ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.55
Committed: Fri Dec 31 18:38:37 2004 UTC (19 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.54: +22 -7 lines
Log Message:
Regularize constructors

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52 dl 1.45 * appropriate when it is known that only one thread will modify and
53     * all others will only read. Also, resizing this or any other kind of
54     * hash table is a relatively slow operation, so, when possible, it is
55     * a good idea to provide estimates of expected table sizes in
56     * constructors.
57 tim 1.1 *
58 dl 1.45 * <p>This class and its views and iterators implement all of the
59     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
60     * interfaces.
61 dl 1.23 *
62 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
63     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
64     * used as a key or value.
65 tim 1.1 *
66 dl 1.42 * <p>This class is a member of the
67     * <a href="{@docRoot}/../guide/collections/index.html">
68     * Java Collections Framework</a>.
69     *
70 dl 1.8 * @since 1.5
71     * @author Doug Lea
72 dl 1.27 * @param <K> the type of keys maintained by this map
73     * @param <V> the type of mapped values
74 dl 1.8 */
75 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
76 dl 1.48 implements ConcurrentMap<K, V>, Serializable {
77 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
78 tim 1.1
79     /*
80 dl 1.4 * The basic strategy is to subdivide the table among Segments,
81     * each of which itself is a concurrently readable hash table.
82     */
83 tim 1.1
84 dl 1.4 /* ---------------- Constants -------------- */
85 tim 1.11
86 dl 1.4 /**
87 dl 1.19 * The default initial number of table slots for this table.
88 dl 1.4 * Used when not otherwise specified in constructor.
89     */
90 dl 1.41 static int DEFAULT_INITIAL_CAPACITY = 16;
91 tim 1.1
92     /**
93 dl 1.4 * The maximum capacity, used if a higher value is implicitly
94     * specified by either of the constructors with arguments. MUST
95 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
96     * using ints.
97 dl 1.4 */
98 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
99 tim 1.11
100 tim 1.1 /**
101 dl 1.4 * The default load factor for this table. Used when not
102     * otherwise specified in constructor.
103     */
104 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
105 tim 1.1
106     /**
107 dl 1.4 * The default number of concurrency control segments.
108 tim 1.1 **/
109 dl 1.41 static final int DEFAULT_SEGMENTS = 16;
110 tim 1.1
111 dl 1.21 /**
112 dl 1.37 * The maximum number of segments to allow; used to bound
113     * constructor arguments.
114 dl 1.21 */
115 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
116 dl 1.21
117 dl 1.46 /**
118     * Number of unsynchronized retries in size and containsValue
119     * methods before resorting to locking. This is used to avoid
120     * unbounded retries if tables undergo continuous modification
121     * which would make it impossible to obtain an accurate result.
122     */
123     static final int RETRIES_BEFORE_LOCK = 2;
124    
125 dl 1.4 /* ---------------- Fields -------------- */
126 tim 1.1
127     /**
128 dl 1.9 * Mask value for indexing into segments. The upper bits of a
129     * key's hash code are used to choose the segment.
130 tim 1.1 **/
131 dl 1.41 final int segmentMask;
132 tim 1.1
133     /**
134 dl 1.4 * Shift value for indexing within segments.
135 tim 1.1 **/
136 dl 1.41 final int segmentShift;
137 tim 1.1
138     /**
139 dl 1.4 * The segments, each of which is a specialized hash table
140 tim 1.1 */
141 dl 1.41 final Segment[] segments;
142 dl 1.4
143 dl 1.41 transient Set<K> keySet;
144     transient Set<Map.Entry<K,V>> entrySet;
145     transient Collection<V> values;
146 dl 1.4
147     /* ---------------- Small Utilities -------------- */
148 tim 1.1
149     /**
150 dl 1.44 * Returns a hash code for non-null Object x.
151 dl 1.37 * Uses the same hash code spreader as most other java.util hash tables.
152 dl 1.8 * @param x the object serving as a key
153     * @return the hash code
154 tim 1.1 */
155 dl 1.41 static int hash(Object x) {
156 dl 1.4 int h = x.hashCode();
157     h += ~(h << 9);
158     h ^= (h >>> 14);
159     h += (h << 4);
160     h ^= (h >>> 10);
161     return h;
162     }
163    
164 tim 1.1 /**
165 dl 1.44 * Returns the segment that should be used for key with given hash
166     * @param hash the hash code for the key
167     * @return the segment
168 tim 1.1 */
169 dl 1.41 final Segment<K,V> segmentFor(int hash) {
170 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
171 dl 1.4 }
172 tim 1.1
173 dl 1.4 /* ---------------- Inner Classes -------------- */
174 tim 1.1
175     /**
176 dl 1.46 * ConcurrentHashMap list entry. Note that this is never exported
177     * out as a user-visible Map.Entry.
178     *
179     * Because the value field is volatile, not final, it is legal wrt
180     * the Java Memory Model for an unsynchronized reader to see null
181     * instead of initial value when read via a data race. Although a
182     * reordering leading to this is not likely to ever actually
183     * occur, the Segment.readValueUnderLock method is used as a
184     * backup in case a null (pre-initialized) value is ever seen in
185     * an unsynchronized access method.
186     */
187     static final class HashEntry<K,V> {
188     final K key;
189     final int hash;
190     volatile V value;
191     final HashEntry<K,V> next;
192    
193     HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
194     this.key = key;
195     this.hash = hash;
196     this.next = next;
197     this.value = value;
198     }
199     }
200    
201     /**
202 dl 1.6 * Segments are specialized versions of hash tables. This
203 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
204     * simplify some locking and avoid separate construction.
205 tim 1.1 **/
206 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
207 dl 1.4 /*
208     * Segments maintain a table of entry lists that are ALWAYS
209     * kept in a consistent state, so can be read without locking.
