ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.90
Committed: Wed Jun 7 23:54:23 2006 UTC (17 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.89: +4 -4 lines
Log Message:
6435782: (coll) Improve ConcurrentHashMap performance

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 jsr166 1.68 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37     * However, iterators are designed to be used by only one thread at a time.
38 tim 1.1 *
39 dl 1.19 * <p> The allowed concurrency among update operations is guided by
40     * the optional <tt>concurrencyLevel</tt> constructor argument
41 dl 1.57 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 dl 1.21 * table is internally partitioned to try to permit the indicated
43     * number of concurrent updates without contention. Because placement
44     * in hash tables is essentially random, the actual concurrency will
45     * vary. Ideally, you should choose a value to accommodate as many
46 dl 1.25 * threads as will ever concurrently modify the table. Using a
47 dl 1.21 * significantly higher value than you need can waste space and time,
48     * and a significantly lower value can lead to thread contention. But
49     * overestimates and underestimates within an order of magnitude do
50 dl 1.25 * not usually have much noticeable impact. A value of one is
51 dl 1.45 * appropriate when it is known that only one thread will modify and
52     * all others will only read. Also, resizing this or any other kind of
53     * hash table is a relatively slow operation, so, when possible, it is
54     * a good idea to provide estimates of expected table sizes in
55     * constructors.
56 tim 1.1 *
57 dl 1.45 * <p>This class and its views and iterators implement all of the
58     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59     * interfaces.
60 dl 1.23 *
61 jsr166 1.68 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62     * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 tim 1.1 *
64 dl 1.42 * <p>This class is a member of the
65 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
66 dl 1.42 * Java Collections Framework</a>.
67     *
68 dl 1.8 * @since 1.5
69     * @author Doug Lea
70 dl 1.27 * @param <K> the type of keys maintained by this map
71 jsr166 1.64 * @param <V> the type of mapped values
72 dl 1.8 */
73 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 dl 1.48 implements ConcurrentMap<K, V>, Serializable {
75 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
76 tim 1.1
77     /*
78 dl 1.4 * The basic strategy is to subdivide the table among Segments,
79     * each of which itself is a concurrently readable hash table.
80     */
81 tim 1.1
82 dl 1.4 /* ---------------- Constants -------------- */
83 tim 1.11
84 dl 1.4 /**
85 dl 1.56 * The default initial capacity for this table,
86     * used when not otherwise specified in a constructor.
87 dl 1.4 */
88 dl 1.57 static final int DEFAULT_INITIAL_CAPACITY = 16;
89 dl 1.56
90     /**
91     * The default load factor for this table, used when not
92     * otherwise specified in a constructor.
93     */
94 dl 1.57 static final float DEFAULT_LOAD_FACTOR = 0.75f;
95 dl 1.56
96     /**
97     * The default concurrency level for this table, used when not
98     * otherwise specified in a constructor.
99 jsr166 1.59 */
100 dl 1.57 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101 tim 1.1
102     /**
103 dl 1.4 * The maximum capacity, used if a higher value is implicitly
104     * specified by either of the constructors with arguments. MUST
105 jsr166 1.68 * be a power of two <= 1<<30 to ensure that entries are indexable
106 dl 1.21 * using ints.
107 dl 1.4 */
108 jsr166 1.64 static final int MAXIMUM_CAPACITY = 1 << 30;
109 tim 1.11
110 tim 1.1 /**
111 dl 1.37 * The maximum number of segments to allow; used to bound
112     * constructor arguments.
113 dl 1.21 */
114 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115 dl 1.21
116 dl 1.46 /**
117     * Number of unsynchronized retries in size and containsValue
118     * methods before resorting to locking. This is used to avoid
119     * unbounded retries if tables undergo continuous modification
120     * which would make it impossible to obtain an accurate result.
121     */
122     static final int RETRIES_BEFORE_LOCK = 2;
123    
124 dl 1.4 /* ---------------- Fields -------------- */
125 tim 1.1
126     /**
127 dl 1.9 * Mask value for indexing into segments. The upper bits of a
128     * key's hash code are used to choose the segment.
129 jsr166 1.59 */
130 dl 1.41 final int segmentMask;
131 tim 1.1
132     /**
133 dl 1.4 * Shift value for indexing within segments.
134 jsr166 1.59 */
135 dl 1.41 final int segmentShift;
136 tim 1.1
137     /**
138 dl 1.4 * The segments, each of which is a specialized hash table
139 tim 1.1 */
140 dl 1.71 final Segment<K,V>[] segments;
141 dl 1.4
142 dl 1.41 transient Set<K> keySet;
143     transient Set<Map.Entry<K,V>> entrySet;
144     transient Collection<V> values;
145 dl 1.4
146     /* ---------------- Small Utilities -------------- */
147 tim 1.1
148     /**
149 dl 1.89 * Applies a supplemental hash function to a given hashCode, which
150     * defends against poor quality hash functions. This is critical
151 jsr166 1.90 * because ConcurrentHashMap uses power-of-two length hash tables,
152     * that otherwise encounter collisions for hashCodes that do not
153     * differ in lower bits.
154 dl 1.89 */
155 jsr166 1.90 private static int hash(int h) {
156 dl 1.89 // This function ensures that hashCodes that differ only by
157     // constant multiples at each bit position have a bounded
158     // number of collisions (approximately 8 at default load factor).
159     h ^= (h >>> 20) ^ (h >>> 12);
160     return h ^ (h >>> 7) ^ (h >>> 4);
161 dl 1.4 }
162    
163 tim 1.1 /**
164 dl 1.44 * Returns the segment that should be used for key with given hash
165     * @param hash the hash code for the key
166     * @return the segment
167 tim 1.1 */
168 dl 1.41 final Segment<K,V> segmentFor(int hash) {
169 dl 1.71 return segments[(hash >>> segmentShift) & segmentMask];
170 dl 1.4 }
171 tim 1.1
172 dl 1.4 /* ---------------- Inner Classes -------------- */
173 tim 1.1
174     /**
175 dl 1.46 * ConcurrentHashMap list entry. Note that this is never exported
176 jsr166 1.64 * out as a user-visible Map.Entry.
