ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.162
Committed: Wed Jan 16 15:04:03 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.161: +4 -4 lines
Log Message:
lambda-lib support

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent}. For example, to add a count to a {@code
99 * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100 * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </li>
153 * </ul>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K, V>
218 implements ConcurrentMap<K, V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1)
1696 addCount(delta, len);
1697 break;
1698 }
1699 }
1700 }
1701 }
1702 } finally {
1703 if (delta != 0L)
1704 addCount(delta, 2);
1705 }
1706 if (npe)
1707 throw new NullPointerException();
1708 }
1709
1710 /**
1711 * Implementation for clear. Steps through each bin, removing all
1712 * nodes.
1713 */
1714 @SuppressWarnings("unchecked") private final void internalClear() {
1715 long delta = 0L; // negative number of deletions
1716 int i = 0;
1717 Node<V>[] tab = table;
1718 while (tab != null && i < tab.length) {
1719 Node<V> f = tabAt(tab, i);
1720 if (f == null)
1721 ++i;
1722 else if (f.hash < 0) {
1723 Object fk;
1724 if ((fk = f.key) instanceof TreeBin) {
1725 TreeBin<V> t = (TreeBin<V>)fk;
1726 t.acquire(0);
1727 try {
1728 if (tabAt(tab, i) == f) {
1729 for (Node<V> p = t.first; p != null; p = p.next) {
1730 if (p.val != null) { // (currently always true)
1731 p.val = null;
1732 --delta;
1733 }
1734 }
1735 t.first = null;
1736 t.root = null;
1737 ++i;
1738 }
1739 } finally {
1740 t.release(0);
1741 }
1742 }
1743 else
1744 tab = (Node<V>[])fk;
1745 }
1746 else {
1747 synchronized (f) {
1748 if (tabAt(tab, i) == f) {
1749 for (Node<V> e = f; e != null; e = e.next) {
1750 if (e.val != null) { // (currently always true)
1751 e.val = null;
1752 --delta;
1753 }
1754 }
1755 setTabAt(tab, i, null);
1756 ++i;
1757 }
1758 }
1759 }
1760 }
1761 if (delta != 0L)
1762 addCount(delta, -1);
1763 }
1764
1765 /* ---------------- Table Initialization and Resizing -------------- */
1766
1767 /**
1768 * Returns a power of two table size for the given desired capacity.
1769 * See Hackers Delight, sec 3.2
1770 */
1771 private static final int tableSizeFor(int c) {
1772 int n = c - 1;
1773 n |= n >>> 1;
1774 n |= n >>> 2;
1775 n |= n >>> 4;
1776 n |= n >>> 8;
1777 n |= n >>> 16;
1778 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1779 }
1780
1781 /**
1782 * Initializes table, using the size recorded in sizeCtl.
1783 */
1784 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1785 Node<V>[] tab; int sc;
1786 while ((tab = table) == null) {
1787 if ((sc = sizeCtl) < 0)
1788 Thread.yield(); // lost initialization race; just spin
1789 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1790 try {
1791 if ((tab = table) == null) {
1792 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1793 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1794 table = tab = (Node<V>[])tb;
1795 sc = n - (n >>> 2);
1796 }
1797 } finally {
1798 sizeCtl = sc;
1799 }
1800 break;
1801 }
1802 }
1803 return tab;
1804 }
1805
1806 /**
1807 * Adds to count, and if table is too small and not already
1808 * resizing, initiates transfer. If already resizing, helps
1809 * perform transfer if work is available. Rechecks occupancy
1810 * after a transfer to see if another resize is already needed
1811 * because resizings are lagging additions.
1812 *
1813 * @param x the count to add
1814 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1815 */
1816 private final void addCount(long x, int check) {
1817 Cell[] as; long b, s;
1818 if ((as = counterCells) != null ||
1819 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1820 Cell a; long v; int m;
1821 boolean uncontended = true;
1822 if (as == null || (m = as.length - 1) < 0 ||
1823 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1824 !(uncontended =
1825 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1826 fullAddCount(x, uncontended);
1827 return;
1828 }
1829 if (check <= 1)
1830 return;
1831 s = sumCount();
1832 }
1833 if (check >= 0) {
1834 Node<V>[] tab, nt; int sc;
1835 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1836 tab.length < MAXIMUM_CAPACITY) {
1837 if (sc < 0) {
1838 if (sc == -1 || transferIndex <= transferOrigin ||
1839 (nt = nextTable) == null)
1840 break;
1841 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1842 transfer(tab, nt);
1843 }
1844 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1845 transfer(tab, null);
1846 s = sumCount();
1847 }
1848 }
1849 }
1850
1851 /**
1852 * Tries to presize table to accommodate the given number of elements.
1853 *
1854 * @param size number of elements (doesn't need to be perfectly accurate)
1855 */
1856 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1857 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1858 tableSizeFor(size + (size >>> 1) + 1);
1859 int sc;
1860 while ((sc = sizeCtl) >= 0) {
1861 Node<V>[] tab = table; int n;
1862 if (tab == null || (n = tab.length) == 0) {
1863 n = (sc > c) ? sc : c;
1864 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1865 try {
1866 if (table == tab) {
1867 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1868 table = (Node<V>[])tb;
1869 sc = n - (n >>> 2);
1870 }
1871 } finally {
1872 sizeCtl = sc;
1873 }
1874 }
1875 }
1876 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1877 break;
1878 else if (tab == table &&
1879 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1880 transfer(tab, null);
1881 }
1882 }
1883
1884 /*
1885 * Moves and/or copies the nodes in each bin to new table. See
1886 * above for explanation.
1887 */
1888 @SuppressWarnings("unchecked") private final void transfer
1889 (Node<V>[] tab, Node<V>[] nextTab) {
1890 int n = tab.length, stride;
1891 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1892 stride = MIN_TRANSFER_STRIDE; // subdivide range
1893 if (nextTab == null) { // initiating
1894 try {
1895 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1896 nextTab = (Node<V>[])tb;
1897 } catch (Throwable ex) { // try to cope with OOME
1898 sizeCtl = Integer.MAX_VALUE;
1899 return;
1900 }
1901 nextTable = nextTab;
1902 transferOrigin = n;
1903 transferIndex = n;
1904 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1905 for (int k = n; k > 0;) { // progressively reveal ready slots
1906 int nextk = (k > stride) ? k - stride : 0;
1907 for (int m = nextk; m < k; ++m)
1908 nextTab[m] = rev;
1909 for (int m = n + nextk; m < n + k; ++m)
1910 nextTab[m] = rev;
1911 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1912 }
1913 }
1914 int nextn = nextTab.length;
1915 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1916 boolean advance = true;
1917 for (int i = 0, bound = 0;;) {
1918 int nextIndex, nextBound; Node<V> f; Object fk;
1919 while (advance) {
1920 if (--i >= bound)
1921 advance = false;
1922 else if ((nextIndex = transferIndex) <= transferOrigin) {
1923 i = -1;
1924 advance = false;
1925 }
1926 else if (U.compareAndSwapInt
1927 (this, TRANSFERINDEX, nextIndex,
1928 nextBound = (nextIndex > stride ?
1929 nextIndex - stride : 0))) {
1930 bound = nextBound;
1931 i = nextIndex - 1;
1932 advance = false;
1933 }
1934 }
1935 if (i < 0 || i >= n || i + n >= nextn) {
1936 for (int sc;;) {
1937 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1938 if (sc == -1) {
1939 nextTable = null;
1940 table = nextTab;
1941 sizeCtl = (n << 1) - (n >>> 1);
1942 }
1943 return;
1944 }
1945 }
1946 }
1947 else if ((f = tabAt(tab, i)) == null) {
1948 if (casTabAt(tab, i, null, fwd)) {
1949 setTabAt(nextTab, i, null);
1950 setTabAt(nextTab, i + n, null);
1951 advance = true;
1952 }
1953 }
1954 else if (f.hash >= 0) {
1955 synchronized (f) {
1956 if (tabAt(tab, i) == f) {
1957 int runBit = f.hash & n;
1958 Node<V> lastRun = f, lo = null, hi = null;
1959 for (Node<V> p = f.next; p != null; p = p.next) {
1960 int b = p.hash & n;
1961 if (b != runBit) {
1962 runBit = b;
1963 lastRun = p;
1964 }
1965 }
1966 if (runBit == 0)
1967 lo = lastRun;
1968 else
1969 hi = lastRun;
1970 for (Node<V> p = f; p != lastRun; p = p.next) {
1971 int ph = p.hash;
1972 Object pk = p.key; V pv = p.val;
1973 if ((ph & n) == 0)
1974 lo = new Node<V>(ph, pk, pv, lo);
1975 else
1976 hi = new Node<V>(ph, pk, pv, hi);
1977 }
1978 setTabAt(nextTab, i, lo);
1979 setTabAt(nextTab, i + n, hi);
1980 setTabAt(tab, i, fwd);
1981 advance = true;
1982 }
1983 }
1984 }
1985 else if ((fk = f.key) instanceof TreeBin) {
1986 TreeBin<V> t = (TreeBin<V>)fk;
1987 t.acquire(0);
1988 try {
1989 if (tabAt(tab, i) == f) {
1990 TreeBin<V> lt = new TreeBin<V>();
1991 TreeBin<V> ht = new TreeBin<V>();
1992 int lc = 0, hc = 0;
1993 for (Node<V> e = t.first; e != null; e = e.next) {
1994 int h = e.hash;
1995 Object k = e.key; V v = e.val;
1996 if ((h & n) == 0) {
1997 ++lc;
1998 lt.putTreeNode(h, k, v);
1999 }
2000 else {
2001 ++hc;
2002 ht.putTreeNode(h, k, v);
2003 }
2004 }
2005 Node<V> ln, hn; // throw away trees if too small
2006 if (lc < TREE_THRESHOLD) {
2007 ln = null;
2008 for (Node<V> p = lt.first; p != null; p = p.next)
2009 ln = new Node<V>(p.hash, p.key, p.val, ln);
2010 }
2011 else
2012 ln = new Node<V>(MOVED, lt, null, null);
2013 setTabAt(nextTab, i, ln);
2014 if (hc < TREE_THRESHOLD) {
2015 hn = null;
2016 for (Node<V> p = ht.first; p != null; p = p.next)
2017 hn = new Node<V>(p.hash, p.key, p.val, hn);
2018 }
2019 else
2020 hn = new Node<V>(MOVED, ht, null, null);
2021 setTabAt(nextTab, i + n, hn);
2022 setTabAt(tab, i, fwd);
2023 advance = true;
2024 }
2025 } finally {
2026 t.release(0);
2027 }
2028 }
2029 else
2030 advance = true; // already processed
2031 }
2032 }
2033
2034 /* ---------------- Counter support -------------- */
2035
2036 final long sumCount() {
2037 Cell[] as = counterCells; Cell a;
2038 long sum = baseCount;
2039 if (as != null) {
2040 for (int i = 0; i < as.length; ++i) {
2041 if ((a = as[i]) != null)
2042 sum += a.value;
2043 }
2044 }
2045 return sum;
2046 }
2047
2048 // See LongAdder version for explanation
2049 private final void fullAddCount(long x, boolean wasUncontended) {
2050 int h;
2051 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2052 ThreadLocalRandom.localInit(); // force initialization
2053 h = ThreadLocalRandom.getProbe();
2054 wasUncontended = true;
2055 }
2056 boolean collide = false; // True if last slot nonempty
2057 for (;;) {
2058 Cell[] as; Cell a; int n; long v;
2059 if ((as = counterCells) != null && (n = as.length) > 0) {
2060 if ((a = as[(n - 1) & h]) == null) {
2061 if (cellsBusy == 0) { // Try to attach new Cell
2062 Cell r = new Cell(x); // Optimistic create
2063 if (cellsBusy == 0 &&
2064 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2065 boolean created = false;
2066 try { // Recheck under lock
2067 Cell[] rs; int m, j;
2068 if ((rs = counterCells) != null &&
2069 (m = rs.length) > 0 &&
2070 rs[j = (m - 1) & h] == null) {
2071 rs[j] = r;
2072 created = true;
2073 }
2074 } finally {
2075 cellsBusy = 0;
2076 }
2077 if (created)
2078 break;
2079 continue; // Slot is now non-empty
2080 }
2081 }
2082 collide = false;
2083 }
2084 else if (!wasUncontended) // CAS already known to fail
2085 wasUncontended = true; // Continue after rehash
2086 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2087 break;
2088 else if (counterCells != as || n >= NCPU)
2089 collide = false; // At max size or stale
2090 else if (!collide)
2091 collide = true;
2092 else if (cellsBusy == 0 &&
2093 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2094 try {
2095 if (counterCells == as) {// Expand table unless stale
2096 Cell[] rs = new Cell[n << 1];
2097 for (int i = 0; i < n; ++i)
2098 rs[i] = as[i];
2099 counterCells = rs;
2100 }
2101 } finally {
2102 cellsBusy = 0;
2103 }
2104 collide = false;
2105 continue; // Retry with expanded table
2106 }
2107 h = ThreadLocalRandom.advanceProbe(h);
2108 }
2109 else if (cellsBusy == 0 && counterCells == as &&
2110 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2111 boolean init = false;
2112 try { // Initialize table
2113 if (counterCells == as) {
2114 Cell[] rs = new Cell[2];
2115 rs[h & 1] = new Cell(x);
2116 counterCells = rs;
2117 init = true;
2118 }
2119 } finally {
2120 cellsBusy = 0;
2121 }
2122 if (init)
2123 break;
2124 }
2125 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2126 break; // Fall back on using base
2127 }
2128 }
2129
2130 /* ----------------Table Traversal -------------- */
2131
2132 /**
2133 * Encapsulates traversal for methods such as containsValue; also
2134 * serves as a base class for other iterators and bulk tasks.
2135 *
2136 * At each step, the iterator snapshots the key ("nextKey") and
2137 * value ("nextVal") of a valid node (i.e., one that, at point of
2138 * snapshot, has a non-null user value). Because val fields can
2139 * change (including to null, indicating deletion), field nextVal
2140 * might not be accurate at point of use, but still maintains the
2141 * weak consistency property of holding a value that was once
2142 * valid. To support iterator.remove, the nextKey field is not
2143 * updated (nulled out) when the iterator cannot advance.
2144 *
2145 * Internal traversals directly access these fields, as in:
2146 * {@code while (it.advance() != null) { process(it.nextKey); }}
2147 *
2148 * Exported iterators must track whether the iterator has advanced
2149 * (in hasNext vs next) (by setting/checking/nulling field
2150 * nextVal), and then extract key, value, or key-value pairs as
2151 * return values of next().
2152 *
2153 * The iterator visits once each still-valid node that was
2154 * reachable upon iterator construction. It might miss some that
2155 * were added to a bin after the bin was visited, which is OK wrt
2156 * consistency guarantees. Maintaining this property in the face
2157 * of possible ongoing resizes requires a fair amount of
2158 * bookkeeping state that is difficult to optimize away amidst
2159 * volatile accesses. Even so, traversal maintains reasonable
2160 * throughput.
2161 *
2162 * Normally, iteration proceeds bin-by-bin traversing lists.
2163 * However, if the table has been resized, then all future steps
2164 * must traverse both the bin at the current index as well as at
2165 * (index + baseSize); and so on for further resizings. To
2166 * paranoically cope with potential sharing by users of iterators
2167 * across threads, iteration terminates if a bounds checks fails
2168 * for a table read.
2169 *
2170 * This class supports both Spliterator-based traversal and
2171 * CountedCompleter-based bulk tasks. The same "batch" field is
2172 * used, but in slightly different ways, in the two cases. For
2173 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2174 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2175 * size that halves down to zero for leaf tasks, that is only
2176 * computed upon execution of the task. (Tasks can be submitted to
2177 * any pool, of any size, so we don't know scale factors until
2178 * running.)
2179 *
2180 * This class extends CountedCompleter to streamline parallel
2181 * iteration in bulk operations. This adds only a few fields of
2182 * space overhead, which is small enough in cases where it is not
2183 * needed to not worry about it. Because CountedCompleter is
2184 * Serializable, but iterators need not be, we need to add warning
2185 * suppressions.
2186 */
2187 @SuppressWarnings("serial") static class Traverser<K,V,R>
2188 extends CountedCompleter<R> {
2189 final ConcurrentHashMap<K, V> map;
2190 Node<V> next; // the next entry to use
2191 Object nextKey; // cached key field of next
2192 V nextVal; // cached val field of next
2193 Node<V>[] tab; // current table; updated if resized
2194 int index; // index of bin to use next
2195 int baseIndex; // current index of initial table
2196 int baseLimit; // index bound for initial table
2197 int baseSize; // initial table size
2198 int batch; // split control
2199 /** Creates iterator for all entries in the table. */
2200 Traverser(ConcurrentHashMap<K, V> map) {
2201 this.map = map;
2202 Node<V>[] t;
2203 if ((t = tab = map.table) != null)
2204 baseLimit = baseSize = t.length;
2205 }
2206
2207 /** Task constructor */
2208 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2209 super(it);
2210 this.map = map;
2211 this.batch = batch; // -1 if unknown
2212 if (it == null) {
2213 Node<V>[] t;
2214 if ((t = tab = map.table) != null)
2215 baseLimit = baseSize = t.length;
2216 }
2217 else { // split parent
2218 this.tab = it.tab;
2219 this.baseSize = it.baseSize;
2220 int hi = this.baseLimit = it.baseLimit;
2221 it.baseLimit = this.index = this.baseIndex =
2222 (hi + it.baseIndex + 1) >>> 1;
2223 }
2224 }
2225
2226 /** Spliterator constructor */
2227 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2228 super(it);
2229 this.map = map;
2230 if (it == null) {
2231 Node<V>[] t;
2232 if ((t = tab = map.table) != null)
2233 baseLimit = baseSize = t.length;
2234 long n = map.sumCount();
2235 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2236 (int)n);
2237 }
2238 else {
2239 this.tab = it.tab;
2240 this.baseSize = it.baseSize;
2241 int hi = this.baseLimit = it.baseLimit;
2242 it.baseLimit = this.index = this.baseIndex =
2243 (hi + it.baseIndex + 1) >>> 1;
2244 this.batch = it.batch >>>= 1;
2245 }
2246 }
2247
2248 /**
2249 * Advances next; returns nextVal or null if terminated.
2250 * See above for explanation.
2251 */
2252 @SuppressWarnings("unchecked") final V advance() {
2253 Node<V> e = next;
2254 V ev = null;
2255 outer: do {
2256 if (e != null) // advance past used/skipped node
2257 e = e.next;
2258 while (e == null) { // get to next non-null bin
2259 ConcurrentHashMap<K, V> m;
2260 Node<V>[] t; int b, i, n; Object ek; // must use locals
2261 if ((t = tab) != null)
2262 n = t.length;
2263 else if ((m = map) != null && (t = tab = m.table) != null)
2264 n = baseLimit = baseSize = t.length;
2265 else
2266 break outer;
2267 if ((b = baseIndex) >= baseLimit ||
2268 (i = index) < 0 || i >= n)
2269 break outer;
2270 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2271 if ((ek = e.key) instanceof TreeBin)
2272 e = ((TreeBin<V>)ek).first;
2273 else {
2274 tab = (Node<V>[])ek;
2275 continue; // restarts due to null val
2276 }
2277 } // visit upper slots if present
2278 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2279 }
2280 nextKey = e.key;
2281 } while ((ev = e.val) == null); // skip deleted or special nodes
2282 next = e;
2283 return nextVal = ev;
2284 }
2285
2286 public final void remove() {
2287 Object k = nextKey;
2288 if (k == null && (advance() == null || (k = nextKey) == null))
2289 throw new IllegalStateException();
2290 map.internalReplace(k, null, null);
2291 }
2292
2293 public final boolean hasNext() {
2294 return nextVal != null || advance() != null;
2295 }
2296
2297 public final boolean hasMoreElements() { return hasNext(); }
2298
2299 public void compute() { } // default no-op CountedCompleter body
2300
2301 /**
2302 * Returns a batch value > 0 if this task should (and must) be
2303 * split, if so, adding to pending count, and in any case
2304 * updating batch value. The initial batch value is approx
2305 * exp2 of the number of times (minus one) to split task by
2306 * two before executing leaf action. This value is faster to
2307 * compute and more convenient to use as a guide to splitting
2308 * than is the depth, since it is used while dividing by two
2309 * anyway.
2310 */
2311 final int preSplit() {
2312 int b; ForkJoinPool pool;
2313 if ((b = batch) < 0) { // force initialization
2314 int sp = (((pool = getPool()) == null) ?
2315 ForkJoinPool.getCommonPoolParallelism() :
2316 pool.getParallelism()) << 3; // slack of 8
2317 long n = map.sumCount();
2318 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2319 }
2320 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2321 if ((batch = b) > 0)
2322 addToPendingCount(1);
2323 return b;
2324 }
2325
2326 // spliterator support
2327
2328 public boolean hasExactSize() {
2329 return false;
2330 }
2331
2332 public boolean hasExactSplits() {
2333 return false;
2334 }
2335
2336 public long estimateSize() {
2337 return batch;
2338 }
2339 }
2340
2341 /* ---------------- Public operations -------------- */
2342
2343 /**
2344 * Creates a new, empty map with the default initial table size (16).