210     * Next fields of nodes are immutable (final). All list
211     * additions are performed at the front of each bin. This
212     * makes it easy to check changes, and also fast to traverse.
213     * When nodes would otherwise be changed, new nodes are
214     * created to replace them. This works well for hash tables
215     * since the bin lists tend to be short. (The average length
216     * is less than two for the default load factor threshold.)
217     *
218     * Read operations can thus proceed without locking, but rely
219 dl 1.45 * on selected uses of volatiles to ensure that completed
220     * write operations performed by other threads are
221     * noticed. For most purposes, the "count" field, tracking the
222     * number of elements, serves as that volatile variable
223     * ensuring visibility. This is convenient because this field
224     * needs to be read in many read operations anyway:
225 dl 1.4 *
226 dl 1.45 * - All (unsynchronized) read operations must first read the
227 dl 1.4 * "count" field, and should not look at table entries if
228     * it is 0.
229 tim 1.11 *
230 dl 1.45 * - All (synchronized) write operations should write to
231     * the "count" field after structurally changing any bin.
232     * The operations must not take any action that could even
233     * momentarily cause a concurrent read operation to see
234     * inconsistent data. This is made easier by the nature of
235     * the read operations in Map. For example, no operation
236 dl 1.4 * can reveal that the table has grown but the threshold
237     * has not yet been updated, so there are no atomicity
238     * requirements for this with respect to reads.
239     *
240 dl 1.45 * As a guide, all critical volatile reads and writes to the
241     * count field are marked in code comments.
242 dl 1.4 */
243 tim 1.11
244 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
245    
246 dl 1.4 /**
247     * The number of elements in this segment's region.
248     **/
249     transient volatile int count;
250    
251     /**
252 dl 1.45 * Number of updates that alter the size of the table. This is
253     * used during bulk-read methods to make sure they see a
254     * consistent snapshot: If modCounts change during a traversal
255 dl 1.46 * of segments computing size or checking containsValue, then
256 dl 1.45 * we might have an inconsistent view of state so (usually)
257     * must retry.
258 dl 1.21 */
259     transient int modCount;
260    
261     /**
262 dl 1.4 * The table is rehashed when its size exceeds this threshold.
263     * (The value of this field is always (int)(capacity *
264     * loadFactor).)
265     */
266 dl 1.41 transient int threshold;
267 dl 1.4
268     /**
269 dl 1.45 * The per-segment table. Declared as a raw type, casted
270     * to HashEntry<K,V> on each use.
271 dl 1.4 */
272 dl 1.45 transient volatile HashEntry[] table;
273 dl 1.4
274     /**
275     * The load factor for the hash table. Even though this value
276     * is same for all segments, it is replicated to avoid needing
277     * links to outer object.
278     * @serial
279     */
280 dl 1.41 final float loadFactor;
281 tim 1.1
282 dl 1.4 Segment(int initialCapacity, float lf) {
283     loadFactor = lf;
284 tim 1.11 setTable(new HashEntry[initialCapacity]);
285 dl 1.4 }
286 tim 1.1
287 dl 1.4 /**
288 tim 1.11 * Set table to new HashEntry array.
289 dl 1.4 * Call only while holding lock or in constructor.
290     **/
291 dl 1.41 void setTable(HashEntry[] newTable) {
292 dl 1.45 threshold = (int)(newTable.length * loadFactor);
293 dl 1.4 table = newTable;
294 dl 1.45 }
295    
296     /**
297     * Return properly casted first entry of bin for given hash
298     */
299     HashEntry<K,V> getFirst(int hash) {
300     HashEntry[] tab = table;
301     return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
302     }
303    
304     /**
305     * Read value field of an entry under lock. Called if value
306     * field ever appears to be null. This is possible only if a
307     * compiler happens to reorder a HashEntry initialization with
308     * its table assignment, which is legal under memory model
309     * but is not known to ever occur.
310     */
311     V readValueUnderLock(HashEntry<K,V> e) {
312     lock();
313     try {
314     return e.value;
315     } finally {
316     unlock();
317     }
318 tim 1.11 }
319 dl 1.4
320     /* Specialized implementations of map methods */
321 tim 1.11
322 dl 1.29 V get(Object key, int hash) {
323 dl 1.4 if (count != 0) { // read-volatile
324 dl 1.45 HashEntry<K,V> e = getFirst(hash);
325 dl 1.4 while (e != null) {
326 dl 1.45 if (e.hash == hash && key.equals(e.key)) {
327     V v = e.value;
328     if (v != null)
329     return v;
330     return readValueUnderLock(e); // recheck
331     }
332 dl 1.4 e = e.next;
333     }
334     }
335     return null;
336     }
337    
338     boolean containsKey(Object key, int hash) {
339     if (count != 0) { // read-volatile
340 dl 1.45 HashEntry<K,V> e = getFirst(hash);
341 dl 1.4 while (e != null) {
342 tim 1.11 if (e.hash == hash && key.equals(e.key))
343 dl 1.4 return true;
344     e = e.next;
345     }
346     }
347     return false;
348     }
349 tim 1.11
350 dl 1.4 boolean containsValue(Object value) {
351     if (count != 0) { // read-volatile
352 tim 1.11 HashEntry[] tab = table;
353 dl 1.4 int len = tab.length;
354 dl 1.45 for (int i = 0 ; i < len; i++) {
355     for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
356     e != null ;
357     e = e.next) {
358     V v = e.value;
359     if (v == null) // recheck
360     v = readValueUnderLock(e);
361     if (value.equals(v))
362 dl 1.4 return true;
363 dl 1.45 }
364     }
365 dl 1.4 }
366     return false;
367     }
368    
369 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
370     lock();
371     try {
