ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.39
Committed: Thu Jan 15 15:10:31 2004 UTC (20 years, 4 months ago) by tim
Branch: MAIN
Changes since 1.38: +41 -41 lines
Log Message:
fixed signatures to match java.util

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52     * appropriate when it is known that only one thread will modify
53     * and all others will only read.
54 tim 1.1 *
55 dl 1.23 * <p>This class implements all of the <em>optional</em> methods
56     * of the {@link Map} and {@link Iterator} interfaces.
57     *
58 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
59     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60     * used as a key or value.
61 tim 1.1 *
62 dl 1.8 * @since 1.5
63     * @author Doug Lea
64 dl 1.27 * @param <K> the type of keys maintained by this map
65     * @param <V> the type of mapped values
66 dl 1.8 */
67 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68     implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
70 tim 1.1
71     /*
72 dl 1.4 * The basic strategy is to subdivide the table among Segments,
73     * each of which itself is a concurrently readable hash table.
74     */
75 tim 1.1
76 dl 1.4 /* ---------------- Constants -------------- */
77 tim 1.11
78 dl 1.4 /**
79 dl 1.19 * The default initial number of table slots for this table.
80 dl 1.4 * Used when not otherwise specified in constructor.
81     */
82 tim 1.11 private static int DEFAULT_INITIAL_CAPACITY = 16;
83 tim 1.1
84     /**
85 dl 1.4 * The maximum capacity, used if a higher value is implicitly
86     * specified by either of the constructors with arguments. MUST
87 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
88     * using ints.
89 dl 1.4 */
90 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
91 tim 1.11
92 tim 1.1 /**
93 dl 1.4 * The default load factor for this table. Used when not
94     * otherwise specified in constructor.
95     */
96 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 tim 1.1
98     /**
99 dl 1.4 * The default number of concurrency control segments.
100 tim 1.1 **/
101 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
102 tim 1.1
103 dl 1.21 /**
104 dl 1.37 * The maximum number of segments to allow; used to bound
105     * constructor arguments.
106 dl 1.21 */
107     private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
108    
109 dl 1.4 /* ---------------- Fields -------------- */
110 tim 1.1
111     /**
112 dl 1.9 * Mask value for indexing into segments. The upper bits of a
113     * key's hash code are used to choose the segment.
114 tim 1.1 **/
115 dl 1.4 private final int segmentMask;
116 tim 1.1
117     /**
118 dl 1.4 * Shift value for indexing within segments.
119 tim 1.1 **/
120 dl 1.4 private final int segmentShift;
121 tim 1.1
122     /**
123 dl 1.4 * The segments, each of which is a specialized hash table
124 tim 1.1 */
125 tim 1.11 private final Segment[] segments;
126 dl 1.4
127 dl 1.6 private transient Set<K> keySet;
128 tim 1.12 private transient Set<Map.Entry<K,V>> entrySet;
129 dl 1.6 private transient Collection<V> values;
130 dl 1.4
131     /* ---------------- Small Utilities -------------- */
132 tim 1.1
133     /**
134 tim 1.11 * Return a hash code for non-null Object x.
135 dl 1.37 * Uses the same hash code spreader as most other java.util hash tables.
136 dl 1.8 * @param x the object serving as a key
137     * @return the hash code
138 tim 1.1 */
139 dl 1.4 private static int hash(Object x) {
140     int h = x.hashCode();
141     h += ~(h << 9);
142     h ^= (h >>> 14);
143     h += (h << 4);
144     h ^= (h >>> 10);
145     return h;
146     }
147    
148 tim 1.1 /**
149 dl 1.4 * Return the segment that should be used for key with given hash
150 tim 1.1 */
151 dl 1.4 private Segment<K,V> segmentFor(int hash) {
152 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
153 dl 1.4 }
154 tim 1.1
155 dl 1.4 /* ---------------- Inner Classes -------------- */
156 tim 1.1
157     /**
158 dl 1.6 * Segments are specialized versions of hash tables. This
159 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
160     * simplify some locking and avoid separate construction.
161 tim 1.1 **/
162 dl 1.8 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
163 dl 1.4 /*
164     * Segments maintain a table of entry lists that are ALWAYS
165     * kept in a consistent state, so can be read without locking.
166     * Next fields of nodes are immutable (final). All list
167     * additions are performed at the front of each bin. This
168     * makes it easy to check changes, and also fast to traverse.
169     * When nodes would otherwise be changed, new nodes are
170     * created to replace them. This works well for hash tables
171     * since the bin lists tend to be short. (The average length
172     * is less than two for the default load factor threshold.)
173     *
174     * Read operations can thus proceed without locking, but rely
175     * on a memory barrier to ensure that completed write
176     * operations performed by other threads are
177     * noticed. Conveniently, the "count" field, tracking the
178     * number of elements, can also serve as the volatile variable
179     * providing proper read/write barriers. This is convenient
180     * because this field needs to be read in many read operations
181 dl 1.19 * anyway.
182 dl 1.4 *
183     * Implementors note. The basic rules for all this are:
184     *
185     * - All unsynchronized read operations must first read the
186     * "count" field, and should not look at table entries if
187     * it is 0.
188 tim 1.11 *
189 dl 1.4 * - All synchronized write operations should write to
190     * the "count" field after updating. The operations must not
191     * take any action that could even momentarily cause
192     * a concurrent read operation to see inconsistent
193     * data. This is made easier by the nature of the read
194     * operations in Map. For example, no operation
195     * can reveal that the table has grown but the threshold
196     * has not yet been updated, so there are no atomicity
197     * requirements for this with respect to reads.
