ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.57
Committed: Mon Mar 7 23:49:21 2005 UTC (19 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.56: +15 -15 lines
Log Message:
Javadoc improvements

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.57 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
43 dl 1.21 * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52 dl 1.45 * appropriate when it is known that only one thread will modify and
53     * all others will only read. Also, resizing this or any other kind of
54     * hash table is a relatively slow operation, so, when possible, it is
55     * a good idea to provide estimates of expected table sizes in
56     * constructors.
57 tim 1.1 *
58 dl 1.45 * <p>This class and its views and iterators implement all of the
59     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
60     * interfaces.
61 dl 1.23 *
62 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
63     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
64     * used as a key or value.
65 tim 1.1 *
66 dl 1.42 * <p>This class is a member of the
67     * <a href="{@docRoot}/../guide/collections/index.html">
68     * Java Collections Framework</a>.
69     *
70 dl 1.8 * @since 1.5
71     * @author Doug Lea
72 dl 1.27 * @param <K> the type of keys maintained by this map
73     * @param <V> the type of mapped values
74 dl 1.8 */
75 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
76 dl 1.48 implements ConcurrentMap<K, V>, Serializable {
77 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
78 tim 1.1
79     /*
80 dl 1.4 * The basic strategy is to subdivide the table among Segments,
81     * each of which itself is a concurrently readable hash table.
82     */
83 tim 1.1
84 dl 1.4 /* ---------------- Constants -------------- */
85 tim 1.11
86 dl 1.4 /**
87 dl 1.56 * The default initial capacity for this table,
88     * used when not otherwise specified in a constructor.
89 dl 1.4 */
90 dl 1.57 static final int DEFAULT_INITIAL_CAPACITY = 16;
91 dl 1.56
92     /**
93     * The default load factor for this table, used when not
94     * otherwise specified in a constructor.
95     */
96 dl 1.57 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 dl 1.56
98     /**
99     * The default concurrency level for this table, used when not
100     * otherwise specified in a constructor.
101     **/
102 dl 1.57 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
103 tim 1.1
104     /**
105 dl 1.4 * The maximum capacity, used if a higher value is implicitly
106     * specified by either of the constructors with arguments. MUST
107 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
108     * using ints.
109 dl 1.4 */
110 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
111 tim 1.11
112 tim 1.1 /**
113 dl 1.37 * The maximum number of segments to allow; used to bound
114     * constructor arguments.
115 dl 1.21 */
116 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
117 dl 1.21
118 dl 1.46 /**
119     * Number of unsynchronized retries in size and containsValue
120     * methods before resorting to locking. This is used to avoid
121     * unbounded retries if tables undergo continuous modification
122     * which would make it impossible to obtain an accurate result.
123     */
124     static final int RETRIES_BEFORE_LOCK = 2;
125    
126 dl 1.4 /* ---------------- Fields -------------- */
127 tim 1.1
128     /**
129 dl 1.9 * Mask value for indexing into segments. The upper bits of a
130     * key's hash code are used to choose the segment.
131 tim 1.1 **/
132 dl 1.41 final int segmentMask;
133 tim 1.1
134     /**
135 dl 1.4 * Shift value for indexing within segments.
136 tim 1.1 **/
137 dl 1.41 final int segmentShift;
138 tim 1.1
139     /**
140 dl 1.4 * The segments, each of which is a specialized hash table
141 tim 1.1 */
142 dl 1.41 final Segment[] segments;
143 dl 1.4
144 dl 1.41 transient Set<K> keySet;
145     transient Set<Map.Entry<K,V>> entrySet;
146     transient Collection<V> values;
147 dl 1.4
148     /* ---------------- Small Utilities -------------- */
149 tim 1.1
150     /**
151 dl 1.44 * Returns a hash code for non-null Object x.
152 dl 1.37 * Uses the same hash code spreader as most other java.util hash tables.
153 dl 1.8 * @param x the object serving as a key
154     * @return the hash code
155 tim 1.1 */
156 dl 1.41 static int hash(Object x) {
157 dl 1.4 int h = x.hashCode();
158     h += ~(h << 9);
159     h ^= (h >>> 14);
160     h += (h << 4);
161     h ^= (h >>> 10);
162     return h;
163     }
164    
165 tim 1.1 /**
166 dl 1.44 * Returns the segment that should be used for key with given hash
167     * @param hash the hash code for the key
168     * @return the segment
169 tim 1.1 */
170 dl 1.41 final Segment<K,V> segmentFor(int hash) {
171 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
172 dl 1.4 }
173 tim 1.1
174 dl 1.4 /* ---------------- Inner Classes -------------- */
175 tim 1.1
176     /**
177 dl 1.46 * ConcurrentHashMap list entry. Note that this is never exported
178     * out as a user-visible Map.Entry.
179     *
180     * Because the value field is volatile, not final, it is legal wrt
181     * the Java Memory Model for an unsynchronized reader to see null
182     * instead of initial value when read via a data race. Although a
183     * reordering leading to this is not likely to ever actually
184     * occur, the Segment.readValueUnderLock method is used as a
185     * backup in case a null (pre-initialized) value is ever seen in
186     * an unsynchronized access method.
187     */
188     static final class HashEntry<K,V> {
189     final K key;
190     final int hash;
191     volatile V value;
192     final HashEntry<K,V> next;
193    
194     HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
195     this.key = key;
196     this.hash = hash;
197     this.next = next;
198     this.value = value;
199     }
200     }
201    
202     /**
203 dl 1.6 * Segments are specialized versions of hash tables. This
204 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
205     * simplify some locking and avoid separate construction.
206 tim 1.1 **/
207 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
208 dl 1.4 /*
209     * Segments maintain a table of entry lists that are ALWAYS
210     * kept in a consistent state, so can be read without locking.
211     * Next fields of nodes are immutable (final). All list
212     * additions are performed at the front of each bin. This
213     * makes it easy to check changes, and also fast to traverse.