372 dl 1.45 HashEntry<K,V> e = getFirst(hash);
373     while (e != null && (e.hash != hash || !key.equals(e.key)))
374 dl 1.31 e = e.next;
375 dl 1.45
376     boolean replaced = false;
377     if (e != null && oldValue.equals(e.value)) {
378     replaced = true;
379     e.value = newValue;
380 dl 1.31 }
381 dl 1.45 return replaced;
382 dl 1.33 } finally {
383     unlock();
384     }
385     }
386    
387     V replace(K key, int hash, V newValue) {
388     lock();
389     try {
390 dl 1.45 HashEntry<K,V> e = getFirst(hash);
391     while (e != null && (e.hash != hash || !key.equals(e.key)))
392 dl 1.33 e = e.next;
393 dl 1.45
394     V oldValue = null;
395     if (e != null) {
396     oldValue = e.value;
397     e.value = newValue;
398 dl 1.32 }
399 dl 1.45 return oldValue;
400 dl 1.31 } finally {
401     unlock();
402     }
403     }
404    
405 dl 1.32
406 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
407 dl 1.4 lock();
408     try {
409 dl 1.9 int c = count;
410 dl 1.45 if (c++ > threshold) // ensure capacity
411     rehash();
412 tim 1.11 HashEntry[] tab = table;
413 dl 1.9 int index = hash & (tab.length - 1);
414 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
415 dl 1.45 HashEntry<K,V> e = first;
416     while (e != null && (e.hash != hash || !key.equals(e.key)))
417     e = e.next;
418 tim 1.11
419 dl 1.45 V oldValue;
420     if (e != null) {
421     oldValue = e.value;
422     if (!onlyIfAbsent)
423     e.value = value;
424     }
425     else {
426     oldValue = null;
427     ++modCount;
428     tab[index] = new HashEntry<K,V>(key, hash, first, value);
429     count = c; // write-volatile
430 dl 1.4 }
431 dl 1.45 return oldValue;
432 tim 1.16 } finally {
433 dl 1.4 unlock();
434     }
435     }
436    
437 dl 1.45 void rehash() {
438     HashEntry[] oldTable = table;
439 dl 1.4 int oldCapacity = oldTable.length;
440     if (oldCapacity >= MAXIMUM_CAPACITY)
441 dl 1.45 return;
442 dl 1.4
443     /*
444     * Reclassify nodes in each list to new Map. Because we are
445     * using power-of-two expansion, the elements from each bin
446     * must either stay at same index, or move with a power of two
447     * offset. We eliminate unnecessary node creation by catching
448     * cases where old nodes can be reused because their next
449     * fields won't change. Statistically, at the default
450 dl 1.29 * threshold, only about one-sixth of them need cloning when
451 dl 1.4 * a table doubles. The nodes they replace will be garbage
452     * collectable as soon as they are no longer referenced by any
453     * reader thread that may be in the midst of traversing table
454     * right now.
455     */
456 tim 1.11
457     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
458 dl 1.45 threshold = (int)(newTable.length * loadFactor);
459 dl 1.4 int sizeMask = newTable.length - 1;
460     for (int i = 0; i < oldCapacity ; i++) {
461     // We need to guarantee that any existing reads of old Map can
462 tim 1.11 // proceed. So we cannot yet null out each bin.
463 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
464 tim 1.11
465 dl 1.4 if (e != null) {
466     HashEntry<K,V> next = e.next;
467     int idx = e.hash & sizeMask;
468 tim 1.11
469 dl 1.4 // Single node on list
470 tim 1.11 if (next == null)
471 dl 1.4 newTable[idx] = e;
472 tim 1.11
473     else {
474 dl 1.4 // Reuse trailing consecutive sequence at same slot
475     HashEntry<K,V> lastRun = e;
476     int lastIdx = idx;
477 tim 1.11 for (HashEntry<K,V> last = next;
478     last != null;
479 dl 1.4 last = last.next) {
480     int k = last.hash & sizeMask;
481     if (k != lastIdx) {
482     lastIdx = k;
483     lastRun = last;
484     }
485     }
486     newTable[lastIdx] = lastRun;
487 tim 1.11
488 dl 1.4 // Clone all remaining nodes
489     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
490     int k = p.hash & sizeMask;
491 dl 1.45 HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
492     newTable[k] = new HashEntry<K,V>(p.key, p.hash,
493     n, p.value);
494 dl 1.4 }
495     }
496     }
497     }
498 dl 1.45 table = newTable;
499 dl 1.4 }
500 dl 1.6
501     /**
502     * Remove; match on key only if value null, else match both.
503     */
504 dl 1.4 V remove(Object key, int hash, Object value) {
505 tim 1.11 lock();
506 dl 1.4 try {
507 dl 1.45 int c = count - 1;
508 dl 1.4 HashEntry[] tab = table;
509 dl 1.9 int index = hash & (tab.length - 1);
510 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
511 dl 1.4 HashEntry<K,V> e = first;
512 dl 1.45 while (e != null && (e.hash != hash || !key.equals(e.key)))
513 dl 1.4 e = e.next;
514 dl 1.45
515     V oldValue = null;
516     if (e != null) {
517     V v = e.value;
518     if (value == null || value.equals(v)) {
519     oldValue = v;
520     // All entries following removed node can stay
521     // in list, but all preceding ones need to be
522     // cloned.
523     ++modCount;
524     HashEntry<K,V> newFirst = e.next;
525     for (HashEntry<K,V> p = first; p != e; p = p.next)
526     newFirst = new HashEntry<K,V>(p.key, p.hash,
527     newFirst, p.value);
528     tab[index] = newFirst;
529     count = c; // write-volatile
530     }
531 dl 1.4 }
532 dl 1.9 return oldValue;
533 tim 1.16 } finally {
534 dl 1.4 unlock();
535     }
536     }
537    
538     void clear() {
539 dl 1.45 if (count != 0) {
540     lock();
541     try {
542     HashEntry[] tab = table;
543     for (int i = 0; i < tab.length ; i++)
544     tab[i] = null;
545     ++modCount;
546     count = 0; // write-volatile
547     } finally {
548     unlock();
549     }
550 dl 1.4 }
551     }
552 tim 1.1 }
553    
554    
555 tim 1.11
556 dl 1.4 /* ---------------- Public operations -------------- */
557 tim 1.1
558     /**
559 dl 1.44 * Creates a new, empty map with the specified initial
560 dl 1.53 * capacity and the specified load factor.