2345 */
2346 public ConcurrentHashMap() {
2347 }
2348
2349 /**
2350 * Creates a new, empty map with an initial table size
2351 * accommodating the specified number of elements without the need
2352 * to dynamically resize.
2353 *
2354 * @param initialCapacity The implementation performs internal
2355 * sizing to accommodate this many elements.
2356 * @throws IllegalArgumentException if the initial capacity of
2357 * elements is negative
2358 */
2359 public ConcurrentHashMap(int initialCapacity) {
2360 if (initialCapacity < 0)
2361 throw new IllegalArgumentException();
2362 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2363 MAXIMUM_CAPACITY :
2364 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2365 this.sizeCtl = cap;
2366 }
2367
2368 /**
2369 * Creates a new map with the same mappings as the given map.
2370 *
2371 * @param m the map
2372 */
2373 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2374 this.sizeCtl = DEFAULT_CAPACITY;
2375 internalPutAll(m);
2376 }
2377
2378 /**
2379 * Creates a new, empty map with an initial table size based on
2380 * the given number of elements ({@code initialCapacity}) and
2381 * initial table density ({@code loadFactor}).
2382 *
2383 * @param initialCapacity the initial capacity. The implementation
2384 * performs internal sizing to accommodate this many elements,
2385 * given the specified load factor.
2386 * @param loadFactor the load factor (table density) for
2387 * establishing the initial table size
2388 * @throws IllegalArgumentException if the initial capacity of
2389 * elements is negative or the load factor is nonpositive
2390 *
2391 * @since 1.6
2392 */
2393 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2394 this(initialCapacity, loadFactor, 1);
2395 }
2396
2397 /**
2398 * Creates a new, empty map with an initial table size based on
2399 * the given number of elements ({@code initialCapacity}), table
2400 * density ({@code loadFactor}), and number of concurrently
2401 * updating threads ({@code concurrencyLevel}).
2402 *
2403 * @param initialCapacity the initial capacity. The implementation
2404 * performs internal sizing to accommodate this many elements,
2405 * given the specified load factor.
2406 * @param loadFactor the load factor (table density) for
2407 * establishing the initial table size
2408 * @param concurrencyLevel the estimated number of concurrently
2409 * updating threads. The implementation may use this value as
2410 * a sizing hint.
2411 * @throws IllegalArgumentException if the initial capacity is
2412 * negative or the load factor or concurrencyLevel are
2413 * nonpositive
2414 */
2415 public ConcurrentHashMap(int initialCapacity,
2416 float loadFactor, int concurrencyLevel) {
2417 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2418 throw new IllegalArgumentException();
2419 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2420 initialCapacity = concurrencyLevel; // as estimated threads
2421 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2422 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2423 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2424 this.sizeCtl = cap;
2425 }
2426
2427 /**
2428 * Creates a new {@link Set} backed by a ConcurrentHashMap
2429 * from the given type to {@code Boolean.TRUE}.
2430 *
2431 * @return the new set
2432 */
2433 public static <K> KeySetView<K,Boolean> newKeySet() {
2434 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2435 Boolean.TRUE);
2436 }
2437
2438 /**
2439 * Creates a new {@link Set} backed by a ConcurrentHashMap
2440 * from the given type to {@code Boolean.TRUE}.
2441 *
2442 * @param initialCapacity The implementation performs internal
2443 * sizing to accommodate this many elements.
2444 * @throws IllegalArgumentException if the initial capacity of
2445 * elements is negative
2446 * @return the new set
2447 */
2448 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2449 return new KeySetView<K,Boolean>
2450 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2451 }
2452
2453 /**
2454 * {@inheritDoc}
2455 */
2456 public boolean isEmpty() {
2457 return sumCount() <= 0L; // ignore transient negative values
2458 }
2459
2460 /**
2461 * {@inheritDoc}
2462 */
2463 public int size() {
2464 long n = sumCount();
2465 return ((n < 0L) ? 0 :
2466 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2467 (int)n);
2468 }
2469
2470 /**
2471 * Returns the number of mappings. This method should be used
2472 * instead of {@link #size} because a ConcurrentHashMap may
2473 * contain more mappings than can be represented as an int. The
2474 * value returned is an estimate; the actual count may differ if
2475 * there are concurrent insertions or removals.
2476 *
2477 * @return the number of mappings
2478 */
2479 public long mappingCount() {
2480 long n = sumCount();
2481 return (n < 0L) ? 0L : n; // ignore transient negative values
2482 }
2483
2484 /**
2485 * Returns the value to which the specified key is mapped,
2486 * or {@code null} if this map contains no mapping for the key.
2487 *
2488 * <p>More formally, if this map contains a mapping from a key
2489 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2490 * then this method returns {@code v}; otherwise it returns
2491 * {@code null}. (There can be at most one such mapping.)
2492 *
2493 * @throws NullPointerException if the specified key is null
2494 */
2495 public V get(Object key) {
2496 return internalGet(key);
2497 }
2498
2499 /**
2500 * Returns the value to which the specified key is mapped,
2501 * or the given defaultValue if this map contains no mapping for the key.
2502 *
2503 * @param key the key
2504 * @param defaultValue the value to return if this map contains
2505 * no mapping for the given key
2506 * @return the mapping for the key, if present; else the defaultValue
2507 * @throws NullPointerException if the specified key is null
2508 */
2509 public V getValueOrDefault(Object key, V defaultValue) {
2510 V v;
2511 return (v = internalGet(key)) == null ? defaultValue : v;
2512 }
2513
2514 /**
2515 * Tests if the specified object is a key in this table.
2516 *
2517 * @param key possible key
2518 * @return {@code true} if and only if the specified object
2519 * is a key in this table, as determined by the
2520 * {@code equals} method; {@code false} otherwise
2521 * @throws NullPointerException if the specified key is null
2522 */
2523 public boolean containsKey(Object key) {
2524 return internalGet(key) != null;
2525 }
2526
2527 /**
2528 * Returns {@code true} if this map maps one or more keys to the
2529 * specified value. Note: This method may require a full traversal
2530 * of the map, and is much slower than method {@code containsKey}.
2531 *
2532 * @param value value whose presence in this map is to be tested
2533 * @return {@code true} if this map maps one or more keys to the
2534 * specified value
2535 * @throws NullPointerException if the specified value is null
2536 */
2537 public boolean containsValue(Object value) {
2538 if (value == null)
2539 throw new NullPointerException();
2540 V v;
2541 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2542 while ((v = it.advance()) != null) {
2543 if (v == value || value.equals(v))
2544 return true;
2545 }
2546 return false;
2547 }
2548
2549 /**
2550 * Legacy method testing if some key maps into the specified value
2551 * in this table. This method is identical in functionality to
2552 * {@link #containsValue}, and exists solely to ensure
2553 * full compatibility with class {@link java.util.Hashtable},
2554 * which supported this method prior to introduction of the
2555 * Java Collections framework.
2556 *
2557 * @param value a value to search for
2558 * @return {@code true} if and only if some key maps to the
2559 * {@code value} argument in this table as
2560 * determined by the {@code equals} method;
2561 * {@code false} otherwise
2562 * @throws NullPointerException if the specified value is null
2563 */
2564 @Deprecated public boolean contains(Object value) {
2565 return containsValue(value);
2566 }
2567
2568 /**
2569 * Maps the specified key to the specified value in this table.
2570 * Neither the key nor the value can be null.
2571 *
2572 * <p>The value can be retrieved by calling the {@code get} method
2573 * with a key that is equal to the original key.
2574 *
2575 * @param key key with which the specified value is to be associated
2576 * @param value value to be associated with the specified key
2577 * @return the previous value associated with {@code key}, or
2578 * {@code null} if there was no mapping for {@code key}
2579 * @throws NullPointerException if the specified key or value is null
2580 */
2581 public V put(K key, V value) {
2582 return internalPut(key, value, false);
2583 }
2584
2585 /**
2586 * {@inheritDoc}
2587 *
2588 * @return the previous value associated with the specified key,
2589 * or {@code null} if there was no mapping for the key
2590 * @throws NullPointerException if the specified key or value is null
2591 */
2592 public V putIfAbsent(K key, V value) {
2593 return internalPut(key, value, true);
2594 }
2595
2596 /**
2597 * Copies all of the mappings from the specified map to this one.
2598 * These mappings replace any mappings that this map had for any of the
2599 * keys currently in the specified map.
2600 *
2601 * @param m mappings to be stored in this map
2602 */
2603 public void putAll(Map<? extends K, ? extends V> m) {
2604 internalPutAll(m);
2605 }
2606
2607 /**
2608 * If the specified key is not already associated with a value (or
2609 * is mapped to {@code null}), attempts to compute its value using
2610 * the given mapping function and enters it into this map unless
2611 * {@code null}. The entire method invocation is performed
2612 * atomically, so the function is applied at most once per key.
2613 * Some attempted update operations on this map by other threads
2614 * may be blocked while computation is in progress, so the
2615 * computation should be short and simple, and must not attempt to
2616 * update any other mappings of this Map.
2617 *
2618 * @param key key with which the specified value is to be associated
2619 * @param mappingFunction the function to compute a value
2620 * @return the current (existing or computed) value associated with
2621 * the specified key, or null if the computed value is null
2622 * @throws NullPointerException if the specified key or mappingFunction
2623 * is null
2624 * @throws IllegalStateException if the computation detectably
2625 * attempts a recursive update to this map that would
2626 * otherwise never complete
2627 * @throws RuntimeException or Error if the mappingFunction does so,
2628 * in which case the mapping is left unestablished
2629 */
2630 public V computeIfAbsent
2631 (K key, Function<? super K, ? extends V> mappingFunction) {
2632 return internalComputeIfAbsent(key, mappingFunction);
2633 }
2634
2635 /**
2636 * If the value for the specified key is present and non-null,
2637 * attempts to compute a new mapping given the key and its current
2638 * mapped value. The entire method invocation is performed
2639 * atomically. Some attempted update operations on this map by
2640 * other threads may be blocked while computation is in progress,
2641 * so the computation should be short and simple, and must not
2642 * attempt to update any other mappings of this Map.
2643 *
2644 * @param key key with which the specified value is to be associated
2645 * @param remappingFunction the function to compute a value
2646 * @return the new value associated with the specified key, or null if none
2647 * @throws NullPointerException if the specified key or remappingFunction
2648 * is null
2649 * @throws IllegalStateException if the computation detectably
2650 * attempts a recursive update to this map that would
2651 * otherwise never complete
2652 * @throws RuntimeException or Error if the remappingFunction does so,
2653 * in which case the mapping is unchanged
2654 */
2655 public V computeIfPresent
2656 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2657 return internalCompute(key, true, remappingFunction);
2658 }
2659
2660 /**
2661 * Attempts to compute a mapping for the specified key and its
2662 * current mapped value (or {@code null} if there is no current
2663 * mapping). The entire method invocation is performed atomically.
2664 * Some attempted update operations on this map by other threads
2665 * may be blocked while computation is in progress, so the
2666 * computation should be short and simple, and must not attempt to
2667 * update any other mappings of this Map.
2668 *
2669 * @param key key with which the specified value is to be associated
2670 * @param remappingFunction the function to compute a value
2671 * @return the new value associated with the specified key, or null if none
2672 * @throws NullPointerException if the specified key or remappingFunction
2673 * is null
2674 * @throws IllegalStateException if the computation detectably
2675 * attempts a recursive update to this map that would
2676 * otherwise never complete
2677 * @throws RuntimeException or Error if the remappingFunction does so,
2678 * in which case the mapping is unchanged
2679 */
2680 public V compute
2681 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2682 return internalCompute(key, false, remappingFunction);
2683 }
2684
2685 /**
2686 * If the specified key is not already associated with a
2687 * (non-null) value, associates it with the given value.
2688 * Otherwise, replaces the value with the results of the given
2689 * remapping function, or removes if {@code null}. The entire
2690 * method invocation is performed atomically. Some attempted
2691 * update operations on this map by other threads may be blocked
2692 * while computation is in progress, so the computation should be
2693 * short and simple, and must not attempt to update any other
2694 * mappings of this Map.
2695 *
2696 * @param key key with which the specified value is to be associated
2697 * @param value the value to use if absent
2698 * @param remappingFunction the function to recompute a value if present
2699 * @return the new value associated with the specified key, or null if none
2700 * @throws NullPointerException if the specified key or the
2701 * remappingFunction is null
2702 * @throws RuntimeException or Error if the remappingFunction does so,
2703 * in which case the mapping is unchanged
2704 */
2705 public V merge
2706 (K key, V value,
2707 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2708 return internalMerge(key, value, remappingFunction);
2709 }
2710
2711 /**
2712 * Removes the key (and its corresponding value) from this map.
2713 * This method does nothing if the key is not in the map.
2714 *
2715 * @param key the key that needs to be removed
2716 * @return the previous value associated with {@code key}, or
2717 * {@code null} if there was no mapping for {@code key}
2718 * @throws NullPointerException if the specified key is null
2719 */
2720 public V remove(Object key) {
2721 return internalReplace(key, null, null);
2722 }
2723
2724 /**
2725 * {@inheritDoc}
2726 *
2727 * @throws NullPointerException if the specified key is null
2728 */
2729 public boolean remove(Object key, Object value) {
2730 return value != null && internalReplace(key, null, value) != null;
2731 }
2732
2733 /**
2734 * {@inheritDoc}
2735 *
2736 * @throws NullPointerException if any of the arguments are null
2737 */
2738 public boolean replace(K key, V oldValue, V newValue) {
2739 if (key == null || oldValue == null || newValue == null)
2740 throw new NullPointerException();
2741 return internalReplace(key, newValue, oldValue) != null;
2742 }
2743
2744 /**
2745 * {@inheritDoc}
2746 *
2747 * @return the previous value associated with the specified key,
2748 * or {@code null} if there was no mapping for the key
2749 * @throws NullPointerException if the specified key or value is null
2750 */
2751 public V replace(K key, V value) {
2752 if (key == null || value == null)
2753 throw new NullPointerException();
2754 return internalReplace(key, value, null);
2755 }
2756
2757 /**
2758 * Removes all of the mappings from this map.
2759 */
2760 public void clear() {
2761 internalClear();
2762 }
2763
2764 /**
2765 * Returns a {@link Set} view of the keys contained in this map.
2766 * The set is backed by the map, so changes to the map are
2767 * reflected in the set, and vice-versa.
2768 *
2769 * @return the set view
2770 */
2771 public KeySetView<K,V> keySet() {
2772 KeySetView<K,V> ks = keySet;
2773 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2774 }
2775
2776 /**
2777 * Returns a {@link Set} view of the keys in this map, using the
2778 * given common mapped value for any additions (i.e., {@link
2779 * Collection#add} and {@link Collection#addAll}). This is of
2780 * course only appropriate if it is acceptable to use the same
2781 * value for all additions from this view.
2782 *
2783 * @param mappedValue the mapped value to use for any
2784 * additions.
2785 * @return the set view
2786 * @throws NullPointerException if the mappedValue is null
2787 */
2788 public KeySetView<K,V> keySet(V mappedValue) {
2789 if (mappedValue == null)
2790 throw new NullPointerException();
2791 return new KeySetView<K,V>(this, mappedValue);
2792 }
2793
2794 /**
2795 * Returns a {@link Collection} view of the values contained in this map.
2796 * The collection is backed by the map, so changes to the map are
2797 * reflected in the collection, and vice-versa.
2798 */
2799 public ValuesView<K,V> values() {
2800 ValuesView<K,V> vs = values;
2801 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2802 }
2803
2804 /**
2805 * Returns a {@link Set} view of the mappings contained in this map.
2806 * The set is backed by the map, so changes to the map are
2807 * reflected in the set, and vice-versa. The set supports element
2808 * removal, which removes the corresponding mapping from the map,
2809 * via the {@code Iterator.remove}, {@code Set.remove},
2810 * {@code removeAll}, {@code retainAll}, and {@code clear}
2811 * operations. It does not support the {@code add} or
2812 * {@code addAll} operations.
2813 *
2814 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2815 * that will never throw {@link ConcurrentModificationException},
2816 * and guarantees to traverse elements as they existed upon
2817 * construction of the iterator, and may (but is not guaranteed to)
2818 * reflect any modifications subsequent to construction.
2819 */
2820 public Set<Map.Entry<K,V>> entrySet() {
2821 EntrySetView<K,V> es = entrySet;
2822 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2823 }
2824
2825 /**
2826 * Returns an enumeration of the keys in this table.
2827 *
2828 * @return an enumeration of the keys in this table
2829 * @see #keySet()
2830 */
2831 public Enumeration<K> keys() {
2832 return new KeyIterator<K,V>(this);
2833 }
2834
2835 /**
2836 * Returns an enumeration of the values in this table.
2837 *
2838 * @return an enumeration of the values in this table
2839 * @see #values()
2840 */
2841 public Enumeration<V> elements() {
2842 return new ValueIterator<K,V>(this);
2843 }
2844
2845 /**
2846 * Returns the hash code value for this {@link Map}, i.e.,
2847 * the sum of, for each key-value pair in the map,
2848 * {@code key.hashCode() ^ value.hashCode()}.
2849 *
2850 * @return the hash code value for this map
2851 */
2852 public int hashCode() {
2853 int h = 0;
2854 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2855 V v;
2856 while ((v = it.advance()) != null) {
2857 h += it.nextKey.hashCode() ^ v.hashCode();
2858 }
2859 return h;
2860 }
2861
2862 /**
2863 * Returns a string representation of this map. The string
2864 * representation consists of a list of key-value mappings (in no
2865 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2866 * mappings are separated by the characters {@code ", "} (comma
2867 * and space). Each key-value mapping is rendered as the key
2868 * followed by an equals sign ("{@code =}") followed by the
2869 * associated value.
2870 *
2871 * @return a string representation of this map
2872 */
2873 public String toString() {
2874 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2875 StringBuilder sb = new StringBuilder();
2876 sb.append('{');
2877 V v;
2878 if ((v = it.advance()) != null) {
2879 for (;;) {
2880 Object k = it.nextKey;
2881 sb.append(k == this ? "(this Map)" : k);
2882 sb.append('=');
2883 sb.append(v == this ? "(this Map)" : v);
2884 if ((v = it.advance()) == null)
2885 break;
2886 sb.append(',').append(' ');
2887 }
2888 }
2889 return sb.append('}').toString();
2890 }
2891
2892 /**
2893 * Compares the specified object with this map for equality.
2894 * Returns {@code true} if the given object is a map with the same
2895 * mappings as this map. This operation may return misleading
2896 * results if either map is concurrently modified during execution
2897 * of this method.