214     * When nodes would otherwise be changed, new nodes are
215     * created to replace them. This works well for hash tables
216     * since the bin lists tend to be short. (The average length
217     * is less than two for the default load factor threshold.)
218     *
219     * Read operations can thus proceed without locking, but rely
220 dl 1.45 * on selected uses of volatiles to ensure that completed
221     * write operations performed by other threads are
222     * noticed. For most purposes, the "count" field, tracking the
223     * number of elements, serves as that volatile variable
224     * ensuring visibility. This is convenient because this field
225     * needs to be read in many read operations anyway:
226 dl 1.4 *
227 dl 1.45 * - All (unsynchronized) read operations must first read the
228 dl 1.4 * "count" field, and should not look at table entries if
229     * it is 0.
230 tim 1.11 *
231 dl 1.45 * - All (synchronized) write operations should write to
232     * the "count" field after structurally changing any bin.
233     * The operations must not take any action that could even
234     * momentarily cause a concurrent read operation to see
235     * inconsistent data. This is made easier by the nature of
236     * the read operations in Map. For example, no operation
237 dl 1.4 * can reveal that the table has grown but the threshold
238     * has not yet been updated, so there are no atomicity
239     * requirements for this with respect to reads.
240     *
241 dl 1.45 * As a guide, all critical volatile reads and writes to the
242     * count field are marked in code comments.
243 dl 1.4 */
244 tim 1.11
245 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
246    
247 dl 1.4 /**
248     * The number of elements in this segment's region.
249     **/
250     transient volatile int count;
251    
252     /**
253 dl 1.45 * Number of updates that alter the size of the table. This is
254     * used during bulk-read methods to make sure they see a
255     * consistent snapshot: If modCounts change during a traversal
256 dl 1.46 * of segments computing size or checking containsValue, then
257 dl 1.45 * we might have an inconsistent view of state so (usually)
258     * must retry.
259 dl 1.21 */
260     transient int modCount;
261    
262     /**
263 dl 1.4 * The table is rehashed when its size exceeds this threshold.
264     * (The value of this field is always (int)(capacity *
265     * loadFactor).)
266     */
267 dl 1.41 transient int threshold;
268 dl 1.4
269     /**
270 dl 1.45 * The per-segment table. Declared as a raw type, casted
271     * to HashEntry<K,V> on each use.
272 dl 1.4 */
273 dl 1.45 transient volatile HashEntry[] table;
274 dl 1.4
275     /**
276     * The load factor for the hash table. Even though this value
277     * is same for all segments, it is replicated to avoid needing
278     * links to outer object.
279     * @serial
280     */
281 dl 1.41 final float loadFactor;
282 tim 1.1
283 dl 1.4 Segment(int initialCapacity, float lf) {
284     loadFactor = lf;
285 tim 1.11 setTable(new HashEntry[initialCapacity]);
286 dl 1.4 }
287 tim 1.1
288 dl 1.4 /**
289 tim 1.11 * Set table to new HashEntry array.
290 dl 1.4 * Call only while holding lock or in constructor.
291     **/
292 dl 1.41 void setTable(HashEntry[] newTable) {
293 dl 1.45 threshold = (int)(newTable.length * loadFactor);
294 dl 1.4 table = newTable;
295 dl 1.45 }
296    
297     /**
298     * Return properly casted first entry of bin for given hash
299     */
300     HashEntry<K,V> getFirst(int hash) {
301     HashEntry[] tab = table;
302     return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
303     }
304    
305     /**
306     * Read value field of an entry under lock. Called if value
307     * field ever appears to be null. This is possible only if a
308     * compiler happens to reorder a HashEntry initialization with
309     * its table assignment, which is legal under memory model
310     * but is not known to ever occur.
311     */
312     V readValueUnderLock(HashEntry<K,V> e) {
313     lock();
314     try {
315     return e.value;
316     } finally {
317     unlock();
318     }
319 tim 1.11 }
320 dl 1.4
321     /* Specialized implementations of map methods */
322 tim 1.11
323 dl 1.29 V get(Object key, int hash) {
324 dl 1.4 if (count != 0) { // read-volatile
325 dl 1.45 HashEntry<K,V> e = getFirst(hash);
326 dl 1.4 while (e != null) {
327 dl 1.45 if (e.hash == hash && key.equals(e.key)) {
328     V v = e.value;
329     if (v != null)
330     return v;
331     return readValueUnderLock(e); // recheck
332     }
333 dl 1.4 e = e.next;
334     }
335     }
336     return null;
337     }
338    
339     boolean containsKey(Object key, int hash) {
340     if (count != 0) { // read-volatile
341 dl 1.45 HashEntry<K,V> e = getFirst(hash);
342 dl 1.4 while (e != null) {
343 tim 1.11 if (e.hash == hash && key.equals(e.key))
344 dl 1.4 return true;
345     e = e.next;
346     }
347     }
348     return false;
349     }
350 tim 1.11
351 dl 1.4 boolean containsValue(Object value) {
352     if (count != 0) { // read-volatile
353 tim 1.11 HashEntry[] tab = table;
354 dl 1.4 int len = tab.length;
355 dl 1.45 for (int i = 0 ; i < len; i++) {
356     for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
357     e != null ;
358     e = e.next) {
359     V v = e.value;
360     if (v == null) // recheck
361     v = readValueUnderLock(e);
362     if (value.equals(v))
363 dl 1.4 return true;
364 dl 1.45 }
365     }
366 dl 1.4 }
367     return false;
368     }
369    
370 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
371     lock();
372     try {
373 dl 1.45 HashEntry<K,V> e = getFirst(hash);
374     while (e != null && (e.hash != hash || !key.equals(e.key)))