561 tim 1.1 *
562 dl 1.19 * @param initialCapacity the initial capacity. The implementation
563     * performs internal sizing to accommodate this many elements.
564 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
565 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
566     * updating threads. The implementation performs internal sizing
567 dl 1.21 * to try to accommodate this many threads.
568 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
569 dl 1.19 * negative or the load factor or concurrencyLevel are
570 dl 1.4 * nonpositive.
571     */
572 tim 1.11 public ConcurrentHashMap(int initialCapacity,
573 dl 1.19 float loadFactor, int concurrencyLevel) {
574     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
575 dl 1.4 throw new IllegalArgumentException();
576    
577 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
578     concurrencyLevel = MAX_SEGMENTS;
579    
580 dl 1.4 // Find power-of-two sizes best matching arguments
581     int sshift = 0;
582     int ssize = 1;
583 dl 1.19 while (ssize < concurrencyLevel) {
584 dl 1.4 ++sshift;
585     ssize <<= 1;
586     }
587 dl 1.9 segmentShift = 32 - sshift;
588 dl 1.8 segmentMask = ssize - 1;
589 tim 1.11 this.segments = new Segment[ssize];
590 dl 1.4
591     if (initialCapacity > MAXIMUM_CAPACITY)
592     initialCapacity = MAXIMUM_CAPACITY;
593     int c = initialCapacity / ssize;
594 tim 1.11 if (c * ssize < initialCapacity)
595 dl 1.4 ++c;
596     int cap = 1;
597     while (cap < c)
598     cap <<= 1;
599    
600     for (int i = 0; i < this.segments.length; ++i)
601     this.segments[i] = new Segment<K,V>(cap, loadFactor);
602 tim 1.1 }
603    
604     /**
605 dl 1.55 * Creates a new, empty map with the specified initial capacity
606     * and load factor and with the default concurrencyLevel (16).
607     *
608     * @param initialCapacity The implementation performs internal
609     * sizing to accommodate this many elements.
610     * @param loadFactor the load factor threshold, used to control resizing.
611     * @throws IllegalArgumentException if the initial capacity of
612     * elements is negative or the load factor is nonpositive
613     */
614     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
615     this(initialCapacity, loadFactor, DEFAULT_SEGMENTS);
616     }
617    
618     /**
619 dl 1.44 * Creates a new, empty map with the specified initial
620 dl 1.55 * capacity, and with default load factor (0.75f) and
621     * concurrencyLevel (16).
622 tim 1.1 *
623 dl 1.53 * @param initialCapacity The implementation performs internal
624     * sizing to accommodate this many elements.
625 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
626     * elements is negative.
627 tim 1.1 */
628     public ConcurrentHashMap(int initialCapacity) {
629 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
630 tim 1.1 }
631    
632     /**
633 dl 1.55 * Creates a new, empty map with a default initial capacity (16),
634     * load factor (0.75f), and concurrencyLevel (16).
635 tim 1.1 */
636     public ConcurrentHashMap() {
637 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
638 tim 1.1 }
639    
640     /**
641 dl 1.44 * Creates a new map with the same mappings as the given map. The
642 dl 1.55 * map is created with a capacity of 1.5 times the number of
643     * mappings in the given map or 16 (whichever is greater), and a
644     * default load factor (0.75f) and concurrencyLevel(16).
645 dl 1.40 * @param t the map
646 tim 1.1 */
647 tim 1.39 public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
648 tim 1.1 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
649 dl 1.55 16),
650 dl 1.4 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
651     putAll(t);
652 tim 1.1 }
653    
654 dl 1.4 // inherit Map javadoc
655 tim 1.1 public boolean isEmpty() {
656 dl 1.35 final Segment[] segments = this.segments;
657 dl 1.21 /*
658 dl 1.45 * We keep track of per-segment modCounts to avoid ABA
659 dl 1.21 * problems in which an element in one segment was added and
660     * in another removed during traversal, in which case the
661     * table was never actually empty at any point. Note the
662     * similar use of modCounts in the size() and containsValue()
663     * methods, which are the only other methods also susceptible
664     * to ABA problems.
665     */
666     int[] mc = new int[segments.length];
667     int mcsum = 0;
668     for (int i = 0; i < segments.length; ++i) {
669 dl 1.4 if (segments[i].count != 0)
670 tim 1.1 return false;
671 dl 1.21 else
672     mcsum += mc[i] = segments[i].modCount;
673     }
674     // If mcsum happens to be zero, then we know we got a snapshot
675     // before any modifications at all were made. This is
676     // probably common enough to bother tracking.
677     if (mcsum != 0) {
678     for (int i = 0; i < segments.length; ++i) {
679     if (segments[i].count != 0 ||
680     mc[i] != segments[i].modCount)
681     return false;
682     }
683     }
684 tim 1.1 return true;
685     }
686    
687 dl 1.21 // inherit Map javadoc
688     public int size() {
689 dl 1.35 final Segment[] segments = this.segments;
690 dl 1.45 long sum = 0;
691     long check = 0;
692 dl 1.21 int[] mc = new int[segments.length];
693 dl 1.46 // Try a few times to get accurate count. On failure due to
694 dl 1.45 // continuous async changes in table, resort to locking.