198     *
199     * As a guide, all critical volatile reads and writes are marked
200     * in code comments.
201     */
202 tim 1.11
203 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
204    
205 dl 1.4 /**
206     * The number of elements in this segment's region.
207     **/
208     transient volatile int count;
209    
210     /**
211 dl 1.21 * Number of updates; used for checking lack of modifications
212     * in bulk-read methods.
213     */
214     transient int modCount;
215    
216     /**
217 dl 1.4 * The table is rehashed when its size exceeds this threshold.
218     * (The value of this field is always (int)(capacity *
219     * loadFactor).)
220     */
221 dl 1.8 private transient int threshold;
222 dl 1.4
223     /**
224     * The per-segment table
225     */
226 tim 1.11 transient HashEntry[] table;
227 dl 1.4
228     /**
229     * The load factor for the hash table. Even though this value
230     * is same for all segments, it is replicated to avoid needing
231     * links to outer object.
232     * @serial
233     */
234     private final float loadFactor;
235 tim 1.1
236 dl 1.4 Segment(int initialCapacity, float lf) {
237     loadFactor = lf;
238 tim 1.11 setTable(new HashEntry[initialCapacity]);
239 dl 1.4 }
240 tim 1.1
241 dl 1.4 /**
242 tim 1.11 * Set table to new HashEntry array.
243 dl 1.4 * Call only while holding lock or in constructor.
244     **/
245 tim 1.11 private void setTable(HashEntry[] newTable) {
246 dl 1.4 table = newTable;
247     threshold = (int)(newTable.length * loadFactor);
248     count = count; // write-volatile
249 tim 1.11 }
250 dl 1.4
251     /* Specialized implementations of map methods */
252 tim 1.11
253 dl 1.29 V get(Object key, int hash) {
254 dl 1.4 if (count != 0) { // read-volatile
255 tim 1.11 HashEntry[] tab = table;
256 dl 1.9 int index = hash & (tab.length - 1);
257 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
258 dl 1.4 while (e != null) {
259 tim 1.11 if (e.hash == hash && key.equals(e.key))
260 dl 1.4 return e.value;
261     e = e.next;
262     }
263     }
264     return null;
265     }
266    
267     boolean containsKey(Object key, int hash) {
268     if (count != 0) { // read-volatile
269 tim 1.11 HashEntry[] tab = table;
270 dl 1.9 int index = hash & (tab.length - 1);
271 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
272 dl 1.4 while (e != null) {
273 tim 1.11 if (e.hash == hash && key.equals(e.key))
274 dl 1.4 return true;
275     e = e.next;
276     }
277     }
278     return false;
279     }
280 tim 1.11
281 dl 1.4 boolean containsValue(Object value) {
282     if (count != 0) { // read-volatile
283 tim 1.11 HashEntry[] tab = table;
284 dl 1.4 int len = tab.length;
285 tim 1.11 for (int i = 0 ; i < len; i++)
286 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
287 dl 1.4 if (value.equals(e.value))
288     return true;
289     }
290     return false;
291     }
292    
293 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
294     lock();
295     try {
296     int c = count;
297     HashEntry[] tab = table;
298     int index = hash & (tab.length - 1);
299     HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
300     HashEntry<K,V> e = first;
301     for (;;) {
302     if (e == null)
303     return false;
304     if (e.hash == hash && key.equals(e.key))
305     break;
306     e = e.next;
307     }
308    
309 dl 1.33 V v = e.value;
310     if (v == null || !oldValue.equals(v))
311     return false;
312    
313     e.value = newValue;
314     count = c; // write-volatile
315     return true;
316    
317     } finally {
318     unlock();
319     }
320     }
321    
322     V replace(K key, int hash, V newValue) {
323     lock();
324     try {
325     int c = count;
326     HashEntry[] tab = table;
327     int index = hash & (tab.length - 1);
328     HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
329     HashEntry<K,V> e = first;
330     for (;;) {
331     if (e == null)
332     return null;
333     if (e.hash == hash && key.equals(e.key))
334     break;
335     e = e.next;
336 dl 1.32 }
337 dl 1.31
338 dl 1.33 V v = e.value;
339 dl 1.31 e.value = newValue;
340     count = c; // write-volatile
341 dl 1.33 return v;
342 dl 1.31
343     } finally {
344     unlock();
345     }
346     }
347    
348 dl 1.32
349 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
350 dl 1.4 lock();
351     try {
352 dl 1.9 int c = count;
353 tim 1.11 HashEntry[] tab = table;
354 dl 1.9 int index = hash & (tab.length - 1);
355 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
356    
357     for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
358 dl 1.9 if (e.hash == hash && key.equals(e.key)) {
359 tim 1.11 V oldValue = e.value;
360 dl 1.4 if (!onlyIfAbsent)
361     e.value = value;
362 dl 1.21 ++modCount;
363 dl 1.9 count = c; // write-volatile
364 dl 1.4 return oldValue;
365     }
366     }
367 tim 1.11
368 dl 1.4 tab[index] = new HashEntry<K,V>(hash, key, value, first);
369 dl 1.21 ++modCount;
370 dl 1.9 ++c;
371     count = c; // write-volatile
372 tim 1.11 if (c > threshold)
373 dl 1.9 setTable(rehash(tab));
374 dl 1.4 return null;
375 tim 1.16 } finally {
376 dl 1.4 unlock();
377     }
378     }
379    
380 tim 1.11 private HashEntry[] rehash(HashEntry[] oldTable) {
381 dl 1.4 int oldCapacity = oldTable.length;
382     if (oldCapacity >= MAXIMUM_CAPACITY)
383 dl 1.9 return oldTable;
384 dl 1.4
385     /*
386     * Reclassify nodes in each list to new Map. Because we are
387     * using power-of-two expansion, the elements from each bin
388     * must either stay at same index, or move with a power of two
389     * offset. We eliminate unnecessary node creation by catching
390     * cases where old nodes can be reused because their next
391     * fields won't change. Statistically, at the default
392 dl 1.29 * threshold, only about one-sixth of them need cloning when
393 dl 1.4 * a table doubles. The nodes they replace will be garbage
394     * collectable as soon as they are no longer referenced by any
395     * reader thread that may be in the midst of traversing table
396     * right now.
