ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.4
Committed: Fri Jun 6 14:17:16 2003 UTC (21 years ago) by dl
Branch: MAIN
Changes since 1.3: +703 -951 lines
Log Message:
New CHM class with variable segments.

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8    
9     import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18     * same functional specification as
19     * <tt>java.util.Hashtable</tt>. However, even though all operations
20     * are thread-safe, retrieval operations do <em>not</em> entail
21     * locking, and there is <em>not</em> any support for locking the
22     * entire table in a way that prevents all access. This class is
23     * fully interoperable with Hashtable in programs that rely on its
24     * thread safety but not on its synchronization details.
25     *
26     * <p> Retrieval operations (including <tt>get</tt>) ordinarily
27     * overlap with update operations (including <tt>put/tt> and
28     * <tt>remove</tt>). Retrievals reflect the results of the most
29     * recently <em>completed</em> update operations holding upon their
30     * onset. For aggregate operations such as <tt>putAll</tt> and
31     * <tt>clear</tt>, concurrent retrievals may reflect insertion or
32     * removal of only some entries. Similarly, Iterators and
33     * Enumerations return elements reflecting the state of the hash table
34     * at some point at or since the creation of the iterator/enumeration.
35     * They do <em>not</em> throw ConcurrentModificationException.
36     * However, Iterators are designed to be used by only one thread at a
37     * time.
38 tim 1.1 *
39 dl 1.4 * <p> The allowed concurrency among update operations is controlled
40     * by the optional <tt>segments</tt> constructor argument (default
41     * 16). The table is divided into this many independent parts; each of
42     * which can be updated concurrently. Because placement in hash tables
43     * is essentially random, the actual concurrency will vary. As a rough
44     * rule of thumb, you should choose at least as many segments as you
45     * expect concurrent threads. However, using more segments than you
46     * need can waste space and time. Using a value of 1 for
47     * <tt>segments</tt> results in a table that is concurrently readable
48     * but can only be updated by one thread at a time.
49 tim 1.1 *
50 dl 1.4 * <p> Like Hashtable but unlike java.util.HashMap, this class does
51     * NOT allow <tt>null</tt> to be used as a key or value.
52 tim 1.1 *
53 dl 1.2 **/
54 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
55     implements ConcurrentMap<K, V>, Cloneable, Serializable {
56    
57     /*
58 dl 1.4 * The basic strategy is to subdivide the table among Segments,
59     * each of which itself is a concurrently readable hash table.
60     */
61 tim 1.1
62 dl 1.4 /* ---------------- Constants -------------- */
63    
64     /**
65     * The default initial number of table slots for this table (32).
66     * Used when not otherwise specified in constructor.
67     */
68     static int DEFAULT_INITIAL_CAPACITY = 16;
69 tim 1.1
70     /**
71 dl 1.4 * The maximum capacity, used if a higher value is implicitly
72     * specified by either of the constructors with arguments. MUST
73     * be a power of two <= 1<<30.
74     */
75     static final int MAXIMUM_CAPACITY = 1 << 30;
76    
77 tim 1.1 /**
78 dl 1.4 * The default load factor for this table. Used when not
79     * otherwise specified in constructor.
80     */
81     static final float DEFAULT_LOAD_FACTOR = 0.75f;
82 tim 1.1
83     /**
84 dl 1.4 * The default number of concurrency control segments.
85 tim 1.1 **/
86 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
87 tim 1.1
88 dl 1.4 /* ---------------- Fields -------------- */
89 tim 1.1
90     /**
91 dl 1.4 * Mask value for indexing into segments. The lower bits of a
92     * key's hash code are used to choose the segment, and the
93     * remaining bits are used as the placement hashcode used within
94     * the segment.
95 tim 1.1 **/
96 dl 1.4 private final int segmentMask;
97 tim 1.1
98     /**
99 dl 1.4 * Shift value for indexing within segments.
100 tim 1.1 **/
101 dl 1.4 private final int segmentShift;
102 tim 1.1
103     /**
104 dl 1.4 * The segments, each of which is a specialized hash table
105 tim 1.1 */
106 dl 1.4 private final Segment<K,V>[] segments;
107    
108     private transient Set<K> keySet = null;
109     private transient Set/*<Map.Entry<K,V>>*/ entrySet = null;
110     private transient Collection<V> values = null;
111    
112     /* ---------------- Small Utilities -------------- */
113 tim 1.1
114     /**
115 dl 1.4 * Return a hash code for non-null Object x.