695 dl 1.46 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
696 dl 1.45 check = 0;
697     sum = 0;
698 dl 1.21 int mcsum = 0;
699     for (int i = 0; i < segments.length; ++i) {
700     sum += segments[i].count;
701     mcsum += mc[i] = segments[i].modCount;
702     }
703     if (mcsum != 0) {
704     for (int i = 0; i < segments.length; ++i) {
705     check += segments[i].count;
706     if (mc[i] != segments[i].modCount) {
707     check = -1; // force retry
708     break;
709     }
710     }
711     }
712 dl 1.45 if (check == sum)
713     break;
714     }
715     if (check != sum) { // Resort to locking all segments
716     sum = 0;
717     for (int i = 0; i < segments.length; ++i)
718     segments[i].lock();
719     for (int i = 0; i < segments.length; ++i)
720     sum += segments[i].count;
721     for (int i = 0; i < segments.length; ++i)
722     segments[i].unlock();
723 dl 1.21 }
724 dl 1.45 if (sum > Integer.MAX_VALUE)
725     return Integer.MAX_VALUE;
726     else
727     return (int)sum;
728 dl 1.21 }
729    
730    
731 tim 1.1 /**
732     * Returns the value to which the specified key is mapped in this table.
733     *
734     * @param key a key in the table.
735     * @return the value to which the key is mapped in this table;
736 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
737 tim 1.1 * this table.
738 dl 1.8 * @throws NullPointerException if the key is
739 dl 1.19 * <tt>null</tt>.
740 tim 1.1 */
741 tim 1.11 public V get(Object key) {
742 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
743 dl 1.29 return segmentFor(hash).get(key, hash);
744 tim 1.1 }
745    
746     /**
747     * Tests if the specified object is a key in this table.
748 tim 1.11 *
749 tim 1.1 * @param key possible key.
750 dl 1.19 * @return <tt>true</tt> if and only if the specified object
751 tim 1.11 * is a key in this table, as determined by the
752 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
753 dl 1.8 * @throws NullPointerException if the key is
754 dl 1.19 * <tt>null</tt>.
755 tim 1.1 */
756     public boolean containsKey(Object key) {
757 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
758 dl 1.9 return segmentFor(hash).containsKey(key, hash);
759 tim 1.1 }
760    
761     /**
762     * Returns <tt>true</tt> if this map maps one or more keys to the
763     * specified value. Note: This method requires a full internal
764     * traversal of the hash table, and so is much slower than
765     * method <tt>containsKey</tt>.
766     *
767     * @param value value whose presence in this map is to be tested.
768     * @return <tt>true</tt> if this map maps one or more keys to the
769 tim 1.11 * specified value.
770 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
771 tim 1.1 */
772     public boolean containsValue(Object value) {
773 tim 1.11 if (value == null)
774 dl 1.4 throw new NullPointerException();
775 dl 1.45
776     // See explanation of modCount use above
777 tim 1.1
778 dl 1.35 final Segment[] segments = this.segments;
779 dl 1.21 int[] mc = new int[segments.length];
780 dl 1.45
781 dl 1.46 // Try a few times without locking
782     for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
783 dl 1.21 int sum = 0;
784     int mcsum = 0;
785     for (int i = 0; i < segments.length; ++i) {
786     int c = segments[i].count;
787     mcsum += mc[i] = segments[i].modCount;
788     if (segments[i].containsValue(value))
789     return true;
790     }
791     boolean cleanSweep = true;
792     if (mcsum != 0) {
793     for (int i = 0; i < segments.length; ++i) {
794     int c = segments[i].count;
795     if (mc[i] != segments[i].modCount) {
796     cleanSweep = false;
797     break;
798     }
799     }
800     }
801     if (cleanSweep)
802     return false;
803 tim 1.1 }
804 dl 1.45 // Resort to locking all segments
805     for (int i = 0; i < segments.length; ++i)
806     segments[i].lock();
807     boolean found = false;
808     try {
809     for (int i = 0; i < segments.length; ++i) {
810     if (segments[i].containsValue(value)) {
811     found = true;
812     break;
813     }
814     }
815     } finally {
816     for (int i = 0; i < segments.length; ++i)
817     segments[i].unlock();
818     }
819     return found;
820 tim 1.1 }
821 dl 1.19
822 tim 1.1 /**
823 dl 1.18 * Legacy method testing if some key maps into the specified value
824 dl 1.23 * in this table. This method is identical in functionality to
825     * {@link #containsValue}, and exists solely to ensure
826 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
827 dl 1.18 * which supported this method prior to introduction of the
828 dl 1.23 * Java Collections framework.
829 dl 1.17
830 tim 1.1 * @param value a value to search for.
831 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
832     * <tt>value</tt> argument in this table as
833 tim 1.1 * determined by the <tt>equals</tt> method;
834 dl 1.19 * <tt>false</tt> otherwise.
835     * @throws NullPointerException if the value is <tt>null</tt>.
836 tim 1.1 */
837 dl 1.4 public boolean contains(Object value) {
838 tim 1.1 return containsValue(value);
839     }
840    
841     /**
842 dl 1.19 * Maps the specified <tt>key</tt> to the specified
843     * <tt>value</tt> in this table. Neither the key nor the
844 dl 1.44 * value can be <tt>null</tt>.
845 dl 1.4 *
846 dl 1.44 * <p> The value can be retrieved by calling the <tt>get</tt> method
847 tim 1.11 * with a key that is equal to the original key.
848 dl 1.4 *
849     * @param key the table key.
850     * @param value the value.
851     * @return the previous value of the specified key in this table,
852 dl 1.19 * or <tt>null</tt> if it did not have one.
853 dl 1.8 * @throws NullPointerException if the key or value is
854 dl 1.19 * <tt>null</tt>.
855 dl 1.4 */
856 tim 1.11 public V put(K key, V value) {
857     if (value == null)
858 dl 1.4 throw new NullPointerException();
859 tim 1.11 int hash = hash(key);
860 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
861 dl 1.4 }
862    
863     /**
864     * If the specified key is not already associated
865     * with a value, associate it with the given value.