397     */
398 tim 1.11
399     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
400 dl 1.4 int sizeMask = newTable.length - 1;
401     for (int i = 0; i < oldCapacity ; i++) {
402     // We need to guarantee that any existing reads of old Map can
403 tim 1.11 // proceed. So we cannot yet null out each bin.
404 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
405 tim 1.11
406 dl 1.4 if (e != null) {
407     HashEntry<K,V> next = e.next;
408     int idx = e.hash & sizeMask;
409 tim 1.11
410 dl 1.4 // Single node on list
411 tim 1.11 if (next == null)
412 dl 1.4 newTable[idx] = e;
413 tim 1.11
414     else {
415 dl 1.4 // Reuse trailing consecutive sequence at same slot
416     HashEntry<K,V> lastRun = e;
417     int lastIdx = idx;
418 tim 1.11 for (HashEntry<K,V> last = next;
419     last != null;
420 dl 1.4 last = last.next) {
421     int k = last.hash & sizeMask;
422     if (k != lastIdx) {
423     lastIdx = k;
424     lastRun = last;
425     }
426     }
427     newTable[lastIdx] = lastRun;
428 tim 1.11
429 dl 1.4 // Clone all remaining nodes
430     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431     int k = p.hash & sizeMask;
432 tim 1.11 newTable[k] = new HashEntry<K,V>(p.hash,
433     p.key,
434     p.value,
435     (HashEntry<K,V>) newTable[k]);
436 dl 1.4 }
437     }
438     }
439     }
440 dl 1.9 return newTable;
441 dl 1.4 }
442 dl 1.6
443     /**
444     * Remove; match on key only if value null, else match both.
445     */
446 dl 1.4 V remove(Object key, int hash, Object value) {
447 tim 1.11 lock();
448 dl 1.4 try {
449 dl 1.9 int c = count;
450 dl 1.4 HashEntry[] tab = table;
451 dl 1.9 int index = hash & (tab.length - 1);
452 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
453 tim 1.11
454 dl 1.4 HashEntry<K,V> e = first;
455 dl 1.9 for (;;) {
456 dl 1.4 if (e == null)
457     return null;
458 dl 1.9 if (e.hash == hash && key.equals(e.key))
459 dl 1.4 break;
460     e = e.next;
461     }
462    
463     V oldValue = e.value;
464     if (value != null && !value.equals(oldValue))
465     return null;
466 dl 1.9
467 dl 1.4 // All entries following removed node can stay in list, but
468 dl 1.29 // all preceding ones need to be cloned.
469 dl 1.4 HashEntry<K,V> newFirst = e.next;
470 tim 1.11 for (HashEntry<K,V> p = first; p != e; p = p.next)
471     newFirst = new HashEntry<K,V>(p.hash, p.key,
472 dl 1.8 p.value, newFirst);
473 dl 1.4 tab[index] = newFirst;
474 dl 1.21 ++modCount;
475 dl 1.9 count = c-1; // write-volatile
476     return oldValue;
477 tim 1.16 } finally {
478 dl 1.4 unlock();
479     }
480     }
481    
482     void clear() {
483     lock();
484     try {
485 tim 1.11 HashEntry[] tab = table;
486     for (int i = 0; i < tab.length ; i++)
487 dl 1.4 tab[i] = null;
488 dl 1.21 ++modCount;
489 dl 1.4 count = 0; // write-volatile
490 tim 1.16 } finally {
491 dl 1.4 unlock();
492     }
493     }
494 tim 1.1 }
495    
496     /**
497 dl 1.30 * ConcurrentHashMap list entry. Note that this is never exported
498     * out as a user-visible Map.Entry
499 tim 1.1 */
500 dl 1.30 private static class HashEntry<K,V> {
501 dl 1.4 private final K key;
502     private V value;
503     private final int hash;
504     private final HashEntry<K,V> next;
505    
506     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
507     this.value = value;
508     this.hash = hash;
509     this.key = key;
510     this.next = next;
511     }
512 tim 1.1 }
513    
514 tim 1.11
515 dl 1.4 /* ---------------- Public operations -------------- */
516 tim 1.1
517     /**
518     * Constructs a new, empty map with the specified initial
519     * capacity and the specified load factor.
520     *
521 dl 1.19 * @param initialCapacity the initial capacity. The implementation
522     * performs internal sizing to accommodate this many elements.
523 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
524 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
525     * updating threads. The implementation performs internal sizing
526 dl 1.21 * to try to accommodate this many threads.
527 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
528 dl 1.19 * negative or the load factor or concurrencyLevel are
529 dl 1.4 * nonpositive.