116     * Uses the same hash code spreader as most other j.u hash tables.
117 tim 1.1 */
118 dl 1.4 private static int hash(Object x) {
119     int h = x.hashCode();
120     h += ~(h << 9);
121     h ^= (h >>> 14);
122     h += (h << 4);
123     h ^= (h >>> 10);
124     return h;
125     }
126    
127     /**
128     * Check for equality of non-null references x and y.
129     **/
130     private static boolean eq(Object x, Object y) {
131     return x == y || x.equals(y);
132     }
133 tim 1.1
134     /**
135 dl 1.4 * Return index for hash code h in table of given length.
136     */
137     private static int indexFor(int h, int length) {
138     return h & (length-1);
139     }
140 tim 1.1
141     /**
142 dl 1.4 * Return the segment that should be used for key with given hash
143 tim 1.1 */
144 dl 1.4 private Segment<K,V> segmentFor(int hash) {
145     return segments[hash & segmentMask];
146     }
147 tim 1.1
148     /**
149 dl 1.4 * Strip the segment index from hash code to use as a per-segment hash.
150 tim 1.1 */
151 dl 1.4 private int segmentHashFor(int hash) {
152     return hash >>> segmentShift;
153     }
154 tim 1.1
155 dl 1.4 /* ---------------- Inner Classes -------------- */
156 tim 1.1
157     /**
158 dl 1.4 * Segments are specialized versions of hash tables. This
159     * subclasses from ReentrantLock opportunistically, just to
160     * simplify some locking and avoid separate construction.
161 tim 1.1 **/
162 dl 1.4 private final static class Segment<K,V> extends ReentrantLock implements Serializable {
163     /*
164     * Segments maintain a table of entry lists that are ALWAYS
165     * kept in a consistent state, so can be read without locking.
166     * Next fields of nodes are immutable (final). All list
167     * additions are performed at the front of each bin. This
168     * makes it easy to check changes, and also fast to traverse.
169     * When nodes would otherwise be changed, new nodes are
170     * created to replace them. This works well for hash tables
171     * since the bin lists tend to be short. (The average length
172     * is less than two for the default load factor threshold.)
173     *
174     * Read operations can thus proceed without locking, but rely
175     * on a memory barrier to ensure that completed write
176     * operations performed by other threads are
177     * noticed. Conveniently, the "count" field, tracking the
178     * number of elements, can also serve as the volatile variable
179     * providing proper read/write barriers. This is convenient
180     * because this field needs to be read in many read operations
181     * anyway. The use of volatiles for this purpose is only
182     * guaranteed to work in accord with reuirements in
183     * multithreaded environments when run on JVMs conforming to
184     * the clarified JSR133 memory model specification. This true
185     * for hotspot as of release 1.4.
186     *
187     * Implementors note. The basic rules for all this are:
188     *
189     * - All unsynchronized read operations must first read the
190     * "count" field, and should not look at table entries if
191     * it is 0.
192     *
193     * - All synchronized write operations should write to
194     * the "count" field after updating. The operations must not
195     * take any action that could even momentarily cause
196     * a concurrent read operation to see inconsistent
197     * data. This is made easier by the nature of the read
198     * operations in Map. For example, no operation
199     * can reveal that the table has grown but the threshold
200     * has not yet been updated, so there are no atomicity
201     * requirements for this with respect to reads.
202     *
203     * As a guide, all critical volatile reads and writes are marked
204     * in code comments.
205     */
206    
207     /**
208     * The number of elements in this segment's region.
209     **/
210     transient volatile int count;
211    
212     /**
213     * The table is rehashed when its size exceeds this threshold.
214     * (The value of this field is always (int)(capacity *
215     * loadFactor).)
216     */
217     transient private int threshold;
218    
219     /**
220     * The per-segment table
221     */
222     transient HashEntry<K,V>[] table;
223    
224     /**
225     * The load factor for the hash table. Even though this value
226     * is same for all segments, it is replicated to avoid needing
227     * links to outer object.
228     * @serial
229     */
230     private final float loadFactor;
231 tim 1.1
232 dl 1.4 Segment(int initialCapacity, float lf) {
233     loadFactor = lf;
234     setTable(new HashEntry<K,V>[initialCapacity]);
235     }
236 tim 1.1
237 dl 1.4 /**
238     * Set table to new HashEntry array.