866     * This is equivalent to
867     * <pre>
868 dl 1.17 * if (!map.containsKey(key))
869     * return map.put(key, value);
870     * else
871     * return map.get(key);
872 dl 1.4 * </pre>
873     * Except that the action is performed atomically.
874     * @param key key with which the specified value is to be associated.
875     * @param value value to be associated with the specified key.
876     * @return previous value associated with specified key, or <tt>null</tt>
877 dl 1.51 * if there was no mapping for key.
878 dl 1.17 * @throws NullPointerException if the specified key or value is
879 dl 1.4 * <tt>null</tt>.
880 dl 1.51 */
881 tim 1.11 public V putIfAbsent(K key, V value) {
882     if (value == null)
883 dl 1.4 throw new NullPointerException();
884 tim 1.11 int hash = hash(key);
885 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
886 dl 1.4 }
887    
888    
889     /**
890 tim 1.1 * Copies all of the mappings from the specified map to this one.
891     *
892     * These mappings replace any mappings that this map had for any of the
893     * keys currently in the specified Map.
894     *
895     * @param t Mappings to be stored in this map.
896     */
897 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
898 dl 1.47 for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
899 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
900 dl 1.4 put(e.getKey(), e.getValue());
901 tim 1.1 }
902 dl 1.4 }
903    
904     /**
905 tim 1.11 * Removes the key (and its corresponding value) from this
906 dl 1.4 * table. This method does nothing if the key is not in the table.
907     *
908     * @param key the key that needs to be removed.
909     * @return the value to which the key had been mapped in this table,
910 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
911 dl 1.8 * @throws NullPointerException if the key is
912 dl 1.19 * <tt>null</tt>.
913 dl 1.4 */
914     public V remove(Object key) {
915     int hash = hash(key);
916 dl 1.9 return segmentFor(hash).remove(key, hash, null);
917 dl 1.4 }
918 tim 1.1
919 dl 1.4 /**
920 dl 1.17 * Remove entry for key only if currently mapped to given value.
921     * Acts as
922     * <pre>
923     * if (map.get(key).equals(value)) {
924     * map.remove(key);
925     * return true;
926     * } else return false;
927     * </pre>
928     * except that the action is performed atomically.
929     * @param key key with which the specified value is associated.
930     * @param value value associated with the specified key.
931     * @return true if the value was removed
932     * @throws NullPointerException if the specified key is
933     * <tt>null</tt>.
934 dl 1.4 */
935 dl 1.13 public boolean remove(Object key, Object value) {
936 dl 1.4 int hash = hash(key);
937 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
938 tim 1.1 }
939 dl 1.31
940 dl 1.32
941 dl 1.31 /**
942     * Replace entry for key only if currently mapped to given value.
943     * Acts as
944     * <pre>
945     * if (map.get(key).equals(oldValue)) {
946     * map.put(key, newValue);
947     * return true;
948     * } else return false;
949     * </pre>
950     * except that the action is performed atomically.
951     * @param key key with which the specified value is associated.
952     * @param oldValue value expected to be associated with the specified key.
953     * @param newValue value to be associated with the specified key.
954     * @return true if the value was replaced
955     * @throws NullPointerException if the specified key or values are
956     * <tt>null</tt>.
957     */
958     public boolean replace(K key, V oldValue, V newValue) {
959     if (oldValue == null || newValue == null)
960     throw new NullPointerException();
961     int hash = hash(key);
962     return segmentFor(hash).replace(key, hash, oldValue, newValue);
963 dl 1.32 }
964    
965     /**
966 dl 1.33 * Replace entry for key only if currently mapped to some value.
967 dl 1.32 * Acts as
968     * <pre>
969     * if ((map.containsKey(key)) {
970 dl 1.33 * return map.put(key, value);
971     * } else return null;
972 dl 1.32 * </pre>
973     * except that the action is performed atomically.
974     * @param key key with which the specified value is associated.
975     * @param value value to be associated with the specified key.
976 dl 1.33 * @return previous value associated with specified key, or <tt>null</tt>
977     * if there was no mapping for key.
978 dl 1.32 * @throws NullPointerException if the specified key or value is
979     * <tt>null</tt>.
980     */
981 dl 1.33 public V replace(K key, V value) {
982 dl 1.32 if (value == null)
983     throw new NullPointerException();
984     int hash = hash(key);
985 dl 1.33 return segmentFor(hash).replace(key, hash, value);
986 dl 1.31 }
987    
988 tim 1.1
989     /**
990     * Removes all mappings from this map.
991     */
992     public void clear() {
993 tim 1.11 for (int i = 0; i < segments.length; ++i)
994 dl 1.4 segments[i].clear();
995 tim 1.1 }
996    
997     /**
998     * Returns a set view of the keys contained in this map. The set is
999     * backed by the map, so changes to the map are reflected in the set, and
1000     * vice-versa. The set supports element removal, which removes the
1001     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1002     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1003     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
1004     * <tt>addAll</tt> operations.
1005 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1006 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1007     * and guarantees to traverse elements as they existed upon
1008     * construction of the iterator, and may (but is not guaranteed to)
1009     * reflect any modifications subsequent to construction.
1010 tim 1.1 *
1011     * @return a set view of the keys contained in this map.
1012     */
1013     public Set<K> keySet() {
1014     Set<K> ks = keySet;
1015 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
1016 tim 1.1 }
1017    
1018    
1019     /**
1020     * Returns a collection view of the values contained in this map. The
1021     * collection is backed by the map, so changes to the map are reflected in
1022     * the collection, and vice-versa. The collection supports element
1023     * removal, which removes the corresponding mapping from this map, via the
1024     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1025     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1026     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1027 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1028 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1029     * and guarantees to traverse elements as they existed upon
1030     * construction of the iterator, and may (but is not guaranteed to)
1031     * reflect any modifications subsequent to construction.