530     */
531 tim 1.11 public ConcurrentHashMap(int initialCapacity,
532 dl 1.19 float loadFactor, int concurrencyLevel) {
533     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
534 dl 1.4 throw new IllegalArgumentException();
535    
536 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
537     concurrencyLevel = MAX_SEGMENTS;
538    
539 dl 1.4 // Find power-of-two sizes best matching arguments
540     int sshift = 0;
541     int ssize = 1;
542 dl 1.19 while (ssize < concurrencyLevel) {
543 dl 1.4 ++sshift;
544     ssize <<= 1;
545     }
546 dl 1.9 segmentShift = 32 - sshift;
547 dl 1.8 segmentMask = ssize - 1;
548 tim 1.11 this.segments = new Segment[ssize];
549 dl 1.4
550     if (initialCapacity > MAXIMUM_CAPACITY)
551     initialCapacity = MAXIMUM_CAPACITY;
552     int c = initialCapacity / ssize;
553 tim 1.11 if (c * ssize < initialCapacity)
554 dl 1.4 ++c;
555     int cap = 1;
556     while (cap < c)
557     cap <<= 1;
558    
559     for (int i = 0; i < this.segments.length; ++i)
560     this.segments[i] = new Segment<K,V>(cap, loadFactor);
561 tim 1.1 }
562    
563     /**
564     * Constructs a new, empty map with the specified initial
565 dl 1.19 * capacity, and with default load factor and concurrencyLevel.
566 tim 1.1 *
567 dl 1.19 * @param initialCapacity The implementation performs internal
568     * sizing to accommodate this many elements.
569 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
570     * elements is negative.
571 tim 1.1 */
572     public ConcurrentHashMap(int initialCapacity) {
573 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
574 tim 1.1 }
575    
576     /**
577 dl 1.4 * Constructs a new, empty map with a default initial capacity,
578 dl 1.23 * load factor, and concurrencyLevel.
579 tim 1.1 */
580     public ConcurrentHashMap() {
581 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
582 tim 1.1 }
583    
584     /**
585     * Constructs a new map with the same mappings as the given map. The
586     * map is created with a capacity of twice the number of mappings in
587 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
588 tim 1.1 */
589 tim 1.39 public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
590 tim 1.1 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
591 dl 1.4 11),
592     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
593     putAll(t);
594 tim 1.1 }
595    
596 dl 1.4 // inherit Map javadoc
597 tim 1.1 public boolean isEmpty() {
598 dl 1.35 final Segment[] segments = this.segments;
599 dl 1.21 /*
600     * We need to keep track of per-segment modCounts to avoid ABA
601     * problems in which an element in one segment was added and
602     * in another removed during traversal, in which case the
603     * table was never actually empty at any point. Note the
604     * similar use of modCounts in the size() and containsValue()
605     * methods, which are the only other methods also susceptible
606     * to ABA problems.
607     */
608     int[] mc = new int[segments.length];
609     int mcsum = 0;
610     for (int i = 0; i < segments.length; ++i) {
611 dl 1.4 if (segments[i].count != 0)
612 tim 1.1 return false;
613 dl 1.21 else
614     mcsum += mc[i] = segments[i].modCount;
615     }
616     // If mcsum happens to be zero, then we know we got a snapshot
617     // before any modifications at all were made. This is
618     // probably common enough to bother tracking.
619     if (mcsum != 0) {
620     for (int i = 0; i < segments.length; ++i) {
621     if (segments[i].count != 0 ||
622     mc[i] != segments[i].modCount)
623     return false;
624     }
625     }
626 tim 1.1 return true;
627     }
628    
629 dl 1.21 // inherit Map javadoc
630     public int size() {
631 dl 1.35 final Segment[] segments = this.segments;
632 dl 1.21 int[] mc = new int[segments.length];
633     for (;;) {
634 dl 1.23 long sum = 0;
635 dl 1.21 int mcsum = 0;
636     for (int i = 0; i < segments.length; ++i) {
637     sum += segments[i].count;
638     mcsum += mc[i] = segments[i].modCount;
639     }
640     int check = 0;
641     if (mcsum != 0) {
642     for (int i = 0; i < segments.length; ++i) {
643     check += segments[i].count;
644     if (mc[i] != segments[i].modCount) {
645     check = -1; // force retry
646     break;
647     }
648     }
649     }
650 dl 1.23 if (check == sum) {
651     if (sum > Integer.MAX_VALUE)
652     return Integer.MAX_VALUE;
653     else
654     return (int)sum;
655     }
656 dl 1.21 }
657     }
658    
659    
660 tim 1.1 /**
661     * Returns the value to which the specified key is mapped in this table.
662     *
663     * @param key a key in the table.
664     * @return the value to which the key is mapped in this table;
665 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
666 tim 1.1 * this table.
667 dl 1.8 * @throws NullPointerException if the key is
668 dl 1.19 * <tt>null</tt>.
669 tim 1.1 */
670 tim 1.11 public V get(Object key) {
671 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
672 dl 1.29 return segmentFor(hash).get(key, hash);
673 tim 1.1 }
674    
675     /**
676     * Tests if the specified object is a key in this table.
677 tim 1.11 *
678 tim 1.1 * @param key possible key.
679 dl 1.19 * @return <tt>true</tt> if and only if the specified object
680 tim 1.11 * is a key in this table, as determined by the
681 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
682 dl 1.8 * @throws NullPointerException if the key is
683 dl 1.19 * <tt>null</tt>.