2898 *
2899 * @param o object to be compared for equality with this map
2900 * @return {@code true} if the specified object is equal to this map
2901 */
2902 public boolean equals(Object o) {
2903 if (o != this) {
2904 if (!(o instanceof Map))
2905 return false;
2906 Map<?,?> m = (Map<?,?>) o;
2907 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2908 V val;
2909 while ((val = it.advance()) != null) {
2910 Object v = m.get(it.nextKey);
2911 if (v == null || (v != val && !v.equals(val)))
2912 return false;
2913 }
2914 for (Map.Entry<?,?> e : m.entrySet()) {
2915 Object mk, mv, v;
2916 if ((mk = e.getKey()) == null ||
2917 (mv = e.getValue()) == null ||
2918 (v = internalGet(mk)) == null ||
2919 (mv != v && !mv.equals(v)))
2920 return false;
2921 }
2922 }
2923 return true;
2924 }
2925
2926 /* ----------------Iterators -------------- */
2927
2928 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2929 extends Traverser<K,V,Object>
2930 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2931 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2932 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2933 super(map, it);
2934 }
2935 public KeyIterator<K,V> trySplit() {
2936 if (tab != null && baseIndex == baseLimit)
2937 return null;
2938 return new KeyIterator<K,V>(map, this);
2939 }
2940 @SuppressWarnings("unchecked") public final K next() {
2941 if (nextVal == null && advance() == null)
2942 throw new NoSuchElementException();
2943 Object k = nextKey;
2944 nextVal = null;
2945 return (K) k;
2946 }
2947
2948 public final K nextElement() { return next(); }
2949
2950 public Iterator<K> iterator() { return this; }
2951
2952 public void forEach(Block<? super K> action) {
2953 if (action == null) throw new NullPointerException();
2954 while (advance() != null)
2955 action.accept((K)nextKey);
2956 }
2957
2958 public boolean tryAdvance(Block<? super K> block) {
2959 if (block == null) throw new NullPointerException();
2960 if (advance() == null)
2961 return false;
2962 block.accept((K)nextKey);
2963 return true;
2964 }
2965 }
2966
2967 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2968 extends Traverser<K,V,Object>
2969 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2970 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2971 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2972 super(map, it);
2973 }
2974 public ValueIterator<K,V> trySplit() {
2975 if (tab != null && baseIndex == baseLimit)
2976 return null;
2977 return new ValueIterator<K,V>(map, this);
2978 }
2979
2980 public final V next() {
2981 V v;
2982 if ((v = nextVal) == null && (v = advance()) == null)
2983 throw new NoSuchElementException();
2984 nextVal = null;
2985 return v;
2986 }
2987
2988 public final V nextElement() { return next(); }
2989
2990 public Iterator<V> iterator() { return this; }
2991
2992 public void forEach(Block<? super V> action) {
2993 if (action == null) throw new NullPointerException();
2994 V v;
2995 while ((v = advance()) != null)
2996 action.accept(v);
2997 }
2998
2999 public boolean tryAdvance(Block<? super V> block) {
3000 V v;
3001 if (block == null) throw new NullPointerException();
3002 if ((v = advance()) == null)
3003 return false;
3004 block.accept(v);
3005 return true;
3006 }
3007
3008 }
3009
3010 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3011 extends Traverser<K,V,Object>
3012 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3013 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3014 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3015 super(map, it);
3016 }
3017 public EntryIterator<K,V> trySplit() {
3018 if (tab != null && baseIndex == baseLimit)
3019 return null;
3020 return new EntryIterator<K,V>(map, this);
3021 }
3022
3023 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3024 V v;
3025 if ((v = nextVal) == null && (v = advance()) == null)
3026 throw new NoSuchElementException();
3027 Object k = nextKey;
3028 nextVal = null;
3029 return new MapEntry<K,V>((K)k, v, map);
3030 }
3031
3032 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3033
3034 public void forEach(Block<? super Map.Entry<K,V>> action) {
3035 if (action == null) throw new NullPointerException();
3036 V v;
3037 while ((v = advance()) != null)
3038 action.accept(entryFor((K)nextKey, v));
3039 }
3040
3041 public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3042 V v;
3043 if (block == null) throw new NullPointerException();
3044 if ((v = advance()) == null)
3045 return false;
3046 block.accept(entryFor((K)nextKey, v));
3047 return true;
3048 }
3049
3050 }
3051
3052 /**
3053 * Exported Entry for iterators
3054 */
3055 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3056 final K key; // non-null
3057 V val; // non-null
3058 final ConcurrentHashMap<K, V> map;
3059 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3060 this.key = key;
3061 this.val = val;
3062 this.map = map;
3063 }
3064 public final K getKey() { return key; }
3065 public final V getValue() { return val; }
3066 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3067 public final String toString(){ return key + "=" + val; }
3068
3069 public final boolean equals(Object o) {
3070 Object k, v; Map.Entry<?,?> e;
3071 return ((o instanceof Map.Entry) &&
3072 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3073 (v = e.getValue()) != null &&
3074 (k == key || k.equals(key)) &&
3075 (v == val || v.equals(val)));
3076 }
3077
3078 /**
3079 * Sets our entry's value and writes through to the map. The
3080 * value to return is somewhat arbitrary here. Since we do not
3081 * necessarily track asynchronous changes, the most recent
3082 * "previous" value could be different from what we return (or
3083 * could even have been removed in which case the put will
3084 * re-establish). We do not and cannot guarantee more.
3085 */
3086 public final V setValue(V value) {
3087 if (value == null) throw new NullPointerException();
3088 V v = val;
3089 val = value;
3090 map.put(key, value);
3091 return v;
3092 }
3093 }
3094
3095 /**
3096 * Returns exportable snapshot entry for the given key and value
3097 * when write-through can't or shouldn't be used.
3098 */
3099 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3100 return new AbstractMap.SimpleEntry<K,V>(k, v);
3101 }
3102
3103 /* ---------------- Serialization Support -------------- */
3104
3105 /**
3106 * Stripped-down version of helper class used in previous version,
3107 * declared for the sake of serialization compatibility
3108 */
3109 static class Segment<K,V> implements Serializable {
3110 private static final long serialVersionUID = 2249069246763182397L;
3111 final float loadFactor;
3112 Segment(float lf) { this.loadFactor = lf; }
3113 }
3114
3115 /**
3116 * Saves the state of the {@code ConcurrentHashMap} instance to a
3117 * stream (i.e., serializes it).
3118 * @param s the stream
3119 * @serialData
3120 * the key (Object) and value (Object)
3121 * for each key-value mapping, followed by a null pair.
3122 * The key-value mappings are emitted in no particular order.
3123 */
3124 @SuppressWarnings("unchecked") private void writeObject
3125 (java.io.ObjectOutputStream s)
3126 throws java.io.IOException {
3127 if (segments == null) { // for serialization compatibility
3128 segments = (Segment<K,V>[])
3129 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3130 for (int i = 0; i < segments.length; ++i)
3131 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3132 }
3133 s.defaultWriteObject();
3134 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3135 V v;
3136 while ((v = it.advance()) != null) {
3137 s.writeObject(it.nextKey);
3138 s.writeObject(v);
3139 }
3140 s.writeObject(null);
3141 s.writeObject(null);
3142 segments = null; // throw away
3143 }
3144
3145 /**
3146 * Reconstitutes the instance from a stream (that is, deserializes it).
3147 * @param s the stream
3148 */
3149 @SuppressWarnings("unchecked") private void readObject
3150 (java.io.ObjectInputStream s)
3151 throws java.io.IOException, ClassNotFoundException {
3152 s.defaultReadObject();
3153 this.segments = null; // unneeded
3154
3155 // Create all nodes, then place in table once size is known
3156 long size = 0L;
3157 Node<V> p = null;
3158 for (;;) {
3159 K k = (K) s.readObject();
3160 V v = (V) s.readObject();
3161 if (k != null && v != null) {
3162 int h = spread(k.hashCode());
3163 p = new Node<V>(h, k, v, p);
3164 ++size;
3165 }
3166 else
3167 break;
3168 }
3169 if (p != null) {
3170 boolean init = false;
3171 int n;
3172 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3173 n = MAXIMUM_CAPACITY;
3174 else {
3175 int sz = (int)size;
3176 n = tableSizeFor(sz + (sz >>> 1) + 1);
3177 }
3178 int sc = sizeCtl;
3179 boolean collide = false;
3180 if (n > sc &&
3181 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3182 try {
3183 if (table == null) {
3184 init = true;
3185 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3186 Node<V>[] tab = (Node<V>[])rt;
3187 int mask = n - 1;
3188 while (p != null) {
3189 int j = p.hash & mask;
3190 Node<V> next = p.next;
3191 Node<V> q = p.next = tabAt(tab, j);
3192 setTabAt(tab, j, p);
3193 if (!collide && q != null && q.hash == p.hash)
3194 collide = true;
3195 p = next;
3196 }
3197 table = tab;
3198 addCount(size, -1);
3199 sc = n - (n >>> 2);
3200 }
3201 } finally {
3202 sizeCtl = sc;
3203 }
3204 if (collide) { // rescan and convert to TreeBins
3205 Node<V>[] tab = table;
3206 for (int i = 0; i < tab.length; ++i) {
3207 int c = 0;
3208 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3209 if (++c > TREE_THRESHOLD &&
3210 (e.key instanceof Comparable)) {
3211 replaceWithTreeBin(tab, i, e.key);
3212 break;
3213 }
3214 }
3215 }
3216 }
3217 }
3218 if (!init) { // Can only happen if unsafely published.
3219 while (p != null) {
3220 internalPut((K)p.key, p.val, false);
3221 p = p.next;
3222 }
3223 }
3224 }
3225 }
3226
3227 // -------------------------------------------------------
3228
3229 // Sequential bulk operations
3230
3231 /**
3232 * Performs the given action for each (key, value).
3233 *
3234 * @param action the action
3235 */
3236 @SuppressWarnings("unchecked") public void forEachSequentially
3237 (BiBlock<? super K, ? super V> action) {
3238 if (action == null) throw new NullPointerException();
3239 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3240 V v;
3241 while ((v = it.advance()) != null)
3242 action.accept((K)it.nextKey, v);
3243 }
3244
3245 /**
3246 * Performs the given action for each non-null transformation
3247 * of each (key, value).
3248 *
3249 * @param transformer a function returning the transformation
3250 * for an element, or null of there is no transformation (in
3251 * which case the action is not applied).
3252 * @param action the action
3253 */
3254 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3255 (BiFunction<? super K, ? super V, ? extends U> transformer,
3256 Block<? super U> action) {
3257 if (transformer == null || action == null)
3258 throw new NullPointerException();
3259 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3260 V v; U u;
3261 while ((v = it.advance()) != null) {
3262 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3263 action.accept(u);
3264 }
3265 }
3266
3267 /**
3268 * Returns a non-null result from applying the given search
3269 * function on each (key, value), or null if none.
3270 *
3271 * @param searchFunction a function returning a non-null
3272 * result on success, else null
3273 * @return a non-null result from applying the given search
3274 * function on each (key, value), or null if none
3275 */
3276 @SuppressWarnings("unchecked") public <U> U searchSequentially
3277 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3278 if (searchFunction == null) throw new NullPointerException();
3279 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3280 V v; U u;
3281 while ((v = it.advance()) != null) {
3282 if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3283 return u;
3284 }
3285 return null;
3286 }
3287
3288 /**
3289 * Returns the result of accumulating the given transformation
3290 * of all (key, value) pairs using the given reducer to
3291 * combine values, or null if none.
3292 *
3293 * @param transformer a function returning the transformation
3294 * for an element, or null of there is no transformation (in
3295 * which case it is not combined).
3296 * @param reducer a commutative associative combining function
3297 * @return the result of accumulating the given transformation
3298 * of all (key, value) pairs
3299 */
3300 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3301 (BiFunction<? super K, ? super V, ? extends U> transformer,
3302 BiFunction<? super U, ? super U, ? extends U> reducer) {
3303 if (transformer == null || reducer == null)
3304 throw new NullPointerException();
3305 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3306 U r = null, u; V v;
3307 while ((v = it.advance()) != null) {
3308 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3309 r = (r == null) ? u : reducer.apply(r, u);
3310 }
3311 return r;
3312 }
3313
3314 /**
3315 * Returns the result of accumulating the given transformation
3316 * of all (key, value) pairs using the given reducer to
3317 * combine values, and the given basis as an identity value.
3318 *
3319 * @param transformer a function returning the transformation
3320 * for an element
3321 * @param basis the identity (initial default value) for the reduction
3322 * @param reducer a commutative associative combining function
3323 * @return the result of accumulating the given transformation
3324 * of all (key, value) pairs
3325 */
3326 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3327 (DoubleBiFunction<? super K, ? super V> transformer,
3328 double basis,
3329 DoubleBinaryOperator reducer) {
3330 if (transformer == null || reducer == null)
3331 throw new NullPointerException();
3332 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3333 double r = basis; V v;
3334 while ((v = it.advance()) != null)
3335 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3336 return r;
3337 }
3338
3339 /**
3340 * Returns the result of accumulating the given transformation
3341 * of all (key, value) pairs using the given reducer to
3342 * combine values, and the given basis as an identity value.
3343 *
3344 * @param transformer a function returning the transformation
3345 * for an element
3346 * @param basis the identity (initial default value) for the reduction
3347 * @param reducer a commutative associative combining function
3348 * @return the result of accumulating the given transformation
3349 * of all (key, value) pairs
3350 */
3351 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3352 (LongBiFunction<? super K, ? super V> transformer,
3353 long basis,
3354 LongBinaryOperator reducer) {
3355 if (transformer == null || reducer == null)
3356 throw new NullPointerException();
3357 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3358 long r = basis; V v;
3359 while ((v = it.advance()) != null)
3360 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3361 return r;
3362 }
3363
3364 /**
3365 * Returns the result of accumulating the given transformation
3366 * of all (key, value) pairs using the given reducer to
3367 * combine values, and the given basis as an identity value.
3368 *
3369 * @param transformer a function returning the transformation
3370 * for an element
3371 * @param basis the identity (initial default value) for the reduction
3372 * @param reducer a commutative associative combining function
3373 * @return the result of accumulating the given transformation
3374 * of all (key, value) pairs
3375 */
3376 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3377 (IntBiFunction<? super K, ? super V> transformer,
3378 int basis,
3379 IntBinaryOperator reducer) {
3380 if (transformer == null || reducer == null)
3381 throw new NullPointerException();
3382 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383 int r = basis; V v;
3384 while ((v = it.advance()) != null)
3385 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3386 return r;
3387 }
3388
3389 /**
3390 * Performs the given action for each key.
3391 *
3392 * @param action the action
3393 */
3394 @SuppressWarnings("unchecked") public void forEachKeySequentially
3395 (Block<? super K> action) {
3396 if (action == null) throw new NullPointerException();
3397 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3398 while (it.advance() != null)
3399 action.accept((K)it.nextKey);
3400 }
3401
3402 /**
3403 * Performs the given action for each non-null transformation
3404 * of each key.
3405 *
3406 * @param transformer a function returning the transformation
3407 * for an element, or null of there is no transformation (in
3408 * which case the action is not applied).
3409 * @param action the action
3410 */
3411 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3412 (Function<? super K, ? extends U> transformer,
3413 Block<? super U> action) {
3414 if (transformer == null || action == null)
3415 throw new NullPointerException();
3416 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3417 U u;
3418 while (it.advance() != null) {
3419 if ((u = transformer.apply((K)it.nextKey)) != null)
3420 action.accept(u);
3421 }
3422 ForkJoinTasks.forEachKey
3423 (this, transformer, action).invoke();
3424 }
3425
3426 /**
3427 * Returns a non-null result from applying the given search
3428 * function on each key, or null if none.
3429 *
3430 * @param searchFunction a function returning a non-null
3431 * result on success, else null
3432 * @return a non-null result from applying the given search
3433 * function on each key, or null if none
3434 */
3435 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3436 (Function<? super K, ? extends U> searchFunction) {
3437 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3438 U u;
3439 while (it.advance() != null) {
3440 if ((u = searchFunction.apply((K)it.nextKey)) != null)
3441 return u;
3442 }
3443 return null;
3444 }
3445
3446 /**
3447 * Returns the result of accumulating all keys using the given
3448 * reducer to combine values, or null if none.
3449 *
3450 * @param reducer a commutative associative combining function
3451 * @return the result of accumulating all keys using the given
3452 * reducer to combine values, or null if none
3453 */
3454 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3455 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3456 if (reducer == null) throw new NullPointerException();
3457 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3458 K r = null;
3459 while (it.advance() != null) {
3460 K u = (K)it.nextKey;
3461 r = (r == null) ? u : reducer.apply(r, u);
3462 }
3463 return r;
3464 }
3465
3466 /**
3467 * Returns the result of accumulating the given transformation
3468 * of all keys using the given reducer to combine values, or
3469 * null if none.
3470 *
3471 * @param transformer a function returning the transformation
3472 * for an element, or null of there is no transformation (in
3473 * which case it is not combined).
3474 * @param reducer a commutative associative combining function
3475 * @return the result of accumulating the given transformation
3476 * of all keys
3477 */
3478 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3479 (Function<? super K, ? extends U> transformer,
3480 BiFunction<? super U, ? super U, ? extends U> reducer) {
3481 if (transformer == null || reducer == null)
3482 throw new NullPointerException();
3483 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3484 U r = null, u;
3485 while (it.advance() != null) {
3486 if ((u = transformer.apply((K)it.nextKey)) != null)
3487 r = (r == null) ? u : reducer.apply(r, u);
3488 }
3489 return r;
3490 }
3491
3492 /**
3493 * Returns the result of accumulating the given transformation
3494 * of all keys using the given reducer to combine values, and
3495 * the given basis as an identity value.
3496 *
3497 * @param transformer a function returning the transformation
3498 * for an element
3499 * @param basis the identity (initial default value) for the reduction
3500 * @param reducer a commutative associative combining function
3501 * @return the result of accumulating the given transformation
3502 * of all keys
3503 */
3504 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3505 (DoubleFunction<? super K> transformer,
3506 double basis,
3507 DoubleBinaryOperator reducer) {
3508 if (transformer == null || reducer == null)
3509 throw new NullPointerException();
3510 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3511 double r = basis;
3512 while (it.advance() != null)
3513 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3514 return r;
3515 }
3516
3517 /**
3518 * Returns the result of accumulating the given transformation
3519 * of all keys using the given reducer to combine values, and
3520 * the given basis as an identity value.
3521 *
3522 * @param transformer a function returning the transformation
3523 * for an element
3524 * @param basis the identity (initial default value) for the reduction
3525 * @param reducer a commutative associative combining function
3526 * @return the result of accumulating the given transformation
3527 * of all keys
3528 */
3529 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3530 (LongFunction<? super K> transformer,
3531 long basis,
3532 LongBinaryOperator reducer) {
3533 if (transformer == null || reducer == null)
3534 throw new NullPointerException();
3535 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3536 long r = basis;
3537 while (it.advance() != null)
3538 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3539 return r;
3540 }
3541
3542 /**
3543 * Returns the result of accumulating the given transformation
3544 * of all keys using the given reducer to combine values, and
3545 * the given basis as an identity value.
3546 *
3547 * @param transformer a function returning the transformation
3548 * for an element
3549 * @param basis the identity (initial default value) for the reduction
3550 * @param reducer a commutative associative combining function
3551 * @return the result of accumulating the given transformation
3552 * of all keys
3553 */
3554 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3555 (IntFunction<? super K> transformer,
3556 int basis,
3557 IntBinaryOperator reducer) {
3558 if (transformer == null || reducer == null)
3559 throw new NullPointerException();
3560 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3561 int r = basis;
3562 while (it.advance() != null)
3563 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3564 return r;
3565 }
3566
3567 /**
3568 * Performs the given action for each value.
3569 *
3570 * @param action the action
3571 */
3572 public void forEachValueSequentially(Block<? super V> action) {
3573 if (action == null) throw new NullPointerException();
3574 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3575 V v;
3576 while ((v = it.advance()) != null)
3577 action.accept(v);
3578 }
3579
3580 /**
3581 * Performs the given action for each non-null transformation
3582 * of each value.
3583 *
3584 * @param transformer a function returning the transformation
3585 * for an element, or null of there is no transformation (in
3586 * which case the action is not applied).
3587 */
3588 public <U> void forEachValueSequentially
3589 (Function<? super V, ? extends U> transformer,
3590 Block<? super U> action) {
3591 if (transformer == null || action == null)
3592 throw new NullPointerException();
3593 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3594 V v; U u;
3595 while ((v = it.advance()) != null) {
3596 if ((u = transformer.apply(v)) != null)
3597 action.accept(u);
3598 }
3599 }
3600
3601 /**
3602 * Returns a non-null result from applying the given search
3603 * function on each value, or null if none.
3604 *
3605 * @param searchFunction a function returning a non-null
3606 * result on success, else null
3607 * @return a non-null result from applying the given search
3608 * function on each value, or null if none
3609 */
3610 public <U> U searchValuesSequentially
3611 (Function<? super V, ? extends U> searchFunction) {
3612 if (searchFunction == null) throw new NullPointerException();
3613 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3614 V v; U u;
3615 while ((v = it.advance()) != null) {
3616 if ((u = searchFunction.apply(v)) != null)
3617 return u;
3618 }
3619 return null;
3620 }
3621
3622 /**
3623 * Returns the result of accumulating all values using the
3624 * given reducer to combine values, or null if none.
3625 *
3626 * @param reducer a commutative associative combining function
3627 * @return the result of accumulating all values
3628 */
3629 public V reduceValuesSequentially
3630 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3631 if (reducer == null) throw new NullPointerException();
3632 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3633 V r = null; V v;
3634 while ((v = it.advance()) != null)
3635 r = (r == null) ? v : reducer.apply(r, v);
3636 return r;
3637 }
3638
3639 /**
3640 * Returns the result of accumulating the given transformation
3641 * of all values using the given reducer to combine values, or
3642 * null if none.
3643 *
3644 * @param transformer a function returning the transformation
3645 * for an element, or null of there is no transformation (in
3646 * which case it is not combined).
3647 * @param reducer a commutative associative combining function
3648 * @return the result of accumulating the given transformation
3649 * of all values
3650 */
3651 public <U> U reduceValuesSequentially
3652 (Function<? super V, ? extends U> transformer,
3653 BiFunction<? super U, ? super U, ? extends U> reducer) {
3654 if (transformer == null || reducer == null)
3655 throw new NullPointerException();
3656 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3657 U r = null, u; V v;
3658 while ((v = it.advance()) != null) {
3659 if ((u = transformer.apply(v)) != null)
3660 r = (r == null) ? u : reducer.apply(r, u);
3661 }
3662 return r;
3663 }
3664
3665 /**
3666 * Returns the result of accumulating the given transformation
3667 * of all values using the given reducer to combine values,
3668 * and the given basis as an identity value.