1032 tim 1.1 *
1033     * @return a collection view of the values contained in this map.
1034     */
1035     public Collection<V> values() {
1036     Collection<V> vs = values;
1037 dl 1.8 return (vs != null) ? vs : (values = new Values());
1038 tim 1.1 }
1039    
1040    
1041     /**
1042     * Returns a collection view of the mappings contained in this map. Each
1043     * element in the returned collection is a <tt>Map.Entry</tt>. The
1044     * collection is backed by the map, so changes to the map are reflected in
1045     * the collection, and vice-versa. The collection supports element
1046     * removal, which removes the corresponding mapping from the map, via the
1047     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1048     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1049     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1050 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1051 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1052     * and guarantees to traverse elements as they existed upon
1053     * construction of the iterator, and may (but is not guaranteed to)
1054     * reflect any modifications subsequent to construction.
1055 tim 1.1 *
1056     * @return a collection view of the mappings contained in this map.
1057     */
1058     public Set<Map.Entry<K,V>> entrySet() {
1059     Set<Map.Entry<K,V>> es = entrySet;
1060 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1061 tim 1.1 }
1062    
1063    
1064     /**
1065     * Returns an enumeration of the keys in this table.
1066     *
1067     * @return an enumeration of the keys in this table.
1068 dl 1.23 * @see #keySet
1069 tim 1.1 */
1070 dl 1.4 public Enumeration<K> keys() {
1071 tim 1.1 return new KeyIterator();
1072     }
1073    
1074     /**
1075     * Returns an enumeration of the values in this table.
1076     *
1077     * @return an enumeration of the values in this table.
1078 dl 1.23 * @see #values
1079 tim 1.1 */
1080 dl 1.4 public Enumeration<V> elements() {
1081 tim 1.1 return new ValueIterator();
1082     }
1083    
1084 dl 1.4 /* ---------------- Iterator Support -------------- */
1085 tim 1.11
1086 dl 1.41 abstract class HashIterator {
1087     int nextSegmentIndex;
1088     int nextTableIndex;
1089     HashEntry[] currentTable;
1090     HashEntry<K, V> nextEntry;
1091 dl 1.30 HashEntry<K, V> lastReturned;
1092 tim 1.1
1093 dl 1.41 HashIterator() {
1094 dl 1.8 nextSegmentIndex = segments.length - 1;
1095 dl 1.4 nextTableIndex = -1;
1096     advance();
1097 tim 1.1 }
1098    
1099     public boolean hasMoreElements() { return hasNext(); }
1100    
1101 dl 1.41 final void advance() {
1102 dl 1.4 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1103     return;
1104 tim 1.11
1105 dl 1.4 while (nextTableIndex >= 0) {
1106 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1107 dl 1.4 return;
1108     }
1109 tim 1.11
1110 dl 1.4 while (nextSegmentIndex >= 0) {
1111 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1112 dl 1.4 if (seg.count != 0) {
1113     currentTable = seg.table;
1114 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1115 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1116 dl 1.8 nextTableIndex = j - 1;
1117 dl 1.4 return;
1118     }
1119 tim 1.1 }
1120     }
1121     }
1122     }
1123    
1124 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1125 tim 1.1
1126 dl 1.4 HashEntry<K,V> nextEntry() {
1127     if (nextEntry == null)
1128 tim 1.1 throw new NoSuchElementException();
1129 dl 1.4 lastReturned = nextEntry;
1130     advance();
1131     return lastReturned;
1132 tim 1.1 }
1133    
1134     public void remove() {
1135     if (lastReturned == null)
1136     throw new IllegalStateException();
1137     ConcurrentHashMap.this.remove(lastReturned.key);
1138     lastReturned = null;
1139     }
1140 dl 1.4 }
1141    
1142 dl 1.41 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1143 dl 1.4 public K next() { return super.nextEntry().key; }
1144     public K nextElement() { return super.nextEntry().key; }
1145     }
1146    
1147 dl 1.41 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1148 dl 1.4 public V next() { return super.nextEntry().value; }
1149     public V nextElement() { return super.nextEntry().value; }
1150     }
1151 tim 1.1
1152 dl 1.30
1153    
1154     /**
1155 dl 1.41 * Entry iterator. Exported Entry objects must write-through
1156     * changes in setValue, even if the nodes have been cloned. So we
1157     * cannot return internal HashEntry objects. Instead, the iterator
1158     * itself acts as a forwarding pseudo-entry.
1159 dl 1.30 */
1160 dl 1.41 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1161 dl 1.30 public Map.Entry<K,V> next() {
1162     nextEntry();
1163     return this;
1164     }
1165    
1166     public K getKey() {
1167     if (lastReturned == null)
1168     throw new IllegalStateException("Entry was removed");
1169     return lastReturned.key;
1170     }
1171    
1172     public V getValue() {
1173     if (lastReturned == null)
1174     throw new IllegalStateException("Entry was removed");
1175     return ConcurrentHashMap.this.get(lastReturned.key);
1176     }
1177    
1178     public V setValue(V value) {
1179     if (lastReturned == null)
1180     throw new IllegalStateException("Entry was removed");
1181     return ConcurrentHashMap.this.put(lastReturned.key, value);
1182     }
1183    
1184     public boolean equals(Object o) {
1185 dl 1.43 // If not acting as entry, just use default.
1186     if (lastReturned == null)
1187     return super.equals(o);
1188 dl 1.30 if (!(o instanceof Map.Entry))
1189     return false;
1190 tim 1.39 Map.Entry e = (Map.Entry)o;
1191     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1192     }
1193 dl 1.30
1194     public int hashCode() {
1195 dl 1.43 // If not acting as entry, just use default.