684 tim 1.1 */
685     public boolean containsKey(Object key) {
686 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
687 dl 1.9 return segmentFor(hash).containsKey(key, hash);
688 tim 1.1 }
689    
690     /**
691     * Returns <tt>true</tt> if this map maps one or more keys to the
692     * specified value. Note: This method requires a full internal
693     * traversal of the hash table, and so is much slower than
694     * method <tt>containsKey</tt>.
695     *
696     * @param value value whose presence in this map is to be tested.
697     * @return <tt>true</tt> if this map maps one or more keys to the
698 tim 1.11 * specified value.
699 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
700 tim 1.1 */
701     public boolean containsValue(Object value) {
702 tim 1.11 if (value == null)
703 dl 1.4 throw new NullPointerException();
704 tim 1.1
705 dl 1.35 final Segment[] segments = this.segments;
706 dl 1.21 int[] mc = new int[segments.length];
707     for (;;) {
708     int sum = 0;
709     int mcsum = 0;
710     for (int i = 0; i < segments.length; ++i) {
711     int c = segments[i].count;
712     mcsum += mc[i] = segments[i].modCount;
713     if (segments[i].containsValue(value))
714     return true;
715     }
716     boolean cleanSweep = true;
717     if (mcsum != 0) {
718     for (int i = 0; i < segments.length; ++i) {
719     int c = segments[i].count;
720     if (mc[i] != segments[i].modCount) {
721     cleanSweep = false;
722     break;
723     }
724     }
725     }
726     if (cleanSweep)
727     return false;
728 tim 1.1 }
729     }
730 dl 1.19
731 tim 1.1 /**
732 dl 1.18 * Legacy method testing if some key maps into the specified value
733 dl 1.23 * in this table. This method is identical in functionality to
734     * {@link #containsValue}, and exists solely to ensure
735 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
736 dl 1.18 * which supported this method prior to introduction of the
737 dl 1.23 * Java Collections framework.
738 dl 1.17
739 tim 1.1 * @param value a value to search for.
740 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
741     * <tt>value</tt> argument in this table as
742 tim 1.1 * determined by the <tt>equals</tt> method;
743 dl 1.19 * <tt>false</tt> otherwise.
744     * @throws NullPointerException if the value is <tt>null</tt>.
745 tim 1.1 */
746 dl 1.4 public boolean contains(Object value) {
747 tim 1.1 return containsValue(value);
748     }
749    
750     /**
751 dl 1.19 * Maps the specified <tt>key</tt> to the specified
752     * <tt>value</tt> in this table. Neither the key nor the
753     * value can be <tt>null</tt>. <p>
754 dl 1.4 *
755 dl 1.19 * The value can be retrieved by calling the <tt>get</tt> method
756 tim 1.11 * with a key that is equal to the original key.
757 dl 1.4 *
758     * @param key the table key.
759     * @param value the value.
760     * @return the previous value of the specified key in this table,
761 dl 1.19 * or <tt>null</tt> if it did not have one.
762 dl 1.8 * @throws NullPointerException if the key or value is
763 dl 1.19 * <tt>null</tt>.
764 dl 1.4 */
765 tim 1.11 public V put(K key, V value) {
766     if (value == null)
767 dl 1.4 throw new NullPointerException();
768 tim 1.11 int hash = hash(key);
769 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
770 dl 1.4 }
771    
772     /**
773     * If the specified key is not already associated
774     * with a value, associate it with the given value.
775     * This is equivalent to
776     * <pre>
777 dl 1.17 * if (!map.containsKey(key))
778     * return map.put(key, value);
779     * else
780     * return map.get(key);
781 dl 1.4 * </pre>
782     * Except that the action is performed atomically.
783     * @param key key with which the specified value is to be associated.
784     * @param value value to be associated with the specified key.
785     * @return previous value associated with specified key, or <tt>null</tt>
786     * if there was no mapping for key. A <tt>null</tt> return can
787     * also indicate that the map previously associated <tt>null</tt>
788     * with the specified key, if the implementation supports
789     * <tt>null</tt> values.
790     *
791 dl 1.17 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
792     * not supported by this map.
793     * @throws ClassCastException if the class of the specified key or value
794     * prevents it from being stored in this map.
795     * @throws NullPointerException if the specified key or value is
796 dl 1.4 * <tt>null</tt>.
797     *
798     **/
799 tim 1.11 public V putIfAbsent(K key, V value) {
800     if (value == null)
801 dl 1.4 throw new NullPointerException();
802 tim 1.11 int hash = hash(key);
803 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
804 dl 1.4 }
805    
806    
807     /**
808 tim 1.1 * Copies all of the mappings from the specified map to this one.
809     *
810     * These mappings replace any mappings that this map had for any of the
811     * keys currently in the specified Map.
812     *
813     * @param t Mappings to be stored in this map.
814     */
815 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
816 dl 1.23 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
817 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
818 dl 1.4 put(e.getKey(), e.getValue());
819 tim 1.1 }
820 dl 1.4 }
821    
822     /**
823 tim 1.11 * Removes the key (and its corresponding value) from this
824 dl 1.4 * table. This method does nothing if the key is not in the table.
825     *
826     * @param key the key that needs to be removed.
827     * @return the value to which the key had been mapped in this table,
828 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
829 dl 1.8 * @throws NullPointerException if the key is
830 dl 1.19 * <tt>null</tt>.
831 dl 1.4 */
832     public V remove(Object key) {
833     int hash = hash(key);
834 dl 1.9 return segmentFor(hash).remove(key, hash, null);
835 dl 1.4 }
836 tim 1.1
837 dl 1.4 /**
838 dl 1.17 * Remove entry for key only if currently mapped to given value.