375 dl 1.31 e = e.next;
376 dl 1.45
377     boolean replaced = false;
378     if (e != null && oldValue.equals(e.value)) {
379     replaced = true;
380     e.value = newValue;
381 dl 1.31 }
382 dl 1.45 return replaced;
383 dl 1.33 } finally {
384     unlock();
385     }
386     }
387    
388     V replace(K key, int hash, V newValue) {
389     lock();
390     try {
391 dl 1.45 HashEntry<K,V> e = getFirst(hash);
392     while (e != null && (e.hash != hash || !key.equals(e.key)))
393 dl 1.33 e = e.next;
394 dl 1.45
395     V oldValue = null;
396     if (e != null) {
397     oldValue = e.value;
398     e.value = newValue;
399 dl 1.32 }
400 dl 1.45 return oldValue;
401 dl 1.31 } finally {
402     unlock();
403     }
404     }
405    
406 dl 1.32
407 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
408 dl 1.4 lock();
409     try {
410 dl 1.9 int c = count;
411 dl 1.45 if (c++ > threshold) // ensure capacity
412     rehash();
413 tim 1.11 HashEntry[] tab = table;
414 dl 1.9 int index = hash & (tab.length - 1);
415 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
416 dl 1.45 HashEntry<K,V> e = first;
417     while (e != null && (e.hash != hash || !key.equals(e.key)))
418     e = e.next;
419 tim 1.11
420 dl 1.45 V oldValue;
421     if (e != null) {
422     oldValue = e.value;
423     if (!onlyIfAbsent)
424     e.value = value;
425     }
426     else {
427     oldValue = null;
428     ++modCount;
429     tab[index] = new HashEntry<K,V>(key, hash, first, value);
430     count = c; // write-volatile
431 dl 1.4 }
432 dl 1.45 return oldValue;
433 tim 1.16 } finally {
434 dl 1.4 unlock();
435     }
436     }
437    
438 dl 1.45 void rehash() {
439     HashEntry[] oldTable = table;
440 dl 1.4 int oldCapacity = oldTable.length;
441     if (oldCapacity >= MAXIMUM_CAPACITY)
442 dl 1.45 return;
443 dl 1.4
444     /*
445     * Reclassify nodes in each list to new Map. Because we are
446     * using power-of-two expansion, the elements from each bin
447     * must either stay at same index, or move with a power of two
448     * offset. We eliminate unnecessary node creation by catching
449     * cases where old nodes can be reused because their next
450     * fields won't change. Statistically, at the default
451 dl 1.29 * threshold, only about one-sixth of them need cloning when
452 dl 1.4 * a table doubles. The nodes they replace will be garbage
453     * collectable as soon as they are no longer referenced by any
454     * reader thread that may be in the midst of traversing table
455     * right now.
456     */
457 tim 1.11
458     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
459 dl 1.45 threshold = (int)(newTable.length * loadFactor);
460 dl 1.4 int sizeMask = newTable.length - 1;
461     for (int i = 0; i < oldCapacity ; i++) {
462     // We need to guarantee that any existing reads of old Map can
463 tim 1.11 // proceed. So we cannot yet null out each bin.
464 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
465 tim 1.11
466 dl 1.4 if (e != null) {
467     HashEntry<K,V> next = e.next;
468     int idx = e.hash & sizeMask;
469 tim 1.11
470 dl 1.4 // Single node on list
471 tim 1.11 if (next == null)
472 dl 1.4 newTable[idx] = e;
473 tim 1.11
474     else {
475 dl 1.4 // Reuse trailing consecutive sequence at same slot
476     HashEntry<K,V> lastRun = e;
477     int lastIdx = idx;
478 tim 1.11 for (HashEntry<K,V> last = next;
479     last != null;
480 dl 1.4 last = last.next) {
481     int k = last.hash & sizeMask;
482     if (k != lastIdx) {
483     lastIdx = k;
484     lastRun = last;
485     }
486     }
487     newTable[lastIdx] = lastRun;
488 tim 1.11
489 dl 1.4 // Clone all remaining nodes
490     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
491     int k = p.hash & sizeMask;
492 dl 1.45 HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
493     newTable[k] = new HashEntry<K,V>(p.key, p.hash,
494     n, p.value);
495 dl 1.4 }
496     }
497     }
498     }
499 dl 1.45 table = newTable;
500 dl 1.4 }
501 dl 1.6
502     /**
503     * Remove; match on key only if value null, else match both.
504     */
505 dl 1.4 V remove(Object key, int hash, Object value) {
506 tim 1.11 lock();
507 dl 1.4 try {
508 dl 1.45 int c = count - 1;
509 dl 1.4 HashEntry[] tab = table;
510 dl 1.9 int index = hash & (tab.length - 1);
511 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
512 dl 1.4 HashEntry<K,V> e = first;
513 dl 1.45 while (e != null && (e.hash != hash || !key.equals(e.key)))
514 dl 1.4 e = e.next;
515 dl 1.45
516     V oldValue = null;
517     if (e != null) {
518     V v = e.value;
519     if (value == null || value.equals(v)) {
520     oldValue = v;
521     // All entries following removed node can stay
522     // in list, but all preceding ones need to be
523     // cloned.
524     ++modCount;
525     HashEntry<K,V> newFirst = e.next;
526     for (HashEntry<K,V> p = first; p != e; p = p.next)
527     newFirst = new HashEntry<K,V>(p.key, p.hash,
528     newFirst, p.value);
529     tab[index] = newFirst;
530     count = c; // write-volatile
531     }
532 dl 1.4 }
533 dl 1.9 return oldValue;
534 tim 1.16 } finally {
535 dl 1.4 unlock();
536     }
537     }
538    
539     void clear() {
540 dl 1.45 if (count != 0) {
541     lock();
542     try {
543     HashEntry[] tab = table;
544     for (int i = 0; i < tab.length ; i++)
545     tab[i] = null;
546     ++modCount;
547     count = 0; // write-volatile
548     } finally {
549     unlock();
550     }
551 dl 1.4 }
552     }
553 tim 1.1 }
554    
555    
556 tim 1.11
557 dl 1.4 /* ---------------- Public operations -------------- */
558 tim 1.1
559     /**
560 dl 1.44 * Creates a new, empty map with the specified initial
561 dl 1.56 * capacity, load factor and concurrency level.