3669 *
3670 * @param transformer a function returning the transformation
3671 * for an element
3672 * @param basis the identity (initial default value) for the reduction
3673 * @param reducer a commutative associative combining function
3674 * @return the result of accumulating the given transformation
3675 * of all values
3676 */
3677 public double reduceValuesToDoubleSequentially
3678 (DoubleFunction<? super V> transformer,
3679 double basis,
3680 DoubleBinaryOperator reducer) {
3681 if (transformer == null || reducer == null)
3682 throw new NullPointerException();
3683 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3684 double r = basis; V v;
3685 while ((v = it.advance()) != null)
3686 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3687 return r;
3688 }
3689
3690 /**
3691 * Returns the result of accumulating the given transformation
3692 * of all values using the given reducer to combine values,
3693 * and the given basis as an identity value.
3694 *
3695 * @param transformer a function returning the transformation
3696 * for an element
3697 * @param basis the identity (initial default value) for the reduction
3698 * @param reducer a commutative associative combining function
3699 * @return the result of accumulating the given transformation
3700 * of all values
3701 */
3702 public long reduceValuesToLongSequentially
3703 (LongFunction<? super V> transformer,
3704 long basis,
3705 LongBinaryOperator reducer) {
3706 if (transformer == null || reducer == null)
3707 throw new NullPointerException();
3708 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3709 long r = basis; V v;
3710 while ((v = it.advance()) != null)
3711 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3712 return r;
3713 }
3714
3715 /**
3716 * Returns the result of accumulating the given transformation
3717 * of all values using the given reducer to combine values,
3718 * and the given basis as an identity value.
3719 *
3720 * @param transformer a function returning the transformation
3721 * for an element
3722 * @param basis the identity (initial default value) for the reduction
3723 * @param reducer a commutative associative combining function
3724 * @return the result of accumulating the given transformation
3725 * of all values
3726 */
3727 public int reduceValuesToIntSequentially
3728 (IntFunction<? super V> transformer,
3729 int basis,
3730 IntBinaryOperator reducer) {
3731 if (transformer == null || reducer == null)
3732 throw new NullPointerException();
3733 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3734 int r = basis; V v;
3735 while ((v = it.advance()) != null)
3736 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3737 return r;
3738 }
3739
3740 /**
3741 * Performs the given action for each entry.
3742 *
3743 * @param action the action
3744 */
3745 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3746 (Block<? super Map.Entry<K,V>> action) {
3747 if (action == null) throw new NullPointerException();
3748 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3749 V v;
3750 while ((v = it.advance()) != null)
3751 action.accept(entryFor((K)it.nextKey, v));
3752 }
3753
3754 /**
3755 * Performs the given action for each non-null transformation
3756 * of each entry.
3757 *
3758 * @param transformer a function returning the transformation
3759 * for an element, or null of there is no transformation (in
3760 * which case the action is not applied).
3761 * @param action the action
3762 */
3763 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3764 (Function<Map.Entry<K,V>, ? extends U> transformer,
3765 Block<? super U> action) {
3766 if (transformer == null || action == null)
3767 throw new NullPointerException();
3768 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3769 V v; U u;
3770 while ((v = it.advance()) != null) {
3771 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3772 action.accept(u);
3773 }
3774 }
3775
3776 /**
3777 * Returns a non-null result from applying the given search
3778 * function on each entry, or null if none.
3779 *
3780 * @param searchFunction a function returning a non-null
3781 * result on success, else null
3782 * @return a non-null result from applying the given search
3783 * function on each entry, or null if none
3784 */
3785 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3786 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3787 if (searchFunction == null) throw new NullPointerException();
3788 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3789 V v; U u;
3790 while ((v = it.advance()) != null) {
3791 if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3792 return u;
3793 }
3794 return null;
3795 }
3796
3797 /**
3798 * Returns the result of accumulating all entries using the
3799 * given reducer to combine values, or null if none.
3800 *
3801 * @param reducer a commutative associative combining function
3802 * @return the result of accumulating all entries
3803 */
3804 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3805 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3806 if (reducer == null) throw new NullPointerException();
3807 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 Map.Entry<K,V> r = null; V v;
3809 while ((v = it.advance()) != null) {
3810 Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3811 r = (r == null) ? u : reducer.apply(r, u);
3812 }
3813 return r;
3814 }
3815
3816 /**
3817 * Returns the result of accumulating the given transformation
3818 * of all entries using the given reducer to combine values,
3819 * or null if none.
3820 *
3821 * @param transformer a function returning the transformation
3822 * for an element, or null of there is no transformation (in
3823 * which case it is not combined).
3824 * @param reducer a commutative associative combining function
3825 * @return the result of accumulating the given transformation
3826 * of all entries
3827 */
3828 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3829 (Function<Map.Entry<K,V>, ? extends U> transformer,
3830 BiFunction<? super U, ? super U, ? extends U> reducer) {
3831 if (transformer == null || reducer == null)
3832 throw new NullPointerException();
3833 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3834 U r = null, u; V v;
3835 while ((v = it.advance()) != null) {
3836 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3837 r = (r == null) ? u : reducer.apply(r, u);
3838 }
3839 return r;
3840 }
3841
3842 /**
3843 * Returns the result of accumulating the given transformation
3844 * of all entries using the given reducer to combine values,
3845 * and the given basis as an identity value.
3846 *
3847 * @param transformer a function returning the transformation
3848 * for an element
3849 * @param basis the identity (initial default value) for the reduction
3850 * @param reducer a commutative associative combining function
3851 * @return the result of accumulating the given transformation
3852 * of all entries
3853 */
3854 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3855 (DoubleFunction<Map.Entry<K,V>> transformer,
3856 double basis,
3857 DoubleBinaryOperator reducer) {
3858 if (transformer == null || reducer == null)
3859 throw new NullPointerException();
3860 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3861 double r = basis; V v;
3862 while ((v = it.advance()) != null)
3863 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3864 return r;
3865 }
3866
3867 /**
3868 * Returns the result of accumulating the given transformation
3869 * of all entries using the given reducer to combine values,
3870 * and the given basis as an identity value.
3871 *
3872 * @param transformer a function returning the transformation
3873 * for an element
3874 * @param basis the identity (initial default value) for the reduction
3875 * @param reducer a commutative associative combining function
3876 * @return the result of accumulating the given transformation
3877 * of all entries
3878 */
3879 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3880 (LongFunction<Map.Entry<K,V>> transformer,
3881 long basis,
3882 LongBinaryOperator reducer) {
3883 if (transformer == null || reducer == null)
3884 throw new NullPointerException();
3885 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3886 long r = basis; V v;
3887 while ((v = it.advance()) != null)
3888 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3889 return r;
3890 }
3891
3892 /**
3893 * Returns the result of accumulating the given transformation
3894 * of all entries using the given reducer to combine values,
3895 * and the given basis as an identity value.
3896 *
3897 * @param transformer a function returning the transformation
3898 * for an element
3899 * @param basis the identity (initial default value) for the reduction
3900 * @param reducer a commutative associative combining function
3901 * @return the result of accumulating the given transformation
3902 * of all entries
3903 */
3904 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3905 (IntFunction<Map.Entry<K,V>> transformer,
3906 int basis,
3907 IntBinaryOperator reducer) {
3908 if (transformer == null || reducer == null)
3909 throw new NullPointerException();
3910 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3911 int r = basis; V v;
3912 while ((v = it.advance()) != null)
3913 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3914 return r;
3915 }
3916
3917 // Parallel bulk operations
3918
3919 /**
3920 * Performs the given action for each (key, value).
3921 *
3922 * @param action the action
3923 */
3924 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3925 ForkJoinTasks.forEach
3926 (this, action).invoke();
3927 }
3928
3929 /**
3930 * Performs the given action for each non-null transformation
3931 * of each (key, value).
3932 *
3933 * @param transformer a function returning the transformation
3934 * for an element, or null of there is no transformation (in
3935 * which case the action is not applied).
3936 * @param action the action
3937 */
3938 public <U> void forEachInParallel
3939 (BiFunction<? super K, ? super V, ? extends U> transformer,
3940 Block<? super U> action) {
3941 ForkJoinTasks.forEach
3942 (this, transformer, action).invoke();
3943 }
3944
3945 /**
3946 * Returns a non-null result from applying the given search
3947 * function on each (key, value), or null if none. Upon
3948 * success, further element processing is suppressed and the
3949 * results of any other parallel invocations of the search
3950 * function are ignored.
3951 *
3952 * @param searchFunction a function returning a non-null
3953 * result on success, else null
3954 * @return a non-null result from applying the given search
3955 * function on each (key, value), or null if none
3956 */
3957 public <U> U searchInParallel
3958 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3959 return ForkJoinTasks.search
3960 (this, searchFunction).invoke();
3961 }
3962
3963 /**
3964 * Returns the result of accumulating the given transformation
3965 * of all (key, value) pairs using the given reducer to
3966 * combine values, or null if none.
3967 *
3968 * @param transformer a function returning the transformation
3969 * for an element, or null of there is no transformation (in
3970 * which case it is not combined).
3971 * @param reducer a commutative associative combining function
3972 * @return the result of accumulating the given transformation
3973 * of all (key, value) pairs
3974 */
3975 public <U> U reduceInParallel
3976 (BiFunction<? super K, ? super V, ? extends U> transformer,
3977 BiFunction<? super U, ? super U, ? extends U> reducer) {
3978 return ForkJoinTasks.reduce
3979 (this, transformer, reducer).invoke();
3980 }
3981
3982 /**
3983 * Returns the result of accumulating the given transformation
3984 * of all (key, value) pairs using the given reducer to
3985 * combine values, and the given basis as an identity value.
3986 *
3987 * @param transformer a function returning the transformation
3988 * for an element
3989 * @param basis the identity (initial default value) for the reduction
3990 * @param reducer a commutative associative combining function
3991 * @return the result of accumulating the given transformation
3992 * of all (key, value) pairs
3993 */
3994 public double reduceToDoubleInParallel
3995 (DoubleBiFunction<? super K, ? super V> transformer,
3996 double basis,
3997 DoubleBinaryOperator reducer) {
3998 return ForkJoinTasks.reduceToDouble
3999 (this, transformer, basis, reducer).invoke();
4000 }
4001
4002 /**
4003 * Returns the result of accumulating the given transformation
4004 * of all (key, value) pairs using the given reducer to
4005 * combine values, and the given basis as an identity value.
4006 *
4007 * @param transformer a function returning the transformation
4008 * for an element
4009 * @param basis the identity (initial default value) for the reduction
4010 * @param reducer a commutative associative combining function
4011 * @return the result of accumulating the given transformation
4012 * of all (key, value) pairs
4013 */
4014 public long reduceToLongInParallel
4015 (LongBiFunction<? super K, ? super V> transformer,
4016 long basis,
4017 LongBinaryOperator reducer) {
4018 return ForkJoinTasks.reduceToLong
4019 (this, transformer, basis, reducer).invoke();
4020 }
4021
4022 /**
4023 * Returns the result of accumulating the given transformation
4024 * of all (key, value) pairs using the given reducer to
4025 * combine values, and the given basis as an identity value.
4026 *
4027 * @param transformer a function returning the transformation
4028 * for an element
4029 * @param basis the identity (initial default value) for the reduction
4030 * @param reducer a commutative associative combining function
4031 * @return the result of accumulating the given transformation
4032 * of all (key, value) pairs
4033 */
4034 public int reduceToIntInParallel
4035 (IntBiFunction<? super K, ? super V> transformer,
4036 int basis,
4037 IntBinaryOperator reducer) {
4038 return ForkJoinTasks.reduceToInt
4039 (this, transformer, basis, reducer).invoke();
4040 }
4041
4042 /**
4043 * Performs the given action for each key.
4044 *
4045 * @param action the action
4046 */
4047 public void forEachKeyInParallel(Block<? super K> action) {
4048 ForkJoinTasks.forEachKey
4049 (this, action).invoke();
4050 }
4051
4052 /**
4053 * Performs the given action for each non-null transformation
4054 * of each key.
4055 *
4056 * @param transformer a function returning the transformation
4057 * for an element, or null of there is no transformation (in
4058 * which case the action is not applied).
4059 * @param action the action
4060 */
4061 public <U> void forEachKeyInParallel
4062 (Function<? super K, ? extends U> transformer,
4063 Block<? super U> action) {
4064 ForkJoinTasks.forEachKey
4065 (this, transformer, action).invoke();
4066 }
4067
4068 /**
4069 * Returns a non-null result from applying the given search
4070 * function on each key, or null if none. Upon success,
4071 * further element processing is suppressed and the results of
4072 * any other parallel invocations of the search function are
4073 * ignored.
4074 *
4075 * @param searchFunction a function returning a non-null
4076 * result on success, else null
4077 * @return a non-null result from applying the given search
4078 * function on each key, or null if none
4079 */
4080 public <U> U searchKeysInParallel
4081 (Function<? super K, ? extends U> searchFunction) {
4082 return ForkJoinTasks.searchKeys
4083 (this, searchFunction).invoke();
4084 }
4085
4086 /**
4087 * Returns the result of accumulating all keys using the given
4088 * reducer to combine values, or null if none.
4089 *
4090 * @param reducer a commutative associative combining function
4091 * @return the result of accumulating all keys using the given
4092 * reducer to combine values, or null if none
4093 */
4094 public K reduceKeysInParallel
4095 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4096 return ForkJoinTasks.reduceKeys
4097 (this, reducer).invoke();
4098 }
4099
4100 /**
4101 * Returns the result of accumulating the given transformation
4102 * of all keys using the given reducer to combine values, or
4103 * null if none.
4104 *
4105 * @param transformer a function returning the transformation
4106 * for an element, or null of there is no transformation (in
4107 * which case it is not combined).
4108 * @param reducer a commutative associative combining function
4109 * @return the result of accumulating the given transformation
4110 * of all keys
4111 */
4112 public <U> U reduceKeysInParallel
4113 (Function<? super K, ? extends U> transformer,
4114 BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 return ForkJoinTasks.reduceKeys
4116 (this, transformer, reducer).invoke();
4117 }
4118
4119 /**
4120 * Returns the result of accumulating the given transformation
4121 * of all keys using the given reducer to combine values, and
4122 * the given basis as an identity value.
4123 *
4124 * @param transformer a function returning the transformation
4125 * for an element
4126 * @param basis the identity (initial default value) for the reduction
4127 * @param reducer a commutative associative combining function
4128 * @return the result of accumulating the given transformation
4129 * of all keys
4130 */
4131 public double reduceKeysToDoubleInParallel
4132 (DoubleFunction<? super K> transformer,
4133 double basis,
4134 DoubleBinaryOperator reducer) {
4135 return ForkJoinTasks.reduceKeysToDouble
4136 (this, transformer, basis, reducer).invoke();
4137 }
4138
4139 /**
4140 * Returns the result of accumulating the given transformation
4141 * of all keys using the given reducer to combine values, and
4142 * the given basis as an identity value.
4143 *
4144 * @param transformer a function returning the transformation
4145 * for an element
4146 * @param basis the identity (initial default value) for the reduction
4147 * @param reducer a commutative associative combining function
4148 * @return the result of accumulating the given transformation
4149 * of all keys
4150 */
4151 public long reduceKeysToLongInParallel
4152 (LongFunction<? super K> transformer,
4153 long basis,
4154 LongBinaryOperator reducer) {
4155 return ForkJoinTasks.reduceKeysToLong
4156 (this, transformer, basis, reducer).invoke();
4157 }
4158
4159 /**
4160 * Returns the result of accumulating the given transformation
4161 * of all keys using the given reducer to combine values, and
4162 * the given basis as an identity value.
4163 *
4164 * @param transformer a function returning the transformation
4165 * for an element
4166 * @param basis the identity (initial default value) for the reduction
4167 * @param reducer a commutative associative combining function
4168 * @return the result of accumulating the given transformation
4169 * of all keys
4170 */
4171 public int reduceKeysToIntInParallel
4172 (IntFunction<? super K> transformer,
4173 int basis,
4174 IntBinaryOperator reducer) {
4175 return ForkJoinTasks.reduceKeysToInt
4176 (this, transformer, basis, reducer).invoke();
4177 }
4178
4179 /**
4180 * Performs the given action for each value.
4181 *
4182 * @param action the action
4183 */
4184 public void forEachValueInParallel(Block<? super V> action) {
4185 ForkJoinTasks.forEachValue
4186 (this, action).invoke();
4187 }
4188
4189 /**
4190 * Performs the given action for each non-null transformation
4191 * of each value.
4192 *
4193 * @param transformer a function returning the transformation
4194 * for an element, or null of there is no transformation (in
4195 * which case the action is not applied).
4196 */
4197 public <U> void forEachValueInParallel
4198 (Function<? super V, ? extends U> transformer,
4199 Block<? super U> action) {
4200 ForkJoinTasks.forEachValue
4201 (this, transformer, action).invoke();
4202 }
4203
4204 /**
4205 * Returns a non-null result from applying the given search
4206 * function on each value, or null if none. Upon success,
4207 * further element processing is suppressed and the results of
4208 * any other parallel invocations of the search function are
4209 * ignored.
4210 *
4211 * @param searchFunction a function returning a non-null
4212 * result on success, else null
4213 * @return a non-null result from applying the given search
4214 * function on each value, or null if none
4215 */
4216 public <U> U searchValuesInParallel
4217 (Function<? super V, ? extends U> searchFunction) {
4218 return ForkJoinTasks.searchValues
4219 (this, searchFunction).invoke();
4220 }
4221
4222 /**
4223 * Returns the result of accumulating all values using the
4224 * given reducer to combine values, or null if none.
4225 *
4226 * @param reducer a commutative associative combining function
4227 * @return the result of accumulating all values
4228 */
4229 public V reduceValuesInParallel
4230 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4231 return ForkJoinTasks.reduceValues
4232 (this, reducer).invoke();
4233 }
4234
4235 /**
4236 * Returns the result of accumulating the given transformation
4237 * of all values using the given reducer to combine values, or
4238 * null if none.
4239 *
4240 * @param transformer a function returning the transformation
4241 * for an element, or null of there is no transformation (in
4242 * which case it is not combined).
4243 * @param reducer a commutative associative combining function
4244 * @return the result of accumulating the given transformation
4245 * of all values
4246 */
4247 public <U> U reduceValuesInParallel
4248 (Function<? super V, ? extends U> transformer,
4249 BiFunction<? super U, ? super U, ? extends U> reducer) {
4250 return ForkJoinTasks.reduceValues
4251 (this, transformer, reducer).invoke();
4252 }
4253
4254 /**
4255 * Returns the result of accumulating the given transformation
4256 * of all values using the given reducer to combine values,
4257 * and the given basis as an identity value.
4258 *
4259 * @param transformer a function returning the transformation
4260 * for an element
4261 * @param basis the identity (initial default value) for the reduction
4262 * @param reducer a commutative associative combining function
4263 * @return the result of accumulating the given transformation
4264 * of all values
4265 */
4266 public double reduceValuesToDoubleInParallel
4267 (DoubleFunction<? super V> transformer,
4268 double basis,
4269 DoubleBinaryOperator reducer) {
4270 return ForkJoinTasks.reduceValuesToDouble
4271 (this, transformer, basis, reducer).invoke();
4272 }
4273
4274 /**
4275 * Returns the result of accumulating the given transformation
4276 * of all values using the given reducer to combine values,
4277 * and the given basis as an identity value.
4278 *
4279 * @param transformer a function returning the transformation
4280 * for an element
4281 * @param basis the identity (initial default value) for the reduction
4282 * @param reducer a commutative associative combining function
4283 * @return the result of accumulating the given transformation
4284 * of all values
4285 */
4286 public long reduceValuesToLongInParallel
4287 (LongFunction<? super V> transformer,
4288 long basis,
4289 LongBinaryOperator reducer) {
4290 return ForkJoinTasks.reduceValuesToLong
4291 (this, transformer, basis, reducer).invoke();
4292 }
4293
4294 /**
4295 * Returns the result of accumulating the given transformation
4296 * of all values using the given reducer to combine values,
4297 * and the given basis as an identity value.
4298 *
4299 * @param transformer a function returning the transformation
4300 * for an element
4301 * @param basis the identity (initial default value) for the reduction
4302 * @param reducer a commutative associative combining function
4303 * @return the result of accumulating the given transformation
4304 * of all values
4305 */
4306 public int reduceValuesToIntInParallel
4307 (IntFunction<? super V> transformer,
4308 int basis,
4309 IntBinaryOperator reducer) {
4310 return ForkJoinTasks.reduceValuesToInt
4311 (this, transformer, basis, reducer).invoke();
4312 }
4313
4314 /**
4315 * Performs the given action for each entry.
4316 *
4317 * @param action the action
4318 */
4319 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4320 ForkJoinTasks.forEachEntry
4321 (this, action).invoke();
4322 }
4323
4324 /**
4325 * Performs the given action for each non-null transformation
4326 * of each entry.
4327 *
4328 * @param transformer a function returning the transformation
4329 * for an element, or null of there is no transformation (in
4330 * which case the action is not applied).
4331 * @param action the action
4332 */
4333 public <U> void forEachEntryInParallel
4334 (Function<Map.Entry<K,V>, ? extends U> transformer,
4335 Block<? super U> action) {
4336 ForkJoinTasks.forEachEntry
4337 (this, transformer, action).invoke();
4338 }
4339
4340 /**
4341 * Returns a non-null result from applying the given search
4342 * function on each entry, or null if none. Upon success,
4343 * further element processing is suppressed and the results of
4344 * any other parallel invocations of the search function are
4345 * ignored.