839     * Acts as
840     * <pre>
841     * if (map.get(key).equals(value)) {
842     * map.remove(key);
843     * return true;
844     * } else return false;
845     * </pre>
846     * except that the action is performed atomically.
847     * @param key key with which the specified value is associated.
848     * @param value value associated with the specified key.
849     * @return true if the value was removed
850     * @throws NullPointerException if the specified key is
851     * <tt>null</tt>.
852 dl 1.4 */
853 dl 1.13 public boolean remove(Object key, Object value) {
854 dl 1.4 int hash = hash(key);
855 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
856 tim 1.1 }
857 dl 1.31
858 dl 1.32
859 dl 1.31 /**
860     * Replace entry for key only if currently mapped to given value.
861     * Acts as
862     * <pre>
863     * if (map.get(key).equals(oldValue)) {
864     * map.put(key, newValue);
865     * return true;
866     * } else return false;
867     * </pre>
868     * except that the action is performed atomically.
869     * @param key key with which the specified value is associated.
870     * @param oldValue value expected to be associated with the specified key.
871     * @param newValue value to be associated with the specified key.
872     * @return true if the value was replaced
873     * @throws NullPointerException if the specified key or values are
874     * <tt>null</tt>.
875     */
876     public boolean replace(K key, V oldValue, V newValue) {
877     if (oldValue == null || newValue == null)
878     throw new NullPointerException();
879     int hash = hash(key);
880     return segmentFor(hash).replace(key, hash, oldValue, newValue);
881 dl 1.32 }
882    
883     /**
884 dl 1.33 * Replace entry for key only if currently mapped to some value.
885 dl 1.32 * Acts as
886     * <pre>
887     * if ((map.containsKey(key)) {
888 dl 1.33 * return map.put(key, value);
889     * } else return null;
890 dl 1.32 * </pre>
891     * except that the action is performed atomically.
892     * @param key key with which the specified value is associated.
893     * @param value value to be associated with the specified key.
894 dl 1.33 * @return previous value associated with specified key, or <tt>null</tt>
895     * if there was no mapping for key.
896 dl 1.32 * @throws NullPointerException if the specified key or value is
897     * <tt>null</tt>.
898     */
899 dl 1.33 public V replace(K key, V value) {
900 dl 1.32 if (value == null)
901     throw new NullPointerException();
902     int hash = hash(key);
903 dl 1.33 return segmentFor(hash).replace(key, hash, value);
904 dl 1.31 }
905    
906 tim 1.1
907     /**
908     * Removes all mappings from this map.
909     */
910     public void clear() {
911 tim 1.11 for (int i = 0; i < segments.length; ++i)
912 dl 1.4 segments[i].clear();
913 tim 1.1 }
914    
915 dl 1.4
916 tim 1.1 /**
917     * Returns a shallow copy of this
918     * <tt>ConcurrentHashMap</tt> instance: the keys and
919     * values themselves are not cloned.
920     *
921     * @return a shallow copy of this map.
922     */
923     public Object clone() {
924 dl 1.4 // We cannot call super.clone, since it would share final
925     // segments array, and there's no way to reassign finals.
926    
927     float lf = segments[0].loadFactor;
928     int segs = segments.length;
929     int cap = (int)(size() / lf);
930     if (cap < segs) cap = segs;
931 tim 1.12 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
932 dl 1.4 t.putAll(this);
933     return t;
934 tim 1.1 }
935    
936     /**
937     * Returns a set view of the keys contained in this map. The set is
938     * backed by the map, so changes to the map are reflected in the set, and
939     * vice-versa. The set supports element removal, which removes the
940     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
941     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
942     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
943     * <tt>addAll</tt> operations.
944 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
945     * will never throw {@link java.util.ConcurrentModificationException},
946     * and guarantees to traverse elements as they existed upon
947     * construction of the iterator, and may (but is not guaranteed to)
948     * reflect any modifications subsequent to construction.
949 tim 1.1 *
950     * @return a set view of the keys contained in this map.
951     */
952     public Set<K> keySet() {
953     Set<K> ks = keySet;
954 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
955 tim 1.1 }
956    
957    
958     /**
959     * Returns a collection view of the values contained in this map. The
960     * collection is backed by the map, so changes to the map are reflected in
961     * the collection, and vice-versa. The collection supports element
962     * removal, which removes the corresponding mapping from this map, via the
963     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
964     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
965     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
966 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
967     * will never throw {@link java.util.ConcurrentModificationException},
968     * and guarantees to traverse elements as they existed upon
969     * construction of the iterator, and may (but is not guaranteed to)
970     * reflect any modifications subsequent to construction.
971 tim 1.1 *
972     * @return a collection view of the values contained in this map.
973     */
974     public Collection<V> values() {
975     Collection<V> vs = values;
976 dl 1.8 return (vs != null) ? vs : (values = new Values());
977 tim 1.1 }
978    
979    
980     /**
981     * Returns a collection view of the mappings contained in this map. Each
982     * element in the returned collection is a <tt>Map.Entry</tt>. The
983     * collection is backed by the map, so changes to the map are reflected in
984     * the collection, and vice-versa. The collection supports element
985     * removal, which removes the corresponding mapping from the map, via the
986     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
987     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
988     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
989 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
990     * will never throw {@link java.util.ConcurrentModificationException},
991     * and guarantees to traverse elements as they existed upon
992     * construction of the iterator, and may (but is not guaranteed to)
993     * reflect any modifications subsequent to construction.