177     *
178 dl 1.46 * Because the value field is volatile, not final, it is legal wrt
179     * the Java Memory Model for an unsynchronized reader to see null
180     * instead of initial value when read via a data race. Although a
181     * reordering leading to this is not likely to ever actually
182     * occur, the Segment.readValueUnderLock method is used as a
183     * backup in case a null (pre-initialized) value is ever seen in
184     * an unsynchronized access method.
185     */
186     static final class HashEntry<K,V> {
187     final K key;
188     final int hash;
189     volatile V value;
190     final HashEntry<K,V> next;
191    
192     HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193     this.key = key;
194     this.hash = hash;
195     this.next = next;
196     this.value = value;
197     }
198 dl 1.72
199     @SuppressWarnings("unchecked")
200     static final <K,V> HashEntry<K,V>[] newArray(int i) {
201     return new HashEntry[i];
202     }
203 dl 1.46 }
204    
205     /**
206 dl 1.6 * Segments are specialized versions of hash tables. This
207 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
208     * simplify some locking and avoid separate construction.
209 jsr166 1.59 */
210 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 dl 1.4 /*
212     * Segments maintain a table of entry lists that are ALWAYS
213     * kept in a consistent state, so can be read without locking.
214     * Next fields of nodes are immutable (final). All list
215     * additions are performed at the front of each bin. This
216     * makes it easy to check changes, and also fast to traverse.
217     * When nodes would otherwise be changed, new nodes are
218     * created to replace them. This works well for hash tables
219     * since the bin lists tend to be short. (The average length
220     * is less than two for the default load factor threshold.)
221     *
222     * Read operations can thus proceed without locking, but rely
223 dl 1.45 * on selected uses of volatiles to ensure that completed
224     * write operations performed by other threads are
225     * noticed. For most purposes, the "count" field, tracking the
226     * number of elements, serves as that volatile variable
227     * ensuring visibility. This is convenient because this field
228     * needs to be read in many read operations anyway:
229 dl 1.4 *
230 dl 1.45 * - All (unsynchronized) read operations must first read the
231 dl 1.4 * "count" field, and should not look at table entries if
232     * it is 0.
233 tim 1.11 *
234 dl 1.45 * - All (synchronized) write operations should write to
235     * the "count" field after structurally changing any bin.
236     * The operations must not take any action that could even
237     * momentarily cause a concurrent read operation to see
238     * inconsistent data. This is made easier by the nature of
239     * the read operations in Map. For example, no operation
240 dl 1.4 * can reveal that the table has grown but the threshold
241     * has not yet been updated, so there are no atomicity
242     * requirements for this with respect to reads.
243     *
244 dl 1.45 * As a guide, all critical volatile reads and writes to the
245     * count field are marked in code comments.
246 dl 1.4 */
247 tim 1.11
248 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
249    
250 dl 1.4 /**
251     * The number of elements in this segment's region.
252 jsr166 1.59 */
253 dl 1.4 transient volatile int count;
254    
255     /**
256 dl 1.45 * Number of updates that alter the size of the table. This is
257     * used during bulk-read methods to make sure they see a
258     * consistent snapshot: If modCounts change during a traversal
259 dl 1.46 * of segments computing size or checking containsValue, then
260 dl 1.45 * we might have an inconsistent view of state so (usually)
261     * must retry.
262 dl 1.21 */
263     transient int modCount;
264    
265     /**
266 dl 1.4 * The table is rehashed when its size exceeds this threshold.
267 jsr166 1.68 * (The value of this field is always <tt>(int)(capacity *
268     * loadFactor)</tt>.)
269 dl 1.4 */
270 dl 1.41 transient int threshold;
271 dl 1.4
272     /**
273 jsr166 1.74 * The per-segment table.
274 dl 1.73 */
275 dl 1.71 transient volatile HashEntry<K,V>[] table;
276 dl 1.4
277     /**
278     * The load factor for the hash table. Even though this value
279     * is same for all segments, it is replicated to avoid needing
280     * links to outer object.
281     * @serial
282     */
283 dl 1.41 final float loadFactor;
284 tim 1.1
285 dl 1.4 Segment(int initialCapacity, float lf) {
286     loadFactor = lf;
287 dl 1.72 setTable(HashEntry.<K,V>newArray(initialCapacity));
288     }
289    
290     @SuppressWarnings("unchecked")
291     static final <K,V> Segment<K,V>[] newArray(int i) {
292     return new Segment[i];
293 dl 1.4 }
294 tim 1.1
295 dl 1.4 /**
296 jsr166 1.60 * Sets table to new HashEntry array.
297 dl 1.4 * Call only while holding lock or in constructor.
298 jsr166 1.59 */
299 dl 1.71 void setTable(HashEntry<K,V>[] newTable) {
300 dl 1.45 threshold = (int)(newTable.length * loadFactor);
301 dl 1.4 table = newTable;
302 dl 1.45 }
303    
304     /**
305 jsr166 1.60 * Returns properly casted first entry of bin for given hash.
306 dl 1.45 */
307     HashEntry<K,V> getFirst(int hash) {
308 dl 1.71 HashEntry<K,V>[] tab = table;
309     return tab[hash & (tab.length - 1)];
310 dl 1.45 }
311    
312     /**
313 jsr166 1.62 * Reads value field of an entry under lock. Called if value
314 dl 1.45 * field ever appears to be null. This is possible only if a
315     * compiler happens to reorder a HashEntry initialization with
316     * its table assignment, which is legal under memory model
317     * but is not known to ever occur.