239     * Call only while holding lock or in constructor.
240     **/
241     private void setTable(HashEntry<K,V>[] newTable) {
242     table = newTable;
243     threshold = (int)(newTable.length * loadFactor);
244     count = count; // write-volatile
245     }
246    
247     /* Specialized implementations of map methods */
248    
249     V get(K key, int hash) {
250     if (count != 0) { // read-volatile
251     HashEntry<K,V>[] tab = table;
252     int index = indexFor(hash, tab.length);
253     HashEntry<K,V> e = tab[index];
254     while (e != null) {
255     if (e.hash == hash && eq(key, e.key))
256     return e.value;
257     e = e.next;
258     }
259     }
260     return null;
261     }
262    
263     boolean containsKey(Object key, int hash) {
264     if (count != 0) { // read-volatile
265     HashEntry<K,V>[] tab = table;
266     int index = indexFor(hash, tab.length);
267     HashEntry<K,V> e = tab[index];
268     while (e != null) {
269     if (e.hash == hash && eq(key, e.key))
270     return true;
271     e = e.next;
272     }
273     }
274     return false;
275     }
276    
277     boolean containsValue(Object value) {
278     if (count != 0) { // read-volatile
279     HashEntry<K,V> tab[] = table;
280     int len = tab.length;
281     for (int i = 0 ; i < len; i++)
282     for (HashEntry<K,V> e = tab[i] ; e != null ; e = e.next)
283     if (value.equals(e.value))
284     return true;
285     }
286     return false;
287     }
288    
289     V put(K key, int hash, V value, boolean onlyIfAbsent) {
290     lock();
291     try {
292     HashEntry<K,V>[] tab = table;
293     int index = indexFor(hash, tab.length);
294     HashEntry<K,V> first = tab[index];
295    
296     for (HashEntry<K,V> e = first; e != null; e = e.next) {
297     if (e.hash == hash && eq(key, e.key)) {
298     V oldValue = e.value;
299     if (!onlyIfAbsent)
300     e.value = value;
301     count = count; // write-volatile
302     return oldValue;
303     }
304     }
305    
306     tab[index] = new HashEntry<K,V>(hash, key, value, first);
307     if (++count > threshold) // write-volatile
308     rehash();
309     return null;
310     }
311     finally {
312     unlock();
313     }
314     }
315    
316     private void rehash() {
317     HashEntry<K,V>[] oldTable = table;
318     int oldCapacity = oldTable.length;
319     if (oldCapacity >= MAXIMUM_CAPACITY)
320     return;
321    
322     /*
323     * Reclassify nodes in each list to new Map. Because we are
324     * using power-of-two expansion, the elements from each bin
325     * must either stay at same index, or move with a power of two
326     * offset. We eliminate unnecessary node creation by catching
327     * cases where old nodes can be reused because their next
328     * fields won't change. Statistically, at the default
329     * threshhold, only about one-sixth of them need cloning when
330     * a table doubles. The nodes they replace will be garbage
331     * collectable as soon as they are no longer referenced by any
332     * reader thread that may be in the midst of traversing table
333     * right now.
334     */
335    
336     HashEntry<K,V>[] newTable = new HashEntry<K,V>[oldCapacity << 1];
337     int sizeMask = newTable.length - 1;
338     for (int i = 0; i < oldCapacity ; i++) {
339     // We need to guarantee that any existing reads of old Map can
340     // proceed. So we cannot yet null out each bin.
341     HashEntry<K,V> e = oldTable[i];
342    
343     if (e != null) {
344     HashEntry<K,V> next = e.next;
345     int idx = e.hash & sizeMask;
346    
347     // Single node on list
348     if (next == null)
349     newTable[idx] = e;
350    
351     else {
352     // Reuse trailing consecutive sequence at same slot
353     HashEntry<K,V> lastRun = e;
354     int lastIdx = idx;
355     for (HashEntry<K,V> last = next;
356     last != null;
357     last = last.next) {
358     int k = last.hash & sizeMask;
359     if (k != lastIdx) {
360     lastIdx = k;
361     lastRun = last;
362     }
363     }
364     newTable[lastIdx] = lastRun;
365    
366     // Clone all remaining nodes
367     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
368     int k = p.hash & sizeMask;
369     newTable[k] = new HashEntry<K,V>(p.hash, p.key,
370     p.value, newTable[k]);
371     }
372     }
373     }
374     }
375     setTable(newTable);
376     }
377    
378     V remove(Object key, int hash, Object value) {
379     lock();
380     try {
381     HashEntry[] tab = table;
382     int index = indexFor(hash, tab.length);
383     HashEntry<K,V> first = tab[index];
384    
385     HashEntry<K,V> e = first;
386     while (true) {
387     if (e == null)
388     return null;
389     if (e.hash == hash && eq(key, e.key))
390     break;
391     e = e.next;
392     }
393    
394     V oldValue = e.value;
395     if (value != null && !value.equals(oldValue))
396     return null;
397    
398     // All entries following removed node can stay in list, but
399     // all preceeding ones need to be cloned.