994 tim 1.1 *
995     * @return a collection view of the mappings contained in this map.
996     */
997     public Set<Map.Entry<K,V>> entrySet() {
998     Set<Map.Entry<K,V>> es = entrySet;
999 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1000 tim 1.1 }
1001    
1002    
1003     /**
1004     * Returns an enumeration of the keys in this table.
1005     *
1006     * @return an enumeration of the keys in this table.
1007 dl 1.23 * @see #keySet
1008 tim 1.1 */
1009 dl 1.4 public Enumeration<K> keys() {
1010 tim 1.1 return new KeyIterator();
1011     }
1012    
1013     /**
1014     * Returns an enumeration of the values in this table.
1015     *
1016     * @return an enumeration of the values in this table.
1017 dl 1.23 * @see #values
1018 tim 1.1 */
1019 dl 1.4 public Enumeration<V> elements() {
1020 tim 1.1 return new ValueIterator();
1021     }
1022    
1023 dl 1.4 /* ---------------- Iterator Support -------------- */
1024 tim 1.11
1025 dl 1.4 private abstract class HashIterator {
1026     private int nextSegmentIndex;
1027     private int nextTableIndex;
1028 tim 1.11 private HashEntry[] currentTable;
1029 dl 1.4 private HashEntry<K, V> nextEntry;
1030 dl 1.30 HashEntry<K, V> lastReturned;
1031 tim 1.1
1032     private HashIterator() {
1033 dl 1.8 nextSegmentIndex = segments.length - 1;
1034 dl 1.4 nextTableIndex = -1;
1035     advance();
1036 tim 1.1 }
1037    
1038     public boolean hasMoreElements() { return hasNext(); }
1039    
1040 dl 1.4 private void advance() {
1041     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1042     return;
1043 tim 1.11
1044 dl 1.4 while (nextTableIndex >= 0) {
1045 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1046 dl 1.4 return;
1047     }
1048 tim 1.11
1049 dl 1.4 while (nextSegmentIndex >= 0) {
1050 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1051 dl 1.4 if (seg.count != 0) {
1052     currentTable = seg.table;
1053 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1054 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1055 dl 1.8 nextTableIndex = j - 1;
1056 dl 1.4 return;
1057     }
1058 tim 1.1 }
1059     }
1060     }
1061     }
1062    
1063 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1064 tim 1.1
1065 dl 1.4 HashEntry<K,V> nextEntry() {
1066     if (nextEntry == null)
1067 tim 1.1 throw new NoSuchElementException();
1068 dl 1.4 lastReturned = nextEntry;
1069     advance();
1070     return lastReturned;
1071 tim 1.1 }
1072    
1073     public void remove() {
1074     if (lastReturned == null)
1075     throw new IllegalStateException();
1076     ConcurrentHashMap.this.remove(lastReturned.key);
1077     lastReturned = null;
1078     }
1079 dl 1.4 }
1080    
1081     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1082     public K next() { return super.nextEntry().key; }
1083     public K nextElement() { return super.nextEntry().key; }
1084     }
1085    
1086     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1087     public V next() { return super.nextEntry().value; }
1088     public V nextElement() { return super.nextEntry().value; }
1089     }
1090 tim 1.1
1091 dl 1.30
1092    
1093     /**
1094     * Exported Entry objects must write-through changes in setValue,
1095     * even if the nodes have been cloned. So we cannot return
1096     * internal HashEntry objects. Instead, the iterator itself acts
1097     * as a forwarding pseudo-entry.
1098     */
1099     private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1100     public Map.Entry<K,V> next() {
1101     nextEntry();
1102     return this;
1103     }
1104    
1105     public K getKey() {
1106     if (lastReturned == null)
1107     throw new IllegalStateException("Entry was removed");
1108     return lastReturned.key;
1109     }
1110    
1111     public V getValue() {
1112     if (lastReturned == null)
1113     throw new IllegalStateException("Entry was removed");
1114     return ConcurrentHashMap.this.get(lastReturned.key);
1115     }
1116    
1117     public V setValue(V value) {
1118     if (lastReturned == null)
1119     throw new IllegalStateException("Entry was removed");
1120     return ConcurrentHashMap.this.put(lastReturned.key, value);
1121     }
1122    
1123     public boolean equals(Object o) {
1124     if (!(o instanceof Map.Entry))
1125     return false;
1126 tim 1.39 Map.Entry e = (Map.Entry)o;
1127     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1128     }
1129 dl 1.30
1130     public int hashCode() {
1131     Object k = getKey();
1132     Object v = getValue();
1133     return ((k == null) ? 0 : k.hashCode()) ^
1134     ((v == null) ? 0 : v.hashCode());
1135     }
1136    
1137     public String toString() {
1138 dl 1.34 // If not acting as entry, just use default toString.