318     */
319     V readValueUnderLock(HashEntry<K,V> e) {
320     lock();
321     try {
322     return e.value;
323     } finally {
324     unlock();
325     }
326 tim 1.11 }
327 dl 1.4
328     /* Specialized implementations of map methods */
329 tim 1.11
330 dl 1.29 V get(Object key, int hash) {
331 dl 1.4 if (count != 0) { // read-volatile
332 dl 1.45 HashEntry<K,V> e = getFirst(hash);
333 dl 1.4 while (e != null) {
334 dl 1.45 if (e.hash == hash && key.equals(e.key)) {
335     V v = e.value;
336     if (v != null)
337     return v;
338     return readValueUnderLock(e); // recheck
339     }
340 dl 1.4 e = e.next;
341     }
342     }
343     return null;
344     }
345    
346     boolean containsKey(Object key, int hash) {
347     if (count != 0) { // read-volatile
348 dl 1.45 HashEntry<K,V> e = getFirst(hash);
349 dl 1.4 while (e != null) {
350 tim 1.11 if (e.hash == hash && key.equals(e.key))
351 dl 1.4 return true;
352     e = e.next;
353     }
354     }
355     return false;
356     }
357 tim 1.11
358 dl 1.4 boolean containsValue(Object value) {
359     if (count != 0) { // read-volatile
360 dl 1.71 HashEntry<K,V>[] tab = table;
361 dl 1.4 int len = tab.length;
362 dl 1.45 for (int i = 0 ; i < len; i++) {
363 dl 1.72 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364 dl 1.45 V v = e.value;
365     if (v == null) // recheck
366     v = readValueUnderLock(e);
367     if (value.equals(v))
368 dl 1.4 return true;
369 dl 1.45 }
370     }
371 dl 1.4 }
372     return false;
373     }
374    
375 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
376     lock();
377     try {
378 dl 1.45 HashEntry<K,V> e = getFirst(hash);
379     while (e != null && (e.hash != hash || !key.equals(e.key)))
380 dl 1.31 e = e.next;
381 dl 1.45
382     boolean replaced = false;
383     if (e != null && oldValue.equals(e.value)) {
384     replaced = true;
385     e.value = newValue;
386 dl 1.31 }
387 dl 1.45 return replaced;
388 dl 1.33 } finally {
389     unlock();
390     }
391     }
392    
393     V replace(K key, int hash, V newValue) {
394     lock();
395     try {
396 dl 1.45 HashEntry<K,V> e = getFirst(hash);
397     while (e != null && (e.hash != hash || !key.equals(e.key)))
398 dl 1.33 e = e.next;
399 dl 1.45
400     V oldValue = null;
401     if (e != null) {
402     oldValue = e.value;
403     e.value = newValue;
404 dl 1.32 }
405 dl 1.45 return oldValue;
406 dl 1.31 } finally {
407     unlock();
408     }
409     }
410    
411 dl 1.32
412 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
413 dl 1.4 lock();
414     try {
415 dl 1.9 int c = count;
416 dl 1.45 if (c++ > threshold) // ensure capacity
417     rehash();
418 dl 1.71 HashEntry<K,V>[] tab = table;
419 dl 1.9 int index = hash & (tab.length - 1);
420 dl 1.71 HashEntry<K,V> first = tab[index];
421 dl 1.45 HashEntry<K,V> e = first;
422     while (e != null && (e.hash != hash || !key.equals(e.key)))
423     e = e.next;
424 tim 1.11
425 dl 1.45 V oldValue;
426     if (e != null) {
427     oldValue = e.value;
428     if (!onlyIfAbsent)
429     e.value = value;
430     }
431     else {
432     oldValue = null;
433     ++modCount;
434     tab[index] = new HashEntry<K,V>(key, hash, first, value);
435     count = c; // write-volatile
436 dl 1.4 }
437 dl 1.45 return oldValue;
438 tim 1.16 } finally {
439 dl 1.4 unlock();
440     }
441     }
442    
443 dl 1.45 void rehash() {
444 dl 1.71 HashEntry<K,V>[] oldTable = table;
445 dl 1.4 int oldCapacity = oldTable.length;
446     if (oldCapacity >= MAXIMUM_CAPACITY)
447 dl 1.45 return;
448 dl 1.4
449     /*
450     * Reclassify nodes in each list to new Map. Because we are
451     * using power-of-two expansion, the elements from each bin
452     * must either stay at same index, or move with a power of two
453     * offset. We eliminate unnecessary node creation by catching
454     * cases where old nodes can be reused because their next
455     * fields won't change. Statistically, at the default
456 dl 1.29 * threshold, only about one-sixth of them need cloning when
457 dl 1.4 * a table doubles. The nodes they replace will be garbage
458     * collectable as soon as they are no longer referenced by any
459     * reader thread that may be in the midst of traversing table
460     * right now.
461     */
462 tim 1.11
463 dl 1.72 HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 dl 1.45 threshold = (int)(newTable.length * loadFactor);
465 dl 1.4 int sizeMask = newTable.length - 1;
466     for (int i = 0; i < oldCapacity ; i++) {
467     // We need to guarantee that any existing reads of old Map can
468 tim 1.11 // proceed. So we cannot yet null out each bin.
469 dl 1.71 HashEntry<K,V> e = oldTable[i];
470 tim 1.11
471 dl 1.4 if (e != null) {
472     HashEntry<K,V> next = e.next;
473     int idx = e.hash & sizeMask;
474 tim 1.11
475 dl 1.4 // Single node on list
476 tim 1.11 if (next == null)
477 dl 1.4 newTable[idx] = e;
478 tim 1.11
479     else {
480 dl 1.4 // Reuse trailing consecutive sequence at same slot
481     HashEntry<K,V> lastRun = e;
482     int lastIdx = idx;
483 tim 1.11 for (HashEntry<K,V> last = next;
484     last != null;
485 dl 1.4 last = last.next) {
486     int k = last.hash & sizeMask;
487     if (k != lastIdx) {
488     lastIdx = k;
489     lastRun = last;
490     }
491     }
492     newTable[lastIdx] = lastRun;
493 tim 1.11
494 dl 1.4 // Clone all remaining nodes
495     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496     int k = p.hash & sizeMask;
497 dl 1.71 HashEntry<K,V> n = newTable[k];
498 dl 1.45 newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499     n, p.value);
500 dl 1.4 }
501     }
502     }
503     }
504 dl 1.45 table = newTable;
505 dl 1.4 }
506 dl 1.6
507     /**
508     * Remove; match on key only if value null, else match both.