400     HashEntry<K,V> newFirst = e.next;
401     for (HashEntry<K,V> p = first; p != e; p = p.next)
402     newFirst = new HashEntry<K,V>(p.hash, p.key, p.value, newFirst);
403     tab[index] = newFirst;
404    
405     count--; // write-volatile
406     return e.value;
407     }
408     finally {
409     unlock();
410     }
411     }
412    
413     void clear() {
414     lock();
415     try {
416     HashEntry<K,V> tab[] = table;
417     for (int i = 0; i < tab.length ; i++)
418     tab[i] = null;
419     count = 0; // write-volatile
420     }
421     finally {
422     unlock();
423     }
424     }
425 tim 1.1 }
426    
427     /**
428 dl 1.4 * ConcurrentReaderHashMap list entry.
429 tim 1.1 */
430 dl 1.4 private static class HashEntry<K,V> implements Entry<K,V> {
431     private final K key;
432     private V value;
433     private final int hash;
434     private final HashEntry<K,V> next;
435    
436     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
437     this.value = value;
438     this.hash = hash;
439     this.key = key;
440     this.next = next;
441     }
442    
443     public K getKey() {
444     return key;
445     }
446 tim 1.1
447 dl 1.4 public V getValue() {
448     return value;
449 tim 1.1 }
450    
451 dl 1.4 public V setValue(V newValue) {
452     // We aren't required to, and don't provide any
453     // visibility barriers for setting value.
454     if (newValue == null)
455     throw new NullPointerException();
456     V oldValue = this.value;
457     this.value = newValue;
458     return oldValue;
459     }
460 tim 1.1
461 dl 1.4 public boolean equals(Object o) {
462     if (!(o instanceof Entry))
463     return false;
464     Entry<K,V> e = (Entry)o;
465     return (key.equals(e.getKey()) && value.equals(e.getValue()));
466     }
467    
468     public int hashCode() {
469     return key.hashCode() ^ value.hashCode();
470     }
471 tim 1.1
472 dl 1.4 public String toString() {
473     return key + "=" + value;
474     }
475 tim 1.1 }
476    
477 dl 1.4
478     /* ---------------- Public operations -------------- */
479 tim 1.1
480     /**
481     * Constructs a new, empty map with the specified initial
482     * capacity and the specified load factor.
483     *
484 dl 1.4 * @param initialCapacity the initial capacity. The actual
485     * initial capacity is rounded up to the nearest power of two.
486 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
487 dl 1.4 * @param segments the number of concurrently accessible segments. the
488     * actual number of segments is rounded to the next power of two.
489     * @throws IllegalArgumentException if the initial capacity is
490     * negative or the load factor or number of segments are
491     * nonpositive.
492     */
493     public ConcurrentHashMap(int initialCapacity, float loadFactor, int segments) {
494     if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
495     throw new IllegalArgumentException();
496    
497     // Find power-of-two sizes best matching arguments
498     int sshift = 0;
499     int ssize = 1;
500     while (ssize < segments) {
501     ++sshift;
502     ssize <<= 1;
503     }
504     segmentShift = sshift;
505     segmentMask = ssize-1;
506     this.segments = new Segment<K,V>[ssize];
507    
508     if (initialCapacity > MAXIMUM_CAPACITY)
509     initialCapacity = MAXIMUM_CAPACITY;
510     int c = initialCapacity / ssize;
511     if (c * ssize < initialCapacity)
512     ++c;
513     int cap = 1;
514     while (cap < c)
515     cap <<= 1;
516    
517     for (int i = 0; i < this.segments.length; ++i)
518     this.segments[i] = new Segment<K,V>(cap, loadFactor);
519 tim 1.1 }
520    
521     /**
522     * Constructs a new, empty map with the specified initial
523 dl 1.4 * capacity, and with default load factor and segments.