1196     if (lastReturned == null)
1197     return super.hashCode();
1198    
1199 dl 1.30 Object k = getKey();
1200     Object v = getValue();
1201     return ((k == null) ? 0 : k.hashCode()) ^
1202     ((v == null) ? 0 : v.hashCode());
1203     }
1204    
1205     public String toString() {
1206 dl 1.43 // If not acting as entry, just use default.
1207 dl 1.34 if (lastReturned == null)
1208     return super.toString();
1209     else
1210     return getKey() + "=" + getValue();
1211 dl 1.30 }
1212    
1213 dl 1.41 boolean eq(Object o1, Object o2) {
1214 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1215     }
1216    
1217 tim 1.1 }
1218    
1219 dl 1.41 final class KeySet extends AbstractSet<K> {
1220 dl 1.4 public Iterator<K> iterator() {
1221     return new KeyIterator();
1222     }
1223     public int size() {
1224     return ConcurrentHashMap.this.size();
1225     }
1226     public boolean contains(Object o) {
1227     return ConcurrentHashMap.this.containsKey(o);
1228     }
1229     public boolean remove(Object o) {
1230     return ConcurrentHashMap.this.remove(o) != null;
1231     }
1232     public void clear() {
1233     ConcurrentHashMap.this.clear();
1234     }
1235 dl 1.49 public Object[] toArray() {
1236     Collection<K> c = new ArrayList<K>();
1237     for (Iterator<K> i = iterator(); i.hasNext(); )
1238     c.add(i.next());
1239     return c.toArray();
1240     }
1241     public <T> T[] toArray(T[] a) {
1242     Collection<K> c = new ArrayList<K>();
1243     for (Iterator<K> i = iterator(); i.hasNext(); )
1244     c.add(i.next());
1245     return c.toArray(a);
1246     }
1247 tim 1.1 }
1248    
1249 dl 1.41 final class Values extends AbstractCollection<V> {
1250 dl 1.4 public Iterator<V> iterator() {
1251     return new ValueIterator();
1252     }
1253     public int size() {
1254     return ConcurrentHashMap.this.size();
1255     }
1256     public boolean contains(Object o) {
1257     return ConcurrentHashMap.this.containsValue(o);
1258     }
1259     public void clear() {
1260     ConcurrentHashMap.this.clear();
1261     }
1262 dl 1.49 public Object[] toArray() {
1263     Collection<V> c = new ArrayList<V>();
1264     for (Iterator<V> i = iterator(); i.hasNext(); )
1265     c.add(i.next());
1266     return c.toArray();
1267     }
1268     public <T> T[] toArray(T[] a) {
1269     Collection<V> c = new ArrayList<V>();
1270     for (Iterator<V> i = iterator(); i.hasNext(); )
1271     c.add(i.next());
1272     return c.toArray(a);
1273     }
1274 tim 1.1 }
1275    
1276 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1277 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1278     return new EntryIterator();
1279     }
1280     public boolean contains(Object o) {
1281     if (!(o instanceof Map.Entry))
1282     return false;
1283     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1284     V v = ConcurrentHashMap.this.get(e.getKey());
1285     return v != null && v.equals(e.getValue());
1286     }
1287     public boolean remove(Object o) {
1288     if (!(o instanceof Map.Entry))
1289     return false;
1290     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1291 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1292 dl 1.4 }
1293     public int size() {
1294     return ConcurrentHashMap.this.size();
1295     }
1296     public void clear() {
1297     ConcurrentHashMap.this.clear();
1298 dl 1.30 }
1299     public Object[] toArray() {
1300     // Since we don't ordinarily have distinct Entry objects, we
1301     // must pack elements using exportable SimpleEntry
1302     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1303     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1304 dl 1.54 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1305 dl 1.30 return c.toArray();
1306     }
1307     public <T> T[] toArray(T[] a) {
1308     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1309     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1310 dl 1.54 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1311 dl 1.30 return c.toArray(a);
1312     }
1313    
1314     }
1315    
1316 dl 1.4 /* ---------------- Serialization Support -------------- */
1317    
1318 tim 1.1 /**
1319     * Save the state of the <tt>ConcurrentHashMap</tt>
1320     * instance to a stream (i.e.,
1321     * serialize it).
1322 dl 1.8 * @param s the stream
1323 tim 1.1 * @serialData
1324     * the key (Object) and value (Object)
1325     * for each key-value mapping, followed by a null pair.
1326     * The key-value mappings are emitted in no particular order.
1327     */
1328     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1329     s.defaultWriteObject();
1330    
1331     for (int k = 0; k < segments.length; ++k) {
1332 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1333 dl 1.2 seg.lock();
1334     try {
1335 tim 1.11 HashEntry[] tab = seg.table;
1336 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1337 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1338 dl 1.4 s.writeObject(e.key);
1339     s.writeObject(e.value);
1340     }
1341     }
1342 tim 1.16 } finally {
1343 dl 1.2 seg.unlock();
1344     }
1345 tim 1.1 }
1346     s.writeObject(null);
1347     s.writeObject(null);
1348     }
1349    
1350     /**
1351     * Reconstitute the <tt>ConcurrentHashMap</tt>
1352     * instance from a stream (i.e.,
1353     * deserialize it).
1354 dl 1.8 * @param s the stream
1355 tim 1.1 */
1356     private void readObject(java.io.ObjectInputStream s)
1357     throws IOException, ClassNotFoundException {
1358     s.defaultReadObject();
1359    
1360 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1361     for (int i = 0; i < segments.length; ++i) {
1362 tim 1.11 segments[i].setTable(new HashEntry[1]);
1363 dl 1.4 }
1364 tim 1.1
1365     // Read the keys and values, and put the mappings in the table
1366 dl 1.9 for (;;) {
1367 tim 1.1 K key = (K) s.readObject();
1368     V value = (V) s.readObject();
1369     if (key == null)
1370     break;
1371     put(key, value);
1372     }
1373     }
1374     }
1375 tim 1.11