509     */
510 dl 1.4 V remove(Object key, int hash, Object value) {
511 tim 1.11 lock();
512 dl 1.4 try {
513 dl 1.45 int c = count - 1;
514 dl 1.71 HashEntry<K,V>[] tab = table;
515 dl 1.9 int index = hash & (tab.length - 1);
516 dl 1.71 HashEntry<K,V> first = tab[index];
517 dl 1.4 HashEntry<K,V> e = first;
518 dl 1.45 while (e != null && (e.hash != hash || !key.equals(e.key)))
519 dl 1.4 e = e.next;
520 dl 1.45
521     V oldValue = null;
522     if (e != null) {
523     V v = e.value;
524     if (value == null || value.equals(v)) {
525     oldValue = v;
526     // All entries following removed node can stay
527     // in list, but all preceding ones need to be
528     // cloned.
529     ++modCount;
530     HashEntry<K,V> newFirst = e.next;
531     for (HashEntry<K,V> p = first; p != e; p = p.next)
532 jsr166 1.64 newFirst = new HashEntry<K,V>(p.key, p.hash,
533 dl 1.45 newFirst, p.value);
534     tab[index] = newFirst;
535     count = c; // write-volatile
536     }
537 dl 1.4 }
538 dl 1.9 return oldValue;
539 tim 1.16 } finally {
540 dl 1.4 unlock();
541     }
542     }
543    
544     void clear() {
545 dl 1.45 if (count != 0) {
546     lock();
547     try {
548 dl 1.71 HashEntry<K,V>[] tab = table;
549 dl 1.45 for (int i = 0; i < tab.length ; i++)
550     tab[i] = null;
551     ++modCount;
552     count = 0; // write-volatile
553     } finally {
554     unlock();
555     }
556 dl 1.4 }
557     }
558 tim 1.1 }
559    
560    
561 tim 1.11
562 dl 1.4 /* ---------------- Public operations -------------- */
563 tim 1.1
564     /**
565 dl 1.44 * Creates a new, empty map with the specified initial
566 dl 1.56 * capacity, load factor and concurrency level.
567 tim 1.1 *
568 dl 1.19 * @param initialCapacity the initial capacity. The implementation
569     * performs internal sizing to accommodate this many elements.
570 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
571 dl 1.56 * Resizing may be performed when the average number of elements per
572     * bin exceeds this threshold.
573 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
574     * updating threads. The implementation performs internal sizing
575 jsr166 1.64 * to try to accommodate this many threads.
576 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
577 dl 1.19 * negative or the load factor or concurrencyLevel are
578 dl 1.4 * nonpositive.
579     */
580 tim 1.11 public ConcurrentHashMap(int initialCapacity,
581 dl 1.19 float loadFactor, int concurrencyLevel) {
582     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
583 dl 1.4 throw new IllegalArgumentException();
584    
585 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
586     concurrencyLevel = MAX_SEGMENTS;
587    
588 dl 1.4 // Find power-of-two sizes best matching arguments
589     int sshift = 0;
590     int ssize = 1;
591 dl 1.19 while (ssize < concurrencyLevel) {
592 dl 1.4 ++sshift;
593     ssize <<= 1;
594     }
595 dl 1.9 segmentShift = 32 - sshift;
596 dl 1.8 segmentMask = ssize - 1;
597 dl 1.72 this.segments = Segment.newArray(ssize);
598 dl 1.4
599     if (initialCapacity > MAXIMUM_CAPACITY)
600     initialCapacity = MAXIMUM_CAPACITY;
601     int c = initialCapacity / ssize;
602 tim 1.11 if (c * ssize < initialCapacity)
603 dl 1.4 ++c;
604     int cap = 1;
605     while (cap < c)
606     cap <<= 1;
607    
608     for (int i = 0; i < this.segments.length; ++i)
609     this.segments[i] = new Segment<K,V>(cap, loadFactor);
610 tim 1.1 }
611    
612     /**
613 dl 1.55 * Creates a new, empty map with the specified initial capacity
614 jsr166 1.76 * and load factor and with the default concurrencyLevel (16).
615 dl 1.55 *
616     * @param initialCapacity The implementation performs internal
617     * sizing to accommodate this many elements.
618     * @param loadFactor the load factor threshold, used to control resizing.
619 jsr166 1.68 * Resizing may be performed when the average number of elements per
620     * bin exceeds this threshold.
621 dl 1.55 * @throws IllegalArgumentException if the initial capacity of
622     * elements is negative or the load factor is nonpositive
623 jsr166 1.78 *
624     * @since 1.6
625 dl 1.55 */
626     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
627 dl 1.56 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
628 dl 1.55 }
629    
630     /**
631 dl 1.56 * Creates a new, empty map with the specified initial capacity,
632 jsr166 1.76 * and with default load factor (0.75) and concurrencyLevel (16).
633 tim 1.1 *
634 dl 1.58 * @param initialCapacity the initial capacity. The implementation
635     * performs internal sizing to accommodate this many elements.
636 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
637     * elements is negative.
638 tim 1.1 */
639     public ConcurrentHashMap(int initialCapacity) {
640 dl 1.56 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
641 tim 1.1 }
642    
643     /**
644 jsr166 1.76 * Creates a new, empty map with a default initial capacity (16),
645     * load factor (0.75) and concurrencyLevel (16).
646 tim 1.1 */
647     public ConcurrentHashMap() {
648 dl 1.56 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
649 tim 1.1 }
650    
651     /**
652 jsr166 1.76 * Creates a new map with the same mappings as the given map.
653     * The map is created with a capacity of 1.5 times the number
654     * of mappings in the given map or 16 (whichever is greater),
655     * and a default load factor (0.75) and concurrencyLevel (16).