524 tim 1.1 *
525 dl 1.4 * @param initialCapacity the initial capacity of the
526     * ConcurrentHashMap.
527     * @throws IllegalArgumentException if the initial capacity of
528     * elements is negative.
529 tim 1.1 */
530     public ConcurrentHashMap(int initialCapacity) {
531 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
532 tim 1.1 }
533    
534     /**
535 dl 1.4 * Constructs a new, empty map with a default initial capacity,
536     * load factor, and number of segments
537 tim 1.1 */
538     public ConcurrentHashMap() {
539 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
540 tim 1.1 }
541    
542     /**
543     * Constructs a new map with the same mappings as the given map. The
544     * map is created with a capacity of twice the number of mappings in
545 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
546 tim 1.1 */
547     public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
548     this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
549 dl 1.4 11),
550     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
551     putAll(t);
552 tim 1.1 }
553    
554 dl 1.4 // inherit Map javadoc
555 tim 1.1 public int size() {
556     int c = 0;
557     for (int i = 0; i < segments.length; ++i)
558 dl 1.4 c += segments[i].count;
559 tim 1.1 return c;
560     }
561    
562 dl 1.4 // inherit Map javadoc
563 tim 1.1 public boolean isEmpty() {
564     for (int i = 0; i < segments.length; ++i)
565 dl 1.4 if (segments[i].count != 0)
566 tim 1.1 return false;
567     return true;
568     }
569    
570     /**
571     * Returns the value to which the specified key is mapped in this table.
572     *
573     * @param key a key in the table.
574     * @return the value to which the key is mapped in this table;
575     * <code>null</code> if the key is not mapped to any value in
576     * this table.
577     * @exception NullPointerException if the key is
578     * <code>null</code>.
579     * @see #put(Object, Object)
580     */
581 dl 1.4 public V get(K key) {
582     int hash = hash(key); // throws NullPointerException if key null
583     return segmentFor(hash).get(key, segmentHashFor(hash));
584 tim 1.1 }
585    
586     /**
587     * Tests if the specified object is a key in this table.
588 dl 1.4 *
589 tim 1.1 * @param key possible key.
590 dl 1.4 * @return <code>true</code> if and only if the specified object
591     * is a key in this table, as determined by the
592 tim 1.1 * <tt>equals</tt> method; <code>false</code> otherwise.
593     * @exception NullPointerException if the key is
594     * <code>null</code>.
595     * @see #contains(Object)
596     */
597     public boolean containsKey(Object key) {
598 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
599     return segmentFor(hash).containsKey(key, segmentHashFor(hash));
600 tim 1.1 }
601    
602     /**
603     * Returns <tt>true</tt> if this map maps one or more keys to the
604     * specified value. Note: This method requires a full internal
605     * traversal of the hash table, and so is much slower than
606     * method <tt>containsKey</tt>.
607     *
608     * @param value value whose presence in this map is to be tested.
609     * @return <tt>true</tt> if this map maps one or more keys to the
610 dl 1.4 * specified value.
611 tim 1.1 * @exception NullPointerException if the value is <code>null</code>.
612     */
613     public boolean containsValue(Object value) {
614 dl 1.4 if (value == null)
615     throw new NullPointerException();
616 tim 1.1
617 dl 1.4 for (int i = 0; i < segments.length; ++i) {
618     if (segments[i].containsValue(value))
619     return true;
620 tim 1.1 }
621     return false;
622     }
623     /**
624     * Tests if some key maps into the specified value in this table.
625     * This operation is more expensive than the <code>containsKey</code>
626     * method.<p>
627     *
628     * Note that this method is identical in functionality to containsValue,
629     * (which is part of the Map interface in the collections framework).
630 dl 1.4 *
631 tim 1.1 * @param value a value to search for.
632     * @return <code>true</code> if and only if some key maps to the
633 dl 1.4 * <code>value</code> argument in this table as
634 tim 1.1 * determined by the <tt>equals</tt> method;
635     * <code>false</code> otherwise.
636     * @exception NullPointerException if the value is <code>null</code>.