4346 *
4347 * @param searchFunction a function returning a non-null
4348 * result on success, else null
4349 * @return a non-null result from applying the given search
4350 * function on each entry, or null if none
4351 */
4352 public <U> U searchEntriesInParallel
4353 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4354 return ForkJoinTasks.searchEntries
4355 (this, searchFunction).invoke();
4356 }
4357
4358 /**
4359 * Returns the result of accumulating all entries using the
4360 * given reducer to combine values, or null if none.
4361 *
4362 * @param reducer a commutative associative combining function
4363 * @return the result of accumulating all entries
4364 */
4365 public Map.Entry<K,V> reduceEntriesInParallel
4366 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4367 return ForkJoinTasks.reduceEntries
4368 (this, reducer).invoke();
4369 }
4370
4371 /**
4372 * Returns the result of accumulating the given transformation
4373 * of all entries using the given reducer to combine values,
4374 * or null if none.
4375 *
4376 * @param transformer a function returning the transformation
4377 * for an element, or null of there is no transformation (in
4378 * which case it is not combined).
4379 * @param reducer a commutative associative combining function
4380 * @return the result of accumulating the given transformation
4381 * of all entries
4382 */
4383 public <U> U reduceEntriesInParallel
4384 (Function<Map.Entry<K,V>, ? extends U> transformer,
4385 BiFunction<? super U, ? super U, ? extends U> reducer) {
4386 return ForkJoinTasks.reduceEntries
4387 (this, transformer, reducer).invoke();
4388 }
4389
4390 /**
4391 * Returns the result of accumulating the given transformation
4392 * of all entries using the given reducer to combine values,
4393 * and the given basis as an identity value.
4394 *
4395 * @param transformer a function returning the transformation
4396 * for an element
4397 * @param basis the identity (initial default value) for the reduction
4398 * @param reducer a commutative associative combining function
4399 * @return the result of accumulating the given transformation
4400 * of all entries
4401 */
4402 public double reduceEntriesToDoubleInParallel
4403 (DoubleFunction<Map.Entry<K,V>> transformer,
4404 double basis,
4405 DoubleBinaryOperator reducer) {
4406 return ForkJoinTasks.reduceEntriesToDouble
4407 (this, transformer, basis, reducer).invoke();
4408 }
4409
4410 /**
4411 * Returns the result of accumulating the given transformation
4412 * of all entries using the given reducer to combine values,
4413 * and the given basis as an identity value.
4414 *
4415 * @param transformer a function returning the transformation
4416 * for an element
4417 * @param basis the identity (initial default value) for the reduction
4418 * @param reducer a commutative associative combining function
4419 * @return the result of accumulating the given transformation
4420 * of all entries
4421 */
4422 public long reduceEntriesToLongInParallel
4423 (LongFunction<Map.Entry<K,V>> transformer,
4424 long basis,
4425 LongBinaryOperator reducer) {
4426 return ForkJoinTasks.reduceEntriesToLong
4427 (this, transformer, basis, reducer).invoke();
4428 }
4429
4430 /**
4431 * Returns the result of accumulating the given transformation
4432 * of all entries using the given reducer to combine values,
4433 * and the given basis as an identity value.
4434 *
4435 * @param transformer a function returning the transformation
4436 * for an element
4437 * @param basis the identity (initial default value) for the reduction
4438 * @param reducer a commutative associative combining function
4439 * @return the result of accumulating the given transformation
4440 * of all entries
4441 */
4442 public int reduceEntriesToIntInParallel
4443 (IntFunction<Map.Entry<K,V>> transformer,
4444 int basis,
4445 IntBinaryOperator reducer) {
4446 return ForkJoinTasks.reduceEntriesToInt
4447 (this, transformer, basis, reducer).invoke();
4448 }
4449
4450
4451 /* ----------------Views -------------- */
4452
4453 /**
4454 * Base class for views.
4455 */
4456 static abstract class CHMView<K, V> {
4457 final ConcurrentHashMap<K, V> map;
4458 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4459
4460 /**
4461 * Returns the map backing this view.
4462 *
4463 * @return the map backing this view
4464 */
4465 public ConcurrentHashMap<K,V> getMap() { return map; }
4466
4467 public final int size() { return map.size(); }
4468 public final boolean isEmpty() { return map.isEmpty(); }
4469 public final void clear() { map.clear(); }
4470
4471 // implementations below rely on concrete classes supplying these
4472 abstract public Iterator<?> iterator();
4473 abstract public boolean contains(Object o);
4474 abstract public boolean remove(Object o);
4475
4476 private static final String oomeMsg = "Required array size too large";
4477
4478 public final Object[] toArray() {
4479 long sz = map.mappingCount();
4480 if (sz > (long)(MAX_ARRAY_SIZE))
4481 throw new OutOfMemoryError(oomeMsg);
4482 int n = (int)sz;
4483 Object[] r = new Object[n];
4484 int i = 0;
4485 Iterator<?> it = iterator();
4486 while (it.hasNext()) {
4487 if (i == n) {
4488 if (n >= MAX_ARRAY_SIZE)
4489 throw new OutOfMemoryError(oomeMsg);
4490 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4491 n = MAX_ARRAY_SIZE;
4492 else
4493 n += (n >>> 1) + 1;
4494 r = Arrays.copyOf(r, n);
4495 }
4496 r[i++] = it.next();
4497 }
4498 return (i == n) ? r : Arrays.copyOf(r, i);
4499 }
4500
4501 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4502 long sz = map.mappingCount();
4503 if (sz > (long)(MAX_ARRAY_SIZE))
4504 throw new OutOfMemoryError(oomeMsg);
4505 int m = (int)sz;
4506 T[] r = (a.length >= m) ? a :
4507 (T[])java.lang.reflect.Array
4508 .newInstance(a.getClass().getComponentType(), m);
4509 int n = r.length;
4510 int i = 0;
4511 Iterator<?> it = iterator();
4512 while (it.hasNext()) {
4513 if (i == n) {
4514 if (n >= MAX_ARRAY_SIZE)
4515 throw new OutOfMemoryError(oomeMsg);
4516 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4517 n = MAX_ARRAY_SIZE;
4518 else
4519 n += (n >>> 1) + 1;
4520 r = Arrays.copyOf(r, n);
4521 }
4522 r[i++] = (T)it.next();
4523 }
4524 if (a == r && i < n) {
4525 r[i] = null; // null-terminate
4526 return r;
4527 }
4528 return (i == n) ? r : Arrays.copyOf(r, i);
4529 }
4530
4531 public final int hashCode() {
4532 int h = 0;
4533 for (Iterator<?> it = iterator(); it.hasNext();)
4534 h += it.next().hashCode();
4535 return h;
4536 }
4537
4538 public final String toString() {
4539 StringBuilder sb = new StringBuilder();
4540 sb.append('[');
4541 Iterator<?> it = iterator();
4542 if (it.hasNext()) {
4543 for (;;) {
4544 Object e = it.next();
4545 sb.append(e == this ? "(this Collection)" : e);
4546 if (!it.hasNext())
4547 break;
4548 sb.append(',').append(' ');
4549 }
4550 }
4551 return sb.append(']').toString();
4552 }
4553
4554 public final boolean containsAll(Collection<?> c) {
4555 if (c != this) {
4556 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4557 Object e = it.next();
4558 if (e == null || !contains(e))
4559 return false;
4560 }
4561 }
4562 return true;
4563 }
4564
4565 public final boolean removeAll(Collection<?> c) {
4566 boolean modified = false;
4567 for (Iterator<?> it = iterator(); it.hasNext();) {
4568 if (c.contains(it.next())) {
4569 it.remove();
4570 modified = true;
4571 }
4572 }
4573 return modified;
4574 }
4575
4576 public final boolean retainAll(Collection<?> c) {
4577 boolean modified = false;
4578 for (Iterator<?> it = iterator(); it.hasNext();) {
4579 if (!c.contains(it.next())) {
4580 it.remove();
4581 modified = true;
4582 }
4583 }
4584 return modified;
4585 }
4586
4587 }
4588
4589 /**
4590 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4591 * which additions may optionally be enabled by mapping to a
4592 * common value. This class cannot be directly instantiated. See
4593 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4594 * {@link #newKeySet(int)}.
4595 */
4596 public static class KeySetView<K,V> extends CHMView<K,V>
4597 implements Set<K>, java.io.Serializable {
4598 private static final long serialVersionUID = 7249069246763182397L;
4599 private final V value;
4600 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4601 super(map);
4602 this.value = value;
4603 }
4604
4605 /**
4606 * Returns the default mapped value for additions,
4607 * or {@code null} if additions are not supported.
4608 *
4609 * @return the default mapped value for additions, or {@code null}
4610 * if not supported.
4611 */
4612 public V getMappedValue() { return value; }
4613
4614 // implement Set API
4615
4616 public boolean contains(Object o) { return map.containsKey(o); }
4617 public boolean remove(Object o) { return map.remove(o) != null; }
4618
4619 /**
4620 * Returns a "weakly consistent" iterator that will never
4621 * throw {@link ConcurrentModificationException}, and
4622 * guarantees to traverse elements as they existed upon
4623 * construction of the iterator, and may (but is not
4624 * guaranteed to) reflect any modifications subsequent to
4625 * construction.
4626 *
4627 * @return an iterator over the keys of this map
4628 */
4629 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4630 public boolean add(K e) {
4631 V v;
4632 if ((v = value) == null)
4633 throw new UnsupportedOperationException();
4634 if (e == null)
4635 throw new NullPointerException();
4636 return map.internalPut(e, v, true) == null;
4637 }
4638 public boolean addAll(Collection<? extends K> c) {
4639 boolean added = false;
4640 V v;
4641 if ((v = value) == null)
4642 throw new UnsupportedOperationException();
4643 for (K e : c) {
4644 if (e == null)
4645 throw new NullPointerException();
4646 if (map.internalPut(e, v, true) == null)
4647 added = true;
4648 }
4649 return added;
4650 }
4651 public boolean equals(Object o) {
4652 Set<?> c;
4653 return ((o instanceof Set) &&
4654 ((c = (Set<?>)o) == this ||
4655 (containsAll(c) && c.containsAll(this))));
4656 }
4657
4658 public Stream<K> stream() {
4659 return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4660 }
4661 public Stream<K> parallelStream() {
4662 return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4663 0);
4664 }
4665 }
4666
4667 /**
4668 * A view of a ConcurrentHashMap as a {@link Collection} of
4669 * values, in which additions are disabled. This class cannot be
4670 * directly instantiated. See {@link #values},
4671 *
4672 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4673 * that will never throw {@link ConcurrentModificationException},
4674 * and guarantees to traverse elements as they existed upon
4675 * construction of the iterator, and may (but is not guaranteed to)
4676 * reflect any modifications subsequent to construction.
4677 */
4678 public static final class ValuesView<K,V> extends CHMView<K,V>
4679 implements Collection<V> {
4680 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4681 public final boolean contains(Object o) { return map.containsValue(o); }
4682 public final boolean remove(Object o) {
4683 if (o != null) {
4684 Iterator<V> it = new ValueIterator<K,V>(map);
4685 while (it.hasNext()) {
4686 if (o.equals(it.next())) {
4687 it.remove();
4688 return true;
4689 }
4690 }
4691 }
4692 return false;
4693 }
4694
4695 /**
4696 * Returns a "weakly consistent" iterator that will never
4697 * throw {@link ConcurrentModificationException}, and
4698 * guarantees to traverse elements as they existed upon
4699 * construction of the iterator, and may (but is not
4700 * guaranteed to) reflect any modifications subsequent to
4701 * construction.
4702 *
4703 * @return an iterator over the values of this map
4704 */
4705 public final Iterator<V> iterator() {
4706 return new ValueIterator<K,V>(map);
4707 }
4708 public final boolean add(V e) {
4709 throw new UnsupportedOperationException();
4710 }
4711 public final boolean addAll(Collection<? extends V> c) {
4712 throw new UnsupportedOperationException();
4713 }
4714
4715 public Stream<V> stream() {
4716 return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4717 }
4718
4719 public Stream<V> parallelStream() {
4720 return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4721 0);
4722 }
4723
4724 }
4725
4726 /**
4727 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4728 * entries. This class cannot be directly instantiated. See
4729 * {@link #entrySet}.
4730 */
4731 public static final class EntrySetView<K,V> extends CHMView<K,V>
4732 implements Set<Map.Entry<K,V>> {
4733 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4734 public final boolean contains(Object o) {
4735 Object k, v, r; Map.Entry<?,?> e;
4736 return ((o instanceof Map.Entry) &&
4737 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4738 (r = map.get(k)) != null &&
4739 (v = e.getValue()) != null &&
4740 (v == r || v.equals(r)));
4741 }
4742 public final boolean remove(Object o) {
4743 Object k, v; Map.Entry<?,?> e;
4744 return ((o instanceof Map.Entry) &&
4745 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4746 (v = e.getValue()) != null &&
4747 map.remove(k, v));
4748 }
4749
4750 /**
4751 * Returns a "weakly consistent" iterator that will never
4752 * throw {@link ConcurrentModificationException}, and
4753 * guarantees to traverse elements as they existed upon
4754 * construction of the iterator, and may (but is not
4755 * guaranteed to) reflect any modifications subsequent to
4756 * construction.
4757 *
4758 * @return an iterator over the entries of this map
4759 */
4760 public final Iterator<Map.Entry<K,V>> iterator() {
4761 return new EntryIterator<K,V>(map);
4762 }
4763
4764 public final boolean add(Entry<K,V> e) {
4765 K key = e.getKey();
4766 V value = e.getValue();
4767 if (key == null || value == null)
4768 throw new NullPointerException();
4769 return map.internalPut(key, value, false) == null;
4770 }
4771 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4772 boolean added = false;
4773 for (Entry<K,V> e : c) {
4774 if (add(e))
4775 added = true;
4776 }
4777 return added;
4778 }
4779 public boolean equals(Object o) {
4780 Set<?> c;
4781 return ((o instanceof Set) &&
4782 ((c = (Set<?>)o) == this ||
4783 (containsAll(c) && c.containsAll(this))));
4784 }
4785
4786 public Stream<Map.Entry<K,V>> stream() {
4787 return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4788 }
4789
4790 public Stream<Map.Entry<K,V>> parallelStream() {
4791 return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4792 0);
4793 }
4794 }
4795
4796 // ---------------------------------------------------------------------
4797
4798 /**
4799 * Predefined tasks for performing bulk parallel operations on
4800 * ConcurrentHashMaps. These tasks follow the forms and rules used
4801 * for bulk operations. Each method has the same name, but returns
4802 * a task rather than invoking it. These methods may be useful in
4803 * custom applications such as submitting a task without waiting
4804 * for completion, using a custom pool, or combining with other
4805 * tasks.
4806 */
4807 public static class ForkJoinTasks {
4808 private ForkJoinTasks() {}
4809
4810 /**
4811 * Returns a task that when invoked, performs the given
4812 * action for each (key, value)
4813 *
4814 * @param map the map
4815 * @param action the action
4816 * @return the task
4817 */
4818 public static <K,V> ForkJoinTask<Void> forEach
4819 (ConcurrentHashMap<K,V> map,
4820 BiBlock<? super K, ? super V> action) {
4821 if (action == null) throw new NullPointerException();
4822 return new ForEachMappingTask<K,V>(map, null, -1, action);
4823 }
4824
4825 /**
4826 * Returns a task that when invoked, performs the given
4827 * action for each non-null transformation of each (key, value)
4828 *
4829 * @param map the map
4830 * @param transformer a function returning the transformation
4831 * for an element, or null if there is no transformation (in
4832 * which case the action is not applied)
4833 * @param action the action
4834 * @return the task
4835 */
4836 public static <K,V,U> ForkJoinTask<Void> forEach
4837 (ConcurrentHashMap<K,V> map,
4838 BiFunction<? super K, ? super V, ? extends U> transformer,
4839 Block<? super U> action) {
4840 if (transformer == null || action == null)
4841 throw new NullPointerException();
4842 return new ForEachTransformedMappingTask<K,V,U>
4843 (map, null, -1, transformer, action);
4844 }
4845
4846 /**
4847 * Returns a task that when invoked, returns a non-null result
4848 * from applying the given search function on each (key,
4849 * value), or null if none. Upon success, further element
4850 * processing is suppressed and the results of any other
4851 * parallel invocations of the search function are ignored.
4852 *
4853 * @param map the map
4854 * @param searchFunction a function returning a non-null
4855 * result on success, else null
4856 * @return the task
4857 */
4858 public static <K,V,U> ForkJoinTask<U> search
4859 (ConcurrentHashMap<K,V> map,
4860 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4861 if (searchFunction == null) throw new NullPointerException();
4862 return new SearchMappingsTask<K,V,U>
4863 (map, null, -1, searchFunction,
4864 new AtomicReference<U>());
4865 }
4866
4867 /**
4868 * Returns a task that when invoked, returns the result of
4869 * accumulating the given transformation of all (key, value) pairs
4870 * using the given reducer to combine values, or null if none.
4871 *
4872 * @param map the map
4873 * @param transformer a function returning the transformation
4874 * for an element, or null if there is no transformation (in
4875 * which case it is not combined).
4876 * @param reducer a commutative associative combining function
4877 * @return the task
4878 */
4879 public static <K,V,U> ForkJoinTask<U> reduce
4880 (ConcurrentHashMap<K,V> map,
4881 BiFunction<? super K, ? super V, ? extends U> transformer,
4882 BiFunction<? super U, ? super U, ? extends U> reducer) {
4883 if (transformer == null || reducer == null)
4884 throw new NullPointerException();
4885 return new MapReduceMappingsTask<K,V,U>
4886 (map, null, -1, null, transformer, reducer);
4887 }
4888
4889 /**
4890 * Returns a task that when invoked, returns the result of
4891 * accumulating the given transformation of all (key, value) pairs
4892 * using the given reducer to combine values, and the given
4893 * basis as an identity value.
4894 *
4895 * @param map the map
4896 * @param transformer a function returning the transformation
4897 * for an element
4898 * @param basis the identity (initial default value) for the reduction
4899 * @param reducer a commutative associative combining function
4900 * @return the task
4901 */
4902 public static <K,V> ForkJoinTask<Double> reduceToDouble
4903 (ConcurrentHashMap<K,V> map,
4904 DoubleBiFunction<? super K, ? super V> transformer,
4905 double basis,
4906 DoubleBinaryOperator reducer) {
4907 if (transformer == null || reducer == null)
4908 throw new NullPointerException();
4909 return new MapReduceMappingsToDoubleTask<K,V>
4910 (map, null, -1, null, transformer, basis, reducer);
4911 }
4912
4913 /**
4914 * Returns a task that when invoked, returns the result of
4915 * accumulating the given transformation of all (key, value) pairs
4916 * using the given reducer to combine values, and the given
4917 * basis as an identity value.
4918 *
4919 * @param map the map
4920 * @param transformer a function returning the transformation
4921 * for an element
4922 * @param basis the identity (initial default value) for the reduction
4923 * @param reducer a commutative associative combining function
4924 * @return the task
4925 */
4926 public static <K,V> ForkJoinTask<Long> reduceToLong
4927 (ConcurrentHashMap<K,V> map,
4928 LongBiFunction<? super K, ? super V> transformer,
4929 long basis,
4930 LongBinaryOperator reducer) {
4931 if (transformer == null || reducer == null)
4932 throw new NullPointerException();
4933 return new MapReduceMappingsToLongTask<K,V>
4934 (map, null, -1, null, transformer, basis, reducer);
4935 }
4936
4937 /**
4938 * Returns a task that when invoked, returns the result of
4939 * accumulating the given transformation of all (key, value) pairs
4940 * using the given reducer to combine values, and the given
4941 * basis as an identity value.
4942 *
4943 * @param transformer a function returning the transformation
4944 * for an element
4945 * @param basis the identity (initial default value) for the reduction
4946 * @param reducer a commutative associative combining function
4947 * @return the task
4948 */
4949 public static <K,V> ForkJoinTask<Integer> reduceToInt
4950 (ConcurrentHashMap<K,V> map,
4951 IntBiFunction<? super K, ? super V> transformer,
4952 int basis,
4953 IntBinaryOperator reducer) {
4954 if (transformer == null || reducer == null)
4955 throw new NullPointerException();
4956 return new MapReduceMappingsToIntTask<K,V>
4957 (map, null, -1, null, transformer, basis, reducer);
4958 }
4959
4960 /**
4961 * Returns a task that when invoked, performs the given action
4962 * for each key.
4963 *
4964 * @param map the map
4965 * @param action the action
4966 * @return the task
4967 */
4968 public static <K,V> ForkJoinTask<Void> forEachKey
4969 (ConcurrentHashMap<K,V> map,
4970 Block<? super K> action) {
4971 if (action == null) throw new NullPointerException();
4972 return new ForEachKeyTask<K,V>(map, null, -1, action);
4973 }
4974
4975 /**
4976 * Returns a task that when invoked, performs the given action
4977 * for each non-null transformation of each key.