656     *
657 jsr166 1.68 * @param m the map
658 tim 1.1 */
659 jsr166 1.68 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
660     this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
661 dl 1.56 DEFAULT_INITIAL_CAPACITY),
662     DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 jsr166 1.68 putAll(m);
664 tim 1.1 }
665    
666 dl 1.56 /**
667     * Returns <tt>true</tt> if this map contains no key-value mappings.
668     *
669 jsr166 1.68 * @return <tt>true</tt> if this map contains no key-value mappings
670 dl 1.56 */
671 tim 1.1 public boolean isEmpty() {
672 dl 1.71 final Segment<K,V>[] segments = this.segments;
673 dl 1.21 /*
674 dl 1.45 * We keep track of per-segment modCounts to avoid ABA
675 dl 1.21 * problems in which an element in one segment was added and
676     * in another removed during traversal, in which case the
677     * table was never actually empty at any point. Note the
678     * similar use of modCounts in the size() and containsValue()
679     * methods, which are the only other methods also susceptible
680     * to ABA problems.
681     */
682     int[] mc = new int[segments.length];
683     int mcsum = 0;
684     for (int i = 0; i < segments.length; ++i) {
685 dl 1.4 if (segments[i].count != 0)
686 tim 1.1 return false;
687 jsr166 1.64 else
688 dl 1.21 mcsum += mc[i] = segments[i].modCount;
689     }
690     // If mcsum happens to be zero, then we know we got a snapshot
691     // before any modifications at all were made. This is
692     // probably common enough to bother tracking.
693     if (mcsum != 0) {
694     for (int i = 0; i < segments.length; ++i) {
695     if (segments[i].count != 0 ||
696 jsr166 1.64 mc[i] != segments[i].modCount)
697 dl 1.21 return false;
698     }
699     }
700 tim 1.1 return true;
701     }
702    
703 dl 1.56 /**
704     * Returns the number of key-value mappings in this map. If the
705     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706     * <tt>Integer.MAX_VALUE</tt>.
707     *
708 jsr166 1.68 * @return the number of key-value mappings in this map
709 dl 1.56 */
710 dl 1.21 public int size() {
711 dl 1.71 final Segment<K,V>[] segments = this.segments;
712 dl 1.45 long sum = 0;
713     long check = 0;
714 dl 1.21 int[] mc = new int[segments.length];
715 dl 1.46 // Try a few times to get accurate count. On failure due to
716 dl 1.45 // continuous async changes in table, resort to locking.
717 dl 1.46 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
718 dl 1.45 check = 0;
719     sum = 0;
720 dl 1.21 int mcsum = 0;
721     for (int i = 0; i < segments.length; ++i) {
722     sum += segments[i].count;
723     mcsum += mc[i] = segments[i].modCount;
724     }
725     if (mcsum != 0) {
726     for (int i = 0; i < segments.length; ++i) {
727     check += segments[i].count;
728     if (mc[i] != segments[i].modCount) {
729     check = -1; // force retry
730     break;
731     }
732     }
733     }
734 jsr166 1.64 if (check == sum)
735 dl 1.45 break;
736     }
737     if (check != sum) { // Resort to locking all segments
738     sum = 0;
739 jsr166 1.64 for (int i = 0; i < segments.length; ++i)
740 dl 1.45 segments[i].lock();
741 jsr166 1.64 for (int i = 0; i < segments.length; ++i)
742 dl 1.45 sum += segments[i].count;
743 jsr166 1.64 for (int i = 0; i < segments.length; ++i)
744 dl 1.45 segments[i].unlock();
745 dl 1.21 }
746 dl 1.45 if (sum > Integer.MAX_VALUE)
747     return Integer.MAX_VALUE;
748     else
749     return (int)sum;
750 dl 1.21 }
751    
752 tim 1.1 /**
753 jsr166 1.85 * Returns the value to which the specified key is mapped,
754     * or {@code null} if this map contains no mapping for the key.
755     *
756     * <p>More formally, if this map contains a mapping from a key
757     * {@code k} to a value {@code v} such that {@code key.equals(k)},
758     * then this method returns {@code v}; otherwise it returns
759     * {@code null}. (There can be at most one such mapping.)
760 tim 1.1 *
761 jsr166 1.68 * @throws NullPointerException if the specified key is null
762 tim 1.1 */
763 tim 1.11 public V get(Object key) {
764 dl 1.89 int hash = hash(key.hashCode());
765 dl 1.29 return segmentFor(hash).get(key, hash);
766 tim 1.1 }
767    
768     /**
769     * Tests if the specified object is a key in this table.
770 tim 1.11 *
771 jsr166 1.68 * @param key possible key
772     * @return <tt>true</tt> if and only if the specified object
773     * is a key in this table, as determined by the
774     * <tt>equals</tt> method; <tt>false</tt> otherwise.
775     * @throws NullPointerException if the specified key is null
776 tim 1.1 */
777     public boolean containsKey(Object key) {
778 dl 1.89 int hash = hash(key.hashCode());
779 dl 1.9 return segmentFor(hash).containsKey(key, hash);
780 tim 1.1 }
781    
782     /**
783     * Returns <tt>true</tt> if this map maps one or more keys to the
784     * specified value. Note: This method requires a full internal
785     * traversal of the hash table, and so is much slower than
786     * method <tt>containsKey</tt>.