562 tim 1.1 *
563 dl 1.19 * @param initialCapacity the initial capacity. The implementation
564     * performs internal sizing to accommodate this many elements.
565 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
566 dl 1.56 * Resizing may be performed when the average number of elements per
567     * bin exceeds this threshold.
568 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
569     * updating threads. The implementation performs internal sizing
570 dl 1.21 * to try to accommodate this many threads.
571 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
572 dl 1.19 * negative or the load factor or concurrencyLevel are
573 dl 1.4 * nonpositive.
574     */
575 tim 1.11 public ConcurrentHashMap(int initialCapacity,
576 dl 1.19 float loadFactor, int concurrencyLevel) {
577     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
578 dl 1.4 throw new IllegalArgumentException();
579    
580 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
581     concurrencyLevel = MAX_SEGMENTS;
582    
583 dl 1.4 // Find power-of-two sizes best matching arguments
584     int sshift = 0;
585     int ssize = 1;
586 dl 1.19 while (ssize < concurrencyLevel) {
587 dl 1.4 ++sshift;
588     ssize <<= 1;
589     }
590 dl 1.9 segmentShift = 32 - sshift;
591 dl 1.8 segmentMask = ssize - 1;
592 tim 1.11 this.segments = new Segment[ssize];
593 dl 1.4
594     if (initialCapacity > MAXIMUM_CAPACITY)
595     initialCapacity = MAXIMUM_CAPACITY;
596     int c = initialCapacity / ssize;
597 tim 1.11 if (c * ssize < initialCapacity)
598 dl 1.4 ++c;
599     int cap = 1;
600     while (cap < c)
601     cap <<= 1;
602    
603     for (int i = 0; i < this.segments.length; ++i)
604     this.segments[i] = new Segment<K,V>(cap, loadFactor);
605 tim 1.1 }
606    
607     /**
608 dl 1.55 * Creates a new, empty map with the specified initial capacity
609 dl 1.57 * and load factor and with the default concurrencyLevel
610     * (<tt>16</tt>).
611 dl 1.55 *
612     * @param initialCapacity The implementation performs internal
613     * sizing to accommodate this many elements.
614     * @param loadFactor the load factor threshold, used to control resizing.
615     * @throws IllegalArgumentException if the initial capacity of
616     * elements is negative or the load factor is nonpositive
617     */
618     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
619 dl 1.56 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
620 dl 1.55 }
621    
622     /**
623 dl 1.56 * Creates a new, empty map with the specified initial capacity,
624 dl 1.57 * and with default load factor (<tt>0.75f</tt>)
625     * and concurrencyLevel (<tt>16</tt>).
626 tim 1.1 *
627 dl 1.53 * @param initialCapacity The implementation performs internal
628     * sizing to accommodate this many elements.
629 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
630     * elements is negative.
631 tim 1.1 */
632     public ConcurrentHashMap(int initialCapacity) {
633 dl 1.56 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
634 tim 1.1 }
635    
636     /**
637 dl 1.56 * Creates a new, empty map with a default initial capacity
638 dl 1.57 * (<tt>16</tt>), load factor
639     * (<tt>0.75f</tt>), and concurrencyLevel
640     * (<tt>16</tt>).
641 tim 1.1 */
642     public ConcurrentHashMap() {
643 dl 1.56 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
644 tim 1.1 }
645    
646     /**
647 dl 1.44 * Creates a new map with the same mappings as the given map. The
648 dl 1.55 * map is created with a capacity of 1.5 times the number of
649 dl 1.57 * mappings in the given map or <tt>16</tt>
650     * (whichever is greater), and a default load factor
651     * (<tt>0.75f</tt>) and concurrencyLevel
652     * (<tt>16</tt>).
653 dl 1.40 * @param t the map
654 tim 1.1 */
655 tim 1.39 public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
656 tim 1.1 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
657 dl 1.56 DEFAULT_INITIAL_CAPACITY),
658     DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
659 dl 1.4 putAll(t);
660 tim 1.1 }
661    
662 dl 1.56 /**
663     * Returns <tt>true</tt> if this map contains no key-value mappings.
664     *
665     * @return <tt>true</tt> if this map contains no key-value mappings.
666     */
667 tim 1.1 public boolean isEmpty() {
668 dl 1.35 final Segment[] segments = this.segments;
669 dl 1.21 /*
670 dl 1.45 * We keep track of per-segment modCounts to avoid ABA
671 dl 1.21 * problems in which an element in one segment was added and
672     * in another removed during traversal, in which case the
673     * table was never actually empty at any point. Note the
674     * similar use of modCounts in the size() and containsValue()
675     * methods, which are the only other methods also susceptible
676     * to ABA problems.
677     */
678     int[] mc = new int[segments.length];
679     int mcsum = 0;
680     for (int i = 0; i < segments.length; ++i) {
681 dl 1.4 if (segments[i].count != 0)
682 tim 1.1 return false;
683 dl 1.21 else
684     mcsum += mc[i] = segments[i].modCount;
685     }
686     // If mcsum happens to be zero, then we know we got a snapshot
687     // before any modifications at all were made. This is
688     // probably common enough to bother tracking.
689     if (mcsum != 0) {
690     for (int i = 0; i < segments.length; ++i) {
691     if (segments[i].count != 0 ||
692     mc[i] != segments[i].modCount)
693     return false;
694     }
695     }
696 tim 1.1 return true;
697     }
698    
699 dl 1.56 /**
700     * Returns the number of key-value mappings in this map. If the
701     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
702     * <tt>Integer.MAX_VALUE</tt>.
703     *
704     * @return the number of key-value mappings in this map.
705     */
706 dl 1.21 public int size() {
707 dl 1.35 final Segment[] segments = this.segments;
708 dl 1.45 long sum = 0;
709     long check = 0;
710 dl 1.21 int[] mc = new int[segments.length];
711 dl 1.46 // Try a few times to get accurate count. On failure due to
712 dl 1.45 // continuous async changes in table, resort to locking.