4978 *
4979 * @param map the map
4980 * @param transformer a function returning the transformation
4981 * for an element, or null if there is no transformation (in
4982 * which case the action is not applied)
4983 * @param action the action
4984 * @return the task
4985 */
4986 public static <K,V,U> ForkJoinTask<Void> forEachKey
4987 (ConcurrentHashMap<K,V> map,
4988 Function<? super K, ? extends U> transformer,
4989 Block<? super U> action) {
4990 if (transformer == null || action == null)
4991 throw new NullPointerException();
4992 return new ForEachTransformedKeyTask<K,V,U>
4993 (map, null, -1, transformer, action);
4994 }
4995
4996 /**
4997 * Returns a task that when invoked, returns a non-null result
4998 * from applying the given search function on each key, or
4999 * null if none. Upon success, further element processing is
5000 * suppressed and the results of any other parallel
5001 * invocations of the search function are ignored.
5002 *
5003 * @param map the map
5004 * @param searchFunction a function returning a non-null
5005 * result on success, else null
5006 * @return the task
5007 */
5008 public static <K,V,U> ForkJoinTask<U> searchKeys
5009 (ConcurrentHashMap<K,V> map,
5010 Function<? super K, ? extends U> searchFunction) {
5011 if (searchFunction == null) throw new NullPointerException();
5012 return new SearchKeysTask<K,V,U>
5013 (map, null, -1, searchFunction,
5014 new AtomicReference<U>());
5015 }
5016
5017 /**
5018 * Returns a task that when invoked, returns the result of
5019 * accumulating all keys using the given reducer to combine
5020 * values, or null if none.
5021 *
5022 * @param map the map
5023 * @param reducer a commutative associative combining function
5024 * @return the task
5025 */
5026 public static <K,V> ForkJoinTask<K> reduceKeys
5027 (ConcurrentHashMap<K,V> map,
5028 BiFunction<? super K, ? super K, ? extends K> reducer) {
5029 if (reducer == null) throw new NullPointerException();
5030 return new ReduceKeysTask<K,V>
5031 (map, null, -1, null, reducer);
5032 }
5033
5034 /**
5035 * Returns a task that when invoked, returns the result of
5036 * accumulating the given transformation of all keys using the given
5037 * reducer to combine values, or null if none.
5038 *
5039 * @param map the map
5040 * @param transformer a function returning the transformation
5041 * for an element, or null if there is no transformation (in
5042 * which case it is not combined).
5043 * @param reducer a commutative associative combining function
5044 * @return the task
5045 */
5046 public static <K,V,U> ForkJoinTask<U> reduceKeys
5047 (ConcurrentHashMap<K,V> map,
5048 Function<? super K, ? extends U> transformer,
5049 BiFunction<? super U, ? super U, ? extends U> reducer) {
5050 if (transformer == null || reducer == null)
5051 throw new NullPointerException();
5052 return new MapReduceKeysTask<K,V,U>
5053 (map, null, -1, null, transformer, reducer);
5054 }
5055
5056 /**
5057 * Returns a task that when invoked, returns the result of
5058 * accumulating the given transformation of all keys using the given
5059 * reducer to combine values, and the given basis as an
5060 * identity value.
5061 *
5062 * @param map the map
5063 * @param transformer a function returning the transformation
5064 * for an element
5065 * @param basis the identity (initial default value) for the reduction
5066 * @param reducer a commutative associative combining function
5067 * @return the task
5068 */
5069 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5070 (ConcurrentHashMap<K,V> map,
5071 DoubleFunction<? super K> transformer,
5072 double basis,
5073 DoubleBinaryOperator reducer) {
5074 if (transformer == null || reducer == null)
5075 throw new NullPointerException();
5076 return new MapReduceKeysToDoubleTask<K,V>
5077 (map, null, -1, null, transformer, basis, reducer);
5078 }
5079
5080 /**
5081 * Returns a task that when invoked, returns the result of
5082 * accumulating the given transformation of all keys using the given
5083 * reducer to combine values, and the given basis as an
5084 * identity value.
5085 *
5086 * @param map the map
5087 * @param transformer a function returning the transformation
5088 * for an element
5089 * @param basis the identity (initial default value) for the reduction
5090 * @param reducer a commutative associative combining function
5091 * @return the task
5092 */
5093 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5094 (ConcurrentHashMap<K,V> map,
5095 LongFunction<? super K> transformer,
5096 long basis,
5097 LongBinaryOperator reducer) {
5098 if (transformer == null || reducer == null)
5099 throw new NullPointerException();
5100 return new MapReduceKeysToLongTask<K,V>
5101 (map, null, -1, null, transformer, basis, reducer);
5102 }
5103
5104 /**
5105 * Returns a task that when invoked, returns the result of
5106 * accumulating the given transformation of all keys using the given
5107 * reducer to combine values, and the given basis as an
5108 * identity value.
5109 *
5110 * @param map the map
5111 * @param transformer a function returning the transformation
5112 * for an element
5113 * @param basis the identity (initial default value) for the reduction
5114 * @param reducer a commutative associative combining function
5115 * @return the task
5116 */
5117 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5118 (ConcurrentHashMap<K,V> map,
5119 IntFunction<? super K> transformer,
5120 int basis,
5121 IntBinaryOperator reducer) {
5122 if (transformer == null || reducer == null)
5123 throw new NullPointerException();
5124 return new MapReduceKeysToIntTask<K,V>
5125 (map, null, -1, null, transformer, basis, reducer);
5126 }
5127
5128 /**
5129 * Returns a task that when invoked, performs the given action
5130 * for each value.
5131 *
5132 * @param map the map
5133 * @param action the action
5134 */
5135 public static <K,V> ForkJoinTask<Void> forEachValue
5136 (ConcurrentHashMap<K,V> map,
5137 Block<? super V> action) {
5138 if (action == null) throw new NullPointerException();
5139 return new ForEachValueTask<K,V>(map, null, -1, action);
5140 }
5141
5142 /**
5143 * Returns a task that when invoked, performs the given action
5144 * for each non-null transformation of each value.
5145 *
5146 * @param map the map
5147 * @param transformer a function returning the transformation
5148 * for an element, or null if there is no transformation (in
5149 * which case the action is not applied)
5150 * @param action the action
5151 */
5152 public static <K,V,U> ForkJoinTask<Void> forEachValue
5153 (ConcurrentHashMap<K,V> map,
5154 Function<? super V, ? extends U> transformer,
5155 Block<? super U> action) {
5156 if (transformer == null || action == null)
5157 throw new NullPointerException();
5158 return new ForEachTransformedValueTask<K,V,U>
5159 (map, null, -1, transformer, action);
5160 }
5161
5162 /**
5163 * Returns a task that when invoked, returns a non-null result
5164 * from applying the given search function on each value, or
5165 * null if none. Upon success, further element processing is
5166 * suppressed and the results of any other parallel
5167 * invocations of the search function are ignored.
5168 *
5169 * @param map the map
5170 * @param searchFunction a function returning a non-null
5171 * result on success, else null
5172 * @return the task
5173 */
5174 public static <K,V,U> ForkJoinTask<U> searchValues
5175 (ConcurrentHashMap<K,V> map,
5176 Function<? super V, ? extends U> searchFunction) {
5177 if (searchFunction == null) throw new NullPointerException();
5178 return new SearchValuesTask<K,V,U>
5179 (map, null, -1, searchFunction,
5180 new AtomicReference<U>());
5181 }
5182
5183 /**
5184 * Returns a task that when invoked, returns the result of
5185 * accumulating all values using the given reducer to combine
5186 * values, or null if none.
5187 *
5188 * @param map the map
5189 * @param reducer a commutative associative combining function
5190 * @return the task
5191 */
5192 public static <K,V> ForkJoinTask<V> reduceValues
5193 (ConcurrentHashMap<K,V> map,
5194 BiFunction<? super V, ? super V, ? extends V> reducer) {
5195 if (reducer == null) throw new NullPointerException();
5196 return new ReduceValuesTask<K,V>
5197 (map, null, -1, null, reducer);
5198 }
5199
5200 /**
5201 * Returns a task that when invoked, returns the result of
5202 * accumulating the given transformation of all values using the
5203 * given reducer to combine values, or null if none.
5204 *
5205 * @param map the map
5206 * @param transformer a function returning the transformation
5207 * for an element, or null if there is no transformation (in
5208 * which case it is not combined).
5209 * @param reducer a commutative associative combining function
5210 * @return the task
5211 */
5212 public static <K,V,U> ForkJoinTask<U> reduceValues
5213 (ConcurrentHashMap<K,V> map,
5214 Function<? super V, ? extends U> transformer,
5215 BiFunction<? super U, ? super U, ? extends U> reducer) {
5216 if (transformer == null || reducer == null)
5217 throw new NullPointerException();
5218 return new MapReduceValuesTask<K,V,U>
5219 (map, null, -1, null, transformer, reducer);
5220 }
5221
5222 /**
5223 * Returns a task that when invoked, returns the result of
5224 * accumulating the given transformation of all values using the
5225 * given reducer to combine values, and the given basis as an
5226 * identity value.
5227 *
5228 * @param map the map
5229 * @param transformer a function returning the transformation
5230 * for an element
5231 * @param basis the identity (initial default value) for the reduction
5232 * @param reducer a commutative associative combining function
5233 * @return the task
5234 */
5235 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5236 (ConcurrentHashMap<K,V> map,
5237 DoubleFunction<? super V> transformer,
5238 double basis,
5239 DoubleBinaryOperator reducer) {
5240 if (transformer == null || reducer == null)
5241 throw new NullPointerException();
5242 return new MapReduceValuesToDoubleTask<K,V>
5243 (map, null, -1, null, transformer, basis, reducer);
5244 }
5245
5246 /**
5247 * Returns a task that when invoked, returns the result of
5248 * accumulating the given transformation of all values using the
5249 * given reducer to combine values, and the given basis as an
5250 * identity value.
5251 *
5252 * @param map the map
5253 * @param transformer a function returning the transformation
5254 * for an element
5255 * @param basis the identity (initial default value) for the reduction
5256 * @param reducer a commutative associative combining function
5257 * @return the task
5258 */
5259 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5260 (ConcurrentHashMap<K,V> map,
5261 LongFunction<? super V> transformer,
5262 long basis,
5263 LongBinaryOperator reducer) {
5264 if (transformer == null || reducer == null)
5265 throw new NullPointerException();
5266 return new MapReduceValuesToLongTask<K,V>
5267 (map, null, -1, null, transformer, basis, reducer);
5268 }
5269
5270 /**
5271 * Returns a task that when invoked, returns the result of
5272 * accumulating the given transformation of all values using the
5273 * given reducer to combine values, and the given basis as an
5274 * identity value.
5275 *
5276 * @param map the map
5277 * @param transformer a function returning the transformation
5278 * for an element
5279 * @param basis the identity (initial default value) for the reduction
5280 * @param reducer a commutative associative combining function
5281 * @return the task
5282 */
5283 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5284 (ConcurrentHashMap<K,V> map,
5285 IntFunction<? super V> transformer,
5286 int basis,
5287 IntBinaryOperator reducer) {
5288 if (transformer == null || reducer == null)
5289 throw new NullPointerException();
5290 return new MapReduceValuesToIntTask<K,V>
5291 (map, null, -1, null, transformer, basis, reducer);
5292 }
5293
5294 /**
5295 * Returns a task that when invoked, perform the given action
5296 * for each entry.
5297 *
5298 * @param map the map
5299 * @param action the action
5300 */
5301 public static <K,V> ForkJoinTask<Void> forEachEntry
5302 (ConcurrentHashMap<K,V> map,
5303 Block<? super Map.Entry<K,V>> action) {
5304 if (action == null) throw new NullPointerException();
5305 return new ForEachEntryTask<K,V>(map, null, -1, action);
5306 }
5307
5308 /**
5309 * Returns a task that when invoked, perform the given action
5310 * for each non-null transformation of each entry.
5311 *
5312 * @param map the map
5313 * @param transformer a function returning the transformation
5314 * for an element, or null if there is no transformation (in
5315 * which case the action is not applied)
5316 * @param action the action
5317 */
5318 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5319 (ConcurrentHashMap<K,V> map,
5320 Function<Map.Entry<K,V>, ? extends U> transformer,
5321 Block<? super U> action) {
5322 if (transformer == null || action == null)
5323 throw new NullPointerException();
5324 return new ForEachTransformedEntryTask<K,V,U>
5325 (map, null, -1, transformer, action);
5326 }
5327
5328 /**
5329 * Returns a task that when invoked, returns a non-null result
5330 * from applying the given search function on each entry, or
5331 * null if none. Upon success, further element processing is
5332 * suppressed and the results of any other parallel
5333 * invocations of the search function are ignored.
5334 *
5335 * @param map the map
5336 * @param searchFunction a function returning a non-null
5337 * result on success, else null
5338 * @return the task
5339 */
5340 public static <K,V,U> ForkJoinTask<U> searchEntries
5341 (ConcurrentHashMap<K,V> map,
5342 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5343 if (searchFunction == null) throw new NullPointerException();
5344 return new SearchEntriesTask<K,V,U>
5345 (map, null, -1, searchFunction,
5346 new AtomicReference<U>());
5347 }
5348
5349 /**
5350 * Returns a task that when invoked, returns the result of
5351 * accumulating all entries using the given reducer to combine
5352 * values, or null if none.
5353 *
5354 * @param map the map
5355 * @param reducer a commutative associative combining function
5356 * @return the task
5357 */
5358 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5359 (ConcurrentHashMap<K,V> map,
5360 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5361 if (reducer == null) throw new NullPointerException();
5362 return new ReduceEntriesTask<K,V>
5363 (map, null, -1, null, reducer);
5364 }
5365
5366 /**
5367 * Returns a task that when invoked, returns the result of
5368 * accumulating the given transformation of all entries using the
5369 * given reducer to combine values, or null if none.
5370 *
5371 * @param map the map
5372 * @param transformer a function returning the transformation
5373 * for an element, or null if there is no transformation (in
5374 * which case it is not combined).
5375 * @param reducer a commutative associative combining function
5376 * @return the task
5377 */
5378 public static <K,V,U> ForkJoinTask<U> reduceEntries
5379 (ConcurrentHashMap<K,V> map,
5380 Function<Map.Entry<K,V>, ? extends U> transformer,
5381 BiFunction<? super U, ? super U, ? extends U> reducer) {
5382 if (transformer == null || reducer == null)
5383 throw new NullPointerException();
5384 return new MapReduceEntriesTask<K,V,U>
5385 (map, null, -1, null, transformer, reducer);
5386 }
5387
5388 /**
5389 * Returns a task that when invoked, returns the result of
5390 * accumulating the given transformation of all entries using the
5391 * given reducer to combine values, and the given basis as an
5392 * identity value.
5393 *
5394 * @param map the map
5395 * @param transformer a function returning the transformation
5396 * for an element
5397 * @param basis the identity (initial default value) for the reduction
5398 * @param reducer a commutative associative combining function
5399 * @return the task
5400 */
5401 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5402 (ConcurrentHashMap<K,V> map,
5403 DoubleFunction<Map.Entry<K,V>> transformer,
5404 double basis,
5405 DoubleBinaryOperator reducer) {
5406 if (transformer == null || reducer == null)
5407 throw new NullPointerException();
5408 return new MapReduceEntriesToDoubleTask<K,V>
5409 (map, null, -1, null, transformer, basis, reducer);
5410 }
5411
5412 /**
5413 * Returns a task that when invoked, returns the result of
5414 * accumulating the given transformation of all entries using the
5415 * given reducer to combine values, and the given basis as an
5416 * identity value.
5417 *
5418 * @param map the map
5419 * @param transformer a function returning the transformation
5420 * for an element
5421 * @param basis the identity (initial default value) for the reduction
5422 * @param reducer a commutative associative combining function
5423 * @return the task
5424 */
5425 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5426 (ConcurrentHashMap<K,V> map,
5427 LongFunction<Map.Entry<K,V>> transformer,
5428 long basis,
5429 LongBinaryOperator reducer) {
5430 if (transformer == null || reducer == null)
5431 throw new NullPointerException();
5432 return new MapReduceEntriesToLongTask<K,V>
5433 (map, null, -1, null, transformer, basis, reducer);
5434 }
5435
5436 /**
5437 * Returns a task that when invoked, returns the result of
5438 * accumulating the given transformation of all entries using the
5439 * given reducer to combine values, and the given basis as an
5440 * identity value.
5441 *
5442 * @param map the map
5443 * @param transformer a function returning the transformation
5444 * for an element
5445 * @param basis the identity (initial default value) for the reduction
5446 * @param reducer a commutative associative combining function
5447 * @return the task
5448 */
5449 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5450 (ConcurrentHashMap<K,V> map,
5451 IntFunction<Map.Entry<K,V>> transformer,
5452 int basis,
5453 IntBinaryOperator reducer) {
5454 if (transformer == null || reducer == null)
5455 throw new NullPointerException();
5456 return new MapReduceEntriesToIntTask<K,V>
5457 (map, null, -1, null, transformer, basis, reducer);
5458 }
5459 }
5460
5461 // -------------------------------------------------------
5462
5463 /*
5464 * Task classes. Coded in a regular but ugly format/style to
5465 * simplify checks that each variant differs in the right way from
5466 * others. The null screenings exist because compilers cannot tell
5467 * that we've already null-checked task arguments, so we force
5468 * simplest hoisted bypass to help avoid convoluted traps.