787     *
788 jsr166 1.68 * @param value value whose presence in this map is to be tested
789 tim 1.1 * @return <tt>true</tt> if this map maps one or more keys to the
790 jsr166 1.68 * specified value
791     * @throws NullPointerException if the specified value is null
792 tim 1.1 */
793     public boolean containsValue(Object value) {
794 tim 1.11 if (value == null)
795 dl 1.4 throw new NullPointerException();
796 jsr166 1.64
797 dl 1.45 // See explanation of modCount use above
798 tim 1.1
799 dl 1.71 final Segment<K,V>[] segments = this.segments;
800 dl 1.21 int[] mc = new int[segments.length];
801 dl 1.45
802 dl 1.46 // Try a few times without locking
803     for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 dl 1.21 int sum = 0;
805     int mcsum = 0;
806     for (int i = 0; i < segments.length; ++i) {
807     int c = segments[i].count;
808     mcsum += mc[i] = segments[i].modCount;
809     if (segments[i].containsValue(value))
810     return true;
811     }
812     boolean cleanSweep = true;
813     if (mcsum != 0) {
814     for (int i = 0; i < segments.length; ++i) {
815     int c = segments[i].count;
816     if (mc[i] != segments[i].modCount) {
817     cleanSweep = false;
818     break;
819     }
820     }
821     }
822     if (cleanSweep)
823     return false;
824 tim 1.1 }
825 dl 1.45 // Resort to locking all segments
826 jsr166 1.64 for (int i = 0; i < segments.length; ++i)
827 dl 1.45 segments[i].lock();
828     boolean found = false;
829     try {
830     for (int i = 0; i < segments.length; ++i) {
831     if (segments[i].containsValue(value)) {
832     found = true;
833     break;
834     }
835     }
836     } finally {
837 jsr166 1.64 for (int i = 0; i < segments.length; ++i)
838 dl 1.45 segments[i].unlock();
839     }
840     return found;
841 tim 1.1 }
842 dl 1.19
843 tim 1.1 /**
844 dl 1.18 * Legacy method testing if some key maps into the specified value
845 dl 1.23 * in this table. This method is identical in functionality to
846 jsr166 1.68 * {@link #containsValue}, and exists solely to ensure
847 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
848 dl 1.18 * which supported this method prior to introduction of the
849 dl 1.23 * Java Collections framework.
850 dl 1.17
851 jsr166 1.68 * @param value a value to search for
852     * @return <tt>true</tt> if and only if some key maps to the
853     * <tt>value</tt> argument in this table as
854     * determined by the <tt>equals</tt> method;
855     * <tt>false</tt> otherwise
856     * @throws NullPointerException if the specified value is null
857 tim 1.1 */
858 dl 1.4 public boolean contains(Object value) {
859 tim 1.1 return containsValue(value);
860     }
861    
862     /**
863 jsr166 1.75 * Maps the specified key to the specified value in this table.
864     * Neither the key nor the value can be null.
865 dl 1.4 *
866 dl 1.44 * <p> The value can be retrieved by calling the <tt>get</tt> method
867 tim 1.11 * with a key that is equal to the original key.
868 dl 1.4 *
869 jsr166 1.68 * @param key key with which the specified value is to be associated
870     * @param value value to be associated with the specified key
871     * @return the previous value associated with <tt>key</tt>, or
872     * <tt>null</tt> if there was no mapping for <tt>key</tt>
873     * @throws NullPointerException if the specified key or value is null
874 dl 1.4 */
875 tim 1.11 public V put(K key, V value) {
876     if (value == null)
877 dl 1.4 throw new NullPointerException();
878 dl 1.89 int hash = hash(key.hashCode());
879 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
880 dl 1.4 }
881    
882     /**
883 jsr166 1.68 * {@inheritDoc}
884     *
885     * @return the previous value associated with the specified key,
886     * or <tt>null</tt> if there was no mapping for the key
887     * @throws NullPointerException if the specified key or value is null
888 dl 1.51 */
889 tim 1.11 public V putIfAbsent(K key, V value) {
890     if (value == null)
891 dl 1.4 throw new NullPointerException();
892 dl 1.89 int hash = hash(key.hashCode());
893 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
894 dl 1.4 }
895    
896     /**
897 tim 1.1 * Copies all of the mappings from the specified map to this one.
898     * These mappings replace any mappings that this map had for any of the
899 jsr166 1.68 * keys currently in the specified map.
900 tim 1.1 *
901 jsr166 1.68 * @param m mappings to be stored in this map
902 tim 1.1 */
903 jsr166 1.68 public void putAll(Map<? extends K, ? extends V> m) {
904 jsr166 1.84 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
905 dl 1.4 put(e.getKey(), e.getValue());
906     }
907    
908     /**
909 jsr166 1.68 * Removes the key (and its corresponding value) from this map.
910     * This method does nothing if the key is not in the map.
911 dl 1.4 *
912 jsr166 1.68 * @param key the key that needs to be removed
913     * @return the previous value associated with <tt>key</tt>, or
914 jsr166 1.84 * <tt>null</tt> if there was no mapping for <tt>key</tt>
915 jsr166 1.68 * @throws NullPointerException if the specified key is null
916 dl 1.4 */
917     public V remove(Object key) {
918 dl 1.89 int hash = hash(key.hashCode());
919 dl 1.9 return segmentFor(hash).remove(key, hash, null);
920 dl 1.4 }
921 tim 1.1
922 dl 1.4 /**
923 jsr166 1.68 * {@inheritDoc}
924     *
925 jsr166 1.69 * @throws NullPointerException if the specified key is null
926 dl 1.4 */
927 dl 1.13 public boolean remove(Object key, Object value) {
928 dl 1.89 int hash = hash(key.hashCode());
929 jsr166 1.68 if (value == null)
930 jsr166 1.69 return false;
931 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
932 tim 1.1 }
933 dl 1.31
934     /**
935 jsr166 1.68 * {@inheritDoc}
936     *
937     * @throws NullPointerException if any of the arguments are null
938 dl 1.31 */
939     public boolean replace(K key, V oldValue, V newValue) {
940     if (oldValue == null || newValue == null)
941     throw new NullPointerException();
942 dl 1.89 int hash = hash(key.hashCode());
943 dl 1.31 return segmentFor(hash).replace(key, hash, oldValue, newValue);
944 dl 1.32 }
945    
946     /**
947 jsr166 1.68 * {@inheritDoc}
948     *
949     * @return the previous value associated with the specified key,
950     * or <tt>null</tt> if there was no mapping for the key
951     * @throws NullPointerException if the specified key or value is null
952 dl 1.32 */
953 dl 1.33 public V replace(K key, V value) {
954 dl 1.32 if (value == null)
955     throw new NullPointerException();
956 dl 1.89 int hash = hash(key.hashCode());
957 dl 1.33 return segmentFor(hash).replace(key, hash, value);
958 dl 1.31 }
959    
960 tim 1.1 /**
961 jsr166 1.68 * Removes all of the mappings from this map.
