037 dl 1.119 long basis,
6038 dl 1.153 LongBinaryOperator reducer) {
6039 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6040 dl 1.119 this.transformer = transformer;
6041     this.basis = basis; this.reducer = reducer;
6042     }
6043 dl 1.146 public final Long getRawResult() { return result; }
6044 dl 1.210 public final void compute() {
6045 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6046 dl 1.153 final LongBinaryOperator reducer;
6047 dl 1.149 if ((transformer = this.transformer) != null &&
6048     (reducer = this.reducer) != null) {
6049     long r = this.basis;
6050 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6051     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6052     addToPendingCount(1);
6053 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
6054 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6055     rights, transformer, r, reducer)).fork();
6056     }
6057     for (Node<K,V> p; (p = advance()) != null; )
6058     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6059 dl 1.149 result = r;
6060     CountedCompleter<?> c;
6061     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062 dl 1.246 @SuppressWarnings("unchecked")
6063     MapReduceEntriesToLongTask<K,V>
6064 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
6065     s = t.rights;
6066     while (s != null) {
6067 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6068 dl 1.149 s = t.rights = s.nextRight;
6069     }
6070 dl 1.119 }
6071 dl 1.138 }
6072 dl 1.4 }
6073 tim 1.1 }
6074    
6075 dl 1.222 @SuppressWarnings("serial")
6076 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
6077     extends BulkTask<K,V,Long> {
6078 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6079 dl 1.153 final LongBinaryOperator reducer;
6080 dl 1.119 final long basis;
6081     long result;
6082 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6083 dl 1.119 MapReduceMappingsToLongTask
6084 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6085 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6086 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6087 dl 1.119 long basis,
6088 dl 1.153 LongBinaryOperator reducer) {
6089 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6090 dl 1.119 this.transformer = transformer;
6091     this.basis = basis; this.reducer = reducer;
6092     }
6093 dl 1.146 public final Long getRawResult() { return result; }
6094 dl 1.210 public final void compute() {
6095 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6096 dl 1.153 final LongBinaryOperator reducer;
6097 dl 1.149 if ((transformer = this.transformer) != null &&
6098     (reducer = this.reducer) != null) {
6099     long r = this.basis;
6100 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6101     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6102     addToPendingCount(1);
6103 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
6104 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6105     rights, transformer, r, reducer)).fork();
6106     }
6107     for (Node<K,V> p; (p = advance()) != null; )
6108 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6109 dl 1.149 result = r;
6110     CountedCompleter<?> c;
6111     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6112 dl 1.246 @SuppressWarnings("unchecked")
6113     MapReduceMappingsToLongTask<K,V>
6114 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
6115     s = t.rights;
6116     while (s != null) {
6117 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6118 dl 1.149 s = t.rights = s.nextRight;
6119     }
6120 dl 1.119 }
6121     }
6122 dl 1.4 }
6123 tim 1.1 }
6124    
6125 dl 1.222 @SuppressWarnings("serial")
6126 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6127     extends BulkTask<K,V,Integer> {
6128 dl 1.171 final ToIntFunction<? super K> transformer;
6129 dl 1.153 final IntBinaryOperator reducer;
6130 dl 1.119 final int basis;
6131     int result;
6132 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6133 dl 1.119 MapReduceKeysToIntTask
6134 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6135 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6136 dl 1.171 ToIntFunction<? super K> transformer,
6137 dl 1.119 int basis,
6138 dl 1.153 IntBinaryOperator reducer) {
6139 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6140 dl 1.119 this.transformer = transformer;
6141     this.basis = basis; this.reducer = reducer;
6142     }
6143 dl 1.146 public final Integer getRawResult() { return result; }
6144 dl 1.210 public final void compute() {
6145 dl 1.171 final ToIntFunction<? super K> transformer;
6146 dl 1.153 final IntBinaryOperator reducer;
6147 dl 1.149 if ((transformer = this.transformer) != null &&
6148     (reducer = this.reducer) != null) {
6149     int r = this.basis;
6150 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6151     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6152     addToPendingCount(1);
6153 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6154 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6155     rights, transformer, r, reducer)).fork();
6156     }
6157     for (Node<K,V> p; (p = advance()) != null; )
6158 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6159 dl 1.149 result = r;
6160     CountedCompleter<?> c;
6161     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6162 dl 1.246 @SuppressWarnings("unchecked")
6163     MapReduceKeysToIntTask<K,V>
6164 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6165     s = t.rights;
6166     while (s != null) {
6167 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6168 dl 1.149 s = t.rights = s.nextRight;
6169     }
6170 dl 1.119 }
6171 dl 1.138 }
6172 dl 1.30 }
6173     }
6174    
6175 dl 1.222 @SuppressWarnings("serial")
6176 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6177     extends BulkTask<K,V,Integer> {
6178 dl 1.171 final ToIntFunction<? super V> transformer;
6179 dl 1.153 final IntBinaryOperator reducer;
6180 dl 1.119 final int basis;
6181     int result;
6182 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6183 dl 1.119 MapReduceValuesToIntTask
6184 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6185 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6186 dl 1.171 ToIntFunction<? super V> transformer,
6187 dl 1.119 int basis,
6188 dl 1.153 IntBinaryOperator reducer) {
6189 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6190 dl 1.119 this.transformer = transformer;
6191     this.basis = basis; this.reducer = reducer;
6192     }
6193 dl 1.146 public final Integer getRawResult() { return result; }
6194 dl 1.210 public final void compute() {
6195 dl 1.171 final ToIntFunction<? super V> transformer;
6196 dl 1.153 final IntBinaryOperator reducer;