713 dl 1.46 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
714 dl 1.45 check = 0;
715     sum = 0;
716 dl 1.21 int mcsum = 0;
717     for (int i = 0; i < segments.length; ++i) {
718     sum += segments[i].count;
719     mcsum += mc[i] = segments[i].modCount;
720     }
721     if (mcsum != 0) {
722     for (int i = 0; i < segments.length; ++i) {
723     check += segments[i].count;
724     if (mc[i] != segments[i].modCount) {
725     check = -1; // force retry
726     break;
727     }
728     }
729     }
730 dl 1.45 if (check == sum)
731     break;
732     }
733     if (check != sum) { // Resort to locking all segments
734     sum = 0;
735     for (int i = 0; i < segments.length; ++i)
736     segments[i].lock();
737     for (int i = 0; i < segments.length; ++i)
738     sum += segments[i].count;
739     for (int i = 0; i < segments.length; ++i)
740     segments[i].unlock();
741 dl 1.21 }
742 dl 1.45 if (sum > Integer.MAX_VALUE)
743     return Integer.MAX_VALUE;
744     else
745     return (int)sum;
746 dl 1.21 }
747    
748    
749 tim 1.1 /**
750     * Returns the value to which the specified key is mapped in this table.
751     *
752     * @param key a key in the table.
753     * @return the value to which the key is mapped in this table;
754 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
755 tim 1.1 * this table.
756 dl 1.8 * @throws NullPointerException if the key is
757 dl 1.19 * <tt>null</tt>.
758 tim 1.1 */
759 tim 1.11 public V get(Object key) {
760 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
761 dl 1.29 return segmentFor(hash).get(key, hash);
762 tim 1.1 }
763    
764     /**
765     * Tests if the specified object is a key in this table.
766 tim 1.11 *
767 tim 1.1 * @param key possible key.
768 dl 1.19 * @return <tt>true</tt> if and only if the specified object
769 tim 1.11 * is a key in this table, as determined by the
770 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
771 dl 1.8 * @throws NullPointerException if the key is
772 dl 1.19 * <tt>null</tt>.
773 tim 1.1 */
774     public boolean containsKey(Object key) {
775 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
776 dl 1.9 return segmentFor(hash).containsKey(key, hash);
777 tim 1.1 }
778    
779     /**
780     * Returns <tt>true</tt> if this map maps one or more keys to the
781     * specified value. Note: This method requires a full internal
782     * traversal of the hash table, and so is much slower than
783     * method <tt>containsKey</tt>.
784     *
785     * @param value value whose presence in this map is to be tested.
786     * @return <tt>true</tt> if this map maps one or more keys to the
787 tim 1.11 * specified value.
788 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
789 tim 1.1 */
790     public boolean containsValue(Object value) {
791 tim 1.11 if (value == null)
792 dl 1.4 throw new NullPointerException();
793 dl 1.45
794     // See explanation of modCount use above
795 tim 1.1
796 dl 1.35 final Segment[] segments = this.segments;
797 dl 1.21 int[] mc = new int[segments.length];
798 dl 1.45
799 dl 1.46 // Try a few times without locking
800     for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
801 dl 1.21 int sum = 0;
802     int mcsum = 0;
803     for (int i = 0; i < segments.length; ++i) {
804     int c = segments[i].count;
805     mcsum += mc[i] = segments[i].modCount;
806     if (segments[i].containsValue(value))
807     return true;
808     }
809     boolean cleanSweep = true;
810     if (mcsum != 0) {
811     for (int i = 0; i < segments.length; ++i) {
812     int c = segments[i].count;
813     if (mc[i] != segments[i].modCount) {
814     cleanSweep = false;
815     break;
816     }
817     }
818     }
819     if (cleanSweep)
820     return false;
821 tim 1.1 }
822 dl 1.45 // Resort to locking all segments
823     for (int i = 0; i < segments.length; ++i)
824     segments[i].lock();
825     boolean found = false;
826     try {
827     for (int i = 0; i < segments.length; ++i) {
828     if (segments[i].containsValue(value)) {
829     found = true;
830     break;
831     }
832     }
833     } finally {
834     for (int i = 0; i < segments.length; ++i)
835     segments[i].unlock();
836     }
837     return found;
838 tim 1.1 }
839 dl 1.19
840 tim 1.1 /**
841 dl 1.18 * Legacy method testing if some key maps into the specified value
842 dl 1.23 * in this table. This method is identical in functionality to
843     * {@link #containsValue}, and exists solely to ensure
844 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
845 dl 1.18 * which supported this method prior to introduction of the
846 dl 1.23 * Java Collections framework.
847 dl 1.17
848 tim 1.1 * @param value a value to search for.
849 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
850     * <tt>value</tt> argument in this table as
851 tim 1.1 * determined by the <tt>equals</tt> method;
852 dl 1.19 * <tt>false</tt> otherwise.
853     * @throws NullPointerException if the value is <tt>null</tt>.
854 tim 1.1 */
855 dl 1.4 public boolean contains(Object value) {
856 tim 1.1 return containsValue(value);
857     }
858    
859     /**
860 dl 1.19 * Maps the specified <tt>key</tt> to the specified
861     * <tt>value</tt> in this table. Neither the key nor the
862 dl 1.44 * value can be <tt>null</tt>.
863 dl 1.4 *
864 dl 1.44 * <p> The value can be retrieved by calling the <tt>get</tt> method
865 tim 1.11 * with a key that is equal to the original key.
866 dl 1.4 *
867     * @param key the table key.
868     * @param value the value.
869     * @return the previous value of the specified key in this table,
870 dl 1.19 * or <tt>null</tt> if it did not have one.
871 dl 1.8 * @throws NullPointerException if the key or value is
872 dl 1.19 * <tt>null</tt>.