962 tim 1.1 */
963     public void clear() {
964 tim 1.11 for (int i = 0; i < segments.length; ++i)
965 dl 1.4 segments[i].clear();
966 tim 1.1 }
967    
968     /**
969 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
970     * The set is backed by the map, so changes to the map are
971     * reflected in the set, and vice-versa. The set supports element
972     * removal, which removes the corresponding mapping from this map,
973     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975     * operations. It does not support the <tt>add</tt> or
976 tim 1.1 * <tt>addAll</tt> operations.
977 jsr166 1.68 *
978     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979     * that will never throw {@link ConcurrentModificationException},
980 dl 1.14 * and guarantees to traverse elements as they existed upon
981     * construction of the iterator, and may (but is not guaranteed to)
982     * reflect any modifications subsequent to construction.
983 tim 1.1 */
984     public Set<K> keySet() {
985     Set<K> ks = keySet;
986 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
987 tim 1.1 }
988    
989     /**
990 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
991     * The collection is backed by the map, so changes to the map are
992     * reflected in the collection, and vice-versa. The collection
993     * supports element removal, which removes the corresponding
994     * mapping from this map, via the <tt>Iterator.remove</tt>,
995     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
997     * support the <tt>add</tt> or <tt>addAll</tt> operations.
998     *
999     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000     * that will never throw {@link ConcurrentModificationException},
1001 dl 1.14 * and guarantees to traverse elements as they existed upon
1002     * construction of the iterator, and may (but is not guaranteed to)
1003     * reflect any modifications subsequent to construction.
1004 tim 1.1 */
1005     public Collection<V> values() {
1006     Collection<V> vs = values;
1007 dl 1.8 return (vs != null) ? vs : (values = new Values());
1008 tim 1.1 }
1009    
1010     /**
1011 jsr166 1.68 * Returns a {@link Set} view of the mappings contained in this map.
1012     * The set is backed by the map, so changes to the map are
1013     * reflected in the set, and vice-versa. The set supports element
1014     * removal, which removes the corresponding mapping from the map,
1015     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1016     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1017     * operations. It does not support the <tt>add</tt> or
1018     * <tt>addAll</tt> operations.
1019     *
1020     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1021     * that will never throw {@link ConcurrentModificationException},
1022 dl 1.14 * and guarantees to traverse elements as they existed upon
1023     * construction of the iterator, and may (but is not guaranteed to)
1024     * reflect any modifications subsequent to construction.
1025 tim 1.1 */
1026     public Set<Map.Entry<K,V>> entrySet() {
1027     Set<Map.Entry<K,V>> es = entrySet;
1028 jsr166 1.65 return (es != null) ? es : (entrySet = new EntrySet());
1029 tim 1.1 }
1030    
1031     /**
1032     * Returns an enumeration of the keys in this table.
1033     *
1034 jsr166 1.70 * @return an enumeration of the keys in this table
1035     * @see #keySet
1036 tim 1.1 */
1037 dl 1.4 public Enumeration<K> keys() {
1038 tim 1.1 return new KeyIterator();
1039     }
1040    
1041     /**
1042     * Returns an enumeration of the values in this table.
1043     *
1044 jsr166 1.70 * @return an enumeration of the values in this table
1045     * @see #values
1046 tim 1.1 */
1047 dl 1.4 public Enumeration<V> elements() {
1048 tim 1.1 return new ValueIterator();
1049     }
1050    
1051 dl 1.4 /* ---------------- Iterator Support -------------- */
1052 tim 1.11
1053 jsr166 1.82 abstract class HashIterator {
1054 dl 1.41 int nextSegmentIndex;
1055     int nextTableIndex;
1056 dl 1.71 HashEntry<K,V>[] currentTable;
1057 dl 1.41 HashEntry<K, V> nextEntry;
1058 dl 1.30 HashEntry<K, V> lastReturned;
1059 tim 1.1
1060 dl 1.41 HashIterator() {
1061 dl 1.8 nextSegmentIndex = segments.length - 1;
1062 dl 1.4 nextTableIndex = -1;
1063     advance();
1064 tim 1.1 }
1065    
1066     public boolean hasMoreElements() { return hasNext(); }
1067    
1068 dl 1.41 final void advance() {
1069 dl 1.4 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1070     return;
1071 tim 1.11
1072 dl 1.4 while (nextTableIndex >= 0) {
1073 dl 1.71 if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1074 dl 1.4 return;
1075     }
1076 tim 1.11
1077 dl 1.4 while (nextSegmentIndex >= 0) {
1078 dl 1.71 Segment<K,V> seg = segments[nextSegmentIndex--];
1079 dl 1.4 if (seg.count != 0) {
1080     currentTable = seg.table;
1081 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1082 dl 1.71 if ( (nextEntry = currentTable[j]) != null) {
1083 dl 1.8 nextTableIndex = j - 1;
1084 dl 1.4 return;
1085     }
1086 tim 1.1 }
1087     }
1088     }
1089     }
1090    
1091 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1092 tim 1.1
1093 dl 1.4 HashEntry<K,V> nextEntry() {
1094     if (nextEntry == null)
1095 tim 1.1 throw new NoSuchElementException();
1096 dl 1.4 lastReturned = nextEntry;
1097     advance();
1098     return lastReturned;
1099 tim 1.1 }
1100    
1101     public void remove() {
1102     if (lastReturned == null)
1103     throw new IllegalStateException();
1104     ConcurrentHashMap.this.remove(lastReturned.key);
1105     lastReturned = null;
1106     }
1107 dl 1.4 }
1108    
1109 jsr166 1.82 final class KeyIterator
1110     extends HashIterator
1111     implements Iterator<K>, Enumeration<K>
1112     {
1113     public K next() { return super.nextEntry().key; }
1114 dl 1.4 public K nextElement() { return super.nextEntry().key; }
1115     }
1116    
1117 jsr166 1.82 final class ValueIterator
1118     extends HashIterator
1119     implements Iterator<V>, Enumeration<V>
1120     {
1121     public V next() { return super.nextEntry().value; }
1122 dl 1.4 public V nextElement() { return super.nextEntry().value; }
1123     }
1124 tim 1.1
1125 dl 1.30 /**
1126 dl 1.79 * Custom Entry class used by EntryIterator.next(), that relays
1127     * setValue changes to the underlying map.