637     * @see #containsKey(Object)
638     * @see #containsValue(Object)
639 dl 1.4 * @see Map
640 tim 1.1 */
641 dl 1.4 public boolean contains(Object value) {
642 tim 1.1 return containsValue(value);
643     }
644    
645     /**
646 dl 1.4 * Maps the specified <code>key</code> to the specified
647     * <code>value</code> in this table. Neither the key nor the
648     * value can be <code>null</code>. <p>
649     *
650     * The value can be retrieved by calling the <code>get</code> method
651     * with a key that is equal to the original key.
652     *
653     * @param key the table key.
654     * @param value the value.
655     * @return the previous value of the specified key in this table,
656     * or <code>null</code> if it did not have one.
657     * @exception NullPointerException if the key or value is
658     * <code>null</code>.
659     * @see Object#equals(Object)
660     * @see #get(Object)
661     */
662     public V put(K key, V value) {
663     if (value == null)
664     throw new NullPointerException();
665     int hash = hash(key);
666     return segmentFor(hash).put(key, segmentHashFor(hash), value, false);
667     }
668    
669     /**
670     * If the specified key is not already associated
671     * with a value, associate it with the given value.
672     * This is equivalent to
673     * <pre>
674     * if (!map.containsKey(key)) map.put(key, value);
675     * return get(key);
676     * </pre>
677     * Except that the action is performed atomically.
678     * @param key key with which the specified value is to be associated.
679     * @param value value to be associated with the specified key.
680     * @return previous value associated with specified key, or <tt>null</tt>
681     * if there was no mapping for key. A <tt>null</tt> return can
682     * also indicate that the map previously associated <tt>null</tt>
683     * with the specified key, if the implementation supports
684     * <tt>null</tt> values.
685     *
686     * @throws NullPointerException this map does not permit <tt>null</tt>
687     * keys or values, and the specified key or value is
688     * <tt>null</tt>.
689     *
690     **/
691     public V putIfAbsent(K key, V value) {
692     if (value == null)
693     throw new NullPointerException();
694     int hash = hash(key);
695     return segmentFor(hash).put(key, segmentHashFor(hash), value, true);
696     }
697    
698    
699     /**
700 tim 1.1 * Copies all of the mappings from the specified map to this one.
701     *
702     * These mappings replace any mappings that this map had for any of the
703     * keys currently in the specified Map.
704     *
705     * @param t Mappings to be stored in this map.
706     */
707 dl 1.4 public <K1 extends K, V1 extends V> void putAll(Map<K1,V1> t) {
708     Iterator<Map.Entry<K1,V1>> it = t.entrySet().iterator();
709     while (it.hasNext()) {
710     Entry<K,V> e = (Entry) it.next();
711     put(e.getKey(), e.getValue());
712 tim 1.1 }
713 dl 1.4 }
714    
715     /**
716     * Removes the key (and its corresponding value) from this
717     * table. This method does nothing if the key is not in the table.
718     *
719     * @param key the key that needs to be removed.
720     * @return the value to which the key had been mapped in this table,
721     * or <code>null</code> if the key did not have a mapping.
722     * @exception NullPointerException if the key is
723     * <code>null</code>.
724     */
725     public V remove(Object key) {
726     int hash = hash(key);
727     return segmentFor(hash).remove(key, segmentHashFor(hash), null);
728     }
729 tim 1.1
730 dl 1.4 /**
731     * Removes the (key, value) pair from this
732     * table. This method does nothing if the key is not in the table,
733     * or if the key is associated with a different value. This method
734     * is needed by EntrySet.
735     *
736     * @param key the key that needs to be removed.
737     * @param value the associated value. If the value is null,
738     * it means "any value".
739     * @return the value to which the key had been mapped in this table,
740     * or <code>null</code> if the key did not have a mapping.
741     * @exception NullPointerException if the key is
742     * <code>null</code>.
743     */
744     public V remove(Object key, Object value) {
745     if (value == null)
746     return null;
747     int hash = hash(key);
748     return segmentFor(hash).remove(key, segmentHashFor(hash), value);
749 tim 1.1 }
750    
751     /**
752     * Removes all mappings from this map.
753     */
754     public void clear() {
755 dl 1.4 for (int i = 0; i < segments.length; ++i)
756     segments[i].clear();
757 tim 1.1 }
758    
759 dl 1.4
760 tim 1.1 /**
761     * Returns a shallow copy of this
762     * <tt>ConcurrentHashMap</tt> instance: the keys and
763     * values themselves are not cloned.
764     *
765     * @return a shallow copy of this map.
766     */
767     public Object clone() {
768 dl 1.4 // We cannot call super.clone, since it would share final
769     // segments array, and there's no way to reassign finals.