873 dl 1.4 */
874 tim 1.11 public V put(K key, V value) {
875     if (value == null)
876 dl 1.4 throw new NullPointerException();
877 tim 1.11 int hash = hash(key);
878 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
879 dl 1.4 }
880    
881     /**
882     * If the specified key is not already associated
883     * with a value, associate it with the given value.
884     * This is equivalent to
885     * <pre>
886 dl 1.17 * if (!map.containsKey(key))
887     * return map.put(key, value);
888     * else
889     * return map.get(key);
890 dl 1.4 * </pre>
891     * Except that the action is performed atomically.
892     * @param key key with which the specified value is to be associated.
893     * @param value value to be associated with the specified key.
894     * @return previous value associated with specified key, or <tt>null</tt>
895 dl 1.51 * if there was no mapping for key.
896 dl 1.17 * @throws NullPointerException if the specified key or value is
897 dl 1.4 * <tt>null</tt>.
898 dl 1.51 */
899 tim 1.11 public V putIfAbsent(K key, V value) {
900     if (value == null)
901 dl 1.4 throw new NullPointerException();
902 tim 1.11 int hash = hash(key);
903 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
904 dl 1.4 }
905    
906    
907     /**
908 tim 1.1 * Copies all of the mappings from the specified map to this one.
909     *
910     * These mappings replace any mappings that this map had for any of the
911     * keys currently in the specified Map.
912     *
913     * @param t Mappings to be stored in this map.
914     */
915 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
916 dl 1.47 for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
917 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
918 dl 1.4 put(e.getKey(), e.getValue());
919 tim 1.1 }
920 dl 1.4 }
921    
922     /**
923 tim 1.11 * Removes the key (and its corresponding value) from this
924 dl 1.4 * table. This method does nothing if the key is not in the table.
925     *
926     * @param key the key that needs to be removed.
927     * @return the value to which the key had been mapped in this table,
928 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
929 dl 1.8 * @throws NullPointerException if the key is
930 dl 1.19 * <tt>null</tt>.
931 dl 1.4 */
932     public V remove(Object key) {
933     int hash = hash(key);
934 dl 1.9 return segmentFor(hash).remove(key, hash, null);
935 dl 1.4 }
936 tim 1.1
937 dl 1.4 /**
938 dl 1.17 * Remove entry for key only if currently mapped to given value.
939     * Acts as
940     * <pre>
941     * if (map.get(key).equals(value)) {
942     * map.remove(key);
943     * return true;
944     * } else return false;
945     * </pre>
946     * except that the action is performed atomically.
947     * @param key key with which the specified value is associated.
948     * @param value value associated with the specified key.
949     * @return true if the value was removed
950     * @throws NullPointerException if the specified key is
951     * <tt>null</tt>.
952 dl 1.4 */
953 dl 1.13 public boolean remove(Object key, Object value) {
954 dl 1.4 int hash = hash(key);
955 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
956 tim 1.1 }
957 dl 1.31
958 dl 1.32
959 dl 1.31 /**
960     * Replace entry for key only if currently mapped to given value.
961     * Acts as
962     * <pre>
963     * if (map.get(key).equals(oldValue)) {
964     * map.put(key, newValue);
965     * return true;
966     * } else return false;
967     * </pre>
968     * except that the action is performed atomically.
969     * @param key key with which the specified value is associated.
970     * @param oldValue value expected to be associated with the specified key.
971     * @param newValue value to be associated with the specified key.
972     * @return true if the value was replaced
973     * @throws NullPointerException if the specified key or values are
974     * <tt>null</tt>.
975     */
976     public boolean replace(K key, V oldValue, V newValue) {
977     if (oldValue == null || newValue == null)
978     throw new NullPointerException();
979     int hash = hash(key);
980     return segmentFor(hash).replace(key, hash, oldValue, newValue);
981 dl 1.32 }
982    
983     /**
984 dl 1.33 * Replace entry for key only if currently mapped to some value.
985 dl 1.32 * Acts as
986     * <pre>
987     * if ((map.containsKey(key)) {
988 dl 1.33 * return map.put(key, value);
989     * } else return null;
990 dl 1.32 * </pre>
991     * except that the action is performed atomically.
992     * @param key key with which the specified value is associated.
993     * @param value value to be associated with the specified key.
994 dl 1.33 * @return previous value associated with specified key, or <tt>null</tt>
995     * if there was no mapping for key.
996 dl 1.32 * @throws NullPointerException if the specified key or value is
997     * <tt>null</tt>.
998     */
999 dl 1.33 public V replace(K key, V value) {
1000 dl 1.32 if (value == null)
1001     throw new NullPointerException();
1002     int hash = hash(key);
1003 dl 1.33 return segmentFor(hash).replace(key, hash, value);
1004 dl 1.31 }
1005    
1006 tim 1.1
1007     /**
1008     * Removes all mappings from this map.
1009     */
1010     public void clear() {
1011 tim 1.11 for (int i = 0; i < segments.length; ++i)
1012 dl 1.4 segments[i].clear();
1013 tim 1.1 }
1014    
1015     /**
1016     * Returns a set view of the keys contained in this map. The set is
1017     * backed by the map, so changes to the map are reflected in the set, and
1018     * vice-versa. The set supports element removal, which removes the
1019     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1020     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1021     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
1022     * <tt>addAll</tt> operations.
1023 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1024 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1025     * and guarantees to traverse elements as they existed upon
1026     * construction of the iterator, and may (but is not guaranteed to)
1027     * reflect any modifications subsequent to construction.
1028 tim 1.1 *
1029     * @return a set view of the keys contained in this map.
1030     */
1031     public Set<K> keySet() {
1032     Set<K> ks = keySet;
1033 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
1034 tim 1.1 }
1035    
1036    
1037     /**
1038     * Returns a collection view of the values contained in this map. The
1039     * collection is backed by the map, so changes to the map are reflected in
1040     * the collection, and vice-versa. The collection supports element
1041     * removal, which removes the corresponding mapping from this map, via the
1042     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1043     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1044     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1045 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1046 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1047     * and guarantees to traverse elements as they existed upon
1048     * construction of the iterator, and may (but is not guaranteed to)
1049     * reflect any modifications subsequent to construction.