5469 */
5470
5471 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5472 extends Traverser<K,V,Void> {
5473 final Block<? super K> action;
5474 ForEachKeyTask
5475 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5476 Block<? super K> action) {
5477 super(m, p, b);
5478 this.action = action;
5479 }
5480 @SuppressWarnings("unchecked") public final void compute() {
5481 final Block<? super K> action;
5482 if ((action = this.action) != null) {
5483 for (int b; (b = preSplit()) > 0;)
5484 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5485 while (advance() != null)
5486 action.accept((K)nextKey);
5487 propagateCompletion();
5488 }
5489 }
5490 }
5491
5492 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5493 extends Traverser<K,V,Void> {
5494 final Block<? super V> action;
5495 ForEachValueTask
5496 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5497 Block<? super V> action) {
5498 super(m, p, b);
5499 this.action = action;
5500 }
5501 @SuppressWarnings("unchecked") public final void compute() {
5502 final Block<? super V> action;
5503 if ((action = this.action) != null) {
5504 for (int b; (b = preSplit()) > 0;)
5505 new ForEachValueTask<K,V>(map, this, b, action).fork();
5506 V v;
5507 while ((v = advance()) != null)
5508 action.accept(v);
5509 propagateCompletion();
5510 }
5511 }
5512 }
5513
5514 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5515 extends Traverser<K,V,Void> {
5516 final Block<? super Entry<K,V>> action;
5517 ForEachEntryTask
5518 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5519 Block<? super Entry<K,V>> action) {
5520 super(m, p, b);
5521 this.action = action;
5522 }
5523 @SuppressWarnings("unchecked") public final void compute() {
5524 final Block<? super Entry<K,V>> action;
5525 if ((action = this.action) != null) {
5526 for (int b; (b = preSplit()) > 0;)
5527 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5528 V v;
5529 while ((v = advance()) != null)
5530 action.accept(entryFor((K)nextKey, v));
5531 propagateCompletion();
5532 }
5533 }
5534 }
5535
5536 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5537 extends Traverser<K,V,Void> {
5538 final BiBlock<? super K, ? super V> action;
5539 ForEachMappingTask
5540 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5541 BiBlock<? super K,? super V> action) {
5542 super(m, p, b);
5543 this.action = action;
5544 }
5545 @SuppressWarnings("unchecked") public final void compute() {
5546 final BiBlock<? super K, ? super V> action;
5547 if ((action = this.action) != null) {
5548 for (int b; (b = preSplit()) > 0;)
5549 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5550 V v;
5551 while ((v = advance()) != null)
5552 action.accept((K)nextKey, v);
5553 propagateCompletion();
5554 }
5555 }
5556 }
5557
5558 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5559 extends Traverser<K,V,Void> {
5560 final Function<? super K, ? extends U> transformer;
5561 final Block<? super U> action;
5562 ForEachTransformedKeyTask
5563 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5564 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5565 super(m, p, b);
5566 this.transformer = transformer; this.action = action;
5567 }
5568 @SuppressWarnings("unchecked") public final void compute() {
5569 final Function<? super K, ? extends U> transformer;
5570 final Block<? super U> action;
5571 if ((transformer = this.transformer) != null &&
5572 (action = this.action) != null) {
5573 for (int b; (b = preSplit()) > 0;)
5574 new ForEachTransformedKeyTask<K,V,U>
5575 (map, this, b, transformer, action).fork();
5576 U u;
5577 while (advance() != null) {
5578 if ((u = transformer.apply((K)nextKey)) != null)
5579 action.accept(u);
5580 }
5581 propagateCompletion();
5582 }
5583 }
5584 }
5585
5586 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5587 extends Traverser<K,V,Void> {
5588 final Function<? super V, ? extends U> transformer;
5589 final Block<? super U> action;
5590 ForEachTransformedValueTask
5591 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5592 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5593 super(m, p, b);
5594 this.transformer = transformer; this.action = action;
5595 }
5596 @SuppressWarnings("unchecked") public final void compute() {
5597 final Function<? super V, ? extends U> transformer;
5598 final Block<? super U> action;
5599 if ((transformer = this.transformer) != null &&
5600 (action = this.action) != null) {
5601 for (int b; (b = preSplit()) > 0;)
5602 new ForEachTransformedValueTask<K,V,U>
5603 (map, this, b, transformer, action).fork();
5604 V v; U u;
5605 while ((v = advance()) != null) {
5606 if ((u = transformer.apply(v)) != null)
5607 action.accept(u);
5608 }
5609 propagateCompletion();
5610 }
5611 }
5612 }
5613
5614 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5615 extends Traverser<K,V,Void> {
5616 final Function<Map.Entry<K,V>, ? extends U> transformer;
5617 final Block<? super U> action;
5618 ForEachTransformedEntryTask
5619 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5620 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5621 super(m, p, b);
5622 this.transformer = transformer; this.action = action;
5623 }
5624 @SuppressWarnings("unchecked") public final void compute() {
5625 final Function<Map.Entry<K,V>, ? extends U> transformer;
5626 final Block<? super U> action;
5627 if ((transformer = this.transformer) != null &&
5628 (action = this.action) != null) {
5629 for (int b; (b = preSplit()) > 0;)
5630 new ForEachTransformedEntryTask<K,V,U>
5631 (map, this, b, transformer, action).fork();
5632 V v; U u;
5633 while ((v = advance()) != null) {
5634 if ((u = transformer.apply(entryFor((K)nextKey,
5635 v))) != null)
5636 action.accept(u);
5637 }
5638 propagateCompletion();
5639 }
5640 }
5641 }
5642
5643 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5644 extends Traverser<K,V,Void> {
5645 final BiFunction<? super K, ? super V, ? extends U> transformer;
5646 final Block<? super U> action;
5647 ForEachTransformedMappingTask
5648 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5649 BiFunction<? super K, ? super V, ? extends U> transformer,
5650 Block<? super U> action) {
5651 super(m, p, b);
5652 this.transformer = transformer; this.action = action;
5653 }
5654 @SuppressWarnings("unchecked") public final void compute() {
5655 final BiFunction<? super K, ? super V, ? extends U> transformer;
5656 final Block<? super U> action;
5657 if ((transformer = this.transformer) != null &&
5658 (action = this.action) != null) {
5659 for (int b; (b = preSplit()) > 0;)
5660 new ForEachTransformedMappingTask<K,V,U>
5661 (map, this, b, transformer, action).fork();
5662 V v; U u;
5663 while ((v = advance()) != null) {
5664 if ((u = transformer.apply((K)nextKey, v)) != null)
5665 action.accept(u);
5666 }
5667 propagateCompletion();
5668 }
5669 }
5670 }
5671
5672 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5673 extends Traverser<K,V,U> {
5674 final Function<? super K, ? extends U> searchFunction;
5675 final AtomicReference<U> result;
5676 SearchKeysTask
5677 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5678 Function<? super K, ? extends U> searchFunction,
5679 AtomicReference<U> result) {
5680 super(m, p, b);
5681 this.searchFunction = searchFunction; this.result = result;
5682 }
5683 public final U getRawResult() { return result.get(); }
5684 @SuppressWarnings("unchecked") public final void compute() {
5685 final Function<? super K, ? extends U> searchFunction;
5686 final AtomicReference<U> result;
5687 if ((searchFunction = this.searchFunction) != null &&
5688 (result = this.result) != null) {
5689 for (int b;;) {
5690 if (result.get() != null)
5691 return;
5692 if ((b = preSplit()) <= 0)
5693 break;
5694 new SearchKeysTask<K,V,U>
5695 (map, this, b, searchFunction, result).fork();
5696 }
5697 while (result.get() == null) {
5698 U u;
5699 if (advance() == null) {
5700 propagateCompletion();
5701 break;
5702 }
5703 if ((u = searchFunction.apply((K)nextKey)) != null) {
5704 if (result.compareAndSet(null, u))
5705 quietlyCompleteRoot();
5706 break;
5707 }
5708 }
5709 }
5710 }
5711 }
5712
5713 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5714 extends Traverser<K,V,U> {
5715 final Function<? super V, ? extends U> searchFunction;
5716 final AtomicReference<U> result;
5717 SearchValuesTask
5718 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5719 Function<? super V, ? extends U> searchFunction,
5720 AtomicReference<U> result) {
5721 super(m, p, b);
5722 this.searchFunction = searchFunction; this.result = result;
5723 }
5724 public final U getRawResult() { return result.get(); }
5725 @SuppressWarnings("unchecked") public final void compute() {
5726 final Function<? super V, ? extends U> searchFunction;
5727 final AtomicReference<U> result;
5728 if ((searchFunction = this.searchFunction) != null &&
5729 (result = this.result) != null) {
5730 for (int b;;) {
5731 if (result.get() != null)
5732 return;
5733 if ((b = preSplit()) <= 0)
5734 break;
5735 new SearchValuesTask<K,V,U>
5736 (map, this, b, searchFunction, result).fork();
5737 }
5738 while (result.get() == null) {
5739 V v; U u;
5740 if ((v = advance()) == null) {
5741 propagateCompletion();
5742 break;
5743 }
5744 if ((u = searchFunction.apply(v)) != null) {
5745 if (result.compareAndSet(null, u))
5746 quietlyCompleteRoot();
5747 break;
5748 }
5749 }
5750 }
5751 }
5752 }
5753
5754 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5755 extends Traverser<K,V,U> {
5756 final Function<Entry<K,V>, ? extends U> searchFunction;
5757 final AtomicReference<U> result;
5758 SearchEntriesTask
5759 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5760 Function<Entry<K,V>, ? extends U> searchFunction,
5761 AtomicReference<U> result) {
5762 super(m, p, b);
5763 this.searchFunction = searchFunction; this.result = result;
5764 }
5765 public final U getRawResult() { return result.get(); }
5766 @SuppressWarnings("unchecked") public final void compute() {
5767 final Function<Entry<K,V>, ? extends U> searchFunction;
5768 final AtomicReference<U> result;
5769 if ((searchFunction = this.searchFunction) != null &&
5770 (result = this.result) != null) {
5771 for (int b;;) {
5772 if (result.get() != null)
5773 return;
5774 if ((b = preSplit()) <= 0)
5775 break;
5776 new SearchEntriesTask<K,V,U>
5777 (map, this, b, searchFunction, result).fork();
5778 }
5779 while (result.get() == null) {
5780 V v; U u;
5781 if ((v = advance()) == null) {
5782 propagateCompletion();
5783 break;
5784 }
5785 if ((u = searchFunction.apply(entryFor((K)nextKey,
5786 v))) != null) {
5787 if (result.compareAndSet(null, u))
5788 quietlyCompleteRoot();
5789 return;
5790 }
5791 }
5792 }
5793 }
5794 }
5795
5796 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5797 extends Traverser<K,V,U> {
5798 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5799 final AtomicReference<U> result;
5800 SearchMappingsTask
5801 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5803 AtomicReference<U> result) {
5804 super(m, p, b);
5805 this.searchFunction = searchFunction; this.result = result;
5806 }
5807 public final U getRawResult() { return result.get(); }
5808 @SuppressWarnings("unchecked") public final void compute() {
5809 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5810 final AtomicReference<U> result;
5811 if ((searchFunction = this.searchFunction) != null &&
5812 (result = this.result) != null) {
5813 for (int b;;) {
5814 if (result.get() != null)
5815 return;
5816 if ((b = preSplit()) <= 0)
5817 break;
5818 new SearchMappingsTask<K,V,U>
5819 (map, this, b, searchFunction, result).fork();
5820 }
5821 while (result.get() == null) {
5822 V v; U u;
5823 if ((v = advance()) == null) {
5824 propagateCompletion();
5825 break;
5826 }
5827 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5828 if (result.compareAndSet(null, u))
5829 quietlyCompleteRoot();
5830 break;
5831 }
5832 }
5833 }
5834 }
5835 }
5836
5837 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5838 extends Traverser<K,V,K> {
5839 final BiFunction<? super K, ? super K, ? extends K> reducer;
5840 K result;
5841 ReduceKeysTask<K,V> rights, nextRight;
5842 ReduceKeysTask
5843 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5844 ReduceKeysTask<K,V> nextRight,
5845 BiFunction<? super K, ? super K, ? extends K> reducer) {
5846 super(m, p, b); this.nextRight = nextRight;
5847 this.reducer = reducer;
5848 }
5849 public final K getRawResult() { return result; }
5850 @SuppressWarnings("unchecked") public final void compute() {
5851 final BiFunction<? super K, ? super K, ? extends K> reducer;
5852 if ((reducer = this.reducer) != null) {
5853 for (int b; (b = preSplit()) > 0;)
5854 (rights = new ReduceKeysTask<K,V>
5855 (map, this, b, rights, reducer)).fork();
5856 K r = null;
5857 while (advance() != null) {
5858 K u = (K)nextKey;
5859 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5860 }
5861 result = r;
5862 CountedCompleter<?> c;
5863 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5864 ReduceKeysTask<K,V>
5865 t = (ReduceKeysTask<K,V>)c,
5866 s = t.rights;
5867 while (s != null) {
5868 K tr, sr;
5869 if ((sr = s.result) != null)
5870 t.result = (((tr = t.result) == null) ? sr :
5871 reducer.apply(tr, sr));
5872 s = t.rights = s.nextRight;
5873 }
5874 }
5875 }
5876 }
5877 }
5878
5879 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5880 extends Traverser<K,V,V> {
5881 final BiFunction<? super V, ? super V, ? extends V> reducer;
5882 V result;
5883 ReduceValuesTask<K,V> rights, nextRight;
5884 ReduceValuesTask
5885 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5886 ReduceValuesTask<K,V> nextRight,
5887 BiFunction<? super V, ? super V, ? extends V> reducer) {
5888 super(m, p, b); this.nextRight = nextRight;
5889 this.reducer = reducer;
5890 }
5891 public final V getRawResult() { return result; }
5892 @SuppressWarnings("unchecked") public final void compute() {
5893 final BiFunction<? super V, ? super V, ? extends V> reducer;
5894 if ((reducer = this.reducer) != null) {
5895 for (int b; (b = preSplit()) > 0;)
5896 (rights = new ReduceValuesTask<K,V>
5897 (map, this, b, rights, reducer)).fork();
5898 V r = null, v;
5899 while ((v = advance()) != null)
5900 r = (r == null) ? v : reducer.apply(r, v);
5901 result = r;
5902 CountedCompleter<?> c;
5903 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904 ReduceValuesTask<K,V>
5905 t = (ReduceValuesTask<K,V>)c,
5906 s = t.rights;
5907 while (s != null) {
5908 V tr, sr;
5909 if ((sr = s.result) != null)
5910 t.result = (((tr = t.result) == null) ? sr :
5911 reducer.apply(tr, sr));
5912 s = t.rights = s.nextRight;
5913 }
5914 }
5915 }
5916 }
5917 }
5918
5919 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5920 extends Traverser<K,V,Map.Entry<K,V>> {
5921 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5922 Map.Entry<K,V> result;
5923 ReduceEntriesTask<K,V> rights, nextRight;
5924 ReduceEntriesTask
5925 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5926 ReduceEntriesTask<K,V> nextRight,
5927 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5928 super(m, p, b); this.nextRight = nextRight;
5929 this.reducer = reducer;
5930 }
5931 public final Map.Entry<K,V> getRawResult() { return result; }
5932 @SuppressWarnings("unchecked") public final void compute() {
5933 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5934 if ((reducer = this.reducer) != null) {
5935 for (int b; (b = preSplit()) > 0;)
5936 (rights = new ReduceEntriesTask<K,V>
5937 (map, this, b, rights, reducer)).fork();
5938 Map.Entry<K,V> r = null;
5939 V v;
5940 while ((v = advance()) != null) {
5941 Map.Entry<K,V> u = entryFor((K)nextKey, v);
5942 r = (r == null) ? u : reducer.apply(r, u);
5943 }
5944 result = r;
5945 CountedCompleter<?> c;
5946 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5947 ReduceEntriesTask<K,V>
5948 t = (ReduceEntriesTask<K,V>)c,
5949 s = t.rights;
5950 while (s != null) {
5951 Map.Entry<K,V> tr, sr;
5952 if ((sr = s.result) != null)
5953 t.result = (((tr = t.result) == null) ? sr :
5954 reducer.apply(tr, sr));
5955 s = t.rights = s.nextRight;
5956 }
5957 }
5958 }
5959 }
5960 }
5961
5962 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5963 extends Traverser<K,V,U> {
5964 final Function<? super K, ? extends U> transformer;
5965 final BiFunction<? super U, ? super U, ? extends U> reducer;
5966 U result;
5967 MapReduceKeysTask<K,V,U> rights, nextRight;
5968 MapReduceKeysTask
5969 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5970 MapReduceKeysTask<K,V,U> nextRight,
5971 Function<? super K, ? extends U> transformer,
5972 BiFunction<? super U, ? super U, ? extends U> reducer) {
5973 super(m, p, b); this.nextRight = nextRight;
5974 this.transformer = transformer;
5975 this.reducer = reducer;
5976 }
5977 public final U getRawResult() { return result; }
5978 @SuppressWarnings("unchecked") public final void compute() {
5979 final Function<? super K, ? extends U> transformer;
5980 final BiFunction<? super U, ? super U, ? extends U> reducer;
5981 if ((transformer = this.transformer) != null &&
5982 (reducer = this.reducer) != null) {
5983 for (int b; (b = preSplit()) > 0;)
5984 (rights = new MapReduceKeysTask<K,V,U>
5985 (map, this, b, rights, transformer, reducer)).fork();
5986 U r = null, u;
5987 while (advance() != null) {
5988 if ((u = transformer.apply((K)nextKey)) != null)
5989 r = (r == null) ? u : reducer.apply(r, u);
5990 }
5991 result = r;
5992 CountedCompleter<?> c;
5993 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5994 MapReduceKeysTask<K,V,U>
5995 t = (MapReduceKeysTask<K,V,U>)c,
5996 s = t.rights;
5997 while (s != null) {
5998 U tr, sr;
5999 if ((sr = s.result) != null)
6000 t.result = (((tr = t.result) == null) ? sr :
6001 reducer.apply(tr, sr));
6002 s = t.rights = s.nextRight;
6003 }
6004 }
6005 }
6006 }
6007 }
6008
6009 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6010 extends Traverser<K,V,U> {
6011 final Function<? super V, ? extends U> transformer;
6012 final BiFunction<? super U, ? super U, ? extends U> reducer;
6013 U result;
6014 MapReduceValuesTask<K,V,U> rights, nextRight;
6015 MapReduceValuesTask
6016 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6017 MapReduceValuesTask<K,V,U> nextRight,
6018 Function<? super V, ? extends U> transformer,
6019 BiFunction<? super U, ? super U, ? extends U> reducer) {
6020 super(m, p, b); this.nextRight = nextRight;
6021 this.transformer = transformer;
6022 this.reducer = reducer;
6023 }
6024 public final U getRawResult() { return result; }
6025 @SuppressWarnings("unchecked") public final void compute() {
6026 final Function<? super V, ? extends U> transformer;
6027 final BiFunction<? super U, ? super U, ? extends U> reducer;
6028 if ((transformer = this.transformer) != null &&
6029 (reducer = this.reducer) != null) {
6030 for (int b; (b = preSplit()) > 0;)
6031 (rights = new MapReduceValuesTask<K,V,U>
6032 (map, this, b, rights, transformer, reducer)).fork();
6033 U r = null, u;
6034 V v;
6035 while ((v = advance()) != null) {
6036 if ((u = transformer.apply(v)) != null)
6037 r = (r == null) ? u : reducer.apply(r, u);
6038 }
6039 result = r;
6040 CountedCompleter<?> c;
6041 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6042 MapReduceValuesTask<K,V,U>
6043 t = (MapReduceValuesTask<K,V,U>)c,
6044 s = t.rights;
6045 while (s != null) {
6046 U tr, sr;
6047 if ((sr = s.result) != null)
6048 t.result = (((tr = t.result) == null) ? sr :
6049 reducer.apply(tr, sr));
6050 s = t.rights = s.nextRight;
6051 }
6052 }
6053 }
6054 }
6055 }
6056
6057 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6058 extends Traverser<K,V,U> {
6059 final Function<Map.Entry<K,V>, ? extends U> transformer;
6060 final BiFunction<? super U, ? super U, ? extends U> reducer;
6061 U result;
6062 MapReduceEntriesTask<K,V,U> rights, nextRight;
6063 MapReduceEntriesTask
6064 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6065 MapReduceEntriesTask<K,V,U> nextRight,
6066 Function<Map.Entry<K,V>, ? extends U> transformer,
6067 BiFunction<? super U, ? super U, ? extends U> reducer) {
6068 super(m, p, b); this.nextRight = nextRight;
6069 this.transformer = transformer;
6070 this.reducer = reducer;
6071 }
6072 public final U getRawResult() { return result; }
6073 @SuppressWarnings("unchecked") public final void compute() {
6074 final Function<Map.Entry<K,V>, ? extends U> transformer;
6075 final BiFunction<? super U, ? super U, ? extends U> reducer;
6076 if ((transformer = this.transformer) != null &&
6077 (reducer = this.reducer) != null) {
6078 for (int b; (b = preSplit()) > 0;)
6079 (rights = new MapReduceEntriesTask<K,V,U>
6080 (map, this, b, rights, transformer, reducer)).fork();
6081 U r = null, u;
6082 V v;
6083 while ((v = advance()) != null) {
6084 if ((u = transformer.apply(entryFor((K)nextKey,
6085 v))) != null)
6086 r = (r == null) ? u : reducer.apply(r, u);
6087 }
6088 result = r;
6089 CountedCompleter<?> c;
6090 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 MapReduceEntriesTask<K,V,U>
6092 t = (MapReduceEntriesTask<K,V,U>)c,
6093 s = t.rights;
6094 while (s != null) {
6095 U tr, sr;
6096 if ((sr = s.result) != null)
6097 t.result = (((tr = t.result) == null) ? sr :
6098 reducer.apply(tr, sr));
6099 s = t.rights = s.nextRight;
6100 }
6101 }
6102 }
6103 }
6104 }
6105
6106 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6107 extends Traverser<K,V,U> {
6108 final BiFunction<? super K, ? super V, ? extends U> transformer;
6109 final BiFunction<? super U, ? super U, ? extends U> reducer;
6110 U result;
6111 MapReduceMappingsTask<K,V,U> rights, nextRight;
6112 MapReduceMappingsTask
6113 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6114 MapReduceMappingsTask<K,V,U> nextRight,
6115 BiFunction<? super K, ? super V, ? extends U> transformer,
6116 BiFunction<? super U, ? super U, ? extends U> reducer) {
6117 super(m, p, b); this.nextRight = nextRight;
6118 this.transformer = transformer;