1128 jsr166 1.80 */
1129 jsr166 1.83 final class WriteThroughEntry
1130 jsr166 1.81 extends AbstractMap.SimpleEntry<K,V>
1131     {
1132 jsr166 1.83 WriteThroughEntry(K k, V v) {
1133 jsr166 1.80 super(k,v);
1134 dl 1.79 }
1135    
1136     /**
1137     * Set our entry's value and write through to the map. The
1138     * value to return is somewhat arbitrary here. Since a
1139     * WriteThroughEntry does not necessarily track asynchronous
1140     * changes, the most recent "previous" value could be
1141 jsr166 1.81 * different from what we return (or could even have been
1142 dl 1.79 * removed in which case the put will re-establish). We do not
1143     * and cannot guarantee more.
1144     */
1145     public V setValue(V value) {
1146     if (value == null) throw new NullPointerException();
1147     V v = super.setValue(value);
1148 jsr166 1.83 ConcurrentHashMap.this.put(getKey(), value);
1149 dl 1.79 return v;
1150 dl 1.30 }
1151 dl 1.79 }
1152 dl 1.30
1153 jsr166 1.82 final class EntryIterator
1154     extends HashIterator
1155     implements Iterator<Entry<K,V>>
1156     {
1157 dl 1.79 public Map.Entry<K,V> next() {
1158     HashEntry<K,V> e = super.nextEntry();
1159 jsr166 1.83 return new WriteThroughEntry(e.key, e.value);
1160 dl 1.30 }
1161 tim 1.1 }
1162    
1163 dl 1.41 final class KeySet extends AbstractSet<K> {
1164 dl 1.4 public Iterator<K> iterator() {
1165     return new KeyIterator();
1166     }
1167     public int size() {
1168     return ConcurrentHashMap.this.size();
1169     }
1170     public boolean contains(Object o) {
1171     return ConcurrentHashMap.this.containsKey(o);
1172     }
1173     public boolean remove(Object o) {
1174     return ConcurrentHashMap.this.remove(o) != null;
1175     }
1176     public void clear() {
1177     ConcurrentHashMap.this.clear();
1178     }
1179 tim 1.1 }
1180    
1181 dl 1.41 final class Values extends AbstractCollection<V> {
1182 dl 1.4 public Iterator<V> iterator() {
1183     return new ValueIterator();
1184     }
1185     public int size() {
1186     return ConcurrentHashMap.this.size();
1187     }
1188     public boolean contains(Object o) {
1189     return ConcurrentHashMap.this.containsValue(o);
1190     }
1191     public void clear() {
1192     ConcurrentHashMap.this.clear();
1193     }
1194 tim 1.1 }
1195    
1196 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1197 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1198     return new EntryIterator();
1199     }
1200     public boolean contains(Object o) {
1201     if (!(o instanceof Map.Entry))
1202     return false;
1203 dl 1.71 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1204 dl 1.4 V v = ConcurrentHashMap.this.get(e.getKey());
1205     return v != null && v.equals(e.getValue());
1206     }
1207     public boolean remove(Object o) {
1208     if (!(o instanceof Map.Entry))
1209     return false;
1210 dl 1.71 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1211 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1212 dl 1.4 }
1213     public int size() {
1214     return ConcurrentHashMap.this.size();
1215     }
1216     public void clear() {
1217     ConcurrentHashMap.this.clear();
1218 dl 1.30 }
1219     }
1220    
1221 dl 1.4 /* ---------------- Serialization Support -------------- */
1222    
1223 tim 1.1 /**
1224 jsr166 1.68 * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1225     * stream (i.e., serialize it).
1226 dl 1.8 * @param s the stream
1227 tim 1.1 * @serialData
1228     * the key (Object) and value (Object)
1229     * for each key-value mapping, followed by a null pair.
1230     * The key-value mappings are emitted in no particular order.
1231     */
1232     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1233     s.defaultWriteObject();
1234    
1235     for (int k = 0; k < segments.length; ++k) {
1236 dl 1.71 Segment<K,V> seg = segments[k];
1237 dl 1.2 seg.lock();
1238     try {
1239 dl 1.71 HashEntry<K,V>[] tab = seg.table;
1240 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1241 dl 1.71 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1242 dl 1.4 s.writeObject(e.key);
1243     s.writeObject(e.value);
1244     }
1245     }
1246 tim 1.16 } finally {
1247 dl 1.2 seg.unlock();
1248     }
1249 tim 1.1 }
1250     s.writeObject(null);
1251     s.writeObject(null);
1252     }
1253    
1254     /**
1255 jsr166 1.68 * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1256     * stream (i.e., deserialize it).
1257 dl 1.8 * @param s the stream
1258 tim 1.1 */
1259     private void readObject(java.io.ObjectInputStream s)
1260     throws IOException, ClassNotFoundException {
1261     s.defaultReadObject();
1262    
1263 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1264     for (int i = 0; i < segments.length; ++i) {
1265 dl 1.73 segments[i].setTable(new HashEntry[1]);
1266 dl 1.4 }
1267 tim 1.1
1268     // Read the keys and values, and put the mappings in the table
1269 dl 1.9 for (;;) {
1270 tim 1.1 K key = (K) s.readObject();
1271     V value = (V) s.readObject();
1272     if (key == null)
1273     break;
1274     put(key, value);
1275     }
1276     }
1277     }