1050 tim 1.1 *
1051     * @return a collection view of the values contained in this map.
1052     */
1053     public Collection<V> values() {
1054     Collection<V> vs = values;
1055 dl 1.8 return (vs != null) ? vs : (values = new Values());
1056 tim 1.1 }
1057    
1058    
1059     /**
1060     * Returns a collection view of the mappings contained in this map. Each
1061     * element in the returned collection is a <tt>Map.Entry</tt>. The
1062     * collection is backed by the map, so changes to the map are reflected in
1063     * the collection, and vice-versa. The collection supports element
1064     * removal, which removes the corresponding mapping from the map, via the
1065     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1066     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1067     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1068 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1069 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1070     * and guarantees to traverse elements as they existed upon
1071     * construction of the iterator, and may (but is not guaranteed to)
1072     * reflect any modifications subsequent to construction.
1073 tim 1.1 *
1074     * @return a collection view of the mappings contained in this map.
1075     */
1076     public Set<Map.Entry<K,V>> entrySet() {
1077     Set<Map.Entry<K,V>> es = entrySet;
1078 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1079 tim 1.1 }
1080    
1081    
1082     /**
1083     * Returns an enumeration of the keys in this table.
1084     *
1085     * @return an enumeration of the keys in this table.
1086 dl 1.23 * @see #keySet
1087 tim 1.1 */
1088 dl 1.4 public Enumeration<K> keys() {
1089 tim 1.1 return new KeyIterator();
1090     }
1091    
1092     /**
1093     * Returns an enumeration of the values in this table.
1094     *
1095     * @return an enumeration of the values in this table.
1096 dl 1.23 * @see #values
1097 tim 1.1 */
1098 dl 1.4 public Enumeration<V> elements() {
1099 tim 1.1 return new ValueIterator();
1100     }
1101    
1102 dl 1.4 /* ---------------- Iterator Support -------------- */
1103 tim 1.11
1104 dl 1.41 abstract class HashIterator {
1105     int nextSegmentIndex;
1106     int nextTableIndex;
1107     HashEntry[] currentTable;
1108     HashEntry<K, V> nextEntry;
1109 dl 1.30 HashEntry<K, V> lastReturned;
1110 tim 1.1
1111 dl 1.41 HashIterator() {
1112 dl 1.8 nextSegmentIndex = segments.length - 1;
1113 dl 1.4 nextTableIndex = -1;
1114     advance();
1115 tim 1.1 }
1116    
1117     public boolean hasMoreElements() { return hasNext(); }
1118    
1119 dl 1.41 final void advance() {
1120 dl 1.4 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1121     return;
1122 tim 1.11
1123 dl 1.4 while (nextTableIndex >= 0) {
1124 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1125 dl 1.4 return;
1126     }
1127 tim 1.11
1128 dl 1.4 while (nextSegmentIndex >= 0) {
1129 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1130 dl 1.4 if (seg.count != 0) {
1131     currentTable = seg.table;
1132 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1133 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1134 dl 1.8 nextTableIndex = j - 1;
1135 dl 1.4 return;
1136     }
1137 tim 1.1 }
1138     }
1139     }
1140     }
1141    
1142 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1143 tim 1.1
1144 dl 1.4 HashEntry<K,V> nextEntry() {
1145     if (nextEntry == null)
1146 tim 1.1 throw new NoSuchElementException();
1147 dl 1.4 lastReturned = nextEntry;
1148     advance();
1149     return lastReturned;
1150 tim 1.1 }
1151    
1152     public void remove() {
1153     if (lastReturned == null)
1154     throw new IllegalStateException();
1155     ConcurrentHashMap.this.remove(lastReturned.key);
1156     lastReturned = null;
1157     }
1158 dl 1.4 }
1159    
1160 dl 1.41 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1161 dl 1.4 public K next() { return super.nextEntry().key; }
1162     public K nextElement() { return super.nextEntry().key; }
1163     }
1164    
1165 dl 1.41 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1166 dl 1.4 public V next() { return super.nextEntry().value; }
1167     public V nextElement() { return super.nextEntry().value; }
1168     }
1169 tim 1.1
1170 dl 1.30
1171    
1172     /**
1173 dl 1.41 * Entry iterator. Exported Entry objects must write-through
1174     * changes in setValue, even if the nodes have been cloned. So we
1175     * cannot return internal HashEntry objects. Instead, the iterator
1176     * itself acts as a forwarding pseudo-entry.
1177 dl 1.30 */
1178 dl 1.41 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1179 dl 1.30 public Map.Entry<K,V> next() {
1180     nextEntry();
1181     return this;
1182     }
1183    
1184     public K getKey() {
1185     if (lastReturned == null)
1186     throw new IllegalStateException("Entry was removed");
1187     return lastReturned.key;
1188     }
1189    
1190     public V getValue() {
1191     if (lastReturned == null)
1192     throw new IllegalStateException("Entry was removed");
1193     return ConcurrentHashMap.this.get(lastReturned.key);
1194     }
1195    
1196     public V setValue(V value) {
1197     if (lastReturned == null)
1198     throw new IllegalStateException("Entry was removed");
1199     return ConcurrentHashMap.this.put(lastReturned.key, value);
1200     }
1201    
1202     public boolean equals(Object o) {
1203 dl 1.43 // If not acting as entry, just use default.
1204     if (lastReturned == null)
1205     return super.equals(o);
1206 dl 1.30 if (!(o instanceof Map.Entry))
1207     return false;
1208 tim 1.39 Map.Entry e = (Map.Entry)o;
1209     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1210     }
1211 dl 1.30
1212     public int hashCode() {
1213 dl 1.43 // If not acting as entry, just use default.