6197 dl 1.149 if ((transformer = this.transformer) != null &&
6198     (reducer = this.reducer) != null) {
6199     int r = this.basis;
6200 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6201     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6202     addToPendingCount(1);
6203 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6204 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6205     rights, transformer, r, reducer)).fork();
6206     }
6207     for (Node<K,V> p; (p = advance()) != null; )
6208     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6209 dl 1.149 result = r;
6210     CountedCompleter<?> c;
6211     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6212 dl 1.246 @SuppressWarnings("unchecked")
6213     MapReduceValuesToIntTask<K,V>
6214 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6215     s = t.rights;
6216     while (s != null) {
6217 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6218 dl 1.149 s = t.rights = s.nextRight;
6219     }
6220 dl 1.119 }
6221 dl 1.2 }
6222 tim 1.1 }
6223     }
6224    
6225 dl 1.222 @SuppressWarnings("serial")
6226 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6227     extends BulkTask<K,V,Integer> {
6228 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6229 dl 1.153 final IntBinaryOperator reducer;
6230 dl 1.119 final int basis;
6231     int result;
6232 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6233 dl 1.119 MapReduceEntriesToIntTask
6234 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6235 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6236 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6237 dl 1.119 int basis,
6238 dl 1.153 IntBinaryOperator reducer) {
6239 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6240 dl 1.119 this.transformer = transformer;
6241     this.basis = basis; this.reducer = reducer;
6242     }
6243 dl 1.146 public final Integer getRawResult() { return result; }
6244 dl 1.210 public final void compute() {
6245 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6246 dl 1.153 final IntBinaryOperator reducer;
6247 dl 1.149 if ((transformer = this.transformer) != null &&
6248     (reducer = this.reducer) != null) {
6249     int r = this.basis;
6250 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6251     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6252     addToPendingCount(1);
6253 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6254 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6255     rights, transformer, r, reducer)).fork();
6256     }
6257     for (Node<K,V> p; (p = advance()) != null; )
6258     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6259 dl 1.149 result = r;
6260     CountedCompleter<?> c;
6261     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6262 dl 1.246 @SuppressWarnings("unchecked")
6263     MapReduceEntriesToIntTask<K,V>
6264 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6265     s = t.rights;
6266     while (s != null) {
6267 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6268 dl 1.149 s = t.rights = s.nextRight;
6269     }
6270 dl 1.119 }
6271 dl 1.138 }
6272 dl 1.4 }
6273 dl 1.119 }
6274 tim 1.1
6275 dl 1.222 @SuppressWarnings("serial")
6276 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6277     extends BulkTask<K,V,Integer> {
6278 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6279 dl 1.153 final IntBinaryOperator reducer;
6280 dl 1.119 final int basis;
6281     int result;
6282 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6283 dl 1.119 MapReduceMappingsToIntTask
6284 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6285 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6286 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6287 dl 1.119 int basis,
6288 dl 1.153 IntBinaryOperator reducer) {
6289 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6290 dl 1.119 this.transformer = transformer;
6291     this.basis = basis; this.reducer = reducer;
6292     }
6293 dl 1.146 public final Integer getRawResult() { return result; }
6294 dl 1.210 public final void compute() {
6295 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6296 dl 1.153 final IntBinaryOperator reducer;
6297 dl 1.149 if ((transformer = this.transformer) != null &&
6298     (reducer = this.reducer) != null) {
6299     int r = this.basis;
6300 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6301     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6302     addToPendingCount(1);
6303 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6304 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6305     rights, transformer, r, reducer)).fork();
6306     }
6307     for (Node<K,V> p; (p = advance()) != null; )
6308 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6309 dl 1.149 result = r;
6310     CountedCompleter<?> c;
6311     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6312 dl 1.246 @SuppressWarnings("unchecked")
6313     MapReduceMappingsToIntTask<K,V>
6314 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6315     s = t.rights;
6316     while (s != null) {
6317 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6318 dl 1.149 s = t.rights = s.nextRight;
6319     }
6320 dl 1.119 }
6321 dl 1.138 }
6322 tim 1.1 }
6323     }
6324 dl 1.99
6325     // Unsafe mechanics
6326 jsr166 1.293 private static final Unsafe U = Unsafe.getUnsafe();
6327 jsr166 1.320 private static final long SIZECTL
6328     = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6329     private static final long TRANSFERINDEX
6330     = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6331     private static final long BASECOUNT
6332     = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6333     private static final long CELLSBUSY
6334     = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6335     private static final long CELLVALUE
6336     = U.objectFieldOffset(CounterCell.class, "value");
6337 jsr166 1.319 private static final int ABASE = U.arrayBaseOffset(Node[].class);
6338 dl 1.119 private static final int ASHIFT;
6339 dl 1.99
6340     static {
6341 jsr166 1.318 int scale = U.arrayIndexScale(Node[].class);
6342     if ((scale & (scale - 1)) != 0)
6343     throw new ExceptionInInitializerError("array index scale not a power of two");
6344     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 jsr166 1.269
6346     // Reduce the risk of rare disastrous classloading in first call to
6347     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6348     Class<?> ensureLoaded = LockSupport.class;
6349 jsr166 1.309
6350     // Eager class load observed to help JIT during startup
6351     ensureLoaded = ReservationNode.class;
6352 dl 1.99 }
6353 jsr166 1.152 }