6119 this.reducer = reducer;
6120 }
6121 public final U getRawResult() { return result; }
6122 @SuppressWarnings("unchecked") public final void compute() {
6123 final BiFunction<? super K, ? super V, ? extends U> transformer;
6124 final BiFunction<? super U, ? super U, ? extends U> reducer;
6125 if ((transformer = this.transformer) != null &&
6126 (reducer = this.reducer) != null) {
6127 for (int b; (b = preSplit()) > 0;)
6128 (rights = new MapReduceMappingsTask<K,V,U>
6129 (map, this, b, rights, transformer, reducer)).fork();
6130 U r = null, u;
6131 V v;
6132 while ((v = advance()) != null) {
6133 if ((u = transformer.apply((K)nextKey, v)) != null)
6134 r = (r == null) ? u : reducer.apply(r, u);
6135 }
6136 result = r;
6137 CountedCompleter<?> c;
6138 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6139 MapReduceMappingsTask<K,V,U>
6140 t = (MapReduceMappingsTask<K,V,U>)c,
6141 s = t.rights;
6142 while (s != null) {
6143 U tr, sr;
6144 if ((sr = s.result) != null)
6145 t.result = (((tr = t.result) == null) ? sr :
6146 reducer.apply(tr, sr));
6147 s = t.rights = s.nextRight;
6148 }
6149 }
6150 }
6151 }
6152 }
6153
6154 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6155 extends Traverser<K,V,Double> {
6156 final DoubleFunction<? super K> transformer;
6157 final DoubleBinaryOperator reducer;
6158 final double basis;
6159 double result;
6160 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6161 MapReduceKeysToDoubleTask
6162 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6163 MapReduceKeysToDoubleTask<K,V> nextRight,
6164 DoubleFunction<? super K> transformer,
6165 double basis,
6166 DoubleBinaryOperator reducer) {
6167 super(m, p, b); this.nextRight = nextRight;
6168 this.transformer = transformer;
6169 this.basis = basis; this.reducer = reducer;
6170 }
6171 public final Double getRawResult() { return result; }
6172 @SuppressWarnings("unchecked") public final void compute() {
6173 final DoubleFunction<? super K> transformer;
6174 final DoubleBinaryOperator reducer;
6175 if ((transformer = this.transformer) != null &&
6176 (reducer = this.reducer) != null) {
6177 double r = this.basis;
6178 for (int b; (b = preSplit()) > 0;)
6179 (rights = new MapReduceKeysToDoubleTask<K,V>
6180 (map, this, b, rights, transformer, r, reducer)).fork();
6181 while (advance() != null)
6182 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6183 result = r;
6184 CountedCompleter<?> c;
6185 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6186 MapReduceKeysToDoubleTask<K,V>
6187 t = (MapReduceKeysToDoubleTask<K,V>)c,
6188 s = t.rights;
6189 while (s != null) {
6190 t.result = reducer.applyAsDouble(t.result, s.result);
6191 s = t.rights = s.nextRight;
6192 }
6193 }
6194 }
6195 }
6196 }
6197
6198 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6199 extends Traverser<K,V,Double> {
6200 final DoubleFunction<? super V> transformer;
6201 final DoubleBinaryOperator reducer;
6202 final double basis;
6203 double result;
6204 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6205 MapReduceValuesToDoubleTask
6206 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6207 MapReduceValuesToDoubleTask<K,V> nextRight,
6208 DoubleFunction<? super V> transformer,
6209 double basis,
6210 DoubleBinaryOperator reducer) {
6211 super(m, p, b); this.nextRight = nextRight;
6212 this.transformer = transformer;
6213 this.basis = basis; this.reducer = reducer;
6214 }
6215 public final Double getRawResult() { return result; }
6216 @SuppressWarnings("unchecked") public final void compute() {
6217 final DoubleFunction<? super V> transformer;
6218 final DoubleBinaryOperator reducer;
6219 if ((transformer = this.transformer) != null &&
6220 (reducer = this.reducer) != null) {
6221 double r = this.basis;
6222 for (int b; (b = preSplit()) > 0;)
6223 (rights = new MapReduceValuesToDoubleTask<K,V>
6224 (map, this, b, rights, transformer, r, reducer)).fork();
6225 V v;
6226 while ((v = advance()) != null)
6227 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6228 result = r;
6229 CountedCompleter<?> c;
6230 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6231 MapReduceValuesToDoubleTask<K,V>
6232 t = (MapReduceValuesToDoubleTask<K,V>)c,
6233 s = t.rights;
6234 while (s != null) {
6235 t.result = reducer.applyAsDouble(t.result, s.result);
6236 s = t.rights = s.nextRight;
6237 }
6238 }
6239 }
6240 }
6241 }
6242
6243 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6244 extends Traverser<K,V,Double> {
6245 final DoubleFunction<Map.Entry<K,V>> transformer;
6246 final DoubleBinaryOperator reducer;
6247 final double basis;
6248 double result;
6249 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6250 MapReduceEntriesToDoubleTask
6251 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6252 MapReduceEntriesToDoubleTask<K,V> nextRight,
6253 DoubleFunction<Map.Entry<K,V>> transformer,
6254 double basis,
6255 DoubleBinaryOperator reducer) {
6256 super(m, p, b); this.nextRight = nextRight;
6257 this.transformer = transformer;
6258 this.basis = basis; this.reducer = reducer;
6259 }
6260 public final Double getRawResult() { return result; }
6261 @SuppressWarnings("unchecked") public final void compute() {
6262 final DoubleFunction<Map.Entry<K,V>> transformer;
6263 final DoubleBinaryOperator reducer;
6264 if ((transformer = this.transformer) != null &&
6265 (reducer = this.reducer) != null) {
6266 double r = this.basis;
6267 for (int b; (b = preSplit()) > 0;)
6268 (rights = new MapReduceEntriesToDoubleTask<K,V>
6269 (map, this, b, rights, transformer, r, reducer)).fork();
6270 V v;
6271 while ((v = advance()) != null)
6272 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6273 v)));
6274 result = r;
6275 CountedCompleter<?> c;
6276 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6277 MapReduceEntriesToDoubleTask<K,V>
6278 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6279 s = t.rights;
6280 while (s != null) {
6281 t.result = reducer.applyAsDouble(t.result, s.result);
6282 s = t.rights = s.nextRight;
6283 }
6284 }
6285 }
6286 }
6287 }
6288
6289 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6290 extends Traverser<K,V,Double> {
6291 final DoubleBiFunction<? super K, ? super V> transformer;
6292 final DoubleBinaryOperator reducer;
6293 final double basis;
6294 double result;
6295 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6296 MapReduceMappingsToDoubleTask
6297 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6298 MapReduceMappingsToDoubleTask<K,V> nextRight,
6299 DoubleBiFunction<? super K, ? super V> transformer,
6300 double basis,
6301 DoubleBinaryOperator reducer) {
6302 super(m, p, b); this.nextRight = nextRight;
6303 this.transformer = transformer;
6304 this.basis = basis; this.reducer = reducer;
6305 }
6306 public final Double getRawResult() { return result; }
6307 @SuppressWarnings("unchecked") public final void compute() {
6308 final DoubleBiFunction<? super K, ? super V> transformer;
6309 final DoubleBinaryOperator reducer;
6310 if ((transformer = this.transformer) != null &&
6311 (reducer = this.reducer) != null) {
6312 double r = this.basis;
6313 for (int b; (b = preSplit()) > 0;)
6314 (rights = new MapReduceMappingsToDoubleTask<K,V>
6315 (map, this, b, rights, transformer, r, reducer)).fork();
6316 V v;
6317 while ((v = advance()) != null)
6318 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6319 result = r;
6320 CountedCompleter<?> c;
6321 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6322 MapReduceMappingsToDoubleTask<K,V>
6323 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6324 s = t.rights;
6325 while (s != null) {
6326 t.result = reducer.applyAsDouble(t.result, s.result);
6327 s = t.rights = s.nextRight;
6328 }
6329 }
6330 }
6331 }
6332 }
6333
6334 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6335 extends Traverser<K,V,Long> {
6336 final LongFunction<? super K> transformer;
6337 final LongBinaryOperator reducer;
6338 final long basis;
6339 long result;
6340 MapReduceKeysToLongTask<K,V> rights, nextRight;
6341 MapReduceKeysToLongTask
6342 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6343 MapReduceKeysToLongTask<K,V> nextRight,
6344 LongFunction<? super K> transformer,
6345 long basis,
6346 LongBinaryOperator reducer) {
6347 super(m, p, b); this.nextRight = nextRight;
6348 this.transformer = transformer;
6349 this.basis = basis; this.reducer = reducer;
6350 }
6351 public final Long getRawResult() { return result; }
6352 @SuppressWarnings("unchecked") public final void compute() {
6353 final LongFunction<? super K> transformer;
6354 final LongBinaryOperator reducer;
6355 if ((transformer = this.transformer) != null &&
6356 (reducer = this.reducer) != null) {
6357 long r = this.basis;
6358 for (int b; (b = preSplit()) > 0;)
6359 (rights = new MapReduceKeysToLongTask<K,V>
6360 (map, this, b, rights, transformer, r, reducer)).fork();
6361 while (advance() != null)
6362 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6363 result = r;
6364 CountedCompleter<?> c;
6365 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6366 MapReduceKeysToLongTask<K,V>
6367 t = (MapReduceKeysToLongTask<K,V>)c,
6368 s = t.rights;
6369 while (s != null) {
6370 t.result = reducer.applyAsLong(t.result, s.result);
6371 s = t.rights = s.nextRight;
6372 }
6373 }
6374 }
6375 }
6376 }
6377
6378 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6379 extends Traverser<K,V,Long> {
6380 final LongFunction<? super V> transformer;
6381 final LongBinaryOperator reducer;
6382 final long basis;
6383 long result;
6384 MapReduceValuesToLongTask<K,V> rights, nextRight;
6385 MapReduceValuesToLongTask
6386 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6387 MapReduceValuesToLongTask<K,V> nextRight,
6388 LongFunction<? super V> transformer,
6389 long basis,
6390 LongBinaryOperator reducer) {
6391 super(m, p, b); this.nextRight = nextRight;
6392 this.transformer = transformer;
6393 this.basis = basis; this.reducer = reducer;
6394 }
6395 public final Long getRawResult() { return result; }
6396 @SuppressWarnings("unchecked") public final void compute() {
6397 final LongFunction<? super V> transformer;
6398 final LongBinaryOperator reducer;
6399 if ((transformer = this.transformer) != null &&
6400 (reducer = this.reducer) != null) {
6401 long r = this.basis;
6402 for (int b; (b = preSplit()) > 0;)
6403 (rights = new MapReduceValuesToLongTask<K,V>
6404 (map, this, b, rights, transformer, r, reducer)).fork();
6405 V v;
6406 while ((v = advance()) != null)
6407 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6408 result = r;
6409 CountedCompleter<?> c;
6410 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6411 MapReduceValuesToLongTask<K,V>
6412 t = (MapReduceValuesToLongTask<K,V>)c,
6413 s = t.rights;
6414 while (s != null) {
6415 t.result = reducer.applyAsLong(t.result, s.result);
6416 s = t.rights = s.nextRight;
6417 }
6418 }
6419 }
6420 }
6421 }
6422
6423 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6424 extends Traverser<K,V,Long> {
6425 final LongFunction<Map.Entry<K,V>> transformer;
6426 final LongBinaryOperator reducer;
6427 final long basis;
6428 long result;
6429 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6430 MapReduceEntriesToLongTask
6431 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6432 MapReduceEntriesToLongTask<K,V> nextRight,
6433 LongFunction<Map.Entry<K,V>> transformer,
6434 long basis,
6435 LongBinaryOperator reducer) {
6436 super(m, p, b); this.nextRight = nextRight;
6437 this.transformer = transformer;
6438 this.basis = basis; this.reducer = reducer;
6439 }
6440 public final Long getRawResult() { return result; }
6441 @SuppressWarnings("unchecked") public final void compute() {
6442 final LongFunction<Map.Entry<K,V>> transformer;
6443 final LongBinaryOperator reducer;
6444 if ((transformer = this.transformer) != null &&
6445 (reducer = this.reducer) != null) {
6446 long r = this.basis;
6447 for (int b; (b = preSplit()) > 0;)
6448 (rights = new MapReduceEntriesToLongTask<K,V>
6449 (map, this, b, rights, transformer, r, reducer)).fork();
6450 V v;
6451 while ((v = advance()) != null)
6452 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6453 result = r;
6454 CountedCompleter<?> c;
6455 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6456 MapReduceEntriesToLongTask<K,V>
6457 t = (MapReduceEntriesToLongTask<K,V>)c,
6458 s = t.rights;
6459 while (s != null) {
6460 t.result = reducer.applyAsLong(t.result, s.result);
6461 s = t.rights = s.nextRight;
6462 }
6463 }
6464 }
6465 }
6466 }
6467
6468 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6469 extends Traverser<K,V,Long> {
6470 final LongBiFunction<? super K, ? super V> transformer;
6471 final LongBinaryOperator reducer;
6472 final long basis;
6473 long result;
6474 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6475 MapReduceMappingsToLongTask
6476 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6477 MapReduceMappingsToLongTask<K,V> nextRight,
6478 LongBiFunction<? super K, ? super V> transformer,
6479 long basis,
6480 LongBinaryOperator reducer) {
6481 super(m, p, b); this.nextRight = nextRight;
6482 this.transformer = transformer;
6483 this.basis = basis; this.reducer = reducer;
6484 }
6485 public final Long getRawResult() { return result; }
6486 @SuppressWarnings("unchecked") public final void compute() {
6487 final LongBiFunction<? super K, ? super V> transformer;
6488 final LongBinaryOperator reducer;
6489 if ((transformer = this.transformer) != null &&
6490 (reducer = this.reducer) != null) {
6491 long r = this.basis;
6492 for (int b; (b = preSplit()) > 0;)
6493 (rights = new MapReduceMappingsToLongTask<K,V>
6494 (map, this, b, rights, transformer, r, reducer)).fork();
6495 V v;
6496 while ((v = advance()) != null)
6497 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6498 result = r;
6499 CountedCompleter<?> c;
6500 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6501 MapReduceMappingsToLongTask<K,V>
6502 t = (MapReduceMappingsToLongTask<K,V>)c,
6503 s = t.rights;
6504 while (s != null) {
6505 t.result = reducer.applyAsLong(t.result, s.result);
6506 s = t.rights = s.nextRight;
6507 }
6508 }
6509 }
6510 }
6511 }
6512
6513 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6514 extends Traverser<K,V,Integer> {
6515 final IntFunction<? super K> transformer;
6516 final IntBinaryOperator reducer;
6517 final int basis;
6518 int result;
6519 MapReduceKeysToIntTask<K,V> rights, nextRight;
6520 MapReduceKeysToIntTask
6521 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6522 MapReduceKeysToIntTask<K,V> nextRight,
6523 IntFunction<? super K> transformer,
6524 int basis,
6525 IntBinaryOperator reducer) {
6526 super(m, p, b); this.nextRight = nextRight;
6527 this.transformer = transformer;
6528 this.basis = basis; this.reducer = reducer;
6529 }
6530 public final Integer getRawResult() { return result; }
6531 @SuppressWarnings("unchecked") public final void compute() {
6532 final IntFunction<? super K> transformer;
6533 final IntBinaryOperator reducer;
6534 if ((transformer = this.transformer) != null &&
6535 (reducer = this.reducer) != null) {
6536 int r = this.basis;
6537 for (int b; (b = preSplit()) > 0;)
6538 (rights = new MapReduceKeysToIntTask<K,V>
6539 (map, this, b, rights, transformer, r, reducer)).fork();
6540 while (advance() != null)
6541 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6542 result = r;
6543 CountedCompleter<?> c;
6544 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6545 MapReduceKeysToIntTask<K,V>
6546 t = (MapReduceKeysToIntTask<K,V>)c,
6547 s = t.rights;
6548 while (s != null) {
6549 t.result = reducer.applyAsInt(t.result, s.result);
6550 s = t.rights = s.nextRight;
6551 }
6552 }
6553 }
6554 }
6555 }
6556
6557 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6558 extends Traverser<K,V,Integer> {
6559 final IntFunction<? super V> transformer;
6560 final IntBinaryOperator reducer;
6561 final int basis;
6562 int result;
6563 MapReduceValuesToIntTask<K,V> rights, nextRight;
6564 MapReduceValuesToIntTask
6565 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6566 MapReduceValuesToIntTask<K,V> nextRight,
6567 IntFunction<? super V> transformer,
6568 int basis,
6569 IntBinaryOperator reducer) {
6570 super(m, p, b); this.nextRight = nextRight;
6571 this.transformer = transformer;
6572 this.basis = basis; this.reducer = reducer;
6573 }
6574 public final Integer getRawResult() { return result; }
6575 @SuppressWarnings("unchecked") public final void compute() {
6576 final IntFunction<? super V> transformer;
6577 final IntBinaryOperator reducer;
6578 if ((transformer = this.transformer) != null &&
6579 (reducer = this.reducer) != null) {
6580 int r = this.basis;
6581 for (int b; (b = preSplit()) > 0;)
6582 (rights = new MapReduceValuesToIntTask<K,V>
6583 (map, this, b, rights, transformer, r, reducer)).fork();
6584 V v;
6585 while ((v = advance()) != null)
6586 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6587 result = r;
6588 CountedCompleter<?> c;
6589 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6590 MapReduceValuesToIntTask<K,V>
6591 t = (MapReduceValuesToIntTask<K,V>)c,
6592 s = t.rights;
6593 while (s != null) {
6594 t.result = reducer.applyAsInt(t.result, s.result);
6595 s = t.rights = s.nextRight;
6596 }
6597 }
6598 }
6599 }
6600 }
6601
6602 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6603 extends Traverser<K,V,Integer> {
6604 final IntFunction<Map.Entry<K,V>> transformer;
6605 final IntBinaryOperator reducer;
6606 final int basis;
6607 int result;
6608 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6609 MapReduceEntriesToIntTask
6610 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6611 MapReduceEntriesToIntTask<K,V> nextRight,
6612 IntFunction<Map.Entry<K,V>> transformer,
6613 int basis,
6614 IntBinaryOperator reducer) {
6615 super(m, p, b); this.nextRight = nextRight;
6616 this.transformer = transformer;
6617 this.basis = basis; this.reducer = reducer;
6618 }
6619 public final Integer getRawResult() { return result; }
6620 @SuppressWarnings("unchecked") public final void compute() {
6621 final IntFunction<Map.Entry<K,V>> transformer;
6622 final IntBinaryOperator reducer;
6623 if ((transformer = this.transformer) != null &&
6624 (reducer = this.reducer) != null) {
6625 int r = this.basis;
6626 for (int b; (b = preSplit()) > 0;)
6627 (rights = new MapReduceEntriesToIntTask<K,V>
6628 (map, this, b, rights, transformer, r, reducer)).fork();
6629 V v;
6630 while ((v = advance()) != null)
6631 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6632 v)));
6633 result = r;
6634 CountedCompleter<?> c;
6635 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6636 MapReduceEntriesToIntTask<K,V>
6637 t = (MapReduceEntriesToIntTask<K,V>)c,
6638 s = t.rights;
6639 while (s != null) {
6640 t.result = reducer.applyAsInt(t.result, s.result);
6641 s = t.rights = s.nextRight;
6642 }
6643 }
6644 }
6645 }
6646 }
6647
6648 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6649 extends Traverser<K,V,Integer> {
6650 final IntBiFunction<? super K, ? super V> transformer;
6651 final IntBinaryOperator reducer;
6652 final int basis;
6653 int result;
6654 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6655 MapReduceMappingsToIntTask
6656 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6657 MapReduceMappingsToIntTask<K,V> nextRight,
6658 IntBiFunction<? super K, ? super V> transformer,
6659 int basis,
6660 IntBinaryOperator reducer) {
6661 super(m, p, b); this.nextRight = nextRight;
6662 this.transformer = transformer;
6663 this.basis = basis; this.reducer = reducer;
6664 }
6665 public final Integer getRawResult() { return result; }
6666 @SuppressWarnings("unchecked") public final void compute() {
6667 final IntBiFunction<? super K, ? super V> transformer;
6668 final IntBinaryOperator reducer;
6669 if ((transformer = this.transformer) != null &&
6670 (reducer = this.reducer) != null) {
6671 int r = this.basis;
6672 for (int b; (b = preSplit()) > 0;)
6673 (rights = new MapReduceMappingsToIntTask<K,V>
6674 (map, this, b, rights, transformer, r, reducer)).fork();
6675 V v;
6676 while ((v = advance()) != null)
6677 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6678 result = r;
6679 CountedCompleter<?> c;
6680 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6681 MapReduceMappingsToIntTask<K,V>
6682 t = (MapReduceMappingsToIntTask<K,V>)c,
6683 s = t.rights;
6684 while (s != null) {
6685 t.result = reducer.applyAsInt(t.result, s.result);
6686 s = t.rights = s.nextRight;
6687 }
6688 }
6689 }
6690 }
6691 }
6692
6693 // Unsafe mechanics
6694 private static final sun.misc.Unsafe U;
6695 private static final long SIZECTL;
6696 private static final long TRANSFERINDEX;
6697 private static final long TRANSFERORIGIN;
6698 private static final long BASECOUNT;
6699 private static final long CELLSBUSY;
6700 private static final long CELLVALUE;
6701 private static final long ABASE;
6702 private static final int ASHIFT;
6703
6704 static {
6705 int ss;
6706 try {
6707 U = sun.misc.Unsafe.getUnsafe();
6708 Class<?> k = ConcurrentHashMap.class;
6709 SIZECTL = U.objectFieldOffset
6710 (k.getDeclaredField("sizeCtl"));
6711 TRANSFERINDEX = U.objectFieldOffset
6712 (k.getDeclaredField("transferIndex"));
6713 TRANSFERORIGIN = U.objectFieldOffset
6714 (k.getDeclaredField("transferOrigin"));
6715 BASECOUNT = U.objectFieldOffset
6716 (k.getDeclaredField("baseCount"));
6717 CELLSBUSY = U.objectFieldOffset
6718 (k.getDeclaredField("cellsBusy"));
6719 Class<?> ck = Cell.class;
6720 CELLVALUE = U.objectFieldOffset
6721 (ck.getDeclaredField("value"));
6722 Class<?> sc = Node[].class;
6723 ABASE = U.arrayBaseOffset(sc);
6724 ss = U.arrayIndexScale(sc);
6725 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6726 } catch (Exception e) {
6727 throw new Error(e);
6728 }
6729 if ((ss & (ss-1)) != 0)
6730 throw new Error("data type scale not a power of two");
6731 }
6732
6733 }