1214     if (lastReturned == null)
1215     return super.hashCode();
1216    
1217 dl 1.30 Object k = getKey();
1218     Object v = getValue();
1219     return ((k == null) ? 0 : k.hashCode()) ^
1220     ((v == null) ? 0 : v.hashCode());
1221     }
1222    
1223     public String toString() {
1224 dl 1.43 // If not acting as entry, just use default.
1225 dl 1.34 if (lastReturned == null)
1226     return super.toString();
1227     else
1228     return getKey() + "=" + getValue();
1229 dl 1.30 }
1230    
1231 dl 1.41 boolean eq(Object o1, Object o2) {
1232 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1233     }
1234    
1235 tim 1.1 }
1236    
1237 dl 1.41 final class KeySet extends AbstractSet<K> {
1238 dl 1.4 public Iterator<K> iterator() {
1239     return new KeyIterator();
1240     }
1241     public int size() {
1242     return ConcurrentHashMap.this.size();
1243     }
1244     public boolean contains(Object o) {
1245     return ConcurrentHashMap.this.containsKey(o);
1246     }
1247     public boolean remove(Object o) {
1248     return ConcurrentHashMap.this.remove(o) != null;
1249     }
1250     public void clear() {
1251     ConcurrentHashMap.this.clear();
1252     }
1253 dl 1.49 public Object[] toArray() {
1254     Collection<K> c = new ArrayList<K>();
1255     for (Iterator<K> i = iterator(); i.hasNext(); )
1256     c.add(i.next());
1257     return c.toArray();
1258     }
1259     public <T> T[] toArray(T[] a) {
1260     Collection<K> c = new ArrayList<K>();
1261     for (Iterator<K> i = iterator(); i.hasNext(); )
1262     c.add(i.next());
1263     return c.toArray(a);
1264     }
1265 tim 1.1 }
1266    
1267 dl 1.41 final class Values extends AbstractCollection<V> {
1268 dl 1.4 public Iterator<V> iterator() {
1269     return new ValueIterator();
1270     }
1271     public int size() {
1272     return ConcurrentHashMap.this.size();
1273     }
1274     public boolean contains(Object o) {
1275     return ConcurrentHashMap.this.containsValue(o);
1276     }
1277     public void clear() {
1278     ConcurrentHashMap.this.clear();
1279     }
1280 dl 1.49 public Object[] toArray() {
1281     Collection<V> c = new ArrayList<V>();
1282     for (Iterator<V> i = iterator(); i.hasNext(); )
1283     c.add(i.next());
1284     return c.toArray();
1285     }
1286     public <T> T[] toArray(T[] a) {
1287     Collection<V> c = new ArrayList<V>();
1288     for (Iterator<V> i = iterator(); i.hasNext(); )
1289     c.add(i.next());
1290     return c.toArray(a);
1291     }
1292 tim 1.1 }
1293    
1294 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1295 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1296     return new EntryIterator();
1297     }
1298     public boolean contains(Object o) {
1299     if (!(o instanceof Map.Entry))
1300     return false;
1301     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1302     V v = ConcurrentHashMap.this.get(e.getKey());
1303     return v != null && v.equals(e.getValue());
1304     }
1305     public boolean remove(Object o) {
1306     if (!(o instanceof Map.Entry))
1307     return false;
1308     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1309 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1310 dl 1.4 }
1311     public int size() {
1312     return ConcurrentHashMap.this.size();
1313     }
1314     public void clear() {
1315     ConcurrentHashMap.this.clear();
1316 dl 1.30 }
1317     public Object[] toArray() {
1318     // Since we don't ordinarily have distinct Entry objects, we
1319     // must pack elements using exportable SimpleEntry
1320     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1321     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1322 dl 1.54 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1323 dl 1.30 return c.toArray();
1324     }
1325     public <T> T[] toArray(T[] a) {
1326     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1327     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1328 dl 1.54 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1329 dl 1.30 return c.toArray(a);
1330     }
1331    
1332     }
1333    
1334 dl 1.4 /* ---------------- Serialization Support -------------- */
1335    
1336 tim 1.1 /**
1337     * Save the state of the <tt>ConcurrentHashMap</tt>
1338     * instance to a stream (i.e.,
1339     * serialize it).
1340 dl 1.8 * @param s the stream
1341 tim 1.1 * @serialData
1342     * the key (Object) and value (Object)
1343     * for each key-value mapping, followed by a null pair.
1344     * The key-value mappings are emitted in no particular order.
1345     */
1346     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1347     s.defaultWriteObject();
1348    
1349     for (int k = 0; k < segments.length; ++k) {
1350 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1351 dl 1.2 seg.lock();
1352     try {
1353 tim 1.11 HashEntry[] tab = seg.table;
1354 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1355 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1356 dl 1.4 s.writeObject(e.key);
1357     s.writeObject(e.value);
1358     }
1359     }
1360 tim 1.16 } finally {
1361 dl 1.2 seg.unlock();
1362     }
1363 tim 1.1 }
1364     s.writeObject(null);
1365     s.writeObject(null);
1366     }
1367    
1368     /**
1369     * Reconstitute the <tt>ConcurrentHashMap</tt>
1370     * instance from a stream (i.e.,
1371     * deserialize it).
1372 dl 1.8 * @param s the stream
1373 tim 1.1 */
1374     private void readObject(java.io.ObjectInputStream s)
1375     throws IOException, ClassNotFoundException {
1376     s.defaultReadObject();
1377    
1378 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1379     for (int i = 0; i < segments.length; ++i) {
1380 tim 1.11 segments[i].setTable(new HashEntry[1]);
1381 dl 1.4 }
1382 tim 1.1
1383     // Read the keys and values, and put the mappings in the table
1384 dl 1.9 for (;;) {
1385 tim 1.1 K key = (K) s.readObject();
1386     V value = (V) s.readObject();
1387     if (key == null)
1388     break;
1389     put(key, value);
1390     }
1391     }
1392     }
1393 tim 1.11