1139     if (lastReturned == null)
1140     return super.toString();
1141     else
1142     return getKey() + "=" + getValue();
1143 dl 1.30 }
1144    
1145     private boolean eq(Object o1, Object o2) {
1146     return (o1 == null ? o2 == null : o1.equals(o2));
1147     }
1148    
1149 tim 1.1 }
1150    
1151 dl 1.4 private class KeySet extends AbstractSet<K> {
1152     public Iterator<K> iterator() {
1153     return new KeyIterator();
1154     }
1155     public int size() {
1156     return ConcurrentHashMap.this.size();
1157     }
1158     public boolean contains(Object o) {
1159     return ConcurrentHashMap.this.containsKey(o);
1160     }
1161     public boolean remove(Object o) {
1162     return ConcurrentHashMap.this.remove(o) != null;
1163     }
1164     public void clear() {
1165     ConcurrentHashMap.this.clear();
1166     }
1167 tim 1.1 }
1168    
1169 dl 1.4 private class Values extends AbstractCollection<V> {
1170     public Iterator<V> iterator() {
1171     return new ValueIterator();
1172     }
1173     public int size() {
1174     return ConcurrentHashMap.this.size();
1175     }
1176     public boolean contains(Object o) {
1177     return ConcurrentHashMap.this.containsValue(o);
1178     }
1179     public void clear() {
1180     ConcurrentHashMap.this.clear();
1181     }
1182 tim 1.1 }
1183    
1184 tim 1.12 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1185 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1186     return new EntryIterator();
1187     }
1188     public boolean contains(Object o) {
1189     if (!(o instanceof Map.Entry))
1190     return false;
1191     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1192     V v = ConcurrentHashMap.this.get(e.getKey());
1193     return v != null && v.equals(e.getValue());
1194     }
1195     public boolean remove(Object o) {
1196     if (!(o instanceof Map.Entry))
1197     return false;
1198     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1199 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1200 dl 1.4 }
1201     public int size() {
1202     return ConcurrentHashMap.this.size();
1203     }
1204     public void clear() {
1205     ConcurrentHashMap.this.clear();
1206 dl 1.30 }
1207     public Object[] toArray() {
1208     // Since we don't ordinarily have distinct Entry objects, we
1209     // must pack elements using exportable SimpleEntry
1210     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1211     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1212     c.add(new SimpleEntry<K,V>(i.next()));
1213     return c.toArray();
1214     }
1215     public <T> T[] toArray(T[] a) {
1216     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1217     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1218     c.add(new SimpleEntry<K,V>(i.next()));
1219     return c.toArray(a);
1220     }
1221    
1222     }
1223    
1224     /**
1225     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1226     * is made accessible.
1227     */
1228     static class SimpleEntry<K,V> implements Entry<K,V> {
1229 tim 1.39 K key;
1230     V value;
1231 dl 1.30
1232 tim 1.39 public SimpleEntry(K key, V value) {
1233     this.key = key;
1234 dl 1.30 this.value = value;
1235 tim 1.39 }
1236 dl 1.30
1237 tim 1.39 public SimpleEntry(Entry<K,V> e) {
1238     this.key = e.getKey();
1239 dl 1.30 this.value = e.getValue();
1240 tim 1.39 }
1241    
1242     public K getKey() {
1243     return key;
1244     }
1245 dl 1.30
1246 tim 1.39 public V getValue() {
1247     return value;
1248     }
1249    
1250     public V setValue(V value) {
1251     V oldValue = this.value;
1252     this.value = value;
1253     return oldValue;
1254     }
1255    
1256     public boolean equals(Object o) {
1257     if (!(o instanceof Map.Entry))
1258     return false;
1259     Map.Entry e = (Map.Entry)o;
1260     return eq(key, e.getKey()) && eq(value, e.getValue());
1261     }
1262    
1263     public int hashCode() {
1264     return ((key == null) ? 0 : key.hashCode()) ^
1265     ((value == null) ? 0 : value.hashCode());
1266     }
1267    
1268     public String toString() {
1269     return key + "=" + value;
1270     }
1271 dl 1.30
1272     private static boolean eq(Object o1, Object o2) {
1273     return (o1 == null ? o2 == null : o1.equals(o2));
1274 dl 1.4 }
1275 tim 1.1 }
1276    
1277 dl 1.4 /* ---------------- Serialization Support -------------- */
1278    
1279 tim 1.1 /**
1280     * Save the state of the <tt>ConcurrentHashMap</tt>
1281     * instance to a stream (i.e.,
1282     * serialize it).
1283 dl 1.8 * @param s the stream
1284 tim 1.1 * @serialData
1285     * the key (Object) and value (Object)
1286     * for each key-value mapping, followed by a null pair.
1287     * The key-value mappings are emitted in no particular order.
1288     */
1289     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1290     s.defaultWriteObject();
1291    
1292     for (int k = 0; k < segments.length; ++k) {
1293 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1294 dl 1.2 seg.lock();
1295     try {
1296 tim 1.11 HashEntry[] tab = seg.table;
1297 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1298 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1299 dl 1.4 s.writeObject(e.key);
1300     s.writeObject(e.value);
1301     }
1302     }
1303 tim 1.16 } finally {
1304 dl 1.2 seg.unlock();
1305     }
1306 tim 1.1 }
1307     s.writeObject(null);
1308     s.writeObject(null);
1309     }
1310    
1311     /**
1312     * Reconstitute the <tt>ConcurrentHashMap</tt>
1313     * instance from a stream (i.e.,
1314     * deserialize it).
1315 dl 1.8 * @param s the stream
1316 tim 1.1 */
1317     private void readObject(java.io.ObjectInputStream s)
1318     throws IOException, ClassNotFoundException {
1319     s.defaultReadObject();
1320    
1321 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1322     for (int i = 0; i < segments.length; ++i) {
1323 tim 1.11 segments[i].setTable(new HashEntry[1]);
1324 dl 1.4 }
1325 tim 1.1
1326     // Read the keys and values, and put the mappings in the table
1327 dl 1.9 for (;;) {
1328 tim 1.1 K key = (K) s.readObject();
1329     V value = (V) s.readObject();
1330     if (key == null)
1331     break;
1332     put(key, value);
1333     }
1334     }
1335     }
1336 tim 1.11