770    
771     float lf = segments[0].loadFactor;
772     int segs = segments.length;
773     int cap = (int)(size() / lf);
774     if (cap < segs) cap = segs;
775     ConcurrentHashMap t = new ConcurrentHashMap(cap, lf, segs);
776     t.putAll(this);
777     return t;
778 tim 1.1 }
779    
780     /**
781     * Returns a set view of the keys contained in this map. The set is
782     * backed by the map, so changes to the map are reflected in the set, and
783     * vice-versa. The set supports element removal, which removes the
784     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
785     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
786     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
787     * <tt>addAll</tt> operations.
788     *
789     * @return a set view of the keys contained in this map.
790     */
791     public Set<K> keySet() {
792     Set<K> ks = keySet;
793     return (ks != null)? ks : (keySet = new KeySet());
794     }
795    
796    
797     /**
798     * Returns a collection view of the values contained in this map. The
799     * collection is backed by the map, so changes to the map are reflected in
800     * the collection, and vice-versa. The collection supports element
801     * removal, which removes the corresponding mapping from this map, via the
802     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
803     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
804     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
805     *
806     * @return a collection view of the values contained in this map.
807     */
808     public Collection<V> values() {
809     Collection<V> vs = values;
810     return (vs != null)? vs : (values = new Values());
811     }
812    
813    
814     /**
815     * Returns a collection view of the mappings contained in this map. Each
816     * element in the returned collection is a <tt>Map.Entry</tt>. The
817     * collection is backed by the map, so changes to the map are reflected in
818     * the collection, and vice-versa. The collection supports element
819     * removal, which removes the corresponding mapping from the map, via the
820     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
821     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
822     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
823     *
824     * @return a collection view of the mappings contained in this map.
825     */
826     public Set<Map.Entry<K,V>> entrySet() {
827     Set<Map.Entry<K,V>> es = entrySet;
828     return (es != null) ? es : (entrySet = new EntrySet());
829     }
830    
831    
832     /**
833     * Returns an enumeration of the keys in this table.
834     *
835     * @return an enumeration of the keys in this table.
836     * @see Enumeration
837     * @see #elements()
838     * @see #keySet()
839     * @see Map
840     */
841 dl 1.4 public Enumeration<K> keys() {
842 tim 1.1 return new KeyIterator();
843     }
844    
845     /**
846     * Returns an enumeration of the values in this table.
847     * Use the Enumeration methods on the returned object to fetch the elements
848     * sequentially.
849     *
850     * @return an enumeration of the values in this table.
851     * @see java.util.Enumeration
852     * @see #keys()
853     * @see #values()
854     * @see Map
855     */
856 dl 1.4 public Enumeration<V> elements() {
857 tim 1.1 return new ValueIterator();
858     }
859    
860 dl 1.4 /* ---------------- Iterator Support -------------- */
861    
862     private abstract class HashIterator {
863     private int nextSegmentIndex;
864     private int nextTableIndex;
865     private HashEntry<K, V>[] currentTable;
866     private HashEntry<K, V> nextEntry;
867     private HashEntry<K, V> lastReturned;
868 tim 1.1
869     private HashIterator() {
870 dl 1.4 nextSegmentIndex = segments.length-1;
871     nextTableIndex = -1;
872     advance();
873 tim 1.1 }
874    
875     public boolean hasMoreElements() { return hasNext(); }
876    
877 dl 1.4 private void advance() {
878     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
879     return;
880    
881     while (nextTableIndex >= 0) {
882     if ( (nextEntry = currentTable[nextTableIndex--]) != null)
883     return;
884     }
885    
886     while (nextSegmentIndex >= 0) {
887     Segment<K,V> seg = segments[nextSegmentIndex--];
888     if (seg.count != 0) {
889     currentTable = seg.table;
890     for (int j = currentTable.length-1; j >= 0; --j) {
891     if ( (nextEntry = currentTable[j]) != null) {
892     nextTableIndex = j-1;
893     return;
894     }
895 tim 1.1 }
896     }
897     }
898     }
899    
900 dl 1.4 public boolean hasNext() { return nextEntry != null; }
901 tim 1.1
902 dl 1.4 HashEntry<K,V> nextEntry() {
903     if (nextEntry == null)
904 tim 1.1 throw new NoSuchElementException();
905 dl 1.4 lastReturned = nextEntry;
906     advance();
907     return lastReturned;
908 tim 1.1 }
909    
910     public void remove() {
911     if (lastReturned == null)
912     throw new IllegalStateException();
913     ConcurrentHashMap.this.remove(lastReturned.key);
914     lastReturned = null;
915     }
916 dl 1.4 }
917    
918     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
919     public K next() { return super.nextEntry().key; }
920     public K nextElement() { return super.nextEntry().key; }
921     }
922    
923     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
924     public V next() { return super.nextEntry().value; }
925     public V nextElement() { return super.nextEntry().value; }
926     }
927 tim 1.1
928 dl 1.4 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
929     public Map.Entry<K,V> next() { return super.nextEntry(); }
930 tim 1.1 }
931    
932 dl 1.4 private class KeySet extends AbstractSet<K> {
933     public Iterator<K> iterator() {
934     return new KeyIterator();
935     }
936     public int size() {
937     return ConcurrentHashMap.this.size();
938     }
939     public boolean contains(Object o) {
940     return ConcurrentHashMap.this.containsKey(o);
941     }
942     public boolean remove(Object o) {
943     return ConcurrentHashMap.this.remove(o) != null;
944     }
945     public void clear() {
946     ConcurrentHashMap.this.clear();
947     }
948 tim 1.1 }
949    
950 dl 1.4 private class Values extends AbstractCollection<V> {
951     public Iterator<V> iterator() {
952     return new ValueIterator();
953     }
954     public int size() {
955     return ConcurrentHashMap.this.size();
956     }
957     public boolean contains(Object o) {
958     return ConcurrentHashMap.this.containsValue(o);
959     }
960     public void clear() {
961     ConcurrentHashMap.this.clear();
962     }
963 tim 1.1 }
964    
965 dl 1.4 private class EntrySet extends AbstractSet {
966     public Iterator<Map.Entry<K,V>> iterator() {
967     return new EntryIterator();
968     }
969     public boolean contains(Object o) {
970     if (!(o instanceof Map.Entry))
971     return false;
972     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
973     V v = ConcurrentHashMap.this.get(e.getKey());
974     return v != null && v.equals(e.getValue());
975     }
976     public boolean remove(Object o) {
977     if (!(o instanceof Map.Entry))
978     return false;
979     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
980     return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()) != null;
981     }
982     public int size() {
983     return ConcurrentHashMap.this.size();
984     }
985     public void clear() {
986     ConcurrentHashMap.this.clear();
987     }
988 tim 1.1 }
989    
990 dl 1.4 /* ---------------- Serialization Support -------------- */
991    
992 tim 1.1 /**
993     * Save the state of the <tt>ConcurrentHashMap</tt>
994     * instance to a stream (i.e.,
995     * serialize it).
996     * @serialData
997     * the key (Object) and value (Object)
998     * for each key-value mapping, followed by a null pair.
999     * The key-value mappings are emitted in no particular order.
1000     */
1001     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1002     s.defaultWriteObject();
1003    
1004     for (int k = 0; k < segments.length; ++k) {
1005 dl 1.4 Segment<K,V> seg = segments[k];
1006 dl 1.2 seg.lock();
1007     try {
1008 dl 1.4 HashEntry<K,V>[] tab = seg.table;
1009     for (int i = 0; i < tab.length; ++i) {
1010     for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1011     s.writeObject(e.key);
1012     s.writeObject(e.value);
1013     }
1014     }
1015 dl 1.2 }
1016     finally {
1017     seg.unlock();
1018     }
1019 tim 1.1 }
1020     s.writeObject(null);
1021     s.writeObject(null);
1022     }
1023    
1024     /**
1025     * Reconstitute the <tt>ConcurrentHashMap</tt>
1026     * instance from a stream (i.e.,
1027     * deserialize it).
1028     */
1029     private void readObject(java.io.ObjectInputStream s)
1030     throws IOException, ClassNotFoundException {
1031     s.defaultReadObject();
1032    
1033 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1034     for (int i = 0; i < segments.length; ++i) {
1035     segments[i].setTable(new HashEntry<K,V>[1]);
1036     }
1037 tim 1.1
1038     // Read the keys and values, and put the mappings in the table
1039     while (true) {
1040     K key = (K) s.readObject();
1041     V value = (V) s.readObject();
1042     if (key == null)
1043     break;
1044     put(key, value);
1045     }
1046     }
1047     }
1048 dl 1.4